llama-model.cpp 587 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_475M: return "475M";
  40. case LLM_TYPE_770M: return "770M";
  41. case LLM_TYPE_780M: return "780M";
  42. case LLM_TYPE_0_5B: return "0.5B";
  43. case LLM_TYPE_0_6B: return "0.6B";
  44. case LLM_TYPE_1B: return "1B";
  45. case LLM_TYPE_1_3B: return "1.3B";
  46. case LLM_TYPE_1_4B: return "1.4B";
  47. case LLM_TYPE_1_5B: return "1.5B";
  48. case LLM_TYPE_1_6B: return "1.6B";
  49. case LLM_TYPE_1_7B: return "1.7B";
  50. case LLM_TYPE_1_8B: return "1.8B";
  51. case LLM_TYPE_2B: return "2B";
  52. case LLM_TYPE_2_8B: return "2.8B";
  53. case LLM_TYPE_2_9B: return "2.9B";
  54. case LLM_TYPE_3B: return "3B";
  55. case LLM_TYPE_4B: return "4B";
  56. case LLM_TYPE_6B: return "6B";
  57. case LLM_TYPE_6_9B: return "6.9B";
  58. case LLM_TYPE_7B: return "7B";
  59. case LLM_TYPE_8B: return "8B";
  60. case LLM_TYPE_9B: return "9B";
  61. case LLM_TYPE_11B: return "11B";
  62. case LLM_TYPE_12B: return "12B";
  63. case LLM_TYPE_13B: return "13B";
  64. case LLM_TYPE_14B: return "14B";
  65. case LLM_TYPE_15B: return "15B";
  66. case LLM_TYPE_16B: return "16B";
  67. case LLM_TYPE_20B: return "20B";
  68. case LLM_TYPE_27B: return "27B";
  69. case LLM_TYPE_30B: return "30B";
  70. case LLM_TYPE_32B: return "32B";
  71. case LLM_TYPE_34B: return "34B";
  72. case LLM_TYPE_35B: return "35B";
  73. case LLM_TYPE_40B: return "40B";
  74. case LLM_TYPE_65B: return "65B";
  75. case LLM_TYPE_70B: return "70B";
  76. case LLM_TYPE_236B: return "236B";
  77. case LLM_TYPE_290B: return "290B";
  78. case LLM_TYPE_314B: return "314B";
  79. case LLM_TYPE_405B: return "405B";
  80. case LLM_TYPE_671B: return "671B";
  81. case LLM_TYPE_SMALL: return "0.1B";
  82. case LLM_TYPE_MEDIUM: return "0.4B";
  83. case LLM_TYPE_LARGE: return "0.8B";
  84. case LLM_TYPE_XL: return "1.5B";
  85. case LLM_TYPE_A1_7B: return "A1.7B";
  86. case LLM_TYPE_A2_7B: return "A2.7B";
  87. case LLM_TYPE_8x7B: return "8x7B";
  88. case LLM_TYPE_8x22B: return "8x22B";
  89. case LLM_TYPE_16x12B: return "16x12B";
  90. case LLM_TYPE_16x3_8B: return "16x3.8B";
  91. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  92. case LLM_TYPE_57B_A14B: return "57B.A14B";
  93. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  94. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  95. case LLM_TYPE_30B_A3B: return "30B.A3B";
  96. case LLM_TYPE_235B_A22B: return "235B.A22B";
  97. default: return "?B";
  98. }
  99. }
  100. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  101. switch (type) {
  102. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  103. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  104. default: return "unknown";
  105. }
  106. }
  107. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  108. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  109. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  110. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  111. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  112. };
  113. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  114. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  115. }
  116. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  117. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  118. if (kv.second == name) {
  119. return (llama_rope_scaling_type) kv.first;
  120. }
  121. }
  122. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  123. }
  124. // checks if the weight tensor can be used with the specified buffer type and device
  125. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  126. GGML_ASSERT(w != nullptr);
  127. if (op == GGML_OP_NONE) {
  128. return true;
  129. }
  130. ggml_init_params params = {
  131. /*.mem_size =*/ ggml_tensor_overhead()*8,
  132. /*.mem_buffer =*/ NULL,
  133. /*.no_alloc =*/ true,
  134. };
  135. ggml_context_ptr ctx_ptr { ggml_init(params) };
  136. if (!ctx_ptr) {
  137. throw std::runtime_error(format("failed to create ggml context"));
  138. }
  139. ggml_context * ctx = ctx_ptr.get();
  140. ggml_tensor * op_tensor = nullptr;
  141. switch (op) {
  142. case GGML_OP_GET_ROWS:
  143. {
  144. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  145. op_tensor = ggml_get_rows(ctx, w, b);
  146. } break;
  147. case GGML_OP_MUL_MAT:
  148. {
  149. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  150. op_tensor = ggml_mul_mat(ctx, w, b);
  151. } break;
  152. case GGML_OP_MUL_MAT_ID:
  153. {
  154. int n_expert_used = hparams.n_expert_used;
  155. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  156. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  157. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  158. } break;
  159. case GGML_OP_ADD:
  160. {
  161. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  162. op_tensor = ggml_add(ctx, a, w);
  163. } break;
  164. case GGML_OP_MUL:
  165. {
  166. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  167. op_tensor = ggml_mul(ctx, a, w);
  168. } break;
  169. case GGML_OP_DIV:
  170. {
  171. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  172. op_tensor = ggml_div(ctx, a, w);
  173. } break;
  174. case GGML_OP_ROPE:
  175. {
  176. int n_embd_head = hparams.n_embd_head_v;
  177. int n_head = hparams.n_head();
  178. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  179. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  180. op_tensor = ggml_rope_ext(
  181. ctx, a, b, w,
  182. 0, 0, 0, 0, 0,
  183. 0, 0, 0, 0
  184. );
  185. } break;
  186. case GGML_OP_SSM_CONV:
  187. {
  188. // FIXME
  189. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  190. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  191. } break;
  192. case GGML_OP_SSM_SCAN:
  193. {
  194. // FIXME
  195. const int64_t d_state = w->ne[0];
  196. const int64_t d_inner = w->ne[1];
  197. const int64_t n_seq_tokens = 512;
  198. const int64_t n_seqs = 1;
  199. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  200. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  201. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  202. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  203. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  204. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  205. } break;
  206. case GGML_OP_RWKV_WKV6:
  207. {
  208. // FIXME
  209. const int64_t S = 123;
  210. const int64_t H = 123;
  211. const int64_t n_tokens = 123;
  212. const int64_t n_seqs = 123;
  213. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  214. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  215. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  216. ggml_tensor * tf = w;
  217. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  218. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  219. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  220. } break;
  221. case GGML_OP_IM2COL:
  222. {
  223. const int n_embd = hparams.n_embd;
  224. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  225. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  226. } break;
  227. default:
  228. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  229. }
  230. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  231. GGML_ASSERT(w->buffer == nullptr);
  232. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  233. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  234. ggml_backend_buffer_free(w->buffer);
  235. w->buffer = nullptr;
  236. return op_supported;
  237. }
  238. // lists of buffer types used for each layer
  239. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  240. // find the first buffer type in the list that can use the tensor
  241. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  242. GGML_ASSERT(!buft_list.empty());
  243. for (const auto & cur : buft_list) {
  244. ggml_backend_dev_t cur_dev = cur.first;
  245. ggml_backend_buffer_type_t cur_buft = cur.second;
  246. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  247. return cur_buft;
  248. }
  249. }
  250. return nullptr;
  251. }
  252. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  253. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  254. buft_list_t buft_list;
  255. // add ACCEL buffer types
  256. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  257. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  258. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  259. auto * buft = ggml_backend_dev_buffer_type(dev);
  260. // skip
  261. if (buft != ggml_backend_cpu_buffer_type()) {
  262. buft_list.emplace_back(dev, buft);
  263. }
  264. }
  265. }
  266. // add a host buffer type
  267. // storing the tensors in a host buffer is useful when the processing of large batches
  268. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  269. // generally, this will be done using the first device in the list
  270. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  271. // function of the device to determine if it would benefit from being stored in a host buffer
  272. for (auto * dev : devices) {
  273. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  274. if (buft) {
  275. buft_list.emplace_back(dev, buft);
  276. break;
  277. }
  278. }
  279. // add extra buffer types, only if no GPU device is present
  280. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  281. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  282. if (cpu_dev == nullptr) {
  283. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  284. }
  285. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  286. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  287. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  288. if (ggml_backend_dev_get_extra_bufts_fn) {
  289. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  290. while (extra_bufts && *extra_bufts) {
  291. buft_list.emplace_back(cpu_dev, *extra_bufts);
  292. ++extra_bufts;
  293. }
  294. }
  295. // add the CPU buffer type
  296. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  297. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  298. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  299. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  300. }
  301. }
  302. return buft_list;
  303. }
  304. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  305. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  306. buft_list_t buft_list;
  307. // add the device split buffer type if requested and available
  308. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  309. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  310. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  311. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  312. if (ggml_backend_split_buffer_type_fn) {
  313. size_t dev_index = [&]() {
  314. auto * reg = ggml_backend_dev_backend_reg(dev);
  315. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  316. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  317. return i;
  318. }
  319. }
  320. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  321. }();
  322. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  323. if (buft != nullptr) {
  324. buft_list.emplace_back(dev, buft);
  325. }
  326. }
  327. }
  328. // add the device default buffer type
  329. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  330. return buft_list;
  331. }
  332. struct llama_model::impl {
  333. impl() {}
  334. ~impl() {}
  335. uint64_t n_elements = 0;
  336. size_t n_bytes = 0;
  337. std::string desc_str;
  338. // model memory mapped files
  339. llama_mmaps mappings;
  340. // objects representing data potentially being locked in memory
  341. llama_mlocks mlock_bufs;
  342. llama_mlocks mlock_mmaps;
  343. // contexts where the model tensors metadata is stored
  344. std::vector<ggml_context_ptr> ctxs;
  345. // the model memory buffers for the tensor data
  346. std::vector<ggml_backend_buffer_ptr> bufs;
  347. buft_list_t cpu_buft_list;
  348. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  349. struct layer_dev {
  350. ggml_backend_dev_t dev;
  351. buft_list_t * buft_list;
  352. };
  353. layer_dev dev_input = {};
  354. layer_dev dev_output = {};
  355. std::vector<layer_dev> dev_layer;
  356. bool has_tensor_overrides;
  357. };
  358. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  359. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  360. }
  361. llama_model::~llama_model() {}
  362. void llama_model::load_stats(llama_model_loader & ml) {
  363. pimpl->n_elements = ml.n_elements;
  364. pimpl->n_bytes = ml.n_bytes;
  365. }
  366. void llama_model::load_arch(llama_model_loader & ml) {
  367. arch = ml.get_arch();
  368. if (arch == LLM_ARCH_UNKNOWN) {
  369. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  370. }
  371. }
  372. void llama_model::load_hparams(llama_model_loader & ml) {
  373. const gguf_context * ctx = ml.meta.get();
  374. // get metadata as string
  375. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  376. gguf_type type = gguf_get_kv_type(ctx, i);
  377. if (type == GGUF_TYPE_ARRAY) {
  378. continue;
  379. }
  380. const char * name = gguf_get_key(ctx, i);
  381. const std::string value = gguf_kv_to_str(ctx, i);
  382. gguf_kv.emplace(name, value);
  383. }
  384. // get general kv
  385. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  386. // everything past this point is not vocab-related
  387. if (hparams.vocab_only) {
  388. return;
  389. }
  390. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  391. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  392. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  393. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  394. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  395. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  396. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  397. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  398. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  399. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  400. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  401. }
  402. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  403. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  404. if (hparams.n_expert > 0) {
  405. GGML_ASSERT(hparams.n_expert_used > 0);
  406. } else {
  407. GGML_ASSERT(hparams.n_expert_used == 0);
  408. }
  409. // zero-out the array hparams
  410. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  411. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  412. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  413. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  414. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  415. // n_head_kv is optional, default to n_head
  416. hparams.n_head_kv_arr = hparams.n_head_arr;
  417. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  418. bool rope_finetuned = false;
  419. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  420. hparams.rope_finetuned = rope_finetuned;
  421. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  422. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  423. // rope_freq_base (optional)
  424. hparams.rope_freq_base_train = 10000.0f;
  425. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  426. std::string rope_scaling("linear");
  427. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  428. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  429. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  430. // rope_freq_scale (inverse of the kv) is optional
  431. float ropescale = 0.0f;
  432. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  433. // try the old key name
  434. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  435. }
  436. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  437. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  438. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  439. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  440. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  441. // non-transformer models do not have attention heads
  442. if (hparams.n_head() > 0) {
  443. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  444. // gpt-j n_rot = rotary_dim
  445. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  446. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  447. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  448. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  449. // sanity check for n_rot (optional)
  450. hparams.n_rot = hparams.n_embd_head_k;
  451. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  452. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  453. if (hparams.n_rot != hparams.n_embd_head_k) {
  454. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  455. }
  456. }
  457. } else {
  458. hparams.n_rot = 0;
  459. hparams.n_embd_head_k = 0;
  460. hparams.n_embd_head_v = 0;
  461. }
  462. // for differentiating model types
  463. uint32_t n_vocab = 0;
  464. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  465. // arch-specific KVs
  466. switch (arch) {
  467. case LLM_ARCH_LLAMA:
  468. {
  469. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  470. if (hparams.n_expert == 8) {
  471. switch (hparams.n_layer) {
  472. case 32: type = LLM_TYPE_8x7B; break;
  473. case 56: type = LLM_TYPE_8x22B; break;
  474. default: type = LLM_TYPE_UNKNOWN;
  475. }
  476. } else {
  477. switch (hparams.n_layer) {
  478. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  479. case 22: type = LLM_TYPE_1B; break;
  480. case 26: type = LLM_TYPE_3B; break;
  481. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  482. // granite uses a vocab with len 49152
  483. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  484. case 36: type = LLM_TYPE_8B; break; // granite
  485. case 40: type = LLM_TYPE_13B; break;
  486. case 48: type = LLM_TYPE_34B; break;
  487. case 60: type = LLM_TYPE_30B; break;
  488. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  489. default: type = LLM_TYPE_UNKNOWN;
  490. }
  491. }
  492. } break;
  493. case LLM_ARCH_LLAMA4:
  494. {
  495. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  496. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  497. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  498. hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
  499. hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  500. hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
  501. switch (hparams.n_expert) {
  502. case 16: type = LLM_TYPE_17B_16E; break;
  503. case 128: type = LLM_TYPE_17B_128E; break;
  504. default: type = LLM_TYPE_UNKNOWN;
  505. }
  506. if (type == LLM_TYPE_17B_128E) {
  507. hparams.use_kq_norm = false;
  508. }
  509. } break;
  510. case LLM_ARCH_DECI:
  511. {
  512. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  513. switch (hparams.n_layer) {
  514. case 32: type = LLM_TYPE_7B; break;
  515. case 80: type = LLM_TYPE_70B; break;
  516. case 162: type = LLM_TYPE_405B; break;
  517. default: type = LLM_TYPE_UNKNOWN;
  518. }
  519. } break;
  520. case LLM_ARCH_MINICPM:
  521. {
  522. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  523. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  524. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  525. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  526. switch (hparams.n_layer) {
  527. case 52: type = LLM_TYPE_1B; break;
  528. case 40: type = LLM_TYPE_2B; break;
  529. default: type = LLM_TYPE_UNKNOWN;
  530. }
  531. } break;
  532. case LLM_ARCH_MINICPM3:
  533. {
  534. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  535. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  536. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  537. switch (hparams.n_layer) {
  538. case 62: type = LLM_TYPE_4B; break;
  539. default: type = LLM_TYPE_UNKNOWN;
  540. }
  541. } break;
  542. case LLM_ARCH_GROK:
  543. {
  544. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  545. switch (hparams.n_layer) {
  546. case 64: type = LLM_TYPE_314B; break;
  547. default: type = LLM_TYPE_UNKNOWN;
  548. }
  549. } break;
  550. case LLM_ARCH_FALCON:
  551. {
  552. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  553. switch (hparams.n_layer) {
  554. case 32: type = LLM_TYPE_7B; break;
  555. case 60: type = LLM_TYPE_40B; break;
  556. default: type = LLM_TYPE_UNKNOWN;
  557. }
  558. } break;
  559. case LLM_ARCH_BAICHUAN:
  560. {
  561. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  562. switch (hparams.n_layer) {
  563. case 32: type = LLM_TYPE_7B; break;
  564. case 40: type = LLM_TYPE_13B; break;
  565. default: type = LLM_TYPE_UNKNOWN;
  566. }
  567. if (type == LLM_TYPE_13B) {
  568. // TODO: become GGUF KV parameter
  569. hparams.f_max_alibi_bias = 8.0f;
  570. }
  571. } break;
  572. case LLM_ARCH_STARCODER:
  573. {
  574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  575. switch (hparams.n_layer) {
  576. case 24: type = LLM_TYPE_1B; break;
  577. case 36: type = LLM_TYPE_3B; break;
  578. case 42: type = LLM_TYPE_7B; break;
  579. case 40: type = LLM_TYPE_15B; break;
  580. default: type = LLM_TYPE_UNKNOWN;
  581. }
  582. } break;
  583. case LLM_ARCH_REFACT:
  584. {
  585. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  586. switch (hparams.n_layer) {
  587. case 32: type = LLM_TYPE_1B; break;
  588. default: type = LLM_TYPE_UNKNOWN;
  589. }
  590. // TODO: become GGUF KV parameter
  591. hparams.f_max_alibi_bias = 8.0f;
  592. } break;
  593. case LLM_ARCH_BERT:
  594. {
  595. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  596. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  597. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  598. switch (hparams.n_layer) {
  599. case 3:
  600. type = LLM_TYPE_17M; break; // bge-micro
  601. case 6:
  602. type = LLM_TYPE_22M; break; // MiniLM-L6
  603. case 12:
  604. switch (hparams.n_embd) {
  605. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  606. case 768: type = LLM_TYPE_109M; break; // bge-base
  607. default: type = LLM_TYPE_UNKNOWN;
  608. } break;
  609. case 24:
  610. type = LLM_TYPE_335M; break; // bge-large
  611. default: type = LLM_TYPE_UNKNOWN;
  612. }
  613. } break;
  614. case LLM_ARCH_JINA_BERT_V2:
  615. {
  616. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  617. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  618. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  619. hparams.f_max_alibi_bias = 8.0f;
  620. switch (hparams.n_layer) {
  621. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  622. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  623. default: type = LLM_TYPE_UNKNOWN;
  624. }
  625. } break;
  626. case LLM_ARCH_NOMIC_BERT:
  627. case LLM_ARCH_NOMIC_BERT_MOE:
  628. {
  629. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  630. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  631. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  632. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  633. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  634. if (arch == LLM_ARCH_NOMIC_BERT) {
  635. type = LLM_TYPE_137M;
  636. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  637. type = LLM_TYPE_475M;
  638. }
  639. }
  640. } break;
  641. case LLM_ARCH_BLOOM:
  642. {
  643. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  644. switch (hparams.n_layer) {
  645. case 24: type = LLM_TYPE_1B; break;
  646. case 30:
  647. switch (hparams.n_embd) {
  648. case 2560: type = LLM_TYPE_3B; break;
  649. case 4096: type = LLM_TYPE_7B; break;
  650. default: type = LLM_TYPE_UNKNOWN;
  651. } break;
  652. default: type = LLM_TYPE_UNKNOWN;
  653. }
  654. // TODO: become GGUF KV parameter
  655. hparams.f_max_alibi_bias = 8.0f;
  656. } break;
  657. case LLM_ARCH_MPT:
  658. {
  659. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  660. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  661. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  662. switch (hparams.n_layer) {
  663. case 32: type = LLM_TYPE_7B; break;
  664. case 48: type = LLM_TYPE_30B; break;
  665. default: type = LLM_TYPE_UNKNOWN;
  666. }
  667. } break;
  668. case LLM_ARCH_STABLELM:
  669. {
  670. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  671. switch (hparams.n_layer) {
  672. case 24: type = LLM_TYPE_1B; break;
  673. case 32: type = LLM_TYPE_3B; break;
  674. case 40: type = LLM_TYPE_12B; break;
  675. default: type = LLM_TYPE_UNKNOWN;
  676. }
  677. } break;
  678. case LLM_ARCH_QWEN:
  679. {
  680. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  681. switch (hparams.n_layer) {
  682. case 32: type = LLM_TYPE_7B; break;
  683. case 40: type = LLM_TYPE_13B; break;
  684. default: type = LLM_TYPE_UNKNOWN;
  685. }
  686. } break;
  687. case LLM_ARCH_QWEN2VL:
  688. {
  689. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  690. }
  691. // fall through
  692. case LLM_ARCH_QWEN2:
  693. {
  694. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  695. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  696. switch (hparams.n_layer) {
  697. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  698. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  699. case 32: type = LLM_TYPE_7B; break;
  700. case 36: type = LLM_TYPE_3B; break;
  701. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  702. case 48: type = LLM_TYPE_14B; break;
  703. case 64: type = LLM_TYPE_32B; break;
  704. case 80: type = LLM_TYPE_70B; break;
  705. default: type = LLM_TYPE_UNKNOWN;
  706. }
  707. } break;
  708. case LLM_ARCH_QWEN2MOE:
  709. {
  710. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  711. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  712. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  713. switch (hparams.n_layer) {
  714. case 24: type = LLM_TYPE_A2_7B; break;
  715. case 28: type = LLM_TYPE_57B_A14B; break;
  716. default: type = LLM_TYPE_UNKNOWN;
  717. }
  718. } break;
  719. case LLM_ARCH_QWEN3:
  720. {
  721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  722. switch (hparams.n_layer) {
  723. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  724. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  725. case 40: type = LLM_TYPE_14B; break;
  726. case 64: type = LLM_TYPE_32B; break;
  727. default: type = LLM_TYPE_UNKNOWN;
  728. }
  729. } break;
  730. case LLM_ARCH_QWEN3MOE:
  731. {
  732. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  733. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  734. switch (hparams.n_layer) {
  735. case 48: type = LLM_TYPE_30B_A3B; break;
  736. case 94: type = LLM_TYPE_235B_A22B; break;
  737. default: type = LLM_TYPE_UNKNOWN;
  738. }
  739. } break;
  740. case LLM_ARCH_PHI2:
  741. {
  742. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  743. switch (hparams.n_layer) {
  744. case 24: type = LLM_TYPE_1B; break;
  745. case 32: type = LLM_TYPE_3B; break;
  746. default: type = LLM_TYPE_UNKNOWN;
  747. }
  748. } break;
  749. case LLM_ARCH_PHI3:
  750. {
  751. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  752. switch (hparams.n_layer) {
  753. case 24: type = LLM_TYPE_1B; break;
  754. case 32: type = LLM_TYPE_3B; break;
  755. case 40: type = LLM_TYPE_14B; break;
  756. default: type = LLM_TYPE_UNKNOWN;
  757. }
  758. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  759. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  760. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  761. hparams.n_swa = 2047;
  762. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  763. // default value for Phi-3-mini-128k-instruct
  764. // note: this seems incorrect because the window is bigger than the train context?
  765. hparams.n_swa = 262144;
  766. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  767. // default value for Phi-3-medium-128k-instruct
  768. // note: this seems incorrect because the window is equal to the train context?
  769. hparams.n_swa = 131072;
  770. }
  771. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  772. if (!found_swa && hparams.n_swa == 0) {
  773. throw std::runtime_error("invalid value for sliding_window");
  774. }
  775. } break;
  776. case LLM_ARCH_PHIMOE:
  777. {
  778. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  779. switch (hparams.n_layer) {
  780. case 32: type = LLM_TYPE_16x3_8B; break;
  781. default: type = LLM_TYPE_UNKNOWN;
  782. }
  783. } break;
  784. case LLM_ARCH_PLAMO:
  785. {
  786. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  787. switch (hparams.n_layer) {
  788. case 40: type = LLM_TYPE_13B; break;
  789. default: type = LLM_TYPE_UNKNOWN;
  790. }
  791. } break;
  792. case LLM_ARCH_GPT2:
  793. {
  794. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  795. switch (hparams.n_layer) {
  796. case 12: type = LLM_TYPE_SMALL; break;
  797. case 24: type = LLM_TYPE_MEDIUM; break;
  798. case 36: type = LLM_TYPE_LARGE; break;
  799. case 48: type = LLM_TYPE_XL; break;
  800. default: type = LLM_TYPE_UNKNOWN;
  801. }
  802. } break;
  803. case LLM_ARCH_CODESHELL:
  804. {
  805. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  806. switch (hparams.n_layer) {
  807. case 42: type = LLM_TYPE_7B; break;
  808. default: type = LLM_TYPE_UNKNOWN;
  809. }
  810. } break;
  811. case LLM_ARCH_ORION:
  812. {
  813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  814. switch (hparams.n_layer) {
  815. case 40: type = LLM_TYPE_14B; break;
  816. default: type = LLM_TYPE_UNKNOWN;
  817. }
  818. } break;
  819. case LLM_ARCH_INTERNLM2:
  820. {
  821. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  822. switch (hparams.n_layer) {
  823. case 32: type = LLM_TYPE_7B; break;
  824. case 48: type = LLM_TYPE_20B; break;
  825. default: type = LLM_TYPE_UNKNOWN;
  826. }
  827. } break;
  828. case LLM_ARCH_GEMMA:
  829. {
  830. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  831. switch (hparams.n_layer) {
  832. case 18: type = LLM_TYPE_2B; break;
  833. case 28: type = LLM_TYPE_7B; break;
  834. default: type = LLM_TYPE_UNKNOWN;
  835. }
  836. } break;
  837. case LLM_ARCH_GEMMA2:
  838. {
  839. hparams.n_swa = 4096; // default value of gemma 2
  840. hparams.n_swa_pattern = 2;
  841. hparams.attn_soft_cap = true;
  842. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  843. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  844. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  845. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  846. switch (hparams.n_layer) {
  847. case 26: type = LLM_TYPE_2B; break;
  848. case 42: type = LLM_TYPE_9B; break;
  849. case 46: type = LLM_TYPE_27B; break;
  850. default: type = LLM_TYPE_UNKNOWN;
  851. }
  852. } break;
  853. case LLM_ARCH_GEMMA3:
  854. {
  855. hparams.n_swa_pattern = 6;
  856. hparams.rope_freq_base_train_swa = 10000.0f;
  857. hparams.rope_freq_scale_train_swa = 1.0f;
  858. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  859. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  860. switch (hparams.n_layer) {
  861. case 26: type = LLM_TYPE_1B; break;
  862. case 34: type = LLM_TYPE_4B; break;
  863. case 48: type = LLM_TYPE_12B; break;
  864. case 62: type = LLM_TYPE_27B; break;
  865. default: type = LLM_TYPE_UNKNOWN;
  866. }
  867. hparams.f_attention_scale = type == LLM_TYPE_27B
  868. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  869. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  870. } break;
  871. case LLM_ARCH_STARCODER2:
  872. {
  873. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  874. switch (hparams.n_layer) {
  875. case 30: type = LLM_TYPE_3B; break;
  876. case 32: type = LLM_TYPE_7B; break;
  877. case 40: type = LLM_TYPE_15B; break;
  878. case 52: type = LLM_TYPE_20B; break; // granite
  879. case 88: type = LLM_TYPE_34B; break; // granite
  880. default: type = LLM_TYPE_UNKNOWN;
  881. }
  882. } break;
  883. case LLM_ARCH_MAMBA:
  884. {
  885. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  886. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  887. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  888. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  889. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  890. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  891. switch (hparams.n_layer) {
  892. case 24:
  893. switch (hparams.n_embd) {
  894. case 768: type = LLM_TYPE_SMALL; break;
  895. default: type = LLM_TYPE_UNKNOWN;
  896. } break;
  897. case 48:
  898. switch (hparams.n_embd) {
  899. case 1024: type = LLM_TYPE_MEDIUM; break;
  900. case 1536: type = LLM_TYPE_LARGE; break;
  901. case 2048: type = LLM_TYPE_XL; break;
  902. default: type = LLM_TYPE_UNKNOWN;
  903. } break;
  904. case 64:
  905. switch (hparams.n_embd) {
  906. case 2560: type = LLM_TYPE_3B; break;
  907. default: type = LLM_TYPE_UNKNOWN;
  908. } break;
  909. default: type = LLM_TYPE_UNKNOWN;
  910. }
  911. } break;
  912. case LLM_ARCH_XVERSE:
  913. {
  914. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  915. switch (hparams.n_layer) {
  916. case 32: type = LLM_TYPE_7B; break;
  917. case 40: type = LLM_TYPE_13B; break;
  918. case 80: type = LLM_TYPE_65B; break;
  919. default: type = LLM_TYPE_UNKNOWN;
  920. }
  921. } break;
  922. case LLM_ARCH_COMMAND_R:
  923. {
  924. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  925. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  926. switch (hparams.n_layer) {
  927. case 40: type = LLM_TYPE_35B; break;
  928. default: type = LLM_TYPE_UNKNOWN;
  929. }
  930. } break;
  931. case LLM_ARCH_COHERE2:
  932. {
  933. hparams.n_swa_pattern = 4;
  934. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  935. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  936. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  937. switch (hparams.n_layer) {
  938. case 32: type = LLM_TYPE_8B; break;
  939. default: type = LLM_TYPE_UNKNOWN;
  940. }
  941. } break;
  942. case LLM_ARCH_DBRX:
  943. {
  944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  945. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  946. switch (hparams.n_layer) {
  947. case 40: type = LLM_TYPE_16x12B; break;
  948. default: type = LLM_TYPE_UNKNOWN;
  949. }
  950. } break;
  951. case LLM_ARCH_OLMO:
  952. {
  953. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  954. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  955. switch (hparams.n_layer) {
  956. case 22: type = LLM_TYPE_1B; break;
  957. case 32: type = LLM_TYPE_7B; break;
  958. case 80: type = LLM_TYPE_70B; break;
  959. default: type = LLM_TYPE_UNKNOWN;
  960. }
  961. } break;
  962. case LLM_ARCH_OLMO2:
  963. {
  964. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  965. switch (hparams.n_layer) {
  966. case 16: type = LLM_TYPE_1B; break;
  967. case 32: type = LLM_TYPE_7B; break;
  968. case 40: type = LLM_TYPE_13B; break;
  969. case 64: type = LLM_TYPE_32B; break;
  970. default: type = LLM_TYPE_UNKNOWN;
  971. }
  972. } break;
  973. case LLM_ARCH_OLMOE:
  974. {
  975. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  976. switch (hparams.n_layer) {
  977. case 16: type = LLM_TYPE_A1_7B; break;
  978. default: type = LLM_TYPE_UNKNOWN;
  979. }
  980. } break;
  981. case LLM_ARCH_OPENELM:
  982. {
  983. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  984. switch (hparams.n_layer) {
  985. case 16: type = LLM_TYPE_270M; break;
  986. case 20: type = LLM_TYPE_450M; break;
  987. case 28: type = LLM_TYPE_1B; break;
  988. case 36: type = LLM_TYPE_3B; break;
  989. default: type = LLM_TYPE_UNKNOWN;
  990. }
  991. } break;
  992. case LLM_ARCH_GPTNEOX:
  993. {
  994. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  995. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  996. switch (hparams.n_layer) {
  997. case 6:
  998. switch (hparams.n_ff()) {
  999. case 512: type = LLM_TYPE_14M; break;
  1000. case 2048: type = LLM_TYPE_70M; break;
  1001. default: type = LLM_TYPE_UNKNOWN;
  1002. } break;
  1003. case 12:
  1004. switch (hparams.n_ff()) {
  1005. case 3072: type = LLM_TYPE_160M; break;
  1006. default: type = LLM_TYPE_UNKNOWN;
  1007. } break;
  1008. case 16:
  1009. switch (hparams.n_ff()) {
  1010. case 8192: type = LLM_TYPE_1B; break;
  1011. default: type = LLM_TYPE_UNKNOWN;
  1012. } break;
  1013. case 24:
  1014. switch (hparams.n_ff()) {
  1015. case 4096: type = LLM_TYPE_410M; break;
  1016. case 8192: type = LLM_TYPE_1_4B; break;
  1017. default: type = LLM_TYPE_UNKNOWN;
  1018. } break;
  1019. case 32:
  1020. switch (hparams.n_ff()) {
  1021. case 10240: type = LLM_TYPE_2_8B; break;
  1022. case 16384: type = LLM_TYPE_6_9B; break;
  1023. default: type = LLM_TYPE_UNKNOWN;
  1024. } break;
  1025. case 36:
  1026. switch (hparams.n_ff()) {
  1027. case 20480: type = LLM_TYPE_12B; break;
  1028. default: type = LLM_TYPE_UNKNOWN;
  1029. } break;
  1030. case 44:
  1031. switch (hparams.n_ff()) {
  1032. case 24576: type = LLM_TYPE_20B; break;
  1033. default: type = LLM_TYPE_UNKNOWN;
  1034. } break;
  1035. default: type = LLM_TYPE_UNKNOWN;
  1036. }
  1037. } break;
  1038. case LLM_ARCH_ARCTIC:
  1039. {
  1040. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1041. if (hparams.n_expert == 128) {
  1042. switch (hparams.n_layer) {
  1043. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1044. default: type = LLM_TYPE_UNKNOWN;
  1045. }
  1046. } else {
  1047. type = LLM_TYPE_UNKNOWN;
  1048. }
  1049. } break;
  1050. case LLM_ARCH_DEEPSEEK:
  1051. {
  1052. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1053. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1054. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1055. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1056. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1057. switch (hparams.n_layer) {
  1058. case 28: type = LLM_TYPE_20B; break;
  1059. default: type = LLM_TYPE_UNKNOWN;
  1060. }
  1061. } break;
  1062. case LLM_ARCH_DEEPSEEK2:
  1063. {
  1064. bool is_lite = (hparams.n_layer == 27);
  1065. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1066. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1067. if (!is_lite) {
  1068. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1069. }
  1070. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1071. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1072. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1073. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1074. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1075. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1076. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1077. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1078. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1079. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1080. // that have no expert_gating_func model parameter set
  1081. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1082. }
  1083. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1084. switch (hparams.n_layer) {
  1085. case 27: type = LLM_TYPE_16B; break;
  1086. case 60: type = LLM_TYPE_236B; break;
  1087. case 61: type = LLM_TYPE_671B; break;
  1088. default: type = LLM_TYPE_UNKNOWN;
  1089. }
  1090. } break;
  1091. case LLM_ARCH_PLM:
  1092. {
  1093. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1094. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1095. switch (hparams.n_layer) {
  1096. case 32: type = LLM_TYPE_1_8B; break;
  1097. default: type = LLM_TYPE_UNKNOWN;
  1098. }
  1099. } break;
  1100. case LLM_ARCH_CHATGLM:
  1101. {
  1102. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1103. switch (hparams.n_layer) {
  1104. case 28: {
  1105. if (hparams.n_head(0) == 16) {
  1106. type = LLM_TYPE_1_5B;
  1107. } else {
  1108. type = LLM_TYPE_6B;
  1109. }
  1110. } break;
  1111. case 40: {
  1112. if (hparams.n_head(0) == 24) {
  1113. type = LLM_TYPE_4B;
  1114. } else {
  1115. type = LLM_TYPE_9B;
  1116. }
  1117. } break;
  1118. default: type = LLM_TYPE_UNKNOWN;
  1119. }
  1120. } break;
  1121. case LLM_ARCH_GLM4:
  1122. {
  1123. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1124. switch (hparams.n_layer) {
  1125. case 40: type = LLM_TYPE_9B; break;
  1126. case 61: type = LLM_TYPE_32B; break;
  1127. default: type = LLM_TYPE_UNKNOWN;
  1128. }
  1129. } break;
  1130. case LLM_ARCH_BITNET:
  1131. {
  1132. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1133. switch (hparams.n_layer) {
  1134. case 26: type = LLM_TYPE_3B; break;
  1135. default: type = LLM_TYPE_UNKNOWN;
  1136. }
  1137. } break;
  1138. case LLM_ARCH_T5:
  1139. {
  1140. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1141. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1142. uint32_t dec_start_token_id;
  1143. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1144. hparams.dec_start_token_id = dec_start_token_id;
  1145. }
  1146. switch (hparams.n_layer) {
  1147. case 6: type = LLM_TYPE_60M; break; // t5-small
  1148. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1149. case 12:
  1150. switch (hparams.n_ff()) {
  1151. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1152. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1153. default: type = LLM_TYPE_UNKNOWN;
  1154. } break;
  1155. case 24:
  1156. switch (hparams.n_ff()) {
  1157. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1158. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1159. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1160. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1161. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1162. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1163. default: type = LLM_TYPE_UNKNOWN;
  1164. } break;
  1165. default: type = LLM_TYPE_UNKNOWN;
  1166. }
  1167. } break;
  1168. case LLM_ARCH_T5ENCODER:
  1169. {
  1170. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1171. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1172. type = LLM_TYPE_UNKNOWN;
  1173. } break;
  1174. case LLM_ARCH_JAIS:
  1175. {
  1176. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1177. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1178. switch (hparams.n_layer) {
  1179. case 24: type = LLM_TYPE_1_3B; break;
  1180. case 40: type = LLM_TYPE_13B; break;
  1181. /* TODO: add variants */
  1182. default: type = LLM_TYPE_UNKNOWN;
  1183. }
  1184. } break;
  1185. case LLM_ARCH_NEMOTRON:
  1186. {
  1187. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1188. switch (hparams.n_layer) {
  1189. case 32: type = LLM_TYPE_4B; break;
  1190. default: type = LLM_TYPE_UNKNOWN;
  1191. }
  1192. } break;
  1193. case LLM_ARCH_EXAONE:
  1194. {
  1195. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1196. switch (hparams.n_layer) {
  1197. case 32: type = LLM_TYPE_8B; break;
  1198. default: type = LLM_TYPE_UNKNOWN;
  1199. }
  1200. } break;
  1201. case LLM_ARCH_RWKV6:
  1202. case LLM_ARCH_RWKV6QWEN2:
  1203. {
  1204. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1205. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1206. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1207. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1208. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1209. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1210. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1211. switch (hparams.n_layer) {
  1212. case 24: type = LLM_TYPE_1_6B; break;
  1213. case 32:
  1214. switch (hparams.n_embd) {
  1215. case 2560: type = LLM_TYPE_3B; break;
  1216. case 4096: type = LLM_TYPE_7B; break;
  1217. default: type = LLM_TYPE_UNKNOWN;
  1218. } break;
  1219. case 61: type = LLM_TYPE_14B; break;
  1220. case 64: type = LLM_TYPE_32B; break;
  1221. default: type = LLM_TYPE_UNKNOWN;
  1222. }
  1223. } break;
  1224. case LLM_ARCH_RWKV7:
  1225. case LLM_ARCH_ARWKV7:
  1226. {
  1227. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1228. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1229. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1230. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1231. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1232. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1233. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1234. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1235. switch (hparams.n_layer) {
  1236. case 12: type = LLM_TYPE_190M; break;
  1237. case 24:
  1238. switch (hparams.n_embd) {
  1239. case 1024: type = LLM_TYPE_450M; break;
  1240. case 2048: type = LLM_TYPE_1_5B; break;
  1241. default: type = LLM_TYPE_UNKNOWN;
  1242. } break;
  1243. case 28:
  1244. switch (hparams.n_embd) {
  1245. case 1536: type = LLM_TYPE_1_5B; break;
  1246. case 3584: type = LLM_TYPE_7B; break;
  1247. default: type = LLM_TYPE_UNKNOWN;
  1248. } break;
  1249. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1250. default: type = LLM_TYPE_UNKNOWN;
  1251. }
  1252. } break;
  1253. case LLM_ARCH_GRANITE:
  1254. case LLM_ARCH_GRANITE_MOE:
  1255. {
  1256. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1257. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1258. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1259. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1260. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1261. switch (hparams.n_layer) {
  1262. case 32: type = LLM_TYPE_3B; break;
  1263. case 40: type = LLM_TYPE_3B; break;
  1264. // Add additional layer/vocab/etc checks here for other model sizes
  1265. default: type = LLM_TYPE_UNKNOWN;
  1266. }
  1267. // For Granite MoE Shared
  1268. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1269. } break;
  1270. case LLM_ARCH_CHAMELEON:
  1271. {
  1272. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1273. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1274. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1275. switch (hparams.n_layer) {
  1276. case 32: type = LLM_TYPE_7B; break;
  1277. case 48: type = LLM_TYPE_34B; break;
  1278. default: type = LLM_TYPE_UNKNOWN;
  1279. }
  1280. } break;
  1281. case LLM_ARCH_WAVTOKENIZER_DEC:
  1282. {
  1283. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1284. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1285. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1286. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1287. } break;
  1288. case LLM_ARCH_BAILINGMOE:
  1289. {
  1290. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1291. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1292. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1293. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1294. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1295. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1296. switch (hparams.n_layer) {
  1297. case 28: type = LLM_TYPE_16B; break;
  1298. case 88: type = LLM_TYPE_290B; break;
  1299. default: type = LLM_TYPE_UNKNOWN;
  1300. }
  1301. } break;
  1302. default: throw std::runtime_error("unsupported model architecture");
  1303. }
  1304. pimpl->n_bytes = ml.n_bytes;
  1305. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1306. if (hparams.f_max_alibi_bias > 0.0f) {
  1307. hparams.use_alibi = true;
  1308. }
  1309. hparams.rope_type = llama_model_rope_type(this);
  1310. }
  1311. void llama_model::load_vocab(llama_model_loader & ml) {
  1312. const auto kv = LLM_KV(arch);
  1313. vocab.load(ml, kv);
  1314. }
  1315. bool llama_model::load_tensors(llama_model_loader & ml) {
  1316. const auto & split_mode = params.split_mode;
  1317. const auto & n_gpu_layers = params.n_gpu_layers;
  1318. const auto & use_mlock = params.use_mlock;
  1319. const auto & tensor_split = params.tensor_split;
  1320. const int n_layer = hparams.n_layer;
  1321. const bool use_mmap_buffer = true;
  1322. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1323. // build a list of buffer types for the CPU and GPU devices
  1324. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1325. for (auto * dev : devices) {
  1326. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1327. // add CPU buffer types as a fallback
  1328. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1329. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1330. }
  1331. // calculate the split points
  1332. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1333. std::vector<float> splits(n_devices());
  1334. if (all_zero) {
  1335. // default split, by free memory
  1336. for (size_t i = 0; i < n_devices(); ++i) {
  1337. ggml_backend_dev_t dev = devices[i];
  1338. size_t total;
  1339. size_t free;
  1340. ggml_backend_dev_memory(dev, &free, &total);
  1341. splits[i] = free;
  1342. }
  1343. } else {
  1344. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1345. }
  1346. // sum and normalize the splits to get the split points
  1347. float split_sum = 0.0f;
  1348. for (size_t i = 0; i < n_devices(); ++i) {
  1349. split_sum += splits[i];
  1350. splits[i] = split_sum;
  1351. }
  1352. for (size_t i = 0; i < n_devices(); ++i) {
  1353. splits[i] /= split_sum;
  1354. }
  1355. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1356. if (cpu_dev == nullptr) {
  1357. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  1358. }
  1359. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1360. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1361. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1362. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1363. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1364. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1365. return {cpu_dev, &pimpl->cpu_buft_list};
  1366. }
  1367. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1368. auto * dev = devices.at(layer_gpu);
  1369. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1370. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1371. };
  1372. // assign the input layer
  1373. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1374. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1375. // assign the repeating layers to the devices according to the splits
  1376. pimpl->dev_layer.resize(n_layer);
  1377. for (int il = 0; il < n_layer; ++il) {
  1378. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1379. }
  1380. // assign the output layer
  1381. pimpl->dev_output = get_layer_buft_list(n_layer);
  1382. // one ggml context per buffer type
  1383. int max_n_tensors = ml.n_tensors;
  1384. max_n_tensors += 1; // duplicated output tensor
  1385. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1386. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1387. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1388. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1389. auto it = ctx_map.find(buft);
  1390. if (it == ctx_map.end()) {
  1391. ggml_init_params params = {
  1392. /*.mem_size =*/ ctx_size,
  1393. /*.mem_buffer =*/ NULL,
  1394. /*.no_alloc =*/ true,
  1395. };
  1396. ggml_context * ctx = ggml_init(params);
  1397. if (!ctx) {
  1398. throw std::runtime_error(format("failed to create ggml context"));
  1399. }
  1400. ctx_map[buft] = ctx;
  1401. pimpl->ctxs.emplace_back(ctx);
  1402. return ctx;
  1403. }
  1404. return it->second;
  1405. };
  1406. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1407. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1408. // create tensors for the weights
  1409. {
  1410. // note: cast to int64_t since we will use these for the tensor dimensions
  1411. const int64_t n_head = hparams.n_head();
  1412. const int64_t n_head_kv = hparams.n_head_kv();
  1413. const int64_t n_embd = hparams.n_embd;
  1414. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1415. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1416. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1417. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1418. const int64_t n_ff = hparams.n_ff();
  1419. const int64_t n_embd_gqa = n_embd_v_gqa;
  1420. const int64_t n_vocab = vocab.n_tokens();
  1421. const int64_t n_token_types = vocab.n_token_types();
  1422. const int64_t n_rot = hparams.n_rot;
  1423. const int64_t n_expert = hparams.n_expert;
  1424. const int64_t n_expert_used = hparams.n_expert_used;
  1425. const int64_t n_ctx_train = hparams.n_ctx_train;
  1426. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1427. throw std::runtime_error("model has expert layers but no expert layers are used");
  1428. }
  1429. int n_moved_tensors = 0;
  1430. ggml_tensor * first_moved_tensor = nullptr;
  1431. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1432. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1433. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1434. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1435. if (!t_meta) {
  1436. if (flags & TENSOR_NOT_REQUIRED) {
  1437. return nullptr;
  1438. }
  1439. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1440. }
  1441. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1442. // the tensor is duplicated
  1443. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1444. llm_tensor tn_tensor = tn.tensor;
  1445. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1446. tn_tensor = LLM_TENSOR_OUTPUT;
  1447. }
  1448. llm_tensor_info info;
  1449. try {
  1450. info = llm_tensor_info_for(tn_tensor);
  1451. } catch (const std::out_of_range & e) {
  1452. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1453. }
  1454. // skip unused tensors
  1455. if (info.op == GGML_OP_NONE) {
  1456. const size_t nbytes = ggml_nbytes(t_meta);
  1457. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1458. ml.size_data -= nbytes;
  1459. ml.n_created++;
  1460. return nullptr;
  1461. }
  1462. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1463. ggml_op op;
  1464. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1465. if (bias) {
  1466. op = GGML_OP_ADD;
  1467. } else {
  1468. op = info.op;
  1469. }
  1470. // sanity checks
  1471. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1472. if (tn.bid != -1) {
  1473. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1474. }
  1475. } else {
  1476. if (tn.bid == -1) {
  1477. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1478. }
  1479. }
  1480. // select the buffer type for this tensor
  1481. buft_list_t * buft_list;
  1482. switch (info.layer) {
  1483. case LLM_TENSOR_LAYER_INPUT:
  1484. buft_list = pimpl->dev_input.buft_list;
  1485. break;
  1486. case LLM_TENSOR_LAYER_OUTPUT:
  1487. buft_list = pimpl->dev_output.buft_list;
  1488. break;
  1489. case LLM_TENSOR_LAYER_REPEATING:
  1490. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1491. break;
  1492. default:
  1493. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1494. }
  1495. ggml_backend_buffer_type_t buft = nullptr;
  1496. // check overrides
  1497. if (ml.tensor_buft_overrides) {
  1498. std::string tensor_name = tn.str();
  1499. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1500. std::regex pattern(overrides->pattern);
  1501. if (std::regex_search(tensor_name, pattern)) {
  1502. buft = overrides->buft;
  1503. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  1504. tensor_name.c_str(),
  1505. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  1506. ggml_backend_buft_name(buft));
  1507. break;
  1508. }
  1509. }
  1510. }
  1511. if (!buft) {
  1512. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1513. if (!buft) {
  1514. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1515. }
  1516. }
  1517. // avoid using a host buffer when using mmap
  1518. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1519. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1520. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1521. if (!cpu_dev) {
  1522. throw std::runtime_error("no CPU backend found");
  1523. }
  1524. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1525. }
  1526. if (buft != buft_list->front().second) {
  1527. n_moved_tensors++;
  1528. if (!first_moved_tensor) {
  1529. first_moved_tensor = t_meta;
  1530. first_moved_from_buft = buft_list->front().second;
  1531. first_moved_to_buft = buft;
  1532. }
  1533. }
  1534. ggml_context * ctx = ctx_for_buft(buft);
  1535. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1536. if (flags & TENSOR_DUPLICATED) {
  1537. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1538. if (t) {
  1539. return t;
  1540. }
  1541. }
  1542. return ml.create_tensor(ctx, tn, ne, flags);
  1543. };
  1544. layers.resize(n_layer);
  1545. // TODO: move to a separate function
  1546. const auto tn = LLM_TN(arch);
  1547. switch (arch) {
  1548. case LLM_ARCH_LLAMA:
  1549. case LLM_ARCH_REFACT:
  1550. case LLM_ARCH_MINICPM:
  1551. case LLM_ARCH_GRANITE:
  1552. case LLM_ARCH_GRANITE_MOE:
  1553. {
  1554. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1555. // output
  1556. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1557. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1558. // if output is NULL, init from the input tok embed
  1559. if (output == NULL) {
  1560. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1561. }
  1562. for (int i = 0; i < n_layer; ++i) {
  1563. auto & layer = layers[i];
  1564. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1565. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1566. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1567. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1568. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1569. // optional bias tensors
  1570. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1571. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1572. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1573. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1574. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1575. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1576. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1577. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1578. }
  1579. else {
  1580. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1581. }
  1582. if (n_expert == 0) {
  1583. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1584. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1585. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1586. // optional MLP bias
  1587. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1588. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1589. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1590. } else {
  1591. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1592. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1593. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1594. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1595. // For Granite MoE Shared
  1596. if (hparams.n_ff_shexp > 0) {
  1597. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1598. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1599. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  1600. }
  1601. }
  1602. }
  1603. } break;
  1604. case LLM_ARCH_LLAMA4:
  1605. {
  1606. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1607. // output
  1608. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1609. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1610. // if output is NULL, init from the input tok embed
  1611. if (output == NULL) {
  1612. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1613. }
  1614. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1615. for (int i = 0; i < n_layer; ++i) {
  1616. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1617. auto & layer = layers[i];
  1618. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1619. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1620. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1621. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1622. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1623. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1624. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1625. if (is_moe_layer) {
  1626. int n_ff_exp = hparams.n_ff_exp;
  1627. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1628. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1629. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1630. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1631. // Shared expert
  1632. const int64_t n_ff_shexp = n_ff_exp;
  1633. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1634. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1635. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1636. } else {
  1637. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1638. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1639. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1640. }
  1641. }
  1642. } break;
  1643. case LLM_ARCH_DECI:
  1644. {
  1645. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1646. // output
  1647. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1648. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1649. // if output is NULL, init from the input tok embed
  1650. if (output == NULL) {
  1651. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1652. }
  1653. for (int i = 0; i < n_layer; ++i) {
  1654. auto & layer = layers[i];
  1655. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1656. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1657. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1658. const int64_t n_ff = hparams.n_ff(i);
  1659. const int64_t n_head = hparams.n_head(i);
  1660. const int64_t n_head_kv = hparams.n_head_kv(i);
  1661. if (n_head_kv == 0 && n_head > 0) {
  1662. // linear attention for DeciLMCausalModel
  1663. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1664. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1665. }
  1666. else if (n_head_kv > 0) {
  1667. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1668. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1669. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1670. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1671. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1672. }
  1673. // optional bias tensors
  1674. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1675. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1676. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1677. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1678. if (n_ff > 0) {
  1679. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1680. }
  1681. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1682. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1683. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1684. }
  1685. else {
  1686. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1687. }
  1688. if (n_ff > 0) {
  1689. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1690. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1691. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1692. }
  1693. // optional MLP bias
  1694. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1695. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1696. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1697. }
  1698. } break;
  1699. case LLM_ARCH_MINICPM3:
  1700. {
  1701. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1702. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1703. const int64_t q_lora_rank = hparams.n_lora_q;
  1704. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1705. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1706. // output
  1707. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1708. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1709. // if output is NULL, init from the input tok embed
  1710. if (output == NULL) {
  1711. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1712. }
  1713. for (int i = 0; i < n_layer; ++i) {
  1714. auto & layer = layers[i];
  1715. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1716. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1717. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1718. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1719. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1720. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1721. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1722. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1723. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1724. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1725. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1726. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1727. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1728. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1729. }
  1730. } break;
  1731. case LLM_ARCH_GROK:
  1732. {
  1733. if (n_expert == 0) {
  1734. throw std::runtime_error("Grok model cannot have zero experts");
  1735. }
  1736. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1737. // output
  1738. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1739. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1740. // if output is NULL, init from the input tok embed
  1741. if (output == NULL) {
  1742. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1743. }
  1744. for (int i = 0; i < n_layer; ++i) {
  1745. auto & layer = layers[i];
  1746. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1747. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1748. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1749. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1750. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1751. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1752. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1753. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1754. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1755. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1756. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1757. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1758. }
  1759. } break;
  1760. case LLM_ARCH_DBRX:
  1761. {
  1762. if (n_expert == 0) {
  1763. throw std::runtime_error("DBRX model cannot have zero experts");
  1764. }
  1765. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1766. // output
  1767. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1768. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1769. for (int i = 0; i < n_layer; ++i) {
  1770. auto & layer = layers[i];
  1771. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1772. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1773. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1774. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1775. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1776. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1777. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1778. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1779. }
  1780. } break;
  1781. case LLM_ARCH_BAICHUAN:
  1782. {
  1783. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1784. {
  1785. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1786. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1787. }
  1788. for (int i = 0; i < n_layer; ++i) {
  1789. auto & layer = layers[i];
  1790. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1791. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1792. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1793. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1794. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1795. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1796. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1797. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1798. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1799. }
  1800. } break;
  1801. case LLM_ARCH_FALCON:
  1802. {
  1803. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1804. // output
  1805. {
  1806. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1807. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1808. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1809. if (!output) {
  1810. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1811. }
  1812. }
  1813. for (int i = 0; i < n_layer; ++i) {
  1814. auto & layer = layers[i];
  1815. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1816. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1817. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1818. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1819. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1820. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1821. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1822. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1823. }
  1824. } break;
  1825. case LLM_ARCH_STARCODER:
  1826. {
  1827. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1828. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1829. // output
  1830. {
  1831. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1832. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1833. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1834. if (!output) {
  1835. // needs to be on GPU
  1836. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1837. }
  1838. }
  1839. for (int i = 0; i < n_layer; ++i) {
  1840. auto & layer = layers[i];
  1841. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1842. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1843. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1844. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1845. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1846. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1847. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1848. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1849. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1850. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1851. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1852. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1853. }
  1854. } break;
  1855. case LLM_ARCH_BERT:
  1856. case LLM_ARCH_NOMIC_BERT:
  1857. case LLM_ARCH_NOMIC_BERT_MOE:
  1858. {
  1859. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1860. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1861. if (arch == LLM_ARCH_BERT) {
  1862. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1863. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1864. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1865. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1866. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1867. }
  1868. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1869. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1870. for (int i = 0; i < n_layer; ++i) {
  1871. auto & layer = layers[i];
  1872. if (arch == LLM_ARCH_BERT) {
  1873. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1874. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1875. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1876. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1877. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1878. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1879. } else {
  1880. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1881. }
  1882. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1883. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1884. }
  1885. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1886. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1887. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1888. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1889. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1890. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1891. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1892. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1893. } else {
  1894. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1895. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1896. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1897. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1898. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1899. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1900. } else {
  1901. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1902. }
  1903. }
  1904. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1905. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1906. }
  1907. } break;
  1908. case LLM_ARCH_JINA_BERT_V2:
  1909. {
  1910. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1911. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1912. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1913. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1914. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1915. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1916. for (int i = 0; i < n_layer; ++i) {
  1917. auto & layer = layers[i]; // JinaBertLayer
  1918. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1919. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1920. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1921. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1922. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1923. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1924. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1925. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1926. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1927. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1928. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1929. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1930. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1931. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1932. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1933. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1934. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1935. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1936. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1937. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1938. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1939. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1940. }
  1941. } break;
  1942. case LLM_ARCH_BLOOM:
  1943. {
  1944. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1945. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1946. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1947. // output
  1948. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1949. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1950. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1951. // if output is NULL, init from the input tok embed
  1952. if (output == NULL) {
  1953. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1954. }
  1955. for (int i = 0; i < n_layer; ++i) {
  1956. auto & layer = layers[i];
  1957. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1958. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1959. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1960. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1961. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1962. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1963. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1964. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1965. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1966. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1967. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1968. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1969. }
  1970. } break;
  1971. case LLM_ARCH_MPT:
  1972. {
  1973. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1974. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1975. // output
  1976. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1977. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1978. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1979. if (!output) {
  1980. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1981. }
  1982. for (int i = 0; i < n_layer; ++i) {
  1983. auto & layer = layers[i];
  1984. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1985. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1986. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1987. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1988. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1989. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1990. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1991. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1992. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1993. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1994. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1995. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1996. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1997. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1998. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1999. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2000. // AWQ ScaleActivation layer
  2001. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2002. }
  2003. } break;
  2004. case LLM_ARCH_STABLELM:
  2005. {
  2006. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2007. // output
  2008. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2009. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2010. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2011. for (int i = 0; i < n_layer; ++i) {
  2012. auto & layer = layers[i];
  2013. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2014. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2015. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2016. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2017. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2018. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2019. // optional bias tensors, present in Stable LM 2 1.6B
  2020. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2021. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2022. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2023. // optional q and k layernorms, present in StableLM 2 12B
  2024. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2025. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2026. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2027. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2028. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2029. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2030. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2031. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2032. }
  2033. } break;
  2034. case LLM_ARCH_QWEN:
  2035. {
  2036. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2037. // output
  2038. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2039. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2040. for (int i = 0; i < n_layer; ++i) {
  2041. auto & layer = layers[i];
  2042. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2043. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2044. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2045. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2046. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2047. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2048. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2049. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2050. }
  2051. } break;
  2052. case LLM_ARCH_QWEN2:
  2053. case LLM_ARCH_QWEN2VL:
  2054. {
  2055. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2056. // output
  2057. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2058. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2059. // if output is NULL, init from the input tok embed
  2060. if (output == NULL) {
  2061. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2062. }
  2063. for (int i = 0; i < n_layer; ++i) {
  2064. auto & layer = layers[i];
  2065. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2066. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2067. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2068. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2069. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2070. // optional bias tensors
  2071. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2072. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2073. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2074. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2075. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2076. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2077. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2078. }
  2079. } break;
  2080. case LLM_ARCH_QWEN2MOE:
  2081. {
  2082. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2083. // output
  2084. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2085. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2086. for (int i = 0; i < n_layer; ++i) {
  2087. auto & layer = layers[i];
  2088. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2089. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2090. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2091. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2092. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2093. // optional bias tensors
  2094. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2095. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2096. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2097. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2098. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2099. if (n_expert == 0) {
  2100. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2101. }
  2102. if (n_expert_used == 0) {
  2103. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2104. }
  2105. // MoE branch
  2106. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2107. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2108. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2109. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2110. // Shared expert branch
  2111. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2112. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2113. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2114. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2115. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2116. }
  2117. } break;
  2118. case LLM_ARCH_QWEN3:
  2119. {
  2120. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2121. // output
  2122. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2123. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2124. // if output is NULL, init from the input tok embed
  2125. if (output == NULL) {
  2126. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2127. }
  2128. for (int i = 0; i < n_layer; ++i) {
  2129. auto & layer = layers[i];
  2130. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2131. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2132. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2133. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2134. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2135. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2136. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2137. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2138. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2139. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2140. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2141. }
  2142. } break;
  2143. case LLM_ARCH_QWEN3MOE:
  2144. {
  2145. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2146. // output
  2147. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2148. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2149. for (int i = 0; i < n_layer; ++i) {
  2150. auto & layer = layers[i];
  2151. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2152. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2153. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2154. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2155. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2156. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2157. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2158. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2159. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2160. if (n_expert == 0) {
  2161. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2162. }
  2163. if (n_expert_used == 0) {
  2164. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2165. }
  2166. // MoE branch
  2167. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2168. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2169. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2170. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2171. }
  2172. } break;
  2173. case LLM_ARCH_PHI2:
  2174. {
  2175. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2176. // output
  2177. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2178. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2179. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2180. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2181. for (int i = 0; i < n_layer; ++i) {
  2182. auto & layer = layers[i];
  2183. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2184. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2185. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2186. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2187. if (layer.wqkv == nullptr) {
  2188. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2189. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2190. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2191. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2192. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2193. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2194. }
  2195. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2196. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2197. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2198. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2199. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2200. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2201. }
  2202. } break;
  2203. case LLM_ARCH_PHI3:
  2204. {
  2205. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2206. // output
  2207. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2208. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2209. // if output is NULL, init from the input tok embed
  2210. if (output == NULL) {
  2211. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2212. }
  2213. for (int i = 0; i < n_layer; ++i) {
  2214. auto & layer = layers[i];
  2215. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2216. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2217. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2218. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2219. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2220. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2221. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2222. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2223. }
  2224. } break;
  2225. case LLM_ARCH_PHIMOE:
  2226. {
  2227. const int64_t n_embd_head = n_embd / n_head;
  2228. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2229. // output
  2230. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2231. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2232. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2233. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2234. for (int i = 0; i < n_layer; ++i) {
  2235. auto & layer = layers[i];
  2236. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2237. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2238. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2239. if (layer.wqkv == nullptr) {
  2240. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2241. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2242. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2243. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2244. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2245. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2246. }
  2247. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2248. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2249. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2250. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2251. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2252. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2253. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2254. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2255. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2256. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2257. }
  2258. } break;
  2259. case LLM_ARCH_PLAMO:
  2260. {
  2261. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2262. // output
  2263. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2264. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2265. for (int i = 0; i < n_layer; ++i) {
  2266. auto & layer = layers[i];
  2267. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2268. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2269. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2270. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2271. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2272. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2273. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2274. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2275. }
  2276. } break;
  2277. case LLM_ARCH_GPT2:
  2278. {
  2279. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2280. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2281. // output
  2282. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2283. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2284. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2285. // if output is NULL, init from the input tok embed
  2286. if (output == NULL) {
  2287. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2288. }
  2289. for (int i = 0; i < n_layer; ++i) {
  2290. auto & layer = layers[i];
  2291. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2292. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2293. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2294. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2295. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2296. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2297. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2298. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2299. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2300. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2301. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2302. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2303. }
  2304. } break;
  2305. case LLM_ARCH_CODESHELL:
  2306. {
  2307. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2308. // if tok embd is NULL, init from output
  2309. if (tok_embd == NULL) {
  2310. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2311. }
  2312. // output
  2313. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2314. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2315. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2316. for (int i = 0; i < n_layer; ++i) {
  2317. auto & layer = layers[i];
  2318. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2319. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2320. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2321. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2322. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2323. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2324. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2325. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2326. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2327. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2328. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2329. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2330. }
  2331. } break;
  2332. case LLM_ARCH_ORION:
  2333. {
  2334. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2335. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2336. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2337. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2338. for (int i = 0; i < n_layer; ++i) {
  2339. auto & layer = layers[i];
  2340. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2341. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2342. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2343. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2344. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2345. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2346. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2347. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2348. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2349. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2350. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2351. }
  2352. } break;
  2353. case LLM_ARCH_INTERNLM2:
  2354. {
  2355. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2356. // output
  2357. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2358. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2359. for (int i = 0; i < n_layer; ++i) {
  2360. auto & layer = layers[i];
  2361. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2362. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2363. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2364. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2365. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2366. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2367. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2368. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2369. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2370. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2371. }
  2372. } break;
  2373. case LLM_ARCH_GEMMA:
  2374. {
  2375. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2376. // output
  2377. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2378. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2379. for (int i = 0; i < n_layer; ++i) {
  2380. auto & layer = layers[i];
  2381. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2382. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2383. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2384. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2385. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2386. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2387. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2388. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2389. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2390. }
  2391. } break;
  2392. case LLM_ARCH_GEMMA2:
  2393. {
  2394. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2395. // output
  2396. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2397. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2398. for (int i = 0; i < n_layer; ++i) {
  2399. auto & layer = layers[i];
  2400. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2401. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2402. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2403. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2404. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2405. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2406. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2407. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2408. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2409. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2410. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2411. }
  2412. } break;
  2413. case LLM_ARCH_GEMMA3:
  2414. {
  2415. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2416. // output
  2417. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2418. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2419. // if output is NULL, init from the input tok embed
  2420. if (output == NULL) {
  2421. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2422. }
  2423. for (int i = 0; i < n_layer; ++i) {
  2424. auto & layer = layers[i];
  2425. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2426. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2427. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2428. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2429. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2430. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2431. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2432. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2433. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2434. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2435. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2436. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2437. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2438. }
  2439. } break;
  2440. case LLM_ARCH_STARCODER2:
  2441. {
  2442. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2443. // output
  2444. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2445. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2446. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2447. // if output is NULL, init from the input tok embed
  2448. if (output == NULL) {
  2449. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2450. }
  2451. for (int i = 0; i < n_layer; ++i) {
  2452. auto & layer = layers[i];
  2453. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2454. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2455. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2456. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2457. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2458. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2459. // optional bias tensors
  2460. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2461. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2462. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2463. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2464. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2465. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2466. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2467. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2468. // optional bias tensors
  2469. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2470. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2471. }
  2472. } break;
  2473. case LLM_ARCH_MAMBA:
  2474. {
  2475. const int64_t d_conv = hparams.ssm_d_conv;
  2476. const int64_t d_inner = hparams.ssm_d_inner;
  2477. const int64_t d_state = hparams.ssm_d_state;
  2478. const int64_t dt_rank = hparams.ssm_dt_rank;
  2479. // only an expansion factor of 2 is supported for now
  2480. if (2 * n_embd != d_inner) {
  2481. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2482. }
  2483. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2484. // output
  2485. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2486. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2487. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2488. if (output == NULL) {
  2489. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2490. }
  2491. for (int i = 0; i < n_layer; ++i) {
  2492. auto & layer = layers[i];
  2493. // norm
  2494. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2495. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2496. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2497. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2498. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2499. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2500. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2501. // no "weight" suffix for these
  2502. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2503. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2504. // out_proj
  2505. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2506. }
  2507. } break;
  2508. case LLM_ARCH_XVERSE:
  2509. {
  2510. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2511. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2512. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2513. for (int i = 0; i < n_layer; ++i) {
  2514. auto & layer = layers[i];
  2515. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2516. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2517. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2518. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2519. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2520. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2521. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2522. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2523. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2524. }
  2525. } break;
  2526. case LLM_ARCH_COMMAND_R:
  2527. {
  2528. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2529. // output
  2530. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2531. // init output from the input tok embed
  2532. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2533. for (int i = 0; i < n_layer; ++i) {
  2534. auto & layer = layers[i];
  2535. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2536. if (n_layer >= 64){
  2537. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2538. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2539. }
  2540. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2541. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2542. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2543. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2544. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2545. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2546. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2547. }
  2548. } break;
  2549. case LLM_ARCH_COHERE2:
  2550. {
  2551. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2552. // output
  2553. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2554. // init output from the input tok embed
  2555. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2556. TENSOR_DUPLICATED);
  2557. for (int i = 0; i < n_layer; ++i) {
  2558. auto & layer = layers[i];
  2559. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2560. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2561. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2562. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2563. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2564. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2565. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2566. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2567. }
  2568. }
  2569. break;
  2570. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2571. {
  2572. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2573. // output
  2574. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2575. // if output is NULL, init from the input tok embed
  2576. if (output == NULL) {
  2577. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2578. }
  2579. for (int i = 0; i < n_layer; ++i) {
  2580. auto & layer = layers[i];
  2581. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2582. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2583. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2584. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2585. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2586. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2587. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2588. }
  2589. } break;
  2590. case LLM_ARCH_OLMO2:
  2591. {
  2592. const int64_t n_embd_head = n_embd / n_head;
  2593. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2594. // output
  2595. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2596. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2597. for (int i = 0; i < n_layer; ++i) {
  2598. auto & layer = layers[i];
  2599. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2600. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2601. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2602. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2603. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2604. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2605. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2606. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2607. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2608. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2609. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2610. }
  2611. } break;
  2612. case LLM_ARCH_OLMOE:
  2613. {
  2614. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2615. // output
  2616. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2617. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2618. for (int i = 0; i < n_layer; ++i) {
  2619. auto & layer = layers[i];
  2620. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2621. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2622. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2623. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2624. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2625. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2626. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2627. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2628. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2629. if (n_expert == 0) {
  2630. throw std::runtime_error("n_expert must be > 0");
  2631. }
  2632. if (n_expert_used == 0) {
  2633. throw std::runtime_error("n_expert_used must be > 0");
  2634. }
  2635. // MoE branch
  2636. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2637. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2638. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2639. }
  2640. } break;
  2641. case LLM_ARCH_OPENELM:
  2642. {
  2643. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2644. // output
  2645. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2646. // init output from the input tok embed
  2647. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2648. for (int i = 0; i < n_layer; ++i) {
  2649. const int64_t n_head = hparams.n_head(i);
  2650. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2651. const int64_t n_ff = hparams.n_ff(i);
  2652. auto & layer = layers[i];
  2653. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2654. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2655. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2656. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2657. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2658. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2659. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2660. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2661. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2662. }
  2663. } break;
  2664. case LLM_ARCH_GPTNEOX:
  2665. {
  2666. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2667. // output
  2668. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2669. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2670. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2671. for (int i = 0; i < n_layer; ++i) {
  2672. auto & layer = layers[i];
  2673. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2674. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2675. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2676. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2677. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2678. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2679. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2680. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2681. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2682. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2683. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2684. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2685. }
  2686. } break;
  2687. case LLM_ARCH_ARCTIC:
  2688. {
  2689. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2690. // output
  2691. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2692. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2693. // if output is NULL, init from the input tok embed
  2694. if (output == NULL) {
  2695. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2696. }
  2697. for (int i = 0; i < n_layer; ++i) {
  2698. auto & layer = layers[i];
  2699. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2700. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2701. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2702. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2703. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2704. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2705. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2706. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2707. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2708. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2709. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2710. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2711. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2712. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2713. }
  2714. } break;
  2715. case LLM_ARCH_DEEPSEEK:
  2716. {
  2717. const int64_t n_ff_exp = hparams.n_ff_exp;
  2718. const int64_t n_expert_shared = hparams.n_expert_shared;
  2719. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2720. // output
  2721. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2722. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2723. for (int i = 0; i < n_layer; ++i) {
  2724. auto & layer = layers[i];
  2725. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2726. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2727. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2728. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2729. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2730. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2731. if (i < (int) hparams.n_layer_dense_lead) {
  2732. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2733. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2734. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2735. } else {
  2736. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2737. if (n_expert == 0) {
  2738. throw std::runtime_error("n_expert must be > 0");
  2739. }
  2740. if (n_expert_used == 0) {
  2741. throw std::runtime_error("n_expert_used must be > 0");
  2742. }
  2743. // MoE branch
  2744. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2745. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2746. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2747. // Shared expert branch
  2748. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2749. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2750. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2751. }
  2752. }
  2753. } break;
  2754. case LLM_ARCH_DEEPSEEK2:
  2755. {
  2756. const bool is_lite = (hparams.n_layer == 27);
  2757. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2758. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2759. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2760. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2761. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2762. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2763. const int64_t q_lora_rank = hparams.n_lora_q;
  2764. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2765. const int64_t n_ff_exp = hparams.n_ff_exp;
  2766. const int64_t n_expert_shared = hparams.n_expert_shared;
  2767. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2768. // output
  2769. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2770. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2771. for (int i = 0; i < n_layer; ++i) {
  2772. auto & layer = layers[i];
  2773. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2774. if (!is_lite) {
  2775. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2776. }
  2777. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2778. if (!is_lite) {
  2779. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2780. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2781. } else {
  2782. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2783. }
  2784. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2785. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2786. if (is_mla) {
  2787. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2788. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2789. } else {
  2790. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2791. }
  2792. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2793. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2794. if (i < (int) hparams.n_layer_dense_lead) {
  2795. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2796. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2797. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2798. } else {
  2799. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2800. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2801. if (n_expert == 0) {
  2802. throw std::runtime_error("n_expert must be > 0");
  2803. }
  2804. if (n_expert_used == 0) {
  2805. throw std::runtime_error("n_expert_used must be > 0");
  2806. }
  2807. // MoE branch
  2808. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2809. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2810. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2811. // Shared expert branch
  2812. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2813. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2814. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2815. }
  2816. }
  2817. } break;
  2818. case LLM_ARCH_PLM:
  2819. {
  2820. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2821. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2822. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2823. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2824. // output
  2825. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2826. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2827. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2828. for (int i = 0; i < n_layer; ++i) {
  2829. auto & layer = layers[i];
  2830. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2831. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2832. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2833. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2834. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2835. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2836. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2837. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2838. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2839. }
  2840. } break;
  2841. case LLM_ARCH_BITNET:
  2842. {
  2843. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2844. // output
  2845. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2846. for (int i = 0; i < n_layer; ++i) {
  2847. auto & layer = layers[i];
  2848. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2849. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2850. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2851. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2852. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2853. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2854. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2855. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2856. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2857. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2858. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2859. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2860. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2861. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2862. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2863. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2864. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2865. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2866. }
  2867. } break;
  2868. case LLM_ARCH_T5:
  2869. {
  2870. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2871. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2872. // output
  2873. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2874. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2875. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2876. // if output is NULL, init from the input tok embed
  2877. if (output == NULL) {
  2878. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2879. }
  2880. for (int i = 0; i < n_layer; ++i) {
  2881. auto & layer = layers[i];
  2882. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2883. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2884. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2885. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2886. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2887. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2888. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2889. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2890. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2891. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2892. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2893. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2894. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2895. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2896. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2897. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2898. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2899. // this tensor seems to be unused in HF transformers implementation
  2900. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2901. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2902. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2903. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2904. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2905. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2906. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2907. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2908. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2909. }
  2910. } break;
  2911. case LLM_ARCH_T5ENCODER:
  2912. {
  2913. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2914. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2915. // output
  2916. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2917. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2918. // if output is NULL, init from the input tok embed
  2919. if (output == NULL) {
  2920. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2921. }
  2922. for (int i = 0; i < n_layer; ++i) {
  2923. auto & layer = layers[i];
  2924. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2925. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2926. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2927. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2928. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2929. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2930. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2931. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2932. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2933. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2934. }
  2935. } break;
  2936. case LLM_ARCH_JAIS:
  2937. {
  2938. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2939. // output
  2940. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2941. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2942. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2943. for (int i = 0; i < n_layer; ++i) {
  2944. auto & layer = layers[i];
  2945. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2946. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2947. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2948. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2949. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2950. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2951. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2952. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2953. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2954. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2955. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2956. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2957. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2958. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2959. }
  2960. } break;
  2961. case LLM_ARCH_CHATGLM:
  2962. {
  2963. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2964. // output
  2965. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2966. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2967. // if output is NULL, init from the input tok embed
  2968. if (output == NULL) {
  2969. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2970. }
  2971. for (int i = 0; i < n_layer; ++i) {
  2972. auto & layer = layers[i];
  2973. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2974. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2975. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2976. if (layer.wqkv == nullptr) {
  2977. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2978. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2979. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2980. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2981. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2982. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2983. }
  2984. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2985. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2986. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2987. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2988. }
  2989. } break;
  2990. case LLM_ARCH_GLM4:
  2991. {
  2992. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2993. // output
  2994. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2995. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2996. // if output is NULL, init from the input tok embed
  2997. if (output == NULL) {
  2998. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2999. }
  3000. for (int i = 0; i < n_layer; ++i) {
  3001. auto & layer = layers[i];
  3002. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3003. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3004. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3005. if (layer.wqkv == nullptr) {
  3006. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3007. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3008. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3009. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3010. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3011. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3012. }
  3013. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3014. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3015. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3016. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3017. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3018. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3019. }
  3020. } break;
  3021. case LLM_ARCH_NEMOTRON:
  3022. {
  3023. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3024. // output
  3025. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3026. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3027. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3028. for (int i = 0; i < n_layer; ++i) {
  3029. auto & layer = layers[i];
  3030. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3031. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3032. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3033. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3034. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3035. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3036. // optional bias tensors
  3037. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3038. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3039. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3040. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3041. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3042. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3043. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3044. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3045. // optional MLP bias
  3046. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3047. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3048. }
  3049. } break;
  3050. case LLM_ARCH_EXAONE:
  3051. {
  3052. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3053. // output
  3054. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3055. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3056. // if output is NULL, init from the input tok embed
  3057. if (output == NULL) {
  3058. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3059. }
  3060. for (int i = 0; i < n_layer; ++i) {
  3061. auto & layer = layers[i];
  3062. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3063. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3064. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3065. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3066. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3067. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3068. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3069. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3070. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3071. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3072. }
  3073. } break;
  3074. case LLM_ARCH_RWKV6:
  3075. {
  3076. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3077. // Block 0, LN0
  3078. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3079. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3080. // output
  3081. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3082. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3083. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3084. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3085. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3086. const int head_size = hparams.wkv_head_size;
  3087. const int attn_hidden_size = n_embd;
  3088. const int ffn_size = hparams.n_ff_arr[0];
  3089. for (int i = 0; i < n_layer; ++i) {
  3090. auto & layer = layers[i];
  3091. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3092. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3093. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3094. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3095. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3096. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3097. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3098. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3099. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3100. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3101. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3102. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3103. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3104. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3105. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3106. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3107. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3108. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3109. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3110. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3111. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3112. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3113. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3114. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3115. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3116. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3117. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3118. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3119. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3120. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3121. }
  3122. } break;
  3123. case LLM_ARCH_RWKV6QWEN2:
  3124. {
  3125. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3126. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3127. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3128. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3129. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3130. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3131. const int head_size = hparams.wkv_head_size;
  3132. const int attn_hidden_size = n_embd;
  3133. const int n_head_kv = hparams.n_head_kv();
  3134. int attn_key_value_size;
  3135. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3136. attn_key_value_size = attn_hidden_size;
  3137. } else {
  3138. attn_key_value_size = n_head_kv * head_size;
  3139. }
  3140. for (int i = 0; i < n_layer; ++i) {
  3141. auto & layer = layers[i];
  3142. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3143. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3144. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3145. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3146. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3147. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3148. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3149. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3150. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3151. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3152. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3153. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3154. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3155. // optional bias tensors
  3156. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3157. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3158. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3159. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3160. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3161. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3162. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3163. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3164. }
  3165. } break;
  3166. case LLM_ARCH_RWKV7:
  3167. {
  3168. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3169. // Block 0, LN0
  3170. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3171. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3172. // output
  3173. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3174. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3175. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3176. const int n_lora_decay = hparams.n_lora_decay;
  3177. const int n_lora_iclr = hparams.n_lora_iclr;
  3178. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3179. const int n_lora_gate = hparams.n_lora_gate;
  3180. const int attn_hidden_size = n_embd;
  3181. const int ffn_size = hparams.n_ff_arr[0];
  3182. for (int i = 0; i < n_layer; ++i) {
  3183. auto & layer = layers[i];
  3184. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3185. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3186. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3187. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3188. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3189. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3190. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3191. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3192. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3193. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3194. if (i == 0) {
  3195. // actually not used
  3196. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3197. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3198. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3199. } else {
  3200. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3201. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3202. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3203. }
  3204. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3205. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3206. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3207. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3208. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3209. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3210. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3211. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3212. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3213. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3214. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3215. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3216. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3217. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3218. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3219. }
  3220. } break;
  3221. case LLM_ARCH_ARWKV7:
  3222. {
  3223. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3224. // output
  3225. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3226. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3227. const int n_lora_decay = hparams.n_lora_decay;
  3228. const int n_lora_iclr = hparams.n_lora_iclr;
  3229. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3230. const int n_lora_gate = hparams.n_lora_gate;
  3231. const int attn_hidden_size = n_embd;
  3232. for (int i = 0; i < n_layer; ++i) {
  3233. auto & layer = layers[i];
  3234. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3235. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3236. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3237. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3238. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3239. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3240. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3241. if (i == 0) {
  3242. // actually not used
  3243. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3244. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3245. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3246. } else {
  3247. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3248. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3249. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3250. }
  3251. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3252. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3253. try {
  3254. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3255. } catch(std::runtime_error & e) {
  3256. // ARWKV models may not have gate tensors
  3257. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3258. }
  3259. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3260. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3261. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3262. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3263. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3264. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3265. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3266. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3267. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3268. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3269. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3270. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3271. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3272. }
  3273. } break;
  3274. case LLM_ARCH_CHAMELEON:
  3275. {
  3276. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3277. // output
  3278. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3279. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3280. // if output is NULL, init from the input tok embed
  3281. if (output == NULL) {
  3282. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3283. }
  3284. for (int i = 0; i < n_layer; ++i) {
  3285. auto & layer = layers[i];
  3286. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3287. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3288. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3289. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3290. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3291. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3292. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3293. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3294. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3295. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3296. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3297. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3298. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3299. }
  3300. } break;
  3301. case LLM_ARCH_WAVTOKENIZER_DEC:
  3302. {
  3303. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3304. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3305. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3306. // posnet
  3307. {
  3308. const int64_t n_embd = hparams.posnet.n_embd;
  3309. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3310. auto & layer = layers[i].posnet;
  3311. // posnet:
  3312. //
  3313. // - resnet
  3314. // - resnet
  3315. // - attn
  3316. // - resnet
  3317. // - resnet
  3318. // - norm
  3319. //
  3320. switch (i) {
  3321. case 0:
  3322. case 1:
  3323. case 3:
  3324. case 4:
  3325. {
  3326. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3327. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3328. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3329. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3330. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3331. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3332. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3333. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3334. } break;
  3335. case 2:
  3336. {
  3337. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3338. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3339. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3340. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3341. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3342. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3343. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3344. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3345. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3346. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3347. } break;
  3348. case 5:
  3349. {
  3350. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3351. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3352. } break;
  3353. default: GGML_ABORT("unknown posnet layer");
  3354. };
  3355. }
  3356. }
  3357. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3358. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3359. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3360. // convnext
  3361. {
  3362. const int64_t n_embd = hparams.convnext.n_embd;
  3363. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3364. auto & layer = layers[i].convnext;
  3365. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3366. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3367. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3368. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3369. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3370. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3371. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3372. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3373. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3374. }
  3375. // output
  3376. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3377. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3378. }
  3379. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3380. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3381. } break;
  3382. case LLM_ARCH_BAILINGMOE:
  3383. {
  3384. const int64_t n_ff_exp = hparams.n_ff_exp;
  3385. const int64_t n_expert_shared = hparams.n_expert_shared;
  3386. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3387. // output
  3388. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3389. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3390. for (int i = 0; i < n_layer; ++i) {
  3391. auto & layer = layers[i];
  3392. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3393. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3394. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3395. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3396. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3397. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3398. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3399. if (n_expert == 0) {
  3400. throw std::runtime_error("n_expert must be > 0");
  3401. }
  3402. if (n_expert_used == 0) {
  3403. throw std::runtime_error("n_expert_used must be > 0");
  3404. }
  3405. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3406. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3407. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3408. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3409. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3410. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3411. }
  3412. } break;
  3413. default:
  3414. throw std::runtime_error("unknown architecture");
  3415. }
  3416. if (n_moved_tensors > 0) {
  3417. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3418. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3419. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3420. }
  3421. }
  3422. ml.done_getting_tensors();
  3423. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3424. pimpl->mappings.reserve(ml.mappings.size());
  3425. // create the backend buffers
  3426. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3427. ctx_bufs.reserve(ctx_map.size());
  3428. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3429. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3430. pimpl->bufs.reserve(n_max_backend_buffer);
  3431. for (auto & it : ctx_map) {
  3432. ggml_backend_buffer_type_t buft = it.first;
  3433. ggml_context * ctx = it.second;
  3434. // skip contexts without tensors
  3435. if (ggml_get_first_tensor(ctx) == nullptr) {
  3436. continue;
  3437. }
  3438. llama_buf_map buf_map;
  3439. buf_map.reserve(n_max_backend_buffer);
  3440. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3441. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3442. if (!dev) {
  3443. // FIXME: workaround for CPU backend buft having a NULL device
  3444. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3445. if (!dev) {
  3446. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  3447. }
  3448. }
  3449. ggml_backend_dev_props props;
  3450. ggml_backend_dev_get_props(dev, &props);
  3451. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3452. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3453. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3454. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3455. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3456. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3457. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3458. void * addr = nullptr;
  3459. size_t first, last; // NOLINT
  3460. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3461. if (first >= last) {
  3462. continue;
  3463. }
  3464. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3465. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3466. if (buf == nullptr) {
  3467. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3468. }
  3469. pimpl->bufs.emplace_back(buf);
  3470. buf_map.emplace(idx, buf);
  3471. }
  3472. }
  3473. else {
  3474. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3475. if (buf == nullptr) {
  3476. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3477. }
  3478. pimpl->bufs.emplace_back(buf);
  3479. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3480. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3481. auto & mlock_buf = pimpl->mlock_bufs.back();
  3482. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3483. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3484. }
  3485. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3486. buf_map.emplace(idx, buf);
  3487. }
  3488. }
  3489. if (pimpl->bufs.empty()) {
  3490. throw std::runtime_error("failed to allocate buffer");
  3491. }
  3492. for (auto & buf : buf_map) {
  3493. // indicate that this buffer contains weights
  3494. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3495. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3496. }
  3497. ctx_bufs.emplace_back(ctx, buf_map);
  3498. }
  3499. if (llama_supports_gpu_offload()) {
  3500. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3501. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3502. if (n_gpu_layers > (int) hparams.n_layer) {
  3503. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3504. }
  3505. const int max_backend_supported_layers = hparams.n_layer + 1;
  3506. const int max_offloadable_layers = hparams.n_layer + 1;
  3507. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3508. }
  3509. // print memory requirements per buffer type
  3510. for (auto & buf : pimpl->bufs) {
  3511. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3512. }
  3513. // populate tensors_by_name
  3514. for (auto & ctx : pimpl->ctxs) {
  3515. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3516. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3517. }
  3518. }
  3519. // load tensor data
  3520. for (auto & it : ctx_bufs) {
  3521. ggml_context * ctx = it.first;
  3522. auto & bufs = it.second;
  3523. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3524. return false;
  3525. }
  3526. }
  3527. if (use_mmap_buffer) {
  3528. for (auto & mapping : ml.mappings) {
  3529. pimpl->mappings.emplace_back(std::move(mapping));
  3530. }
  3531. }
  3532. return true;
  3533. }
  3534. std::string llama_model::arch_name() const {
  3535. return llm_arch_name(arch);
  3536. }
  3537. std::string llama_model::type_name() const {
  3538. return llm_type_name(type);
  3539. }
  3540. std::string llama_model::desc() const {
  3541. return pimpl->desc_str;
  3542. }
  3543. size_t llama_model::size() const {
  3544. return pimpl->n_bytes;
  3545. }
  3546. size_t llama_model::n_tensors() const {
  3547. return tensors_by_name.size();
  3548. }
  3549. size_t llama_model::n_devices() const {
  3550. return devices.size();
  3551. }
  3552. uint64_t llama_model::n_elements() const {
  3553. return pimpl->n_elements;
  3554. }
  3555. void llama_model::print_info() const {
  3556. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  3557. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3558. bool is_var = false;
  3559. std::vector<uint32_t> v;
  3560. for (uint32_t i = 0; i < n; ++i) {
  3561. v.push_back(f(i));
  3562. if (v[i] != v[0]) {
  3563. is_var = true;
  3564. }
  3565. }
  3566. std::stringstream ss;
  3567. if (is_var) {
  3568. ss << "[";
  3569. for (uint32_t i = 0; i < n; ++i) {
  3570. ss << v[i];
  3571. if (i < n - 1) {
  3572. ss << ", ";
  3573. }
  3574. }
  3575. ss << "]";
  3576. } else {
  3577. ss << v[0];
  3578. }
  3579. return ss.str();
  3580. };
  3581. // hparams
  3582. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3583. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3584. if (!hparams.vocab_only) {
  3585. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3586. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3587. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3588. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3589. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3590. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3591. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3592. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3593. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3594. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3595. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3596. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3597. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3598. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3599. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3600. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3601. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3602. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3603. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3604. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3605. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3606. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3607. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3608. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3609. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3610. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  3611. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3612. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3613. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3614. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3615. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3616. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3617. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3618. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3619. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3620. }
  3621. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3622. if (pimpl->n_elements >= 1e12) {
  3623. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3624. } else if (pimpl->n_elements >= 1e9) {
  3625. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3626. } else if (pimpl->n_elements >= 1e6) {
  3627. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3628. } else {
  3629. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3630. }
  3631. // general kv
  3632. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3633. if (arch == LLM_ARCH_DEEPSEEK) {
  3634. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3635. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3636. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3637. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3638. }
  3639. if (arch == LLM_ARCH_DEEPSEEK2) {
  3640. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3641. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3642. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3643. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3644. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3645. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3646. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3647. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3648. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3649. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3650. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3651. }
  3652. if (arch == LLM_ARCH_QWEN2MOE) {
  3653. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3654. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3655. }
  3656. if (arch == LLM_ARCH_QWEN3MOE) {
  3657. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3658. }
  3659. if (arch == LLM_ARCH_MINICPM ||
  3660. arch == LLM_ARCH_GRANITE ||
  3661. arch == LLM_ARCH_GRANITE_MOE) {
  3662. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3663. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3664. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3665. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3666. }
  3667. if (arch == LLM_ARCH_BAILINGMOE) {
  3668. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3669. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3670. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3671. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3672. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3673. }
  3674. vocab.print_info();
  3675. }
  3676. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3677. return pimpl->dev_layer.at(il).dev;
  3678. }
  3679. ggml_backend_dev_t llama_model::dev_output() const {
  3680. return pimpl->dev_output.dev;
  3681. }
  3682. template<typename F>
  3683. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3684. ggml_init_params params = {
  3685. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3686. /*.mem_buffer =*/ NULL,
  3687. /*.no_alloc =*/ true,
  3688. };
  3689. ggml_context_ptr ctx { ggml_init(params) };
  3690. if (!ctx) {
  3691. throw std::runtime_error(format("failed to create ggml context"));
  3692. }
  3693. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3694. ggml_tensor * op_tensor = fn(ctx.get());
  3695. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3696. if (op_tensor->src[i] != nullptr) {
  3697. assert(op_tensor->src[i]->buffer == nullptr);
  3698. op_tensor->src[i]->buffer = buf.get();
  3699. }
  3700. }
  3701. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3702. return op_supported;
  3703. }
  3704. template<typename F>
  3705. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3706. for (const auto & cur : buft_list) {
  3707. ggml_backend_dev_t cur_dev = cur.first;
  3708. ggml_backend_buffer_type_t cur_buft = cur.second;
  3709. if (buft_supported(cur_buft, cur_dev, fn)) {
  3710. return cur_buft;
  3711. }
  3712. }
  3713. throw std::runtime_error(format("no suitable buffer type found"));
  3714. }
  3715. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3716. return ::select_buft(
  3717. *pimpl->dev_layer.at(il).buft_list,
  3718. [&](ggml_context * ctx) {
  3719. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3720. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3721. return ggml_add(ctx, cur, layer_dir);
  3722. });
  3723. }
  3724. bool llama_model::has_tensor_overrides() const {
  3725. return pimpl->has_tensor_overrides;
  3726. }
  3727. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3728. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3729. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3730. return it.first == name;
  3731. });
  3732. if (it == tensors_by_name.end()) {
  3733. return nullptr;
  3734. }
  3735. return it->second;
  3736. }
  3737. ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
  3738. // choose long/short freq factors based on the context size
  3739. if (layers[il].rope_freqs != nullptr) {
  3740. return layers[il].rope_freqs;
  3741. }
  3742. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3743. return layers[il].rope_long;
  3744. }
  3745. return layers[il].rope_short;
  3746. }
  3747. struct llm_build_llama : public llm_graph_context {
  3748. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3749. const int64_t n_embd_head = hparams.n_embd_head_v;
  3750. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3751. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3752. ggml_tensor * cur;
  3753. ggml_tensor * inpL;
  3754. inpL = build_inp_embd(model.tok_embd);
  3755. // inp_pos - contains the positions
  3756. ggml_tensor * inp_pos = build_inp_pos();
  3757. // temperature tuning
  3758. ggml_tensor * inp_attn_scale = nullptr;
  3759. if (arch == LLM_ARCH_LLAMA4) {
  3760. inp_attn_scale = build_inp_attn_scale();
  3761. }
  3762. auto * inp_attn = build_attn_inp_kv_unified();
  3763. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3764. for (int il = 0; il < n_layer; ++il) {
  3765. ggml_tensor * inpSA = inpL;
  3766. bool use_rope = arch == LLM_ARCH_LLAMA4
  3767. ? (il + 1) % hparams.n_no_rope_layer_step != 0
  3768. : true;
  3769. // norm
  3770. cur = build_norm(inpL,
  3771. model.layers[il].attn_norm, NULL,
  3772. LLM_NORM_RMS, il);
  3773. cb(cur, "attn_norm", il);
  3774. // self-attention
  3775. {
  3776. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3777. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3778. // compute Q and K and RoPE them
  3779. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3780. cb(Qcur, "Qcur", il);
  3781. if (model.layers[il].bq) {
  3782. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3783. cb(Qcur, "Qcur", il);
  3784. }
  3785. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3786. cb(Kcur, "Kcur", il);
  3787. if (model.layers[il].bk) {
  3788. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3789. cb(Kcur, "Kcur", il);
  3790. }
  3791. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3792. cb(Vcur, "Vcur", il);
  3793. if (model.layers[il].bv) {
  3794. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3795. cb(Vcur, "Vcur", il);
  3796. }
  3797. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3798. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3799. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3800. if (use_rope) {
  3801. Qcur = ggml_rope_ext(
  3802. ctx0, Qcur, inp_pos, rope_factors,
  3803. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3804. ext_factor, attn_factor, beta_fast, beta_slow
  3805. );
  3806. Kcur = ggml_rope_ext(
  3807. ctx0, Kcur, inp_pos, rope_factors,
  3808. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3809. ext_factor, attn_factor, beta_fast, beta_slow
  3810. );
  3811. } else if (inp_attn_scale) {
  3812. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3813. }
  3814. cb(Qcur, "Qcur", il);
  3815. cb(Kcur, "Kcur", il);
  3816. cb(Vcur, "Vcur", il);
  3817. if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
  3818. // Llama4TextL2Norm
  3819. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3820. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3821. cb(Qcur, "Qcur_normed", il);
  3822. cb(Kcur, "Kcur_normed", il);
  3823. }
  3824. cur = build_attn(inp_attn, gf,
  3825. model.layers[il].wo, model.layers[il].bo,
  3826. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3827. cb(cur, "attn_out", il);
  3828. }
  3829. if (il == n_layer - 1) {
  3830. // skip computing output for unused tokens
  3831. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3832. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3833. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3834. }
  3835. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3836. cb(ffn_inp, "ffn_inp", il);
  3837. // feed-forward network (non-MoE)
  3838. if (model.layers[il].ffn_gate_inp == nullptr) {
  3839. cur = build_norm(ffn_inp,
  3840. model.layers[il].ffn_norm, NULL,
  3841. LLM_NORM_RMS, il);
  3842. cb(cur, "ffn_norm", il);
  3843. cur = build_ffn(cur,
  3844. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3845. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3846. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3847. NULL,
  3848. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3849. cb(cur, "ffn_out", il);
  3850. } else if (arch == LLM_ARCH_LLAMA4) {
  3851. // llama4 MoE
  3852. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3853. model.layers[il].ffn_norm, NULL,
  3854. LLM_NORM_RMS, il);
  3855. cb(cur, "ffn_norm", il);
  3856. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3857. model.layers[il].ffn_gate_inp,
  3858. model.layers[il].ffn_up_exps,
  3859. model.layers[il].ffn_gate_exps,
  3860. model.layers[il].ffn_down_exps,
  3861. nullptr,
  3862. n_expert, n_expert_used,
  3863. LLM_FFN_SILU, false,
  3864. false, 0.0,
  3865. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3866. il);
  3867. // Shared experts
  3868. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3869. model.layers[il].ffn_up_shexp, NULL, NULL,
  3870. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3871. model.layers[il].ffn_down_shexp, NULL, NULL,
  3872. NULL,
  3873. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3874. cb(shexp_out, "ffn_moe_shexp", il);
  3875. cur = ggml_add(ctx0, moe_out, shexp_out);
  3876. cb(cur, "ffn_moe_out_merged", il);
  3877. } else {
  3878. // MoE branch
  3879. cur = build_norm(ffn_inp,
  3880. model.layers[il].ffn_norm, NULL,
  3881. LLM_NORM_RMS, il);
  3882. cb(cur, "ffn_norm", il);
  3883. cur = build_moe_ffn(cur,
  3884. model.layers[il].ffn_gate_inp,
  3885. model.layers[il].ffn_up_exps,
  3886. model.layers[il].ffn_gate_exps,
  3887. model.layers[il].ffn_down_exps,
  3888. nullptr,
  3889. n_expert, n_expert_used,
  3890. LLM_FFN_SILU, true,
  3891. false, 0.0,
  3892. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3893. il);
  3894. cb(cur, "ffn_moe_out", il);
  3895. }
  3896. cur = ggml_add(ctx0, cur, ffn_inp);
  3897. cb(cur, "ffn_out", il);
  3898. cur = build_cvec(cur, il);
  3899. cb(cur, "l_out", il);
  3900. // input for next layer
  3901. inpL = cur;
  3902. }
  3903. cur = inpL;
  3904. cur = build_norm(cur,
  3905. model.output_norm, NULL,
  3906. LLM_NORM_RMS, -1);
  3907. cb(cur, "result_norm", -1);
  3908. res->t_embd = cur;
  3909. // lm_head
  3910. cur = build_lora_mm(model.output, cur);
  3911. cb(cur, "result_output", -1);
  3912. res->t_logits = cur;
  3913. ggml_build_forward_expand(gf, cur);
  3914. }
  3915. };
  3916. struct llm_build_deci : public llm_graph_context {
  3917. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3918. const int64_t n_embd_head = hparams.n_embd_head_v;
  3919. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3920. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3921. ggml_tensor * cur;
  3922. ggml_tensor * inpL;
  3923. inpL = build_inp_embd(model.tok_embd);
  3924. // inp_pos - contains the positions
  3925. ggml_tensor * inp_pos = build_inp_pos();
  3926. auto * inp_attn = build_attn_inp_kv_unified();
  3927. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3928. for (int il = 0; il < n_layer; ++il) {
  3929. ggml_tensor * inpSA = inpL;
  3930. const int64_t n_head_kv = hparams.n_head_kv(il);
  3931. const int64_t n_head = hparams.n_head(il);
  3932. const int64_t n_ff = hparams.n_ff(il);
  3933. if (n_head == 0) {
  3934. // attention-free layer of Llama-3_1-Nemotron-51B
  3935. cur = inpL;
  3936. } else {
  3937. // norm
  3938. cur = build_norm(inpL,
  3939. model.layers[il].attn_norm, NULL,
  3940. LLM_NORM_RMS, il);
  3941. cb(cur, "attn_norm", il);
  3942. }
  3943. if (n_head > 0 && n_head_kv == 0) {
  3944. // "linear attention" of Llama-3_1-Nemotron-51B
  3945. cur = build_lora_mm(model.layers[il].wo, cur);
  3946. cb(cur, "wo", il);
  3947. } else if (n_head > 0) {
  3948. // self-attention
  3949. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3950. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3951. // compute Q and K and RoPE them
  3952. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3953. cb(Qcur, "Qcur", il);
  3954. if (model.layers[il].bq) {
  3955. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3956. cb(Qcur, "Qcur", il);
  3957. }
  3958. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3959. cb(Kcur, "Kcur", il);
  3960. if (model.layers[il].bk) {
  3961. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3962. cb(Kcur, "Kcur", il);
  3963. }
  3964. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3965. cb(Vcur, "Vcur", il);
  3966. if (model.layers[il].bv) {
  3967. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3968. cb(Vcur, "Vcur", il);
  3969. }
  3970. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3971. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3972. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3973. Qcur = ggml_rope_ext(
  3974. ctx0, Qcur, inp_pos, rope_factors,
  3975. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3976. ext_factor, attn_factor, beta_fast, beta_slow
  3977. );
  3978. Kcur = ggml_rope_ext(
  3979. ctx0, Kcur, inp_pos, rope_factors,
  3980. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3981. ext_factor, attn_factor, beta_fast, beta_slow
  3982. );
  3983. cb(Qcur, "Qcur", il);
  3984. cb(Kcur, "Kcur", il);
  3985. cb(Vcur, "Vcur", il);
  3986. cur = build_attn(inp_attn, gf,
  3987. model.layers[il].wo, model.layers[il].bo,
  3988. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3989. }
  3990. if (il == n_layer - 1) {
  3991. // skip computing output for unused tokens
  3992. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3993. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3994. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3995. }
  3996. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  3997. if (n_ff == 0) {
  3998. continue;
  3999. }
  4000. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  4001. ggml_tensor * ffn_inp = cur;
  4002. if (n_head > 0) {
  4003. ffn_inp = ggml_add(ctx0, cur, inpSA);
  4004. cb(ffn_inp, "ffn_inp", il);
  4005. }
  4006. // feed-forward network
  4007. if (model.layers[il].ffn_gate_inp == nullptr) {
  4008. cur = build_norm(ffn_inp,
  4009. model.layers[il].ffn_norm, NULL,
  4010. LLM_NORM_RMS, il);
  4011. cb(cur, "ffn_norm", il);
  4012. cur = build_ffn(cur,
  4013. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4014. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  4015. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4016. NULL,
  4017. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4018. cb(cur, "ffn_out", il);
  4019. }
  4020. cur = ggml_add(ctx0, cur, ffn_inp);
  4021. cb(cur, "ffn_out", il);
  4022. cur = build_cvec(cur, il);
  4023. cb(cur, "l_out", il);
  4024. // input for next layer
  4025. inpL = cur;
  4026. }
  4027. cur = inpL;
  4028. cur = build_norm(cur,
  4029. model.output_norm, NULL,
  4030. LLM_NORM_RMS, -1);
  4031. cb(cur, "result_norm", -1);
  4032. res->t_embd = cur;
  4033. // lm_head
  4034. cur = build_lora_mm(model.output, cur);
  4035. cb(cur, "result_output", -1);
  4036. res->t_logits = cur;
  4037. ggml_build_forward_expand(gf, cur);
  4038. }
  4039. };
  4040. struct llm_build_baichuan : public llm_graph_context {
  4041. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4042. const int64_t n_embd_head = hparams.n_embd_head_v;
  4043. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4044. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4045. ggml_tensor * cur;
  4046. ggml_tensor * inpL;
  4047. inpL = build_inp_embd(model.tok_embd);
  4048. // inp_pos - contains the positions
  4049. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4050. auto * inp_attn = build_attn_inp_kv_unified();
  4051. for (int il = 0; il < n_layer; ++il) {
  4052. ggml_tensor * inpSA = inpL;
  4053. cur = build_norm(inpL,
  4054. model.layers[il].attn_norm, NULL,
  4055. LLM_NORM_RMS, il);
  4056. cb(cur, "attn_norm", il);
  4057. // self-attention
  4058. {
  4059. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4060. cb(Qcur, "Qcur", il);
  4061. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4062. cb(Kcur, "Kcur", il);
  4063. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4064. cb(Vcur, "Vcur", il);
  4065. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4066. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4067. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4068. switch (model.type) {
  4069. case LLM_TYPE_7B:
  4070. Qcur = ggml_rope_ext(
  4071. ctx0, Qcur, inp_pos, nullptr,
  4072. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4073. ext_factor, attn_factor, beta_fast, beta_slow
  4074. );
  4075. Kcur = ggml_rope_ext(
  4076. ctx0, Kcur, inp_pos, nullptr,
  4077. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4078. ext_factor, attn_factor, beta_fast, beta_slow
  4079. );
  4080. break;
  4081. case LLM_TYPE_13B:
  4082. break;
  4083. default:
  4084. GGML_ABORT("fatal error");
  4085. }
  4086. cb(Qcur, "Qcur", il);
  4087. cb(Kcur, "Kcur", il);
  4088. cb(Vcur, "Vcur", il);
  4089. cur = build_attn(inp_attn, gf,
  4090. model.layers[il].wo, NULL,
  4091. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4092. }
  4093. if (il == n_layer - 1) {
  4094. // skip computing output for unused tokens
  4095. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4096. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4097. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4098. }
  4099. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4100. cb(ffn_inp, "ffn_inp", il);
  4101. // feed-forward network
  4102. {
  4103. cur = build_norm(ffn_inp,
  4104. model.layers[il].ffn_norm, NULL,
  4105. LLM_NORM_RMS, il);
  4106. cb(cur, "ffn_norm", il);
  4107. cur = build_ffn(cur,
  4108. model.layers[il].ffn_up, NULL, NULL,
  4109. model.layers[il].ffn_gate, NULL, NULL,
  4110. model.layers[il].ffn_down, NULL, NULL,
  4111. NULL,
  4112. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4113. cb(cur, "ffn_out", il);
  4114. }
  4115. cur = ggml_add(ctx0, cur, ffn_inp);
  4116. cur = build_cvec(cur, il);
  4117. cb(cur, "l_out", il);
  4118. // input for next layer
  4119. inpL = cur;
  4120. }
  4121. cur = inpL;
  4122. cur = build_norm(cur,
  4123. model.output_norm, NULL,
  4124. LLM_NORM_RMS, -1);
  4125. cb(cur, "result_norm", -1);
  4126. res->t_embd = cur;
  4127. // lm_head
  4128. cur = build_lora_mm(model.output, cur);
  4129. cb(cur, "result_output", -1);
  4130. res->t_logits = cur;
  4131. ggml_build_forward_expand(gf, cur);
  4132. }
  4133. };
  4134. struct llm_build_xverse : public llm_graph_context {
  4135. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4136. const int64_t n_embd_head = hparams.n_embd_head_v;
  4137. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4138. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4139. ggml_tensor * cur;
  4140. ggml_tensor * inpL;
  4141. inpL = build_inp_embd(model.tok_embd);
  4142. // inp_pos - contains the positions
  4143. ggml_tensor * inp_pos = build_inp_pos();
  4144. auto * inp_attn = build_attn_inp_kv_unified();
  4145. for (int il = 0; il < n_layer; ++il) {
  4146. ggml_tensor * inpSA = inpL;
  4147. cur = build_norm(inpL,
  4148. model.layers[il].attn_norm, NULL,
  4149. LLM_NORM_RMS, il);
  4150. cb(cur, "attn_norm", il);
  4151. // self-attention
  4152. {
  4153. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4154. cb(Qcur, "Qcur", il);
  4155. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4156. cb(Kcur, "Kcur", il);
  4157. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4158. cb(Vcur, "Vcur", il);
  4159. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4160. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4161. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4162. Qcur = ggml_rope_ext(
  4163. ctx0, Qcur, inp_pos, nullptr,
  4164. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4165. ext_factor, attn_factor, beta_fast, beta_slow
  4166. );
  4167. Kcur = ggml_rope_ext(
  4168. ctx0, Kcur, inp_pos, nullptr,
  4169. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4170. ext_factor, attn_factor, beta_fast, beta_slow
  4171. );
  4172. cb(Qcur, "Qcur", il);
  4173. cb(Kcur, "Kcur", il);
  4174. cb(Vcur, "Vcur", il);
  4175. cur = build_attn(inp_attn, gf,
  4176. model.layers[il].wo, NULL,
  4177. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4178. }
  4179. if (il == n_layer - 1) {
  4180. // skip computing output for unused tokens
  4181. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4182. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4183. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4184. }
  4185. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4186. cb(ffn_inp, "ffn_inp", il);
  4187. // feed-forward network
  4188. {
  4189. cur = build_norm(ffn_inp,
  4190. model.layers[il].ffn_norm, NULL,
  4191. LLM_NORM_RMS, il);
  4192. cb(cur, "ffn_norm", il);
  4193. cur = build_ffn(cur,
  4194. model.layers[il].ffn_up, NULL, NULL,
  4195. model.layers[il].ffn_gate, NULL, NULL,
  4196. model.layers[il].ffn_down, NULL, NULL,
  4197. NULL,
  4198. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4199. cb(cur, "ffn_out", il);
  4200. }
  4201. cur = ggml_add(ctx0, cur, ffn_inp);
  4202. cur = build_cvec(cur, il);
  4203. cb(cur, "l_out", il);
  4204. // input for next layer
  4205. inpL = cur;
  4206. }
  4207. cur = inpL;
  4208. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4209. cb(cur, "result_norm", -1);
  4210. res->t_embd = cur;
  4211. // lm_head
  4212. cur = build_lora_mm(model.output, cur);
  4213. cb(cur, "result_output", -1);
  4214. res->t_logits = cur;
  4215. ggml_build_forward_expand(gf, cur);
  4216. }
  4217. };
  4218. struct llm_build_falcon : public llm_graph_context {
  4219. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4220. const int64_t n_embd_head = hparams.n_embd_head_v;
  4221. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4222. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4223. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4224. ggml_tensor * cur;
  4225. ggml_tensor * inpL;
  4226. inpL = build_inp_embd(model.tok_embd);
  4227. // inp_pos - contains the positions
  4228. ggml_tensor * inp_pos = build_inp_pos();
  4229. auto * inp_attn = build_attn_inp_kv_unified();
  4230. for (int il = 0; il < n_layer; ++il) {
  4231. ggml_tensor * attn_norm;
  4232. attn_norm = build_norm(inpL,
  4233. model.layers[il].attn_norm,
  4234. model.layers[il].attn_norm_b,
  4235. LLM_NORM, il);
  4236. cb(attn_norm, "attn_norm", il);
  4237. // self-attention
  4238. {
  4239. if (model.layers[il].attn_norm_2) {
  4240. // Falcon-40B
  4241. cur = build_norm(inpL,
  4242. model.layers[il].attn_norm_2,
  4243. model.layers[il].attn_norm_2_b,
  4244. LLM_NORM, il);
  4245. cb(cur, "attn_norm_2", il);
  4246. } else {
  4247. cur = attn_norm;
  4248. }
  4249. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4250. cb(cur, "wqkv", il);
  4251. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4252. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4253. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4254. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4255. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4256. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4257. // using mode = 2 for neox mode
  4258. Qcur = ggml_rope_ext(
  4259. ctx0, Qcur, inp_pos, nullptr,
  4260. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4261. ext_factor, attn_factor, beta_fast, beta_slow
  4262. );
  4263. Kcur = ggml_rope_ext(
  4264. ctx0, Kcur, inp_pos, nullptr,
  4265. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4266. ext_factor, attn_factor, beta_fast, beta_slow
  4267. );
  4268. cb(Qcur, "Qcur", il);
  4269. cb(Kcur, "Kcur", il);
  4270. cb(Vcur, "Vcur", il);
  4271. cur = build_attn(inp_attn, gf,
  4272. model.layers[il].wo, NULL,
  4273. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4274. }
  4275. if (il == n_layer - 1) {
  4276. // skip computing output for unused tokens
  4277. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4278. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4279. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4280. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4281. }
  4282. ggml_tensor * ffn_inp = cur;
  4283. // feed forward
  4284. {
  4285. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4286. model.layers[il].ffn_up, NULL, NULL,
  4287. NULL, NULL, NULL,
  4288. model.layers[il].ffn_down, NULL, NULL,
  4289. NULL,
  4290. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4291. cb(cur, "ffn_out", il);
  4292. }
  4293. cur = ggml_add(ctx0, cur, ffn_inp);
  4294. cur = ggml_add(ctx0, cur, inpL);
  4295. cur = build_cvec(cur, il);
  4296. cb(cur, "l_out", il);
  4297. // input for next layer
  4298. inpL = cur;
  4299. }
  4300. cur = inpL;
  4301. // norm
  4302. cur = build_norm(cur,
  4303. model.output_norm,
  4304. model.output_norm_b,
  4305. LLM_NORM, -1);
  4306. cb(cur, "result_norm", -1);
  4307. res->t_embd = cur;
  4308. cur = build_lora_mm(model.output, cur);
  4309. cb(cur, "result_output", -1);
  4310. res->t_logits = cur;
  4311. ggml_build_forward_expand(gf, cur);
  4312. }
  4313. };
  4314. struct llm_build_grok : public llm_graph_context {
  4315. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4316. const int64_t n_embd_head = hparams.n_embd_head_v;
  4317. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4318. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4319. ggml_tensor * cur;
  4320. ggml_tensor * inpL;
  4321. inpL = build_inp_embd(model.tok_embd);
  4322. // multiply by embedding_multiplier_scale of 78.38367176906169
  4323. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4324. // inp_pos - contains the positions
  4325. ggml_tensor * inp_pos = build_inp_pos();
  4326. auto * inp_attn = build_attn_inp_kv_unified();
  4327. for (int il = 0; il < n_layer; ++il) {
  4328. ggml_tensor * inpSA = inpL;
  4329. // norm
  4330. cur = build_norm(inpL,
  4331. model.layers[il].attn_norm, NULL,
  4332. LLM_NORM_RMS, il);
  4333. cb(cur, "attn_norm", il);
  4334. // self-attention
  4335. {
  4336. // compute Q and K and RoPE them
  4337. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4338. cb(Qcur, "Qcur", il);
  4339. if (model.layers[il].bq) {
  4340. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4341. cb(Qcur, "Qcur", il);
  4342. }
  4343. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4344. cb(Kcur, "Kcur", il);
  4345. if (model.layers[il].bk) {
  4346. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4347. cb(Kcur, "Kcur", il);
  4348. }
  4349. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4350. cb(Vcur, "Vcur", il);
  4351. if (model.layers[il].bv) {
  4352. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4353. cb(Vcur, "Vcur", il);
  4354. }
  4355. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4356. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4357. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4358. Qcur = ggml_rope_ext(
  4359. ctx0, Qcur, inp_pos, nullptr,
  4360. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4361. ext_factor, attn_factor, beta_fast, beta_slow
  4362. );
  4363. Kcur = ggml_rope_ext(
  4364. ctx0, Kcur, inp_pos, nullptr,
  4365. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4366. ext_factor, attn_factor, beta_fast, beta_slow
  4367. );
  4368. cb(Qcur, "Qcur", il);
  4369. cb(Kcur, "Kcur", il);
  4370. cb(Vcur, "Vcur", il);
  4371. cur = build_attn(inp_attn, gf,
  4372. model.layers[il].wo, model.layers[il].bo,
  4373. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4374. }
  4375. if (il == n_layer - 1) {
  4376. // skip computing output for unused tokens
  4377. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4378. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4379. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4380. }
  4381. // Grok
  4382. // if attn_out_norm is present then apply it before adding the input
  4383. if (model.layers[il].attn_out_norm) {
  4384. cur = build_norm(cur,
  4385. model.layers[il].attn_out_norm, NULL,
  4386. LLM_NORM_RMS, il);
  4387. cb(cur, "attn_out_norm", il);
  4388. }
  4389. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4390. cb(ffn_inp, "ffn_inp", il);
  4391. // feed-forward network
  4392. // MoE branch
  4393. cur = build_norm(ffn_inp,
  4394. model.layers[il].ffn_norm, NULL,
  4395. LLM_NORM_RMS, il);
  4396. cb(cur, "ffn_norm", il);
  4397. cur = build_moe_ffn(cur,
  4398. model.layers[il].ffn_gate_inp,
  4399. model.layers[il].ffn_up_exps,
  4400. model.layers[il].ffn_gate_exps,
  4401. model.layers[il].ffn_down_exps,
  4402. nullptr,
  4403. n_expert, n_expert_used,
  4404. LLM_FFN_GELU, true,
  4405. false, 0.0,
  4406. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4407. il);
  4408. cb(cur, "ffn_moe_out", il);
  4409. // Grok
  4410. // if layer_out_norm is present then apply it before adding the input
  4411. // Idea: maybe ffn_out_norm is a better name
  4412. if (model.layers[il].layer_out_norm) {
  4413. cur = build_norm(cur,
  4414. model.layers[il].layer_out_norm, NULL,
  4415. LLM_NORM_RMS, il);
  4416. cb(cur, "layer_out_norm", il);
  4417. }
  4418. cur = ggml_add(ctx0, cur, ffn_inp);
  4419. cb(cur, "ffn_out", il);
  4420. cur = build_cvec(cur, il);
  4421. cb(cur, "l_out", il);
  4422. // input for next layer
  4423. inpL = cur;
  4424. }
  4425. cur = inpL;
  4426. cur = build_norm(cur,
  4427. model.output_norm, NULL,
  4428. LLM_NORM_RMS, -1);
  4429. cb(cur, "result_norm", -1);
  4430. res->t_embd = cur;
  4431. // lm_head
  4432. cur = build_lora_mm(model.output, cur);
  4433. // Grok
  4434. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4435. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4436. cb(cur, "result_output", -1);
  4437. res->t_logits = cur;
  4438. ggml_build_forward_expand(gf, cur);
  4439. }
  4440. };
  4441. struct llm_build_dbrx : public llm_graph_context {
  4442. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4443. const int64_t n_embd_head = hparams.n_embd_head_v;
  4444. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4445. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4446. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4447. ggml_tensor * cur;
  4448. ggml_tensor * inpL;
  4449. inpL = build_inp_embd(model.tok_embd);
  4450. // inp_pos - contains the positions
  4451. ggml_tensor * inp_pos = build_inp_pos();
  4452. auto * inp_attn = build_attn_inp_kv_unified();
  4453. for (int il = 0; il < n_layer; ++il) {
  4454. ggml_tensor * inpSA = inpL;
  4455. // norm
  4456. cur = build_norm(inpL,
  4457. model.layers[il].attn_norm, NULL,
  4458. LLM_NORM, il);
  4459. cb(cur, "attn_norm", il);
  4460. // self-attention
  4461. {
  4462. ggml_tensor * Qcur = nullptr;
  4463. ggml_tensor * Kcur = nullptr;
  4464. ggml_tensor * Vcur = nullptr;
  4465. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4466. cb(cur, "wqkv", il);
  4467. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4468. cb(cur, "wqkv_clamped", il);
  4469. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4470. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4471. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4472. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4473. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4474. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4475. Qcur = ggml_rope_ext(
  4476. ctx0, Qcur, inp_pos, nullptr,
  4477. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4478. ext_factor, attn_factor, beta_fast, beta_slow
  4479. );
  4480. Kcur = ggml_rope_ext(
  4481. ctx0, Kcur, inp_pos, nullptr,
  4482. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4483. ext_factor, attn_factor, beta_fast, beta_slow
  4484. );
  4485. cb(Qcur, "Qcur", il);
  4486. cb(Kcur, "Kcur", il);
  4487. cb(Vcur, "Vcur", il);
  4488. cur = build_attn(inp_attn, gf,
  4489. model.layers[il].wo, NULL,
  4490. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4491. }
  4492. if (il == n_layer - 1) {
  4493. // skip computing output for unused tokens
  4494. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4495. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4496. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4497. }
  4498. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4499. cb(ffn_inp, "ffn_inp", il);
  4500. // feed-forward network
  4501. // MoE branch
  4502. cur = build_norm(ffn_inp,
  4503. model.layers[il].attn_out_norm, NULL,
  4504. LLM_NORM, il);
  4505. cb(cur, "attn_out_norm", il);
  4506. cur = build_moe_ffn(cur,
  4507. model.layers[il].ffn_gate_inp,
  4508. model.layers[il].ffn_up_exps,
  4509. model.layers[il].ffn_gate_exps,
  4510. model.layers[il].ffn_down_exps,
  4511. nullptr,
  4512. n_expert, n_expert_used,
  4513. LLM_FFN_SILU, true,
  4514. false, 0.0,
  4515. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4516. il);
  4517. cb(cur, "ffn_moe_out", il);
  4518. cur = ggml_add(ctx0, cur, ffn_inp);
  4519. cb(cur, "ffn_out", il);
  4520. cur = build_cvec(cur, il);
  4521. cb(cur, "l_out", il);
  4522. // input for next layer
  4523. inpL = cur;
  4524. }
  4525. cur = inpL;
  4526. cur = build_norm(cur,
  4527. model.output_norm, NULL,
  4528. LLM_NORM, -1);
  4529. cb(cur, "result_norm", -1);
  4530. res->t_embd = cur;
  4531. // lm_head
  4532. cur = build_lora_mm(model.output, cur);
  4533. cb(cur, "result_output", -1);
  4534. res->t_logits = cur;
  4535. ggml_build_forward_expand(gf, cur);
  4536. }
  4537. };
  4538. struct llm_build_starcoder : public llm_graph_context {
  4539. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4540. const int64_t n_embd_head = hparams.n_embd_head_v;
  4541. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4542. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4543. ggml_tensor * cur;
  4544. ggml_tensor * inpL;
  4545. inpL = build_inp_embd(model.tok_embd);
  4546. // inp_pos - contains the positions
  4547. ggml_tensor * inp_pos = build_inp_pos();
  4548. auto * inp_attn = build_attn_inp_kv_unified();
  4549. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4550. cb(pos, "pos_embd", -1);
  4551. inpL = ggml_add(ctx0, inpL, pos);
  4552. cb(inpL, "inpL", -1);
  4553. for (int il = 0; il < n_layer; ++il) {
  4554. cur = build_norm(inpL,
  4555. model.layers[il].attn_norm,
  4556. model.layers[il].attn_norm_b,
  4557. LLM_NORM, il);
  4558. cb(cur, "attn_norm", il);
  4559. // self-attention
  4560. {
  4561. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4562. cb(cur, "wqkv", il);
  4563. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4564. cb(cur, "bqkv", il);
  4565. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4566. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4567. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4568. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4569. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4570. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4571. cb(Qcur, "Qcur", il);
  4572. cb(Kcur, "Kcur", il);
  4573. cb(Vcur, "Vcur", il);
  4574. cur = build_attn(inp_attn, gf,
  4575. model.layers[il].wo, model.layers[il].bo,
  4576. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4577. }
  4578. if (il == n_layer - 1) {
  4579. // skip computing output for unused tokens
  4580. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4581. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4582. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4583. }
  4584. // add the input
  4585. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4586. cb(ffn_inp, "ffn_inp", il);
  4587. // FF
  4588. {
  4589. cur = build_norm(ffn_inp,
  4590. model.layers[il].ffn_norm,
  4591. model.layers[il].ffn_norm_b,
  4592. LLM_NORM, il);
  4593. cb(cur, "ffn_norm", il);
  4594. cur = build_ffn(cur,
  4595. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4596. NULL, NULL, NULL,
  4597. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4598. NULL,
  4599. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4600. cb(cur, "ffn_out", il);
  4601. }
  4602. cur = ggml_add(ctx0, cur, ffn_inp);
  4603. cur = build_cvec(cur, il);
  4604. cb(cur, "l_out", il);
  4605. // input for next layer
  4606. inpL = cur;
  4607. }
  4608. cur = build_norm(inpL,
  4609. model.output_norm,
  4610. model.output_norm_b,
  4611. LLM_NORM, -1);
  4612. cb(cur, "result_norm", -1);
  4613. res->t_embd = cur;
  4614. cur = build_lora_mm(model.output, cur);
  4615. cb(cur, "result_output", -1);
  4616. res->t_logits = cur;
  4617. ggml_build_forward_expand(gf, cur);
  4618. }
  4619. };
  4620. struct llm_build_refact : public llm_graph_context {
  4621. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4622. const int64_t n_embd_head = hparams.n_embd_head_v;
  4623. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4624. ggml_tensor * cur;
  4625. ggml_tensor * inpL;
  4626. inpL = build_inp_embd(model.tok_embd);
  4627. auto * inp_attn = build_attn_inp_kv_unified();
  4628. for (int il = 0; il < n_layer; ++il) {
  4629. ggml_tensor * inpSA = inpL;
  4630. cur = build_norm(inpL,
  4631. model.layers[il].attn_norm, NULL,
  4632. LLM_NORM_RMS, il);
  4633. cb(cur, "attn_norm", il);
  4634. // self-attention
  4635. {
  4636. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4637. cb(Qcur, "Qcur", il);
  4638. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4639. cb(Kcur, "Kcur", il);
  4640. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4641. cb(Vcur, "Vcur", il);
  4642. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4643. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4644. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4645. cb(Qcur, "Qcur", il);
  4646. cb(Kcur, "Kcur", il);
  4647. cb(Vcur, "Vcur", il);
  4648. cur = build_attn(inp_attn, gf,
  4649. model.layers[il].wo, NULL,
  4650. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4651. }
  4652. if (il == n_layer - 1) {
  4653. // skip computing output for unused tokens
  4654. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4655. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4656. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4657. }
  4658. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4659. cb(ffn_inp, "ffn_inp", il);
  4660. // feed-forward network
  4661. {
  4662. cur = build_norm(ffn_inp,
  4663. model.layers[il].ffn_norm, NULL,
  4664. LLM_NORM_RMS, il);
  4665. cb(cur, "ffn_norm", il);
  4666. cur = build_ffn(cur,
  4667. model.layers[il].ffn_up, NULL, NULL,
  4668. model.layers[il].ffn_gate, NULL, NULL,
  4669. model.layers[il].ffn_down, NULL, NULL,
  4670. NULL,
  4671. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4672. cb(cur, "ffn_out", il);
  4673. }
  4674. cur = ggml_add(ctx0, cur, ffn_inp);
  4675. cur = build_cvec(cur, il);
  4676. cb(cur, "l_out", il);
  4677. // input for next layer
  4678. inpL = cur;
  4679. }
  4680. cur = inpL;
  4681. cur = build_norm(cur,
  4682. model.output_norm, NULL,
  4683. LLM_NORM_RMS, -1);
  4684. cb(cur, "result_norm", -1);
  4685. res->t_embd = cur;
  4686. // lm_head
  4687. cur = build_lora_mm(model.output, cur);
  4688. cb(cur, "result_output", -1);
  4689. res->t_logits = cur;
  4690. ggml_build_forward_expand(gf, cur);
  4691. }
  4692. };
  4693. struct llm_build_bert : public llm_graph_context {
  4694. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4695. const int64_t n_embd_head = hparams.n_embd_head_v;
  4696. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4697. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4698. ggml_tensor * cur;
  4699. ggml_tensor * inpL;
  4700. ggml_tensor * inp_pos = nullptr;
  4701. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4702. inp_pos = build_inp_pos();
  4703. }
  4704. // construct input embeddings (token, type, position)
  4705. inpL = build_inp_embd(model.tok_embd);
  4706. // token types are hardcoded to zero ("Sentence A")
  4707. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4708. inpL = ggml_add(ctx0, inpL, type_row0);
  4709. if (model.arch == LLM_ARCH_BERT) {
  4710. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4711. }
  4712. cb(inpL, "inp_embd", -1);
  4713. // embed layer norm
  4714. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4715. cb(inpL, "inp_norm", -1);
  4716. auto * inp_attn = build_attn_inp_no_cache();
  4717. // iterate layers
  4718. for (int il = 0; il < n_layer; ++il) {
  4719. ggml_tensor * cur = inpL;
  4720. ggml_tensor * Qcur;
  4721. ggml_tensor * Kcur;
  4722. ggml_tensor * Vcur;
  4723. // self-attention
  4724. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4725. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4726. if (model.layers[il].attn_q_norm) {
  4727. Qcur = build_norm(Qcur,
  4728. model.layers[il].attn_q_norm,
  4729. model.layers[il].attn_q_norm_b,
  4730. LLM_NORM, il);
  4731. }
  4732. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4733. if (model.layers[il].attn_k_norm) {
  4734. Kcur = build_norm(Kcur,
  4735. model.layers[il].attn_k_norm,
  4736. model.layers[il].attn_k_norm_b,
  4737. LLM_NORM, il);
  4738. }
  4739. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4740. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4741. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4742. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4743. } else {
  4744. // compute Q and K and RoPE them
  4745. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4746. cb(cur, "wqkv", il);
  4747. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4748. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4749. cb(cur, "bqkv", il);
  4750. }
  4751. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4752. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4753. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4754. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4755. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4756. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4757. Qcur = ggml_rope_ext(
  4758. ctx0, Qcur, inp_pos, nullptr,
  4759. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4760. ext_factor, attn_factor, beta_fast, beta_slow
  4761. );
  4762. Kcur = ggml_rope_ext(
  4763. ctx0, Kcur, inp_pos, nullptr,
  4764. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4765. ext_factor, attn_factor, beta_fast, beta_slow
  4766. );
  4767. }
  4768. cb(Qcur, "Qcur", il);
  4769. cb(Kcur, "Kcur", il);
  4770. cb(Vcur, "Vcur", il);
  4771. cur = build_attn(inp_attn, gf,
  4772. model.layers[il].wo, model.layers[il].bo,
  4773. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4774. cb(cur, "kqv_out", il);
  4775. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4776. // skip computing output for unused tokens
  4777. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4778. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4779. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4780. }
  4781. // re-add the layer input
  4782. cur = ggml_add(ctx0, cur, inpL);
  4783. // attention layer norm
  4784. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4785. if (model.layers[il].attn_norm_2 != nullptr) {
  4786. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4787. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4788. }
  4789. ggml_tensor * ffn_inp = cur;
  4790. cb(ffn_inp, "ffn_inp", il);
  4791. // feed-forward network
  4792. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4793. // MoE branch
  4794. cur = build_moe_ffn(cur,
  4795. model.layers[il].ffn_gate_inp,
  4796. model.layers[il].ffn_up_exps,
  4797. nullptr,
  4798. model.layers[il].ffn_down_exps,
  4799. nullptr,
  4800. hparams.n_expert,
  4801. hparams.n_expert_used,
  4802. LLM_FFN_GELU,
  4803. false, false,
  4804. 0.0f,
  4805. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4806. cb(cur, "ffn_moe_out", il);
  4807. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4808. cur = build_ffn(cur,
  4809. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4810. NULL, NULL, NULL,
  4811. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4812. NULL,
  4813. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4814. cb(cur, "ffn_out", il);
  4815. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4816. cur = build_ffn(cur,
  4817. model.layers[il].ffn_up, NULL, NULL,
  4818. model.layers[il].ffn_gate, NULL, NULL,
  4819. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4820. NULL,
  4821. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4822. cb(cur, "ffn_out", il);
  4823. } else {
  4824. cur = build_ffn(cur,
  4825. model.layers[il].ffn_up, NULL, NULL,
  4826. model.layers[il].ffn_gate, NULL, NULL,
  4827. model.layers[il].ffn_down, NULL, NULL,
  4828. NULL,
  4829. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4830. cb(cur, "ffn_out", il);
  4831. }
  4832. // attentions bypass the intermediate layer
  4833. cur = ggml_add(ctx0, cur, ffn_inp);
  4834. // output layer norm
  4835. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4836. // input for next layer
  4837. inpL = cur;
  4838. }
  4839. cur = inpL;
  4840. cb(cur, "result_embd", -1);
  4841. res->t_embd = cur;
  4842. ggml_build_forward_expand(gf, cur);
  4843. }
  4844. };
  4845. struct llm_build_bloom : public llm_graph_context {
  4846. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4847. const int64_t n_embd_head = hparams.n_embd_head_v;
  4848. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4849. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4850. ggml_tensor * cur;
  4851. ggml_tensor * inpL;
  4852. inpL = build_inp_embd(model.tok_embd);
  4853. auto * inp_attn = build_attn_inp_kv_unified();
  4854. inpL = build_norm(inpL,
  4855. model.tok_norm,
  4856. model.tok_norm_b,
  4857. LLM_NORM, -1);
  4858. cb(inpL, "inp_norm", -1);
  4859. for (int il = 0; il < n_layer; ++il) {
  4860. cur = build_norm(inpL,
  4861. model.layers[il].attn_norm,
  4862. model.layers[il].attn_norm_b,
  4863. LLM_NORM, il);
  4864. cb(cur, "attn_norm", il);
  4865. // self-attention
  4866. {
  4867. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4868. cb(cur, "wqkv", il);
  4869. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4870. cb(cur, "bqkv", il);
  4871. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4872. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4873. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4874. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4875. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4876. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4877. cb(Qcur, "Qcur", il);
  4878. cb(Kcur, "Kcur", il);
  4879. cb(Vcur, "Vcur", il);
  4880. cur = build_attn(inp_attn, gf,
  4881. model.layers[il].wo, model.layers[il].bo,
  4882. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4883. }
  4884. if (il == n_layer - 1) {
  4885. // skip computing output for unused tokens
  4886. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4887. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4888. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4889. }
  4890. // Add the input
  4891. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4892. cb(ffn_inp, "ffn_inp", il);
  4893. // FF
  4894. {
  4895. cur = build_norm(ffn_inp,
  4896. model.layers[il].ffn_norm,
  4897. model.layers[il].ffn_norm_b,
  4898. LLM_NORM, il);
  4899. cb(cur, "ffn_norm", il);
  4900. cur = build_ffn(cur,
  4901. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4902. NULL, NULL, NULL,
  4903. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4904. NULL,
  4905. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4906. cb(cur, "ffn_out", il);
  4907. }
  4908. cur = ggml_add(ctx0, cur, ffn_inp);
  4909. cur = build_cvec(cur, il);
  4910. cb(cur, "l_out", il);
  4911. // input for next layer
  4912. inpL = cur;
  4913. }
  4914. cur = build_norm(inpL,
  4915. model.output_norm,
  4916. model.output_norm_b,
  4917. LLM_NORM, -1);
  4918. cb(cur, "result_norm", -1);
  4919. res->t_embd = cur;
  4920. cur = build_lora_mm(model.output, cur);
  4921. cb(cur, "result_output", -1);
  4922. res->t_logits = cur;
  4923. ggml_build_forward_expand(gf, cur);
  4924. }
  4925. };
  4926. struct llm_build_mpt : public llm_graph_context {
  4927. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4928. const int64_t n_embd_head = hparams.n_embd_head_v;
  4929. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4930. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4931. ggml_tensor * cur;
  4932. ggml_tensor * pos;
  4933. ggml_tensor * inpL;
  4934. inpL = build_inp_embd(model.tok_embd);
  4935. auto * inp_attn = build_attn_inp_kv_unified();
  4936. if (model.pos_embd) {
  4937. // inp_pos - contains the positions
  4938. ggml_tensor * inp_pos = build_inp_pos();
  4939. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4940. cb(pos, "pos_embd", -1);
  4941. inpL = ggml_add(ctx0, inpL, pos);
  4942. cb(inpL, "inpL", -1);
  4943. }
  4944. for (int il = 0; il < n_layer; ++il) {
  4945. ggml_tensor * attn_norm;
  4946. attn_norm = build_norm(inpL,
  4947. model.layers[il].attn_norm,
  4948. model.layers[il].attn_norm_b,
  4949. LLM_NORM, il);
  4950. cb(attn_norm, "attn_norm", il);
  4951. // self-attention
  4952. {
  4953. cur = attn_norm;
  4954. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4955. cb(cur, "wqkv", il);
  4956. if (model.layers[il].bqkv){
  4957. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4958. cb(cur, "bqkv", il);
  4959. }
  4960. if (hparams.f_clamp_kqv > 0.0f) {
  4961. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4962. cb(cur, "wqkv_clamped", il);
  4963. }
  4964. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4965. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4966. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4967. cb(Qcur, "Qcur", il);
  4968. cb(Kcur, "Kcur", il);
  4969. cb(Vcur, "Vcur", il);
  4970. // Q/K Layernorm
  4971. if (model.layers[il].attn_q_norm) {
  4972. Qcur = build_norm(Qcur,
  4973. model.layers[il].attn_q_norm,
  4974. model.layers[il].attn_q_norm_b,
  4975. LLM_NORM, il);
  4976. cb(Qcur, "Qcur", il);
  4977. Kcur = build_norm(Kcur,
  4978. model.layers[il].attn_k_norm,
  4979. model.layers[il].attn_k_norm_b,
  4980. LLM_NORM, il);
  4981. cb(Kcur, "Kcur", il);
  4982. }
  4983. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4984. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4985. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4986. cb(Qcur, "Qcur", il);
  4987. cb(Kcur, "Kcur", il);
  4988. cb(Vcur, "Vcur", il);
  4989. cur = build_attn(inp_attn, gf,
  4990. model.layers[il].wo, model.layers[il].bo,
  4991. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4992. }
  4993. if (il == n_layer - 1) {
  4994. // skip computing output for unused tokens
  4995. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4996. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4997. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4998. }
  4999. // Add the input
  5000. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5001. cb(ffn_inp, "ffn_inp", il);
  5002. // feed forward
  5003. {
  5004. cur = build_norm(ffn_inp,
  5005. model.layers[il].ffn_norm,
  5006. model.layers[il].ffn_norm_b,
  5007. LLM_NORM, il);
  5008. cb(cur, "ffn_norm", il);
  5009. cur = build_ffn(cur,
  5010. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5011. NULL, NULL, NULL,
  5012. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5013. model.layers[il].ffn_act,
  5014. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5015. cb(cur, "ffn_out", il);
  5016. }
  5017. cur = ggml_add(ctx0, cur, ffn_inp);
  5018. cur = build_cvec(cur, il);
  5019. cb(cur, "l_out", il);
  5020. // input for next layer
  5021. inpL = cur;
  5022. }
  5023. cur = inpL;
  5024. cur = build_norm(cur,
  5025. model.output_norm,
  5026. model.output_norm_b,
  5027. LLM_NORM, -1);
  5028. cb(cur, "result_norm", -1);
  5029. res->t_embd = cur;
  5030. cur = build_lora_mm(model.output, cur);
  5031. cb(cur, "result_output", -1);
  5032. res->t_logits = cur;
  5033. ggml_build_forward_expand(gf, cur);
  5034. }
  5035. };
  5036. struct llm_build_stablelm : public llm_graph_context {
  5037. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5038. const int64_t n_embd_head = hparams.n_embd_head_v;
  5039. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5040. ggml_tensor * cur;
  5041. ggml_tensor * inpL;
  5042. inpL = build_inp_embd(model.tok_embd);
  5043. // inp_pos - contains the positions
  5044. ggml_tensor * inp_pos = build_inp_pos();
  5045. auto * inp_attn = build_attn_inp_kv_unified();
  5046. for (int il = 0; il < n_layer; ++il) {
  5047. // norm
  5048. cur = build_norm(inpL,
  5049. model.layers[il].attn_norm,
  5050. model.layers[il].attn_norm_b,
  5051. LLM_NORM, il);
  5052. cb(cur, "attn_norm", il);
  5053. ggml_tensor * inpSA = cur;
  5054. // self-attention
  5055. {
  5056. // compute Q and K and RoPE them
  5057. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5058. cb(Qcur, "Qcur", il);
  5059. if (model.layers[il].bq) {
  5060. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5061. cb(Qcur, "Qcur", il);
  5062. }
  5063. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5064. cb(Kcur, "Kcur", il);
  5065. if (model.layers[il].bk) {
  5066. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5067. cb(Kcur, "Kcur", il);
  5068. }
  5069. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5070. cb(Vcur, "Vcur", il);
  5071. if (model.layers[il].bv) {
  5072. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5073. cb(Vcur, "Vcur", il);
  5074. }
  5075. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5076. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5077. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5078. if (model.layers[il].attn_q_norm) {
  5079. Qcur = build_norm(Qcur,
  5080. model.layers[il].attn_q_norm,
  5081. NULL,
  5082. LLM_NORM, il);
  5083. cb(Qcur, "Qcur", il);
  5084. }
  5085. if (model.layers[il].attn_k_norm) {
  5086. Kcur = build_norm(Kcur,
  5087. model.layers[il].attn_k_norm,
  5088. NULL,
  5089. LLM_NORM, il);
  5090. cb(Kcur, "Kcur", il);
  5091. }
  5092. Qcur = ggml_rope_ext(
  5093. ctx0, Qcur, inp_pos, nullptr,
  5094. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5095. ext_factor, attn_factor, beta_fast, beta_slow
  5096. );
  5097. Kcur = ggml_rope_ext(
  5098. ctx0, Kcur, inp_pos, nullptr,
  5099. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5100. ext_factor, attn_factor, beta_fast, beta_slow
  5101. );
  5102. cb(Qcur, "Qcur", il);
  5103. cb(Kcur, "Kcur", il);
  5104. cb(Vcur, "Vcur", il);
  5105. cur = build_attn(inp_attn, gf,
  5106. model.layers[il].wo, NULL,
  5107. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5108. }
  5109. if (il == n_layer - 1) {
  5110. // skip computing output for unused tokens
  5111. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5112. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5113. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5114. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5115. }
  5116. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5117. cb(ffn_inp, "ffn_inp", il);
  5118. // feed-forward network
  5119. {
  5120. if (model.layers[il].ffn_norm) {
  5121. cur = build_norm(ffn_inp,
  5122. model.layers[il].ffn_norm,
  5123. model.layers[il].ffn_norm_b,
  5124. LLM_NORM, il);
  5125. cb(cur, "ffn_norm", il);
  5126. } else {
  5127. // parallel residual
  5128. cur = inpSA;
  5129. }
  5130. cur = build_ffn(cur,
  5131. model.layers[il].ffn_up, NULL, NULL,
  5132. model.layers[il].ffn_gate, NULL, NULL,
  5133. model.layers[il].ffn_down, NULL, NULL,
  5134. NULL,
  5135. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5136. cb(cur, "ffn_out", il);
  5137. }
  5138. cur = ggml_add(ctx0, cur, ffn_inp);
  5139. cur = build_cvec(cur, il);
  5140. cb(cur, "l_out", il);
  5141. // input for next layer
  5142. inpL = cur;
  5143. }
  5144. cur = inpL;
  5145. cur = build_norm(cur,
  5146. model.output_norm,
  5147. model.output_norm_b,
  5148. LLM_NORM, -1);
  5149. cb(cur, "result_norm", -1);
  5150. res->t_embd = cur;
  5151. // lm_head
  5152. cur = build_lora_mm(model.output, cur);
  5153. cb(cur, "result_output", -1);
  5154. res->t_logits = cur;
  5155. ggml_build_forward_expand(gf, cur);
  5156. }
  5157. };
  5158. struct llm_build_qwen : public llm_graph_context {
  5159. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5160. const int64_t n_embd_head = hparams.n_embd_head_v;
  5161. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5162. ggml_tensor * cur;
  5163. ggml_tensor * inpL;
  5164. inpL = build_inp_embd(model.tok_embd);
  5165. // inp_pos - contains the positions
  5166. ggml_tensor * inp_pos = build_inp_pos();
  5167. auto * inp_attn = build_attn_inp_kv_unified();
  5168. for (int il = 0; il < n_layer; ++il) {
  5169. ggml_tensor * inpSA = inpL;
  5170. cur = build_norm(inpL,
  5171. model.layers[il].attn_norm, NULL,
  5172. LLM_NORM_RMS, il);
  5173. cb(cur, "attn_norm", il);
  5174. // self-attention
  5175. {
  5176. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5177. cb(cur, "wqkv", il);
  5178. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5179. cb(cur, "bqkv", il);
  5180. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5181. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5182. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5183. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5184. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5185. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5186. // using mode = 2 for neox mode
  5187. Qcur = ggml_rope_ext(
  5188. ctx0, Qcur, inp_pos, nullptr,
  5189. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5190. ext_factor, attn_factor, beta_fast, beta_slow
  5191. );
  5192. Kcur = ggml_rope_ext(
  5193. ctx0, Kcur, inp_pos, nullptr,
  5194. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5195. ext_factor, attn_factor, beta_fast, beta_slow
  5196. );
  5197. cb(Qcur, "Qcur", il);
  5198. cb(Kcur, "Kcur", il);
  5199. cb(Vcur, "Vcur", il);
  5200. cur = build_attn(inp_attn, gf,
  5201. model.layers[il].wo, NULL,
  5202. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5203. }
  5204. if (il == n_layer - 1) {
  5205. // skip computing output for unused tokens
  5206. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5207. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5208. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5209. }
  5210. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5211. cb(ffn_inp, "ffn_inp", il);
  5212. // feed-forward forward
  5213. {
  5214. cur = build_norm(ffn_inp,
  5215. model.layers[il].ffn_norm, NULL,
  5216. LLM_NORM_RMS, il);
  5217. cb(cur, "ffn_norm", il);
  5218. cur = build_ffn(cur,
  5219. model.layers[il].ffn_up, NULL, NULL,
  5220. model.layers[il].ffn_gate, NULL, NULL,
  5221. model.layers[il].ffn_down, NULL, NULL,
  5222. NULL,
  5223. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5224. cb(cur, "ffn_out", il);
  5225. }
  5226. cur = ggml_add(ctx0, cur, ffn_inp);
  5227. cur = build_cvec(cur, il);
  5228. cb(cur, "l_out", il);
  5229. // input for next layer
  5230. inpL = cur;
  5231. }
  5232. cur = inpL;
  5233. cur = build_norm(cur,
  5234. model.output_norm, NULL,
  5235. LLM_NORM_RMS, -1);
  5236. cb(cur, "result_norm", -1);
  5237. res->t_embd = cur;
  5238. // lm_head
  5239. cur = build_lora_mm(model.output, cur);
  5240. cb(cur, "result_output", -1);
  5241. res->t_logits = cur;
  5242. ggml_build_forward_expand(gf, cur);
  5243. }
  5244. };
  5245. struct llm_build_qwen2 : public llm_graph_context {
  5246. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5247. const int64_t n_embd_head = hparams.n_embd_head_v;
  5248. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5249. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5250. ggml_tensor * cur;
  5251. ggml_tensor * inpL;
  5252. inpL = build_inp_embd(model.tok_embd);
  5253. // inp_pos - contains the positions
  5254. ggml_tensor * inp_pos = build_inp_pos();
  5255. auto * inp_attn = build_attn_inp_kv_unified();
  5256. for (int il = 0; il < n_layer; ++il) {
  5257. ggml_tensor * inpSA = inpL;
  5258. // norm
  5259. cur = build_norm(inpL,
  5260. model.layers[il].attn_norm, NULL,
  5261. LLM_NORM_RMS, il);
  5262. cb(cur, "attn_norm", il);
  5263. // self-attention
  5264. {
  5265. // compute Q and K and RoPE them
  5266. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5267. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5268. cb(Qcur, "Qcur", il);
  5269. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5270. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5271. cb(Kcur, "Kcur", il);
  5272. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5273. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5274. cb(Vcur, "Vcur", il);
  5275. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5276. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5277. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5278. Qcur = ggml_rope_ext(
  5279. ctx0, Qcur, inp_pos, nullptr,
  5280. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5281. ext_factor, attn_factor, beta_fast, beta_slow
  5282. );
  5283. Kcur = ggml_rope_ext(
  5284. ctx0, Kcur, inp_pos, nullptr,
  5285. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5286. ext_factor, attn_factor, beta_fast, beta_slow
  5287. );
  5288. cb(Qcur, "Qcur", il);
  5289. cb(Kcur, "Kcur", il);
  5290. cb(Vcur, "Vcur", il);
  5291. cur = build_attn(inp_attn, gf,
  5292. model.layers[il].wo, model.layers[il].bo,
  5293. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5294. }
  5295. if (il == n_layer - 1) {
  5296. // skip computing output for unused tokens
  5297. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5298. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5299. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5300. }
  5301. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5302. cb(ffn_inp, "ffn_inp", il);
  5303. // feed-forward network
  5304. cur = build_norm(ffn_inp,
  5305. model.layers[il].ffn_norm, NULL,
  5306. LLM_NORM_RMS, il);
  5307. cb(cur, "ffn_norm", il);
  5308. cur = build_ffn(cur,
  5309. model.layers[il].ffn_up, NULL, NULL,
  5310. model.layers[il].ffn_gate, NULL, NULL,
  5311. model.layers[il].ffn_down, NULL, NULL,
  5312. NULL,
  5313. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5314. cb(cur, "ffn_out", il);
  5315. cur = ggml_add(ctx0, cur, ffn_inp);
  5316. cur = build_cvec(cur, il);
  5317. cb(cur, "l_out", il);
  5318. // input for next layer
  5319. inpL = cur;
  5320. }
  5321. cur = inpL;
  5322. cur = build_norm(cur,
  5323. model.output_norm, NULL,
  5324. LLM_NORM_RMS, -1);
  5325. cb(cur, "result_norm", -1);
  5326. res->t_embd = cur;
  5327. // lm_head
  5328. cur = build_lora_mm(model.output, cur);
  5329. cb(cur, "result_output", -1);
  5330. res->t_logits = cur;
  5331. ggml_build_forward_expand(gf, cur);
  5332. }
  5333. };
  5334. struct llm_build_qwen2vl : public llm_graph_context {
  5335. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5336. const int64_t n_embd_head = hparams.n_embd_head_v;
  5337. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5338. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5339. ggml_tensor * cur;
  5340. ggml_tensor * inpL;
  5341. inpL = build_inp_embd(model.tok_embd);
  5342. // inp_pos - contains the positions
  5343. ggml_tensor * inp_pos = build_inp_pos();
  5344. auto * inp_attn = build_attn_inp_kv_unified();
  5345. int sections[4];
  5346. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5347. for (int il = 0; il < n_layer; ++il) {
  5348. ggml_tensor * inpSA = inpL;
  5349. // norm
  5350. cur = build_norm(inpL,
  5351. model.layers[il].attn_norm, NULL,
  5352. LLM_NORM_RMS, il);
  5353. cb(cur, "attn_norm", il);
  5354. // self-attention
  5355. {
  5356. // compute Q and K and RoPE them
  5357. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5358. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5359. cb(Qcur, "Qcur", il);
  5360. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5361. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5362. cb(Kcur, "Kcur", il);
  5363. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5364. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5365. cb(Vcur, "Vcur", il);
  5366. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5367. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5368. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5369. Qcur = ggml_rope_multi(
  5370. ctx0, Qcur, inp_pos, nullptr,
  5371. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5372. ext_factor, attn_factor, beta_fast, beta_slow
  5373. );
  5374. Kcur = ggml_rope_multi(
  5375. ctx0, Kcur, inp_pos, nullptr,
  5376. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5377. ext_factor, attn_factor, beta_fast, beta_slow
  5378. );
  5379. cb(Qcur, "Qcur", il);
  5380. cb(Kcur, "Kcur", il);
  5381. cb(Vcur, "Vcur", il);
  5382. cur = build_attn(inp_attn, gf,
  5383. model.layers[il].wo, model.layers[il].bo,
  5384. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5385. }
  5386. if (il == n_layer - 1) {
  5387. // skip computing output for unused tokens
  5388. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5389. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5390. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5391. }
  5392. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5393. cb(ffn_inp, "ffn_inp", il);
  5394. // feed-forward network
  5395. cur = build_norm(ffn_inp,
  5396. model.layers[il].ffn_norm, NULL,
  5397. LLM_NORM_RMS, il);
  5398. cb(cur, "ffn_norm", il);
  5399. cur = build_ffn(cur,
  5400. model.layers[il].ffn_up, NULL, NULL,
  5401. model.layers[il].ffn_gate, NULL, NULL,
  5402. model.layers[il].ffn_down, NULL, NULL,
  5403. NULL,
  5404. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5405. cb(cur, "ffn_out", il);
  5406. cur = ggml_add(ctx0, cur, ffn_inp);
  5407. cur = build_cvec(cur, il);
  5408. cb(cur, "l_out", il);
  5409. // input for next layer
  5410. inpL = cur;
  5411. }
  5412. cur = inpL;
  5413. cur = build_norm(cur,
  5414. model.output_norm, NULL,
  5415. LLM_NORM_RMS, -1);
  5416. cb(cur, "result_norm", -1);
  5417. res->t_embd = cur;
  5418. // lm_head
  5419. cur = build_lora_mm(model.output, cur);
  5420. cb(cur, "result_output", -1);
  5421. res->t_logits = cur;
  5422. ggml_build_forward_expand(gf, cur);
  5423. }
  5424. };
  5425. struct llm_build_qwen2moe : public llm_graph_context {
  5426. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5427. const int64_t n_embd_head = hparams.n_embd_head_v;
  5428. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5429. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5430. ggml_tensor * cur;
  5431. ggml_tensor * inpL;
  5432. inpL = build_inp_embd(model.tok_embd);
  5433. // inp_pos - contains the positions
  5434. ggml_tensor * inp_pos = build_inp_pos();
  5435. auto * inp_attn = build_attn_inp_kv_unified();
  5436. for (int il = 0; il < n_layer; ++il) {
  5437. ggml_tensor * inpSA = inpL;
  5438. // norm
  5439. cur = build_norm(inpL,
  5440. model.layers[il].attn_norm, NULL,
  5441. LLM_NORM_RMS, il);
  5442. cb(cur, "attn_norm", il);
  5443. // self_attention
  5444. {
  5445. // compute Q and K and RoPE them
  5446. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5447. cb(Qcur, "Qcur", il);
  5448. if (model.layers[il].bq) {
  5449. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5450. cb(Qcur, "Qcur", il);
  5451. }
  5452. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5453. cb(Kcur, "Kcur", il);
  5454. if (model.layers[il].bk) {
  5455. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5456. cb(Kcur, "Kcur", il);
  5457. }
  5458. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5459. cb(Vcur, "Vcur", il);
  5460. if (model.layers[il].bv) {
  5461. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5462. cb(Vcur, "Vcur", il);
  5463. }
  5464. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5465. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5466. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5467. Qcur = ggml_rope_ext(
  5468. ctx0, Qcur, inp_pos, nullptr,
  5469. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5470. ext_factor, attn_factor, beta_fast, beta_slow
  5471. );
  5472. Kcur = ggml_rope_ext(
  5473. ctx0, Kcur, inp_pos, nullptr,
  5474. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5475. ext_factor, attn_factor, beta_fast, beta_slow
  5476. );
  5477. cb(Qcur, "Qcur", il);
  5478. cb(Kcur, "Kcur", il);
  5479. cb(Vcur, "Vcur", il);
  5480. cur = build_attn(inp_attn, gf,
  5481. model.layers[il].wo, model.layers[il].bo,
  5482. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5483. }
  5484. if (il == n_layer - 1) {
  5485. // skip computing output for unused tokens
  5486. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5487. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5488. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5489. }
  5490. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5491. cb(ffn_inp, "ffn_inp", il);
  5492. // MoE branch
  5493. cur = build_norm(ffn_inp,
  5494. model.layers[il].ffn_norm, NULL,
  5495. LLM_NORM_RMS, il);
  5496. cb(cur, "ffn_norm", il);
  5497. ggml_tensor * moe_out =
  5498. build_moe_ffn(cur,
  5499. model.layers[il].ffn_gate_inp,
  5500. model.layers[il].ffn_up_exps,
  5501. model.layers[il].ffn_gate_exps,
  5502. model.layers[il].ffn_down_exps,
  5503. nullptr,
  5504. n_expert, n_expert_used,
  5505. LLM_FFN_SILU, false,
  5506. false, 0.0,
  5507. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5508. il);
  5509. cb(moe_out, "ffn_moe_out", il);
  5510. // FFN shared expert
  5511. {
  5512. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5513. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5514. // sigmoid
  5515. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5516. cb(cur_gate, "ffn_shexp_gate", il);
  5517. ggml_tensor * cur_ffn = build_ffn(cur,
  5518. model.layers[il].ffn_up_shexp, NULL, NULL,
  5519. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5520. model.layers[il].ffn_down_shexp, NULL, NULL,
  5521. NULL,
  5522. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5523. cb(cur_ffn, "ffn_shexp", il);
  5524. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5525. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5526. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5527. cb(moe_out, "ffn_out", il);
  5528. cur = moe_out;
  5529. }
  5530. cur = ggml_add(ctx0, cur, ffn_inp);
  5531. cur = build_cvec(cur, il);
  5532. cb(cur, "l_out", il);
  5533. // input for next layer
  5534. inpL = cur;
  5535. }
  5536. cur = inpL;
  5537. cur = build_norm(cur,
  5538. model.output_norm, NULL,
  5539. LLM_NORM_RMS, -1);
  5540. cb(cur, "result_norm", -1);
  5541. res->t_embd = cur;
  5542. // lm_head
  5543. cur = build_lora_mm(model.output, cur);
  5544. cb(cur, "result_output", -1);
  5545. res->t_logits = cur;
  5546. ggml_build_forward_expand(gf, cur);
  5547. }
  5548. };
  5549. struct llm_build_qwen3 : public llm_graph_context {
  5550. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5551. const int64_t n_embd_head = hparams.n_embd_head_v;
  5552. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5553. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5554. ggml_tensor * cur;
  5555. ggml_tensor * inpL;
  5556. inpL = build_inp_embd(model.tok_embd);
  5557. // inp_pos - contains the positions
  5558. ggml_tensor * inp_pos = build_inp_pos();
  5559. auto * inp_attn = build_attn_inp_kv_unified();
  5560. for (int il = 0; il < n_layer; ++il) {
  5561. ggml_tensor * inpSA = inpL;
  5562. // norm
  5563. cur = build_norm(inpL,
  5564. model.layers[il].attn_norm, NULL,
  5565. LLM_NORM_RMS, il);
  5566. cb(cur, "attn_norm", il);
  5567. // self-attention
  5568. {
  5569. // compute Q and K and RoPE them
  5570. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5571. cb(Qcur, "Qcur", il);
  5572. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5573. cb(Kcur, "Kcur", il);
  5574. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5575. cb(Vcur, "Vcur", il);
  5576. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5577. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5578. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5579. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5580. cb(Qcur, "Qcur_normed", il);
  5581. Qcur = ggml_rope_ext(
  5582. ctx0, Qcur, inp_pos, nullptr,
  5583. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5584. ext_factor, attn_factor, beta_fast, beta_slow
  5585. );
  5586. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5587. cb(Kcur, "Kcur_normed", il);
  5588. Kcur = ggml_rope_ext(
  5589. ctx0, Kcur, inp_pos, nullptr,
  5590. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5591. ext_factor, attn_factor, beta_fast, beta_slow
  5592. );
  5593. cb(Qcur, "Qcur", il);
  5594. cb(Kcur, "Kcur", il);
  5595. cb(Vcur, "Vcur", il);
  5596. cur = build_attn(inp_attn, gf,
  5597. model.layers[il].wo, model.layers[il].bo,
  5598. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5599. }
  5600. if (il == n_layer - 1) {
  5601. // skip computing output for unused tokens
  5602. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5603. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5604. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5605. }
  5606. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5607. cb(ffn_inp, "ffn_inp", il);
  5608. // feed-forward network
  5609. cur = build_norm(ffn_inp,
  5610. model.layers[il].ffn_norm, NULL,
  5611. LLM_NORM_RMS, il);
  5612. cb(cur, "ffn_norm", il);
  5613. cur = build_ffn(cur,
  5614. model.layers[il].ffn_up, NULL, NULL,
  5615. model.layers[il].ffn_gate, NULL, NULL,
  5616. model.layers[il].ffn_down, NULL, NULL,
  5617. NULL,
  5618. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5619. cb(cur, "ffn_out", il);
  5620. cur = ggml_add(ctx0, cur, ffn_inp);
  5621. cur = build_cvec(cur, il);
  5622. cb(cur, "l_out", il);
  5623. // input for next layer
  5624. inpL = cur;
  5625. }
  5626. cur = inpL;
  5627. cur = build_norm(cur,
  5628. model.output_norm, NULL,
  5629. LLM_NORM_RMS, -1);
  5630. cb(cur, "result_norm", -1);
  5631. res->t_embd = cur;
  5632. // lm_head
  5633. cur = build_lora_mm(model.output, cur);
  5634. cb(cur, "result_output", -1);
  5635. res->t_logits = cur;
  5636. ggml_build_forward_expand(gf, cur);
  5637. }
  5638. };
  5639. struct llm_build_qwen3moe : public llm_graph_context {
  5640. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5641. const int64_t n_embd_head = hparams.n_embd_head_v;
  5642. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5643. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5644. ggml_tensor * cur;
  5645. ggml_tensor * inpL;
  5646. inpL = build_inp_embd(model.tok_embd);
  5647. // inp_pos - contains the positions
  5648. ggml_tensor * inp_pos = build_inp_pos();
  5649. auto * inp_attn = build_attn_inp_kv_unified();
  5650. for (int il = 0; il < n_layer; ++il) {
  5651. ggml_tensor * inpSA = inpL;
  5652. // norm
  5653. cur = build_norm(inpL,
  5654. model.layers[il].attn_norm, NULL,
  5655. LLM_NORM_RMS, il);
  5656. cb(cur, "attn_norm", il);
  5657. // self_attention
  5658. {
  5659. // compute Q and K and RoPE them
  5660. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5661. cb(Qcur, "Qcur", il);
  5662. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5663. cb(Kcur, "Kcur", il);
  5664. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5665. cb(Vcur, "Vcur", il);
  5666. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5667. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5668. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5669. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5670. cb(Qcur, "Qcur_normed", il);
  5671. Qcur = ggml_rope_ext(
  5672. ctx0, Qcur, inp_pos, nullptr,
  5673. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5674. ext_factor, attn_factor, beta_fast, beta_slow
  5675. );
  5676. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5677. cb(Kcur, "Kcur_normed", il);
  5678. Kcur = ggml_rope_ext(
  5679. ctx0, Kcur, inp_pos, nullptr,
  5680. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5681. ext_factor, attn_factor, beta_fast, beta_slow
  5682. );
  5683. cb(Qcur, "Qcur", il);
  5684. cb(Kcur, "Kcur", il);
  5685. cb(Vcur, "Vcur", il);
  5686. cur = build_attn(inp_attn, gf,
  5687. model.layers[il].wo, model.layers[il].bo,
  5688. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5689. }
  5690. if (il == n_layer - 1) {
  5691. // skip computing output for unused tokens
  5692. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5693. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5694. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5695. }
  5696. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5697. cb(ffn_inp, "ffn_inp", il);
  5698. // MoE branch
  5699. cur = build_norm(ffn_inp,
  5700. model.layers[il].ffn_norm, NULL,
  5701. LLM_NORM_RMS, il);
  5702. cb(cur, "ffn_norm", il);
  5703. ggml_tensor * moe_out =
  5704. build_moe_ffn(cur,
  5705. model.layers[il].ffn_gate_inp,
  5706. model.layers[il].ffn_up_exps,
  5707. model.layers[il].ffn_gate_exps,
  5708. model.layers[il].ffn_down_exps,
  5709. nullptr,
  5710. n_expert, n_expert_used,
  5711. LLM_FFN_SILU, true,
  5712. false, 0.0,
  5713. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5714. il);
  5715. cb(moe_out, "ffn_moe_out", il);
  5716. cur = moe_out;
  5717. cur = ggml_add(ctx0, cur, ffn_inp);
  5718. cur = build_cvec(cur, il);
  5719. cb(cur, "l_out", il);
  5720. // input for next layer
  5721. inpL = cur;
  5722. }
  5723. cur = inpL;
  5724. cur = build_norm(cur,
  5725. model.output_norm, NULL,
  5726. LLM_NORM_RMS, -1);
  5727. cb(cur, "result_norm", -1);
  5728. res->t_embd = cur;
  5729. // lm_head
  5730. cur = build_lora_mm(model.output, cur);
  5731. cb(cur, "result_output", -1);
  5732. res->t_logits = cur;
  5733. ggml_build_forward_expand(gf, cur);
  5734. }
  5735. };
  5736. struct llm_build_phi2 : public llm_graph_context {
  5737. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5738. const int64_t n_embd_head = hparams.n_embd_head_v;
  5739. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5740. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5741. ggml_tensor * cur;
  5742. ggml_tensor * attn_norm_output;
  5743. ggml_tensor * ffn_output;
  5744. ggml_tensor * inpL;
  5745. inpL = build_inp_embd(model.tok_embd);
  5746. // inp_pos - contains the positions
  5747. ggml_tensor * inp_pos = build_inp_pos();
  5748. auto * inp_attn = build_attn_inp_kv_unified();
  5749. for (int il = 0; il < n_layer; ++il) {
  5750. attn_norm_output = build_norm(inpL,
  5751. model.layers[il].attn_norm,
  5752. model.layers[il].attn_norm_b,
  5753. LLM_NORM, il);
  5754. cb(attn_norm_output, "attn_norm", il);
  5755. // self-attention
  5756. {
  5757. ggml_tensor * Qcur = nullptr;
  5758. ggml_tensor * Kcur = nullptr;
  5759. ggml_tensor * Vcur = nullptr;
  5760. if (model.layers[il].wqkv) {
  5761. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5762. cb(cur, "wqkv", il);
  5763. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5764. cb(cur, "bqkv", il);
  5765. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5766. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5767. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5768. } else {
  5769. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5770. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5771. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5772. }
  5773. cb(Qcur, "Qcur", il);
  5774. cb(Kcur, "Kcur", il);
  5775. cb(Vcur, "Vcur", il);
  5776. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5777. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5778. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5779. Qcur = ggml_rope_ext(
  5780. ctx0, Qcur, inp_pos, nullptr,
  5781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5782. ext_factor, attn_factor, beta_fast, beta_slow
  5783. );
  5784. Kcur = ggml_rope_ext(
  5785. ctx0, Kcur, inp_pos, nullptr,
  5786. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5787. ext_factor, attn_factor, beta_fast, beta_slow
  5788. );
  5789. cb(Qcur, "Qcur", il);
  5790. cb(Kcur, "Kcur", il);
  5791. cb(Vcur, "Vcur", il);
  5792. // with phi2, we scale the Q to avoid precision issues
  5793. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5794. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5795. cur = build_attn(inp_attn, gf,
  5796. model.layers[il].wo, model.layers[il].bo,
  5797. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5798. }
  5799. if (il == n_layer - 1) {
  5800. // skip computing output for unused tokens
  5801. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5802. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5803. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5804. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5805. }
  5806. // FF
  5807. {
  5808. ffn_output = build_ffn(attn_norm_output,
  5809. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5810. NULL, NULL, NULL,
  5811. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5812. NULL,
  5813. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5814. cb(ffn_output, "ffn_out", il);
  5815. }
  5816. cur = ggml_add(ctx0, cur, ffn_output);
  5817. cur = ggml_add(ctx0, cur, inpL);
  5818. cur = build_cvec(cur, il);
  5819. cb(cur, "l_out", il);
  5820. // input for next layer
  5821. inpL = cur;
  5822. }
  5823. cur = build_norm(inpL,
  5824. model.output_norm,
  5825. model.output_norm_b,
  5826. LLM_NORM, -1);
  5827. cb(cur, "result_norm", -1);
  5828. res->t_embd = cur;
  5829. cur = build_lora_mm(model.output, cur);
  5830. cb(cur, "result_output_no_bias", -1);
  5831. cur = ggml_add(ctx0, cur, model.output_b);
  5832. cb(cur, "result_output", -1);
  5833. res->t_logits = cur;
  5834. ggml_build_forward_expand(gf, cur);
  5835. }
  5836. };
  5837. struct llm_build_phi3 : public llm_graph_context {
  5838. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5839. const int64_t n_embd_head = hparams.n_embd_head_v;
  5840. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5841. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5842. ggml_tensor * cur;
  5843. ggml_tensor * inpL;
  5844. inpL = build_inp_embd(model.tok_embd);
  5845. // inp_pos - contains the positions
  5846. ggml_tensor * inp_pos = build_inp_pos();
  5847. auto * inp_attn = build_attn_inp_kv_unified();
  5848. for (int il = 0; il < n_layer; ++il) {
  5849. auto * residual = inpL;
  5850. // self-attention
  5851. {
  5852. // rope freq factors for 128k context
  5853. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  5854. ggml_tensor* attn_norm_output = build_norm(inpL,
  5855. model.layers[il].attn_norm,
  5856. model.layers[il].attn_norm_b,
  5857. LLM_NORM_RMS, il);
  5858. cb(attn_norm_output, "attn_norm", il);
  5859. ggml_tensor * Qcur = nullptr;
  5860. ggml_tensor * Kcur = nullptr;
  5861. ggml_tensor * Vcur = nullptr;
  5862. if (model.layers[il].wqkv) {
  5863. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5864. cb(cur, "wqkv", il);
  5865. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5866. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5867. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5868. } else {
  5869. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5870. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5871. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5872. }
  5873. cb(Qcur, "Qcur", il);
  5874. cb(Kcur, "Kcur", il);
  5875. cb(Vcur, "Vcur", il);
  5876. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5877. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5878. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5879. Qcur = ggml_rope_ext(
  5880. ctx0, Qcur, inp_pos, rope_factors,
  5881. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5882. ext_factor, attn_factor, beta_fast, beta_slow
  5883. );
  5884. Kcur = ggml_rope_ext(
  5885. ctx0, Kcur, inp_pos, rope_factors,
  5886. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5887. ext_factor, attn_factor, beta_fast, beta_slow
  5888. );
  5889. cb(Qcur, "Qcur", il);
  5890. cb(Kcur, "Kcur", il);
  5891. cb(Vcur, "Vcur", il);
  5892. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5893. cb(Qcur, "Qcur", il);
  5894. cur = build_attn(inp_attn, gf,
  5895. model.layers[il].wo, model.layers[il].bo,
  5896. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5897. }
  5898. if (il == n_layer - 1) {
  5899. // skip computing output for unused tokens
  5900. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5901. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5902. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5903. }
  5904. cur = ggml_add(ctx0, cur, residual);
  5905. residual = cur;
  5906. cur = build_norm(cur,
  5907. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5908. LLM_NORM_RMS, il);
  5909. cb(cur, "ffn_norm", il);
  5910. // feed-forward network
  5911. if (model.layers[il].ffn_gate_inp == nullptr) {
  5912. cur = build_ffn(cur,
  5913. model.layers[il].ffn_up, NULL, NULL,
  5914. NULL, NULL, NULL,
  5915. model.layers[il].ffn_down, NULL, NULL,
  5916. NULL,
  5917. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5918. cb(cur, "ffn_out", il);
  5919. } else {
  5920. // MoE branch
  5921. cur = build_moe_ffn(cur,
  5922. model.layers[il].ffn_gate_inp,
  5923. model.layers[il].ffn_up_exps,
  5924. model.layers[il].ffn_gate_exps,
  5925. model.layers[il].ffn_down_exps,
  5926. nullptr,
  5927. n_expert, n_expert_used,
  5928. LLM_FFN_SILU, true,
  5929. false, 0.0,
  5930. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5931. il);
  5932. cb(cur, "ffn_moe_out", il);
  5933. }
  5934. cur = ggml_add(ctx0, residual, cur);
  5935. cur = build_cvec(cur, il);
  5936. cb(cur, "l_out", il);
  5937. // input for next layer
  5938. inpL = cur;
  5939. }
  5940. cur = build_norm(inpL,
  5941. model.output_norm,
  5942. model.output_norm_b,
  5943. LLM_NORM_RMS, -1);
  5944. cb(cur, "result_norm", -1);
  5945. res->t_embd = cur;
  5946. cur = build_lora_mm(model.output, cur);
  5947. if (model.output_b != nullptr) {
  5948. cb(cur, "result_output_no_bias", -1);
  5949. cur = ggml_add(ctx0, cur, model.output_b);
  5950. }
  5951. cb(cur, "result_output", -1);
  5952. res->t_logits = cur;
  5953. ggml_build_forward_expand(gf, cur);
  5954. }
  5955. };
  5956. struct llm_build_plamo : public llm_graph_context {
  5957. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5958. const int64_t n_embd_head = hparams.n_embd_head_v;
  5959. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5960. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5961. ggml_tensor * cur;
  5962. ggml_tensor * inpL;
  5963. inpL = build_inp_embd(model.tok_embd);
  5964. // inp_pos - contains the positions
  5965. ggml_tensor * inp_pos = build_inp_pos();
  5966. auto * inp_attn = build_attn_inp_kv_unified();
  5967. for (int il = 0; il < n_layer; ++il) {
  5968. // norm
  5969. cur = build_norm(inpL,
  5970. model.layers[il].attn_norm, NULL,
  5971. LLM_NORM_RMS, il);
  5972. cb(cur, "attn_norm", il);
  5973. ggml_tensor * attention_norm = cur;
  5974. // self-attention
  5975. {
  5976. // compute Q and K and RoPE them
  5977. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5978. cb(Qcur, "Qcur", il);
  5979. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5980. cb(Kcur, "Kcur", il);
  5981. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5982. cb(Vcur, "Vcur", il);
  5983. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5984. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5985. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5986. Qcur = ggml_rope_ext(
  5987. ctx0, Qcur, inp_pos, nullptr,
  5988. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5989. ext_factor, attn_factor, beta_fast, beta_slow
  5990. );
  5991. Kcur = ggml_rope_ext(
  5992. ctx0, Kcur, inp_pos, nullptr,
  5993. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5994. ext_factor, attn_factor, beta_fast, beta_slow
  5995. );
  5996. cb(Qcur, "Qcur", il);
  5997. cb(Kcur, "Kcur", il);
  5998. cb(Vcur, "Vcur", il);
  5999. cur = build_attn(inp_attn, gf,
  6000. model.layers[il].wo, NULL,
  6001. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6002. }
  6003. ggml_tensor * sa_out = cur;
  6004. cur = attention_norm;
  6005. if (il == n_layer - 1) {
  6006. // skip computing output for unused tokens
  6007. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6008. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6009. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6010. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6011. }
  6012. // feed-forward network
  6013. {
  6014. cur = build_ffn(cur,
  6015. model.layers[il].ffn_up, NULL, NULL,
  6016. model.layers[il].ffn_gate, NULL, NULL,
  6017. model.layers[il].ffn_down, NULL, NULL,
  6018. NULL,
  6019. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6020. cb(cur, "ffn_out", il);
  6021. }
  6022. cur = ggml_add(ctx0, cur, sa_out);
  6023. cur = ggml_add(ctx0, cur, inpL);
  6024. cur = build_cvec(cur, il);
  6025. cb(cur, "l_out", il);
  6026. // input for next layer
  6027. inpL = cur;
  6028. }
  6029. cur = inpL;
  6030. cur = build_norm(cur,
  6031. model.output_norm, NULL,
  6032. LLM_NORM_RMS, -1);
  6033. cb(cur, "result_norm", -1);
  6034. res->t_embd = cur;
  6035. // lm_head
  6036. cur = build_lora_mm(model.output, cur);
  6037. cb(cur, "result_output", -1);
  6038. res->t_logits = cur;
  6039. ggml_build_forward_expand(gf, cur);
  6040. }
  6041. };
  6042. struct llm_build_gpt2 : public llm_graph_context {
  6043. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6044. const int64_t n_embd_head = hparams.n_embd_head_v;
  6045. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6046. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6047. ggml_tensor * cur;
  6048. ggml_tensor * pos;
  6049. ggml_tensor * inpL;
  6050. inpL = build_inp_embd(model.tok_embd);
  6051. // inp_pos - contains the positions
  6052. ggml_tensor * inp_pos = build_inp_pos();
  6053. auto * inp_attn = build_attn_inp_kv_unified();
  6054. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6055. cb(pos, "pos_embd", -1);
  6056. inpL = ggml_add(ctx0, inpL, pos);
  6057. cb(inpL, "inpL", -1);
  6058. for (int il = 0; il < n_layer; ++il) {
  6059. cur = build_norm(inpL,
  6060. model.layers[il].attn_norm,
  6061. model.layers[il].attn_norm_b,
  6062. LLM_NORM, il);
  6063. cb(cur, "attn_norm", il);
  6064. // self-attention
  6065. {
  6066. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6067. cb(cur, "wqkv", il);
  6068. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6069. cb(cur, "bqkv", il);
  6070. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6071. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6072. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6073. cb(Qcur, "Qcur", il);
  6074. cb(Kcur, "Kcur", il);
  6075. cb(Vcur, "Vcur", il);
  6076. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6077. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6078. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6079. cur = build_attn(inp_attn, gf,
  6080. model.layers[il].wo, model.layers[il].bo,
  6081. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6082. }
  6083. if (il == n_layer - 1) {
  6084. // skip computing output for unused tokens
  6085. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6086. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6087. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6088. }
  6089. // add the input
  6090. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6091. cb(ffn_inp, "ffn_inp", il);
  6092. // FF
  6093. {
  6094. cur = build_norm(ffn_inp,
  6095. model.layers[il].ffn_norm,
  6096. model.layers[il].ffn_norm_b,
  6097. LLM_NORM, il);
  6098. cb(cur, "ffn_norm", il);
  6099. cur = build_ffn(cur,
  6100. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6101. NULL, NULL, NULL,
  6102. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6103. NULL,
  6104. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6105. cb(cur, "ffn_out", il);
  6106. }
  6107. cur = ggml_add(ctx0, cur, ffn_inp);
  6108. cur = build_cvec(cur, il);
  6109. cb(cur, "l_out", il);
  6110. // input for next layer
  6111. inpL = cur;
  6112. }
  6113. cur = build_norm(inpL,
  6114. model.output_norm,
  6115. model.output_norm_b,
  6116. LLM_NORM, -1);
  6117. cb(cur, "result_norm", -1);
  6118. res->t_embd = cur;
  6119. cur = build_lora_mm(model.output, cur);
  6120. cb(cur, "result_output", -1);
  6121. res->t_logits = cur;
  6122. ggml_build_forward_expand(gf, cur);
  6123. }
  6124. };
  6125. struct llm_build_codeshell : public llm_graph_context {
  6126. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6127. const int64_t n_embd_head = hparams.n_embd_head_v;
  6128. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6129. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6130. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6131. ggml_tensor * cur;
  6132. ggml_tensor * inpL;
  6133. inpL = build_inp_embd(model.tok_embd);
  6134. // inp_pos - contains the positions
  6135. ggml_tensor * inp_pos = build_inp_pos();
  6136. auto * inp_attn = build_attn_inp_kv_unified();
  6137. for (int il = 0; il < n_layer; ++il) {
  6138. cur = build_norm(inpL,
  6139. model.layers[il].attn_norm,
  6140. model.layers[il].attn_norm_b,
  6141. LLM_NORM, il);
  6142. cb(cur, "attn_norm", il);
  6143. // self-attention
  6144. {
  6145. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6146. cb(cur, "wqkv", il);
  6147. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6148. cb(cur, "bqkv", il);
  6149. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6150. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6151. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6152. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6153. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6154. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6155. Qcur = ggml_rope_ext(
  6156. ctx0, Qcur, inp_pos, nullptr,
  6157. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6158. ext_factor, attn_factor, beta_fast, beta_slow
  6159. );
  6160. Kcur = ggml_rope_ext(
  6161. ctx0, Kcur, inp_pos, nullptr,
  6162. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6163. ext_factor, attn_factor, beta_fast, beta_slow
  6164. );
  6165. cb(Qcur, "Qcur", il);
  6166. cb(Kcur, "Kcur", il);
  6167. cb(Vcur, "Vcur", il);
  6168. cur = build_attn(inp_attn, gf,
  6169. model.layers[il].wo, model.layers[il].bo,
  6170. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6171. }
  6172. if (il == n_layer - 1) {
  6173. // skip computing output for unused tokens
  6174. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6175. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6176. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6177. }
  6178. // add the input
  6179. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6180. cb(ffn_inp, "ffn_inp", il);
  6181. // FF
  6182. {
  6183. cur = build_norm(ffn_inp,
  6184. model.layers[il].ffn_norm,
  6185. model.layers[il].ffn_norm_b,
  6186. LLM_NORM, il);
  6187. cb(cur, "ffn_norm", il);
  6188. cur = build_ffn(cur,
  6189. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6190. NULL, NULL, NULL,
  6191. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6192. NULL,
  6193. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6194. cb(cur, "ffn_out", il);
  6195. }
  6196. cur = ggml_add(ctx0, cur, ffn_inp);
  6197. cur = build_cvec(cur, il);
  6198. cb(cur, "l_out", il);
  6199. // input for next layer
  6200. inpL = cur;
  6201. }
  6202. cur = build_norm(inpL,
  6203. model.output_norm,
  6204. model.output_norm_b,
  6205. LLM_NORM, -1);
  6206. cb(cur, "result_norm", -1);
  6207. res->t_embd = cur;
  6208. cur = build_lora_mm(model.output, cur);
  6209. cb(cur, "result_output", -1);
  6210. res->t_logits = cur;
  6211. ggml_build_forward_expand(gf, cur);
  6212. }
  6213. };
  6214. struct llm_build_orion : public llm_graph_context {
  6215. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6216. const int64_t n_embd_head = hparams.n_embd_head_v;
  6217. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6218. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6219. ggml_tensor * cur;
  6220. ggml_tensor * inpL;
  6221. inpL = build_inp_embd(model.tok_embd);
  6222. // inp_pos - contains the positions
  6223. ggml_tensor * inp_pos = build_inp_pos();
  6224. auto * inp_attn = build_attn_inp_kv_unified();
  6225. for (int il = 0; il < n_layer; ++il) {
  6226. ggml_tensor * inpSA = inpL;
  6227. // norm
  6228. cur = build_norm(inpL,
  6229. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6230. LLM_NORM, il);
  6231. cb(cur, "attn_norm", il);
  6232. // self-attention
  6233. {
  6234. // compute Q and K and RoPE them
  6235. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6236. cb(Qcur, "Qcur", il);
  6237. // if (model.layers[il].bq) {
  6238. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6239. // cb(Qcur, "Qcur", il);
  6240. // }
  6241. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6242. cb(Kcur, "Kcur", il);
  6243. // if (model.layers[il].bk) {
  6244. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6245. // cb(Kcur, "Kcur", il);
  6246. // }
  6247. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6248. cb(Vcur, "Vcur", il);
  6249. // if (model.layers[il].bv) {
  6250. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6251. // cb(Vcur, "Vcur", il);
  6252. // }
  6253. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6254. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6255. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6256. Qcur = ggml_rope_ext(
  6257. ctx0, Qcur, inp_pos, nullptr,
  6258. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6259. ext_factor, attn_factor, beta_fast, beta_slow
  6260. );
  6261. Kcur = ggml_rope_ext(
  6262. ctx0, Kcur, inp_pos, nullptr,
  6263. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6264. ext_factor, attn_factor, beta_fast, beta_slow
  6265. );
  6266. cb(Qcur, "Qcur", il);
  6267. cb(Kcur, "Kcur", il);
  6268. cb(Vcur, "Vcur", il);
  6269. cur = build_attn(inp_attn, gf,
  6270. model.layers[il].wo, NULL,
  6271. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6272. }
  6273. if (il == n_layer - 1) {
  6274. // skip computing output for unused tokens
  6275. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6276. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6277. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6278. }
  6279. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6280. cb(ffn_inp, "ffn_inp", il);
  6281. // feed-forward network
  6282. cur = build_norm(ffn_inp,
  6283. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6284. LLM_NORM, il);
  6285. cb(cur, "ffn_norm", il);
  6286. cur = build_ffn(cur,
  6287. model.layers[il].ffn_up, NULL, NULL,
  6288. model.layers[il].ffn_gate, NULL, NULL,
  6289. model.layers[il].ffn_down, NULL, NULL,
  6290. NULL,
  6291. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6292. cb(cur, "ffn_out", il);
  6293. cur = ggml_add(ctx0, cur, ffn_inp);
  6294. cur = build_cvec(cur, il);
  6295. cb(cur, "l_out", il);
  6296. // input for next layer
  6297. inpL = cur;
  6298. }
  6299. cur = inpL;
  6300. cur = build_norm(cur,
  6301. model.output_norm, model.output_norm_b,
  6302. LLM_NORM, -1);
  6303. cb(cur, "result_norm", -1);
  6304. res->t_embd = cur;
  6305. // lm_head
  6306. cur = build_lora_mm(model.output, cur);
  6307. cb(cur, "result_output", -1);
  6308. res->t_logits = cur;
  6309. ggml_build_forward_expand(gf, cur);
  6310. }
  6311. };
  6312. struct llm_build_internlm2 : public llm_graph_context {
  6313. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6314. const int64_t n_embd_head = hparams.n_embd_head_v;
  6315. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6316. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6317. ggml_tensor * cur;
  6318. ggml_tensor * inpL;
  6319. inpL = build_inp_embd(model.tok_embd);
  6320. // inp_pos - contains the positions
  6321. ggml_tensor * inp_pos = build_inp_pos();
  6322. auto * inp_attn = build_attn_inp_kv_unified();
  6323. for (int il = 0; il < n_layer; ++il) {
  6324. ggml_tensor * inpSA = inpL;
  6325. // norm
  6326. cur = build_norm(inpL,
  6327. model.layers[il].attn_norm, NULL,
  6328. LLM_NORM_RMS, il);
  6329. cb(cur, "attn_norm", il);
  6330. // self-attention
  6331. {
  6332. // compute Q and K and RoPE them
  6333. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6334. cb(Qcur, "Qcur", il);
  6335. if (model.layers[il].bq) {
  6336. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6337. cb(Qcur, "Qcur", il);
  6338. }
  6339. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6340. cb(Kcur, "Kcur", il);
  6341. if (model.layers[il].bk) {
  6342. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6343. cb(Kcur, "Kcur", il);
  6344. }
  6345. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6346. cb(Vcur, "Vcur", il);
  6347. if (model.layers[il].bv) {
  6348. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6349. cb(Vcur, "Vcur", il);
  6350. }
  6351. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6352. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6353. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6354. Qcur = ggml_rope_ext(
  6355. ctx0, Qcur, inp_pos, nullptr,
  6356. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6357. ext_factor, attn_factor, beta_fast, beta_slow
  6358. );
  6359. Kcur = ggml_rope_ext(
  6360. ctx0, Kcur, inp_pos, nullptr,
  6361. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6362. ext_factor, attn_factor, beta_fast, beta_slow
  6363. );
  6364. cb(Qcur, "Qcur", il);
  6365. cb(Kcur, "Kcur", il);
  6366. cb(Vcur, "Vcur", il);
  6367. cur = build_attn(inp_attn, gf,
  6368. model.layers[il].wo, model.layers[il].bo,
  6369. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6370. }
  6371. if (il == n_layer - 1) {
  6372. // skip computing output for unused tokens
  6373. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6374. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6375. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6376. }
  6377. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6378. cb(ffn_inp, "ffn_inp", il);
  6379. // feed-forward network
  6380. cur = build_norm(ffn_inp,
  6381. model.layers[il].ffn_norm, NULL,
  6382. LLM_NORM_RMS, il);
  6383. cb(cur, "ffn_norm", il);
  6384. cur = build_ffn(cur,
  6385. model.layers[il].ffn_up, NULL, NULL,
  6386. model.layers[il].ffn_gate, NULL, NULL,
  6387. model.layers[il].ffn_down, NULL, NULL,
  6388. NULL,
  6389. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6390. cb(cur, "ffn_out", il);
  6391. cur = ggml_add(ctx0, cur, ffn_inp);
  6392. cur = build_cvec(cur, il);
  6393. cb(cur, "l_out", il);
  6394. // input for next layer
  6395. inpL = cur;
  6396. }
  6397. cur = inpL;
  6398. cur = build_norm(cur,
  6399. model.output_norm, NULL,
  6400. LLM_NORM_RMS, -1);
  6401. cb(cur, "result_norm", -1);
  6402. res->t_embd = cur;
  6403. // lm_head
  6404. cur = build_lora_mm(model.output, cur);
  6405. cb(cur, "result_output", -1);
  6406. res->t_logits = cur;
  6407. ggml_build_forward_expand(gf, cur);
  6408. }
  6409. };
  6410. struct llm_build_minicpm3 : public llm_graph_context {
  6411. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6412. //TODO: if the model varies, these parameters need to be read from the model
  6413. const int64_t n_embd_base = 256;
  6414. const float scale_embd = 12.0f;
  6415. const float scale_depth = 1.4f;
  6416. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6417. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6418. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6419. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6420. ggml_tensor * cur;
  6421. ggml_tensor * inpL;
  6422. inpL = build_inp_embd(model.tok_embd);
  6423. // scale the input embeddings
  6424. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6425. cb(inpL, "inp_scaled", -1);
  6426. // inp_pos - contains the positions
  6427. ggml_tensor * inp_pos = build_inp_pos();
  6428. auto * inp_attn = build_attn_inp_kv_unified();
  6429. for (int il = 0; il < n_layer; ++il) {
  6430. ggml_tensor * inpSA = inpL;
  6431. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  6432. // norm
  6433. cur = build_norm(inpL,
  6434. model.layers[il].attn_norm, NULL,
  6435. LLM_NORM_RMS, il);
  6436. cb(cur, "attn_norm", il);
  6437. // self_attention
  6438. {
  6439. ggml_tensor * q = NULL;
  6440. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6441. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6442. cb(q, "q", il);
  6443. q = build_norm(q,
  6444. model.layers[il].attn_q_a_norm, NULL,
  6445. LLM_NORM_RMS, il);
  6446. cb(q, "q", il);
  6447. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6448. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6449. cb(q, "q", il);
  6450. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6451. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6452. ggml_row_size(q->type, hparams.n_embd_head_k),
  6453. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6454. 0);
  6455. cb(q_nope, "q_nope", il);
  6456. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6457. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6458. ggml_row_size(q->type, hparams.n_embd_head_k),
  6459. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6460. ggml_row_size(q->type, n_embd_head_qk_nope));
  6461. cb(q_pe, "q_pe", il);
  6462. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6463. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6464. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6465. // split into {kv_lora_rank, n_tokens}
  6466. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6467. kv_pe_compresseed->nb[1],
  6468. 0);
  6469. cb(kv_compressed, "kv_compressed", il);
  6470. // and {n_embd_head_qk_rope, n_tokens}
  6471. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6472. kv_pe_compresseed->nb[1],
  6473. kv_pe_compresseed->nb[1],
  6474. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6475. cb(k_pe, "k_pe", il);
  6476. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6477. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6478. kv_compressed = build_norm(kv_compressed,
  6479. model.layers[il].attn_kv_a_norm, NULL,
  6480. LLM_NORM_RMS, il);
  6481. cb(kv_compressed, "kv_compressed", il);
  6482. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6483. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6484. cb(kv, "kv", il);
  6485. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6486. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6487. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6488. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6489. 0);
  6490. cb(k_nope, "k_nope", il);
  6491. // and {n_head * n_embd_head_v, n_tokens}
  6492. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6493. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6494. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6495. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6496. cb(v_states, "v_states", il);
  6497. v_states = ggml_cont(ctx0, v_states);
  6498. cb(v_states, "v_states", il);
  6499. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6500. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6501. 0);
  6502. cb(v_states, "v_states", il);
  6503. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6504. q_pe = ggml_rope_ext(
  6505. ctx0, q_pe, inp_pos, rope_factors,
  6506. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6507. ext_factor, attn_factor, beta_fast, beta_slow
  6508. );
  6509. cb(q_pe, "q_pe", il);
  6510. // shared RoPE key
  6511. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6512. k_pe = ggml_rope_ext(
  6513. ctx0, k_pe, inp_pos, rope_factors,
  6514. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6515. ext_factor, attn_factor, beta_fast, beta_slow
  6516. );
  6517. cb(k_pe, "k_pe", il);
  6518. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6519. cb(q_states, "q_states", il);
  6520. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6521. cb(k_states, "k_states", il);
  6522. cur = build_attn(inp_attn, gf,
  6523. model.layers[il].wo, NULL,
  6524. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6525. }
  6526. if (il == n_layer - 1) {
  6527. // skip computing output for unused tokens
  6528. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6529. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6530. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6531. }
  6532. // scale_res - scale the hidden states for residual connection
  6533. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6534. cur = ggml_scale(ctx0, cur, scale_res);
  6535. cb(cur, "hidden_scaled", il);
  6536. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6537. cb(ffn_inp, "ffn_inp", il);
  6538. // feed-forward network
  6539. {
  6540. cur = build_norm(ffn_inp,
  6541. model.layers[il].ffn_norm, NULL,
  6542. LLM_NORM_RMS, il);
  6543. cb(cur, "ffn_norm", il);
  6544. cur = build_ffn(cur,
  6545. model.layers[il].ffn_up, NULL, NULL,
  6546. model.layers[il].ffn_gate, NULL, NULL,
  6547. model.layers[il].ffn_down, NULL, NULL,
  6548. NULL,
  6549. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6550. cb(cur, "ffn_out", il);
  6551. }
  6552. // scale the hidden states for residual connection
  6553. cur = ggml_scale(ctx0, cur, scale_res);
  6554. cb(cur, "hidden_scaled_ffn", il);
  6555. cur = ggml_add(ctx0, cur, ffn_inp);
  6556. cur = build_cvec(cur, il);
  6557. cb(cur, "l_out", il);
  6558. // input for next layer
  6559. inpL = cur;
  6560. }
  6561. cur = inpL;
  6562. cur = build_norm(cur,
  6563. model.output_norm, NULL,
  6564. LLM_NORM_RMS, -1);
  6565. cb(cur, "result_norm", -1);
  6566. res->t_embd = cur;
  6567. // lm_head scaling
  6568. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6569. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6570. cb(cur, "lmhead_scaling", -1);
  6571. // lm_head
  6572. cur = build_lora_mm(model.output, cur);
  6573. cb(cur, "result_output", -1);
  6574. res->t_logits = cur;
  6575. ggml_build_forward_expand(gf, cur);
  6576. }
  6577. };
  6578. struct llm_build_gemma : public llm_graph_context {
  6579. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6580. const int64_t n_embd_head = hparams.n_embd_head_v;
  6581. ggml_tensor * cur;
  6582. ggml_tensor * inpL;
  6583. inpL = build_inp_embd(model.tok_embd);
  6584. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6585. cb(inpL, "inp_scaled", -1);
  6586. // inp_pos - contains the positions
  6587. ggml_tensor * inp_pos = build_inp_pos();
  6588. auto * inp_attn = build_attn_inp_kv_unified();
  6589. for (int il = 0; il < n_layer; ++il) {
  6590. // norm
  6591. cur = build_norm(inpL,
  6592. model.layers[il].attn_norm, NULL,
  6593. LLM_NORM_RMS, il);
  6594. cb(cur, "attn_norm", il);
  6595. // self-attention
  6596. {
  6597. // compute Q and K and RoPE them
  6598. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6599. cb(Qcur, "Qcur", il);
  6600. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6601. cb(Kcur, "Kcur", il);
  6602. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6603. cb(Vcur, "Vcur", il);
  6604. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6605. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6606. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6607. Qcur = ggml_rope_ext(
  6608. ctx0, Qcur, inp_pos, nullptr,
  6609. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6610. ext_factor, attn_factor, beta_fast, beta_slow);
  6611. Kcur = ggml_rope_ext(
  6612. ctx0, Kcur, inp_pos, nullptr,
  6613. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6614. ext_factor, attn_factor, beta_fast, beta_slow);
  6615. cb(Qcur, "Qcur", il);
  6616. cb(Kcur, "Kcur", il);
  6617. cb(Vcur, "Vcur", il);
  6618. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6619. cb(Qcur, "Qcur_scaled", il);
  6620. cur = build_attn(inp_attn, gf,
  6621. model.layers[il].wo, NULL,
  6622. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6623. }
  6624. if (il == n_layer - 1) {
  6625. // skip computing output for unused tokens
  6626. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6627. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6628. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6629. }
  6630. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6631. cb(sa_out, "sa_out", il);
  6632. cur = build_norm(sa_out,
  6633. model.layers[il].ffn_norm, NULL,
  6634. LLM_NORM_RMS, il);
  6635. cb(cur, "ffn_norm", il);
  6636. // feed-forward network
  6637. {
  6638. cur = build_ffn(cur,
  6639. model.layers[il].ffn_up, NULL, NULL,
  6640. model.layers[il].ffn_gate, NULL, NULL,
  6641. model.layers[il].ffn_down, NULL, NULL,
  6642. NULL,
  6643. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6644. cb(cur, "ffn_out", il);
  6645. }
  6646. cur = ggml_add(ctx0, cur, sa_out);
  6647. cur = build_cvec(cur, il);
  6648. cb(cur, "l_out", il);
  6649. // input for next layer
  6650. inpL = cur;
  6651. }
  6652. cur = inpL;
  6653. cur = build_norm(cur,
  6654. model.output_norm, NULL,
  6655. LLM_NORM_RMS, -1);
  6656. cb(cur, "result_norm", -1);
  6657. res->t_embd = cur;
  6658. // lm_head
  6659. cur = build_lora_mm(model.output, cur);
  6660. cb(cur, "result_output", -1);
  6661. res->t_logits = cur;
  6662. ggml_build_forward_expand(gf, cur);
  6663. }
  6664. };
  6665. struct llm_build_gemma2 : public llm_graph_context {
  6666. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6667. const int64_t n_embd_head = hparams.n_embd_head_k;
  6668. ggml_tensor * cur;
  6669. ggml_tensor * inpL;
  6670. inpL = build_inp_embd(model.tok_embd);
  6671. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6672. cb(inpL, "inp_scaled", -1);
  6673. // inp_pos - contains the positions
  6674. ggml_tensor * inp_pos = build_inp_pos();
  6675. auto * inp_attn = build_attn_inp_kv_unified();
  6676. for (int il = 0; il < n_layer; ++il) {
  6677. // norm
  6678. cur = build_norm(inpL,
  6679. model.layers[il].attn_norm, NULL,
  6680. LLM_NORM_RMS, il);
  6681. cb(cur, "attn_norm", il);
  6682. // self-attention
  6683. {
  6684. // compute Q and K and RoPE them
  6685. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6686. cb(Qcur, "Qcur", il);
  6687. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6688. cb(Kcur, "Kcur", il);
  6689. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6690. cb(Vcur, "Vcur", il);
  6691. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6692. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6693. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6694. Qcur = ggml_rope_ext(
  6695. ctx0, Qcur, inp_pos, nullptr,
  6696. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6697. ext_factor, attn_factor, beta_fast, beta_slow);
  6698. Kcur = ggml_rope_ext(
  6699. ctx0, Kcur, inp_pos, nullptr,
  6700. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6701. ext_factor, attn_factor, beta_fast, beta_slow);
  6702. cb(Qcur, "Qcur", il);
  6703. cb(Kcur, "Kcur", il);
  6704. cb(Vcur, "Vcur", il);
  6705. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6706. switch (model.type) {
  6707. case LLM_TYPE_2B:
  6708. case LLM_TYPE_9B:
  6709. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6710. default: GGML_ABORT("fatal error");
  6711. };
  6712. cb(Qcur, "Qcur_scaled", il);
  6713. cur = build_attn(inp_attn, gf,
  6714. model.layers[il].wo, NULL,
  6715. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6716. }
  6717. cur = build_norm(cur,
  6718. model.layers[il].attn_post_norm, NULL,
  6719. LLM_NORM_RMS, il);
  6720. cb(cur, "attn_post_norm", il);
  6721. if (il == n_layer - 1) {
  6722. // skip computing output for unused tokens
  6723. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6724. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6725. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6726. }
  6727. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6728. cb(sa_out, "sa_out", il);
  6729. cur = build_norm(sa_out,
  6730. model.layers[il].ffn_norm, NULL,
  6731. LLM_NORM_RMS, il);
  6732. cb(cur, "ffn_norm", il);
  6733. // feed-forward network
  6734. {
  6735. cur = build_ffn(cur,
  6736. model.layers[il].ffn_up, NULL, NULL,
  6737. model.layers[il].ffn_gate, NULL, NULL,
  6738. model.layers[il].ffn_down, NULL, NULL,
  6739. NULL,
  6740. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6741. cb(cur, "ffn_out", il);
  6742. }
  6743. cur = build_norm(cur,
  6744. model.layers[il].ffn_post_norm, NULL,
  6745. LLM_NORM_RMS, -1);
  6746. cb(cur, "ffn_post_norm", -1);
  6747. cur = ggml_add(ctx0, cur, sa_out);
  6748. cur = build_cvec(cur, il);
  6749. cb(cur, "l_out", il);
  6750. // input for next layer
  6751. inpL = cur;
  6752. }
  6753. cur = inpL;
  6754. cur = build_norm(cur,
  6755. model.output_norm, NULL,
  6756. LLM_NORM_RMS, -1);
  6757. cb(cur, "result_norm", -1);
  6758. res->t_embd = cur;
  6759. // lm_head
  6760. cur = build_lora_mm(model.output, cur);
  6761. // final logit soft-capping
  6762. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6763. cur = ggml_tanh(ctx0, cur);
  6764. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6765. cb(cur, "result_output", -1);
  6766. res->t_logits = cur;
  6767. ggml_build_forward_expand(gf, cur);
  6768. }
  6769. };
  6770. struct llm_build_gemma3 : public llm_graph_context {
  6771. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6772. const int64_t n_embd_head = hparams.n_embd_head_k;
  6773. ggml_tensor * cur;
  6774. ggml_tensor * inpL;
  6775. inpL = build_inp_embd(model.tok_embd);
  6776. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6777. if (ubatch.token) {
  6778. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6779. cb(inpL, "inp_scaled", -1);
  6780. }
  6781. // inp_pos - contains the positions
  6782. ggml_tensor * inp_pos = build_inp_pos();
  6783. // TODO: is causal == true correct? might need some changes
  6784. auto * inp_attn = build_attn_inp_kv_unified();
  6785. for (int il = 0; il < n_layer; ++il) {
  6786. const bool is_swa = hparams.is_swa(il);
  6787. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6788. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6789. // norm
  6790. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6791. cb(cur, "attn_norm", il);
  6792. // self-attention
  6793. {
  6794. // compute Q and K and RoPE them
  6795. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6796. cb(Qcur, "Qcur", il);
  6797. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6798. cb(Kcur, "Kcur", il);
  6799. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6800. cb(Vcur, "Vcur", il);
  6801. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6802. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6803. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6804. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6805. cb(Qcur, "Qcur_normed", il);
  6806. Qcur = ggml_rope_ext(
  6807. ctx0, Qcur, inp_pos, nullptr,
  6808. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6809. ext_factor, attn_factor, beta_fast, beta_slow);
  6810. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6811. cb(Kcur, "Kcur_normed", il);
  6812. Kcur = ggml_rope_ext(
  6813. ctx0, Kcur, inp_pos, nullptr,
  6814. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6815. ext_factor, attn_factor, beta_fast, beta_slow);
  6816. cb(Qcur, "Qcur", il);
  6817. cb(Kcur, "Kcur", il);
  6818. cb(Vcur, "Vcur", il);
  6819. cur = build_attn(inp_attn, gf,
  6820. model.layers[il].wo, NULL,
  6821. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6822. }
  6823. cur = build_norm(cur,
  6824. model.layers[il].attn_post_norm, NULL,
  6825. LLM_NORM_RMS, il);
  6826. cb(cur, "attn_post_norm", il);
  6827. if (il == n_layer - 1) {
  6828. // skip computing output for unused tokens
  6829. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6830. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6831. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6832. }
  6833. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6834. cb(sa_out, "sa_out", il);
  6835. cur = build_norm(sa_out,
  6836. model.layers[il].ffn_norm, NULL,
  6837. LLM_NORM_RMS, il);
  6838. cb(cur, "ffn_norm", il);
  6839. // feed-forward network
  6840. {
  6841. cur = build_ffn(cur,
  6842. model.layers[il].ffn_up, NULL, NULL,
  6843. model.layers[il].ffn_gate, NULL, NULL,
  6844. model.layers[il].ffn_down, NULL, NULL,
  6845. NULL,
  6846. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6847. cb(cur, "ffn_out", il);
  6848. }
  6849. cur = build_norm(cur,
  6850. model.layers[il].ffn_post_norm, NULL,
  6851. LLM_NORM_RMS, -1);
  6852. cb(cur, "ffn_post_norm", -1);
  6853. cur = ggml_add(ctx0, cur, sa_out);
  6854. cur = build_cvec(cur, il);
  6855. cb(cur, "l_out", il);
  6856. // input for next layer
  6857. inpL = cur;
  6858. }
  6859. cur = inpL;
  6860. cur = build_norm(cur,
  6861. model.output_norm, NULL,
  6862. LLM_NORM_RMS, -1);
  6863. cb(cur, "result_norm", -1);
  6864. res->t_embd = cur;
  6865. // lm_head
  6866. cur = build_lora_mm(model.output, cur);
  6867. cb(cur, "result_output", -1);
  6868. res->t_logits = cur;
  6869. ggml_build_forward_expand(gf, cur);
  6870. }
  6871. };
  6872. // TODO: move up next to build_starcoder
  6873. struct llm_build_starcoder2 : public llm_graph_context {
  6874. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6875. const int64_t n_embd_head = hparams.n_embd_head_v;
  6876. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6877. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6878. ggml_tensor * cur;
  6879. ggml_tensor * inpL;
  6880. inpL = build_inp_embd(model.tok_embd);
  6881. // inp_pos - contains the positions
  6882. ggml_tensor * inp_pos = build_inp_pos();
  6883. auto * inp_attn = build_attn_inp_kv_unified();
  6884. for (int il = 0; il < n_layer; ++il) {
  6885. ggml_tensor * inpSA = inpL;
  6886. // norm
  6887. cur = build_norm(inpL,
  6888. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6889. LLM_NORM, il);
  6890. cb(cur, "attn_norm", il);
  6891. // self-attention
  6892. {
  6893. // compute Q and K and RoPE them
  6894. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6895. cb(Qcur, "Qcur", il);
  6896. if (model.layers[il].bq) {
  6897. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6898. cb(Qcur, "Qcur", il);
  6899. }
  6900. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6901. cb(Kcur, "Kcur", il);
  6902. if (model.layers[il].bk) {
  6903. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6904. cb(Kcur, "Kcur", il);
  6905. }
  6906. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6907. cb(Vcur, "Vcur", il);
  6908. if (model.layers[il].bv) {
  6909. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6910. cb(Vcur, "Vcur", il);
  6911. }
  6912. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6913. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6914. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6915. Qcur = ggml_rope_ext(
  6916. ctx0, Qcur, inp_pos, nullptr,
  6917. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6918. ext_factor, attn_factor, beta_fast, beta_slow
  6919. );
  6920. Kcur = ggml_rope_ext(
  6921. ctx0, Kcur, inp_pos, nullptr,
  6922. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6923. ext_factor, attn_factor, beta_fast, beta_slow
  6924. );
  6925. cb(Qcur, "Qcur", il);
  6926. cb(Kcur, "Kcur", il);
  6927. cb(Vcur, "Vcur", il);
  6928. cur = build_attn(inp_attn, gf,
  6929. model.layers[il].wo, model.layers[il].bo,
  6930. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6931. }
  6932. if (il == n_layer - 1) {
  6933. // skip computing output for unused tokens
  6934. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6935. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6936. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6937. }
  6938. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6939. cb(ffn_inp, "ffn_inp", il);
  6940. // feed-forward network
  6941. cur = build_norm(ffn_inp,
  6942. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6943. LLM_NORM, il);
  6944. cb(cur, "ffn_norm", il);
  6945. cur = build_ffn(cur,
  6946. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6947. NULL, NULL, NULL,
  6948. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6949. NULL,
  6950. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6951. cb(cur, "ffn_out", il);
  6952. cur = ggml_add(ctx0, cur, ffn_inp);
  6953. cur = build_cvec(cur, il);
  6954. cb(cur, "l_out", il);
  6955. // input for next layer
  6956. inpL = cur;
  6957. }
  6958. cur = inpL;
  6959. cur = build_norm(cur,
  6960. model.output_norm, model.output_norm_b,
  6961. LLM_NORM, -1);
  6962. cb(cur, "result_norm", -1);
  6963. res->t_embd = cur;
  6964. // lm_head
  6965. cur = build_lora_mm(model.output, cur);
  6966. cb(cur, "result_output", -1);
  6967. res->t_logits = cur;
  6968. ggml_build_forward_expand(gf, cur);
  6969. }
  6970. };
  6971. struct llm_build_mamba : public llm_graph_context {
  6972. const llama_model & model;
  6973. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6974. ggml_tensor * cur;
  6975. ggml_tensor * inpL;
  6976. // {n_embd, n_tokens}
  6977. inpL = build_inp_embd(model.tok_embd);
  6978. ggml_tensor * state_copy = build_inp_s_copy();
  6979. ggml_tensor * state_mask = build_inp_s_mask();
  6980. for (int il = 0; il < n_layer; ++il) {
  6981. // norm
  6982. cur = build_norm(inpL,
  6983. model.layers[il].attn_norm, NULL,
  6984. LLM_NORM_RMS, il);
  6985. cb(cur, "attn_norm", il);
  6986. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6987. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6988. if (il == n_layer - 1) {
  6989. // skip computing output for unused tokens
  6990. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6991. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6992. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6993. }
  6994. // residual
  6995. cur = ggml_add(ctx0, cur, inpL);
  6996. cur = build_cvec(cur, il);
  6997. cb(cur, "l_out", il);
  6998. // input for next layer
  6999. inpL = cur;
  7000. }
  7001. // final rmsnorm
  7002. cur = build_norm(inpL,
  7003. model.output_norm, NULL,
  7004. LLM_NORM_RMS, -1);
  7005. cb(cur, "result_norm", -1);
  7006. res->t_embd = cur;
  7007. // lm_head
  7008. cur = build_lora_mm(model.output, cur);
  7009. cb(cur, "result_output", -1);
  7010. res->t_logits = cur;
  7011. ggml_build_forward_expand(gf, cur);
  7012. }
  7013. // TODO: split
  7014. ggml_tensor * build_mamba_layer(
  7015. ggml_cgraph * gf,
  7016. ggml_tensor * cur,
  7017. ggml_tensor * state_copy,
  7018. ggml_tensor * state_mask,
  7019. const llama_ubatch & ubatch,
  7020. int il) const {
  7021. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  7022. const auto kv_head = kv_self->head;
  7023. const int64_t d_conv = hparams.ssm_d_conv;
  7024. const int64_t d_inner = hparams.ssm_d_inner;
  7025. const int64_t d_state = hparams.ssm_d_state;
  7026. const int64_t dt_rank = hparams.ssm_dt_rank;
  7027. const int64_t n_seqs = ubatch.n_seqs;
  7028. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7029. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7030. // Use the same RMS norm as the final layer norm
  7031. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7032. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7033. GGML_ASSERT(n_seqs != 0);
  7034. GGML_ASSERT(ubatch.equal_seqs);
  7035. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7036. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7037. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7038. // (ab)using the KV cache to store the states
  7039. ggml_tensor * conv = build_copy_mask_state(
  7040. gf, conv_states_all, state_copy, state_mask,
  7041. hparams.n_embd_k_s(), n_seqs);
  7042. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7043. ggml_tensor * ssm = build_copy_mask_state(
  7044. gf, ssm_states_all, state_copy, state_mask,
  7045. hparams.n_embd_v_s(), n_seqs);
  7046. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7047. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7048. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7049. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7050. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7051. // split the above in two
  7052. // => {d_inner, n_seq_tokens, n_seqs}
  7053. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7054. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7055. // conv
  7056. {
  7057. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7058. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7059. // copy last (d_conv - 1) columns back into the state cache
  7060. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7061. ggml_build_forward_expand(gf,
  7062. ggml_cpy(ctx0, last_conv,
  7063. ggml_view_1d(ctx0, conv_states_all,
  7064. (d_conv - 1)*(d_inner)*(n_seqs),
  7065. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7066. // 1D convolution
  7067. // The equivalent is to make a self-overlapping view of conv_x
  7068. // over d_conv columns at each stride in the 3rd dimension,
  7069. // then element-wise multiply that with the conv1d weight,
  7070. // then sum the elements of each row,
  7071. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7072. // then permute away the ne[0] dimension,
  7073. // and then you're left with the resulting x tensor.
  7074. // For simultaneous sequences, all sequences need to have the same length.
  7075. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7076. // bias
  7077. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7078. x = ggml_silu(ctx0, x);
  7079. }
  7080. // ssm
  7081. {
  7082. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7083. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7084. // split
  7085. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7086. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7087. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7088. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7089. if (ssm_dt_b_c_rms) {
  7090. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7091. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7092. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7093. }
  7094. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7095. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7096. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7097. // Custom operator to optimize the parallel associative scan
  7098. // as described in the Annex D of the Mamba paper.
  7099. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7100. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7101. // store last states
  7102. ggml_build_forward_expand(gf,
  7103. ggml_cpy(ctx0,
  7104. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7105. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7106. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7107. // TODO: skip computing output earlier for unused tokens
  7108. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7109. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7110. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7111. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7112. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7113. }
  7114. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7115. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7116. //cb(cur, "mamba_out", il);
  7117. return cur;
  7118. }
  7119. };
  7120. struct llm_build_command_r : public llm_graph_context {
  7121. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7122. const int64_t n_embd_head = hparams.n_embd_head_v;
  7123. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7124. const float f_logit_scale = hparams.f_logit_scale;
  7125. ggml_tensor * cur;
  7126. ggml_tensor * inpL;
  7127. inpL = build_inp_embd(model.tok_embd);
  7128. // inp_pos - contains the positions
  7129. ggml_tensor * inp_pos = build_inp_pos();
  7130. auto * inp_attn = build_attn_inp_kv_unified();
  7131. for (int il = 0; il < n_layer; ++il) {
  7132. // norm
  7133. cur = build_norm(inpL,
  7134. model.layers[il].attn_norm, NULL,
  7135. LLM_NORM, il);
  7136. cb(cur, "attn_norm", il);
  7137. ggml_tensor * ffn_inp = cur;
  7138. // self-attention
  7139. {
  7140. // compute Q and K and RoPE them
  7141. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7142. cb(Qcur, "Qcur", il);
  7143. if (model.layers[il].bq) {
  7144. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7145. cb(Qcur, "Qcur", il);
  7146. }
  7147. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7148. cb(Kcur, "Kcur", il);
  7149. if (model.layers[il].bk) {
  7150. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7151. cb(Kcur, "Kcur", il);
  7152. }
  7153. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7154. cb(Vcur, "Vcur", il);
  7155. if (model.layers[il].bv) {
  7156. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7157. cb(Vcur, "Vcur", il);
  7158. }
  7159. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7160. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7161. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7162. if (model.layers[il].attn_q_norm) {
  7163. Qcur = build_norm(Qcur,
  7164. model.layers[il].attn_q_norm,
  7165. NULL,
  7166. LLM_NORM, il);
  7167. cb(Qcur, "Qcur", il);
  7168. }
  7169. Qcur = ggml_rope_ext(
  7170. ctx0, Qcur, inp_pos, nullptr,
  7171. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7172. ext_factor, attn_factor, beta_fast, beta_slow
  7173. );
  7174. if (model.layers[il].attn_k_norm) {
  7175. Kcur = build_norm(Kcur,
  7176. model.layers[il].attn_k_norm,
  7177. NULL,
  7178. LLM_NORM, il);
  7179. cb(Kcur, "Kcur", il);
  7180. }
  7181. Kcur = ggml_rope_ext(
  7182. ctx0, Kcur, inp_pos, nullptr,
  7183. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7184. ext_factor, attn_factor, beta_fast, beta_slow
  7185. );
  7186. cb(Qcur, "Qcur", il);
  7187. cb(Kcur, "Kcur", il);
  7188. cb(Vcur, "Vcur", il);
  7189. cur = build_attn(inp_attn, gf,
  7190. model.layers[il].wo, model.layers[il].bo,
  7191. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7192. }
  7193. if (il == n_layer - 1) {
  7194. // skip computing output for unused tokens
  7195. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7196. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7197. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7198. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7199. }
  7200. ggml_tensor * attn_out = cur;
  7201. // feed-forward network
  7202. {
  7203. cur = build_ffn(ffn_inp,
  7204. model.layers[il].ffn_up, NULL, NULL,
  7205. model.layers[il].ffn_gate, NULL, NULL,
  7206. model.layers[il].ffn_down, NULL, NULL,
  7207. NULL,
  7208. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7209. cb(cur, "ffn_out", il);
  7210. }
  7211. // add together residual + FFN + self-attention
  7212. cur = ggml_add(ctx0, cur, inpL);
  7213. cur = ggml_add(ctx0, cur, attn_out);
  7214. cur = build_cvec(cur, il);
  7215. cb(cur, "l_out", il);
  7216. // input for next layer
  7217. inpL = cur;
  7218. }
  7219. cur = inpL;
  7220. cur = build_norm(cur,
  7221. model.output_norm, NULL,
  7222. LLM_NORM, -1);
  7223. cb(cur, "result_norm", -1);
  7224. res->t_embd = cur;
  7225. // lm_head
  7226. cur = build_lora_mm(model.output, cur);
  7227. if (f_logit_scale) {
  7228. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7229. }
  7230. cb(cur, "result_output", -1);
  7231. res->t_logits = cur;
  7232. ggml_build_forward_expand(gf, cur);
  7233. }
  7234. };
  7235. struct llm_build_cohere2 : public llm_graph_context {
  7236. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7237. const int64_t n_embd_head = hparams.n_embd_head_v;
  7238. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7239. const float f_logit_scale = hparams.f_logit_scale;
  7240. ggml_tensor * cur;
  7241. ggml_tensor * inpL;
  7242. inpL = build_inp_embd(model.tok_embd);
  7243. // inp_pos - contains the positions
  7244. ggml_tensor * inp_pos = build_inp_pos();
  7245. auto * inp_attn = build_attn_inp_kv_unified();
  7246. for (int il = 0; il < n_layer; ++il) {
  7247. const bool is_swa = hparams.is_swa(il);
  7248. // norm
  7249. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7250. cb(cur, "attn_norm", il);
  7251. ggml_tensor * ffn_inp = cur;
  7252. // self-attention
  7253. {
  7254. // rope freq factors for 128k context
  7255. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7256. // compute Q and K and RoPE them
  7257. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7258. cb(Qcur, "Qcur", il);
  7259. if (model.layers[il].bq) {
  7260. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7261. cb(Qcur, "Qcur", il);
  7262. }
  7263. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7264. cb(Kcur, "Kcur", il);
  7265. if (model.layers[il].bk) {
  7266. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7267. cb(Kcur, "Kcur", il);
  7268. }
  7269. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7270. cb(Vcur, "Vcur", il);
  7271. if (model.layers[il].bv) {
  7272. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7273. cb(Vcur, "Vcur", il);
  7274. }
  7275. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7276. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7277. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7278. if (is_swa) {
  7279. Qcur = ggml_rope_ext(
  7280. ctx0, Qcur, inp_pos, rope_factors,
  7281. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7282. ext_factor, attn_factor, beta_fast, beta_slow
  7283. );
  7284. Kcur = ggml_rope_ext(
  7285. ctx0, Kcur, inp_pos, rope_factors,
  7286. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7287. ext_factor, attn_factor, beta_fast, beta_slow
  7288. );
  7289. }
  7290. cb(Qcur, "Qcur", il);
  7291. cb(Kcur, "Kcur", il);
  7292. cb(Vcur, "Vcur", il);
  7293. cur = build_attn(inp_attn, gf,
  7294. model.layers[il].wo, model.layers[il].bo,
  7295. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7296. }
  7297. if (il == n_layer - 1) {
  7298. // skip computing output for unused tokens
  7299. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7300. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7301. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7302. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7303. }
  7304. ggml_tensor * attn_out = cur;
  7305. // feed-forward network
  7306. {
  7307. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7308. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7309. il);
  7310. cb(cur, "ffn_out", il);
  7311. }
  7312. // add together residual + FFN + self-attention
  7313. cur = ggml_add(ctx0, cur, inpL);
  7314. cur = ggml_add(ctx0, cur, attn_out);
  7315. cur = build_cvec(cur, il);
  7316. cb(cur, "l_out", il);
  7317. // input for next layer
  7318. inpL = cur;
  7319. }
  7320. cur = inpL;
  7321. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7322. cb(cur, "result_norm", -1);
  7323. res->t_embd = cur;
  7324. // lm_head
  7325. cur = build_lora_mm(model.output, cur);
  7326. if (f_logit_scale) {
  7327. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7328. }
  7329. cb(cur, "result_output", -1);
  7330. res->t_logits = cur;
  7331. ggml_build_forward_expand(gf, cur);
  7332. }
  7333. };
  7334. // ref: https://allenai.org/olmo
  7335. // based on the original build_llama() function, changes:
  7336. // * non-parametric layer norm
  7337. // * clamp qkv
  7338. // * removed bias
  7339. // * removed MoE
  7340. struct llm_build_olmo : public llm_graph_context {
  7341. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7342. const int64_t n_embd_head = hparams.n_embd_head_v;
  7343. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7344. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7345. ggml_tensor * cur;
  7346. ggml_tensor * inpL;
  7347. inpL = build_inp_embd(model.tok_embd);
  7348. // inp_pos - contains the positions
  7349. ggml_tensor * inp_pos = build_inp_pos();
  7350. auto * inp_attn = build_attn_inp_kv_unified();
  7351. for (int il = 0; il < n_layer; ++il) {
  7352. ggml_tensor * inpSA = inpL;
  7353. // norm
  7354. cur = build_norm(inpL,
  7355. NULL, NULL,
  7356. LLM_NORM, il);
  7357. cb(cur, "attn_norm", il);
  7358. // self-attention
  7359. {
  7360. // compute Q and K and RoPE them
  7361. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7362. cb(Qcur, "Qcur", il);
  7363. if (hparams.f_clamp_kqv > 0.0f) {
  7364. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7365. cb(Qcur, "Qcur", il);
  7366. }
  7367. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7368. cb(Kcur, "Kcur", il);
  7369. if (hparams.f_clamp_kqv > 0.0f) {
  7370. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7371. cb(Kcur, "Kcur", il);
  7372. }
  7373. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7374. cb(Vcur, "Vcur", il);
  7375. if (hparams.f_clamp_kqv > 0.0f) {
  7376. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7377. cb(Vcur, "Vcur", il);
  7378. }
  7379. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7380. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7381. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7382. Qcur = ggml_rope_ext(
  7383. ctx0, Qcur, inp_pos, nullptr,
  7384. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7385. ext_factor, attn_factor, beta_fast, beta_slow
  7386. );
  7387. Kcur = ggml_rope_ext(
  7388. ctx0, Kcur, inp_pos, nullptr,
  7389. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7390. ext_factor, attn_factor, beta_fast, beta_slow
  7391. );
  7392. cb(Qcur, "Qcur", il);
  7393. cb(Kcur, "Kcur", il);
  7394. cb(Vcur, "Vcur", il);
  7395. cur = build_attn(inp_attn, gf,
  7396. model.layers[il].wo, nullptr,
  7397. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7398. }
  7399. if (il == n_layer - 1) {
  7400. // skip computing output for unused tokens
  7401. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7402. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7403. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7404. }
  7405. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7406. cb(ffn_inp, "ffn_inp", il);
  7407. // feed-forward network
  7408. cur = build_norm(ffn_inp,
  7409. NULL, NULL,
  7410. LLM_NORM, il);
  7411. cb(cur, "ffn_norm", il);
  7412. cur = build_ffn(cur,
  7413. model.layers[il].ffn_up, NULL, NULL,
  7414. model.layers[il].ffn_gate, NULL, NULL,
  7415. model.layers[il].ffn_down, NULL, NULL,
  7416. NULL,
  7417. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7418. cb(cur, "ffn_out", il);
  7419. cur = ggml_add(ctx0, cur, ffn_inp);
  7420. cb(cur, "ffn_out", il);
  7421. cur = build_cvec(cur, il);
  7422. cb(cur, "l_out", il);
  7423. // input for next layer
  7424. inpL = cur;
  7425. }
  7426. cur = inpL;
  7427. cur = build_norm(cur,
  7428. NULL, NULL,
  7429. LLM_NORM, -1);
  7430. cb(cur, "result_norm", -1);
  7431. res->t_embd = cur;
  7432. // lm_head
  7433. cur = build_lora_mm(model.output, cur);
  7434. cb(cur, "result_output", -1);
  7435. res->t_logits = cur;
  7436. ggml_build_forward_expand(gf, cur);
  7437. }
  7438. };
  7439. struct llm_build_olmo2 : public llm_graph_context {
  7440. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7441. const int64_t n_embd_head = hparams.n_embd_head_v;
  7442. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7443. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7444. ggml_tensor * cur;
  7445. ggml_tensor * inpL;
  7446. inpL = build_inp_embd(model.tok_embd);
  7447. // inp_pos - contains the positions
  7448. ggml_tensor * inp_pos = build_inp_pos();
  7449. auto * inp_attn = build_attn_inp_kv_unified();
  7450. for (int il = 0; il < n_layer; ++il) {
  7451. ggml_tensor * inpSA = inpL;
  7452. cur = inpL;
  7453. // self_attention
  7454. {
  7455. // compute Q and K and RoPE them
  7456. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7457. cb(Qcur, "Qcur", il);
  7458. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7459. cb(Kcur, "Kcur", il);
  7460. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7461. cb(Vcur, "Vcur", il);
  7462. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7463. LLM_NORM_RMS, il);
  7464. cb(Qcur, "Qcur_normed", il);
  7465. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7466. LLM_NORM_RMS, il);
  7467. cb(Kcur, "Kcur_normed", il);
  7468. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7469. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7470. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7471. Qcur = ggml_rope_ext(
  7472. ctx0, Qcur, inp_pos, nullptr,
  7473. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7474. ext_factor, attn_factor, beta_fast, beta_slow
  7475. );
  7476. Kcur = ggml_rope_ext(
  7477. ctx0, Kcur, inp_pos, nullptr,
  7478. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7479. ext_factor, attn_factor, beta_fast, beta_slow
  7480. );
  7481. cb(Qcur, "Qcur", il);
  7482. cb(Kcur, "Kcur", il);
  7483. cb(Vcur, "Vcur", il);
  7484. cur = build_attn(inp_attn, gf,
  7485. model.layers[il].wo, NULL,
  7486. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7487. }
  7488. cur = build_norm(cur,
  7489. model.layers[il].attn_post_norm, NULL,
  7490. LLM_NORM_RMS, il);
  7491. cb(cur, "attn_post_norm", il);
  7492. if (il == n_layer - 1) {
  7493. // skip computing output for unused tokens
  7494. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7495. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7496. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7497. }
  7498. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7499. cb(ffn_inp, "ffn_inp", il);
  7500. // feed-forward network
  7501. cur = build_ffn(ffn_inp,
  7502. model.layers[il].ffn_up, NULL, NULL,
  7503. model.layers[il].ffn_gate, NULL, NULL,
  7504. model.layers[il].ffn_down, NULL, NULL,
  7505. NULL,
  7506. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7507. cb(cur, "ffn_out", il);
  7508. cur = build_norm(cur,
  7509. model.layers[il].ffn_post_norm, NULL,
  7510. LLM_NORM_RMS, -1);
  7511. cb(cur, "ffn_post_norm", -1);
  7512. cur = ggml_add(ctx0, cur, ffn_inp);
  7513. cb(cur, "ffn_out", il);
  7514. cur = build_cvec(cur, il);
  7515. cb(cur, "l_out", il);
  7516. // input for next layer
  7517. inpL = cur;
  7518. }
  7519. cur = inpL;
  7520. cur = build_norm(cur,
  7521. model.output_norm, NULL,
  7522. LLM_NORM_RMS, -1);
  7523. cb(cur, "result_norm", -1);
  7524. res->t_embd = cur;
  7525. // lm_head
  7526. cur = build_lora_mm(model.output, cur);
  7527. cb(cur, "result_output", -1);
  7528. res->t_logits = cur;
  7529. ggml_build_forward_expand(gf, cur);
  7530. }
  7531. };
  7532. // based on the build_qwen2moe() function, changes:
  7533. // * removed shared experts
  7534. // * removed bias
  7535. // * added q, k norm
  7536. struct llm_build_olmoe : public llm_graph_context {
  7537. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7538. const int64_t n_embd_head = hparams.n_embd_head_v;
  7539. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7540. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7541. ggml_tensor * cur;
  7542. ggml_tensor * inpL;
  7543. inpL = build_inp_embd(model.tok_embd);
  7544. // inp_pos - contains the positions
  7545. ggml_tensor * inp_pos = build_inp_pos();
  7546. auto * inp_attn = build_attn_inp_kv_unified();
  7547. for (int il = 0; il < n_layer; ++il) {
  7548. ggml_tensor * inpSA = inpL;
  7549. // norm
  7550. cur = build_norm(inpL,
  7551. model.layers[il].attn_norm, NULL,
  7552. LLM_NORM_RMS, il);
  7553. cb(cur, "attn_norm", il);
  7554. // self_attention
  7555. {
  7556. // compute Q and K and RoPE them
  7557. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7558. cb(Qcur, "Qcur", il);
  7559. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7560. cb(Kcur, "Kcur", il);
  7561. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7562. cb(Vcur, "Vcur", il);
  7563. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7564. LLM_NORM_RMS, il);
  7565. cb(Qcur, "Qcur_normed", il);
  7566. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7567. LLM_NORM_RMS, il);
  7568. cb(Kcur, "Kcur_normed", il);
  7569. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7570. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7571. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7572. Qcur = ggml_rope_ext(
  7573. ctx0, Qcur, inp_pos, nullptr,
  7574. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7575. ext_factor, attn_factor, beta_fast, beta_slow
  7576. );
  7577. Kcur = ggml_rope_ext(
  7578. ctx0, Kcur, inp_pos, nullptr,
  7579. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7580. ext_factor, attn_factor, beta_fast, beta_slow
  7581. );
  7582. cb(Qcur, "Qcur", il);
  7583. cb(Kcur, "Kcur", il);
  7584. cb(Vcur, "Vcur", il);
  7585. cur = build_attn(inp_attn, gf,
  7586. model.layers[il].wo, NULL,
  7587. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7588. }
  7589. if (il == n_layer - 1) {
  7590. // skip computing output for unused tokens
  7591. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7592. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7593. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7594. }
  7595. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7596. cb(ffn_inp, "ffn_inp", il);
  7597. // MoE branch
  7598. cur = build_norm(ffn_inp,
  7599. model.layers[il].ffn_norm, NULL,
  7600. LLM_NORM_RMS, il);
  7601. cb(cur, "ffn_norm", il);
  7602. cur = build_moe_ffn(cur,
  7603. model.layers[il].ffn_gate_inp,
  7604. model.layers[il].ffn_up_exps,
  7605. model.layers[il].ffn_gate_exps,
  7606. model.layers[il].ffn_down_exps,
  7607. nullptr,
  7608. n_expert, n_expert_used,
  7609. LLM_FFN_SILU, false,
  7610. false, 0.0,
  7611. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7612. il);
  7613. cb(cur, "ffn_moe_out", il);
  7614. cur = ggml_add(ctx0, cur, ffn_inp);
  7615. cur = build_cvec(cur, il);
  7616. cb(cur, "l_out", il);
  7617. // input for next layer
  7618. inpL = cur;
  7619. }
  7620. cur = inpL;
  7621. cur = build_norm(cur,
  7622. model.output_norm, NULL,
  7623. LLM_NORM_RMS, -1);
  7624. cb(cur, "result_norm", -1);
  7625. res->t_embd = cur;
  7626. // lm_head
  7627. cur = build_lora_mm(model.output, cur);
  7628. cb(cur, "result_output", -1);
  7629. res->t_logits = cur;
  7630. ggml_build_forward_expand(gf, cur);
  7631. }
  7632. };
  7633. struct llm_build_openelm : public llm_graph_context {
  7634. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7635. const int64_t n_embd_head = hparams.n_embd_head_v;
  7636. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7637. ggml_tensor * cur;
  7638. ggml_tensor * inpL;
  7639. inpL = build_inp_embd(model.tok_embd);
  7640. // inp_pos - contains the positions
  7641. ggml_tensor * inp_pos = build_inp_pos();
  7642. auto * inp_attn = build_attn_inp_kv_unified();
  7643. for (int il = 0; il < n_layer; ++il) {
  7644. const int64_t n_head = hparams.n_head(il);
  7645. const int64_t n_head_kv = hparams.n_head_kv(il);
  7646. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7647. cur = inpL;
  7648. ggml_tensor * residual = cur;
  7649. // norm
  7650. cur = build_norm(inpL,
  7651. model.layers[il].attn_norm, NULL,
  7652. LLM_NORM_RMS, il);
  7653. cb(cur, "attn_norm", il);
  7654. // self-attention
  7655. {
  7656. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7657. cb(cur, "wqkv", il);
  7658. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7659. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7660. cb(Qcur, "Qcur", il);
  7661. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7662. cb(Kcur, "Kcur", il);
  7663. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7664. cb(Vcur, "Vcur", il);
  7665. Qcur = build_norm(Qcur,
  7666. model.layers[il].attn_q_norm, NULL,
  7667. LLM_NORM_RMS, il);
  7668. cb(Qcur, "Qcur", il);
  7669. Kcur = build_norm(Kcur,
  7670. model.layers[il].attn_k_norm, NULL,
  7671. LLM_NORM_RMS, il);
  7672. cb(Kcur, "Kcur", il);
  7673. Qcur = ggml_rope_ext(
  7674. ctx0, Qcur, inp_pos, NULL,
  7675. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7676. ext_factor, attn_factor, beta_fast, beta_slow
  7677. );
  7678. Kcur = ggml_rope_ext(
  7679. ctx0, Kcur, inp_pos, NULL,
  7680. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7681. ext_factor, attn_factor, beta_fast, beta_slow
  7682. );
  7683. cb(Qcur, "Qcur", il);
  7684. cb(Kcur, "Kcur", il);
  7685. cb(Qcur, "Vcur", il);
  7686. cur = build_attn(inp_attn, gf,
  7687. model.layers[il].wo, NULL,
  7688. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7689. }
  7690. if (il == n_layer - 1) {
  7691. // skip computing output for unused tokens
  7692. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7693. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7694. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7695. }
  7696. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7697. cb(ffn_inp, "ffn_inp", il);
  7698. // feed-forward network
  7699. {
  7700. cur = build_norm(ffn_inp,
  7701. model.layers[il].ffn_norm, NULL,
  7702. LLM_NORM_RMS, il);
  7703. cb(cur, "ffn_norm", il);
  7704. cur = build_ffn(cur,
  7705. model.layers[il].ffn_up, NULL, NULL,
  7706. model.layers[il].ffn_gate, NULL, NULL,
  7707. model.layers[il].ffn_down, NULL, NULL,
  7708. NULL,
  7709. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7710. cb(cur, "ffn_out", il);
  7711. }
  7712. cur = ggml_add(ctx0, cur, ffn_inp);
  7713. cur = build_cvec(cur, il);
  7714. cb(cur, "l_out", il);
  7715. inpL = cur;
  7716. }
  7717. cur = inpL;
  7718. // norm
  7719. cur = build_norm(cur,
  7720. model.output_norm, NULL,
  7721. LLM_NORM_RMS, -1);
  7722. cb(cur, "result_norm", -1);
  7723. res->t_embd = cur;
  7724. cur = build_lora_mm(model.output, cur);
  7725. cb(cur, "result_output", -1);
  7726. res->t_logits = cur;
  7727. ggml_build_forward_expand(gf, cur);
  7728. }
  7729. };
  7730. struct llm_build_gptneox : public llm_graph_context {
  7731. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7732. const int64_t n_embd_head = hparams.n_embd_head_v;
  7733. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7734. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7735. ggml_tensor * cur;
  7736. ggml_tensor * inpL;
  7737. inpL = build_inp_embd(model.tok_embd);
  7738. // inp_pos - contains the positions
  7739. ggml_tensor * inp_pos = build_inp_pos();
  7740. auto * inp_attn = build_attn_inp_kv_unified();
  7741. for (int il = 0; il < n_layer; ++il) {
  7742. cur = build_norm(inpL,
  7743. model.layers[il].attn_norm,
  7744. model.layers[il].attn_norm_b,
  7745. LLM_NORM, il);
  7746. cb(cur, "attn_norm", il);
  7747. // self-attention
  7748. {
  7749. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7750. cb(cur, "wqkv", il);
  7751. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7752. cb(cur, "bqkv", il);
  7753. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7754. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7755. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7756. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7757. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7758. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7759. Qcur = ggml_rope_ext(
  7760. ctx0, Qcur, inp_pos, nullptr,
  7761. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7762. ext_factor, attn_factor, beta_fast, beta_slow
  7763. );
  7764. Kcur = ggml_rope_ext(
  7765. ctx0, Kcur, inp_pos, nullptr,
  7766. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7767. ext_factor, attn_factor, beta_fast, beta_slow
  7768. );
  7769. cb(Qcur, "Qcur", il);
  7770. cb(Kcur, "Kcur", il);
  7771. cb(Vcur, "Vcur", il);
  7772. cur = build_attn(inp_attn, gf,
  7773. model.layers[il].wo, model.layers[il].bo,
  7774. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7775. }
  7776. if (il == n_layer - 1) {
  7777. // skip computing output for unused tokens
  7778. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7779. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7780. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7781. }
  7782. // ffn
  7783. if (hparams.use_par_res) {
  7784. // attention and ffn are computed in parallel
  7785. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7786. ggml_tensor * attn_out = cur;
  7787. cur = build_norm(inpL,
  7788. model.layers[il].ffn_norm,
  7789. model.layers[il].ffn_norm_b,
  7790. LLM_NORM, il);
  7791. cb(cur, "ffn_norm", il);
  7792. cur = build_ffn(cur,
  7793. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7794. NULL, NULL, NULL,
  7795. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7796. NULL,
  7797. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7798. cb(cur, "ffn_out", il);
  7799. cur = ggml_add(ctx0, cur, inpL);
  7800. cb(cur, "ffn_out", il);
  7801. cur = ggml_add(ctx0, cur, attn_out);
  7802. cur = build_cvec(cur, il);
  7803. cb(cur, "l_out", il);
  7804. // input for next layer
  7805. inpL = cur;
  7806. } else {
  7807. // attention and ffn are computed sequentially
  7808. // x = x + attn(ln1(x))
  7809. // x = x + ffn(ln2(x))
  7810. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7811. cb(ffn_inp, "ffn_inp", il);
  7812. cur = build_norm(ffn_inp,
  7813. model.layers[il].ffn_norm,
  7814. model.layers[il].ffn_norm_b,
  7815. LLM_NORM, il);
  7816. cb(cur, "ffn_norm", il);
  7817. cur = build_ffn(cur,
  7818. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7819. NULL, NULL, NULL,
  7820. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7821. NULL,
  7822. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7823. cb(cur, "ffn_out", il);
  7824. cur = ggml_add(ctx0, cur, ffn_inp);
  7825. cur = build_cvec(cur, il);
  7826. cb(cur, "l_out", il);
  7827. // input for next layer
  7828. inpL = cur;
  7829. }
  7830. }
  7831. cur = build_norm(inpL,
  7832. model.output_norm,
  7833. model.output_norm_b,
  7834. LLM_NORM, -1);
  7835. cb(cur, "result_norm", -1);
  7836. res->t_embd = cur;
  7837. cur = build_lora_mm(model.output, cur);
  7838. cb(cur, "result_output", -1);
  7839. res->t_logits = cur;
  7840. ggml_build_forward_expand(gf, cur);
  7841. }
  7842. };
  7843. struct llm_build_arctic : public llm_graph_context {
  7844. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7845. const int64_t n_embd_head = hparams.n_embd_head_v;
  7846. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7847. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7848. ggml_tensor * cur;
  7849. ggml_tensor * inpL;
  7850. inpL = build_inp_embd(model.tok_embd);
  7851. // inp_pos - contains the positions
  7852. ggml_tensor * inp_pos = build_inp_pos();
  7853. auto * inp_attn = build_attn_inp_kv_unified();
  7854. for (int il = 0; il < n_layer; ++il) {
  7855. ggml_tensor * inpSA = inpL;
  7856. // norm
  7857. cur = build_norm(inpL,
  7858. model.layers[il].attn_norm, NULL,
  7859. LLM_NORM_RMS, il);
  7860. cb(cur, "attn_norm", il);
  7861. // self-attention
  7862. {
  7863. // compute Q and K and RoPE them
  7864. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7865. cb(Qcur, "Qcur", il);
  7866. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7867. cb(Kcur, "Kcur", il);
  7868. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7869. cb(Vcur, "Vcur", il);
  7870. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7871. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7872. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7873. Qcur = ggml_rope_ext(
  7874. ctx0, Qcur, inp_pos, nullptr,
  7875. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7876. ext_factor, attn_factor, beta_fast, beta_slow
  7877. );
  7878. Kcur = ggml_rope_ext(
  7879. ctx0, Kcur, inp_pos, nullptr,
  7880. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7881. ext_factor, attn_factor, beta_fast, beta_slow
  7882. );
  7883. cb(Qcur, "Qcur", il);
  7884. cb(Kcur, "Kcur", il);
  7885. cb(Vcur, "Vcur", il);
  7886. cur = build_attn(inp_attn, gf,
  7887. model.layers[il].wo, NULL,
  7888. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7889. }
  7890. if (il == n_layer - 1) {
  7891. // skip computing output for unused tokens
  7892. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7893. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7894. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7895. }
  7896. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7897. cb(ffn_inp, "ffn_inp", il);
  7898. // feed-forward network
  7899. cur = build_norm(ffn_inp,
  7900. model.layers[il].ffn_norm, NULL,
  7901. LLM_NORM_RMS, il);
  7902. cb(cur, "ffn_norm", il);
  7903. cur = build_ffn(cur,
  7904. model.layers[il].ffn_up, NULL, NULL,
  7905. model.layers[il].ffn_gate, NULL, NULL,
  7906. model.layers[il].ffn_down, NULL, NULL,
  7907. NULL,
  7908. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7909. cb(cur, "ffn_out", il);
  7910. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7911. cb(ffn_out, "ffn_out", il);
  7912. // MoE
  7913. cur = build_norm(inpSA,
  7914. model.layers[il].ffn_norm_exps, NULL,
  7915. LLM_NORM_RMS, il);
  7916. cb(cur, "ffn_norm_exps", il);
  7917. cur = build_moe_ffn(cur,
  7918. model.layers[il].ffn_gate_inp,
  7919. model.layers[il].ffn_up_exps,
  7920. model.layers[il].ffn_gate_exps,
  7921. model.layers[il].ffn_down_exps,
  7922. nullptr,
  7923. n_expert, n_expert_used,
  7924. LLM_FFN_SILU, true,
  7925. false, 0.0,
  7926. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7927. il);
  7928. cb(cur, "ffn_moe_out", il);
  7929. cur = ggml_add(ctx0, cur, ffn_out);
  7930. cb(cur, "ffn_out", il);
  7931. cur = build_cvec(cur, il);
  7932. cb(cur, "l_out", il);
  7933. // input for next layer
  7934. inpL = cur;
  7935. }
  7936. cur = inpL;
  7937. cur = build_norm(cur,
  7938. model.output_norm, NULL,
  7939. LLM_NORM_RMS, -1);
  7940. cb(cur, "result_norm", -1);
  7941. res->t_embd = cur;
  7942. // lm_head
  7943. cur = build_lora_mm(model.output, cur);
  7944. cb(cur, "result_output", -1);
  7945. res->t_logits = cur;
  7946. ggml_build_forward_expand(gf, cur);
  7947. }
  7948. };
  7949. struct llm_build_deepseek : public llm_graph_context {
  7950. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7951. const int64_t n_embd_head = hparams.n_embd_head_v;
  7952. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7953. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7954. ggml_tensor * cur;
  7955. ggml_tensor * inpL;
  7956. inpL = build_inp_embd(model.tok_embd);
  7957. // inp_pos - contains the positions
  7958. ggml_tensor * inp_pos = build_inp_pos();
  7959. auto * inp_attn = build_attn_inp_kv_unified();
  7960. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7961. for (int il = 0; il < n_layer; ++il) {
  7962. ggml_tensor * inpSA = inpL;
  7963. // norm
  7964. cur = build_norm(inpL,
  7965. model.layers[il].attn_norm, NULL,
  7966. LLM_NORM_RMS, il);
  7967. cb(cur, "attn_norm", il);
  7968. // self-attention
  7969. {
  7970. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7971. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7972. // compute Q and K and RoPE them
  7973. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7974. cb(Qcur, "Qcur", il);
  7975. if (model.layers[il].bq) {
  7976. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7977. cb(Qcur, "Qcur", il);
  7978. }
  7979. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7980. cb(Kcur, "Kcur", il);
  7981. if (model.layers[il].bk) {
  7982. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7983. cb(Kcur, "Kcur", il);
  7984. }
  7985. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7986. cb(Vcur, "Vcur", il);
  7987. if (model.layers[il].bv) {
  7988. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7989. cb(Vcur, "Vcur", il);
  7990. }
  7991. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7992. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7993. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7994. Qcur = ggml_rope_ext(
  7995. ctx0, Qcur, inp_pos, rope_factors,
  7996. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7997. ext_factor, attn_factor, beta_fast, beta_slow
  7998. );
  7999. Kcur = ggml_rope_ext(
  8000. ctx0, Kcur, inp_pos, rope_factors,
  8001. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8002. ext_factor, attn_factor, beta_fast, beta_slow
  8003. );
  8004. cb(Qcur, "Qcur", il);
  8005. cb(Kcur, "Kcur", il);
  8006. cb(Vcur, "Vcur", il);
  8007. cur = build_attn(inp_attn, gf,
  8008. model.layers[il].wo, model.layers[il].bo,
  8009. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8010. }
  8011. if (il == n_layer - 1) {
  8012. // skip computing output for unused tokens
  8013. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8014. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8015. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8016. }
  8017. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8018. cb(ffn_inp, "ffn_inp", il);
  8019. cur = build_norm(ffn_inp,
  8020. model.layers[il].ffn_norm, NULL,
  8021. LLM_NORM_RMS, il);
  8022. cb(cur, "ffn_norm", il);
  8023. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8024. cur = build_ffn(cur,
  8025. model.layers[il].ffn_up, NULL, NULL,
  8026. model.layers[il].ffn_gate, NULL, NULL,
  8027. model.layers[il].ffn_down, NULL, NULL,
  8028. NULL,
  8029. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8030. cb(cur, "ffn_out", il);
  8031. } else {
  8032. // MoE branch
  8033. ggml_tensor * moe_out =
  8034. build_moe_ffn(cur,
  8035. model.layers[il].ffn_gate_inp,
  8036. model.layers[il].ffn_up_exps,
  8037. model.layers[il].ffn_gate_exps,
  8038. model.layers[il].ffn_down_exps,
  8039. nullptr,
  8040. n_expert, n_expert_used,
  8041. LLM_FFN_SILU, false,
  8042. false, hparams.expert_weights_scale,
  8043. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8044. il);
  8045. cb(moe_out, "ffn_moe_out", il);
  8046. // FFN shared expert
  8047. {
  8048. ggml_tensor * ffn_shexp = build_ffn(cur,
  8049. model.layers[il].ffn_up_shexp, NULL, NULL,
  8050. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8051. model.layers[il].ffn_down_shexp, NULL, NULL,
  8052. NULL,
  8053. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8054. cb(ffn_shexp, "ffn_shexp", il);
  8055. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8056. cb(cur, "ffn_out", il);
  8057. }
  8058. }
  8059. cur = ggml_add(ctx0, cur, ffn_inp);
  8060. cur = build_cvec(cur, il);
  8061. cb(cur, "l_out", il);
  8062. // input for next layer
  8063. inpL = cur;
  8064. }
  8065. cur = inpL;
  8066. cur = build_norm(cur,
  8067. model.output_norm, NULL,
  8068. LLM_NORM_RMS, -1);
  8069. cb(cur, "result_norm", -1);
  8070. res->t_embd = cur;
  8071. // lm_head
  8072. cur = build_lora_mm(model.output, cur);
  8073. cb(cur, "result_output", -1);
  8074. res->t_logits = cur;
  8075. ggml_build_forward_expand(gf, cur);
  8076. }
  8077. };
  8078. struct llm_build_deepseek2 : public llm_graph_context {
  8079. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8080. bool is_lite = (hparams.n_layer == 27);
  8081. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8082. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8083. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8084. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8085. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8086. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8087. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8088. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8089. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8090. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8091. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8092. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8093. ggml_tensor * cur;
  8094. ggml_tensor * inpL;
  8095. // {n_embd, n_tokens}
  8096. inpL = build_inp_embd(model.tok_embd);
  8097. // inp_pos - contains the positions
  8098. ggml_tensor * inp_pos = build_inp_pos();
  8099. auto * inp_attn = build_attn_inp_kv_unified();
  8100. for (int il = 0; il < n_layer; ++il) {
  8101. ggml_tensor * inpSA = inpL;
  8102. // norm
  8103. cur = build_norm(inpL,
  8104. model.layers[il].attn_norm, NULL,
  8105. LLM_NORM_RMS, il);
  8106. cb(cur, "attn_norm", il);
  8107. // self_attention
  8108. {
  8109. ggml_tensor * q = NULL;
  8110. if (!is_lite) {
  8111. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8112. cb(q, "q", il);
  8113. q = build_norm(q,
  8114. model.layers[il].attn_q_a_norm, nullptr,
  8115. LLM_NORM_RMS, il);
  8116. cb(q, "q", il);
  8117. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8118. cb(q, "q", il);
  8119. } else {
  8120. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8121. cb(q, "q", il);
  8122. }
  8123. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8124. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8125. n_embd_head_qk_nope, n_head, n_tokens,
  8126. ggml_row_size(q->type, n_embd_head_k),
  8127. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8128. 0);
  8129. cb(q_nope, "q_nope", il);
  8130. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8131. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8132. n_embd_head_qk_rope, n_head, n_tokens,
  8133. ggml_row_size(q->type, n_embd_head_k),
  8134. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8135. ggml_row_size(q->type, n_embd_head_qk_nope));
  8136. cb(q_pe, "q_pe", il);
  8137. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8138. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8139. // split into {kv_lora_rank, n_tokens}
  8140. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8141. kv_lora_rank, n_tokens,
  8142. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8143. 0);
  8144. cb(kv_cmpr, "kv_cmpr", il);
  8145. // and {n_embd_head_qk_rope, 1, n_tokens}
  8146. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8147. n_embd_head_qk_rope, 1, n_tokens,
  8148. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8149. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8150. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8151. cb(k_pe, "k_pe", il);
  8152. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8153. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8154. ext_factor, attn_factor, beta_fast, beta_slow
  8155. );
  8156. cb(q_pe, "q_pe", il);
  8157. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8158. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8159. ext_factor, attn_factor, beta_fast, beta_slow
  8160. );
  8161. cb(k_pe, "k_pe", il);
  8162. kv_cmpr = build_norm(kv_cmpr,
  8163. model.layers[il].attn_kv_a_norm, nullptr,
  8164. LLM_NORM_RMS, il);
  8165. cb(kv_cmpr, "kv_cmpr", il);
  8166. if (is_mla) {
  8167. // {n_embd_head_qk_nope, n_tokens, n_head}
  8168. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8169. cb(q_nope, "q_nope_perm", il);
  8170. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8171. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8172. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8173. // {kv_lora_rank, n_head, n_tokens}
  8174. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8175. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8176. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8177. // note: rope must go first for in-place context shifting in build_rope_shift()
  8178. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8179. cb(Qcur, "Qcur", il);
  8180. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8181. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8182. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8183. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8184. cb(Kcur, "Kcur", il);
  8185. // {kv_lora_rank, 1, n_tokens}
  8186. ggml_tensor * Vcur = kv_cmpr;
  8187. cb(Vcur, "Vcur", il);
  8188. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8189. cur = build_attn(inp_attn, gf,
  8190. model.layers[il].wo, NULL,
  8191. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8192. } else {
  8193. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8194. cb(kv, "kv", il);
  8195. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8196. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8197. n_embd_head_qk_nope, n_head, n_tokens,
  8198. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8199. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8200. 0);
  8201. cb(k_nope, "k_nope_view", il);
  8202. // and {n_embd_head_v, n_head, n_tokens}
  8203. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8204. n_embd_head_v, n_head, n_tokens,
  8205. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8206. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8207. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8208. cb(Vcur, "Vcur_view", il);
  8209. Vcur = ggml_cont(ctx0, Vcur);
  8210. cb(Vcur, "Vcur_cont", il);
  8211. // note: rope must go first for in-place context shifting in build_rope_shift()
  8212. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8213. cb(Qcur, "Qcur", il);
  8214. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8215. cb(Kcur, "Kcur", il);
  8216. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8217. cur = build_attn(inp_attn, gf,
  8218. model.layers[il].wo, NULL,
  8219. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8220. }
  8221. }
  8222. if (il == n_layer - 1) {
  8223. // skip computing output for unused tokens
  8224. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8225. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8226. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8227. }
  8228. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8229. cb(ffn_inp, "ffn_inp", il);
  8230. cur = build_norm(ffn_inp,
  8231. model.layers[il].ffn_norm, NULL,
  8232. LLM_NORM_RMS, il);
  8233. cb(cur, "ffn_norm", il);
  8234. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8235. cur = build_ffn(cur,
  8236. model.layers[il].ffn_up, NULL, NULL,
  8237. model.layers[il].ffn_gate, NULL, NULL,
  8238. model.layers[il].ffn_down, NULL, NULL,
  8239. NULL,
  8240. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8241. cb(cur, "ffn_out", il);
  8242. } else {
  8243. // MoE branch
  8244. ggml_tensor * moe_out =
  8245. build_moe_ffn(cur,
  8246. model.layers[il].ffn_gate_inp,
  8247. model.layers[il].ffn_up_exps,
  8248. model.layers[il].ffn_gate_exps,
  8249. model.layers[il].ffn_down_exps,
  8250. model.layers[il].ffn_exp_probs_b,
  8251. n_expert, n_expert_used,
  8252. LLM_FFN_SILU, hparams.expert_weights_norm,
  8253. true, hparams.expert_weights_scale,
  8254. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8255. il);
  8256. cb(moe_out, "ffn_moe_out", il);
  8257. // FFN shared expert
  8258. {
  8259. ggml_tensor * ffn_shexp = build_ffn(cur,
  8260. model.layers[il].ffn_up_shexp, NULL, NULL,
  8261. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8262. model.layers[il].ffn_down_shexp, NULL, NULL,
  8263. NULL,
  8264. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8265. cb(ffn_shexp, "ffn_shexp", il);
  8266. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8267. cb(cur, "ffn_out", il);
  8268. }
  8269. }
  8270. cur = ggml_add(ctx0, cur, ffn_inp);
  8271. cur = build_cvec(cur, il);
  8272. cb(cur, "l_out", il);
  8273. // input for next layer
  8274. inpL = cur;
  8275. }
  8276. cur = inpL;
  8277. cur = build_norm(cur,
  8278. model.output_norm, NULL,
  8279. LLM_NORM_RMS, -1);
  8280. cb(cur, "result_norm", -1);
  8281. res->t_embd = cur;
  8282. // lm_head
  8283. cur = ggml_mul_mat(ctx0, model.output, cur);
  8284. cb(cur, "result_output", -1);
  8285. res->t_logits = cur;
  8286. ggml_build_forward_expand(gf, cur);
  8287. }
  8288. };
  8289. struct llm_build_bitnet : public llm_graph_context {
  8290. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8291. const int64_t n_embd_head = hparams.n_embd_head_v;
  8292. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8293. ggml_tensor * cur;
  8294. ggml_tensor * inpL;
  8295. inpL = build_inp_embd(model.tok_embd);
  8296. // inp_pos - contains the positions
  8297. ggml_tensor * inp_pos = build_inp_pos();
  8298. auto * inp_attn = build_attn_inp_kv_unified();
  8299. for (int il = 0; il < n_layer; ++il) {
  8300. ggml_tensor * inpSA = inpL;
  8301. cur = build_norm(inpL,
  8302. model.layers[il].attn_norm, NULL,
  8303. LLM_NORM_RMS, il);
  8304. cb(cur, "attn_norm", il);
  8305. // self-attention
  8306. {
  8307. // compute Q and K and RoPE them
  8308. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8309. if (model.layers[il].wq_scale) {
  8310. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8311. }
  8312. cb(Qcur, "Qcur", il);
  8313. if (model.layers[il].bq) {
  8314. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8315. cb(Qcur, "Qcur", il);
  8316. }
  8317. // B1.K
  8318. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8319. if (model.layers[il].wk_scale) {
  8320. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8321. }
  8322. cb(Kcur, "Kcur", il);
  8323. if (model.layers[il].bk) {
  8324. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8325. cb(Kcur, "Kcur", il);
  8326. }
  8327. // B1.V
  8328. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8329. if (model.layers[il].wv_scale) {
  8330. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8331. }
  8332. cb(Vcur, "Vcur", il);
  8333. if (model.layers[il].bv) {
  8334. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8335. cb(Vcur, "Vcur", il);
  8336. }
  8337. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8338. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8339. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8340. Qcur = ggml_rope_ext(
  8341. ctx0, Qcur, inp_pos, nullptr,
  8342. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8343. ext_factor, attn_factor, beta_fast, beta_slow
  8344. );
  8345. Kcur = ggml_rope_ext(
  8346. ctx0, Kcur, inp_pos, nullptr,
  8347. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8348. ext_factor, attn_factor, beta_fast, beta_slow
  8349. );
  8350. cb(Qcur, "Qcur", il);
  8351. cb(Kcur, "Kcur", il);
  8352. cb(Vcur, "Vcur", il);
  8353. cur = build_attn(inp_attn, gf,
  8354. NULL, NULL,
  8355. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8356. cur = build_norm(cur,
  8357. model.layers[il].attn_sub_norm, NULL,
  8358. LLM_NORM_RMS, il);
  8359. cb(cur, "attn_sub_norm", il);
  8360. cur = build_lora_mm(model.layers[il].wo, cur);
  8361. if (model.layers[il].wo_scale) {
  8362. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8363. }
  8364. if (model.layers[il].bo) {
  8365. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8366. }
  8367. cb(cur, "attn_o_out", il);
  8368. }
  8369. if (il == n_layer - 1) {
  8370. // skip computing output for unused tokens
  8371. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8372. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8373. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8374. }
  8375. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8376. cb(ffn_inp, "ffn_inp", il);
  8377. // feed-forward forward
  8378. cur = build_norm(ffn_inp,
  8379. model.layers[il].ffn_norm, NULL,
  8380. LLM_NORM_RMS, il);
  8381. cb(cur, "ffn_norm", il);
  8382. cur = build_ffn(cur,
  8383. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8384. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8385. NULL, NULL, NULL,
  8386. NULL,
  8387. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8388. cb(cur, "ffn_sub_out", il);
  8389. cur = build_norm(cur,
  8390. model.layers[il].ffn_sub_norm, NULL,
  8391. LLM_NORM_RMS, il);
  8392. cb(cur, "ffn_sub_norm", il);
  8393. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8394. if (model.layers[il].ffn_down_scale) {
  8395. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8396. }
  8397. cb(cur, "ffn_down", il);
  8398. cur = ggml_add(ctx0, cur, ffn_inp);
  8399. cb(cur, "l_out", il);
  8400. // input for next layer
  8401. inpL = cur;
  8402. }
  8403. cur = inpL;
  8404. cur = build_norm(cur,
  8405. model.output_norm, NULL,
  8406. LLM_NORM_RMS, -1);
  8407. cb(cur, "result_norm", -1);
  8408. res->t_embd = cur;
  8409. // lm_head
  8410. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8411. cur = build_lora_mm(model.tok_embd, cur);
  8412. cb(cur, "result_output", -1);
  8413. res->t_logits = cur;
  8414. ggml_build_forward_expand(gf, cur);
  8415. }
  8416. };
  8417. struct llm_build_t5_enc : public llm_graph_context {
  8418. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8419. const int64_t n_embd_head = hparams.n_embd_head_v;
  8420. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8421. ggml_tensor * cur;
  8422. ggml_tensor * inpL;
  8423. inpL = build_inp_embd(model.tok_embd);
  8424. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8425. auto * inp_attn = build_attn_inp_no_cache();
  8426. for (int il = 0; il < n_layer; ++il) {
  8427. ggml_tensor * inpSA = inpL;
  8428. // norm
  8429. cur = build_norm(inpL,
  8430. model.layers[il].attn_norm_enc, NULL,
  8431. LLM_NORM_RMS, il);
  8432. cb(cur, "attn_norm", il);
  8433. // self-attention
  8434. {
  8435. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8436. cb(Qcur, "Qcur", il);
  8437. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8438. cb(Kcur, "Kcur", il);
  8439. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8440. cb(Vcur, "Vcur", il);
  8441. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8442. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8443. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8444. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8445. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8446. cur = build_attn(inp_attn, gf,
  8447. model.layers[il].wo_enc, nullptr,
  8448. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8449. cb(cur, "kqv_out", il);
  8450. }
  8451. if (il == n_layer - 1) {
  8452. // skip computing output for unused tokens
  8453. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8454. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8455. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8456. }
  8457. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8458. cb(ffn_inp, "ffn_inp", il);
  8459. // feed-forward network
  8460. {
  8461. cur = build_norm(ffn_inp,
  8462. model.layers[il].ffn_norm_enc, NULL,
  8463. LLM_NORM_RMS, il);
  8464. cb(cur, "ffn_norm", il);
  8465. // T5 uses relu, flan-T5 uses gelu-gated
  8466. cur = build_ffn(cur,
  8467. model.layers[il].ffn_up_enc, NULL, NULL,
  8468. model.layers[il].ffn_gate_enc, NULL, NULL,
  8469. model.layers[il].ffn_down_enc, NULL, NULL,
  8470. NULL,
  8471. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8472. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8473. il);
  8474. cb(cur, "ffn_out", il);
  8475. }
  8476. cur = ggml_add(ctx0, cur, ffn_inp);
  8477. cb(cur, "ffn_out", il);
  8478. cur = build_cvec(cur, il);
  8479. cb(cur, "l_out", il);
  8480. // input for next layer
  8481. inpL = cur;
  8482. }
  8483. cur = inpL;
  8484. cb(cur, "result_embd", -1);
  8485. cur = build_norm(cur,
  8486. model.output_norm_enc, NULL,
  8487. LLM_NORM_RMS, -1);
  8488. cb(cur, "result_norm", -1);
  8489. res->t_embd = cur;
  8490. ggml_build_forward_expand(gf, cur);
  8491. }
  8492. };
  8493. struct llm_build_t5_dec : public llm_graph_context {
  8494. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8495. const int64_t n_embd_head = hparams.n_embd_head_v;
  8496. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8497. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8498. ggml_tensor * cur;
  8499. ggml_tensor * inpL;
  8500. inpL = build_inp_embd(model.tok_embd);
  8501. ggml_tensor * embd_enc = build_inp_cross_embd();
  8502. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8503. const int64_t n_outputs_enc = embd_enc->ne[1];
  8504. auto * inp_attn_self = build_attn_inp_kv_unified();
  8505. auto * inp_attn_cross = build_attn_inp_cross();
  8506. for (int il = 0; il < n_layer; ++il) {
  8507. ggml_tensor * inpSA = inpL;
  8508. // norm
  8509. cur = build_norm(inpL,
  8510. model.layers[il].attn_norm, NULL,
  8511. LLM_NORM_RMS, il);
  8512. cb(cur, "attn_norm", il);
  8513. // self-attention
  8514. {
  8515. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8516. cb(Qcur, "Qcur", il);
  8517. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8518. cb(Kcur, "Kcur", il);
  8519. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8520. cb(Vcur, "Vcur", il);
  8521. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8522. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8523. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8524. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8525. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8526. cur = build_attn(inp_attn_self, gf,
  8527. model.layers[il].wo, model.layers[il].bo,
  8528. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8529. cb(cur, "kqv_out", il);
  8530. }
  8531. cur = ggml_add(ctx0, cur, inpSA);
  8532. cb(cur, "cross_inp", il);
  8533. ggml_tensor * inpCA = cur;
  8534. // norm
  8535. cur = build_norm(cur,
  8536. model.layers[il].attn_norm_cross, NULL,
  8537. LLM_NORM_RMS, il);
  8538. cb(cur, "attn_norm_cross", il);
  8539. // cross-attention
  8540. {
  8541. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8542. cb(Qcur, "Qcur", il);
  8543. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8544. cb(Kcur, "Kcur", il);
  8545. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8546. cb(Vcur, "Vcur", il);
  8547. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8548. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8549. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8550. cur = build_attn(inp_attn_cross, gf,
  8551. model.layers[il].wo_cross, nullptr,
  8552. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8553. cb(cur, "kqv_out", il);
  8554. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8555. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8556. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8557. //cb(kq, "kq", il);
  8558. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8559. //cb(kq, "kq_soft_max_ext", il);
  8560. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8561. //cb(v, "v", il);
  8562. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8563. //cb(kqv, "kqv", il);
  8564. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8565. //cb(kqv_merged, "kqv_merged", il);
  8566. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8567. //cb(cur, "kqv_merged_cont", il);
  8568. //ggml_build_forward_expand(gf, cur);
  8569. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8570. //cb(cur, "kqv_out", il);
  8571. }
  8572. if (il == n_layer - 1) {
  8573. // skip computing output for unused tokens
  8574. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8575. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8576. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8577. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8578. }
  8579. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8580. cb(ffn_inp, "ffn_inp", il);
  8581. // feed-forward network
  8582. {
  8583. cur = build_norm(ffn_inp,
  8584. model.layers[il].ffn_norm, NULL,
  8585. LLM_NORM_RMS, il);
  8586. cb(cur, "ffn_norm", il);
  8587. // T5 uses relu, flan-T5 uses gelu-gated
  8588. cur = build_ffn(cur,
  8589. model.layers[il].ffn_up, NULL, NULL,
  8590. model.layers[il].ffn_gate, NULL, NULL,
  8591. model.layers[il].ffn_down, NULL, NULL,
  8592. NULL,
  8593. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8594. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8595. il);
  8596. cb(cur, "ffn_out", il);
  8597. }
  8598. cur = ggml_add(ctx0, cur, ffn_inp);
  8599. cb(cur, "ffn_out", il);
  8600. cur = build_cvec(cur, il);
  8601. cb(cur, "l_out", il);
  8602. // input for next layer
  8603. inpL = cur;
  8604. }
  8605. cur = inpL;
  8606. cb(cur, "result_embd", -1);
  8607. cur = build_norm(cur,
  8608. model.output_norm, NULL,
  8609. LLM_NORM_RMS, -1);
  8610. cb(cur, "result_norm", -1);
  8611. res->t_embd = cur;
  8612. // lm_head
  8613. cur = build_lora_mm(model.output, cur);
  8614. cb(cur, "result_output", -1);
  8615. res->t_logits = cur;
  8616. ggml_build_forward_expand(gf, cur);
  8617. }
  8618. };
  8619. struct llm_build_jais : public llm_graph_context {
  8620. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8621. const int64_t n_embd_head = hparams.n_embd_head_v;
  8622. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8623. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8624. ggml_tensor * cur;
  8625. ggml_tensor * inpL;
  8626. inpL = build_inp_embd(model.tok_embd);
  8627. auto * inp_attn = build_attn_inp_kv_unified();
  8628. for (int il = 0; il < n_layer; ++il) {
  8629. cur = build_norm(inpL,
  8630. model.layers[il].attn_norm,
  8631. model.layers[il].attn_norm_b,
  8632. LLM_NORM, il);
  8633. cb(cur, "attn_norm", il);
  8634. // self-attention
  8635. {
  8636. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8637. cb(cur, "wqkv", il);
  8638. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8639. cb(cur, "bqkv", il);
  8640. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8641. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8642. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8643. cb(Qcur, "Qcur", il);
  8644. cb(Kcur, "Kcur", il);
  8645. cb(Vcur, "Vcur", il);
  8646. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8647. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8648. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8649. cur = build_attn(inp_attn, gf,
  8650. model.layers[il].wo, model.layers[il].bo,
  8651. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8652. }
  8653. if (il == n_layer - 1) {
  8654. // skip computing output for unused tokens
  8655. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8656. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8657. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8658. }
  8659. // add the input
  8660. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8661. cb(ffn_inp, "ffn_inp", il);
  8662. // FF
  8663. {
  8664. cur = build_norm(ffn_inp,
  8665. model.layers[il].ffn_norm,
  8666. model.layers[il].ffn_norm_b,
  8667. LLM_NORM, il);
  8668. cb(cur, "ffn_norm", il);
  8669. cur = build_ffn(cur,
  8670. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8671. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8672. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8673. NULL,
  8674. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8675. cb(cur, "ffn_out", il);
  8676. }
  8677. inpL = ggml_add(ctx0, cur, ffn_inp);
  8678. cb(inpL, "l_out", il);
  8679. }
  8680. cur = build_norm(inpL,
  8681. model.output_norm,
  8682. model.output_norm_b,
  8683. LLM_NORM, -1);
  8684. cb(cur, "result_norm", -1);
  8685. res->t_embd = cur;
  8686. cur = build_lora_mm(model.output, cur);
  8687. cb(cur, "result_output", -1);
  8688. res->t_logits = cur;
  8689. ggml_build_forward_expand(gf, cur);
  8690. }
  8691. };
  8692. struct llm_build_chatglm : public llm_graph_context {
  8693. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8694. const int64_t n_embd_head = hparams.n_embd_head_v;
  8695. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8696. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8697. ggml_tensor * cur;
  8698. ggml_tensor * inpL;
  8699. inpL = build_inp_embd(model.tok_embd);
  8700. // inp_pos - contains the positions
  8701. ggml_tensor * inp_pos = build_inp_pos();
  8702. auto * inp_attn = build_attn_inp_kv_unified();
  8703. for (int il = 0; il < n_layer; ++il) {
  8704. ggml_tensor * inpSA = inpL;
  8705. cur = build_norm(inpL,
  8706. model.layers[il].attn_norm,
  8707. NULL,
  8708. LLM_NORM_RMS, il);
  8709. cb(cur, "attn_norm", il);
  8710. // self-attention
  8711. {
  8712. ggml_tensor * Qcur = nullptr;
  8713. ggml_tensor * Kcur = nullptr;
  8714. ggml_tensor * Vcur = nullptr;
  8715. if (model.layers[il].wqkv == nullptr) {
  8716. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8717. if (model.layers[il].bq) {
  8718. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8719. }
  8720. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8721. if (model.layers[il].bk) {
  8722. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8723. }
  8724. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8725. if (model.layers[il].bv) {
  8726. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8727. }
  8728. } else {
  8729. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8730. cb(cur, "wqkv", il);
  8731. if (model.layers[il].bqkv) {
  8732. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8733. cb(cur, "bqkv", il);
  8734. }
  8735. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8736. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8737. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8738. }
  8739. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8740. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8741. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8742. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8743. Qcur = ggml_rope_ext(
  8744. ctx0, Qcur, inp_pos, nullptr,
  8745. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8746. ext_factor, attn_factor, beta_fast, beta_slow
  8747. );
  8748. Kcur = ggml_rope_ext(
  8749. ctx0, Kcur, inp_pos, nullptr,
  8750. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8751. ext_factor, attn_factor, beta_fast, beta_slow
  8752. );
  8753. cb(Qcur, "Qcur", il);
  8754. cb(Kcur, "Kcur", il);
  8755. cb(Vcur, "Vcur", il);
  8756. cur = build_attn(inp_attn, gf,
  8757. model.layers[il].wo, NULL,
  8758. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8759. }
  8760. if (il == n_layer - 1) {
  8761. // skip computing output for unused tokens
  8762. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8763. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8764. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8765. }
  8766. // Add the input
  8767. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8768. cb(ffn_inp, "ffn_inp", il);
  8769. // FF
  8770. {
  8771. cur = build_norm(ffn_inp,
  8772. model.layers[il].ffn_norm,
  8773. NULL,
  8774. LLM_NORM_RMS, il);
  8775. cb(cur, "ffn_norm", il);
  8776. cur = build_ffn(cur,
  8777. model.layers[il].ffn_up, NULL, NULL,
  8778. NULL, NULL, NULL,
  8779. model.layers[il].ffn_down, NULL, NULL,
  8780. NULL,
  8781. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8782. cb(cur, "ffn_out", il);
  8783. }
  8784. inpL = ggml_add(ctx0, cur, ffn_inp);
  8785. cb(inpL, "l_out", il);
  8786. }
  8787. cur = build_norm(inpL,
  8788. model.output_norm,
  8789. NULL,
  8790. LLM_NORM_RMS, -1);
  8791. cb(cur, "result_norm", -1);
  8792. res->t_embd = cur;
  8793. cur = build_lora_mm(model.output, cur);
  8794. cb(cur, "result_output", -1);
  8795. res->t_logits = cur;
  8796. ggml_build_forward_expand(gf, cur);
  8797. }
  8798. };
  8799. struct llm_build_glm4 : public llm_graph_context {
  8800. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8801. const int64_t n_embd_head = hparams.n_embd_head_v;
  8802. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8803. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8804. ggml_tensor * cur;
  8805. ggml_tensor * inpL;
  8806. inpL = build_inp_embd(model.tok_embd);
  8807. // inp_pos - contains the positions
  8808. ggml_tensor * inp_pos = build_inp_pos();
  8809. auto * inp_attn = build_attn_inp_kv_unified();
  8810. for (int il = 0; il < n_layer; ++il) {
  8811. ggml_tensor * inpSA = inpL;
  8812. // Pre-attention norm
  8813. cur = build_norm(inpL,
  8814. model.layers[il].attn_norm,
  8815. NULL,
  8816. LLM_NORM_RMS, il);
  8817. cb(cur, "attn_norm", il);
  8818. // self-attention
  8819. {
  8820. ggml_tensor * Qcur = nullptr;
  8821. ggml_tensor * Kcur = nullptr;
  8822. ggml_tensor * Vcur = nullptr;
  8823. if (model.layers[il].wqkv == nullptr) {
  8824. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8825. if (model.layers[il].bq) {
  8826. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8827. }
  8828. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8829. if (model.layers[il].bk) {
  8830. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8831. }
  8832. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8833. if (model.layers[il].bv) {
  8834. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8835. }
  8836. } else {
  8837. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8838. cb(cur, "wqkv", il);
  8839. if (model.layers[il].bqkv) {
  8840. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8841. cb(cur, "bqkv", il);
  8842. }
  8843. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8844. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8845. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8846. }
  8847. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8848. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8849. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8850. Qcur = ggml_rope_ext(
  8851. ctx0, Qcur, inp_pos, nullptr,
  8852. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8853. ext_factor, attn_factor, beta_fast, beta_slow
  8854. );
  8855. Kcur = ggml_rope_ext(
  8856. ctx0, Kcur, inp_pos, nullptr,
  8857. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8858. ext_factor, attn_factor, beta_fast, beta_slow
  8859. );
  8860. cb(Qcur, "Qcur", il);
  8861. cb(Kcur, "Kcur", il);
  8862. cb(Vcur, "Vcur", il);
  8863. cur = build_attn(inp_attn, gf,
  8864. model.layers[il].wo, NULL,
  8865. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8866. }
  8867. if (il == n_layer - 1) {
  8868. // skip computing output for unused tokens
  8869. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8870. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8871. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8872. }
  8873. // Post-attention norm (new!)
  8874. cur = build_norm(cur,
  8875. model.layers[il].attn_post_norm,
  8876. NULL,
  8877. LLM_NORM_RMS, il);
  8878. cb(cur, "post_attn_norm", il);
  8879. // Add the input (residual connection after post-attention norm)
  8880. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8881. cb(ffn_inp, "ffn_inp", il);
  8882. // FF
  8883. {
  8884. // Pre-MLP norm
  8885. cur = build_norm(ffn_inp,
  8886. model.layers[il].ffn_norm,
  8887. NULL,
  8888. LLM_NORM_RMS, il);
  8889. cb(cur, "ffn_norm", il);
  8890. // MLP
  8891. cur = build_ffn(cur,
  8892. model.layers[il].ffn_up, NULL, NULL,
  8893. NULL, NULL, NULL,
  8894. model.layers[il].ffn_down, NULL, NULL,
  8895. NULL,
  8896. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8897. cb(cur, "ffn_out", il);
  8898. // Post-MLP norm
  8899. cur = build_norm(cur,
  8900. model.layers[il].ffn_post_norm,
  8901. NULL,
  8902. LLM_NORM_RMS, il);
  8903. cb(cur, "post_mlp_norm", il);
  8904. }
  8905. // Add residual connection after post-MLP norm
  8906. inpL = ggml_add(ctx0, cur, ffn_inp);
  8907. cb(inpL, "l_out", il);
  8908. }
  8909. // Final norm
  8910. cur = build_norm(inpL,
  8911. model.output_norm,
  8912. NULL,
  8913. LLM_NORM_RMS, -1);
  8914. cb(cur, "result_norm", -1);
  8915. res->t_embd = cur;
  8916. // Output projection
  8917. cur = build_lora_mm(model.output, cur);
  8918. cb(cur, "result_output", -1);
  8919. res->t_logits = cur;
  8920. ggml_build_forward_expand(gf, cur);
  8921. }
  8922. };
  8923. struct llm_build_nemotron : public llm_graph_context {
  8924. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8925. const int64_t n_embd_head = hparams.n_embd_head_v;
  8926. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8927. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8928. ggml_tensor * cur;
  8929. ggml_tensor * inpL;
  8930. inpL = build_inp_embd(model.tok_embd);
  8931. // inp_pos - contains the positions
  8932. ggml_tensor * inp_pos = build_inp_pos();
  8933. auto * inp_attn = build_attn_inp_kv_unified();
  8934. for (int il = 0; il < n_layer; ++il) {
  8935. ggml_tensor * inpSA = inpL;
  8936. // norm
  8937. cur = build_norm(inpL,
  8938. model.layers[il].attn_norm,
  8939. model.layers[il].attn_norm_b,
  8940. LLM_NORM, il);
  8941. cb(cur, "attn_norm", il);
  8942. // self-attention
  8943. {
  8944. // compute Q and K and RoPE them
  8945. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8946. cb(Qcur, "Qcur", il);
  8947. if (model.layers[il].bq) {
  8948. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8949. cb(Qcur, "Qcur", il);
  8950. }
  8951. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8952. cb(Kcur, "Kcur", il);
  8953. if (model.layers[il].bk) {
  8954. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8955. cb(Kcur, "Kcur", il);
  8956. }
  8957. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8958. cb(Vcur, "Vcur", il);
  8959. if (model.layers[il].bv) {
  8960. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8961. cb(Vcur, "Vcur", il);
  8962. }
  8963. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8964. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8965. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8966. Qcur = ggml_rope_ext(
  8967. ctx0, Qcur, inp_pos, nullptr,
  8968. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8969. ext_factor, attn_factor, beta_fast, beta_slow
  8970. );
  8971. Kcur = ggml_rope_ext(
  8972. ctx0, Kcur, inp_pos, nullptr,
  8973. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8974. ext_factor, attn_factor, beta_fast, beta_slow
  8975. );
  8976. cb(Qcur, "Qcur", il);
  8977. cb(Kcur, "Kcur", il);
  8978. cb(Vcur, "Vcur", il);
  8979. cur = build_attn(inp_attn, gf,
  8980. model.layers[il].wo, model.layers[il].bo,
  8981. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8982. }
  8983. if (il == n_layer - 1) {
  8984. // skip computing output for unused tokens
  8985. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8986. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8987. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8988. }
  8989. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8990. cb(ffn_inp, "ffn_inp", il);
  8991. // feed-forward network
  8992. cur = build_norm(ffn_inp,
  8993. model.layers[il].ffn_norm,
  8994. model.layers[il].ffn_norm_b,
  8995. LLM_NORM, il);
  8996. cb(cur, "ffn_norm", il);
  8997. cur = build_ffn(cur,
  8998. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8999. NULL, NULL, NULL,
  9000. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9001. NULL,
  9002. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9003. cur = ggml_add(ctx0, cur, ffn_inp);
  9004. cb(cur, "ffn_out", il);
  9005. cur = build_cvec(cur, il);
  9006. cb(cur, "l_out", il);
  9007. // input for next layer
  9008. inpL = cur;
  9009. }
  9010. cur = inpL;
  9011. cur = build_norm(cur,
  9012. model.output_norm, model.output_norm_b,
  9013. LLM_NORM, -1);
  9014. cb(cur, "result_norm", -1);
  9015. res->t_embd = cur;
  9016. // lm_head
  9017. cur = build_lora_mm(model.output, cur);
  9018. cb(cur, "result_output", -1);
  9019. res->t_logits = cur;
  9020. ggml_build_forward_expand(gf, cur);
  9021. }
  9022. };
  9023. struct llm_build_exaone : public llm_graph_context {
  9024. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9025. const int64_t n_embd_head = hparams.n_embd_head_v;
  9026. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9027. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9028. ggml_tensor * cur;
  9029. ggml_tensor * inpL;
  9030. inpL = build_inp_embd(model.tok_embd);
  9031. // inp_pos - contains the positions
  9032. ggml_tensor * inp_pos = build_inp_pos();
  9033. auto * inp_attn = build_attn_inp_kv_unified();
  9034. for (int il = 0; il < n_layer; ++il) {
  9035. ggml_tensor * inpSA = inpL;
  9036. // norm
  9037. cur = build_norm(inpL,
  9038. model.layers[il].attn_norm, NULL,
  9039. LLM_NORM_RMS, il);
  9040. cb(cur, "attn_norm", il);
  9041. // self-attention
  9042. {
  9043. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9044. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  9045. // compute Q and K and RoPE them
  9046. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9047. cb(Qcur, "Qcur", il);
  9048. if (model.layers[il].bq) {
  9049. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9050. cb(Qcur, "Qcur", il);
  9051. }
  9052. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9053. cb(Kcur, "Kcur", il);
  9054. if (model.layers[il].bk) {
  9055. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9056. cb(Kcur, "Kcur", il);
  9057. }
  9058. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9059. cb(Vcur, "Vcur", il);
  9060. if (model.layers[il].bv) {
  9061. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9062. cb(Vcur, "Vcur", il);
  9063. }
  9064. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9065. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9066. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9067. Qcur = ggml_rope_ext(
  9068. ctx0, Qcur, inp_pos, rope_factors,
  9069. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9070. ext_factor, attn_factor, beta_fast, beta_slow
  9071. );
  9072. Kcur = ggml_rope_ext(
  9073. ctx0, Kcur, inp_pos, rope_factors,
  9074. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9075. ext_factor, attn_factor, beta_fast, beta_slow
  9076. );
  9077. cb(Qcur, "Qcur", il);
  9078. cb(Kcur, "Kcur", il);
  9079. cb(Vcur, "Vcur", il);
  9080. cur = build_attn(inp_attn, gf,
  9081. model.layers[il].wo, model.layers[il].bo,
  9082. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9083. }
  9084. if (il == n_layer - 1) {
  9085. // skip computing output for unused tokens
  9086. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9087. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9088. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9089. }
  9090. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9091. cb(ffn_inp, "ffn_inp", il);
  9092. // feed-forward network
  9093. cur = build_norm(ffn_inp,
  9094. model.layers[il].ffn_norm, NULL,
  9095. LLM_NORM_RMS, il);
  9096. cb(cur, "ffn_norm", il);
  9097. cur = build_ffn(cur,
  9098. model.layers[il].ffn_up, NULL, NULL,
  9099. model.layers[il].ffn_gate, NULL, NULL,
  9100. model.layers[il].ffn_down, NULL, NULL,
  9101. NULL,
  9102. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9103. cb(cur, "ffn_out", il);
  9104. cur = ggml_add(ctx0, cur, ffn_inp);
  9105. cb(cur, "ffn_out", il);
  9106. cur = build_cvec(cur, il);
  9107. cb(cur, "l_out", il);
  9108. // input for next layer
  9109. inpL = cur;
  9110. }
  9111. cur = inpL;
  9112. cur = build_norm(cur,
  9113. model.output_norm, NULL,
  9114. LLM_NORM_RMS, -1);
  9115. cb(cur, "result_norm", -1);
  9116. res->t_embd = cur;
  9117. // lm_head
  9118. cur = build_lora_mm(model.output, cur);
  9119. cb(cur, "result_output", -1);
  9120. res->t_logits = cur;
  9121. ggml_build_forward_expand(gf, cur);
  9122. }
  9123. };
  9124. struct llm_build_rwkv6_base : public llm_graph_context {
  9125. const llama_model & model;
  9126. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9127. }
  9128. ggml_tensor * build_rwkv6_channel_mix(
  9129. const llama_layer * layer,
  9130. ggml_tensor * cur,
  9131. ggml_tensor * x_prev,
  9132. llm_arch arch) const {
  9133. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9134. switch (arch) {
  9135. case LLM_ARCH_RWKV6:
  9136. {
  9137. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9138. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9139. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9140. ggml_tensor * k = ggml_sqr(
  9141. ctx0,
  9142. ggml_relu(
  9143. ctx0,
  9144. build_lora_mm(layer->channel_mix_key, xk)
  9145. )
  9146. );
  9147. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9148. } break;
  9149. default:
  9150. GGML_ABORT("fatal error");
  9151. }
  9152. return cur;
  9153. }
  9154. ggml_tensor * build_rwkv6_time_mix(
  9155. ggml_cgraph * gf,
  9156. ggml_tensor * cur,
  9157. ggml_tensor * x_prev,
  9158. ggml_tensor * state_copy,
  9159. ggml_tensor * state_mask,
  9160. const llama_ubatch & ubatch,
  9161. int il) const {
  9162. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9163. const auto n_tokens = ubatch.n_tokens;
  9164. const auto n_seqs = ubatch.n_seqs;
  9165. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9166. const auto n_embd = hparams.n_embd;
  9167. const auto head_size = hparams.wkv_head_size;
  9168. const auto n_head = n_embd / head_size;
  9169. const auto n_head_kv = hparams.n_head_kv(il);
  9170. const auto kv_head = kv_self->head;
  9171. const auto & layer = model.layers[il];
  9172. bool is_qrwkv = layer.time_mix_first == nullptr;
  9173. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9174. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9175. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9176. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9177. xxx = ggml_reshape_4d(
  9178. ctx0,
  9179. ggml_tanh(
  9180. ctx0,
  9181. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9182. ),
  9183. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9184. );
  9185. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9186. xxx = ggml_mul_mat(
  9187. ctx0,
  9188. ggml_reshape_4d(
  9189. ctx0,
  9190. layer.time_mix_w2,
  9191. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9192. ),
  9193. xxx
  9194. );
  9195. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9196. if (layer.time_mix_lerp_fused) {
  9197. // fusing these weights makes some performance improvement
  9198. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9199. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9200. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9201. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9202. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9203. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9204. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9205. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9206. } else {
  9207. // for backward compatibility
  9208. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9209. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9210. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9211. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9212. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9213. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9214. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9215. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9216. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9217. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9218. }
  9219. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9220. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9221. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9222. if (layer.time_mix_receptance_b) {
  9223. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9224. }
  9225. if (layer.time_mix_key_b) {
  9226. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9227. }
  9228. if (layer.time_mix_value_b) {
  9229. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9230. }
  9231. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9232. if (is_qrwkv) {
  9233. g = ggml_sigmoid(ctx0, g);
  9234. } else {
  9235. g = ggml_silu(ctx0, g);
  9236. }
  9237. if (n_head_kv != 0 && n_head_kv != n_head) {
  9238. GGML_ASSERT(n_head % n_head_kv == 0);
  9239. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9240. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9241. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9242. k = ggml_repeat(ctx0, k, tmp);
  9243. v = ggml_repeat(ctx0, v, tmp);
  9244. }
  9245. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9246. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9247. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9248. ggml_tensor * w = ggml_mul_mat(
  9249. ctx0,
  9250. layer.time_mix_decay_w2,
  9251. ggml_tanh(
  9252. ctx0,
  9253. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9254. )
  9255. );
  9256. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9257. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9258. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9259. if (is_qrwkv) {
  9260. // k = k * (1 - w)
  9261. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9262. }
  9263. ggml_tensor * wkv_state = build_copy_mask_state(
  9264. gf, kv_self->v_l[il], state_copy, state_mask,
  9265. hparams.n_embd_v_s(), n_seqs);
  9266. ggml_tensor * wkv_output;
  9267. if (is_qrwkv) {
  9268. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9269. } else {
  9270. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9271. }
  9272. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9273. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9274. ggml_build_forward_expand(
  9275. gf,
  9276. ggml_cpy(
  9277. ctx0,
  9278. wkv_state,
  9279. ggml_view_1d(
  9280. ctx0,
  9281. kv_self->v_l[il],
  9282. hparams.n_embd_v_s() * n_seqs,
  9283. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9284. )
  9285. )
  9286. );
  9287. if (!is_qrwkv) {
  9288. // group norm with head_count groups
  9289. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9290. cur = ggml_norm(ctx0, cur, 64e-5f);
  9291. // Convert back to regular vectors.
  9292. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9293. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9294. } else {
  9295. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9296. }
  9297. cur = ggml_mul(ctx0, cur, g);
  9298. cur = build_lora_mm(layer.time_mix_output, cur);
  9299. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9300. }
  9301. };
  9302. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9303. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9304. GGML_ASSERT(hparams.token_shift_count == 2);
  9305. ggml_tensor * cur;
  9306. ggml_tensor * inpL;
  9307. inpL = build_inp_embd(model.tok_embd);
  9308. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9309. ggml_tensor * state_copy = build_inp_s_copy();
  9310. ggml_tensor * state_mask = build_inp_s_mask();
  9311. const auto n_embd = hparams.n_embd;
  9312. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9313. const auto n_seqs = ubatch.n_seqs;
  9314. for (int il = 0; il < n_layer; ++il) {
  9315. const llama_layer * layer = &model.layers[il];
  9316. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9317. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9318. gf, state_copy, state_mask, ubatch, il
  9319. );
  9320. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9321. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9322. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9323. cb(att_norm, "attn_norm", il);
  9324. ggml_tensor * x_prev = ggml_concat(
  9325. ctx0,
  9326. att_shift,
  9327. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9328. 1
  9329. );
  9330. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9331. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9332. cb(ffn_inp, "ffn_inp", il);
  9333. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9334. cb(ffn_norm, "ffn_norm", il);
  9335. x_prev = ggml_concat(
  9336. ctx0,
  9337. ffn_shift,
  9338. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9339. 1
  9340. );
  9341. token_shift = ggml_concat(ctx0,
  9342. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9343. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9344. 1
  9345. );
  9346. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9347. if (il == n_layer - 1) {
  9348. // skip computing output for unused tokens
  9349. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9350. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9351. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9352. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9353. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9354. }
  9355. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9356. cur = ggml_add(ctx0, cur, ffn_inp);
  9357. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9358. cur = ggml_scale(ctx0, cur, 0.5F);
  9359. }
  9360. cur = build_cvec(cur, il);
  9361. cb(cur, "l_out", il);
  9362. // input for next layer
  9363. inpL = cur;
  9364. }
  9365. cur = inpL;
  9366. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9367. cb(cur, "result_norm", -1);
  9368. res->t_embd = cur;
  9369. cur = build_lora_mm(model.output, cur);
  9370. cb(cur, "result_output", -1);
  9371. res->t_logits = cur;
  9372. ggml_build_forward_expand(gf, cur);
  9373. }
  9374. };
  9375. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9376. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9377. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9378. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9379. ggml_tensor * cur;
  9380. ggml_tensor * inpL;
  9381. inpL = build_inp_embd(model.tok_embd);
  9382. ggml_tensor * state_copy = build_inp_s_copy();
  9383. ggml_tensor * state_mask = build_inp_s_mask();
  9384. const auto n_embd = hparams.n_embd;
  9385. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9386. const auto n_seqs = ubatch.n_seqs;
  9387. for (int il = 0; il < n_layer; ++il) {
  9388. const llama_layer * layer = &model.layers[il];
  9389. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9390. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9391. gf, state_copy, state_mask, ubatch, il
  9392. );
  9393. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9394. cb(att_norm, "attn_norm", il);
  9395. ggml_tensor * x_prev = ggml_concat(
  9396. ctx0,
  9397. token_shift,
  9398. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9399. 1
  9400. );
  9401. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9402. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9403. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9404. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9405. cb(ffn_inp, "ffn_inp", il);
  9406. if (il == n_layer - 1) {
  9407. // skip computing output for unused tokens
  9408. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9409. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9410. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9411. }
  9412. // feed-forward network
  9413. cur = build_norm(ffn_inp,
  9414. model.layers[il].ffn_norm, NULL,
  9415. LLM_NORM_RMS, il);
  9416. cb(cur, "ffn_norm", il);
  9417. cur = build_ffn(cur,
  9418. model.layers[il].ffn_up, NULL, NULL,
  9419. model.layers[il].ffn_gate, NULL, NULL,
  9420. model.layers[il].ffn_down, NULL, NULL,
  9421. NULL,
  9422. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9423. cb(cur, "ffn_out", il);
  9424. cur = ggml_add(ctx0, cur, ffn_inp);
  9425. cur = build_cvec(cur, il);
  9426. cb(cur, "l_out", il);
  9427. // input for next layer
  9428. inpL = cur;
  9429. }
  9430. cur = inpL;
  9431. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9432. cb(cur, "result_norm", -1);
  9433. res->t_embd = cur;
  9434. cur = build_lora_mm(model.output, cur);
  9435. cb(cur, "result_output", -1);
  9436. res->t_logits = cur;
  9437. ggml_build_forward_expand(gf, cur);
  9438. }
  9439. };
  9440. struct llm_build_rwkv7_base : public llm_graph_context {
  9441. const llama_model & model;
  9442. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9443. }
  9444. ggml_tensor * build_rwkv7_channel_mix(
  9445. const llama_layer * layer,
  9446. ggml_tensor * cur,
  9447. ggml_tensor * x_prev,
  9448. llm_arch arch) const {
  9449. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9450. switch (arch) {
  9451. case LLM_ARCH_RWKV7:
  9452. {
  9453. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9454. ggml_tensor * k = ggml_sqr(
  9455. ctx0,
  9456. ggml_relu(
  9457. ctx0,
  9458. build_lora_mm(layer->channel_mix_key, xk)
  9459. )
  9460. );
  9461. cur = build_lora_mm(layer->channel_mix_value, k);
  9462. } break;
  9463. default:
  9464. GGML_ABORT("fatal error");
  9465. }
  9466. return cur;
  9467. }
  9468. ggml_tensor * build_rwkv7_time_mix(
  9469. ggml_cgraph * gf,
  9470. ggml_tensor * cur,
  9471. ggml_tensor * x_prev,
  9472. ggml_tensor * state_copy,
  9473. ggml_tensor * state_mask,
  9474. ggml_tensor *& first_layer_value,
  9475. const llama_ubatch & ubatch,
  9476. int il) const {
  9477. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9478. const auto n_tokens = ubatch.n_tokens;
  9479. const auto n_seqs = ubatch.n_seqs;
  9480. const auto n_embd = hparams.n_embd;
  9481. const auto head_size = hparams.wkv_head_size;
  9482. const auto head_count = n_embd / head_size;
  9483. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9484. const auto kv_head = kv_self->head;
  9485. const auto & layer = model.layers[il];
  9486. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9487. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9488. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9489. sx = ggml_repeat(ctx0, sx, dummy);
  9490. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9491. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9492. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9493. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9494. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9495. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9496. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9497. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9498. ggml_tensor * w = ggml_add(
  9499. ctx0,
  9500. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9501. layer.time_mix_w0
  9502. );
  9503. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9504. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9505. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9506. if (first_layer_value == nullptr) {
  9507. first_layer_value = v;
  9508. } else {
  9509. // Add the first layer value as a residual connection.
  9510. v = ggml_add(ctx0, v,
  9511. ggml_mul(ctx0,
  9512. ggml_sub(ctx0, first_layer_value, v),
  9513. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9514. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9515. layer.time_mix_v0
  9516. )
  9517. )
  9518. )
  9519. );
  9520. }
  9521. ggml_tensor * g = nullptr;
  9522. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9523. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9524. }
  9525. ggml_tensor * a = ggml_sigmoid(ctx0,
  9526. ggml_add(
  9527. ctx0,
  9528. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9529. layer.time_mix_a0
  9530. )
  9531. );
  9532. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9533. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9534. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9535. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9536. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9537. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9538. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9539. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9540. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9541. ggml_tensor * wkv_state = build_copy_mask_state(
  9542. gf, kv_self->v_l[il], state_copy, state_mask,
  9543. hparams.n_embd_v_s(), n_seqs);
  9544. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9545. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9546. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9547. ggml_build_forward_expand(
  9548. gf,
  9549. ggml_cpy(
  9550. ctx0,
  9551. wkv_state,
  9552. ggml_view_1d(
  9553. ctx0,
  9554. kv_self->v_l[il],
  9555. hparams.n_embd_v_s() * n_seqs,
  9556. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9557. )
  9558. )
  9559. );
  9560. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9561. // group norm with head_count groups
  9562. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9563. cur = ggml_norm(ctx0, cur, 64e-5f);
  9564. // Convert back to regular vectors.
  9565. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9566. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9567. } else {
  9568. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9569. }
  9570. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9571. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9572. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9573. if (has_gating) {
  9574. cur = ggml_mul(ctx0, cur, g);
  9575. }
  9576. cur = build_lora_mm(layer.time_mix_output, cur);
  9577. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9578. }
  9579. };
  9580. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9581. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9582. GGML_ASSERT(hparams.token_shift_count == 2);
  9583. ggml_tensor * cur;
  9584. ggml_tensor * inpL;
  9585. ggml_tensor * v_first = nullptr;
  9586. inpL = build_inp_embd(model.tok_embd);
  9587. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9588. ggml_tensor * state_copy = build_inp_s_copy();
  9589. ggml_tensor * state_mask = build_inp_s_mask();
  9590. const auto n_embd = hparams.n_embd;
  9591. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9592. const auto n_seqs = ubatch.n_seqs;
  9593. for (int il = 0; il < n_layer; ++il) {
  9594. const llama_layer * layer = &model.layers[il];
  9595. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9596. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9597. gf, state_copy, state_mask, ubatch, il
  9598. );
  9599. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9600. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9601. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9602. cb(att_norm, "attn_norm", il);
  9603. ggml_tensor * x_prev = ggml_concat(
  9604. ctx0,
  9605. att_shift,
  9606. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9607. 1
  9608. );
  9609. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9610. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9611. cb(ffn_inp, "ffn_inp", il);
  9612. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9613. cb(ffn_norm, "ffn_norm", il);
  9614. x_prev = ggml_concat(
  9615. ctx0,
  9616. ffn_shift,
  9617. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9618. 1
  9619. );
  9620. token_shift = ggml_concat(ctx0,
  9621. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9622. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9623. 1
  9624. );
  9625. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9626. if (il == n_layer - 1) {
  9627. // skip computing output for unused tokens
  9628. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9629. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9630. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9631. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9632. }
  9633. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9634. cur = ggml_add(ctx0, cur, ffn_inp);
  9635. cur = build_cvec(cur, il);
  9636. cb(cur, "l_out", il);
  9637. // input for next layer
  9638. inpL = cur;
  9639. }
  9640. cur = inpL;
  9641. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9642. cb(cur, "result_norm", -1);
  9643. res->t_embd = cur;
  9644. cur = build_lora_mm(model.output, cur);
  9645. cb(cur, "result_output", -1);
  9646. res->t_logits = cur;
  9647. ggml_build_forward_expand(gf, cur);
  9648. }
  9649. };
  9650. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9651. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9652. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9653. ggml_tensor * cur;
  9654. ggml_tensor * inpL;
  9655. ggml_tensor * v_first = nullptr;
  9656. inpL = build_inp_embd(model.tok_embd);
  9657. ggml_tensor * state_copy = build_inp_s_copy();
  9658. ggml_tensor * state_mask = build_inp_s_mask();
  9659. const auto n_embd = hparams.n_embd;
  9660. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9661. const auto n_seqs = ubatch.n_seqs;
  9662. for (int il = 0; il < n_layer; ++il) {
  9663. const llama_layer * layer = &model.layers[il];
  9664. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9665. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9666. gf, state_copy, state_mask, ubatch, il
  9667. );
  9668. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9669. cb(att_norm, "attn_norm", il);
  9670. ggml_tensor * x_prev = ggml_concat(
  9671. ctx0,
  9672. token_shift,
  9673. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9674. 1
  9675. );
  9676. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9677. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9678. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9679. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9680. cb(ffn_inp, "ffn_inp", il);
  9681. if (il == n_layer - 1) {
  9682. // skip computing output for unused tokens
  9683. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9684. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9685. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9686. }
  9687. // feed-forward network
  9688. cur = build_norm(ffn_inp,
  9689. model.layers[il].ffn_norm, NULL,
  9690. LLM_NORM_RMS, il);
  9691. cb(cur, "ffn_norm", il);
  9692. cur = build_ffn(cur,
  9693. model.layers[il].ffn_up, NULL, NULL,
  9694. model.layers[il].ffn_gate, NULL, NULL,
  9695. model.layers[il].ffn_down, NULL, NULL,
  9696. NULL,
  9697. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9698. cb(cur, "ffn_out", il);
  9699. cur = ggml_add(ctx0, cur, ffn_inp);
  9700. cur = build_cvec(cur, il);
  9701. cb(cur, "l_out", il);
  9702. // input for next layer
  9703. inpL = cur;
  9704. }
  9705. cur = inpL;
  9706. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9707. cb(cur, "result_norm", -1);
  9708. res->t_embd = cur;
  9709. cur = build_lora_mm(model.output, cur);
  9710. cb(cur, "result_output", -1);
  9711. res->t_logits = cur;
  9712. ggml_build_forward_expand(gf, cur);
  9713. }
  9714. };
  9715. struct llm_build_granite : public llm_graph_context {
  9716. llm_build_granite(
  9717. const llama_model & model,
  9718. const llm_graph_params & params,
  9719. ggml_cgraph * gf,
  9720. const bool use_rope = true)
  9721. : llm_graph_context(params) {
  9722. const int64_t n_embd_head = hparams.n_embd_head_v;
  9723. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9724. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9725. ggml_tensor * cur;
  9726. ggml_tensor * inpL;
  9727. inpL = build_inp_embd(model.tok_embd);
  9728. // inp_pos - built only if rope enabled
  9729. ggml_tensor * inp_pos = nullptr;
  9730. if (use_rope) {
  9731. inp_pos = build_inp_pos();
  9732. }
  9733. auto * inp_attn = build_attn_inp_kv_unified();
  9734. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  9735. for (int il = 0; il < n_layer; ++il) {
  9736. ggml_tensor * inpSA = inpL;
  9737. // norm
  9738. cur = build_norm(inpL,
  9739. model.layers[il].attn_norm, NULL,
  9740. LLM_NORM_RMS, il);
  9741. cb(cur, "attn_norm", il);
  9742. // self-attention
  9743. {
  9744. // compute Q and K and (optionally) RoPE them
  9745. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9746. cb(Qcur, "Qcur", il);
  9747. if (model.layers[il].bq) {
  9748. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9749. cb(Qcur, "Qcur", il);
  9750. }
  9751. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9752. cb(Kcur, "Kcur", il);
  9753. if (model.layers[il].bk) {
  9754. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9755. cb(Kcur, "Kcur", il);
  9756. }
  9757. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9758. cb(Vcur, "Vcur", il);
  9759. if (model.layers[il].bv) {
  9760. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9761. cb(Vcur, "Vcur", il);
  9762. }
  9763. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9764. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9765. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9766. if (use_rope) {
  9767. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  9768. Qcur = ggml_rope_ext(
  9769. ctx0, Qcur, inp_pos, rope_factors,
  9770. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9771. ext_factor, attn_factor, beta_fast, beta_slow
  9772. );
  9773. Kcur = ggml_rope_ext(
  9774. ctx0, Kcur, inp_pos, rope_factors,
  9775. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9776. ext_factor, attn_factor, beta_fast, beta_slow
  9777. );
  9778. }
  9779. cb(Qcur, "Qcur", il);
  9780. cb(Kcur, "Kcur", il);
  9781. cb(Vcur, "Vcur", il);
  9782. cur = build_attn(inp_attn, gf,
  9783. model.layers[il].wo, model.layers[il].bo,
  9784. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  9785. cb(cur, "attn_out", il);
  9786. }
  9787. if (il == n_layer - 1) {
  9788. // skip computing output for unused tokens
  9789. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9790. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9791. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9792. }
  9793. // For Granite architectures - scale residual
  9794. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9795. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9796. cb(ffn_inp, "ffn_inp", il);
  9797. // feed-forward network (non-MoE)
  9798. if (model.layers[il].ffn_gate_inp == nullptr) {
  9799. cur = build_norm(ffn_inp,
  9800. model.layers[il].ffn_norm, NULL,
  9801. LLM_NORM_RMS, il);
  9802. cb(cur, "ffn_norm", il);
  9803. cur = build_ffn(cur,
  9804. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9805. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  9806. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9807. NULL,
  9808. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9809. cb(cur, "ffn_out", il);
  9810. } else {
  9811. // MoE branch
  9812. cur = build_norm(ffn_inp,
  9813. model.layers[il].ffn_norm, NULL,
  9814. LLM_NORM_RMS, il);
  9815. cb(cur, "ffn_norm", il);
  9816. ggml_tensor * moe_out = build_moe_ffn(cur,
  9817. model.layers[il].ffn_gate_inp,
  9818. model.layers[il].ffn_up_exps,
  9819. model.layers[il].ffn_gate_exps,
  9820. model.layers[il].ffn_down_exps,
  9821. nullptr,
  9822. n_expert, n_expert_used,
  9823. LLM_FFN_SILU, true,
  9824. false, 0.0,
  9825. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  9826. il);
  9827. cb(moe_out, "ffn_moe_out", il);
  9828. // For Granite MoE Shared
  9829. if (hparams.n_ff_shexp > 0) {
  9830. ggml_tensor * ffn_shexp = build_ffn(cur,
  9831. model.layers[il].ffn_up_shexp, NULL, NULL,
  9832. model.layers[il].ffn_gate_shexp, NULL, NULL,
  9833. model.layers[il].ffn_down_shexp, NULL, NULL,
  9834. NULL,
  9835. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9836. cb(ffn_shexp, "ffn_shexp", il);
  9837. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9838. cb(cur, "ffn_out", il);
  9839. } else {
  9840. cur = moe_out;
  9841. }
  9842. }
  9843. // For Granite architectures - scale residual
  9844. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9845. cur = ggml_add(ctx0, cur, ffn_inp);
  9846. cb(cur, "ffn_out", il);
  9847. cur = build_cvec(cur, il);
  9848. cb(cur, "l_out", il);
  9849. // input for next layer
  9850. inpL = cur;
  9851. }
  9852. cur = inpL;
  9853. cur = build_norm(cur,
  9854. model.output_norm, NULL,
  9855. LLM_NORM_RMS, -1);
  9856. cb(cur, "result_norm", -1);
  9857. res->t_embd = cur;
  9858. // lm_head
  9859. cur = build_lora_mm(model.output, cur);
  9860. // For Granite architectures - scale logits
  9861. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  9862. cb(cur, "result_output", -1);
  9863. res->t_logits = cur;
  9864. ggml_build_forward_expand(gf, cur);
  9865. }
  9866. };
  9867. // ref: https://github.com/facebookresearch/chameleon
  9868. // based on the original build_llama() function, changes:
  9869. // * qk-norm
  9870. // * swin-norm
  9871. // * removed bias
  9872. // * removed MoE
  9873. struct llm_build_chameleon : public llm_graph_context {
  9874. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9875. const int64_t n_embd_head = hparams.n_embd_head_v;
  9876. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9877. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9878. ggml_tensor * cur;
  9879. ggml_tensor * inpL;
  9880. inpL = build_inp_embd(model.tok_embd);
  9881. // inp_pos - contains the positions
  9882. ggml_tensor * inp_pos = build_inp_pos();
  9883. auto * inp_attn = build_attn_inp_kv_unified();
  9884. for (int il = 0; il < n_layer; ++il) {
  9885. ggml_tensor * inpSA = inpL;
  9886. // norm
  9887. if (hparams.swin_norm) {
  9888. cur = inpL;
  9889. } else {
  9890. cur = build_norm(inpL,
  9891. model.layers[il].attn_norm, NULL,
  9892. LLM_NORM_RMS, il);
  9893. cb(cur, "attn_norm", il);
  9894. }
  9895. // self-attention
  9896. {
  9897. // compute Q and K and RoPE them
  9898. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9899. cb(Qcur, "Qcur", il);
  9900. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9901. cb(Kcur, "Kcur", il);
  9902. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9903. cb(Vcur, "Vcur", il);
  9904. if (model.layers[il].attn_q_norm) {
  9905. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9906. ggml_element_size(Qcur) * n_embd_head,
  9907. ggml_element_size(Qcur) * n_embd_head * n_head,
  9908. 0);
  9909. cb(Qcur, "Qcur", il);
  9910. Qcur = build_norm(Qcur,
  9911. model.layers[il].attn_q_norm,
  9912. model.layers[il].attn_q_norm_b,
  9913. LLM_NORM, il);
  9914. cb(Qcur, "Qcur", il);
  9915. }
  9916. if (model.layers[il].attn_k_norm) {
  9917. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9918. ggml_element_size(Kcur) * n_embd_head,
  9919. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9920. 0);
  9921. cb(Kcur, "Kcur", il);
  9922. Kcur = build_norm(Kcur,
  9923. model.layers[il].attn_k_norm,
  9924. model.layers[il].attn_k_norm_b,
  9925. LLM_NORM, il);
  9926. cb(Kcur, "Kcur", il);
  9927. }
  9928. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9929. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9930. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9931. Qcur = ggml_rope_ext(
  9932. ctx0, Qcur, inp_pos, nullptr,
  9933. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9934. ext_factor, attn_factor, beta_fast, beta_slow
  9935. );
  9936. Kcur = ggml_rope_ext(
  9937. ctx0, Kcur, inp_pos, nullptr,
  9938. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9939. ext_factor, attn_factor, beta_fast, beta_slow
  9940. );
  9941. cb(Qcur, "Qcur", il);
  9942. cb(Kcur, "Kcur", il);
  9943. cb(Vcur, "Vcur", il);
  9944. cur = build_attn(inp_attn, gf,
  9945. model.layers[il].wo, nullptr,
  9946. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9947. if (hparams.swin_norm) {
  9948. cur = build_norm(cur,
  9949. model.layers[il].attn_norm, NULL,
  9950. LLM_NORM_RMS, il);
  9951. }
  9952. }
  9953. if (il == n_layer - 1) {
  9954. // skip computing output for unused tokens
  9955. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9956. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9957. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9958. }
  9959. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9960. cb(ffn_inp, "ffn_inp", il);
  9961. // feed-forward network
  9962. if (!hparams.swin_norm) {
  9963. cur = build_norm(ffn_inp,
  9964. model.layers[il].ffn_norm, NULL,
  9965. LLM_NORM_RMS, il);
  9966. cb(cur, "ffn_norm", il);
  9967. }
  9968. cur = build_ffn(cur,
  9969. model.layers[il].ffn_up, NULL, NULL,
  9970. model.layers[il].ffn_gate, NULL, NULL,
  9971. model.layers[il].ffn_down, NULL, NULL,
  9972. NULL,
  9973. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9974. cb(cur, "ffn_out", il);
  9975. if (hparams.swin_norm) {
  9976. cur = build_norm(cur,
  9977. model.layers[il].ffn_norm, NULL,
  9978. LLM_NORM_RMS, il);
  9979. cb(cur, "ffn_norm", il);
  9980. }
  9981. cur = ggml_add(ctx0, cur, ffn_inp);
  9982. cb(cur, "ffn_out", il);
  9983. cur = build_cvec(cur, il);
  9984. cb(cur, "l_out", il);
  9985. // input for next layer
  9986. inpL = cur;
  9987. }
  9988. cur = inpL;
  9989. cur = build_norm(cur,
  9990. model.output_norm, NULL,
  9991. LLM_NORM_RMS, -1);
  9992. cb(cur, "result_norm", -1);
  9993. res->t_embd = cur;
  9994. // lm_head
  9995. cur = build_lora_mm(model.output, cur);
  9996. cb(cur, "result_output_with_img_logits", -1);
  9997. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9998. // Needs to be removed once image outputs are supported.
  9999. int img_token_end_idx = 8196;
  10000. int img_token_start_idx = 4;
  10001. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  10002. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  10003. // which ensures that text token values are always at least larger than image token values
  10004. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  10005. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  10006. cb(img_logits, "img_logits", -1);
  10007. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  10008. cb(cur, "result_output", -1);
  10009. res->t_logits = cur;
  10010. ggml_build_forward_expand(gf, cur);
  10011. }
  10012. };
  10013. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  10014. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10015. ggml_tensor * cur;
  10016. ggml_tensor * inpL;
  10017. inpL = build_inp_embd(model.tok_embd);
  10018. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  10019. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  10020. cur = ggml_add(ctx0, cur, model.conv1d_b);
  10021. // posnet
  10022. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  10023. const auto & layer = model.layers[il].posnet;
  10024. inpL = cur;
  10025. switch (il) {
  10026. case 0:
  10027. case 1:
  10028. case 3:
  10029. case 4:
  10030. {
  10031. cur = build_norm(cur,
  10032. layer.norm1,
  10033. layer.norm1_b,
  10034. LLM_NORM_GROUP, 0);
  10035. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10036. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  10037. cur = ggml_add(ctx0, cur, layer.conv1_b);
  10038. cur = build_norm(cur,
  10039. layer.norm2,
  10040. layer.norm2_b,
  10041. LLM_NORM_GROUP, 0);
  10042. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10043. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  10044. cur = ggml_add(ctx0, cur, layer.conv2_b);
  10045. cur = ggml_add(ctx0, cur, inpL);
  10046. } break;
  10047. case 2:
  10048. {
  10049. cur = build_norm(cur,
  10050. layer.attn_norm,
  10051. layer.attn_norm_b,
  10052. LLM_NORM_GROUP, 0);
  10053. ggml_tensor * q;
  10054. ggml_tensor * k;
  10055. ggml_tensor * v;
  10056. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  10057. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  10058. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  10059. q = ggml_add(ctx0, q, layer.attn_q_b);
  10060. k = ggml_add(ctx0, k, layer.attn_k_b);
  10061. v = ggml_add(ctx0, v, layer.attn_v_b);
  10062. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  10063. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  10064. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  10065. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  10066. cur = ggml_mul_mat(ctx0, kq, v);
  10067. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  10068. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  10069. cur = ggml_add(ctx0, cur, inpL);
  10070. } break;
  10071. case 5:
  10072. {
  10073. cur = build_norm(cur,
  10074. layer.norm,
  10075. layer.norm_b,
  10076. LLM_NORM_GROUP, 0);
  10077. } break;
  10078. default: GGML_ABORT("unknown posnet layer");
  10079. };
  10080. }
  10081. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10082. cur = build_norm(cur,
  10083. model.tok_norm,
  10084. model.tok_norm_b,
  10085. LLM_NORM, -1);
  10086. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10087. inpL = cur;
  10088. // convnext
  10089. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  10090. const auto & layer = model.layers[il].convnext;
  10091. cur = inpL;
  10092. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  10093. cur = ggml_add(ctx0, cur, layer.dw_b);
  10094. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10095. cur = build_norm(cur,
  10096. layer.norm,
  10097. layer.norm_b,
  10098. LLM_NORM, -1);
  10099. cur = build_ffn(cur,
  10100. layer.pw1, layer.pw1_b, NULL,
  10101. NULL, NULL, NULL,
  10102. layer.pw2, layer.pw2_b, NULL,
  10103. NULL,
  10104. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  10105. cur = ggml_mul(ctx0, cur, layer.gamma);
  10106. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10107. inpL = ggml_add(ctx0, cur, inpL);
  10108. }
  10109. cur = inpL;
  10110. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10111. cur = build_norm(cur,
  10112. model.output_norm,
  10113. model.output_norm_b,
  10114. LLM_NORM, -1);
  10115. // lm_head
  10116. cur = build_lora_mm(model.output, cur);
  10117. cur = ggml_add(ctx0, cur, model.output_b);
  10118. cb(cur, "result_embd", -1);
  10119. res->t_embd = cur;
  10120. ggml_build_forward_expand(gf, cur);
  10121. }
  10122. };
  10123. struct llm_build_plm : public llm_graph_context {
  10124. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10125. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  10126. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  10127. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  10128. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  10129. ggml_tensor * cur;
  10130. ggml_tensor * inpL;
  10131. // {n_embd, n_tokens}
  10132. inpL = build_inp_embd(model.tok_embd);
  10133. // inp_pos - contains the positions
  10134. ggml_tensor * inp_pos = build_inp_pos();
  10135. auto * inp_attn = build_attn_inp_kv_unified();
  10136. for (int il = 0; il < n_layer; ++il) {
  10137. ggml_tensor * inpSA = inpL;
  10138. // norm
  10139. cur = build_norm(inpL,
  10140. model.layers[il].attn_norm, NULL,
  10141. LLM_NORM_RMS, il);
  10142. cb(cur, "attn_norm", il);
  10143. // self_attention
  10144. {
  10145. ggml_tensor * q = NULL;
  10146. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10147. cb(q, "q", il);
  10148. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10149. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  10150. ggml_row_size(q->type, hparams.n_embd_head_k),
  10151. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10152. 0);
  10153. cb(q_nope, "q_nope", il);
  10154. // and {n_head * n_embd_head_qk_rope, n_tokens}
  10155. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  10156. ggml_row_size(q->type, hparams.n_embd_head_k),
  10157. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10158. ggml_row_size(q->type, n_embd_head_qk_nope));
  10159. cb(q_pe, "q_pe", il);
  10160. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10161. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10162. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10163. // split into {kv_lora_rank, n_tokens}
  10164. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10165. kv_pe_compresseed->nb[1],
  10166. 0);
  10167. cb(kv_compressed, "kv_compressed", il);
  10168. // and {n_embd_head_qk_rope, n_tokens}
  10169. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10170. kv_pe_compresseed->nb[1],
  10171. kv_pe_compresseed->nb[1],
  10172. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10173. cb(k_pe, "k_pe", il);
  10174. kv_compressed = build_norm(kv_compressed,
  10175. model.layers[il].attn_kv_a_norm, NULL,
  10176. LLM_NORM_RMS, il);
  10177. cb(kv_compressed, "kv_compressed", il);
  10178. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10179. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10180. cb(kv, "kv", il);
  10181. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10182. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10183. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10184. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10185. 0);
  10186. cb(k_nope, "k_nope", il);
  10187. // and {n_head * n_embd_head_v, n_tokens}
  10188. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10189. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10190. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10191. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10192. cb(v_states, "v_states", il);
  10193. v_states = ggml_cont(ctx0, v_states);
  10194. cb(v_states, "v_states", il);
  10195. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10196. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10197. 0);
  10198. cb(v_states, "v_states", il);
  10199. q_pe = ggml_rope_ext(
  10200. ctx0, q_pe, inp_pos, nullptr,
  10201. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10202. ext_factor, attn_factor, beta_fast, beta_slow
  10203. );
  10204. cb(q_pe, "q_pe", il);
  10205. // shared RoPE key
  10206. k_pe = ggml_rope_ext(
  10207. ctx0, k_pe, inp_pos, nullptr,
  10208. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10209. ext_factor, attn_factor, beta_fast, beta_slow
  10210. );
  10211. cb(k_pe, "k_pe", il);
  10212. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10213. cb(q_states, "q_states", il);
  10214. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10215. cb(k_states, "k_states", il);
  10216. cur = build_attn(inp_attn, gf,
  10217. model.layers[il].wo, NULL,
  10218. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10219. }
  10220. if (il == n_layer - 1) {
  10221. // skip computing output for unused tokens
  10222. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10223. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10224. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10225. }
  10226. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10227. cb(ffn_inp, "ffn_inp", il);
  10228. cur = build_norm(ffn_inp,
  10229. model.layers[il].ffn_norm, NULL,
  10230. LLM_NORM_RMS, il);
  10231. cb(cur, "ffn_norm", il);
  10232. cur = build_ffn(cur,
  10233. model.layers[il].ffn_up, NULL, NULL,
  10234. NULL, NULL, NULL,
  10235. model.layers[il].ffn_down, NULL, NULL,
  10236. NULL,
  10237. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10238. cb(cur, "ffn_out", il);
  10239. cur = ggml_add(ctx0, cur, ffn_inp);
  10240. cur = build_cvec(cur, il);
  10241. cb(cur, "l_out", il);
  10242. // input for next layer
  10243. inpL = cur;
  10244. }
  10245. cur = inpL;
  10246. cur = build_norm(cur,
  10247. model.output_norm, NULL,
  10248. LLM_NORM_RMS, -1);
  10249. cb(cur, "result_norm", -1);
  10250. res->t_embd = cur;
  10251. cur = build_lora_mm(model.output, cur);
  10252. cb(cur, "result_output", -1);
  10253. res->t_logits = cur;
  10254. ggml_build_forward_expand(gf, cur);
  10255. }
  10256. };
  10257. struct llm_build_bailingmoe : public llm_graph_context {
  10258. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10259. ggml_tensor * cur;
  10260. ggml_tensor * inpL;
  10261. inpL = build_inp_embd(model.tok_embd);
  10262. // inp_pos - contains the positions
  10263. ggml_tensor * inp_pos = build_inp_pos();
  10264. auto * inp_attn = build_attn_inp_kv_unified();
  10265. for (int il = 0; il < n_layer; ++il) {
  10266. ggml_tensor * inpSA = inpL;
  10267. // norm
  10268. cur = build_norm(inpL,
  10269. model.layers[il].attn_norm, NULL,
  10270. LLM_NORM_RMS, il);
  10271. cb(cur, "attn_norm", il);
  10272. // self-attention
  10273. {
  10274. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10275. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  10276. // compute Q and K and RoPE them
  10277. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10278. cb(Qcur, "Qcur", il);
  10279. if (model.layers[il].bq) {
  10280. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10281. cb(Qcur, "Qcur", il);
  10282. }
  10283. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10284. cb(Kcur, "Kcur", il);
  10285. if (model.layers[il].bk) {
  10286. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10287. cb(Kcur, "Kcur", il);
  10288. }
  10289. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10290. cb(Vcur, "Vcur", il);
  10291. if (model.layers[il].bv) {
  10292. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10293. cb(Vcur, "Vcur", il);
  10294. }
  10295. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10296. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10297. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10298. Qcur = ggml_rope_ext(
  10299. ctx0, Qcur, inp_pos, rope_factors,
  10300. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10301. ext_factor, attn_factor, beta_fast, beta_slow
  10302. );
  10303. Kcur = ggml_rope_ext(
  10304. ctx0, Kcur, inp_pos, rope_factors,
  10305. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10306. ext_factor, attn_factor, beta_fast, beta_slow
  10307. );
  10308. cb(Qcur, "Qcur", il);
  10309. cb(Kcur, "Kcur", il);
  10310. cb(Vcur, "Vcur", il);
  10311. cur = build_attn(inp_attn, gf,
  10312. model.layers[il].wo, model.layers[il].bo,
  10313. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10314. }
  10315. if (il == n_layer - 1) {
  10316. // skip computing output for unused tokens
  10317. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10318. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10319. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10320. }
  10321. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10322. cb(ffn_inp, "ffn_inp", il);
  10323. cur = build_norm(ffn_inp,
  10324. model.layers[il].ffn_norm, NULL,
  10325. LLM_NORM_RMS, il);
  10326. cb(cur, "ffn_norm", il);
  10327. ggml_tensor * moe_out =
  10328. build_moe_ffn(cur,
  10329. model.layers[il].ffn_gate_inp,
  10330. model.layers[il].ffn_up_exps,
  10331. model.layers[il].ffn_gate_exps,
  10332. model.layers[il].ffn_down_exps,
  10333. nullptr,
  10334. n_expert, n_expert_used,
  10335. LLM_FFN_SILU, hparams.expert_weights_norm,
  10336. false, hparams.expert_weights_scale,
  10337. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10338. il);
  10339. cb(moe_out, "ffn_moe_out", il);
  10340. // FFN shared expert
  10341. {
  10342. ggml_tensor * ffn_shexp = build_ffn(cur,
  10343. model.layers[il].ffn_up_shexp, NULL, NULL,
  10344. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10345. model.layers[il].ffn_down_shexp, NULL, NULL,
  10346. NULL,
  10347. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10348. cb(ffn_shexp, "ffn_shexp", il);
  10349. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10350. cb(cur, "ffn_out", il);
  10351. }
  10352. cur = ggml_add(ctx0, cur, ffn_inp);
  10353. cur = build_cvec(cur, il);
  10354. cb(cur, "l_out", il);
  10355. // input for next layer
  10356. inpL = cur;
  10357. }
  10358. cur = inpL;
  10359. cur = build_norm(cur,
  10360. model.output_norm, NULL,
  10361. LLM_NORM_RMS, -1);
  10362. cb(cur, "result_norm", -1);
  10363. res->t_embd = cur;
  10364. // lm_head
  10365. cur = build_lora_mm(model.output, cur);
  10366. cb(cur, "result_output", -1);
  10367. res->t_logits = cur;
  10368. ggml_build_forward_expand(gf, cur);
  10369. }
  10370. };
  10371. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10372. llama_memory_i * res;
  10373. switch (arch) {
  10374. case LLM_ARCH_BERT:
  10375. case LLM_ARCH_JINA_BERT_V2:
  10376. case LLM_ARCH_NOMIC_BERT:
  10377. case LLM_ARCH_NOMIC_BERT_MOE:
  10378. {
  10379. res = nullptr;
  10380. } break;
  10381. case LLM_ARCH_MAMBA:
  10382. case LLM_ARCH_RWKV6:
  10383. case LLM_ARCH_RWKV6QWEN2:
  10384. case LLM_ARCH_RWKV7:
  10385. case LLM_ARCH_ARWKV7:
  10386. {
  10387. res = new llama_kv_cache_recurrent(
  10388. *this,
  10389. GGML_TYPE_F32,
  10390. GGML_TYPE_F32,
  10391. cparams.offload_kqv,
  10392. std::max((uint32_t) 1, cparams.n_seq_max));
  10393. } break;
  10394. default:
  10395. {
  10396. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10397. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10398. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10399. res = new llama_kv_cache_unified(
  10400. *this,
  10401. params.type_k,
  10402. params.type_v,
  10403. !cparams.flash_attn,
  10404. cparams.offload_kqv,
  10405. cparams.n_ctx,
  10406. padding);
  10407. }
  10408. }
  10409. return res;
  10410. }
  10411. llm_graph_result_ptr llama_model::build_graph(
  10412. const llm_graph_params & params,
  10413. ggml_cgraph * gf,
  10414. llm_graph_type type) const {
  10415. std::unique_ptr<llm_graph_context> llm;
  10416. switch (arch) {
  10417. case LLM_ARCH_LLAMA:
  10418. case LLM_ARCH_LLAMA4:
  10419. case LLM_ARCH_MINICPM:
  10420. {
  10421. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10422. } break;
  10423. case LLM_ARCH_DECI:
  10424. {
  10425. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10426. } break;
  10427. case LLM_ARCH_BAICHUAN:
  10428. {
  10429. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10430. } break;
  10431. case LLM_ARCH_FALCON:
  10432. {
  10433. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10434. } break;
  10435. case LLM_ARCH_GROK:
  10436. {
  10437. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10438. } break;
  10439. case LLM_ARCH_STARCODER:
  10440. {
  10441. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10442. } break;
  10443. case LLM_ARCH_REFACT:
  10444. {
  10445. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10446. } break;
  10447. case LLM_ARCH_BERT:
  10448. case LLM_ARCH_JINA_BERT_V2:
  10449. case LLM_ARCH_NOMIC_BERT:
  10450. case LLM_ARCH_NOMIC_BERT_MOE:
  10451. {
  10452. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10453. } break;
  10454. case LLM_ARCH_BLOOM:
  10455. {
  10456. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10457. } break;
  10458. case LLM_ARCH_MPT:
  10459. {
  10460. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10461. } break;
  10462. case LLM_ARCH_STABLELM:
  10463. {
  10464. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10465. } break;
  10466. case LLM_ARCH_QWEN:
  10467. {
  10468. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10469. } break;
  10470. case LLM_ARCH_QWEN2:
  10471. {
  10472. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10473. } break;
  10474. case LLM_ARCH_QWEN2VL:
  10475. {
  10476. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10477. } break;
  10478. case LLM_ARCH_QWEN2MOE:
  10479. {
  10480. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10481. } break;
  10482. case LLM_ARCH_QWEN3:
  10483. {
  10484. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10485. } break;
  10486. case LLM_ARCH_QWEN3MOE:
  10487. {
  10488. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10489. } break;
  10490. case LLM_ARCH_PHI2:
  10491. {
  10492. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10493. } break;
  10494. case LLM_ARCH_PHI3:
  10495. case LLM_ARCH_PHIMOE:
  10496. {
  10497. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  10498. } break;
  10499. case LLM_ARCH_PLAMO:
  10500. {
  10501. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10502. } break;
  10503. case LLM_ARCH_GPT2:
  10504. {
  10505. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10506. } break;
  10507. case LLM_ARCH_CODESHELL:
  10508. {
  10509. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10510. } break;
  10511. case LLM_ARCH_ORION:
  10512. {
  10513. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10514. } break;
  10515. case LLM_ARCH_INTERNLM2:
  10516. {
  10517. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10518. } break;
  10519. case LLM_ARCH_MINICPM3:
  10520. {
  10521. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10522. } break;
  10523. case LLM_ARCH_GEMMA:
  10524. {
  10525. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10526. } break;
  10527. case LLM_ARCH_GEMMA2:
  10528. {
  10529. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  10530. } break;
  10531. case LLM_ARCH_GEMMA3:
  10532. {
  10533. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  10534. } break;
  10535. case LLM_ARCH_STARCODER2:
  10536. {
  10537. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10538. } break;
  10539. case LLM_ARCH_MAMBA:
  10540. {
  10541. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10542. } break;
  10543. case LLM_ARCH_XVERSE:
  10544. {
  10545. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10546. } break;
  10547. case LLM_ARCH_COMMAND_R:
  10548. {
  10549. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10550. } break;
  10551. case LLM_ARCH_COHERE2:
  10552. {
  10553. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  10554. } break;
  10555. case LLM_ARCH_DBRX:
  10556. {
  10557. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10558. } break;
  10559. case LLM_ARCH_OLMO:
  10560. {
  10561. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10562. } break;
  10563. case LLM_ARCH_OLMO2:
  10564. {
  10565. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10566. } break;
  10567. case LLM_ARCH_OLMOE:
  10568. {
  10569. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10570. } break;
  10571. case LLM_ARCH_OPENELM:
  10572. {
  10573. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10574. } break;
  10575. case LLM_ARCH_GPTNEOX:
  10576. {
  10577. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10578. } break;
  10579. case LLM_ARCH_ARCTIC:
  10580. {
  10581. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10582. } break;
  10583. case LLM_ARCH_DEEPSEEK:
  10584. {
  10585. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10586. } break;
  10587. case LLM_ARCH_DEEPSEEK2:
  10588. {
  10589. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10590. } break;
  10591. case LLM_ARCH_CHATGLM:
  10592. {
  10593. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10594. } break;
  10595. case LLM_ARCH_GLM4:
  10596. {
  10597. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10598. } break;
  10599. case LLM_ARCH_BITNET:
  10600. {
  10601. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10602. } break;
  10603. case LLM_ARCH_T5:
  10604. {
  10605. switch (type) {
  10606. case LLM_GRAPH_TYPE_ENCODER:
  10607. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10608. break;
  10609. case LLM_GRAPH_TYPE_DEFAULT:
  10610. case LLM_GRAPH_TYPE_DECODER:
  10611. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10612. break;
  10613. default:
  10614. GGML_ABORT("invalid graph type");
  10615. };
  10616. } break;
  10617. case LLM_ARCH_T5ENCODER:
  10618. {
  10619. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10620. }
  10621. break;
  10622. case LLM_ARCH_JAIS:
  10623. {
  10624. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10625. } break;
  10626. case LLM_ARCH_NEMOTRON:
  10627. {
  10628. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10629. } break;
  10630. case LLM_ARCH_EXAONE:
  10631. {
  10632. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10633. } break;
  10634. case LLM_ARCH_RWKV6:
  10635. {
  10636. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10637. } break;
  10638. case LLM_ARCH_RWKV6QWEN2:
  10639. {
  10640. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10641. } break;
  10642. case LLM_ARCH_RWKV7:
  10643. {
  10644. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10645. } break;
  10646. case LLM_ARCH_ARWKV7:
  10647. {
  10648. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10649. } break;
  10650. case LLM_ARCH_GRANITE:
  10651. case LLM_ARCH_GRANITE_MOE:
  10652. {
  10653. llm = std::make_unique<llm_build_granite>(*this, params, gf);
  10654. } break;
  10655. case LLM_ARCH_CHAMELEON:
  10656. {
  10657. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10658. } break;
  10659. case LLM_ARCH_WAVTOKENIZER_DEC:
  10660. {
  10661. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10662. } break;
  10663. case LLM_ARCH_PLM:
  10664. {
  10665. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10666. } break;
  10667. case LLM_ARCH_BAILINGMOE:
  10668. {
  10669. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10670. } break;
  10671. default:
  10672. GGML_ABORT("fatal error");
  10673. }
  10674. // add on pooling layer
  10675. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10676. return std::move(llm->res);
  10677. }
  10678. //
  10679. // interface implementation
  10680. //
  10681. llama_model_params llama_model_default_params() {
  10682. llama_model_params result = {
  10683. /*.devices =*/ nullptr,
  10684. /*.tensor_buft_overrides =*/ nullptr,
  10685. /*.n_gpu_layers =*/ 0,
  10686. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10687. /*.main_gpu =*/ 0,
  10688. /*.tensor_split =*/ nullptr,
  10689. /*.progress_callback =*/ nullptr,
  10690. /*.progress_callback_user_data =*/ nullptr,
  10691. /*.kv_overrides =*/ nullptr,
  10692. /*.vocab_only =*/ false,
  10693. /*.use_mmap =*/ true,
  10694. /*.use_mlock =*/ false,
  10695. /*.check_tensors =*/ false,
  10696. };
  10697. #ifdef GGML_USE_METAL
  10698. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10699. result.n_gpu_layers = 999;
  10700. #endif
  10701. return result;
  10702. }
  10703. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10704. return &model->vocab;
  10705. }
  10706. void llama_free_model(llama_model * model) {
  10707. llama_model_free(model);
  10708. }
  10709. void llama_model_free(llama_model * model) {
  10710. delete model;
  10711. }
  10712. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10713. return model->hparams.n_ctx_train;
  10714. }
  10715. int32_t llama_model_n_embd(const llama_model * model) {
  10716. return model->hparams.n_embd;
  10717. }
  10718. int32_t llama_model_n_layer(const llama_model * model) {
  10719. return model->hparams.n_layer;
  10720. }
  10721. int32_t llama_model_n_head(const llama_model * model) {
  10722. return model->hparams.n_head();
  10723. }
  10724. int32_t llama_model_n_head_kv(const llama_model * model) {
  10725. return model->hparams.n_head_kv();
  10726. }
  10727. // deprecated
  10728. int32_t llama_n_ctx_train(const llama_model * model) {
  10729. return llama_model_n_ctx_train(model);
  10730. }
  10731. // deprecated
  10732. int32_t llama_n_embd(const llama_model * model) {
  10733. return llama_model_n_embd(model);
  10734. }
  10735. // deprecated
  10736. int32_t llama_n_layer(const llama_model * model) {
  10737. return llama_model_n_layer(model);
  10738. }
  10739. // deprecated
  10740. int32_t llama_n_head(const llama_model * model) {
  10741. return llama_model_n_head(model);
  10742. }
  10743. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10744. switch (model->arch) {
  10745. // these models do not use RoPE
  10746. case LLM_ARCH_GPT2:
  10747. case LLM_ARCH_GPTJ:
  10748. case LLM_ARCH_MPT:
  10749. case LLM_ARCH_REFACT:
  10750. case LLM_ARCH_BLOOM:
  10751. case LLM_ARCH_MAMBA:
  10752. case LLM_ARCH_JINA_BERT_V2:
  10753. case LLM_ARCH_T5:
  10754. case LLM_ARCH_T5ENCODER:
  10755. case LLM_ARCH_JAIS:
  10756. case LLM_ARCH_RWKV6:
  10757. case LLM_ARCH_RWKV6QWEN2:
  10758. case LLM_ARCH_RWKV7:
  10759. case LLM_ARCH_ARWKV7:
  10760. case LLM_ARCH_WAVTOKENIZER_DEC:
  10761. return LLAMA_ROPE_TYPE_NONE;
  10762. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10763. case LLM_ARCH_LLAMA:
  10764. case LLM_ARCH_LLAMA4:
  10765. case LLM_ARCH_DECI:
  10766. case LLM_ARCH_BAICHUAN:
  10767. case LLM_ARCH_STARCODER:
  10768. case LLM_ARCH_INTERNLM2:
  10769. case LLM_ARCH_MINICPM:
  10770. case LLM_ARCH_XVERSE:
  10771. case LLM_ARCH_COMMAND_R:
  10772. case LLM_ARCH_COHERE2:
  10773. case LLM_ARCH_OLMO:
  10774. case LLM_ARCH_ARCTIC:
  10775. case LLM_ARCH_DEEPSEEK:
  10776. case LLM_ARCH_DEEPSEEK2:
  10777. case LLM_ARCH_PLM:
  10778. case LLM_ARCH_CHATGLM:
  10779. case LLM_ARCH_GLM4:
  10780. case LLM_ARCH_GRANITE:
  10781. case LLM_ARCH_GRANITE_MOE:
  10782. case LLM_ARCH_CHAMELEON:
  10783. case LLM_ARCH_BAILINGMOE:
  10784. return LLAMA_ROPE_TYPE_NORM;
  10785. // the pairs of head values are offset by n_rot/2
  10786. case LLM_ARCH_FALCON:
  10787. case LLM_ARCH_GROK:
  10788. case LLM_ARCH_DBRX:
  10789. case LLM_ARCH_BERT:
  10790. case LLM_ARCH_NOMIC_BERT:
  10791. case LLM_ARCH_NOMIC_BERT_MOE:
  10792. case LLM_ARCH_STABLELM:
  10793. case LLM_ARCH_BITNET:
  10794. case LLM_ARCH_QWEN:
  10795. case LLM_ARCH_QWEN2:
  10796. case LLM_ARCH_QWEN2MOE:
  10797. case LLM_ARCH_QWEN3:
  10798. case LLM_ARCH_QWEN3MOE:
  10799. case LLM_ARCH_OLMO2:
  10800. case LLM_ARCH_OLMOE:
  10801. case LLM_ARCH_PHI2:
  10802. case LLM_ARCH_PHI3:
  10803. case LLM_ARCH_PHIMOE:
  10804. case LLM_ARCH_PLAMO:
  10805. case LLM_ARCH_GEMMA:
  10806. case LLM_ARCH_GEMMA2:
  10807. case LLM_ARCH_GEMMA3:
  10808. case LLM_ARCH_STARCODER2:
  10809. case LLM_ARCH_OPENELM:
  10810. case LLM_ARCH_GPTNEOX:
  10811. case LLM_ARCH_CODESHELL:
  10812. case LLM_ARCH_ORION:
  10813. case LLM_ARCH_NEMOTRON:
  10814. case LLM_ARCH_EXAONE:
  10815. case LLM_ARCH_MINICPM3:
  10816. return LLAMA_ROPE_TYPE_NEOX;
  10817. case LLM_ARCH_QWEN2VL:
  10818. return LLAMA_ROPE_TYPE_MROPE;
  10819. // all model arches should be listed explicitly here
  10820. case LLM_ARCH_UNKNOWN:
  10821. GGML_ABORT("unknown architecture");
  10822. }
  10823. return LLAMA_ROPE_TYPE_NONE;
  10824. }
  10825. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10826. return model->hparams.rope_freq_scale_train;
  10827. }
  10828. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10829. const auto & it = model->gguf_kv.find(key);
  10830. if (it == model->gguf_kv.end()) {
  10831. if (buf_size > 0) {
  10832. buf[0] = '\0';
  10833. }
  10834. return -1;
  10835. }
  10836. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10837. }
  10838. int32_t llama_model_meta_count(const llama_model * model) {
  10839. return (int)model->gguf_kv.size();
  10840. }
  10841. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10842. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10843. if (buf_size > 0) {
  10844. buf[0] = '\0';
  10845. }
  10846. return -1;
  10847. }
  10848. auto it = model->gguf_kv.begin();
  10849. std::advance(it, i);
  10850. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10851. }
  10852. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10853. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10854. if (buf_size > 0) {
  10855. buf[0] = '\0';
  10856. }
  10857. return -1;
  10858. }
  10859. auto it = model->gguf_kv.begin();
  10860. std::advance(it, i);
  10861. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10862. }
  10863. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10864. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10865. }
  10866. uint64_t llama_model_size(const llama_model * model) {
  10867. return model->size();
  10868. }
  10869. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10870. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10871. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10872. const auto & it = model->gguf_kv.find(key);
  10873. if (it == model->gguf_kv.end()) {
  10874. // one-off fix for very popular models (so we are not flooded with issues)
  10875. // do not extend this list unless absolutely necessary
  10876. // Mistral-Small-2503 does not have built-in chat template
  10877. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  10878. if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  10879. return "mistral-v7-tekken";
  10880. }
  10881. return nullptr;
  10882. }
  10883. return it->second.c_str();
  10884. }
  10885. uint64_t llama_model_n_params(const llama_model * model) {
  10886. return model->n_elements();
  10887. }
  10888. bool llama_model_has_encoder(const llama_model * model) {
  10889. switch (model->arch) {
  10890. case LLM_ARCH_T5: return true;
  10891. case LLM_ARCH_T5ENCODER: return true;
  10892. default: return false;
  10893. }
  10894. }
  10895. bool llama_model_has_decoder(const llama_model * model) {
  10896. switch (model->arch) {
  10897. case LLM_ARCH_T5ENCODER: return false;
  10898. default: return true;
  10899. }
  10900. }
  10901. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10902. return model->hparams.dec_start_token_id;
  10903. }
  10904. bool llama_model_is_recurrent(const llama_model * model) {
  10905. switch (model->arch) {
  10906. case LLM_ARCH_MAMBA: return true;
  10907. case LLM_ARCH_RWKV6: return true;
  10908. case LLM_ARCH_RWKV6QWEN2: return true;
  10909. case LLM_ARCH_RWKV7: return true;
  10910. case LLM_ARCH_ARWKV7: return true;
  10911. default: return false;
  10912. }
  10913. }
  10914. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10915. return model->tensors_by_name;
  10916. }