ggml-metal.m 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #undef MIN
  6. #undef MAX
  7. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  8. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  9. // TODO: temporary - reuse llama.cpp logging
  10. #ifdef GGML_METAL_NDEBUG
  11. #define metal_printf(...)
  12. #else
  13. #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
  14. #endif
  15. #define UNUSED(x) (void)(x)
  16. #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
  17. struct ggml_metal_buffer {
  18. const char * name;
  19. void * data;
  20. size_t size;
  21. id<MTLBuffer> metal;
  22. };
  23. struct ggml_metal_context {
  24. int n_cb;
  25. id<MTLDevice> device;
  26. id<MTLCommandQueue> queue;
  27. id<MTLLibrary> library;
  28. id<MTLCommandBuffer> command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
  29. id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];
  30. dispatch_queue_t d_queue;
  31. int n_buffers;
  32. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  33. int concur_list[GGML_MAX_CONCUR];
  34. int concur_list_len;
  35. // custom kernels
  36. #define GGML_METAL_DECL_KERNEL(name) \
  37. id<MTLFunction> function_##name; \
  38. id<MTLComputePipelineState> pipeline_##name
  39. GGML_METAL_DECL_KERNEL(add);
  40. GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
  41. GGML_METAL_DECL_KERNEL(mul);
  42. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  43. GGML_METAL_DECL_KERNEL(scale);
  44. GGML_METAL_DECL_KERNEL(silu);
  45. GGML_METAL_DECL_KERNEL(relu);
  46. GGML_METAL_DECL_KERNEL(gelu);
  47. GGML_METAL_DECL_KERNEL(soft_max);
  48. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  49. GGML_METAL_DECL_KERNEL(get_rows_f16);
  50. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  51. GGML_METAL_DECL_KERNEL(get_rows_q4_1);
  52. GGML_METAL_DECL_KERNEL(get_rows_q8_0);
  53. GGML_METAL_DECL_KERNEL(get_rows_q2_K);
  54. GGML_METAL_DECL_KERNEL(get_rows_q3_K);
  55. GGML_METAL_DECL_KERNEL(get_rows_q4_K);
  56. GGML_METAL_DECL_KERNEL(get_rows_q5_K);
  57. GGML_METAL_DECL_KERNEL(get_rows_q6_K);
  58. GGML_METAL_DECL_KERNEL(rms_norm);
  59. GGML_METAL_DECL_KERNEL(norm);
  60. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  61. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
  62. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  63. GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
  64. GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
  65. GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
  66. GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
  67. GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
  68. GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
  69. GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
  70. GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
  71. GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
  72. GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
  73. GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
  74. GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
  75. GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
  76. GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
  77. GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
  78. GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
  79. GGML_METAL_DECL_KERNEL(rope);
  80. GGML_METAL_DECL_KERNEL(alibi_f32);
  81. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  82. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  83. GGML_METAL_DECL_KERNEL(cpy_f16_f16);
  84. #undef GGML_METAL_DECL_KERNEL
  85. };
  86. // MSL code
  87. // TODO: move the contents here when ready
  88. // for now it is easier to work in a separate file
  89. static NSString * const msl_library_source = @"see metal.metal";
  90. // Here to assist with NSBundle Path Hack
  91. @interface GGMLMetalClass : NSObject
  92. @end
  93. @implementation GGMLMetalClass
  94. @end
  95. struct ggml_metal_context * ggml_metal_init(int n_cb) {
  96. metal_printf("%s: allocating\n", __func__);
  97. id <MTLDevice> device;
  98. NSString * s;
  99. #if TARGET_OS_OSX
  100. // Show all the Metal device instances in the system
  101. NSArray * devices = MTLCopyAllDevices();
  102. for (device in devices) {
  103. s = [device name];
  104. metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
  105. }
  106. #endif
  107. // Pick and show default Metal device
  108. device = MTLCreateSystemDefaultDevice();
  109. s = [device name];
  110. metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]);
  111. // Configure context
  112. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  113. ctx->device = device;
  114. ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
  115. ctx->queue = [ctx->device newCommandQueue];
  116. ctx->n_buffers = 0;
  117. ctx->concur_list_len = 0;
  118. ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
  119. #if 0
  120. // compile from source string and show compile log
  121. {
  122. NSError * error = nil;
  123. ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
  124. if (error) {
  125. metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
  126. return NULL;
  127. }
  128. }
  129. #else
  130. UNUSED(msl_library_source);
  131. // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
  132. {
  133. NSError * error = nil;
  134. //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
  135. NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
  136. NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
  137. metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]);
  138. NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
  139. if (error) {
  140. metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
  141. return NULL;
  142. }
  143. #ifdef GGML_QKK_64
  144. MTLCompileOptions* options = [MTLCompileOptions new];
  145. options.preprocessorMacros = @{ @"QK_K" : @(64) };
  146. ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
  147. #else
  148. ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
  149. #endif
  150. if (error) {
  151. metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
  152. return NULL;
  153. }
  154. }
  155. #endif
  156. // load kernels
  157. {
  158. NSError * error = nil;
  159. #define GGML_METAL_ADD_KERNEL(name) \
  160. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  161. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
  162. metal_printf("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
  163. (int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
  164. (int) ctx->pipeline_##name.threadExecutionWidth); \
  165. if (error) { \
  166. metal_printf("%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
  167. return NULL; \
  168. }
  169. GGML_METAL_ADD_KERNEL(add);
  170. GGML_METAL_ADD_KERNEL(add_row);
  171. GGML_METAL_ADD_KERNEL(mul);
  172. GGML_METAL_ADD_KERNEL(mul_row);
  173. GGML_METAL_ADD_KERNEL(scale);
  174. GGML_METAL_ADD_KERNEL(silu);
  175. GGML_METAL_ADD_KERNEL(relu);
  176. GGML_METAL_ADD_KERNEL(gelu);
  177. GGML_METAL_ADD_KERNEL(soft_max);
  178. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  179. GGML_METAL_ADD_KERNEL(get_rows_f16);
  180. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  181. GGML_METAL_ADD_KERNEL(get_rows_q4_1);
  182. GGML_METAL_ADD_KERNEL(get_rows_q8_0);
  183. GGML_METAL_ADD_KERNEL(get_rows_q2_K);
  184. GGML_METAL_ADD_KERNEL(get_rows_q3_K);
  185. GGML_METAL_ADD_KERNEL(get_rows_q4_K);
  186. GGML_METAL_ADD_KERNEL(get_rows_q5_K);
  187. GGML_METAL_ADD_KERNEL(get_rows_q6_K);
  188. GGML_METAL_ADD_KERNEL(rms_norm);
  189. GGML_METAL_ADD_KERNEL(norm);
  190. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  191. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
  192. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  193. GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
  194. GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
  195. GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
  196. GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
  197. GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
  198. GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
  199. GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
  200. GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
  201. GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
  202. GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
  203. GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
  204. GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
  205. GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
  206. GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
  207. GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
  208. GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
  209. GGML_METAL_ADD_KERNEL(rope);
  210. GGML_METAL_ADD_KERNEL(alibi_f32);
  211. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  212. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  213. GGML_METAL_ADD_KERNEL(cpy_f16_f16);
  214. #undef GGML_METAL_ADD_KERNEL
  215. }
  216. metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
  217. #if TARGET_OS_OSX
  218. metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
  219. if (ctx->device.maxTransferRate != 0) {
  220. metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
  221. } else {
  222. metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
  223. }
  224. #endif
  225. return ctx;
  226. }
  227. void ggml_metal_free(struct ggml_metal_context * ctx) {
  228. metal_printf("%s: deallocating\n", __func__);
  229. #define GGML_METAL_DEL_KERNEL(name) \
  230. [ctx->function_##name release]; \
  231. [ctx->pipeline_##name release];
  232. GGML_METAL_DEL_KERNEL(add);
  233. GGML_METAL_DEL_KERNEL(add_row);
  234. GGML_METAL_DEL_KERNEL(mul);
  235. GGML_METAL_DEL_KERNEL(mul_row);
  236. GGML_METAL_DEL_KERNEL(scale);
  237. GGML_METAL_DEL_KERNEL(silu);
  238. GGML_METAL_DEL_KERNEL(relu);
  239. GGML_METAL_DEL_KERNEL(gelu);
  240. GGML_METAL_DEL_KERNEL(soft_max);
  241. GGML_METAL_DEL_KERNEL(diag_mask_inf);
  242. GGML_METAL_DEL_KERNEL(get_rows_f16);
  243. GGML_METAL_DEL_KERNEL(get_rows_q4_0);
  244. GGML_METAL_DEL_KERNEL(get_rows_q4_1);
  245. GGML_METAL_DEL_KERNEL(get_rows_q8_0);
  246. GGML_METAL_DEL_KERNEL(get_rows_q2_K);
  247. GGML_METAL_DEL_KERNEL(get_rows_q3_K);
  248. GGML_METAL_DEL_KERNEL(get_rows_q4_K);
  249. GGML_METAL_DEL_KERNEL(get_rows_q5_K);
  250. GGML_METAL_DEL_KERNEL(get_rows_q6_K);
  251. GGML_METAL_DEL_KERNEL(rms_norm);
  252. GGML_METAL_DEL_KERNEL(norm);
  253. GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
  254. GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
  255. GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
  256. GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
  257. GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
  258. GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32);
  259. GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32);
  260. GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
  261. GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
  262. GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
  263. GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
  264. GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
  265. GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
  266. GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
  267. GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
  268. GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
  269. GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
  270. GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
  271. GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
  272. GGML_METAL_DEL_KERNEL(rope);
  273. GGML_METAL_DEL_KERNEL(alibi_f32);
  274. GGML_METAL_DEL_KERNEL(cpy_f32_f16);
  275. GGML_METAL_DEL_KERNEL(cpy_f32_f32);
  276. GGML_METAL_DEL_KERNEL(cpy_f16_f16);
  277. #undef GGML_METAL_DEL_KERNEL
  278. for (int i = 0; i < ctx->n_buffers; ++i) {
  279. [ctx->buffers[i].metal release];
  280. }
  281. [ctx->library release];
  282. [ctx->queue release];
  283. [ctx->device release];
  284. dispatch_release(ctx->d_queue);
  285. free(ctx);
  286. }
  287. void * ggml_metal_host_malloc(size_t n) {
  288. void * data = NULL;
  289. const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
  290. if (result != 0) {
  291. metal_printf("%s: error: posix_memalign failed\n", __func__);
  292. return NULL;
  293. }
  294. return data;
  295. }
  296. void ggml_metal_host_free(void * data) {
  297. free(data);
  298. }
  299. void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
  300. ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
  301. }
  302. int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
  303. return ctx->concur_list_len;
  304. }
  305. int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
  306. return ctx->concur_list;
  307. }
  308. // finds the Metal buffer that contains the tensor data on the GPU device
  309. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  310. // Metal buffer based on the host memory pointer
  311. //
  312. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  313. //metal_printf("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  314. const int64_t tsize = ggml_nbytes(t);
  315. // find the view that contains the tensor fully
  316. for (int i = 0; i < ctx->n_buffers; ++i) {
  317. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  318. if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
  319. *offs = (size_t) ioffs;
  320. //metal_printf("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  321. return ctx->buffers[i].metal;
  322. }
  323. }
  324. metal_printf("%s: error: buffer is nil\n", __func__);
  325. return nil;
  326. }
  327. bool ggml_metal_add_buffer(
  328. struct ggml_metal_context * ctx,
  329. const char * name,
  330. void * data,
  331. size_t size,
  332. size_t max_size) {
  333. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  334. metal_printf("%s: too many buffers\n", __func__);
  335. return false;
  336. }
  337. if (data) {
  338. // verify that the buffer does not overlap with any of the existing buffers
  339. for (int i = 0; i < ctx->n_buffers; ++i) {
  340. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  341. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  342. metal_printf("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  343. return false;
  344. }
  345. }
  346. const size_t size_page = sysconf(_SC_PAGESIZE);
  347. size_t size_aligned = size;
  348. if ((size_aligned % size_page) != 0) {
  349. size_aligned += (size_page - (size_aligned % size_page));
  350. }
  351. // the buffer fits into the max buffer size allowed by the device
  352. if (size_aligned <= ctx->device.maxBufferLength) {
  353. ctx->buffers[ctx->n_buffers].name = name;
  354. ctx->buffers[ctx->n_buffers].data = data;
  355. ctx->buffers[ctx->n_buffers].size = size;
  356. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
  357. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  358. metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
  359. return false;
  360. }
  361. metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
  362. ++ctx->n_buffers;
  363. } else {
  364. // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
  365. // one of the views
  366. const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
  367. const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
  368. const size_t size_view = ctx->device.maxBufferLength;
  369. for (size_t i = 0; i < size; i += size_step) {
  370. const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
  371. ctx->buffers[ctx->n_buffers].name = name;
  372. ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
  373. ctx->buffers[ctx->n_buffers].size = size_step_aligned;
  374. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
  375. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  376. metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
  377. return false;
  378. }
  379. metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
  380. if (i + size_step < size) {
  381. metal_printf("\n");
  382. }
  383. ++ctx->n_buffers;
  384. }
  385. }
  386. #if TARGET_OS_OSX
  387. metal_printf(", (%8.2f / %8.2f)",
  388. ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
  389. ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
  390. if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
  391. metal_printf(", warning: current allocated size is greater than the recommended max working set size\n");
  392. } else {
  393. metal_printf("\n");
  394. }
  395. #else
  396. metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
  397. #endif
  398. }
  399. return true;
  400. }
  401. void ggml_metal_set_tensor(
  402. struct ggml_metal_context * ctx,
  403. struct ggml_tensor * t) {
  404. size_t offs;
  405. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  406. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  407. }
  408. void ggml_metal_get_tensor(
  409. struct ggml_metal_context * ctx,
  410. struct ggml_tensor * t) {
  411. size_t offs;
  412. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  413. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  414. }
  415. void ggml_metal_graph_find_concurrency(
  416. struct ggml_metal_context * ctx,
  417. struct ggml_cgraph * gf, bool check_mem) {
  418. int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
  419. int nodes_unused[GGML_MAX_CONCUR];
  420. for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
  421. for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
  422. ctx->concur_list_len = 0;
  423. int n_left = gf->n_nodes;
  424. int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
  425. int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
  426. while (n_left > 0) {
  427. // number of nodes at a layer (that can be issued concurrently)
  428. int concurrency = 0;
  429. for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
  430. if (nodes_unused[i]) {
  431. // if the requirements for gf->nodes[i] are satisfied
  432. int exe_flag = 1;
  433. // scan all srcs
  434. for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
  435. struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
  436. if (src_cur) {
  437. // if is leaf nodes it's satisfied.
  438. // TODO: ggml_is_leaf()
  439. if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
  440. continue;
  441. }
  442. // otherwise this src should be the output from previous nodes.
  443. int is_found = 0;
  444. // scan 2*search_depth back because we inserted barrier.
  445. //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
  446. for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
  447. if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
  448. is_found = 1;
  449. break;
  450. }
  451. }
  452. if (is_found == 0) {
  453. exe_flag = 0;
  454. break;
  455. }
  456. }
  457. }
  458. if (exe_flag && check_mem) {
  459. // check if nodes[i]'s data will be overwritten by a node before nodes[i].
  460. // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
  461. int64_t data_start = (int64_t) gf->nodes[i]->data;
  462. int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
  463. for (int j = n_start; j < i; j++) {
  464. if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
  465. && gf->nodes[j]->op != GGML_OP_VIEW \
  466. && gf->nodes[j]->op != GGML_OP_TRANSPOSE \
  467. && gf->nodes[j]->op != GGML_OP_PERMUTE) {
  468. if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
  469. ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
  470. continue;
  471. }
  472. exe_flag = 0;
  473. }
  474. }
  475. }
  476. if (exe_flag) {
  477. ctx->concur_list[level_pos + concurrency] = i;
  478. nodes_unused[i] = 0;
  479. concurrency++;
  480. ctx->concur_list_len++;
  481. }
  482. }
  483. }
  484. n_left -= concurrency;
  485. // adding a barrier different layer
  486. ctx->concur_list[level_pos + concurrency] = -1;
  487. ctx->concur_list_len++;
  488. // jump all sorted nodes at nodes_bak
  489. while (!nodes_unused[n_start]) {
  490. n_start++;
  491. }
  492. level_pos += concurrency + 1;
  493. }
  494. if (ctx->concur_list_len > GGML_MAX_CONCUR) {
  495. metal_printf("%s: too many elements for metal ctx->concur_list!\n", __func__);
  496. }
  497. }
  498. void ggml_metal_graph_compute(
  499. struct ggml_metal_context * ctx,
  500. struct ggml_cgraph * gf) {
  501. @autoreleasepool {
  502. // if there is ctx->concur_list, dispatch concurrently
  503. // else fallback to serial dispatch
  504. MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
  505. const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
  506. const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
  507. edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
  508. // create multiple command buffers and enqueue them
  509. // then, we encode the graph into the command buffers in parallel
  510. const int n_cb = ctx->n_cb;
  511. for (int i = 0; i < n_cb; ++i) {
  512. ctx->command_buffers[i] = [ctx->queue commandBuffer];
  513. // enqueue the command buffers in order to specify their execution order
  514. [ctx->command_buffers[i] enqueue];
  515. ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
  516. }
  517. for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
  518. const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
  519. dispatch_async(ctx->d_queue, ^{
  520. size_t offs_src0 = 0;
  521. size_t offs_src1 = 0;
  522. size_t offs_dst = 0;
  523. id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
  524. id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];
  525. const int node_start = (cb_idx + 0) * n_nodes_per_cb;
  526. const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
  527. for (int ind = node_start; ind < node_end; ++ind) {
  528. const int i = has_concur ? ctx->concur_list[ind] : ind;
  529. if (i == -1) {
  530. [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
  531. continue;
  532. }
  533. //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  534. struct ggml_tensor * src0 = gf->nodes[i]->src[0];
  535. struct ggml_tensor * src1 = gf->nodes[i]->src[1];
  536. struct ggml_tensor * dst = gf->nodes[i];
  537. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  538. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  539. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  540. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  541. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  542. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  543. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  544. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  545. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  546. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  547. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  548. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  549. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  550. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  551. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  552. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  553. const int64_t ne0 = dst ? dst->ne[0] : 0;
  554. const int64_t ne1 = dst ? dst->ne[1] : 0;
  555. const int64_t ne2 = dst ? dst->ne[2] : 0;
  556. const int64_t ne3 = dst ? dst->ne[3] : 0;
  557. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  558. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  559. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  560. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  561. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  562. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  563. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  564. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  565. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  566. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  567. //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  568. //if (src0) {
  569. // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  570. // ggml_is_contiguous(src0), src0->name);
  571. //}
  572. //if (src1) {
  573. // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  574. // ggml_is_contiguous(src1), src1->name);
  575. //}
  576. //if (dst) {
  577. // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  578. // dst->name);
  579. //}
  580. switch (dst->op) {
  581. case GGML_OP_NONE:
  582. case GGML_OP_RESHAPE:
  583. case GGML_OP_VIEW:
  584. case GGML_OP_TRANSPOSE:
  585. case GGML_OP_PERMUTE:
  586. {
  587. // noop
  588. } break;
  589. case GGML_OP_ADD:
  590. {
  591. GGML_ASSERT(ggml_is_contiguous(src0));
  592. // utilize float4
  593. GGML_ASSERT(ne00 % 4 == 0);
  594. const int64_t nb = ne00/4;
  595. if (ggml_nelements(src1) == ne10) {
  596. // src1 is a row
  597. [encoder setComputePipelineState:ctx->pipeline_add_row];
  598. } else {
  599. [encoder setComputePipelineState:ctx->pipeline_add];
  600. }
  601. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  602. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  603. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  604. [encoder setBytes:&nb length:sizeof(nb) atIndex:3];
  605. const int64_t n = ggml_nelements(dst)/4;
  606. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  607. } break;
  608. case GGML_OP_MUL:
  609. {
  610. GGML_ASSERT(ggml_is_contiguous(src0));
  611. // utilize float4
  612. GGML_ASSERT(ne00 % 4 == 0);
  613. const int64_t nb = ne00/4;
  614. if (ggml_nelements(src1) == ne10) {
  615. // src1 is a row
  616. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  617. } else {
  618. [encoder setComputePipelineState:ctx->pipeline_mul];
  619. }
  620. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  621. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  622. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  623. [encoder setBytes:&nb length:sizeof(nb) atIndex:3];
  624. const int64_t n = ggml_nelements(dst)/4;
  625. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  626. } break;
  627. case GGML_OP_SCALE:
  628. {
  629. const float scale = *(const float *) src1->data;
  630. [encoder setComputePipelineState:ctx->pipeline_scale];
  631. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  632. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  633. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  634. const int64_t n = ggml_nelements(dst);
  635. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  636. } break;
  637. case GGML_OP_UNARY:
  638. switch (ggml_get_unary_op(gf->nodes[i])) {
  639. case GGML_UNARY_OP_SILU:
  640. {
  641. [encoder setComputePipelineState:ctx->pipeline_silu];
  642. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  643. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  644. const int64_t n = ggml_nelements(dst);
  645. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  646. } break;
  647. case GGML_UNARY_OP_RELU:
  648. {
  649. [encoder setComputePipelineState:ctx->pipeline_relu];
  650. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  651. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  652. const int64_t n = ggml_nelements(dst);
  653. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  654. } break;
  655. case GGML_UNARY_OP_GELU:
  656. {
  657. [encoder setComputePipelineState:ctx->pipeline_gelu];
  658. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  659. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  660. const int64_t n = ggml_nelements(dst);
  661. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  662. } break;
  663. default:
  664. {
  665. metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  666. GGML_ASSERT(false);
  667. }
  668. } break;
  669. case GGML_OP_SOFT_MAX:
  670. {
  671. const int nth = 32;
  672. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  673. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  674. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  675. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  676. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  677. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  678. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  679. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  680. } break;
  681. case GGML_OP_DIAG_MASK_INF:
  682. {
  683. const int n_past = ((int32_t *)(dst->op_params))[0];
  684. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  685. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  686. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  687. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  688. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  689. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  690. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  691. } break;
  692. case GGML_OP_MUL_MAT:
  693. {
  694. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  695. GGML_ASSERT(ne00 == ne10);
  696. // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
  697. uint gqa = ne12/ne02;
  698. GGML_ASSERT(ne03 == ne13);
  699. // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
  700. // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
  701. if (ggml_is_contiguous(src0) &&
  702. ggml_is_contiguous(src1) &&
  703. src1t == GGML_TYPE_F32 &&
  704. [ctx->device supportsFamily:MTLGPUFamilyApple7] &&
  705. ne00%32 == 0 &&
  706. ne11 > 1) {
  707. switch (src0->type) {
  708. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
  709. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
  710. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
  711. case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
  712. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
  713. case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
  714. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
  715. case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
  716. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
  717. default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
  718. }
  719. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  720. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  721. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  722. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  723. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  724. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
  725. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
  726. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
  727. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
  728. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
  729. [encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
  730. [encoder setThreadgroupMemoryLength:8192 atIndex:0];
  731. [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
  732. } else {
  733. int nth0 = 32;
  734. int nth1 = 1;
  735. // use custom matrix x vector kernel
  736. switch (src0t) {
  737. case GGML_TYPE_F16:
  738. {
  739. nth0 = 32;
  740. nth1 = 1;
  741. if (ne11 * ne12 < 4) {
  742. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
  743. } else {
  744. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  745. }
  746. } break;
  747. case GGML_TYPE_Q4_0:
  748. {
  749. GGML_ASSERT(ne02 == 1);
  750. GGML_ASSERT(ne12 == 1);
  751. nth0 = 8;
  752. nth1 = 8;
  753. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  754. } break;
  755. case GGML_TYPE_Q4_1:
  756. {
  757. GGML_ASSERT(ne02 == 1);
  758. GGML_ASSERT(ne12 == 1);
  759. nth0 = 8;
  760. nth1 = 8;
  761. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
  762. } break;
  763. case GGML_TYPE_Q8_0:
  764. {
  765. GGML_ASSERT(ne02 == 1);
  766. GGML_ASSERT(ne12 == 1);
  767. nth0 = 8;
  768. nth1 = 8;
  769. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
  770. } break;
  771. case GGML_TYPE_Q2_K:
  772. {
  773. GGML_ASSERT(ne02 == 1);
  774. GGML_ASSERT(ne12 == 1);
  775. nth0 = 2;
  776. nth1 = 32;
  777. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
  778. } break;
  779. case GGML_TYPE_Q3_K:
  780. {
  781. GGML_ASSERT(ne02 == 1);
  782. GGML_ASSERT(ne12 == 1);
  783. nth0 = 2;
  784. nth1 = 32;
  785. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
  786. } break;
  787. case GGML_TYPE_Q4_K:
  788. {
  789. GGML_ASSERT(ne02 == 1);
  790. GGML_ASSERT(ne12 == 1);
  791. nth0 = 4; //1;
  792. nth1 = 8; //32;
  793. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
  794. } break;
  795. case GGML_TYPE_Q5_K:
  796. {
  797. GGML_ASSERT(ne02 == 1);
  798. GGML_ASSERT(ne12 == 1);
  799. nth0 = 2;
  800. nth1 = 32;
  801. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
  802. } break;
  803. case GGML_TYPE_Q6_K:
  804. {
  805. GGML_ASSERT(ne02 == 1);
  806. GGML_ASSERT(ne12 == 1);
  807. nth0 = 2;
  808. nth1 = 32;
  809. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
  810. } break;
  811. default:
  812. {
  813. metal_printf("Asserting on type %d\n",(int)src0t);
  814. GGML_ASSERT(false && "not implemented");
  815. }
  816. };
  817. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  818. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  819. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  820. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  821. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  822. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
  823. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
  824. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
  825. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
  826. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
  827. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
  828. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
  829. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
  830. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
  831. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
  832. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
  833. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
  834. [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
  835. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
  836. src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
  837. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  838. }
  839. else if (src0t == GGML_TYPE_Q4_K) {
  840. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  841. }
  842. else if (src0t == GGML_TYPE_Q3_K) {
  843. #ifdef GGML_QKK_64
  844. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  845. #else
  846. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  847. #endif
  848. }
  849. else if (src0t == GGML_TYPE_Q5_K) {
  850. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  851. }
  852. else if (src0t == GGML_TYPE_Q6_K) {
  853. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  854. } else {
  855. int64_t ny = (ne11 + 3)/4;
  856. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  857. }
  858. }
  859. } break;
  860. case GGML_OP_GET_ROWS:
  861. {
  862. switch (src0->type) {
  863. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  864. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  865. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
  866. case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
  867. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
  868. case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
  869. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
  870. case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
  871. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
  872. default: GGML_ASSERT(false && "not implemented");
  873. }
  874. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  875. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  876. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  877. [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
  878. [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
  879. [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
  880. const int64_t n = ggml_nelements(src1);
  881. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  882. } break;
  883. case GGML_OP_RMS_NORM:
  884. {
  885. float eps;
  886. memcpy(&eps, dst->op_params, sizeof(float));
  887. const int nth = 512;
  888. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  889. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  890. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  891. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  892. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  893. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  894. [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
  895. const int64_t nrows = ggml_nrows(src0);
  896. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  897. } break;
  898. case GGML_OP_NORM:
  899. {
  900. float eps;
  901. memcpy(&eps, dst->op_params, sizeof(float));
  902. const int nth = 256;
  903. [encoder setComputePipelineState:ctx->pipeline_norm];
  904. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  905. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  906. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  907. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  908. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  909. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  910. const int64_t nrows = ggml_nrows(src0);
  911. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  912. } break;
  913. case GGML_OP_ALIBI:
  914. {
  915. GGML_ASSERT((src0t == GGML_TYPE_F32));
  916. const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
  917. const int n_head = ((int32_t *) dst->op_params)[1];
  918. float max_bias;
  919. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  920. if (__builtin_popcount(n_head) != 1) {
  921. GGML_ASSERT(false && "only power-of-two n_head implemented");
  922. }
  923. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  924. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  925. [encoder setComputePipelineState:ctx->pipeline_alibi_f32];
  926. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  927. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  928. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  929. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  930. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  931. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  932. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  933. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  934. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  935. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  936. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  937. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  938. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  939. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  940. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  941. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  942. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  943. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  944. [encoder setBytes:&m0 length:sizeof( float) atIndex:18];
  945. const int nth = 32;
  946. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  947. } break;
  948. case GGML_OP_ROPE:
  949. {
  950. const int n_past = ((int32_t *) dst->op_params)[0];
  951. const int n_dims = ((int32_t *) dst->op_params)[1];
  952. const int mode = ((int32_t *) dst->op_params)[2];
  953. float freq_base;
  954. float freq_scale;
  955. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  956. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  957. [encoder setComputePipelineState:ctx->pipeline_rope];
  958. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  959. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  960. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  961. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  962. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  963. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  964. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  965. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  966. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  967. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  968. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  969. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  970. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  971. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  972. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  973. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  974. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  975. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  976. [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
  977. [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
  978. [encoder setBytes:&mode length:sizeof( int) atIndex:20];
  979. [encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
  980. [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
  981. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
  982. } break;
  983. case GGML_OP_DUP:
  984. case GGML_OP_CPY:
  985. case GGML_OP_CONT:
  986. {
  987. const int nth = 32;
  988. switch (src0t) {
  989. case GGML_TYPE_F32:
  990. {
  991. switch (dstt) {
  992. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  993. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  994. default: GGML_ASSERT(false && "not implemented");
  995. };
  996. } break;
  997. case GGML_TYPE_F16:
  998. {
  999. switch (dstt) {
  1000. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
  1001. case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
  1002. default: GGML_ASSERT(false && "not implemented");
  1003. };
  1004. } break;
  1005. default: GGML_ASSERT(false && "not implemented");
  1006. }
  1007. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1008. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  1009. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  1010. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  1011. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  1012. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  1013. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  1014. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  1015. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  1016. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  1017. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  1018. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  1019. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  1020. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  1021. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  1022. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  1023. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  1024. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  1025. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1026. } break;
  1027. default:
  1028. {
  1029. metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  1030. GGML_ASSERT(false);
  1031. }
  1032. }
  1033. }
  1034. if (encoder != nil) {
  1035. [encoder endEncoding];
  1036. encoder = nil;
  1037. }
  1038. [command_buffer commit];
  1039. });
  1040. }
  1041. // wait for all threads to finish
  1042. dispatch_barrier_sync(ctx->d_queue, ^{});
  1043. // check status of command buffers
  1044. // needed to detect if the device ran out-of-memory for example (#1881)
  1045. for (int i = 0; i < n_cb; i++) {
  1046. [ctx->command_buffers[i] waitUntilCompleted];
  1047. MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
  1048. if (status != MTLCommandBufferStatusCompleted) {
  1049. metal_printf("%s: command buffer %d failed with status %lu\n", __func__, i, status);
  1050. GGML_ASSERT(false);
  1051. }
  1052. }
  1053. }
  1054. }