main.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. // Defines sigaction on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #endif
  5. #include "common.h"
  6. #include "llama.h"
  7. #include "build-info.h"
  8. #include <cassert>
  9. #include <cinttypes>
  10. #include <cmath>
  11. #include <cstdio>
  12. #include <cstring>
  13. #include <ctime>
  14. #include <fstream>
  15. #include <iostream>
  16. #include <string>
  17. #include <vector>
  18. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  19. #include <signal.h>
  20. #include <unistd.h>
  21. #elif defined (_WIN32)
  22. #define WIN32_LEAN_AND_MEAN
  23. #ifndef NOMINMAX
  24. #define NOMINMAX
  25. #endif
  26. #include <windows.h>
  27. #include <signal.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. #pragma warning(disable: 4244 4267) // possible loss of data
  31. #endif
  32. static console_state con_st;
  33. static llama_context ** g_ctx;
  34. static bool is_interacting = false;
  35. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  36. void sigint_handler(int signo) {
  37. if (signo == SIGINT) {
  38. if (!is_interacting) {
  39. is_interacting=true;
  40. } else {
  41. console_cleanup(con_st);
  42. printf("\n");
  43. llama_print_timings(*g_ctx);
  44. _exit(130);
  45. }
  46. }
  47. }
  48. #endif
  49. int main(int argc, char ** argv) {
  50. gpt_params params;
  51. if (gpt_params_parse(argc, argv, params) == false) {
  52. return 1;
  53. }
  54. // save choice to use color for later
  55. // (note for later: this is a slightly awkward choice)
  56. con_st.use_color = params.use_color;
  57. con_st.multiline_input = params.multiline_input;
  58. console_init(con_st);
  59. atexit([]() { console_cleanup(con_st); });
  60. if (params.perplexity) {
  61. printf("\n************\n");
  62. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  63. printf("************\n\n");
  64. return 0;
  65. }
  66. if (params.embedding) {
  67. printf("\n************\n");
  68. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  69. printf("************\n\n");
  70. return 0;
  71. }
  72. if (params.n_ctx > 2048) {
  73. fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
  74. "expect poor results\n", __func__, params.n_ctx);
  75. } else if (params.n_ctx < 8) {
  76. fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  77. params.n_ctx = 8;
  78. }
  79. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  80. if (params.seed < 0) {
  81. params.seed = time(NULL);
  82. }
  83. fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
  84. std::mt19937 rng(params.seed);
  85. if (params.random_prompt) {
  86. params.prompt = gpt_random_prompt(rng);
  87. }
  88. llama_init_backend();
  89. llama_context * ctx;
  90. g_ctx = &ctx;
  91. // load the model and apply lora adapter, if any
  92. ctx = llama_init_from_gpt_params(params);
  93. if (ctx == NULL) {
  94. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  95. return 1;
  96. }
  97. // print system information
  98. {
  99. fprintf(stderr, "\n");
  100. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  101. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  102. }
  103. // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
  104. // uncomment the "used_mem" line in llama.cpp to see the results
  105. if (params.mem_test) {
  106. {
  107. const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
  108. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  109. }
  110. {
  111. const std::vector<llama_token> tmp = { 0, };
  112. llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
  113. }
  114. llama_print_timings(ctx);
  115. llama_free(ctx);
  116. return 0;
  117. }
  118. // export the cgraph and exit
  119. if (params.export_cgraph) {
  120. llama_eval_export(ctx, "llama.ggml");
  121. llama_free(ctx);
  122. return 0;
  123. }
  124. std::string path_session = params.path_prompt_cache;
  125. std::vector<llama_token> session_tokens;
  126. if (!path_session.empty()) {
  127. fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  128. // fopen to check for existing session
  129. FILE * fp = std::fopen(path_session.c_str(), "rb");
  130. if (fp != NULL) {
  131. std::fclose(fp);
  132. session_tokens.resize(params.n_ctx);
  133. size_t n_token_count_out = 0;
  134. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  135. fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  136. return 1;
  137. }
  138. session_tokens.resize(n_token_count_out);
  139. llama_set_rng_seed(ctx, params.seed);
  140. fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  141. } else {
  142. fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
  143. }
  144. }
  145. // tokenize the prompt
  146. std::vector<llama_token> embd_inp;
  147. if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
  148. // Add a space in front of the first character to match OG llama tokenizer behavior
  149. params.prompt.insert(0, 1, ' ');
  150. embd_inp = ::llama_tokenize(ctx, params.prompt, true);
  151. } else {
  152. embd_inp = session_tokens;
  153. }
  154. const int n_ctx = llama_n_ctx(ctx);
  155. if ((int) embd_inp.size() > n_ctx - 4) {
  156. fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  157. return 1;
  158. }
  159. // debug message about similarity of saved session, if applicable
  160. size_t n_matching_session_tokens = 0;
  161. if (session_tokens.size()) {
  162. for (llama_token id : session_tokens) {
  163. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  164. break;
  165. }
  166. n_matching_session_tokens++;
  167. }
  168. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  169. fprintf(stderr, "%s: using full prompt from session file\n", __func__);
  170. } else if (n_matching_session_tokens >= embd_inp.size()) {
  171. fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
  172. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  173. fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  174. __func__, n_matching_session_tokens, embd_inp.size());
  175. } else {
  176. fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
  177. __func__, n_matching_session_tokens, embd_inp.size());
  178. }
  179. }
  180. // if we will use the cache for the full prompt without reaching the end of the cache, force
  181. // reevaluation of the last token token to recalculate the cached logits
  182. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
  183. session_tokens.size() > embd_inp.size()) {
  184. session_tokens.resize(embd_inp.size() - 1);
  185. }
  186. // number of tokens to keep when resetting context
  187. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  188. params.n_keep = (int)embd_inp.size();
  189. }
  190. // prefix & suffix for instruct mode
  191. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
  192. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  193. // in instruct mode, we inject a prefix and a suffix to each input by the user
  194. if (params.instruct) {
  195. params.interactive_first = true;
  196. params.antiprompt.push_back("### Instruction:\n\n");
  197. }
  198. // enable interactive mode if interactive start is specified
  199. if (params.interactive_first) {
  200. params.interactive = true;
  201. }
  202. // determine newline token
  203. auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
  204. if (params.verbose_prompt) {
  205. fprintf(stderr, "\n");
  206. fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  207. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  208. for (int i = 0; i < (int) embd_inp.size(); i++) {
  209. fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
  210. }
  211. if (params.n_keep > 0) {
  212. fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
  213. for (int i = 0; i < params.n_keep; i++) {
  214. fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
  215. }
  216. fprintf(stderr, "'\n");
  217. }
  218. fprintf(stderr, "\n");
  219. }
  220. if (params.interactive) {
  221. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  222. struct sigaction sigint_action;
  223. sigint_action.sa_handler = sigint_handler;
  224. sigemptyset (&sigint_action.sa_mask);
  225. sigint_action.sa_flags = 0;
  226. sigaction(SIGINT, &sigint_action, NULL);
  227. #elif defined (_WIN32)
  228. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  229. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  230. };
  231. SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  232. #endif
  233. fprintf(stderr, "%s: interactive mode on.\n", __func__);
  234. if (params.antiprompt.size()) {
  235. for (auto antiprompt : params.antiprompt) {
  236. fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
  237. }
  238. }
  239. if (!params.input_prefix.empty()) {
  240. fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
  241. }
  242. if (!params.input_suffix.empty()) {
  243. fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
  244. }
  245. }
  246. fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  247. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  248. fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  249. fprintf(stderr, "\n\n");
  250. // TODO: replace with ring-buffer
  251. std::vector<llama_token> last_n_tokens(n_ctx);
  252. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  253. if (params.interactive) {
  254. const char *control_message;
  255. if (con_st.multiline_input) {
  256. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  257. " - To return control without starting a new line, end your input with '/'.\n";
  258. } else {
  259. control_message = " - Press Return to return control to LLaMa.\n"
  260. " - To return control without starting a new line, end your input with '/'.\n"
  261. " - If you want to submit another line, end your input with '\\'.\n";
  262. }
  263. fprintf(stderr, "== Running in interactive mode. ==\n"
  264. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  265. " - Press Ctrl+C to interject at any time.\n"
  266. #endif
  267. "%s\n", control_message);
  268. is_interacting = params.interactive_first;
  269. }
  270. bool is_antiprompt = false;
  271. bool input_echo = true;
  272. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  273. int n_past = 0;
  274. int n_remain = params.n_predict;
  275. int n_consumed = 0;
  276. int n_session_consumed = 0;
  277. // the first thing we will do is to output the prompt, so set color accordingly
  278. console_set_color(con_st, CONSOLE_COLOR_PROMPT);
  279. std::vector<llama_token> embd;
  280. // do one empty run to warm up the model
  281. {
  282. const std::vector<llama_token> tmp = { llama_token_bos(), };
  283. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  284. llama_reset_timings(ctx);
  285. }
  286. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  287. // predict
  288. if (embd.size() > 0) {
  289. // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
  290. // --prompt or --file which uses the same value.
  291. auto max_embd_size = n_ctx - 4;
  292. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  293. if ((int)embd.size() > max_embd_size) {
  294. auto skipped_tokens = embd.size() - max_embd_size;
  295. console_set_color(con_st, CONSOLE_COLOR_ERROR);
  296. printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  297. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  298. fflush(stdout);
  299. embd.resize(max_embd_size);
  300. }
  301. // infinite text generation via context swapping
  302. // if we run out of context:
  303. // - take the n_keep first tokens from the original prompt (via n_past)
  304. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  305. if (n_past + (int) embd.size() > n_ctx) {
  306. const int n_left = n_past - params.n_keep;
  307. // always keep the first token - BOS
  308. n_past = std::max(1, params.n_keep);
  309. // insert n_left/2 tokens at the start of embd from last_n_tokens
  310. embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
  311. // stop saving session if we run out of context
  312. path_session.clear();
  313. //printf("\n---\n");
  314. //printf("resetting: '");
  315. //for (int i = 0; i < (int) embd.size(); i++) {
  316. // printf("%s", llama_token_to_str(ctx, embd[i]));
  317. //}
  318. //printf("'\n");
  319. //printf("\n---\n");
  320. }
  321. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  322. if (n_session_consumed < (int) session_tokens.size()) {
  323. size_t i = 0;
  324. for ( ; i < embd.size(); i++) {
  325. if (embd[i] != session_tokens[n_session_consumed]) {
  326. session_tokens.resize(n_session_consumed);
  327. break;
  328. }
  329. n_past++;
  330. n_session_consumed++;
  331. if (n_session_consumed >= (int) session_tokens.size()) {
  332. ++i;
  333. break;
  334. }
  335. }
  336. if (i > 0) {
  337. embd.erase(embd.begin(), embd.begin() + i);
  338. }
  339. }
  340. // evaluate tokens in batches
  341. // embd is typically prepared beforehand to fit within a batch, but not always
  342. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  343. int n_eval = (int) embd.size() - i;
  344. if (n_eval > params.n_batch) {
  345. n_eval = params.n_batch;
  346. }
  347. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  348. fprintf(stderr, "%s : failed to eval\n", __func__);
  349. return 1;
  350. }
  351. n_past += n_eval;
  352. }
  353. if (embd.size() > 0 && !path_session.empty()) {
  354. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  355. n_session_consumed = session_tokens.size();
  356. }
  357. }
  358. embd.clear();
  359. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  360. // out of user input, sample next token
  361. const float temp = params.temp;
  362. const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
  363. const float top_p = params.top_p;
  364. const float tfs_z = params.tfs_z;
  365. const float typical_p = params.typical_p;
  366. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  367. const float repeat_penalty = params.repeat_penalty;
  368. const float alpha_presence = params.presence_penalty;
  369. const float alpha_frequency = params.frequency_penalty;
  370. const int mirostat = params.mirostat;
  371. const float mirostat_tau = params.mirostat_tau;
  372. const float mirostat_eta = params.mirostat_eta;
  373. const bool penalize_nl = params.penalize_nl;
  374. // optionally save the session on first sample (for faster prompt loading next time)
  375. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  376. need_to_save_session = false;
  377. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  378. }
  379. llama_token id = 0;
  380. {
  381. auto logits = llama_get_logits(ctx);
  382. auto n_vocab = llama_n_vocab(ctx);
  383. // Apply params.logit_bias map
  384. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  385. logits[it->first] += it->second;
  386. }
  387. std::vector<llama_token_data> candidates;
  388. candidates.reserve(n_vocab);
  389. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  390. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  391. }
  392. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  393. // Apply penalties
  394. float nl_logit = logits[llama_token_nl()];
  395. auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  396. llama_sample_repetition_penalty(ctx, &candidates_p,
  397. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  398. last_n_repeat, repeat_penalty);
  399. llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  400. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  401. last_n_repeat, alpha_frequency, alpha_presence);
  402. if (!penalize_nl) {
  403. logits[llama_token_nl()] = nl_logit;
  404. }
  405. if (temp <= 0) {
  406. // Greedy sampling
  407. id = llama_sample_token_greedy(ctx, &candidates_p);
  408. } else {
  409. if (mirostat == 1) {
  410. static float mirostat_mu = 2.0f * mirostat_tau;
  411. const int mirostat_m = 100;
  412. llama_sample_temperature(ctx, &candidates_p, temp);
  413. id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  414. } else if (mirostat == 2) {
  415. static float mirostat_mu = 2.0f * mirostat_tau;
  416. llama_sample_temperature(ctx, &candidates_p, temp);
  417. id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  418. } else {
  419. // Temperature sampling
  420. llama_sample_top_k(ctx, &candidates_p, top_k, 1);
  421. llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
  422. llama_sample_typical(ctx, &candidates_p, typical_p, 1);
  423. llama_sample_top_p(ctx, &candidates_p, top_p, 1);
  424. llama_sample_temperature(ctx, &candidates_p, temp);
  425. id = llama_sample_token(ctx, &candidates_p);
  426. }
  427. }
  428. // printf("`%d`", candidates_p.size);
  429. last_n_tokens.erase(last_n_tokens.begin());
  430. last_n_tokens.push_back(id);
  431. }
  432. // replace end of text token with newline token when in interactive mode
  433. if (id == llama_token_eos() && params.interactive && !params.instruct) {
  434. id = llama_token_newline.front();
  435. if (params.antiprompt.size() != 0) {
  436. // tokenize and inject first reverse prompt
  437. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  438. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  439. }
  440. }
  441. // add it to the context
  442. embd.push_back(id);
  443. // echo this to console
  444. input_echo = true;
  445. // decrement remaining sampling budget
  446. --n_remain;
  447. } else {
  448. // some user input remains from prompt or interaction, forward it to processing
  449. while ((int) embd_inp.size() > n_consumed) {
  450. embd.push_back(embd_inp[n_consumed]);
  451. last_n_tokens.erase(last_n_tokens.begin());
  452. last_n_tokens.push_back(embd_inp[n_consumed]);
  453. ++n_consumed;
  454. if ((int) embd.size() >= params.n_batch) {
  455. break;
  456. }
  457. }
  458. }
  459. // display text
  460. if (input_echo) {
  461. for (auto id : embd) {
  462. printf("%s", llama_token_to_str(ctx, id));
  463. }
  464. fflush(stdout);
  465. }
  466. // reset color to default if we there is no pending user input
  467. if (input_echo && (int)embd_inp.size() == n_consumed) {
  468. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  469. }
  470. // if not currently processing queued inputs;
  471. if ((int) embd_inp.size() <= n_consumed) {
  472. // check for reverse prompt
  473. if (params.antiprompt.size()) {
  474. std::string last_output;
  475. for (auto id : last_n_tokens) {
  476. last_output += llama_token_to_str(ctx, id);
  477. }
  478. is_antiprompt = false;
  479. // Check if each of the reverse prompts appears at the end of the output.
  480. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  481. // so we'll compensate for that by widening the search window a bit.
  482. for (std::string & antiprompt : params.antiprompt) {
  483. size_t extra_padding = params.interactive ? 0 : 2;
  484. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  485. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  486. : 0;
  487. if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
  488. if (params.interactive) {
  489. is_interacting = true;
  490. console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
  491. }
  492. is_antiprompt = true;
  493. fflush(stdout);
  494. break;
  495. }
  496. }
  497. }
  498. if (n_past > 0 && is_interacting) {
  499. if (params.instruct) {
  500. printf("\n> ");
  501. }
  502. std::string buffer;
  503. if (!params.input_prefix.empty()) {
  504. buffer += params.input_prefix;
  505. printf("%s", buffer.c_str());
  506. }
  507. std::string line;
  508. bool another_line = true;
  509. do {
  510. another_line = console_readline(con_st, line);
  511. buffer += line;
  512. } while (another_line);
  513. // done taking input, reset color
  514. console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
  515. // Add tokens to embd only if the input buffer is non-empty
  516. // Entering a empty line lets the user pass control back
  517. if (buffer.length() > 1) {
  518. // append input suffix if any
  519. if (!params.input_suffix.empty()) {
  520. buffer += params.input_suffix;
  521. printf("%s", params.input_suffix.c_str());
  522. }
  523. // instruct mode: insert instruction prefix
  524. if (params.instruct && !is_antiprompt) {
  525. n_consumed = embd_inp.size();
  526. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  527. }
  528. auto line_inp = ::llama_tokenize(ctx, buffer, false);
  529. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  530. // instruct mode: insert response suffix
  531. if (params.instruct) {
  532. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  533. }
  534. n_remain -= line_inp.size();
  535. }
  536. input_echo = false; // do not echo this again
  537. }
  538. if (n_past > 0) {
  539. is_interacting = false;
  540. }
  541. }
  542. // end of text token
  543. if (!embd.empty() && embd.back() == llama_token_eos()) {
  544. if (params.instruct) {
  545. is_interacting = true;
  546. } else {
  547. fprintf(stderr, " [end of text]\n");
  548. break;
  549. }
  550. }
  551. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  552. if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
  553. n_remain = params.n_predict;
  554. is_interacting = true;
  555. }
  556. }
  557. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  558. fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  559. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  560. }
  561. llama_print_timings(ctx);
  562. llama_free(ctx);
  563. return 0;
  564. }