utils.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. class ServerResponse:
  25. headers: dict
  26. status_code: int
  27. body: dict | Any
  28. class ServerProcess:
  29. # default options
  30. debug: bool = False
  31. server_port: int = 8080
  32. server_host: str = "127.0.0.1"
  33. model_hf_repo: str = "ggml-org/models"
  34. model_hf_file: str = "tinyllamas/stories260K.gguf"
  35. model_alias: str = "tinyllama-2"
  36. temperature: float = 0.8
  37. seed: int = 42
  38. # custom options
  39. model_alias: str | None = None
  40. model_url: str | None = None
  41. model_file: str | None = None
  42. model_draft: str | None = None
  43. n_threads: int | None = None
  44. n_gpu_layer: int | None = None
  45. n_batch: int | None = None
  46. n_ubatch: int | None = None
  47. n_ctx: int | None = None
  48. n_ga: int | None = None
  49. n_ga_w: int | None = None
  50. n_predict: int | None = None
  51. n_prompts: int | None = 0
  52. slot_save_path: str | None = None
  53. id_slot: int | None = None
  54. cache_prompt: bool | None = None
  55. n_slots: int | None = None
  56. server_continuous_batching: bool | None = False
  57. server_embeddings: bool | None = False
  58. server_reranking: bool | None = False
  59. server_metrics: bool | None = False
  60. server_slots: bool | None = False
  61. draft: int | None = None
  62. api_key: str | None = None
  63. response_format: str | None = None
  64. lora_files: List[str] | None = None
  65. disable_ctx_shift: int | None = False
  66. draft_min: int | None = None
  67. draft_max: int | None = None
  68. no_webui: bool | None = None
  69. # session variables
  70. process: subprocess.Popen | None = None
  71. def __init__(self):
  72. if "N_GPU_LAYERS" in os.environ:
  73. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  74. if "DEBUG" in os.environ:
  75. self.debug = True
  76. if "PORT" in os.environ:
  77. self.server_port = int(os.environ["PORT"])
  78. def start(self, timeout_seconds: int = 10) -> None:
  79. if "LLAMA_SERVER_BIN_PATH" in os.environ:
  80. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  81. elif os.name == "nt":
  82. server_path = "../../../build/bin/Release/llama-server.exe"
  83. else:
  84. server_path = "../../../build/bin/llama-server"
  85. server_args = [
  86. "--host",
  87. self.server_host,
  88. "--port",
  89. self.server_port,
  90. "--temp",
  91. self.temperature,
  92. "--seed",
  93. self.seed,
  94. ]
  95. if self.model_file:
  96. server_args.extend(["--model", self.model_file])
  97. if self.model_url:
  98. server_args.extend(["--model-url", self.model_url])
  99. if self.model_draft:
  100. server_args.extend(["--model-draft", self.model_draft])
  101. if self.model_hf_repo:
  102. server_args.extend(["--hf-repo", self.model_hf_repo])
  103. if self.model_hf_file:
  104. server_args.extend(["--hf-file", self.model_hf_file])
  105. if self.n_batch:
  106. server_args.extend(["--batch-size", self.n_batch])
  107. if self.n_ubatch:
  108. server_args.extend(["--ubatch-size", self.n_ubatch])
  109. if self.n_threads:
  110. server_args.extend(["--threads", self.n_threads])
  111. if self.n_gpu_layer:
  112. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  113. if self.draft is not None:
  114. server_args.extend(["--draft", self.draft])
  115. if self.server_continuous_batching:
  116. server_args.append("--cont-batching")
  117. if self.server_embeddings:
  118. server_args.append("--embedding")
  119. if self.server_reranking:
  120. server_args.append("--reranking")
  121. if self.server_metrics:
  122. server_args.append("--metrics")
  123. if self.server_slots:
  124. server_args.append("--slots")
  125. if self.model_alias:
  126. server_args.extend(["--alias", self.model_alias])
  127. if self.n_ctx:
  128. server_args.extend(["--ctx-size", self.n_ctx])
  129. if self.n_slots:
  130. server_args.extend(["--parallel", self.n_slots])
  131. if self.n_predict:
  132. server_args.extend(["--n-predict", self.n_predict])
  133. if self.slot_save_path:
  134. server_args.extend(["--slot-save-path", self.slot_save_path])
  135. if self.n_ga:
  136. server_args.extend(["--grp-attn-n", self.n_ga])
  137. if self.n_ga_w:
  138. server_args.extend(["--grp-attn-w", self.n_ga_w])
  139. if self.debug:
  140. server_args.append("--verbose")
  141. if self.lora_files:
  142. for lora_file in self.lora_files:
  143. server_args.extend(["--lora", lora_file])
  144. if self.disable_ctx_shift:
  145. server_args.extend(["--no-context-shift"])
  146. if self.api_key:
  147. server_args.extend(["--api-key", self.api_key])
  148. if self.draft_max:
  149. server_args.extend(["--draft-max", self.draft_max])
  150. if self.draft_min:
  151. server_args.extend(["--draft-min", self.draft_min])
  152. if self.no_webui:
  153. server_args.append("--no-webui")
  154. args = [str(arg) for arg in [server_path, *server_args]]
  155. print(f"bench: starting server with: {' '.join(args)}")
  156. flags = 0
  157. if "nt" == os.name:
  158. flags |= subprocess.DETACHED_PROCESS
  159. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  160. flags |= subprocess.CREATE_NO_WINDOW
  161. self.process = subprocess.Popen(
  162. [str(arg) for arg in [server_path, *server_args]],
  163. creationflags=flags,
  164. stdout=sys.stdout,
  165. stderr=sys.stdout,
  166. env={**os.environ, "LLAMA_CACHE": "tmp"},
  167. )
  168. server_instances.add(self)
  169. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  170. # wait for server to start
  171. start_time = time.time()
  172. while time.time() - start_time < timeout_seconds:
  173. try:
  174. response = self.make_request("GET", "/health", headers={
  175. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  176. })
  177. if response.status_code == 200:
  178. self.ready = True
  179. return # server is ready
  180. except Exception as e:
  181. pass
  182. print(f"Waiting for server to start...")
  183. time.sleep(0.5)
  184. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  185. def stop(self) -> None:
  186. if self in server_instances:
  187. server_instances.remove(self)
  188. if self.process:
  189. print(f"Stopping server with pid={self.process.pid}")
  190. self.process.kill()
  191. self.process = None
  192. def make_request(
  193. self,
  194. method: str,
  195. path: str,
  196. data: dict | Any | None = None,
  197. headers: dict | None = None,
  198. ) -> ServerResponse:
  199. url = f"http://{self.server_host}:{self.server_port}{path}"
  200. parse_body = False
  201. if method == "GET":
  202. response = requests.get(url, headers=headers)
  203. parse_body = True
  204. elif method == "POST":
  205. response = requests.post(url, headers=headers, json=data)
  206. parse_body = True
  207. elif method == "OPTIONS":
  208. response = requests.options(url, headers=headers)
  209. else:
  210. raise ValueError(f"Unimplemented method: {method}")
  211. result = ServerResponse()
  212. result.headers = dict(response.headers)
  213. result.status_code = response.status_code
  214. result.body = response.json() if parse_body else None
  215. print("Response from server", json.dumps(result.body, indent=2))
  216. return result
  217. def make_stream_request(
  218. self,
  219. method: str,
  220. path: str,
  221. data: dict | None = None,
  222. headers: dict | None = None,
  223. ) -> Iterator[dict]:
  224. url = f"http://{self.server_host}:{self.server_port}{path}"
  225. if method == "POST":
  226. response = requests.post(url, headers=headers, json=data, stream=True)
  227. else:
  228. raise ValueError(f"Unimplemented method: {method}")
  229. for line_bytes in response.iter_lines():
  230. line = line_bytes.decode("utf-8")
  231. if '[DONE]' in line:
  232. break
  233. elif line.startswith('data: '):
  234. data = json.loads(line[6:])
  235. print("Partial response from server", json.dumps(data, indent=2))
  236. yield data
  237. server_instances: Set[ServerProcess] = set()
  238. class ServerPreset:
  239. @staticmethod
  240. def tinyllama2() -> ServerProcess:
  241. server = ServerProcess()
  242. server.model_hf_repo = "ggml-org/models"
  243. server.model_hf_file = "tinyllamas/stories260K.gguf"
  244. server.model_alias = "tinyllama-2"
  245. server.n_ctx = 256
  246. server.n_batch = 32
  247. server.n_slots = 2
  248. server.n_predict = 64
  249. server.seed = 42
  250. return server
  251. @staticmethod
  252. def bert_bge_small() -> ServerProcess:
  253. server = ServerProcess()
  254. server.model_hf_repo = "ggml-org/models"
  255. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  256. server.model_alias = "bert-bge-small"
  257. server.n_ctx = 512
  258. server.n_batch = 128
  259. server.n_ubatch = 128
  260. server.n_slots = 2
  261. server.seed = 42
  262. server.server_embeddings = True
  263. return server
  264. @staticmethod
  265. def tinyllama_infill() -> ServerProcess:
  266. server = ServerProcess()
  267. server.model_hf_repo = "ggml-org/models"
  268. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  269. server.model_alias = "tinyllama-infill"
  270. server.n_ctx = 2048
  271. server.n_batch = 1024
  272. server.n_slots = 1
  273. server.n_predict = 64
  274. server.temperature = 0.0
  275. server.seed = 42
  276. return server
  277. @staticmethod
  278. def stories15m_moe() -> ServerProcess:
  279. server = ServerProcess()
  280. server.model_hf_repo = "ggml-org/stories15M_MOE"
  281. server.model_hf_file = "stories15M_MOE-F16.gguf"
  282. server.model_alias = "stories15m-moe"
  283. server.n_ctx = 2048
  284. server.n_batch = 1024
  285. server.n_slots = 1
  286. server.n_predict = 64
  287. server.temperature = 0.0
  288. server.seed = 42
  289. return server
  290. @staticmethod
  291. def jina_reranker_tiny() -> ServerProcess:
  292. server = ServerProcess()
  293. server.model_hf_repo = "ggml-org/models"
  294. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  295. server.model_alias = "jina-reranker"
  296. server.n_ctx = 512
  297. server.n_batch = 512
  298. server.n_slots = 1
  299. server.seed = 42
  300. server.server_reranking = True
  301. return server
  302. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  303. """
  304. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  305. Example usage:
  306. results = parallel_function_calls([
  307. (func1, (arg1, arg2)),
  308. (func2, (arg3, arg4)),
  309. ])
  310. """
  311. results = [None] * len(function_list)
  312. exceptions = []
  313. def worker(index, func, args):
  314. try:
  315. result = func(*args)
  316. results[index] = result
  317. except Exception as e:
  318. exceptions.append((index, str(e)))
  319. with ThreadPoolExecutor() as executor:
  320. futures = []
  321. for i, (func, args) in enumerate(function_list):
  322. future = executor.submit(worker, i, func, args)
  323. futures.append(future)
  324. # Wait for all futures to complete
  325. for future in as_completed(futures):
  326. pass
  327. # Check if there were any exceptions
  328. if exceptions:
  329. print("Exceptions occurred:")
  330. for index, error in exceptions:
  331. print(f"Function at index {index}: {error}")
  332. return results
  333. def match_regex(regex: str, text: str) -> bool:
  334. return (
  335. re.compile(
  336. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  337. ).search(text)
  338. is not None
  339. )
  340. def is_slow_test_allowed():
  341. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"