convert_hf_to_gguf.py 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. dir_model_card: Path
  52. # subclasses should define this!
  53. model_arch: gguf.MODEL_ARCH
  54. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  55. use_temp_file: bool = False, eager: bool = False,
  56. metadata_override: Path | None = None, model_name: str | None = None,
  57. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  58. if type(self) is Model:
  59. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  60. self.dir_model = dir_model
  61. self.ftype = ftype
  62. self.fname_out = fname_out
  63. self.is_big_endian = is_big_endian
  64. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  65. self.use_temp_file = use_temp_file
  66. self.lazy = not eager
  67. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  68. self.is_safetensors = len(self.part_names) > 0
  69. if not self.is_safetensors:
  70. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  71. self.hparams = Model.load_hparams(self.dir_model)
  72. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  73. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  74. self.tensor_names = None
  75. self.metadata_override = metadata_override
  76. self.model_name = model_name
  77. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  78. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  79. if self.ftype == gguf.LlamaFileType.GUESSED:
  80. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  81. _, first_tensor = next(self.get_tensors())
  82. if first_tensor.dtype == torch.float16:
  83. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  84. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  85. else:
  86. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  88. # Configure GGUF Writer
  89. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  90. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  91. @classmethod
  92. def __init_subclass__(cls):
  93. # can't use an abstract property, because overriding it without type errors
  94. # would require using decorated functions instead of simply defining the property
  95. if "model_arch" not in cls.__dict__:
  96. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  97. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  98. key = next((k for k in keys if k in self.hparams), None)
  99. if key is not None:
  100. return self.hparams[key]
  101. if optional:
  102. return None
  103. raise KeyError(f"could not find any of: {keys}")
  104. def set_vocab(self):
  105. self._set_vocab_gpt2()
  106. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  107. tensor_names_from_parts: set[str] = set()
  108. if len(self.part_names) > 1:
  109. self.tensor_names = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. logger.info(f"gguf: loading model weight map from '{index_name}'")
  113. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  114. index: dict[str, Any] = json.load(f)
  115. weight_map = index.get("weight_map")
  116. if weight_map is None or not isinstance(weight_map, dict):
  117. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  118. self.tensor_names.update(weight_map.keys())
  119. else:
  120. self.tensor_names = tensor_names_from_parts
  121. for part_name in self.part_names:
  122. logger.info(f"gguf: loading model part '{part_name}'")
  123. ctx: ContextManager[Any]
  124. if self.is_safetensors:
  125. from safetensors import safe_open
  126. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  127. else:
  128. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  129. with ctx as model_part:
  130. tensor_names_from_parts.update(model_part.keys())
  131. for name in model_part.keys():
  132. if self.is_safetensors:
  133. if self.lazy:
  134. data = model_part.get_slice(name)
  135. data = LazyTorchTensor.from_safetensors_slice(data)
  136. else:
  137. data = model_part.get_tensor(name)
  138. else:
  139. data = model_part[name]
  140. if self.lazy:
  141. data = LazyTorchTensor.from_eager(data)
  142. yield name, data
  143. # only verify tensor name presence; it doesn't matter if they are not in the right files
  144. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  145. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  146. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  147. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  148. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  149. name: str = gguf.TENSOR_NAMES[key]
  150. if "{bid}" in name:
  151. assert bid is not None
  152. name = name.format(bid=bid)
  153. return name + suffix
  154. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  155. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  156. return False
  157. key_name: str = gguf.TENSOR_NAMES[key]
  158. if "{bid}" in key_name:
  159. if bid is None:
  160. return False
  161. key_name = key_name.format(bid=bid)
  162. else:
  163. if bid is not None:
  164. return False
  165. return name == (key_name + suffix)
  166. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  167. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  168. if new_name is None:
  169. raise ValueError(f"Can not map tensor {name!r}")
  170. return new_name
  171. def set_gguf_parameters(self):
  172. self.gguf_writer.add_block_count(self.block_count)
  173. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  174. self.gguf_writer.add_context_length(n_ctx)
  175. logger.info(f"gguf: context length = {n_ctx}")
  176. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  177. self.gguf_writer.add_embedding_length(n_embd)
  178. logger.info(f"gguf: embedding length = {n_embd}")
  179. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  180. self.gguf_writer.add_feed_forward_length(n_ff)
  181. logger.info(f"gguf: feed forward length = {n_ff}")
  182. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  183. self.gguf_writer.add_head_count(n_head)
  184. logger.info(f"gguf: head count = {n_head}")
  185. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  186. self.gguf_writer.add_head_count_kv(n_head_kv)
  187. logger.info(f"gguf: key-value head count = {n_head_kv}")
  188. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  189. self.gguf_writer.add_rope_freq_base(rope_theta)
  190. logger.info(f"gguf: rope theta = {rope_theta}")
  191. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  192. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  193. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  194. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  195. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  196. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  197. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  198. self.gguf_writer.add_expert_count(n_experts)
  199. logger.info(f"gguf: expert count = {n_experts}")
  200. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  201. self.gguf_writer.add_expert_used_count(n_experts_used)
  202. logger.info(f"gguf: experts used count = {n_experts_used}")
  203. if (head_dim := self.hparams.get("head_dim")) is not None:
  204. self.gguf_writer.add_key_length(head_dim)
  205. self.gguf_writer.add_value_length(head_dim)
  206. self.gguf_writer.add_file_type(self.ftype)
  207. logger.info(f"gguf: file type = {self.ftype}")
  208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  209. del bid # unused
  210. return [(self.map_tensor_name(name), data_torch)]
  211. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  212. del name, new_name, bid, n_dims # unused
  213. return False
  214. def prepare_tensors(self):
  215. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  216. for name, data_torch in self.get_tensors():
  217. # we don't need these
  218. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  219. continue
  220. old_dtype = data_torch.dtype
  221. # convert any unsupported data types to float32
  222. if data_torch.dtype not in (torch.float16, torch.float32):
  223. data_torch = data_torch.to(torch.float32)
  224. # use the first number-like part of the tensor name as the block id
  225. bid = None
  226. for part in name.split("."):
  227. if part.isdecimal():
  228. bid = int(part)
  229. break
  230. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  231. data: np.ndarray # type hint
  232. n_dims = len(data.shape)
  233. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  234. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  235. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  236. data_qtype = gguf.GGMLQuantizationType.F32
  237. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  238. # Some tensor types are always in float32
  239. if data_qtype is False and (
  240. any(
  241. self.match_model_tensor_name(new_name, key, bid)
  242. for key in (
  243. gguf.MODEL_TENSOR.FFN_GATE_INP,
  244. gguf.MODEL_TENSOR.POS_EMBD,
  245. gguf.MODEL_TENSOR.TOKEN_TYPES,
  246. )
  247. )
  248. or not name.endswith(".weight")
  249. ):
  250. data_qtype = gguf.GGMLQuantizationType.F32
  251. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  252. if isinstance(data_qtype, bool):
  253. if self.ftype == gguf.LlamaFileType.ALL_F32:
  254. data_qtype = gguf.GGMLQuantizationType.F32
  255. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  256. data_qtype = gguf.GGMLQuantizationType.F16
  257. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  258. data_qtype = gguf.GGMLQuantizationType.BF16
  259. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  260. data_qtype = gguf.GGMLQuantizationType.Q8_0
  261. else:
  262. raise ValueError(f"Unknown file type: {self.ftype.name}")
  263. try:
  264. data = gguf.quants.quantize(data, data_qtype)
  265. except gguf.QuantError as e:
  266. logger.warning("%s, %s", e, "falling back to F16")
  267. data_qtype = gguf.GGMLQuantizationType.F16
  268. data = gguf.quants.quantize(data, data_qtype)
  269. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  270. # reverse shape to make it similar to the internal ggml dimension order
  271. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  272. # n_dims is implicit in the shape
  273. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  274. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  275. def set_type(self):
  276. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  277. def prepare_metadata(self, vocab_only: bool):
  278. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  279. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  280. # Fallback to model directory name if metadata name is still missing
  281. if self.metadata.name is None:
  282. self.metadata.name = self.dir_model.name
  283. # Generate parameter weight class (useful for leader boards) if not yet determined
  284. if self.metadata.size_label is None and total_params > 0:
  285. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  286. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  287. output_type: str = self.ftype.name.partition("_")[2]
  288. # Filename Output
  289. if self.fname_out.is_dir():
  290. # Generate default filename based on model specification and available metadata
  291. if not vocab_only:
  292. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  293. else:
  294. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  295. # Use the default filename
  296. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  297. else:
  298. # Output path is a custom defined templated filename
  299. # Note: `not is_dir()` is used because `.is_file()` will not detect
  300. # file template strings as it doesn't actually exist as a file
  301. # Process templated file name with the output ftype, useful with the "auto" ftype
  302. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  303. self.set_type()
  304. logger.info("Set meta model")
  305. self.metadata.set_gguf_meta_model(self.gguf_writer)
  306. logger.info("Set model parameters")
  307. self.set_gguf_parameters()
  308. logger.info("Set model tokenizer")
  309. self.set_vocab()
  310. logger.info("Set model quantization version")
  311. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  312. def write(self):
  313. self.prepare_tensors()
  314. self.prepare_metadata(vocab_only=False)
  315. self.gguf_writer.write_header_to_file(path=self.fname_out)
  316. self.gguf_writer.write_kv_data_to_file()
  317. self.gguf_writer.write_tensors_to_file(progress=True)
  318. self.gguf_writer.close()
  319. def write_vocab(self):
  320. if len(self.gguf_writer.tensors) != 1:
  321. raise ValueError('Splitting the vocabulary is not supported')
  322. self.prepare_metadata(vocab_only=True)
  323. self.gguf_writer.write_header_to_file(path=self.fname_out)
  324. self.gguf_writer.write_kv_data_to_file()
  325. self.gguf_writer.close()
  326. @staticmethod
  327. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  328. part_names: list[str] = []
  329. for filename in os.listdir(dir_model):
  330. if filename.startswith(prefix) and filename.endswith(suffix):
  331. part_names.append(filename)
  332. part_names.sort()
  333. return part_names
  334. @staticmethod
  335. def load_hparams(dir_model: Path):
  336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  337. return json.load(f)
  338. @classmethod
  339. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  340. assert names
  341. def func(modelcls: AnyModel) -> AnyModel:
  342. for name in names:
  343. cls._model_classes[name] = modelcls
  344. return modelcls
  345. return func
  346. @classmethod
  347. def from_model_architecture(cls, arch: str) -> type[Model]:
  348. try:
  349. return cls._model_classes[arch]
  350. except KeyError:
  351. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  352. def does_token_look_special(self, token: str | bytes) -> bool:
  353. if isinstance(token, (bytes, bytearray)):
  354. token_text = token.decode(encoding="utf-8")
  355. elif isinstance(token, memoryview):
  356. token_text = token.tobytes().decode(encoding="utf-8")
  357. else:
  358. token_text = token
  359. # Some models mark some added tokens which ought to be control tokens as not special.
  360. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  361. seems_special = token_text in (
  362. "<pad>", # deepseek-coder
  363. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  364. )
  365. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  366. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  367. # TODO: should these be marked as UNUSED instead? (maybe not)
  368. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  369. return seems_special
  370. # used for GPT-2 BPE and WordPiece vocabs
  371. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  372. tokens: list[str] = []
  373. toktypes: list[int] = []
  374. from transformers import AutoTokenizer
  375. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  376. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  377. assert max(tokenizer.vocab.values()) < vocab_size
  378. tokpre = self.get_vocab_base_pre(tokenizer)
  379. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  380. added_vocab = tokenizer.get_added_vocab()
  381. for i in range(vocab_size):
  382. if i not in reverse_vocab:
  383. tokens.append(f"[PAD{i}]")
  384. toktypes.append(gguf.TokenType.UNUSED)
  385. else:
  386. token: str = reverse_vocab[i]
  387. if token in added_vocab:
  388. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  389. toktypes.append(gguf.TokenType.CONTROL)
  390. else:
  391. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  392. toktypes.append(gguf.TokenType.USER_DEFINED)
  393. else:
  394. toktypes.append(gguf.TokenType.NORMAL)
  395. tokens.append(token)
  396. return tokens, toktypes, tokpre
  397. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  398. # do not modify it manually!
  399. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  400. # Marker: Start get_vocab_base_pre
  401. def get_vocab_base_pre(self, tokenizer) -> str:
  402. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  403. # is specific for the BPE pre-tokenizer used by the model
  404. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  405. # use in llama.cpp to implement the same pre-tokenizer
  406. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  407. chktok = tokenizer.encode(chktxt)
  408. chkhsh = sha256(str(chktok).encode()).hexdigest()
  409. logger.debug(f"chktok: {chktok}")
  410. logger.debug(f"chkhsh: {chkhsh}")
  411. res = None
  412. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  413. # or pull the latest version of the model from Huggingface
  414. # don't edit the hashes manually!
  415. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  416. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  417. res = "llama-bpe"
  418. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  419. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  420. res = "deepseek-llm"
  421. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  422. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  423. res = "deepseek-coder"
  424. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  425. # ref: https://huggingface.co/tiiuae/falcon-7b
  426. res = "falcon"
  427. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  428. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  429. res = "bert-bge"
  430. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  431. # ref: https://huggingface.co/mosaicml/mpt-7b
  432. res = "mpt"
  433. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  434. # ref: https://huggingface.co/bigcode/starcoder2-3b
  435. res = "starcoder"
  436. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  437. # ref: https://huggingface.co/openai-community/gpt2
  438. res = "gpt-2"
  439. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  440. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  441. res = "stablelm2"
  442. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  443. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  444. res = "refact"
  445. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  446. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  447. res = "command-r"
  448. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  449. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  450. res = "qwen2"
  451. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  452. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  453. res = "olmo"
  454. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  455. # ref: https://huggingface.co/databricks/dbrx-base
  456. res = "dbrx"
  457. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  458. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  459. res = "jina-v2-en"
  460. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  461. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  462. res = "jina-v2-es"
  463. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  464. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  465. res = "jina-v2-de"
  466. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  467. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  468. res = "smaug-bpe"
  469. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  470. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  471. res = "poro-chat"
  472. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  473. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  474. res = "jina-v2-code"
  475. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  476. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  477. res = "chatglm-bpe"
  478. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  479. # ref: https://huggingface.co/LumiOpen/Viking-7B
  480. res = "viking"
  481. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  482. # ref: https://huggingface.co/core42/jais-13b
  483. res = "jais"
  484. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  485. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  486. res = "codeshell"
  487. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  488. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  489. res = "tekken"
  490. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  491. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  492. res = "smollm"
  493. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  494. # ref: https://huggingface.co/bigscience/bloom
  495. res = "bloom"
  496. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  497. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  498. res = "gpt3-finnish"
  499. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  500. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  501. res = "exaone"
  502. if res is None:
  503. logger.warning("\n")
  504. logger.warning("**************************************************************************************")
  505. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  506. logger.warning("** There are 2 possible reasons for this:")
  507. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  508. logger.warning("** - the pre-tokenization config has changed upstream")
  509. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  510. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  511. logger.warning("**")
  512. logger.warning(f"** chkhsh: {chkhsh}")
  513. logger.warning("**************************************************************************************")
  514. logger.warning("\n")
  515. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  516. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  517. logger.debug(f"chkhsh: {chkhsh}")
  518. return res
  519. # Marker: End get_vocab_base_pre
  520. def _set_vocab_gpt2(self) -> None:
  521. tokens, toktypes, tokpre = self.get_vocab_base()
  522. self.gguf_writer.add_tokenizer_model("gpt2")
  523. self.gguf_writer.add_tokenizer_pre(tokpre)
  524. self.gguf_writer.add_token_list(tokens)
  525. self.gguf_writer.add_token_types(toktypes)
  526. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  527. special_vocab.add_to_gguf(self.gguf_writer)
  528. def _set_vocab_qwen(self):
  529. dir_model = self.dir_model
  530. hparams = self.hparams
  531. tokens: list[str] = []
  532. toktypes: list[int] = []
  533. from transformers import AutoTokenizer
  534. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  535. vocab_size = hparams["vocab_size"]
  536. assert max(tokenizer.get_vocab().values()) < vocab_size
  537. tokpre = self.get_vocab_base_pre(tokenizer)
  538. merges = []
  539. vocab = {}
  540. mergeable_ranks = tokenizer.mergeable_ranks
  541. for token, rank in mergeable_ranks.items():
  542. vocab[QwenModel.token_bytes_to_string(token)] = rank
  543. if len(token) == 1:
  544. continue
  545. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  546. assert len(merged) == 2
  547. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  548. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  549. added_vocab = tokenizer.special_tokens
  550. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  551. for i in range(vocab_size):
  552. if i not in reverse_vocab:
  553. tokens.append(f"[PAD{i}]")
  554. toktypes.append(gguf.TokenType.UNUSED)
  555. elif reverse_vocab[i] in added_vocab:
  556. tokens.append(reverse_vocab[i])
  557. toktypes.append(gguf.TokenType.CONTROL)
  558. else:
  559. tokens.append(reverse_vocab[i])
  560. toktypes.append(gguf.TokenType.NORMAL)
  561. self.gguf_writer.add_tokenizer_model("gpt2")
  562. self.gguf_writer.add_tokenizer_pre(tokpre)
  563. self.gguf_writer.add_token_list(tokens)
  564. self.gguf_writer.add_token_types(toktypes)
  565. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  566. special_vocab.merges = merges
  567. # only add special tokens when they were not already loaded from config.json
  568. if len(special_vocab.special_token_ids) == 0:
  569. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  570. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  571. # this one is usually not in config.json anyway
  572. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  573. special_vocab.add_to_gguf(self.gguf_writer)
  574. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  575. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  576. self.gguf_writer.add_tokenizer_model("llama")
  577. self.gguf_writer.add_tokenizer_pre("default")
  578. self.gguf_writer.add_token_list(tokens)
  579. self.gguf_writer.add_token_scores(scores)
  580. self.gguf_writer.add_token_types(toktypes)
  581. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  582. special_vocab.add_to_gguf(self.gguf_writer)
  583. def _create_vocab_sentencepiece(self):
  584. from sentencepiece import SentencePieceProcessor
  585. tokenizer_path = self.dir_model / 'tokenizer.model'
  586. if not tokenizer_path.is_file():
  587. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  588. tokenizer = SentencePieceProcessor()
  589. tokenizer.LoadFromFile(str(tokenizer_path))
  590. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  591. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  592. scores: list[float] = [-10000.0] * vocab_size
  593. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  594. for token_id in range(tokenizer.vocab_size()):
  595. piece = tokenizer.IdToPiece(token_id)
  596. text = piece.encode("utf-8")
  597. score = tokenizer.GetScore(token_id)
  598. toktype = SentencePieceTokenTypes.NORMAL
  599. if tokenizer.IsUnknown(token_id):
  600. toktype = SentencePieceTokenTypes.UNKNOWN
  601. elif tokenizer.IsControl(token_id):
  602. toktype = SentencePieceTokenTypes.CONTROL
  603. elif tokenizer.IsUnused(token_id):
  604. toktype = SentencePieceTokenTypes.UNUSED
  605. elif tokenizer.IsByte(token_id):
  606. toktype = SentencePieceTokenTypes.BYTE
  607. tokens[token_id] = text
  608. scores[token_id] = score
  609. toktypes[token_id] = toktype
  610. added_tokens_file = self.dir_model / 'added_tokens.json'
  611. if added_tokens_file.is_file():
  612. with open(added_tokens_file, "r", encoding="utf-8") as f:
  613. added_tokens_json = json.load(f)
  614. for key in added_tokens_json:
  615. token_id = added_tokens_json[key]
  616. if token_id >= vocab_size:
  617. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  618. continue
  619. tokens[token_id] = key.encode("utf-8")
  620. scores[token_id] = -1000.0
  621. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  622. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  623. if tokenizer_config_file.is_file():
  624. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  625. tokenizer_config_json = json.load(f)
  626. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  627. for token_id, token_data in added_tokens_decoder.items():
  628. token_id = int(token_id)
  629. token: str = token_data["content"]
  630. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  631. if tokens[token_id] != token.encode("utf-8"):
  632. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  633. if token_data.get("special") or self.does_token_look_special(token):
  634. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  635. else:
  636. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  637. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  638. scores[token_id] = -1000.0
  639. tokens[token_id] = token.encode("utf-8")
  640. if vocab_size > len(tokens):
  641. pad_count = vocab_size - len(tokens)
  642. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  643. for i in range(1, pad_count + 1):
  644. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  645. scores.append(-1000.0)
  646. toktypes.append(SentencePieceTokenTypes.UNUSED)
  647. return tokens, scores, toktypes
  648. def _set_vocab_llama_hf(self):
  649. vocab = gguf.LlamaHfVocab(self.dir_model)
  650. tokens = []
  651. scores = []
  652. toktypes = []
  653. for text, score, toktype in vocab.all_tokens():
  654. tokens.append(text)
  655. scores.append(score)
  656. toktypes.append(toktype)
  657. assert len(tokens) == vocab.vocab_size
  658. self.gguf_writer.add_tokenizer_model("llama")
  659. self.gguf_writer.add_tokenizer_pre("default")
  660. self.gguf_writer.add_token_list(tokens)
  661. self.gguf_writer.add_token_scores(scores)
  662. self.gguf_writer.add_token_types(toktypes)
  663. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  664. special_vocab.add_to_gguf(self.gguf_writer)
  665. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  666. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  667. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  668. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  669. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  670. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  671. assert field # tokenizer model
  672. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  673. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  674. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  675. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  676. assert field # token list
  677. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  678. if model_name == "llama-spm":
  679. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  680. assert field # token scores
  681. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  682. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  683. assert field # token types
  684. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  685. if model_name != "llama-spm":
  686. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  687. assert field # token merges
  688. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  689. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  690. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  691. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  692. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  693. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  694. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  695. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  696. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  697. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  698. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  699. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  700. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  701. @Model.register("GPTNeoXForCausalLM")
  702. class GPTNeoXModel(Model):
  703. model_arch = gguf.MODEL_ARCH.GPTNEOX
  704. def set_gguf_parameters(self):
  705. block_count = self.hparams["num_hidden_layers"]
  706. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  707. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  708. self.gguf_writer.add_block_count(block_count)
  709. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  710. self.gguf_writer.add_rope_dimension_count(
  711. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  712. )
  713. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  714. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  715. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  716. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  717. del bid # unused
  718. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  719. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  720. tensors: list[tuple[str, Tensor]] = []
  721. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  722. # Map bloom-style qkv_linear to gpt-style qkv_linear
  723. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  724. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  725. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  726. data_torch = torch.cat(
  727. (
  728. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  729. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  730. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  731. ),
  732. dim=0,
  733. )
  734. logger.info("re-format attention.linear_qkv.weight")
  735. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  736. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  737. data_torch = torch.cat(
  738. (
  739. qkv_bias[:, 0, :].reshape((n_embed,)),
  740. qkv_bias[:, 1, :].reshape((n_embed,)),
  741. qkv_bias[:, 2, :].reshape((n_embed,)),
  742. ),
  743. dim=0,
  744. )
  745. logger.info("re-format attention.linear_qkv.bias")
  746. tensors.append((self.map_tensor_name(name), data_torch))
  747. return tensors
  748. @Model.register("BloomForCausalLM", "BloomModel")
  749. class BloomModel(Model):
  750. model_arch = gguf.MODEL_ARCH.BLOOM
  751. def set_gguf_parameters(self):
  752. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  753. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  754. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  755. self.gguf_writer.add_embedding_length(n_embed)
  756. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  757. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  758. self.gguf_writer.add_head_count(n_head)
  759. self.gguf_writer.add_head_count_kv(n_head)
  760. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  761. self.gguf_writer.add_file_type(self.ftype)
  762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  763. del bid # unused
  764. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  765. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  766. name = re.sub(r'transformer\.', '', name)
  767. tensors: list[tuple[str, Tensor]] = []
  768. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  769. # Map bloom-style qkv_linear to gpt-style qkv_linear
  770. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  771. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  772. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  773. data_torch = torch.cat(
  774. (
  775. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  776. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  777. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  778. ),
  779. dim=0,
  780. )
  781. logger.info("re-format attention.linear_qkv.weight")
  782. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  783. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  784. data_torch = torch.cat(
  785. (
  786. qkv_bias[:, 0, :].reshape((n_embed,)),
  787. qkv_bias[:, 1, :].reshape((n_embed,)),
  788. qkv_bias[:, 2, :].reshape((n_embed,)),
  789. ),
  790. dim=0,
  791. )
  792. logger.info("re-format attention.linear_qkv.bias")
  793. tensors.append((self.map_tensor_name(name), data_torch))
  794. if name == "word_embeddings.weight":
  795. assert self.tensor_names is not None
  796. # TODO: tie them at runtime, don't duplicate in the model file
  797. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  798. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  799. return tensors
  800. @Model.register("MPTForCausalLM")
  801. class MPTModel(Model):
  802. model_arch = gguf.MODEL_ARCH.MPT
  803. def set_vocab(self):
  804. try:
  805. self._set_vocab_gpt2()
  806. except Exception:
  807. # Fallback for SEA-LION model
  808. self._set_vocab_sentencepiece()
  809. self.gguf_writer.add_add_bos_token(False)
  810. self.gguf_writer.add_pad_token_id(3)
  811. self.gguf_writer.add_eos_token_id(1)
  812. self.gguf_writer.add_unk_token_id(0)
  813. def set_gguf_parameters(self):
  814. block_count = self.hparams["n_layers"]
  815. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  816. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  817. self.gguf_writer.add_block_count(block_count)
  818. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  819. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  820. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  821. self.gguf_writer.add_head_count_kv(kv_n_heads)
  822. self.gguf_writer.add_layer_norm_eps(1e-5)
  823. if self.hparams["attn_config"]["clip_qkv"] is not None:
  824. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  825. if self.hparams["attn_config"]["alibi"]:
  826. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  827. else:
  828. self.gguf_writer.add_max_alibi_bias(0.0)
  829. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  830. del bid # unused
  831. if "scales" in name:
  832. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  833. new_name = new_name.replace("scales", "act.scales")
  834. else:
  835. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  836. return [(new_name, data_torch)]
  837. @Model.register("OrionForCausalLM")
  838. class OrionModel(Model):
  839. model_arch = gguf.MODEL_ARCH.ORION
  840. def set_vocab(self):
  841. self._set_vocab_sentencepiece()
  842. def set_gguf_parameters(self):
  843. block_count = self.hparams["num_hidden_layers"]
  844. head_count = self.hparams["num_attention_heads"]
  845. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  846. ctx_length = 0
  847. if "max_sequence_length" in self.hparams:
  848. ctx_length = self.hparams["max_sequence_length"]
  849. elif "max_position_embeddings" in self.hparams:
  850. ctx_length = self.hparams["max_position_embeddings"]
  851. elif "model_max_length" in self.hparams:
  852. ctx_length = self.hparams["model_max_length"]
  853. else:
  854. raise ValueError("gguf: can not find ctx length parameter.")
  855. self.gguf_writer.add_file_type(self.ftype)
  856. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  857. self.gguf_writer.add_context_length(ctx_length)
  858. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  859. self.gguf_writer.add_block_count(block_count)
  860. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  861. self.gguf_writer.add_head_count(head_count)
  862. self.gguf_writer.add_head_count_kv(head_count_kv)
  863. # note: config provides rms norm but it is actually layer norm
  864. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  865. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  866. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  867. class BaichuanModel(Model):
  868. model_arch = gguf.MODEL_ARCH.BAICHUAN
  869. def set_vocab(self):
  870. self._set_vocab_sentencepiece()
  871. def set_gguf_parameters(self):
  872. block_count = self.hparams["num_hidden_layers"]
  873. head_count = self.hparams["num_attention_heads"]
  874. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  875. ctx_length = 0
  876. if "max_sequence_length" in self.hparams:
  877. ctx_length = self.hparams["max_sequence_length"]
  878. elif "max_position_embeddings" in self.hparams:
  879. ctx_length = self.hparams["max_position_embeddings"]
  880. elif "model_max_length" in self.hparams:
  881. ctx_length = self.hparams["model_max_length"]
  882. else:
  883. raise ValueError("gguf: can not find ctx length parameter.")
  884. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  885. self.gguf_writer.add_context_length(ctx_length)
  886. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  887. self.gguf_writer.add_block_count(block_count)
  888. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  889. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  890. self.gguf_writer.add_head_count(head_count)
  891. self.gguf_writer.add_head_count_kv(head_count_kv)
  892. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  893. self.gguf_writer.add_file_type(self.ftype)
  894. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  895. if self.hparams["rope_scaling"].get("type") == "linear":
  896. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  897. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  899. head_count = self.hparams["num_attention_heads"]
  900. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  901. tensors: list[tuple[str, Tensor]] = []
  902. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  903. logger.info(f"Unpacking and permuting layer {bid}")
  904. tensors = [
  905. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  906. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  907. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  908. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  909. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  910. self._reverse_hf_part(data_torch, 2)),
  911. ]
  912. else:
  913. tensors = [(self.map_tensor_name(name), data_torch)]
  914. return tensors
  915. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  916. if n_kv_head is not None and n_head != n_kv_head:
  917. n_head //= n_kv_head
  918. return (
  919. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  920. .swapaxes(1, 2)
  921. .reshape(weights.shape)
  922. )
  923. def _reverse_hf_permute_part(
  924. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  925. ) -> Tensor:
  926. r = weights.shape[0] // 3
  927. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  928. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  929. r = weights.shape[0] // 3
  930. return weights[r * n_part:r * n_part + r, ...]
  931. @Model.register("XverseForCausalLM")
  932. class XverseModel(Model):
  933. model_arch = gguf.MODEL_ARCH.XVERSE
  934. def set_vocab(self):
  935. assert (self.dir_model / "tokenizer.json").is_file()
  936. dir_model = self.dir_model
  937. hparams = self.hparams
  938. tokens: list[bytes] = []
  939. toktypes: list[int] = []
  940. from transformers import AutoTokenizer
  941. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  942. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  943. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  944. # because vocab_size is the count of items, and indexes start at 0.
  945. max_vocab_index = max(tokenizer.get_vocab().values())
  946. if max_vocab_index >= vocab_size:
  947. raise ValueError("Vocabulary size exceeds expected maximum size.")
  948. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  949. added_vocab = tokenizer.get_added_vocab()
  950. for token_id in range(vocab_size):
  951. token_text = reverse_vocab[token_id].encode('utf-8')
  952. # replace "\x00" to string with length > 0
  953. if token_text == b"\x00":
  954. toktype = gguf.TokenType.BYTE # special
  955. token_text = f"<{token_text}>".encode('utf-8')
  956. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  957. toktype = gguf.TokenType.BYTE # special
  958. elif reverse_vocab[token_id] in added_vocab:
  959. if tokenizer.added_tokens_decoder[token_id].special:
  960. toktype = gguf.TokenType.CONTROL
  961. else:
  962. toktype = gguf.TokenType.USER_DEFINED
  963. else:
  964. toktype = gguf.TokenType.NORMAL
  965. tokens.append(token_text)
  966. toktypes.append(toktype)
  967. self.gguf_writer.add_tokenizer_model("llama")
  968. self.gguf_writer.add_tokenizer_pre("default")
  969. self.gguf_writer.add_token_list(tokens)
  970. self.gguf_writer.add_token_types(toktypes)
  971. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  972. special_vocab.add_to_gguf(self.gguf_writer)
  973. def set_gguf_parameters(self):
  974. block_count = self.hparams["num_hidden_layers"]
  975. head_count = self.hparams["num_attention_heads"]
  976. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  977. ctx_length = 0
  978. if "max_sequence_length" in self.hparams:
  979. ctx_length = self.hparams["max_sequence_length"]
  980. elif "max_position_embeddings" in self.hparams:
  981. ctx_length = self.hparams["max_position_embeddings"]
  982. elif "model_max_length" in self.hparams:
  983. ctx_length = self.hparams["model_max_length"]
  984. else:
  985. raise ValueError("gguf: can not find ctx length parameter.")
  986. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  987. self.gguf_writer.add_context_length(ctx_length)
  988. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  989. self.gguf_writer.add_block_count(block_count)
  990. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  991. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  992. self.gguf_writer.add_head_count(head_count)
  993. self.gguf_writer.add_head_count_kv(head_count_kv)
  994. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  995. self.gguf_writer.add_file_type(self.ftype)
  996. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  997. if self.hparams["rope_scaling"].get("type") == "linear":
  998. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  999. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1000. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1001. del bid # unused
  1002. head_count = self.hparams["num_attention_heads"]
  1003. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1004. # HF models permute some of the tensors, so we need to undo that
  1005. if name.endswith("q_proj.weight"):
  1006. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1007. if name.endswith("k_proj.weight"):
  1008. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1009. return [(self.map_tensor_name(name), data_torch)]
  1010. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1011. if n_kv_head is not None and n_head != n_kv_head:
  1012. n_head //= n_kv_head
  1013. return (
  1014. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1015. .swapaxes(1, 2)
  1016. .reshape(weights.shape)
  1017. )
  1018. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1019. class FalconModel(Model):
  1020. model_arch = gguf.MODEL_ARCH.FALCON
  1021. def set_gguf_parameters(self):
  1022. block_count = self.hparams.get("num_hidden_layers")
  1023. if block_count is None:
  1024. block_count = self.hparams["n_layer"] # old name
  1025. n_head = self.hparams.get("num_attention_heads")
  1026. if n_head is None:
  1027. n_head = self.hparams["n_head"] # old name
  1028. n_head_kv = self.hparams.get("num_kv_heads")
  1029. if n_head_kv is None:
  1030. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1031. self.gguf_writer.add_context_length(2048) # not in config.json
  1032. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1033. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1034. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1035. self.gguf_writer.add_block_count(block_count)
  1036. self.gguf_writer.add_head_count(n_head)
  1037. self.gguf_writer.add_head_count_kv(n_head_kv)
  1038. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1039. self.gguf_writer.add_file_type(self.ftype)
  1040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1041. del bid # unused
  1042. # QKV tensor transform
  1043. # The original query_key_value tensor contains n_head_kv "kv groups",
  1044. # each consisting of n_head/n_head_kv query weights followed by one key
  1045. # and one value weight (shared by all query heads in the kv group).
  1046. # This layout makes it a big pain to work with in GGML.
  1047. # So we rearrange them here,, so that we have n_head query weights
  1048. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1049. # in contiguous fashion.
  1050. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1051. if "query_key_value" in name:
  1052. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1053. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1054. head_dim = self.hparams["hidden_size"] // n_head
  1055. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1056. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1057. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1058. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1059. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1060. return [(self.map_tensor_name(name), data_torch)]
  1061. @Model.register("GPTBigCodeForCausalLM")
  1062. class StarCoderModel(Model):
  1063. model_arch = gguf.MODEL_ARCH.STARCODER
  1064. def set_gguf_parameters(self):
  1065. block_count = self.hparams["n_layer"]
  1066. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1067. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1068. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1069. self.gguf_writer.add_block_count(block_count)
  1070. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1071. self.gguf_writer.add_head_count_kv(1)
  1072. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1073. self.gguf_writer.add_file_type(self.ftype)
  1074. @Model.register("GPTRefactForCausalLM")
  1075. class RefactModel(Model):
  1076. model_arch = gguf.MODEL_ARCH.REFACT
  1077. def set_vocab(self):
  1078. super().set_vocab()
  1079. # TODO: how to determine special FIM tokens automatically?
  1080. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1081. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1082. special_vocab._set_special_token("prefix", 1)
  1083. special_vocab._set_special_token("suffix", 3)
  1084. special_vocab._set_special_token("middle", 2)
  1085. special_vocab.chat_template = None # do not add it twice
  1086. special_vocab.add_to_gguf(self.gguf_writer)
  1087. def set_gguf_parameters(self):
  1088. hidden_dim = self.hparams["n_embd"]
  1089. inner_dim = 4 * hidden_dim
  1090. hidden_dim = int(2 * inner_dim / 3)
  1091. multiple_of = 256
  1092. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1093. block_count = self.hparams["n_layer"]
  1094. # refact uses Alibi. So this is from config.json which might be used by training.
  1095. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1096. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1097. self.gguf_writer.add_feed_forward_length(ff_dim)
  1098. self.gguf_writer.add_block_count(block_count)
  1099. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1100. self.gguf_writer.add_head_count_kv(1)
  1101. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1102. self.gguf_writer.add_file_type(self.ftype)
  1103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1104. hidden_dim = self.hparams["n_embd"]
  1105. inner_dim = 4 * hidden_dim
  1106. hidden_dim = int(2 * inner_dim / 3)
  1107. multiple_of = 256
  1108. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1109. n_head = self.hparams["n_head"]
  1110. n_head_kv = 1
  1111. head_dim = self.hparams["n_embd"] // n_head
  1112. tensors: list[tuple[str, Tensor]] = []
  1113. if bid is not None:
  1114. if name == f"transformer.h.{bid}.attn.kv.weight":
  1115. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1116. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1117. elif name == f"transformer.h.{bid}.attn.q.weight":
  1118. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1119. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1120. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1121. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1122. if len(tensors) == 0:
  1123. tensors.append((self.map_tensor_name(name), data_torch))
  1124. return tensors
  1125. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1126. class StableLMModel(Model):
  1127. model_arch = gguf.MODEL_ARCH.STABLELM
  1128. def set_vocab(self):
  1129. if (self.dir_model / "tokenizer.json").is_file():
  1130. self._set_vocab_gpt2()
  1131. else:
  1132. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1133. self._set_vocab_qwen()
  1134. def set_gguf_parameters(self):
  1135. hparams = self.hparams
  1136. block_count = hparams["num_hidden_layers"]
  1137. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1138. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1139. self.gguf_writer.add_block_count(block_count)
  1140. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1141. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1142. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1143. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1144. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1145. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1146. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1147. self.gguf_writer.add_file_type(self.ftype)
  1148. _q_norms: list[dict[str, Tensor]] | None = None
  1149. _k_norms: list[dict[str, Tensor]] | None = None
  1150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1151. n_head = self.hparams["num_attention_heads"]
  1152. n_kv_head = self.hparams["num_key_value_heads"]
  1153. if name.find("q_layernorm.norms") != -1:
  1154. assert bid is not None
  1155. if self._q_norms is None:
  1156. self._q_norms = [{} for _ in range(self.block_count)]
  1157. self._q_norms[bid][name] = data_torch
  1158. if len(self._q_norms[bid]) >= n_head:
  1159. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1160. else:
  1161. return []
  1162. if name.find("k_layernorm.norms") != -1:
  1163. assert bid is not None
  1164. if self._k_norms is None:
  1165. self._k_norms = [{} for _ in range(self.block_count)]
  1166. self._k_norms[bid][name] = data_torch
  1167. if len(self._k_norms[bid]) >= n_kv_head:
  1168. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1169. else:
  1170. return []
  1171. return [(self.map_tensor_name(name), data_torch)]
  1172. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1173. datas: list[Tensor] = []
  1174. # extract the norms in order
  1175. for xid in range(n_head):
  1176. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1177. datas.append(norms[ename])
  1178. del norms[ename]
  1179. data_torch = torch.stack(datas, dim=0)
  1180. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1181. new_name = self.map_tensor_name(merged_name)
  1182. return [(new_name, data_torch)]
  1183. def prepare_tensors(self):
  1184. super().prepare_tensors()
  1185. if self._q_norms is not None or self._k_norms is not None:
  1186. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1187. norms = (
  1188. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1189. ) + (
  1190. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1191. )
  1192. if len(norms) > 0:
  1193. raise ValueError(f"Unprocessed norms: {norms}")
  1194. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1195. class LlamaModel(Model):
  1196. model_arch = gguf.MODEL_ARCH.LLAMA
  1197. def set_vocab(self):
  1198. try:
  1199. self._set_vocab_sentencepiece()
  1200. except FileNotFoundError:
  1201. try:
  1202. self._set_vocab_llama_hf()
  1203. except (FileNotFoundError, TypeError):
  1204. # Llama 3
  1205. self._set_vocab_gpt2()
  1206. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1207. if self.hparams.get("vocab_size", 32000) == 32016:
  1208. special_vocab = gguf.SpecialVocab(
  1209. self.dir_model, load_merges=False,
  1210. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1211. )
  1212. special_vocab._set_special_token("prefix", 32007)
  1213. special_vocab._set_special_token("suffix", 32008)
  1214. special_vocab._set_special_token("middle", 32009)
  1215. special_vocab._set_special_token("eot", 32010)
  1216. special_vocab.add_to_gguf(self.gguf_writer)
  1217. def set_gguf_parameters(self):
  1218. super().set_gguf_parameters()
  1219. hparams = self.hparams
  1220. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1221. if "head_dim" in hparams:
  1222. rope_dim = hparams["head_dim"]
  1223. else:
  1224. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1225. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1226. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1227. if self.hparams["rope_scaling"].get("type") == "linear":
  1228. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1229. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1230. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1231. if tokenizer_config_file.is_file():
  1232. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1233. tokenizer_config_json = json.load(f)
  1234. if "add_prefix_space" in tokenizer_config_json:
  1235. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1236. # Apply to granite small models only
  1237. if self.hparams.get("vocab_size", 32000) == 49152:
  1238. self.gguf_writer.add_add_bos_token(False)
  1239. @staticmethod
  1240. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1241. if n_head_kv is not None and n_head != n_head_kv:
  1242. n_head = n_head_kv
  1243. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1244. .swapaxes(1, 2)
  1245. .reshape(weights.shape))
  1246. _experts: list[dict[str, Tensor]] | None = None
  1247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1248. n_head = self.hparams["num_attention_heads"]
  1249. n_kv_head = self.hparams.get("num_key_value_heads")
  1250. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1251. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1252. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1253. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1254. # process the experts separately
  1255. if name.find("block_sparse_moe.experts") != -1:
  1256. n_experts = self.hparams["num_local_experts"]
  1257. assert bid is not None
  1258. if self._experts is None:
  1259. self._experts = [{} for _ in range(self.block_count)]
  1260. self._experts[bid][name] = data_torch
  1261. if len(self._experts[bid]) >= n_experts * 3:
  1262. tensors: list[tuple[str, Tensor]] = []
  1263. # merge the experts into a single 3d tensor
  1264. for wid in ["w1", "w2", "w3"]:
  1265. datas: list[Tensor] = []
  1266. for xid in range(n_experts):
  1267. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1268. datas.append(self._experts[bid][ename])
  1269. del self._experts[bid][ename]
  1270. data_torch = torch.stack(datas, dim=0)
  1271. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1272. new_name = self.map_tensor_name(merged_name)
  1273. tensors.append((new_name, data_torch))
  1274. return tensors
  1275. else:
  1276. return []
  1277. return [(self.map_tensor_name(name), data_torch)]
  1278. def prepare_tensors(self):
  1279. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1280. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1281. base = self.hparams.get("rope_theta", 10000.0)
  1282. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1283. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1284. factor = rope_scaling.get("factor", 8.0)
  1285. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1286. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1287. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1288. low_freq_wavelen = old_context_len / low_freq_factor
  1289. high_freq_wavelen = old_context_len / high_freq_factor
  1290. assert low_freq_wavelen != high_freq_wavelen
  1291. rope_factors = []
  1292. for freq in freqs:
  1293. wavelen = 2 * math.pi / freq
  1294. if wavelen < high_freq_wavelen:
  1295. rope_factors.append(1)
  1296. elif wavelen > low_freq_wavelen:
  1297. rope_factors.append(factor)
  1298. else:
  1299. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1300. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1301. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1302. super().prepare_tensors()
  1303. if self._experts is not None:
  1304. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1305. experts = [k for d in self._experts for k in d.keys()]
  1306. if len(experts) > 0:
  1307. raise ValueError(f"Unprocessed experts: {experts}")
  1308. @Model.register("BitnetForCausalLM")
  1309. class BitnetModel(Model):
  1310. model_arch = gguf.MODEL_ARCH.BITNET
  1311. def set_vocab(self):
  1312. self._set_vocab_sentencepiece()
  1313. def set_gguf_parameters(self):
  1314. super().set_gguf_parameters()
  1315. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1316. self.gguf_writer.add_rope_scaling_factor(1.0)
  1317. def weight_quant(self, weight):
  1318. dtype = weight.dtype
  1319. weight = weight.float()
  1320. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1321. weight = (weight * s).round().clamp(-1, 1) / s
  1322. scale = weight.abs().max().unsqueeze(0)
  1323. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1324. weight = torch.sign(weight).type(dtype)
  1325. return weight.type(dtype), scale.type(torch.float32)
  1326. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1327. new_name = self.map_tensor_name(name)
  1328. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1329. gguf.MODEL_TENSOR.ATTN_Q,
  1330. gguf.MODEL_TENSOR.ATTN_K,
  1331. gguf.MODEL_TENSOR.ATTN_V,
  1332. gguf.MODEL_TENSOR.ATTN_OUT,
  1333. gguf.MODEL_TENSOR.FFN_UP,
  1334. gguf.MODEL_TENSOR.FFN_DOWN,
  1335. gguf.MODEL_TENSOR.FFN_GATE,
  1336. ]):
  1337. # transform weight into 1/0/-1 (in fp32)
  1338. weight_torch, scale_torch = self.weight_quant(data_torch)
  1339. yield (new_name, weight_torch)
  1340. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1341. else:
  1342. yield (new_name, data_torch)
  1343. @Model.register("GrokForCausalLM")
  1344. class GrokModel(Model):
  1345. model_arch = gguf.MODEL_ARCH.GROK
  1346. def set_vocab(self):
  1347. self._set_vocab_sentencepiece()
  1348. def __init__(self, *args, **kwargs):
  1349. super().__init__(*args, **kwargs)
  1350. def set_gguf_parameters(self):
  1351. super().set_gguf_parameters()
  1352. _experts: list[dict[str, Tensor]] | None = None
  1353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1354. # process the experts separately
  1355. if name.find(".moe.") != -1:
  1356. n_experts = self.hparams["num_local_experts"]
  1357. assert bid is not None
  1358. if self._experts is None:
  1359. self._experts = [{} for _ in range(self.block_count)]
  1360. self._experts[bid][name] = data_torch
  1361. if len(self._experts[bid]) >= n_experts * 3:
  1362. tensors: list[tuple[str, Tensor]] = []
  1363. # merge the experts into a single 3d tensor
  1364. for wid in ["linear", "linear_1", "linear_v"]:
  1365. datas: list[Tensor] = []
  1366. for xid in range(n_experts):
  1367. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1368. datas.append(self._experts[bid][ename])
  1369. del self._experts[bid][ename]
  1370. data_torch = torch.stack(datas, dim=0)
  1371. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1372. new_name = self.map_tensor_name(merged_name)
  1373. tensors.append((new_name, data_torch))
  1374. return tensors
  1375. else:
  1376. return []
  1377. return [(self.map_tensor_name(name), data_torch)]
  1378. @Model.register("DbrxForCausalLM")
  1379. class DbrxModel(Model):
  1380. model_arch = gguf.MODEL_ARCH.DBRX
  1381. def set_gguf_parameters(self):
  1382. ffn_config = self.hparams["ffn_config"]
  1383. attn_config = self.hparams["attn_config"]
  1384. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1385. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1386. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1387. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1388. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1389. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1390. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1391. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1392. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1393. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1394. self.gguf_writer.add_layer_norm_eps(1e-5)
  1395. self.gguf_writer.add_file_type(self.ftype)
  1396. logger.info(f"gguf: file type = {self.ftype}")
  1397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1398. del bid # unused
  1399. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1400. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1401. n_embd = self.hparams["d_model"]
  1402. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1403. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1404. # But llama.cpp moe graph works differently
  1405. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1406. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1407. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1408. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1409. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1410. experts = False
  1411. for exp_tensor_name in exp_tensor_names.keys():
  1412. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1413. experts = True
  1414. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1415. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1416. data_torch = data_torch.permute(*permute_tensor)
  1417. break
  1418. # map tensor names
  1419. # In MoE models the ffn tensors are typically most of the model weights,
  1420. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1421. # Every other model has the weight names ending in .weight,
  1422. # let's assume that is the convention which is not the case for dbrx:
  1423. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1424. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1425. return [(new_name, data_torch)]
  1426. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1427. del name, new_name, bid # unused
  1428. return n_dims > 1
  1429. @Model.register("MiniCPMForCausalLM")
  1430. class MiniCPMModel(Model):
  1431. model_arch = gguf.MODEL_ARCH.MINICPM
  1432. def set_gguf_parameters(self):
  1433. block_count = self.hparams["num_hidden_layers"]
  1434. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1435. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1436. self.gguf_writer.add_block_count(block_count)
  1437. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1438. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1439. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1440. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1441. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1442. self.gguf_writer.add_file_type(self.ftype)
  1443. def set_vocab(self):
  1444. self._set_vocab_llama_hf()
  1445. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1446. if n_kv_head is not None and n_head != n_kv_head:
  1447. n_head //= n_kv_head
  1448. return (
  1449. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1450. .swapaxes(1, 2)
  1451. .reshape(weights.shape)
  1452. )
  1453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1454. del bid # unused
  1455. n_head = self.hparams["num_attention_heads"]
  1456. n_kv_head = self.hparams.get("num_key_value_heads")
  1457. # HF models permute some of the tensors, so we need to undo that
  1458. if name.endswith(("q_proj.weight")):
  1459. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1460. if name.endswith(("k_proj.weight")):
  1461. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1462. return [(self.map_tensor_name(name), data_torch)]
  1463. @Model.register("QWenLMHeadModel")
  1464. class QwenModel(Model):
  1465. model_arch = gguf.MODEL_ARCH.QWEN
  1466. @staticmethod
  1467. def token_bytes_to_string(b):
  1468. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1469. byte_encoder = bytes_to_unicode()
  1470. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1471. @staticmethod
  1472. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1473. parts = [bytes([b]) for b in token]
  1474. while True:
  1475. min_idx = None
  1476. min_rank = None
  1477. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1478. rank = mergeable_ranks.get(pair[0] + pair[1])
  1479. if rank is not None and (min_rank is None or rank < min_rank):
  1480. min_idx = i
  1481. min_rank = rank
  1482. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1483. break
  1484. assert min_idx is not None
  1485. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1486. return parts
  1487. def set_vocab(self):
  1488. self._set_vocab_qwen()
  1489. def set_gguf_parameters(self):
  1490. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1491. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1492. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1493. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1494. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1495. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1496. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1497. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1498. self.gguf_writer.add_file_type(self.ftype)
  1499. @Model.register("Qwen2ForCausalLM")
  1500. class Qwen2Model(Model):
  1501. model_arch = gguf.MODEL_ARCH.QWEN2
  1502. def set_vocab(self):
  1503. try:
  1504. self._set_vocab_sentencepiece()
  1505. except FileNotFoundError:
  1506. self._set_vocab_gpt2()
  1507. @Model.register("Qwen2MoeForCausalLM")
  1508. class Qwen2MoeModel(Model):
  1509. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1510. def set_gguf_parameters(self):
  1511. super().set_gguf_parameters()
  1512. if (n_experts := self.hparams.get("num_experts")) is not None:
  1513. self.gguf_writer.add_expert_count(n_experts)
  1514. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1515. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1516. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1517. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1518. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1519. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1520. _experts: list[dict[str, Tensor]] | None = None
  1521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1522. # process the experts separately
  1523. if name.find("experts") != -1:
  1524. n_experts = self.hparams["num_experts"]
  1525. assert bid is not None
  1526. if self._experts is None:
  1527. self._experts = [{} for _ in range(self.block_count)]
  1528. self._experts[bid][name] = data_torch
  1529. if len(self._experts[bid]) >= n_experts * 3:
  1530. tensors: list[tuple[str, Tensor]] = []
  1531. # merge the experts into a single 3d tensor
  1532. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1533. datas: list[Tensor] = []
  1534. for xid in range(n_experts):
  1535. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1536. datas.append(self._experts[bid][ename])
  1537. del self._experts[bid][ename]
  1538. data_torch = torch.stack(datas, dim=0)
  1539. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1540. new_name = self.map_tensor_name(merged_name)
  1541. tensors.append((new_name, data_torch))
  1542. return tensors
  1543. else:
  1544. return []
  1545. return [(self.map_tensor_name(name), data_torch)]
  1546. def prepare_tensors(self):
  1547. super().prepare_tensors()
  1548. if self._experts is not None:
  1549. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1550. experts = [k for d in self._experts for k in d.keys()]
  1551. if len(experts) > 0:
  1552. raise ValueError(f"Unprocessed experts: {experts}")
  1553. @Model.register("GPT2LMHeadModel")
  1554. class GPT2Model(Model):
  1555. model_arch = gguf.MODEL_ARCH.GPT2
  1556. def set_gguf_parameters(self):
  1557. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1558. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1559. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1560. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1561. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1562. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1563. self.gguf_writer.add_file_type(self.ftype)
  1564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1565. del bid # unused
  1566. tensors: list[tuple[str, Tensor]] = []
  1567. # we don't need these
  1568. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1569. return tensors
  1570. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1571. data_torch = data_torch.transpose(1, 0)
  1572. new_name = self.map_tensor_name(name)
  1573. tensors.append((new_name, data_torch))
  1574. # note: GPT2 output is tied to (same as) wte in original model
  1575. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1576. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1577. return tensors
  1578. @Model.register("PhiForCausalLM")
  1579. class Phi2Model(Model):
  1580. model_arch = gguf.MODEL_ARCH.PHI2
  1581. def set_gguf_parameters(self):
  1582. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1583. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1584. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1585. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1586. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1587. self.gguf_writer.add_embedding_length(n_embd)
  1588. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1589. self.gguf_writer.add_block_count(block_count)
  1590. self.gguf_writer.add_head_count(n_head)
  1591. self.gguf_writer.add_head_count_kv(n_head)
  1592. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1593. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1594. self.gguf_writer.add_file_type(self.ftype)
  1595. self.gguf_writer.add_add_bos_token(False)
  1596. @Model.register("Phi3ForCausalLM")
  1597. class Phi3MiniModel(Model):
  1598. model_arch = gguf.MODEL_ARCH.PHI3
  1599. def set_vocab(self):
  1600. from sentencepiece import SentencePieceProcessor
  1601. tokenizer_path = self.dir_model / 'tokenizer.model'
  1602. if not tokenizer_path.is_file():
  1603. raise ValueError(f'Error: Missing {tokenizer_path}')
  1604. tokenizer = SentencePieceProcessor()
  1605. tokenizer.LoadFromFile(str(tokenizer_path))
  1606. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1607. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1608. scores: list[float] = [-10000.0] * vocab_size
  1609. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1610. for token_id in range(tokenizer.vocab_size()):
  1611. piece = tokenizer.IdToPiece(token_id)
  1612. text = piece.encode("utf-8")
  1613. score = tokenizer.GetScore(token_id)
  1614. toktype = SentencePieceTokenTypes.NORMAL
  1615. if tokenizer.IsUnknown(token_id):
  1616. toktype = SentencePieceTokenTypes.UNKNOWN
  1617. elif tokenizer.IsControl(token_id):
  1618. toktype = SentencePieceTokenTypes.CONTROL
  1619. elif tokenizer.IsUnused(token_id):
  1620. toktype = SentencePieceTokenTypes.UNUSED
  1621. elif tokenizer.IsByte(token_id):
  1622. toktype = SentencePieceTokenTypes.BYTE
  1623. tokens[token_id] = text
  1624. scores[token_id] = score
  1625. toktypes[token_id] = toktype
  1626. added_tokens_file = self.dir_model / 'added_tokens.json'
  1627. if added_tokens_file.is_file():
  1628. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1629. added_tokens_json = json.load(f)
  1630. for key in added_tokens_json:
  1631. token_id = added_tokens_json[key]
  1632. if token_id >= vocab_size:
  1633. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1634. continue
  1635. tokens[token_id] = key.encode("utf-8")
  1636. scores[token_id] = -1000.0
  1637. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1638. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1639. if tokenizer_config_file.is_file():
  1640. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1641. tokenizer_config_json = json.load(f)
  1642. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1643. for token_id, foken_data in added_tokens_decoder.items():
  1644. token_id = int(token_id)
  1645. token = foken_data["content"].encode("utf-8")
  1646. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1647. if tokens[token_id] != token:
  1648. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1649. tokens[token_id] = token
  1650. scores[token_id] = -1000.0
  1651. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1652. if foken_data.get("special"):
  1653. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1654. tokenizer_file = self.dir_model / 'tokenizer.json'
  1655. if tokenizer_file.is_file():
  1656. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1657. tokenizer_json = json.load(f)
  1658. added_tokens = tokenizer_json.get("added_tokens", [])
  1659. for foken_data in added_tokens:
  1660. token_id = int(foken_data["id"])
  1661. token = foken_data["content"].encode("utf-8")
  1662. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1663. if tokens[token_id] != token:
  1664. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1665. tokens[token_id] = token
  1666. scores[token_id] = -1000.0
  1667. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1668. if foken_data.get("special"):
  1669. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1670. self.gguf_writer.add_tokenizer_model("llama")
  1671. self.gguf_writer.add_tokenizer_pre("default")
  1672. self.gguf_writer.add_token_list(tokens)
  1673. self.gguf_writer.add_token_scores(scores)
  1674. self.gguf_writer.add_token_types(toktypes)
  1675. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1676. special_vocab.add_to_gguf(self.gguf_writer)
  1677. def set_gguf_parameters(self):
  1678. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1679. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1680. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1681. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1682. rms_eps = self.find_hparam(["rms_norm_eps"])
  1683. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1684. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1685. rope_dims = n_embd // n_head
  1686. self.gguf_writer.add_context_length(max_pos_embds)
  1687. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1688. self.gguf_writer.add_embedding_length(n_embd)
  1689. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1690. self.gguf_writer.add_block_count(block_count)
  1691. self.gguf_writer.add_head_count(n_head)
  1692. self.gguf_writer.add_head_count_kv(n_head_kv)
  1693. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1694. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1695. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1696. self.gguf_writer.add_file_type(self.ftype)
  1697. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1698. # write rope scaling for long context (128k) model
  1699. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1700. if rope_scaling is None:
  1701. return
  1702. scale = max_pos_embds / orig_max_pos_embds
  1703. rope_scaling_type = rope_scaling.get('type', '').lower()
  1704. if len(rope_scaling_type) == 0:
  1705. raise KeyError('Missing the required key rope_scaling.type')
  1706. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1707. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1708. elif rope_scaling_type == 'yarn':
  1709. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1710. else:
  1711. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1712. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1713. long_factors = rope_scaling.get('long_factor', None)
  1714. short_factors = rope_scaling.get('short_factor', None)
  1715. if long_factors is None or short_factors is None:
  1716. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1717. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1718. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1719. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1720. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1721. @Model.register("PlamoForCausalLM")
  1722. class PlamoModel(Model):
  1723. model_arch = gguf.MODEL_ARCH.PLAMO
  1724. def set_vocab(self):
  1725. self._set_vocab_sentencepiece()
  1726. def set_gguf_parameters(self):
  1727. hparams = self.hparams
  1728. block_count = hparams["num_hidden_layers"]
  1729. self.gguf_writer.add_context_length(4096) # not in config.json
  1730. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1731. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1732. self.gguf_writer.add_block_count(block_count)
  1733. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1734. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1735. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1736. self.gguf_writer.add_file_type(self.ftype)
  1737. def shuffle_attn_q_weight(self, data_torch):
  1738. assert data_torch.size() == (5120, 5120)
  1739. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1740. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1741. data_torch = torch.reshape(data_torch, (5120, 5120))
  1742. return data_torch
  1743. def shuffle_attn_output_weight(self, data_torch):
  1744. assert data_torch.size() == (5120, 5120)
  1745. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1746. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1747. data_torch = torch.reshape(data_torch, (5120, 5120))
  1748. return data_torch
  1749. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1750. del bid # unused
  1751. new_name = self.map_tensor_name(name)
  1752. # shuffle for broadcasting of gqa in ggml_mul_mat
  1753. if new_name.endswith("attn_q.weight"):
  1754. data_torch = self.shuffle_attn_q_weight(data_torch)
  1755. elif new_name.endswith("attn_output.weight"):
  1756. data_torch = self.shuffle_attn_output_weight(data_torch)
  1757. return [(new_name, data_torch)]
  1758. @Model.register("CodeShellForCausalLM")
  1759. class CodeShellModel(Model):
  1760. model_arch = gguf.MODEL_ARCH.CODESHELL
  1761. def set_gguf_parameters(self):
  1762. block_count = self.hparams["n_layer"]
  1763. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1764. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1765. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1766. self.gguf_writer.add_block_count(block_count)
  1767. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1768. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1769. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1770. self.gguf_writer.add_file_type(self.ftype)
  1771. self.gguf_writer.add_rope_freq_base(10000.0)
  1772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1773. self.gguf_writer.add_rope_scaling_factor(1.0)
  1774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1775. del bid # unused
  1776. new_name = self.map_tensor_name(name)
  1777. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1778. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1779. assert self.tensor_names is not None
  1780. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1781. # copy tok_embd.weight to output.weight
  1782. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1783. return tensors
  1784. @Model.register("InternLM2ForCausalLM")
  1785. class InternLM2Model(Model):
  1786. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1787. def set_vocab(self):
  1788. # (TODO): Is there a better way?
  1789. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1790. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1791. # recognized as an empty string in C++.
  1792. from sentencepiece import SentencePieceProcessor
  1793. from sentencepiece import sentencepiece_model_pb2 as model
  1794. tokenizer_path = self.dir_model / 'tokenizer.model'
  1795. tokens: list[bytes] = []
  1796. scores: list[float] = []
  1797. toktypes: list[int] = []
  1798. if not tokenizer_path.is_file():
  1799. logger.error(f'Error: Missing {tokenizer_path}')
  1800. sys.exit(1)
  1801. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1802. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1803. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1804. tokenizer = SentencePieceProcessor()
  1805. tokenizer.LoadFromFile(str(tokenizer_path))
  1806. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1807. for token_id in range(vocab_size):
  1808. piece = tokenizer.IdToPiece(token_id)
  1809. text = piece.encode("utf-8")
  1810. score = tokenizer.GetScore(token_id)
  1811. if text == b"\x00":
  1812. # (TODO): fixme
  1813. # Hack here and replace the \x00 characters.
  1814. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1815. text = "🐉".encode("utf-8")
  1816. toktype = SentencePieceTokenTypes.NORMAL
  1817. if tokenizer.IsUnknown(token_id):
  1818. toktype = SentencePieceTokenTypes.UNKNOWN
  1819. elif tokenizer.IsControl(token_id):
  1820. toktype = SentencePieceTokenTypes.CONTROL
  1821. elif tokenizer.IsUnused(token_id):
  1822. toktype = SentencePieceTokenTypes.UNUSED
  1823. elif tokenizer.IsByte(token_id):
  1824. toktype = SentencePieceTokenTypes.BYTE
  1825. # take care of ununsed raw token
  1826. if piece.startswith('[UNUSED'):
  1827. toktype = SentencePieceTokenTypes.UNUSED
  1828. tokens.append(text)
  1829. scores.append(score)
  1830. toktypes.append(toktype)
  1831. added_tokens_file = self.dir_model / 'added_tokens.json'
  1832. if added_tokens_file.is_file():
  1833. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1834. added_tokens_json = json.load(f)
  1835. for key in added_tokens_json:
  1836. tokens.append(key.encode("utf-8"))
  1837. scores.append(-1000.0)
  1838. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1839. chat_eos_token = '<|im_end|>'
  1840. chat_eos_token_id = None
  1841. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1842. if tokenizer_config_file.is_file():
  1843. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1844. tokenizer_config_json = json.load(f)
  1845. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1846. for token_id, foken_data in added_tokens_decoder.items():
  1847. token_id = int(token_id)
  1848. token = foken_data["content"]
  1849. if token == chat_eos_token:
  1850. chat_eos_token_id = token_id
  1851. token = token.encode("utf-8")
  1852. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1853. if tokens[token_id] != token:
  1854. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1855. tokens[token_id] = token
  1856. scores[token_id] = -1000.0
  1857. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1858. if foken_data.get("special"):
  1859. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1860. tokenizer_file = self.dir_model / 'tokenizer.json'
  1861. if tokenizer_file.is_file():
  1862. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1863. tokenizer_json = json.load(f)
  1864. added_tokens = tokenizer_json.get("added_tokens", [])
  1865. for foken_data in added_tokens:
  1866. token_id = int(foken_data["id"])
  1867. token = foken_data["content"]
  1868. if token == chat_eos_token:
  1869. chat_eos_token_id = token_id
  1870. token = token.encode("utf-8")
  1871. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1872. if tokens[token_id] != token:
  1873. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1874. tokens[token_id] = token
  1875. scores[token_id] = -1000.0
  1876. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1877. if foken_data.get("special"):
  1878. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1879. self.gguf_writer.add_tokenizer_model("llama")
  1880. self.gguf_writer.add_tokenizer_pre("default")
  1881. self.gguf_writer.add_token_list(tokens)
  1882. self.gguf_writer.add_token_scores(scores)
  1883. self.gguf_writer.add_token_types(toktypes)
  1884. self.gguf_writer.add_add_space_prefix(add_prefix)
  1885. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1886. old_eos = special_vocab.special_token_ids["eos"]
  1887. if chat_eos_token_id is not None:
  1888. # For the chat model, we replace the eos with '<|im_end|>'.
  1889. # TODO: this is a hack, should be fixed
  1890. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1891. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1892. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1893. " in chat mode so that the conversation can end normally.")
  1894. special_vocab.add_to_gguf(self.gguf_writer)
  1895. def set_gguf_parameters(self):
  1896. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1897. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1898. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1899. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1900. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1901. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1902. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1903. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1904. self.gguf_writer.add_file_type(self.ftype)
  1905. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1906. if self.hparams["rope_scaling"].get("type") == "linear":
  1907. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1908. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1909. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1910. num_heads = self.hparams["num_attention_heads"]
  1911. num_kv_heads = self.hparams["num_key_value_heads"]
  1912. n_embd = self.hparams["hidden_size"]
  1913. q_per_kv = num_heads // num_kv_heads
  1914. head_dim = n_embd // num_heads
  1915. num_groups = num_heads // q_per_kv
  1916. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1917. qkv = data_torch
  1918. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1919. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1920. # The model weights of q and k equire additional reshape.
  1921. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1922. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1923. v = v.reshape((-1, v.shape[-1]))
  1924. return [
  1925. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1926. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1927. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1928. ]
  1929. else:
  1930. return [(self.map_tensor_name(name), data_torch)]
  1931. @Model.register("BertModel", "CamembertModel")
  1932. class BertModel(Model):
  1933. model_arch = gguf.MODEL_ARCH.BERT
  1934. def __init__(self, *args, **kwargs):
  1935. super().__init__(*args, **kwargs)
  1936. self.vocab_size = None
  1937. def set_gguf_parameters(self):
  1938. super().set_gguf_parameters()
  1939. self.gguf_writer.add_causal_attention(False)
  1940. # get pooling path
  1941. pooling_path = None
  1942. module_path = self.dir_model / "modules.json"
  1943. if module_path.is_file():
  1944. with open(module_path, encoding="utf-8") as f:
  1945. modules = json.load(f)
  1946. for mod in modules:
  1947. if mod["type"] == "sentence_transformers.models.Pooling":
  1948. pooling_path = mod["path"]
  1949. break
  1950. # get pooling type
  1951. if pooling_path is not None:
  1952. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1953. pooling = json.load(f)
  1954. if pooling["pooling_mode_mean_tokens"]:
  1955. pooling_type = gguf.PoolingType.MEAN
  1956. elif pooling["pooling_mode_cls_token"]:
  1957. pooling_type = gguf.PoolingType.CLS
  1958. else:
  1959. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1960. self.gguf_writer.add_pooling_type(pooling_type)
  1961. def set_vocab(self):
  1962. tokens, toktypes, tokpre = self.get_vocab_base()
  1963. self.vocab_size = len(tokens)
  1964. # we need this to validate the size of the token_type embeddings
  1965. # though currently we are passing all zeros to the token_type embeddings
  1966. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1967. # convert to phantom space vocab
  1968. def phantom(tok):
  1969. if tok.startswith("[") and tok.endswith("]"):
  1970. return tok
  1971. if tok.startswith("##"):
  1972. return tok[2:]
  1973. return "\u2581" + tok
  1974. tokens = list(map(phantom, tokens))
  1975. # add vocab to gguf
  1976. self.gguf_writer.add_tokenizer_model("bert")
  1977. self.gguf_writer.add_tokenizer_pre(tokpre)
  1978. self.gguf_writer.add_token_list(tokens)
  1979. self.gguf_writer.add_token_types(toktypes)
  1980. # handle special tokens
  1981. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1982. special_vocab.add_to_gguf(self.gguf_writer)
  1983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1984. del bid # unused
  1985. # we are only using BERT for embeddings so we don't need the pooling layer
  1986. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1987. return [] # we don't need these
  1988. return [(self.map_tensor_name(name), data_torch)]
  1989. @Model.register("NomicBertModel")
  1990. class NomicBertModel(BertModel):
  1991. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1992. def __init__(self, *args, **kwargs):
  1993. super().__init__(*args, **kwargs)
  1994. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1995. self.hparams["n_ctx"] = 2048
  1996. # SwigLU activation
  1997. assert self.hparams["activation_function"] == "swiglu"
  1998. # this doesn't do anything in the HF version
  1999. assert self.hparams["causal"] is False
  2000. # no bias tensors
  2001. assert self.hparams["qkv_proj_bias"] is False
  2002. assert self.hparams["mlp_fc1_bias"] is False
  2003. assert self.hparams["mlp_fc2_bias"] is False
  2004. # norm at end of layer
  2005. assert self.hparams["prenorm"] is False
  2006. # standard RoPE
  2007. assert self.hparams["rotary_emb_fraction"] == 1.0
  2008. assert self.hparams["rotary_emb_interleaved"] is False
  2009. assert self.hparams["rotary_emb_scale_base"] is None
  2010. def set_gguf_parameters(self):
  2011. super().set_gguf_parameters()
  2012. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2013. @Model.register("XLMRobertaModel")
  2014. class XLMRobertaModel(BertModel):
  2015. model_arch = gguf.MODEL_ARCH.BERT
  2016. def __init__(self, *args, **kwargs):
  2017. super().__init__(*args, **kwargs)
  2018. # we need the pad_token_id to know how to chop down position_embd matrix
  2019. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2020. self._position_offset = 1 + pad_token_id
  2021. if "max_position_embeddings" in self.hparams:
  2022. self.hparams["max_position_embeddings"] -= self._position_offset
  2023. else:
  2024. self._position_offset = None
  2025. def set_vocab(self):
  2026. # to avoid TypeError: Descriptors cannot be created directly
  2027. # exception when importing sentencepiece_model_pb2
  2028. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2029. from sentencepiece import SentencePieceProcessor
  2030. from sentencepiece import sentencepiece_model_pb2 as model
  2031. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2032. if not tokenizer_path.is_file():
  2033. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2034. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2035. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2036. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2037. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2038. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2039. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2040. tokenizer = SentencePieceProcessor()
  2041. tokenizer.LoadFromFile(str(tokenizer_path))
  2042. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2043. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2044. scores: list[float] = [-10000.0] * vocab_size
  2045. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2046. for token_id in range(tokenizer.vocab_size()):
  2047. piece = tokenizer.IdToPiece(token_id)
  2048. text = piece.encode("utf-8")
  2049. score = tokenizer.GetScore(token_id)
  2050. toktype = SentencePieceTokenTypes.NORMAL
  2051. if tokenizer.IsUnknown(token_id):
  2052. toktype = SentencePieceTokenTypes.UNKNOWN
  2053. elif tokenizer.IsControl(token_id):
  2054. toktype = SentencePieceTokenTypes.CONTROL
  2055. elif tokenizer.IsUnused(token_id):
  2056. toktype = SentencePieceTokenTypes.UNUSED
  2057. elif tokenizer.IsByte(token_id):
  2058. toktype = SentencePieceTokenTypes.BYTE
  2059. tokens[token_id] = text
  2060. scores[token_id] = score
  2061. toktypes[token_id] = toktype
  2062. if vocab_size > len(tokens):
  2063. pad_count = vocab_size - len(tokens)
  2064. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2065. for i in range(1, pad_count + 1):
  2066. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2067. scores.append(-1000.0)
  2068. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2069. # realign tokens (see HF tokenizer code)
  2070. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2071. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2072. toktypes = [
  2073. SentencePieceTokenTypes.CONTROL,
  2074. SentencePieceTokenTypes.CONTROL,
  2075. SentencePieceTokenTypes.CONTROL,
  2076. SentencePieceTokenTypes.UNKNOWN,
  2077. ] + toktypes[3:-1]
  2078. self.gguf_writer.add_tokenizer_model("t5")
  2079. self.gguf_writer.add_tokenizer_pre("default")
  2080. self.gguf_writer.add_token_list(tokens)
  2081. self.gguf_writer.add_token_scores(scores)
  2082. self.gguf_writer.add_token_types(toktypes)
  2083. self.gguf_writer.add_add_space_prefix(add_prefix)
  2084. self.gguf_writer.add_token_type_count(1)
  2085. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2086. if precompiled_charsmap:
  2087. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2088. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2089. special_vocab.add_to_gguf(self.gguf_writer)
  2090. self.gguf_writer.add_add_bos_token(True)
  2091. self.gguf_writer.add_add_eos_token(True)
  2092. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2093. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2094. if name == "embeddings.position_embeddings.weight":
  2095. if self._position_offset is not None:
  2096. data_torch = data_torch[self._position_offset:,:]
  2097. return super().modify_tensors(data_torch, name, bid)
  2098. @Model.register("GemmaForCausalLM")
  2099. class GemmaModel(Model):
  2100. model_arch = gguf.MODEL_ARCH.GEMMA
  2101. def set_vocab(self):
  2102. self._set_vocab_sentencepiece()
  2103. # TODO: these special tokens should be exported only for the CodeGemma family
  2104. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2105. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2106. special_vocab._set_special_token("prefix", 67)
  2107. special_vocab._set_special_token("suffix", 69)
  2108. special_vocab._set_special_token("middle", 68)
  2109. special_vocab._set_special_token("fsep", 70)
  2110. special_vocab._set_special_token("eot", 107)
  2111. special_vocab.chat_template = None # do not add it twice
  2112. special_vocab.add_to_gguf(self.gguf_writer)
  2113. self.gguf_writer.add_add_space_prefix(False)
  2114. def set_gguf_parameters(self):
  2115. hparams = self.hparams
  2116. block_count = hparams["num_hidden_layers"]
  2117. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2118. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2119. self.gguf_writer.add_block_count(block_count)
  2120. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2121. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2122. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2123. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2124. self.gguf_writer.add_key_length(hparams["head_dim"])
  2125. self.gguf_writer.add_value_length(hparams["head_dim"])
  2126. self.gguf_writer.add_file_type(self.ftype)
  2127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2128. del bid # unused
  2129. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2130. # To prevent errors, skip loading lm_head.weight.
  2131. if name == "lm_head.weight":
  2132. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2133. return []
  2134. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2135. if name.endswith("norm.weight"):
  2136. data_torch = data_torch + 1
  2137. return [(self.map_tensor_name(name), data_torch)]
  2138. @Model.register("Gemma2ForCausalLM")
  2139. class Gemma2Model(Model):
  2140. model_arch = gguf.MODEL_ARCH.GEMMA2
  2141. def set_vocab(self):
  2142. self._set_vocab_sentencepiece()
  2143. self.gguf_writer.add_add_space_prefix(False)
  2144. def set_gguf_parameters(self):
  2145. hparams = self.hparams
  2146. block_count = hparams["num_hidden_layers"]
  2147. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2148. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2149. self.gguf_writer.add_block_count(block_count)
  2150. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2151. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2152. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2153. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2154. self.gguf_writer.add_key_length(hparams["head_dim"])
  2155. self.gguf_writer.add_value_length(hparams["head_dim"])
  2156. self.gguf_writer.add_file_type(self.ftype)
  2157. self.gguf_writer.add_attn_logit_softcapping(
  2158. self.hparams["attn_logit_softcapping"]
  2159. )
  2160. self.gguf_writer.add_final_logit_softcapping(
  2161. self.hparams["final_logit_softcapping"]
  2162. )
  2163. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2165. del bid # unused
  2166. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2167. # To prevent errors, skip loading lm_head.weight.
  2168. if name == "lm_head.weight":
  2169. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2170. return []
  2171. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2172. if name.endswith("norm.weight"):
  2173. data_torch = data_torch + 1
  2174. return [(self.map_tensor_name(name), data_torch)]
  2175. @Model.register("Starcoder2ForCausalLM")
  2176. class StarCoder2Model(Model):
  2177. model_arch = gguf.MODEL_ARCH.STARCODER2
  2178. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2179. class MambaModel(Model):
  2180. model_arch = gguf.MODEL_ARCH.MAMBA
  2181. def set_vocab(self):
  2182. vocab_size = self.hparams["vocab_size"]
  2183. # Round vocab size to next multiple of 8
  2184. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2185. # pad using ceiling division
  2186. # ref: https://stackoverflow.com/a/17511341/22827863
  2187. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2188. self.hparams["vocab_size"] = vocab_size
  2189. if (self.dir_model / "tokenizer.json").is_file():
  2190. self._set_vocab_gpt2()
  2191. elif (self.dir_model / "tokenizer.model").is_file():
  2192. self._set_vocab_sentencepiece()
  2193. else:
  2194. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2195. self._set_vocab_builtin("gpt-neox", vocab_size)
  2196. def set_gguf_parameters(self):
  2197. d_model = self.find_hparam(["hidden_size", "d_model"])
  2198. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2199. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2200. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2201. # ceiling division
  2202. # ref: https://stackoverflow.com/a/17511341/22827863
  2203. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2204. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2205. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2206. # Fail early for models which don't have a block expansion factor of 2
  2207. assert d_inner == 2 * d_model
  2208. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2209. self.gguf_writer.add_embedding_length(d_model)
  2210. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2211. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2212. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2213. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2214. self.gguf_writer.add_ssm_inner_size(d_inner)
  2215. self.gguf_writer.add_ssm_state_size(d_state)
  2216. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2217. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2218. self.gguf_writer.add_file_type(self.ftype)
  2219. _tok_embd = None
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. del bid # unused
  2222. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2223. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2224. new_name = self.map_tensor_name(name)
  2225. if name.endswith(".A_log"):
  2226. logger.debug("A_log --> A ==> " + new_name)
  2227. data_torch = -torch.exp(data_torch)
  2228. # assuming token_embd.weight is seen before output.weight
  2229. if self._tok_embd is not None and new_name == output_name:
  2230. if torch.equal(self._tok_embd, data_torch):
  2231. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2232. return []
  2233. elif new_name == tok_embd_name:
  2234. self._tok_embd = data_torch
  2235. return [(new_name, data_torch)]
  2236. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2237. if bid is not None and new_name in (
  2238. self.format_tensor_name(
  2239. n, bid, ".weight" if name.endswith(".weight") else ""
  2240. )
  2241. for n in [
  2242. gguf.MODEL_TENSOR.SSM_CONV1D,
  2243. gguf.MODEL_TENSOR.SSM_X,
  2244. gguf.MODEL_TENSOR.SSM_DT,
  2245. gguf.MODEL_TENSOR.SSM_A,
  2246. gguf.MODEL_TENSOR.SSM_D,
  2247. ]
  2248. ):
  2249. return gguf.GGMLQuantizationType.F32
  2250. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2251. @Model.register("CohereForCausalLM")
  2252. class CommandR2Model(Model):
  2253. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2254. def __init__(self, *args, **kwargs):
  2255. super().__init__(*args, **kwargs)
  2256. # max_position_embeddings = 8192 in config.json but model was actually
  2257. # trained on 128k context length
  2258. # aya-23 models don't have model_max_length specified
  2259. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2260. def set_gguf_parameters(self):
  2261. super().set_gguf_parameters()
  2262. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2263. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2264. @Model.register("OlmoForCausalLM")
  2265. @Model.register("OLMoForCausalLM")
  2266. class OlmoModel(Model):
  2267. model_arch = gguf.MODEL_ARCH.OLMO
  2268. def set_gguf_parameters(self):
  2269. super().set_gguf_parameters()
  2270. self.gguf_writer.add_layer_norm_eps(1e-5)
  2271. clip_qkv = self.hparams.get("clip_qkv")
  2272. if clip_qkv is not None:
  2273. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2274. # Same as super class, but permuting q_proj, k_proj
  2275. # Copied from: LlamaModel
  2276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2277. del bid # unused
  2278. n_head = self.hparams["num_attention_heads"]
  2279. n_kv_head = self.hparams.get("num_key_value_heads")
  2280. if name.endswith("q_proj.weight"):
  2281. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2282. if name.endswith("k_proj.weight"):
  2283. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2284. return [(self.map_tensor_name(name), data_torch)]
  2285. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2286. class JinaBertV2Model(BertModel):
  2287. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2288. def __init__(self, *args, **kwargs):
  2289. super().__init__(*args, **kwargs)
  2290. self.intermediate_size = self.hparams["intermediate_size"]
  2291. def get_tensors(self):
  2292. for name, data in super().get_tensors():
  2293. if 'gated_layer' in name:
  2294. d1 = data[:self.intermediate_size, :]
  2295. name1 = name.replace('gated_layers', 'gated_layers_w')
  2296. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2297. d2 = data[self.intermediate_size:, :]
  2298. name2 = name.replace('gated_layers', 'gated_layers_v')
  2299. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2300. yield name1, d1
  2301. yield name2, d2
  2302. continue
  2303. yield name, data
  2304. def set_vocab(self):
  2305. tokenizer_class = 'BertTokenizer'
  2306. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2307. tokenizer_class = json.load(f)['tokenizer_class']
  2308. if tokenizer_class == 'BertTokenizer':
  2309. super().set_vocab()
  2310. elif tokenizer_class == 'RobertaTokenizer':
  2311. self._set_vocab_gpt2()
  2312. self.gguf_writer.add_token_type_count(2)
  2313. else:
  2314. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2315. self.gguf_writer.add_add_bos_token(True)
  2316. self.gguf_writer.add_add_eos_token(True)
  2317. @Model.register("OpenELMForCausalLM")
  2318. class OpenELMModel(Model):
  2319. model_arch = gguf.MODEL_ARCH.OPENELM
  2320. @staticmethod
  2321. def _make_divisible(v: float | int, divisor: int) -> int:
  2322. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2323. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2324. # Make sure that round down does not go down by more than 10%.
  2325. if new_v < 0.9 * v:
  2326. new_v += divisor
  2327. return new_v
  2328. def __init__(self, *args, **kwargs):
  2329. super().__init__(*args, **kwargs)
  2330. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2331. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2332. self._n_embd: int = self.hparams["model_dim"]
  2333. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2334. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2335. self._ffn_dims: list[int] = [
  2336. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2337. for multiplier in ffn_multipliers
  2338. ]
  2339. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2340. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2341. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2342. def set_vocab(self):
  2343. try:
  2344. self._set_vocab_sentencepiece()
  2345. except FileNotFoundError:
  2346. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2347. def set_gguf_parameters(self):
  2348. n_embd = self._n_embd
  2349. head_dim = self.hparams["head_dim"]
  2350. rot_pct = 1.0
  2351. assert self.block_count == len(self._num_kv_heads)
  2352. assert self.block_count == len(self._num_query_heads)
  2353. assert self.block_count == len(self._ffn_dims)
  2354. self.gguf_writer.add_block_count(self.block_count)
  2355. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2356. self.gguf_writer.add_embedding_length(n_embd)
  2357. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2358. self.gguf_writer.add_head_count(self._num_query_heads)
  2359. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2360. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2361. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2362. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2363. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2364. self.gguf_writer.add_key_length(head_dim)
  2365. self.gguf_writer.add_value_length(head_dim)
  2366. self.gguf_writer.add_file_type(self.ftype)
  2367. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2368. if "n_layers" in keys:
  2369. return self.hparams["num_transformer_layers"]
  2370. return super().find_hparam(keys, optional)
  2371. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2372. # split ff
  2373. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2374. ff_dim = self._ffn_dims[bid]
  2375. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2376. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2377. return
  2378. yield (self.map_tensor_name(name), data_torch)
  2379. @Model.register("ArcticForCausalLM")
  2380. class ArcticModel(Model):
  2381. model_arch = gguf.MODEL_ARCH.ARCTIC
  2382. def set_vocab(self):
  2383. # The reason for using a custom implementation here is that the
  2384. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2385. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2386. from sentencepiece import SentencePieceProcessor
  2387. tokenizer_path = self.dir_model / 'tokenizer.model'
  2388. if not tokenizer_path.is_file():
  2389. logger.error(f'Error: Missing {tokenizer_path}')
  2390. sys.exit(1)
  2391. # Read the whole vocabulary from the tokenizer.model file
  2392. tokenizer = SentencePieceProcessor()
  2393. tokenizer.LoadFromFile(str(tokenizer_path))
  2394. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2395. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2396. scores: list[float] = [-10000.0] * vocab_size
  2397. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2398. for token_id in range(tokenizer.vocab_size()):
  2399. piece = tokenizer.IdToPiece(token_id)
  2400. text = piece.encode("utf-8")
  2401. score = tokenizer.GetScore(token_id)
  2402. toktype = SentencePieceTokenTypes.NORMAL
  2403. if tokenizer.IsUnknown(token_id):
  2404. toktype = SentencePieceTokenTypes.UNKNOWN
  2405. elif tokenizer.IsControl(token_id):
  2406. toktype = SentencePieceTokenTypes.CONTROL
  2407. elif tokenizer.IsUnused(token_id):
  2408. toktype = SentencePieceTokenTypes.UNUSED
  2409. elif tokenizer.IsByte(token_id):
  2410. toktype = SentencePieceTokenTypes.BYTE
  2411. tokens[token_id] = text
  2412. scores[token_id] = score
  2413. toktypes[token_id] = toktype
  2414. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2415. # of information about added/redefined tokens and modify them accordingly.
  2416. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2417. if tokenizer_config_file.is_file():
  2418. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2419. tokenizer_config_json = json.load(f)
  2420. if "added_tokens_decoder" in tokenizer_config_json:
  2421. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2422. for token_id, token_json in added_tokens_decoder.items():
  2423. token_id = int(token_id)
  2424. if token_id >= vocab_size:
  2425. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2426. continue
  2427. token_content = token_json["content"]
  2428. token_type = SentencePieceTokenTypes.USER_DEFINED
  2429. token_score = -10000.0
  2430. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2431. # Set the score to 0.0 as in the original tokenizer.model
  2432. if ("special" in token_json) and token_json["special"]:
  2433. if token_content == tokenizer_config_json["unk_token"]:
  2434. token_type = SentencePieceTokenTypes.UNKNOWN
  2435. else:
  2436. token_type = SentencePieceTokenTypes.CONTROL
  2437. token_score = 0.0
  2438. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2439. tokens[token_id] = token_content.encode("utf-8")
  2440. toktypes[token_id] = token_type
  2441. scores[token_id] = token_score
  2442. self.gguf_writer.add_tokenizer_model("llama")
  2443. self.gguf_writer.add_tokenizer_pre("default")
  2444. self.gguf_writer.add_token_list(tokens)
  2445. self.gguf_writer.add_token_scores(scores)
  2446. self.gguf_writer.add_token_types(toktypes)
  2447. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2448. special_vocab.add_to_gguf(self.gguf_writer)
  2449. def set_gguf_parameters(self):
  2450. super().set_gguf_parameters()
  2451. hparams = self.hparams
  2452. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2453. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2454. _experts: list[dict[str, Tensor]] | None = None
  2455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2456. n_head = self.hparams["num_attention_heads"]
  2457. n_kv_head = self.hparams.get("num_key_value_heads")
  2458. if name.endswith("q_proj.weight"):
  2459. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2460. if name.endswith("k_proj.weight"):
  2461. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2462. # process the experts separately
  2463. if name.find("block_sparse_moe.experts") != -1:
  2464. n_experts = self.hparams["num_local_experts"]
  2465. assert bid is not None
  2466. if self._experts is None:
  2467. self._experts = [{} for _ in range(self.block_count)]
  2468. self._experts[bid][name] = data_torch
  2469. if len(self._experts[bid]) >= n_experts * 3:
  2470. tensors: list[tuple[str, Tensor]] = []
  2471. # merge the experts into a single 3d tensor
  2472. for wid in ["w1", "w2", "w3"]:
  2473. datas: list[Tensor] = []
  2474. for xid in range(n_experts):
  2475. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2476. datas.append(self._experts[bid][ename])
  2477. del self._experts[bid][ename]
  2478. data_torch = torch.stack(datas, dim=0)
  2479. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2480. new_name = self.map_tensor_name(merged_name)
  2481. tensors.append((new_name, data_torch))
  2482. return tensors
  2483. else:
  2484. return []
  2485. return [(self.map_tensor_name(name), data_torch)]
  2486. def prepare_tensors(self):
  2487. super().prepare_tensors()
  2488. if self._experts is not None:
  2489. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2490. experts = [k for d in self._experts for k in d.keys()]
  2491. if len(experts) > 0:
  2492. raise ValueError(f"Unprocessed experts: {experts}")
  2493. @Model.register("DeepseekV2ForCausalLM")
  2494. class DeepseekV2Model(Model):
  2495. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2496. def set_vocab(self):
  2497. self._set_vocab_gpt2()
  2498. def set_gguf_parameters(self):
  2499. super().set_gguf_parameters()
  2500. hparams = self.hparams
  2501. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2502. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2503. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2504. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2505. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2506. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2507. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2508. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2509. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2510. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2511. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2512. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2513. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2514. if self.hparams["rope_scaling"].get("type") == "yarn":
  2515. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2516. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2517. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2518. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2519. _experts: list[dict[str, Tensor]] | None = None
  2520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2521. # process the experts separately
  2522. if name.find("mlp.experts") != -1:
  2523. n_experts = self.hparams["n_routed_experts"]
  2524. assert bid is not None
  2525. if self._experts is None:
  2526. self._experts = [{} for _ in range(self.block_count)]
  2527. self._experts[bid][name] = data_torch
  2528. if len(self._experts[bid]) >= n_experts * 3:
  2529. tensors: list[tuple[str, Tensor]] = []
  2530. # merge the experts into a single 3d tensor
  2531. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2532. datas: list[Tensor] = []
  2533. for xid in range(n_experts):
  2534. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2535. datas.append(self._experts[bid][ename])
  2536. del self._experts[bid][ename]
  2537. data_torch = torch.stack(datas, dim=0)
  2538. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2539. new_name = self.map_tensor_name(merged_name)
  2540. tensors.append((new_name, data_torch))
  2541. return tensors
  2542. else:
  2543. return []
  2544. return [(self.map_tensor_name(name), data_torch)]
  2545. def prepare_tensors(self):
  2546. super().prepare_tensors()
  2547. if self._experts is not None:
  2548. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2549. experts = [k for d in self._experts for k in d.keys()]
  2550. if len(experts) > 0:
  2551. raise ValueError(f"Unprocessed experts: {experts}")
  2552. @Model.register("T5WithLMHeadModel")
  2553. @Model.register("T5ForConditionalGeneration")
  2554. @Model.register("MT5ForConditionalGeneration")
  2555. @Model.register("UMT5ForConditionalGeneration")
  2556. class T5Model(Model):
  2557. model_arch = gguf.MODEL_ARCH.T5
  2558. def __init__(self, *args, **kwargs):
  2559. super().__init__(*args, **kwargs)
  2560. self.shared_token_embeddings_found = False
  2561. def set_vocab(self):
  2562. # to avoid TypeError: Descriptors cannot be created directly
  2563. # exception when importing sentencepiece_model_pb2
  2564. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2565. from sentencepiece import SentencePieceProcessor
  2566. from sentencepiece import sentencepiece_model_pb2 as model
  2567. tokenizer_path = self.dir_model / 'tokenizer.model'
  2568. # many older models use spiece.model tokenizer model filename
  2569. if not tokenizer_path.is_file():
  2570. tokenizer_path = self.dir_model / 'spiece.model'
  2571. if not tokenizer_path.is_file():
  2572. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2573. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2574. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2575. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2576. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2577. # assure the tokenizer model file name is correct
  2578. assert tokenizer_path.name == 'tokenizer.model'
  2579. return self._set_vocab_sentencepiece()
  2580. else:
  2581. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2582. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2583. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2584. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2585. tokenizer = SentencePieceProcessor()
  2586. tokenizer.LoadFromFile(str(tokenizer_path))
  2587. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2588. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2589. scores: list[float] = [-10000.0] * vocab_size
  2590. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2591. for token_id in range(tokenizer.vocab_size()):
  2592. piece = tokenizer.IdToPiece(token_id)
  2593. text = piece.encode("utf-8")
  2594. score = tokenizer.GetScore(token_id)
  2595. toktype = SentencePieceTokenTypes.NORMAL
  2596. if tokenizer.IsUnknown(token_id):
  2597. toktype = SentencePieceTokenTypes.UNKNOWN
  2598. elif tokenizer.IsControl(token_id):
  2599. toktype = SentencePieceTokenTypes.CONTROL
  2600. elif tokenizer.IsUnused(token_id):
  2601. toktype = SentencePieceTokenTypes.UNUSED
  2602. elif tokenizer.IsByte(token_id):
  2603. toktype = SentencePieceTokenTypes.BYTE
  2604. tokens[token_id] = text
  2605. scores[token_id] = score
  2606. toktypes[token_id] = toktype
  2607. added_tokens_file = self.dir_model / 'added_tokens.json'
  2608. if added_tokens_file.is_file():
  2609. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2610. added_tokens_json = json.load(f)
  2611. for key in added_tokens_json:
  2612. token_id = added_tokens_json[key]
  2613. if token_id >= vocab_size:
  2614. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2615. continue
  2616. tokens[token_id] = key.encode("utf-8")
  2617. scores[token_id] = -1000.0
  2618. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2619. if vocab_size > len(tokens):
  2620. pad_count = vocab_size - len(tokens)
  2621. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2622. for i in range(1, pad_count + 1):
  2623. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2624. scores.append(-1000.0)
  2625. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2626. self.gguf_writer.add_tokenizer_model("t5")
  2627. self.gguf_writer.add_tokenizer_pre("default")
  2628. self.gguf_writer.add_token_list(tokens)
  2629. self.gguf_writer.add_token_scores(scores)
  2630. self.gguf_writer.add_token_types(toktypes)
  2631. self.gguf_writer.add_add_space_prefix(add_prefix)
  2632. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2633. if precompiled_charsmap:
  2634. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2635. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2636. special_vocab.add_to_gguf(self.gguf_writer)
  2637. self.gguf_writer.add_add_bos_token(False)
  2638. self.gguf_writer.add_add_eos_token(True)
  2639. def set_gguf_parameters(self):
  2640. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2641. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2642. n_ctx = 512
  2643. self.gguf_writer.add_context_length(n_ctx)
  2644. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2645. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2646. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2647. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2648. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2649. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2650. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2651. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2652. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2653. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2654. self.gguf_writer.add_file_type(self.ftype)
  2655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2656. del bid # unused
  2657. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2658. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2659. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2660. # and decoder and ignore the remaining ones.
  2661. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2662. if not self.shared_token_embeddings_found:
  2663. name = "shared.weight"
  2664. self.shared_token_embeddings_found = True
  2665. else:
  2666. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2667. return []
  2668. return [(self.map_tensor_name(name), data_torch)]
  2669. @Model.register("T5EncoderModel")
  2670. class T5EncoderModel(Model):
  2671. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2672. def __init__(self, *args, **kwargs):
  2673. super().__init__(*args, **kwargs)
  2674. self.shared_token_embeddings_found = False
  2675. def set_vocab(self):
  2676. # to avoid TypeError: Descriptors cannot be created directly
  2677. # exception when importing sentencepiece_model_pb2
  2678. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2679. from sentencepiece import SentencePieceProcessor
  2680. from sentencepiece import sentencepiece_model_pb2 as model
  2681. tokenizer_path = self.dir_model / 'tokenizer.model'
  2682. # many older models use spiece.model tokenizer model filename
  2683. if not tokenizer_path.is_file():
  2684. tokenizer_path = self.dir_model / 'spiece.model'
  2685. if not tokenizer_path.is_file():
  2686. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2687. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2688. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2689. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2690. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2691. # assure the tokenizer model file name is correct
  2692. assert tokenizer_path.name == 'tokenizer.model'
  2693. return self._set_vocab_sentencepiece()
  2694. else:
  2695. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2696. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2697. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2698. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2699. tokenizer = SentencePieceProcessor()
  2700. tokenizer.LoadFromFile(str(tokenizer_path))
  2701. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2702. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2703. scores: list[float] = [-10000.0] * vocab_size
  2704. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2705. for token_id in range(tokenizer.vocab_size()):
  2706. piece = tokenizer.IdToPiece(token_id)
  2707. text = piece.encode("utf-8")
  2708. score = tokenizer.GetScore(token_id)
  2709. toktype = SentencePieceTokenTypes.NORMAL
  2710. if tokenizer.IsUnknown(token_id):
  2711. toktype = SentencePieceTokenTypes.UNKNOWN
  2712. elif tokenizer.IsControl(token_id):
  2713. toktype = SentencePieceTokenTypes.CONTROL
  2714. elif tokenizer.IsUnused(token_id):
  2715. toktype = SentencePieceTokenTypes.UNUSED
  2716. elif tokenizer.IsByte(token_id):
  2717. toktype = SentencePieceTokenTypes.BYTE
  2718. tokens[token_id] = text
  2719. scores[token_id] = score
  2720. toktypes[token_id] = toktype
  2721. added_tokens_file = self.dir_model / 'added_tokens.json'
  2722. if added_tokens_file.is_file():
  2723. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2724. added_tokens_json = json.load(f)
  2725. for key in added_tokens_json:
  2726. token_id = added_tokens_json[key]
  2727. if token_id >= vocab_size:
  2728. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2729. continue
  2730. tokens[token_id] = key.encode("utf-8")
  2731. scores[token_id] = -1000.0
  2732. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2733. if vocab_size > len(tokens):
  2734. pad_count = vocab_size - len(tokens)
  2735. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2736. for i in range(1, pad_count + 1):
  2737. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2738. scores.append(-1000.0)
  2739. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2740. self.gguf_writer.add_tokenizer_model("t5")
  2741. self.gguf_writer.add_tokenizer_pre("default")
  2742. self.gguf_writer.add_token_list(tokens)
  2743. self.gguf_writer.add_token_scores(scores)
  2744. self.gguf_writer.add_token_types(toktypes)
  2745. self.gguf_writer.add_add_space_prefix(add_prefix)
  2746. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2747. if precompiled_charsmap:
  2748. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2749. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2750. special_vocab.add_to_gguf(self.gguf_writer)
  2751. self.gguf_writer.add_add_bos_token(False)
  2752. self.gguf_writer.add_add_eos_token(True)
  2753. def set_gguf_parameters(self):
  2754. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2755. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2756. n_ctx = 512
  2757. self.gguf_writer.add_context_length(n_ctx)
  2758. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2759. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2760. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2761. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2762. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2763. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2764. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2765. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2766. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2767. self.gguf_writer.add_file_type(self.ftype)
  2768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2769. del bid # unused
  2770. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2771. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2772. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2773. # and decoder and ignore the remaining ones.
  2774. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2775. if not self.shared_token_embeddings_found:
  2776. name = "shared.weight"
  2777. self.shared_token_embeddings_found = True
  2778. else:
  2779. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2780. return []
  2781. return [(self.map_tensor_name(name), data_torch)]
  2782. @Model.register("JAISLMHeadModel")
  2783. class JaisModel(Model):
  2784. model_arch = gguf.MODEL_ARCH.JAIS
  2785. def __init__(self, *args, **kwargs):
  2786. super().__init__(*args, **kwargs)
  2787. # SwigLU activation
  2788. assert self.hparams["activation_function"] == "swiglu"
  2789. # ALiBi position embedding
  2790. assert self.hparams["position_embedding_type"] == "alibi"
  2791. # Embeddings scale
  2792. self.embeddings_scale = 1.0
  2793. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2794. self.output_is_wte = False
  2795. if 'mup_embeddings_scale' in self.hparams:
  2796. self.output_is_wte = True # Hack (?)
  2797. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2798. elif 'embeddings_scale' in self.hparams:
  2799. self.embeddings_scale = self.hparams['embeddings_scale']
  2800. else:
  2801. assert False
  2802. self.width_scale = 1.0
  2803. if 'mup_output_alpha' in self.hparams:
  2804. assert 'mup_width_scale' in self.hparams
  2805. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2806. elif 'width_scale' in self.hparams:
  2807. self.width_scale = self.hparams['width_scale']
  2808. else:
  2809. assert False
  2810. self.max_alibi_bias = 8.0
  2811. def set_vocab(self):
  2812. self._set_vocab_gpt2()
  2813. def set_gguf_parameters(self):
  2814. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2815. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2816. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2817. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2818. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2819. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2820. self.gguf_writer.add_file_type(self.ftype)
  2821. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2822. del bid # unused
  2823. tensors: list[tuple[str, Tensor]] = []
  2824. # we don't need these
  2825. if name.endswith((".attn.bias")):
  2826. return tensors
  2827. if name.endswith(("relative_pe.slopes")):
  2828. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2829. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2830. # but Jais's PyTorch model simply precalculates the slope values and places them
  2831. # in relative_pes.slopes
  2832. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2833. first_val = float(data_torch[0].item())
  2834. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2835. return tensors
  2836. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2837. data_torch = data_torch.transpose(1, 0)
  2838. new_name = self.map_tensor_name(name)
  2839. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2840. tensors.append((new_name, data_torch * self.embeddings_scale))
  2841. if self.output_is_wte:
  2842. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2843. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2844. assert not self.output_is_wte
  2845. tensors.append((new_name, data_torch * self.width_scale))
  2846. else:
  2847. tensors.append((new_name, data_torch))
  2848. return tensors
  2849. def prepare_tensors(self):
  2850. super().prepare_tensors()
  2851. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2852. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2853. class ChatGLMModel(Model):
  2854. model_arch = gguf.MODEL_ARCH.CHATGLM
  2855. def set_vocab_chatglm3(self):
  2856. dir_model = self.dir_model
  2857. hparams = self.hparams
  2858. tokens: list[bytes] = []
  2859. toktypes: list[int] = []
  2860. scores: list[float] = []
  2861. from transformers import AutoTokenizer
  2862. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2863. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2864. assert max(tokenizer.get_vocab().values()) < vocab_size
  2865. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2866. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2867. for token_id in range(vocab_size):
  2868. piece = tokenizer._convert_id_to_token(token_id)
  2869. if token_id == 0:
  2870. piece = "<unk>"
  2871. elif token_id == 1:
  2872. piece = "<bos>"
  2873. elif token_id == 2:
  2874. piece = "<eos>"
  2875. text = piece.encode("utf-8")
  2876. score = 0.0
  2877. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2878. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2879. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2880. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2881. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2882. if piece in special_tokens:
  2883. toktype = SentencePieceTokenTypes.CONTROL
  2884. elif len(piece) == 0:
  2885. text = f"[PAD{token_id}]".encode("utf-8")
  2886. toktype = SentencePieceTokenTypes.UNUSED
  2887. else:
  2888. toktype = SentencePieceTokenTypes.USER_DEFINED
  2889. tokens.append(text)
  2890. scores.append(score)
  2891. toktypes.append(toktype)
  2892. continue
  2893. toktype = SentencePieceTokenTypes.NORMAL
  2894. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2895. toktype = SentencePieceTokenTypes.UNKNOWN
  2896. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2897. toktype = SentencePieceTokenTypes.CONTROL
  2898. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2899. toktype = SentencePieceTokenTypes.UNUSED
  2900. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2901. toktype = SentencePieceTokenTypes.BYTE
  2902. tokens.append(text)
  2903. scores.append(score)
  2904. toktypes.append(toktype)
  2905. self.gguf_writer.add_tokenizer_model("llama")
  2906. # glm3 needs prefix and suffix formatted as:
  2907. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2908. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2909. self.gguf_writer.add_token_list(tokens)
  2910. self.gguf_writer.add_token_scores(scores)
  2911. self.gguf_writer.add_token_types(toktypes)
  2912. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2913. special_vocab.add_to_gguf(self.gguf_writer)
  2914. @staticmethod
  2915. def token_bytes_to_string(b):
  2916. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2917. byte_encoder = bytes_to_unicode()
  2918. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2919. @staticmethod
  2920. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2921. parts = [bytes([b]) for b in token]
  2922. while True:
  2923. min_idx = None
  2924. min_rank = None
  2925. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2926. rank = mergeable_ranks.get(pair[0] + pair[1])
  2927. if rank is not None and (min_rank is None or rank < min_rank):
  2928. min_idx = i
  2929. min_rank = rank
  2930. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2931. break
  2932. assert min_idx is not None
  2933. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2934. return parts
  2935. def set_vocab(self):
  2936. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2937. self.set_vocab_chatglm3()
  2938. return
  2939. dir_model = self.dir_model
  2940. hparams = self.hparams
  2941. tokens: list[str] = []
  2942. toktypes: list[int] = []
  2943. from transformers import AutoTokenizer
  2944. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2945. vocab_size = hparams["padded_vocab_size"]
  2946. assert max(tokenizer.get_vocab().values()) < vocab_size
  2947. tokpre = self.get_vocab_base_pre(tokenizer)
  2948. merges = []
  2949. vocab = {}
  2950. mergeable_ranks = tokenizer.mergeable_ranks
  2951. for token, rank in mergeable_ranks.items():
  2952. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2953. if len(token) == 1:
  2954. continue
  2955. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2956. assert len(merged) >= 2 and len(merged) <= 7
  2957. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2958. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2959. added_vocab = tokenizer.get_added_vocab()
  2960. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2961. for i in range(vocab_size):
  2962. if i not in reverse_vocab:
  2963. tokens.append(f"[PAD{i}]")
  2964. toktypes.append(gguf.TokenType.UNUSED)
  2965. elif reverse_vocab[i] in added_vocab:
  2966. tokens.append(reverse_vocab[i])
  2967. if tokenizer.added_tokens_decoder[i].special:
  2968. toktypes.append(gguf.TokenType.CONTROL)
  2969. else:
  2970. toktypes.append(gguf.TokenType.USER_DEFINED)
  2971. else:
  2972. tokens.append(reverse_vocab[i])
  2973. toktypes.append(gguf.TokenType.NORMAL)
  2974. self.gguf_writer.add_tokenizer_model("gpt2")
  2975. self.gguf_writer.add_tokenizer_pre(tokpre)
  2976. self.gguf_writer.add_token_list(tokens)
  2977. self.gguf_writer.add_token_types(toktypes)
  2978. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2979. special_vocab.merges = merges
  2980. # only add special tokens when they were not already loaded from config.json
  2981. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2982. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2983. # this one is usually not in config.json anyway
  2984. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2985. special_vocab.add_to_gguf(self.gguf_writer)
  2986. def set_gguf_parameters(self):
  2987. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2988. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2989. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2990. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2991. self.gguf_writer.add_embedding_length(n_embed)
  2992. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2993. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2994. self.gguf_writer.add_head_count(n_head)
  2995. self.gguf_writer.add_head_count_kv(n_head_kv)
  2996. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2997. self.gguf_writer.add_file_type(self.ftype)
  2998. self.gguf_writer.add_rope_dimension_count(64)
  2999. self.gguf_writer.add_add_bos_token(False)
  3000. rope_freq = 10000
  3001. if "rope_ratio" in self.hparams:
  3002. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3003. self.gguf_writer.add_rope_freq_base(rope_freq)
  3004. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3005. del bid # unused
  3006. if name.endswith(".rotary_pos_emb.inv_freq"):
  3007. return []
  3008. name = name.removeprefix("transformer.")
  3009. return [(self.map_tensor_name(name), data_torch)]
  3010. @Model.register("NemotronForCausalLM")
  3011. class NemotronModel(Model):
  3012. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3013. def set_vocab(self):
  3014. self._set_vocab_sentencepiece()
  3015. self.gguf_writer.add_pad_token_id(0)
  3016. self.gguf_writer.add_unk_token_id(1)
  3017. def set_gguf_parameters(self):
  3018. super().set_gguf_parameters()
  3019. hparams = self.hparams
  3020. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3021. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3022. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3023. # * Partial RoPE
  3024. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3025. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3026. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3027. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3028. # * RopeScaling for Nemotron
  3029. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3030. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3031. else:
  3032. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3033. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3034. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3035. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3036. # model.layers.{l}.input_layernorm.weight
  3037. # model.layers.{l}.post_attention_layernorm.weight
  3038. # model.norm.weight
  3039. if name.endswith("norm.weight"):
  3040. data_torch = data_torch + 1
  3041. return [(self.map_tensor_name(name), data_torch)]
  3042. @Model.register("ExaoneForCausalLM")
  3043. class ExaoneModel(Model):
  3044. model_arch = gguf.MODEL_ARCH.EXAONE
  3045. def set_gguf_parameters(self):
  3046. hparams = self.hparams
  3047. assert(hparams["activation_function"] == "silu")
  3048. max_position_embeddings = hparams["max_position_embeddings"]
  3049. embed_dim = hparams["hidden_size"]
  3050. num_heads = hparams["num_attention_heads"]
  3051. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3052. layer_norm_eps = hparams["layer_norm_epsilon"]
  3053. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3054. num_layers = hparams["num_layers"]
  3055. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3056. # attention_dropout_rate = hparams["attention_dropout"]
  3057. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3058. # embed_dropout_rate = hparams["embed_dropout"]
  3059. self.gguf_writer.add_embedding_length(embed_dim)
  3060. self.gguf_writer.add_head_count(num_heads)
  3061. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3062. self.gguf_writer.add_context_length(max_position_embeddings)
  3063. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3064. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3065. self.gguf_writer.add_block_count(num_layers)
  3066. self.gguf_writer.add_file_type(self.ftype)
  3067. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3068. self.gguf_writer.add_rope_freq_base(rope_theta)
  3069. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3070. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3071. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3072. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3073. if hparams["rope_scaling"].get("type") == "linear":
  3074. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3075. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3076. def prepare_tensors(self):
  3077. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3078. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3079. base = self.hparams.get("rope_theta", 10000.0)
  3080. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3081. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3082. factor = rope_scaling.get("factor", 8.0)
  3083. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3084. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3085. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3086. low_freq_wavelen = old_context_len / low_freq_factor
  3087. high_freq_wavelen = old_context_len / high_freq_factor
  3088. assert low_freq_wavelen != high_freq_wavelen
  3089. rope_factors = []
  3090. for freq in freqs:
  3091. wavelen = 2 * math.pi / freq
  3092. if wavelen < high_freq_wavelen:
  3093. rope_factors.append(1)
  3094. elif wavelen > low_freq_wavelen:
  3095. rope_factors.append(factor)
  3096. else:
  3097. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3098. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3099. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3100. super().prepare_tensors()
  3101. ###### CONVERSION LOGIC ######
  3102. # tree of lazy tensors
  3103. class LazyTorchTensor(gguf.LazyBase):
  3104. _tensor_type = torch.Tensor
  3105. # to keep the type-checker happy
  3106. dtype: torch.dtype
  3107. shape: torch.Size
  3108. # only used when converting a torch.Tensor to a np.ndarray
  3109. _dtype_map: dict[torch.dtype, type] = {
  3110. torch.float16: np.float16,
  3111. torch.float32: np.float32,
  3112. }
  3113. # used for safetensors slices
  3114. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3115. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3116. _dtype_str_map: dict[str, torch.dtype] = {
  3117. "F64": torch.float64,
  3118. "F32": torch.float32,
  3119. "BF16": torch.bfloat16,
  3120. "F16": torch.float16,
  3121. # "U64": torch.uint64,
  3122. "I64": torch.int64,
  3123. # "U32": torch.uint32,
  3124. "I32": torch.int32,
  3125. # "U16": torch.uint16,
  3126. "I16": torch.int16,
  3127. "U8": torch.uint8,
  3128. "I8": torch.int8,
  3129. "BOOL": torch.bool,
  3130. "F8_E4M3": torch.float8_e4m3fn,
  3131. "F8_E5M2": torch.float8_e5m2,
  3132. }
  3133. def numpy(self) -> gguf.LazyNumpyTensor:
  3134. dtype = self._dtype_map[self.dtype]
  3135. return gguf.LazyNumpyTensor(
  3136. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3137. args=(self,),
  3138. func=(lambda s: s.numpy())
  3139. )
  3140. @classmethod
  3141. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3142. return torch.empty(size=shape, dtype=dtype, device="meta")
  3143. @classmethod
  3144. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3145. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3146. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3147. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3148. return cast(torch.Tensor, lazy)
  3149. @classmethod
  3150. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3151. del types # unused
  3152. if kwargs is None:
  3153. kwargs = {}
  3154. if func is torch.Tensor.numpy:
  3155. return args[0].numpy()
  3156. return cls._wrap_fn(func)(*args, **kwargs)
  3157. def parse_args() -> argparse.Namespace:
  3158. parser = argparse.ArgumentParser(
  3159. description="Convert a huggingface model to a GGML compatible file")
  3160. parser.add_argument(
  3161. "--vocab-only", action="store_true",
  3162. help="extract only the vocab",
  3163. )
  3164. parser.add_argument(
  3165. "--outfile", type=Path,
  3166. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3167. )
  3168. parser.add_argument(
  3169. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  3170. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3171. )
  3172. parser.add_argument(
  3173. "--bigendian", action="store_true",
  3174. help="model is executed on big endian machine",
  3175. )
  3176. parser.add_argument(
  3177. "model", type=Path,
  3178. help="directory containing model file",
  3179. )
  3180. parser.add_argument(
  3181. "--use-temp-file", action="store_true",
  3182. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3183. )
  3184. parser.add_argument(
  3185. "--no-lazy", action="store_true",
  3186. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3187. )
  3188. parser.add_argument(
  3189. "--model-name", type=str, default=None,
  3190. help="name of the model",
  3191. )
  3192. parser.add_argument(
  3193. "--verbose", action="store_true",
  3194. help="increase output verbosity",
  3195. )
  3196. parser.add_argument(
  3197. "--split-max-tensors", type=int, default=0,
  3198. help="max tensors in each split",
  3199. )
  3200. parser.add_argument(
  3201. "--split-max-size", type=str, default="0",
  3202. help="max size per split N(M|G)",
  3203. )
  3204. parser.add_argument(
  3205. "--dry-run", action="store_true",
  3206. help="only print out a split plan and exit, without writing any new files",
  3207. )
  3208. parser.add_argument(
  3209. "--no-tensor-first-split", action="store_true",
  3210. help="do not add tensors to the first split (disabled by default)"
  3211. )
  3212. parser.add_argument(
  3213. "--metadata", type=Path,
  3214. help="Specify the path for an authorship metadata override file"
  3215. )
  3216. return parser.parse_args()
  3217. def split_str_to_n_bytes(split_str: str) -> int:
  3218. if split_str.endswith("K"):
  3219. n = int(split_str[:-1]) * 1000
  3220. elif split_str.endswith("M"):
  3221. n = int(split_str[:-1]) * 1000 * 1000
  3222. elif split_str.endswith("G"):
  3223. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3224. elif split_str.isnumeric():
  3225. n = int(split_str)
  3226. else:
  3227. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3228. if n < 0:
  3229. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3230. return n
  3231. def main() -> None:
  3232. args = parse_args()
  3233. if args.verbose:
  3234. logging.basicConfig(level=logging.DEBUG)
  3235. else:
  3236. logging.basicConfig(level=logging.INFO)
  3237. dir_model = args.model
  3238. if not dir_model.is_dir():
  3239. logger.error(f'Error: {args.model} is not a directory')
  3240. sys.exit(1)
  3241. ftype_map: dict[str, gguf.LlamaFileType] = {
  3242. "f32": gguf.LlamaFileType.ALL_F32,
  3243. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3244. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3245. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3246. "auto": gguf.LlamaFileType.GUESSED,
  3247. }
  3248. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3249. if args.use_temp_file and is_split:
  3250. logger.error("Error: Cannot use temp file when splitting")
  3251. sys.exit(1)
  3252. if args.outfile is not None:
  3253. fname_out = args.outfile
  3254. else:
  3255. fname_out = dir_model
  3256. logger.info(f"Loading model: {dir_model.name}")
  3257. hparams = Model.load_hparams(dir_model)
  3258. with torch.inference_mode():
  3259. output_type = ftype_map[args.outtype]
  3260. model_architecture = hparams["architectures"][0]
  3261. try:
  3262. model_class = Model.from_model_architecture(model_architecture)
  3263. except NotImplementedError:
  3264. logger.error(f"Model {model_architecture} is not supported")
  3265. sys.exit(1)
  3266. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3267. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3268. eager=args.no_lazy,
  3269. metadata_override=args.metadata, model_name=args.model_name,
  3270. split_max_tensors=args.split_max_tensors,
  3271. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3272. small_first_shard=args.no_tensor_first_split)
  3273. if args.vocab_only:
  3274. logger.info("Exporting model vocab...")
  3275. model_instance.write_vocab()
  3276. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3277. else:
  3278. logger.info("Exporting model...")
  3279. model_instance.write()
  3280. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3281. logger.info(f"Model successfully exported to {out_path}")
  3282. if __name__ == '__main__':
  3283. main()