ggml.h 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // const int nx = 2;
  133. // const int ny = 3;
  134. //
  135. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  136. //
  137. // for (int y = 0; y < ny; y++) {
  138. // for (int x = 0; x < nx; x++) {
  139. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  140. // }
  141. // }
  142. //
  143. // ...
  144. // }
  145. //
  146. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  147. //
  148. // ## The matrix multiplication operator (ggml_mul_mat)
  149. //
  150. // TODO
  151. //
  152. //
  153. // ## Multi-threading
  154. //
  155. // TODO
  156. //
  157. //
  158. // ## Overview of ggml.c
  159. //
  160. // TODO
  161. //
  162. //
  163. // ## SIMD optimizations
  164. //
  165. // TODO
  166. //
  167. //
  168. // ## Debugging ggml
  169. //
  170. // TODO
  171. //
  172. //
  173. #ifdef GGML_SHARED
  174. # if defined(_WIN32) && !defined(__MINGW32__)
  175. # ifdef GGML_BUILD
  176. # define GGML_API __declspec(dllexport)
  177. # else
  178. # define GGML_API __declspec(dllimport)
  179. # endif
  180. # else
  181. # define GGML_API __attribute__ ((visibility ("default")))
  182. # endif
  183. #else
  184. # define GGML_API
  185. #endif
  186. // TODO: support for clang
  187. #ifdef __GNUC__
  188. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  189. #elif defined(_MSC_VER)
  190. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  191. #else
  192. # define GGML_DEPRECATED(func, hint) func
  193. #endif
  194. #ifndef __GNUC__
  195. # define GGML_ATTRIBUTE_FORMAT(...)
  196. #elif defined(__MINGW32__)
  197. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  198. #else
  199. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  200. #endif
  201. #include <stdint.h>
  202. #include <stddef.h>
  203. #include <stdbool.h>
  204. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  205. #define GGML_FILE_VERSION 1
  206. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  207. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  208. #define GGML_MAX_DIMS 4
  209. #define GGML_MAX_NODES 16384
  210. #define GGML_MAX_PARAMS 1024
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 6
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 64
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #if UINTPTR_MAX == 0xFFFFFFFF
  217. #define GGML_MEM_ALIGN 4
  218. #else
  219. #define GGML_MEM_ALIGN 16
  220. #endif
  221. #define GGML_EXIT_SUCCESS 0
  222. #define GGML_EXIT_ABORTED 1
  223. #define GGUF_MAGIC "GGUF"
  224. #define GGUF_VERSION 3
  225. #define GGUF_DEFAULT_ALIGNMENT 32
  226. #define GGML_UNUSED(x) (void)(x)
  227. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  228. #define GGML_ASSERT(x) \
  229. do { \
  230. if (!(x)) { \
  231. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  232. abort(); \
  233. } \
  234. } while (0)
  235. #ifndef NDEBUG
  236. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  237. #elif defined(__GNUC__)
  238. #define GGML_UNREACHABLE() __builtin_unreachable()
  239. #else
  240. #define GGML_UNREACHABLE() ((void) 0)
  241. #endif
  242. // used to copy the number of elements and stride in bytes of tensors into local variables.
  243. // main purpose is to reduce code duplication and improve readability.
  244. //
  245. // example:
  246. //
  247. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  248. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  249. //
  250. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  251. const type prefix##0 = (pointer)->array[0]; \
  252. GGML_UNUSED(prefix##0);
  253. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  254. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  255. const type prefix##1 = (pointer)->array[1]; \
  256. GGML_UNUSED(prefix##1);
  257. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  258. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  259. const type prefix##2 = (pointer)->array[2]; \
  260. GGML_UNUSED(prefix##2);
  261. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  262. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  263. const type prefix##3 = (pointer)->array[3]; \
  264. GGML_UNUSED(prefix##3);
  265. #ifdef __cplusplus
  266. extern "C" {
  267. #endif
  268. #if defined(__ARM_NEON) && defined(__CUDACC__)
  269. typedef half ggml_fp16_t;
  270. #elif defined(__ARM_NEON)
  271. typedef __fp16 ggml_fp16_t;
  272. #else
  273. typedef uint16_t ggml_fp16_t;
  274. #endif
  275. // convert FP16 <-> FP32
  276. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  277. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  278. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  279. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  280. struct ggml_object;
  281. struct ggml_context;
  282. enum ggml_type {
  283. GGML_TYPE_F32 = 0,
  284. GGML_TYPE_F16 = 1,
  285. GGML_TYPE_Q4_0 = 2,
  286. GGML_TYPE_Q4_1 = 3,
  287. // GGML_TYPE_Q4_2 = 4, support has been removed
  288. // GGML_TYPE_Q4_3 (5) support has been removed
  289. GGML_TYPE_Q5_0 = 6,
  290. GGML_TYPE_Q5_1 = 7,
  291. GGML_TYPE_Q8_0 = 8,
  292. GGML_TYPE_Q8_1 = 9,
  293. // k-quantizations
  294. GGML_TYPE_Q2_K = 10,
  295. GGML_TYPE_Q3_K = 11,
  296. GGML_TYPE_Q4_K = 12,
  297. GGML_TYPE_Q5_K = 13,
  298. GGML_TYPE_Q6_K = 14,
  299. GGML_TYPE_Q8_K = 15,
  300. GGML_TYPE_I8,
  301. GGML_TYPE_I16,
  302. GGML_TYPE_I32,
  303. GGML_TYPE_COUNT,
  304. };
  305. enum ggml_backend_type {
  306. GGML_BACKEND_CPU = 0,
  307. GGML_BACKEND_GPU = 10,
  308. GGML_BACKEND_GPU_SPLIT = 20,
  309. };
  310. // model file types
  311. enum ggml_ftype {
  312. GGML_FTYPE_UNKNOWN = -1,
  313. GGML_FTYPE_ALL_F32 = 0,
  314. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  315. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  316. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  317. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  318. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  319. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  320. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  321. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  322. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  323. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  324. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  325. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  326. };
  327. // available tensor operations:
  328. enum ggml_op {
  329. GGML_OP_NONE = 0,
  330. GGML_OP_DUP,
  331. GGML_OP_ADD,
  332. GGML_OP_ADD1,
  333. GGML_OP_ACC,
  334. GGML_OP_SUB,
  335. GGML_OP_MUL,
  336. GGML_OP_DIV,
  337. GGML_OP_SQR,
  338. GGML_OP_SQRT,
  339. GGML_OP_LOG,
  340. GGML_OP_SUM,
  341. GGML_OP_SUM_ROWS,
  342. GGML_OP_MEAN,
  343. GGML_OP_ARGMAX,
  344. GGML_OP_REPEAT,
  345. GGML_OP_REPEAT_BACK,
  346. GGML_OP_CONCAT,
  347. GGML_OP_SILU_BACK,
  348. GGML_OP_NORM, // normalize
  349. GGML_OP_RMS_NORM,
  350. GGML_OP_RMS_NORM_BACK,
  351. GGML_OP_GROUP_NORM,
  352. GGML_OP_MUL_MAT,
  353. GGML_OP_OUT_PROD,
  354. GGML_OP_SCALE,
  355. GGML_OP_SET,
  356. GGML_OP_CPY,
  357. GGML_OP_CONT,
  358. GGML_OP_RESHAPE,
  359. GGML_OP_VIEW,
  360. GGML_OP_PERMUTE,
  361. GGML_OP_TRANSPOSE,
  362. GGML_OP_GET_ROWS,
  363. GGML_OP_GET_ROWS_BACK,
  364. GGML_OP_DIAG,
  365. GGML_OP_DIAG_MASK_INF,
  366. GGML_OP_DIAG_MASK_ZERO,
  367. GGML_OP_SOFT_MAX,
  368. GGML_OP_SOFT_MAX_BACK,
  369. GGML_OP_ROPE,
  370. GGML_OP_ROPE_BACK,
  371. GGML_OP_ALIBI,
  372. GGML_OP_CLAMP,
  373. GGML_OP_CONV_1D,
  374. GGML_OP_CONV_1D_STAGE_0, // internal
  375. GGML_OP_CONV_1D_STAGE_1, // internal
  376. GGML_OP_CONV_TRANSPOSE_1D,
  377. GGML_OP_CONV_2D,
  378. GGML_OP_CONV_2D_STAGE_0, // internal
  379. GGML_OP_CONV_2D_STAGE_1, // internal
  380. GGML_OP_CONV_TRANSPOSE_2D,
  381. GGML_OP_POOL_1D,
  382. GGML_OP_POOL_2D,
  383. GGML_OP_UPSCALE, // nearest interpolate
  384. GGML_OP_FLASH_ATTN,
  385. GGML_OP_FLASH_FF,
  386. GGML_OP_FLASH_ATTN_BACK,
  387. GGML_OP_WIN_PART,
  388. GGML_OP_WIN_UNPART,
  389. GGML_OP_GET_REL_POS,
  390. GGML_OP_ADD_REL_POS,
  391. GGML_OP_UNARY,
  392. GGML_OP_MAP_UNARY,
  393. GGML_OP_MAP_BINARY,
  394. GGML_OP_MAP_CUSTOM1_F32,
  395. GGML_OP_MAP_CUSTOM2_F32,
  396. GGML_OP_MAP_CUSTOM3_F32,
  397. GGML_OP_MAP_CUSTOM1,
  398. GGML_OP_MAP_CUSTOM2,
  399. GGML_OP_MAP_CUSTOM3,
  400. GGML_OP_CROSS_ENTROPY_LOSS,
  401. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  402. GGML_OP_COUNT,
  403. };
  404. enum ggml_unary_op {
  405. GGML_UNARY_OP_ABS,
  406. GGML_UNARY_OP_SGN,
  407. GGML_UNARY_OP_NEG,
  408. GGML_UNARY_OP_STEP,
  409. GGML_UNARY_OP_TANH,
  410. GGML_UNARY_OP_ELU,
  411. GGML_UNARY_OP_RELU,
  412. GGML_UNARY_OP_GELU,
  413. GGML_UNARY_OP_GELU_QUICK,
  414. GGML_UNARY_OP_SILU,
  415. };
  416. enum ggml_object_type {
  417. GGML_OBJECT_TENSOR,
  418. GGML_OBJECT_GRAPH,
  419. GGML_OBJECT_WORK_BUFFER
  420. };
  421. enum ggml_log_level {
  422. GGML_LOG_LEVEL_ERROR = 2,
  423. GGML_LOG_LEVEL_WARN = 3,
  424. GGML_LOG_LEVEL_INFO = 4
  425. };
  426. // ggml object
  427. struct ggml_object {
  428. size_t offs;
  429. size_t size;
  430. struct ggml_object * next;
  431. enum ggml_object_type type;
  432. char padding[4];
  433. };
  434. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  435. // n-dimensional tensor
  436. struct ggml_tensor {
  437. enum ggml_type type;
  438. enum ggml_backend_type backend;
  439. struct ggml_backend_buffer * buffer;
  440. int n_dims;
  441. int64_t ne[GGML_MAX_DIMS]; // number of elements
  442. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  443. // nb[0] = ggml_type_size(type)
  444. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  445. // nb[i] = nb[i-1] * ne[i-1]
  446. // compute data
  447. enum ggml_op op;
  448. // op params - allocated as int32_t for alignment
  449. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  450. bool is_param;
  451. struct ggml_tensor * grad;
  452. struct ggml_tensor * src[GGML_MAX_SRC];
  453. // performance
  454. int perf_runs;
  455. int64_t perf_cycles;
  456. int64_t perf_time_us;
  457. struct ggml_tensor * view_src;
  458. size_t view_offs;
  459. void * data;
  460. char name[GGML_MAX_NAME];
  461. void * extra; // extra things e.g. for ggml-cuda.cu
  462. char padding[12];
  463. };
  464. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  465. // the compute plan that needs to be prepared for ggml_graph_compute()
  466. // since https://github.com/ggerganov/ggml/issues/287
  467. struct ggml_cplan {
  468. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  469. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  470. int n_threads;
  471. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  472. int n_tasks[GGML_MAX_NODES];
  473. // abort ggml_graph_compute when true
  474. bool (*abort_callback)(void * data);
  475. void * abort_callback_data;
  476. };
  477. // next prime after GGML_MAX_NODES
  478. // #define GGML_GRAPH_HASHTABLE_SIZE 4099
  479. // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
  480. // #define GGML_GRAPH_HASHTABLE_SIZE 8273
  481. // #define GGML_GRAPH_HASHTABLE_SIZE 16411
  482. #define GGML_GRAPH_HASHTABLE_SIZE 32771
  483. enum ggml_cgraph_eval_order {
  484. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  485. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  486. GGML_CGRAPH_EVAL_ORDER_COUNT
  487. };
  488. // computation graph
  489. struct ggml_cgraph {
  490. int n_nodes;
  491. int n_leafs;
  492. struct ggml_tensor * nodes[GGML_MAX_NODES];
  493. struct ggml_tensor * grads[GGML_MAX_NODES];
  494. struct ggml_tensor * leafs[GGML_MAX_NODES];
  495. void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  496. enum ggml_cgraph_eval_order order;
  497. // performance
  498. int perf_runs;
  499. int64_t perf_cycles;
  500. int64_t perf_time_us;
  501. };
  502. static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
  503. // scratch buffer
  504. struct ggml_scratch {
  505. size_t offs;
  506. size_t size;
  507. void * data;
  508. };
  509. struct ggml_init_params {
  510. // memory pool
  511. size_t mem_size; // bytes
  512. void * mem_buffer; // if NULL, memory will be allocated internally
  513. bool no_alloc; // don't allocate memory for the tensor data
  514. };
  515. // compute types
  516. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  517. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  518. enum ggml_task_type {
  519. GGML_TASK_INIT = 0,
  520. GGML_TASK_COMPUTE,
  521. GGML_TASK_FINALIZE,
  522. };
  523. struct ggml_compute_params {
  524. enum ggml_task_type type;
  525. // ith = thread index, nth = number of threads
  526. int ith, nth;
  527. // work buffer for all threads
  528. size_t wsize;
  529. void * wdata;
  530. };
  531. // misc
  532. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  533. GGML_API int64_t ggml_time_ms(void);
  534. GGML_API int64_t ggml_time_us(void);
  535. GGML_API int64_t ggml_cycles(void);
  536. GGML_API int64_t ggml_cycles_per_ms(void);
  537. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  538. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  539. GGML_API void ggml_print_object (const struct ggml_object * obj);
  540. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  541. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  542. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  543. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  544. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  545. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  546. GGML_API int ggml_blck_size (enum ggml_type type);
  547. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  548. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  549. GGML_API const char * ggml_type_name(enum ggml_type type);
  550. GGML_API const char * ggml_op_name (enum ggml_op op);
  551. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  552. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  553. GGML_API bool ggml_is_quantized(enum ggml_type type);
  554. // TODO: temporary until model loading of ggml examples is refactored
  555. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  556. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  557. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  558. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  559. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  560. // use this to compute the memory overhead of a tensor
  561. GGML_API size_t ggml_tensor_overhead(void);
  562. // main
  563. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  564. GGML_API void ggml_free(struct ggml_context * ctx);
  565. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  566. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  567. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  568. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  569. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  570. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  571. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  572. GGML_API struct ggml_tensor * ggml_new_tensor(
  573. struct ggml_context * ctx,
  574. enum ggml_type type,
  575. int n_dims,
  576. const int64_t *ne);
  577. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  578. struct ggml_context * ctx,
  579. enum ggml_type type,
  580. int64_t ne0);
  581. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  582. struct ggml_context * ctx,
  583. enum ggml_type type,
  584. int64_t ne0,
  585. int64_t ne1);
  586. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  587. struct ggml_context * ctx,
  588. enum ggml_type type,
  589. int64_t ne0,
  590. int64_t ne1,
  591. int64_t ne2);
  592. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  593. struct ggml_context * ctx,
  594. enum ggml_type type,
  595. int64_t ne0,
  596. int64_t ne1,
  597. int64_t ne2,
  598. int64_t ne3);
  599. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  600. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  601. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  602. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  603. // Context tensor enumeration and lookup
  604. GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
  605. GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
  606. GGML_API struct ggml_tensor * ggml_get_tensor (struct ggml_context * ctx, const char * name);
  607. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  608. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  609. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  610. // Converts a flat index into coordinates
  611. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  612. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  613. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  614. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  615. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  616. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  617. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  618. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  619. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  620. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  621. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  622. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  623. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  624. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  625. GGML_ATTRIBUTE_FORMAT(2, 3)
  626. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  627. //
  628. // operations on tensors with backpropagation
  629. //
  630. GGML_API struct ggml_tensor * ggml_dup(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a);
  633. // in-place, returns view(a)
  634. GGML_API struct ggml_tensor * ggml_dup_inplace(
  635. struct ggml_context * ctx,
  636. struct ggml_tensor * a);
  637. GGML_API struct ggml_tensor * ggml_add(
  638. struct ggml_context * ctx,
  639. struct ggml_tensor * a,
  640. struct ggml_tensor * b);
  641. GGML_API struct ggml_tensor * ggml_add_inplace(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a,
  644. struct ggml_tensor * b);
  645. GGML_API struct ggml_tensor * ggml_add_cast(
  646. struct ggml_context * ctx,
  647. struct ggml_tensor * a,
  648. struct ggml_tensor * b,
  649. enum ggml_type type);
  650. GGML_API struct ggml_tensor * ggml_add1(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a,
  653. struct ggml_tensor * b);
  654. GGML_API struct ggml_tensor * ggml_add1_inplace(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a,
  657. struct ggml_tensor * b);
  658. GGML_API struct ggml_tensor * ggml_acc(
  659. struct ggml_context * ctx,
  660. struct ggml_tensor * a,
  661. struct ggml_tensor * b,
  662. size_t nb1,
  663. size_t nb2,
  664. size_t nb3,
  665. size_t offset);
  666. GGML_API struct ggml_tensor * ggml_acc_inplace(
  667. struct ggml_context * ctx,
  668. struct ggml_tensor * a,
  669. struct ggml_tensor * b,
  670. size_t nb1,
  671. size_t nb2,
  672. size_t nb3,
  673. size_t offset);
  674. GGML_API struct ggml_tensor * ggml_sub(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a,
  677. struct ggml_tensor * b);
  678. GGML_API struct ggml_tensor * ggml_sub_inplace(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a,
  681. struct ggml_tensor * b);
  682. GGML_API struct ggml_tensor * ggml_mul(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a,
  685. struct ggml_tensor * b);
  686. GGML_API struct ggml_tensor * ggml_mul_inplace(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a,
  689. struct ggml_tensor * b);
  690. GGML_API struct ggml_tensor * ggml_div(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a,
  693. struct ggml_tensor * b);
  694. GGML_API struct ggml_tensor * ggml_div_inplace(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b);
  698. GGML_API struct ggml_tensor * ggml_sqr(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a);
  701. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  702. struct ggml_context * ctx,
  703. struct ggml_tensor * a);
  704. GGML_API struct ggml_tensor * ggml_sqrt(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a);
  710. GGML_API struct ggml_tensor * ggml_log(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a);
  713. GGML_API struct ggml_tensor * ggml_log_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. // return scalar
  717. GGML_API struct ggml_tensor * ggml_sum(
  718. struct ggml_context * ctx,
  719. struct ggml_tensor * a);
  720. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  721. GGML_API struct ggml_tensor * ggml_sum_rows(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a);
  724. // mean along rows
  725. GGML_API struct ggml_tensor * ggml_mean(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. // argmax along rows
  729. GGML_API struct ggml_tensor * ggml_argmax(
  730. struct ggml_context * ctx,
  731. struct ggml_tensor * a);
  732. // if a is the same shape as b, and a is not parameter, return a
  733. // otherwise, return a new tensor: repeat(a) to fit in b
  734. GGML_API struct ggml_tensor * ggml_repeat(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a,
  737. struct ggml_tensor * b);
  738. // sums repetitions in a into shape of b
  739. GGML_API struct ggml_tensor * ggml_repeat_back(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b);
  743. // concat a and b on dim 2
  744. // used in stable-diffusion
  745. GGML_API struct ggml_tensor * ggml_concat(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a,
  748. struct ggml_tensor * b);
  749. GGML_API struct ggml_tensor * ggml_abs(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. GGML_API struct ggml_tensor * ggml_abs_inplace(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a);
  755. GGML_API struct ggml_tensor * ggml_sgn(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a);
  758. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. GGML_API struct ggml_tensor * ggml_neg(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a);
  764. GGML_API struct ggml_tensor * ggml_neg_inplace(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a);
  767. GGML_API struct ggml_tensor * ggml_step(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a);
  770. GGML_API struct ggml_tensor * ggml_step_inplace(
  771. struct ggml_context * ctx,
  772. struct ggml_tensor * a);
  773. GGML_API struct ggml_tensor * ggml_tanh(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a);
  776. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a);
  779. GGML_API struct ggml_tensor * ggml_elu(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a);
  782. GGML_API struct ggml_tensor * ggml_elu_inplace(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a);
  785. GGML_API struct ggml_tensor * ggml_relu(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a);
  788. GGML_API struct ggml_tensor * ggml_relu_inplace(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a);
  791. // TODO: double-check this computation is correct
  792. GGML_API struct ggml_tensor * ggml_gelu(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a);
  795. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a);
  798. GGML_API struct ggml_tensor * ggml_gelu_quick(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a);
  801. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  802. struct ggml_context * ctx,
  803. struct ggml_tensor * a);
  804. GGML_API struct ggml_tensor * ggml_silu(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a);
  807. GGML_API struct ggml_tensor * ggml_silu_inplace(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. // a - x
  811. // b - dy
  812. GGML_API struct ggml_tensor * ggml_silu_back(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a,
  815. struct ggml_tensor * b);
  816. // normalize along rows
  817. GGML_API struct ggml_tensor * ggml_norm(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a,
  820. float eps);
  821. GGML_API struct ggml_tensor * ggml_norm_inplace(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a,
  824. float eps);
  825. GGML_API struct ggml_tensor * ggml_rms_norm(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a,
  828. float eps);
  829. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a,
  832. float eps);
  833. // group normalize along ne0*ne1*n_groups
  834. // used in stable-diffusion
  835. // TODO: eps is hardcoded to 1e-6 for now
  836. GGML_API struct ggml_tensor * ggml_group_norm(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a,
  839. int n_groups);
  840. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a,
  843. int n_groups);
  844. // a - x
  845. // b - dy
  846. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  847. struct ggml_context * ctx,
  848. struct ggml_tensor * a,
  849. struct ggml_tensor * b,
  850. float eps);
  851. // A: k columns, n rows => [ne03, ne02, n, k]
  852. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  853. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  854. GGML_API struct ggml_tensor * ggml_mul_mat(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a,
  857. struct ggml_tensor * b);
  858. // A: m columns, n rows,
  859. // B: p columns, n rows,
  860. // result is m columns, p rows
  861. GGML_API struct ggml_tensor * ggml_out_prod(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a,
  864. struct ggml_tensor * b);
  865. //
  866. // operations on tensors without backpropagation
  867. //
  868. GGML_API struct ggml_tensor * ggml_scale(
  869. struct ggml_context * ctx,
  870. struct ggml_tensor * a,
  871. struct ggml_tensor * b);
  872. // in-place, returns view(a)
  873. GGML_API struct ggml_tensor * ggml_scale_inplace(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a,
  876. struct ggml_tensor * b);
  877. // b -> view(a,offset,nb1,nb2,3), return modified a
  878. GGML_API struct ggml_tensor * ggml_set(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a,
  881. struct ggml_tensor * b,
  882. size_t nb1,
  883. size_t nb2,
  884. size_t nb3,
  885. size_t offset);
  886. // b -> view(a,offset,nb1,nb2,3), return view(a)
  887. GGML_API struct ggml_tensor * ggml_set_inplace(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a,
  890. struct ggml_tensor * b,
  891. size_t nb1,
  892. size_t nb2,
  893. size_t nb3,
  894. size_t offset);
  895. GGML_API struct ggml_tensor * ggml_set_1d(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a,
  898. struct ggml_tensor * b,
  899. size_t offset);
  900. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a,
  903. struct ggml_tensor * b,
  904. size_t offset);
  905. // b -> view(a,offset,nb1,nb2,3), return modified a
  906. GGML_API struct ggml_tensor * ggml_set_2d(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a,
  909. struct ggml_tensor * b,
  910. size_t nb1,
  911. size_t offset);
  912. // b -> view(a,offset,nb1,nb2,3), return view(a)
  913. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a,
  916. struct ggml_tensor * b,
  917. size_t nb1,
  918. size_t offset);
  919. // a -> b, return view(b)
  920. GGML_API struct ggml_tensor * ggml_cpy(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a,
  923. struct ggml_tensor * b);
  924. // a -> b, in-place, return view(b)
  925. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  926. struct ggml_context * ctx,
  927. struct ggml_tensor * a,
  928. struct ggml_tensor * b);
  929. // make contiguous
  930. GGML_API struct ggml_tensor * ggml_cont(
  931. struct ggml_context * ctx,
  932. struct ggml_tensor * a);
  933. // make contiguous, in-place
  934. GGML_API struct ggml_tensor * ggml_cont_inplace(
  935. struct ggml_context * ctx,
  936. struct ggml_tensor * a);
  937. // make contiguous, with new shape
  938. GGML_API struct ggml_tensor * ggml_cont_1d(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a,
  941. int64_t ne0);
  942. GGML_API struct ggml_tensor * ggml_cont_2d(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a,
  945. int64_t ne0,
  946. int64_t ne1);
  947. GGML_API struct ggml_tensor * ggml_cont_3d(
  948. struct ggml_context * ctx,
  949. struct ggml_tensor * a,
  950. int64_t ne0,
  951. int64_t ne1,
  952. int64_t ne2);
  953. GGML_API struct ggml_tensor * ggml_cont_4d(
  954. struct ggml_context * ctx,
  955. struct ggml_tensor * a,
  956. int64_t ne0,
  957. int64_t ne1,
  958. int64_t ne2,
  959. int64_t ne3);
  960. // return view(a), b specifies the new shape
  961. // TODO: when we start computing gradient, make a copy instead of view
  962. GGML_API struct ggml_tensor * ggml_reshape(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. struct ggml_tensor * b);
  966. // return view(a)
  967. // TODO: when we start computing gradient, make a copy instead of view
  968. GGML_API struct ggml_tensor * ggml_reshape_1d(
  969. struct ggml_context * ctx,
  970. struct ggml_tensor * a,
  971. int64_t ne0);
  972. GGML_API struct ggml_tensor * ggml_reshape_2d(
  973. struct ggml_context * ctx,
  974. struct ggml_tensor * a,
  975. int64_t ne0,
  976. int64_t ne1);
  977. // return view(a)
  978. // TODO: when we start computing gradient, make a copy instead of view
  979. GGML_API struct ggml_tensor * ggml_reshape_3d(
  980. struct ggml_context * ctx,
  981. struct ggml_tensor * a,
  982. int64_t ne0,
  983. int64_t ne1,
  984. int64_t ne2);
  985. GGML_API struct ggml_tensor * ggml_reshape_4d(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a,
  988. int64_t ne0,
  989. int64_t ne1,
  990. int64_t ne2,
  991. int64_t ne3);
  992. // offset in bytes
  993. GGML_API struct ggml_tensor * ggml_view_1d(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a,
  996. int64_t ne0,
  997. size_t offset);
  998. GGML_API struct ggml_tensor * ggml_view_2d(
  999. struct ggml_context * ctx,
  1000. struct ggml_tensor * a,
  1001. int64_t ne0,
  1002. int64_t ne1,
  1003. size_t nb1, // row stride in bytes
  1004. size_t offset);
  1005. GGML_API struct ggml_tensor * ggml_view_3d(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. int64_t ne0,
  1009. int64_t ne1,
  1010. int64_t ne2,
  1011. size_t nb1, // row stride in bytes
  1012. size_t nb2, // slice stride in bytes
  1013. size_t offset);
  1014. GGML_API struct ggml_tensor * ggml_view_4d(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. int64_t ne0,
  1018. int64_t ne1,
  1019. int64_t ne2,
  1020. int64_t ne3,
  1021. size_t nb1, // row stride in bytes
  1022. size_t nb2, // slice stride in bytes
  1023. size_t nb3,
  1024. size_t offset);
  1025. GGML_API struct ggml_tensor * ggml_permute(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. int axis0,
  1029. int axis1,
  1030. int axis2,
  1031. int axis3);
  1032. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1033. GGML_API struct ggml_tensor * ggml_transpose(
  1034. struct ggml_context * ctx,
  1035. struct ggml_tensor * a);
  1036. GGML_API struct ggml_tensor * ggml_get_rows(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a,
  1039. struct ggml_tensor * b);
  1040. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. struct ggml_tensor * b,
  1044. struct ggml_tensor * c);
  1045. GGML_API struct ggml_tensor * ggml_diag(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a);
  1048. // set elements above the diagonal to -INF
  1049. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. int n_past);
  1053. // in-place, returns view(a)
  1054. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1055. struct ggml_context * ctx,
  1056. struct ggml_tensor * a,
  1057. int n_past);
  1058. // set elements above the diagonal to 0
  1059. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a,
  1062. int n_past);
  1063. // in-place, returns view(a)
  1064. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a,
  1067. int n_past);
  1068. GGML_API struct ggml_tensor * ggml_soft_max(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a);
  1071. // in-place, returns view(a)
  1072. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a);
  1075. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. struct ggml_tensor * b);
  1079. // in-place, returns view(a)
  1080. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1081. struct ggml_context * ctx,
  1082. struct ggml_tensor * a,
  1083. struct ggml_tensor * b);
  1084. // rotary position embedding
  1085. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1086. // if mode & 2 == 1, GPT-NeoX style
  1087. // if mode & 4 == 1, ChatGLM style
  1088. //
  1089. // b is an int32 vector with size a->ne[2], it contains the positions
  1090. GGML_API struct ggml_tensor * ggml_rope(
  1091. struct ggml_context * ctx,
  1092. struct ggml_tensor * a,
  1093. struct ggml_tensor * b,
  1094. int n_dims,
  1095. int mode,
  1096. int n_ctx);
  1097. // in-place, returns view(a)
  1098. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1099. struct ggml_context * ctx,
  1100. struct ggml_tensor * a,
  1101. struct ggml_tensor * b,
  1102. int n_dims,
  1103. int mode,
  1104. int n_ctx);
  1105. // custom RoPE
  1106. GGML_API struct ggml_tensor * ggml_rope_custom(
  1107. struct ggml_context * ctx,
  1108. struct ggml_tensor * a,
  1109. struct ggml_tensor * b,
  1110. int n_dims,
  1111. int mode,
  1112. int n_ctx,
  1113. int n_orig_ctx,
  1114. float freq_base,
  1115. float freq_scale,
  1116. float ext_factor,
  1117. float attn_factor,
  1118. float beta_fast,
  1119. float beta_slow);
  1120. // in-place, returns view(a)
  1121. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1122. struct ggml_context * ctx,
  1123. struct ggml_tensor * a,
  1124. struct ggml_tensor * b,
  1125. int n_dims,
  1126. int mode,
  1127. int n_ctx,
  1128. int n_orig_ctx,
  1129. float freq_base,
  1130. float freq_scale,
  1131. float ext_factor,
  1132. float attn_factor,
  1133. float beta_fast,
  1134. float beta_slow);
  1135. // compute correction dims for YaRN RoPE scaling
  1136. void ggml_rope_yarn_corr_dims(
  1137. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1138. // xPos RoPE, in-place, returns view(a)
  1139. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1140. struct ggml_context * ctx,
  1141. struct ggml_tensor * a,
  1142. struct ggml_tensor * b,
  1143. int n_dims,
  1144. float base,
  1145. bool down);
  1146. // rotary position embedding backward, i.e compute dx from dy
  1147. // a - dy
  1148. GGML_API struct ggml_tensor * ggml_rope_back(
  1149. struct ggml_context * ctx,
  1150. struct ggml_tensor * a,
  1151. struct ggml_tensor * b,
  1152. int n_dims,
  1153. int mode,
  1154. int n_ctx,
  1155. float freq_base,
  1156. float freq_scale,
  1157. float xpos_base,
  1158. bool xpos_down);
  1159. // alibi position embedding
  1160. // in-place, returns view(a)
  1161. GGML_API struct ggml_tensor * ggml_alibi(
  1162. struct ggml_context * ctx,
  1163. struct ggml_tensor * a,
  1164. int n_past,
  1165. int n_head,
  1166. float bias_max);
  1167. // clamp
  1168. // in-place, returns view(a)
  1169. GGML_API struct ggml_tensor * ggml_clamp(
  1170. struct ggml_context * ctx,
  1171. struct ggml_tensor * a,
  1172. float min,
  1173. float max);
  1174. GGML_API struct ggml_tensor * ggml_conv_1d(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * a,
  1177. struct ggml_tensor * b,
  1178. int s0, // stride
  1179. int p0, // padding
  1180. int d0); // dilation
  1181. // conv_1d with padding = half
  1182. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1183. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1184. struct ggml_context * ctx,
  1185. struct ggml_tensor * a,
  1186. struct ggml_tensor * b,
  1187. int s,
  1188. int d);
  1189. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1190. struct ggml_context * ctx,
  1191. struct ggml_tensor * a,
  1192. struct ggml_tensor * b,
  1193. int s0,
  1194. int p0,
  1195. int d0);
  1196. GGML_API struct ggml_tensor * ggml_conv_2d(
  1197. struct ggml_context * ctx,
  1198. struct ggml_tensor * a,
  1199. struct ggml_tensor * b,
  1200. int s0,
  1201. int s1,
  1202. int p0,
  1203. int p1,
  1204. int d0,
  1205. int d1);
  1206. // kernel size is a->ne[0] x a->ne[1]
  1207. // stride is equal to kernel size
  1208. // padding is zero
  1209. // example:
  1210. // a: 16 16 3 768
  1211. // b: 1024 1024 3 1
  1212. // res: 64 64 768 1
  1213. // used in sam
  1214. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1215. struct ggml_context * ctx,
  1216. struct ggml_tensor * a,
  1217. struct ggml_tensor * b);
  1218. // kernel size is a->ne[0] x a->ne[1]
  1219. // stride is 1
  1220. // padding is half
  1221. // example:
  1222. // a: 3 3 256 256
  1223. // b: 64 64 256 1
  1224. // res: 64 64 256 1
  1225. // used in sam
  1226. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1227. struct ggml_context * ctx,
  1228. struct ggml_tensor * a,
  1229. struct ggml_tensor * b);
  1230. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1231. struct ggml_context * ctx,
  1232. struct ggml_tensor * a,
  1233. struct ggml_tensor * b,
  1234. int stride);
  1235. enum ggml_op_pool {
  1236. GGML_OP_POOL_MAX,
  1237. GGML_OP_POOL_AVG,
  1238. GGML_OP_POOL_COUNT,
  1239. };
  1240. GGML_API struct ggml_tensor * ggml_pool_1d(
  1241. struct ggml_context * ctx,
  1242. struct ggml_tensor * a,
  1243. enum ggml_op_pool op,
  1244. int k0, // kernel size
  1245. int s0, // stride
  1246. int p0); // padding
  1247. GGML_API struct ggml_tensor * ggml_pool_2d(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a,
  1250. enum ggml_op_pool op,
  1251. int k0,
  1252. int k1,
  1253. int s0,
  1254. int s1,
  1255. int p0,
  1256. int p1);
  1257. // nearest interpolate
  1258. // used in stable-diffusion
  1259. GGML_API struct ggml_tensor * ggml_upscale(
  1260. struct ggml_context * ctx,
  1261. struct ggml_tensor * a,
  1262. int scale_factor);
  1263. GGML_API struct ggml_tensor * ggml_flash_attn(
  1264. struct ggml_context * ctx,
  1265. struct ggml_tensor * q,
  1266. struct ggml_tensor * k,
  1267. struct ggml_tensor * v,
  1268. bool masked);
  1269. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1270. struct ggml_context * ctx,
  1271. struct ggml_tensor * q,
  1272. struct ggml_tensor * k,
  1273. struct ggml_tensor * v,
  1274. struct ggml_tensor * d,
  1275. bool masked);
  1276. GGML_API struct ggml_tensor * ggml_flash_ff(
  1277. struct ggml_context * ctx,
  1278. struct ggml_tensor * a,
  1279. struct ggml_tensor * b0,
  1280. struct ggml_tensor * b1,
  1281. struct ggml_tensor * c0,
  1282. struct ggml_tensor * c1);
  1283. // partition into non-overlapping windows with padding if needed
  1284. // example:
  1285. // a: 768 64 64 1
  1286. // w: 14
  1287. // res: 768 14 14 25
  1288. // used in sam
  1289. GGML_API struct ggml_tensor * ggml_win_part(
  1290. struct ggml_context * ctx,
  1291. struct ggml_tensor * a,
  1292. int w);
  1293. // reverse of ggml_win_part
  1294. // used in sam
  1295. GGML_API struct ggml_tensor * ggml_win_unpart(
  1296. struct ggml_context * ctx,
  1297. struct ggml_tensor * a,
  1298. int w0,
  1299. int h0,
  1300. int w);
  1301. GGML_API struct ggml_tensor * ggml_unary(
  1302. struct ggml_context * ctx,
  1303. struct ggml_tensor * a,
  1304. enum ggml_unary_op op);
  1305. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1306. struct ggml_context * ctx,
  1307. struct ggml_tensor * a,
  1308. enum ggml_unary_op op);
  1309. // used in sam
  1310. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1311. struct ggml_context * ctx,
  1312. struct ggml_tensor * a,
  1313. int qh,
  1314. int kh);
  1315. // used in sam
  1316. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1317. struct ggml_context * ctx,
  1318. struct ggml_tensor * a,
  1319. struct ggml_tensor * pw,
  1320. struct ggml_tensor * ph);
  1321. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1322. struct ggml_context * ctx,
  1323. struct ggml_tensor * a,
  1324. struct ggml_tensor * pw,
  1325. struct ggml_tensor * ph);
  1326. // custom operators
  1327. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1328. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1329. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1330. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1331. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1332. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1333. struct ggml_context * ctx,
  1334. struct ggml_tensor * a,
  1335. ggml_unary_op_f32_t fun),
  1336. "use ggml_map_custom1 instead");
  1337. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1338. struct ggml_context * ctx,
  1339. struct ggml_tensor * a,
  1340. ggml_unary_op_f32_t fun),
  1341. "use ggml_map_custom1_inplace instead");
  1342. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1343. struct ggml_context * ctx,
  1344. struct ggml_tensor * a,
  1345. struct ggml_tensor * b,
  1346. ggml_binary_op_f32_t fun),
  1347. "use ggml_map_custom2 instead");
  1348. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1349. struct ggml_context * ctx,
  1350. struct ggml_tensor * a,
  1351. struct ggml_tensor * b,
  1352. ggml_binary_op_f32_t fun),
  1353. "use ggml_map_custom2_inplace instead");
  1354. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. ggml_custom1_op_f32_t fun),
  1358. "use ggml_map_custom1 instead");
  1359. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1360. struct ggml_context * ctx,
  1361. struct ggml_tensor * a,
  1362. ggml_custom1_op_f32_t fun),
  1363. "use ggml_map_custom1_inplace instead");
  1364. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1365. struct ggml_context * ctx,
  1366. struct ggml_tensor * a,
  1367. struct ggml_tensor * b,
  1368. ggml_custom2_op_f32_t fun),
  1369. "use ggml_map_custom2 instead");
  1370. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1371. struct ggml_context * ctx,
  1372. struct ggml_tensor * a,
  1373. struct ggml_tensor * b,
  1374. ggml_custom2_op_f32_t fun),
  1375. "use ggml_map_custom2_inplace instead");
  1376. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a,
  1379. struct ggml_tensor * b,
  1380. struct ggml_tensor * c,
  1381. ggml_custom3_op_f32_t fun),
  1382. "use ggml_map_custom3 instead");
  1383. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1384. struct ggml_context * ctx,
  1385. struct ggml_tensor * a,
  1386. struct ggml_tensor * b,
  1387. struct ggml_tensor * c,
  1388. ggml_custom3_op_f32_t fun),
  1389. "use ggml_map_custom3_inplace instead");
  1390. // custom operators v2
  1391. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1392. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1393. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1394. #define GGML_N_TASKS_MAX -1
  1395. GGML_API struct ggml_tensor * ggml_map_custom1(
  1396. struct ggml_context * ctx,
  1397. struct ggml_tensor * a,
  1398. ggml_custom1_op_t fun,
  1399. int n_tasks,
  1400. void * userdata);
  1401. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. ggml_custom1_op_t fun,
  1405. int n_tasks,
  1406. void * userdata);
  1407. GGML_API struct ggml_tensor * ggml_map_custom2(
  1408. struct ggml_context * ctx,
  1409. struct ggml_tensor * a,
  1410. struct ggml_tensor * b,
  1411. ggml_custom2_op_t fun,
  1412. int n_tasks,
  1413. void * userdata);
  1414. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1415. struct ggml_context * ctx,
  1416. struct ggml_tensor * a,
  1417. struct ggml_tensor * b,
  1418. ggml_custom2_op_t fun,
  1419. int n_tasks,
  1420. void * userdata);
  1421. GGML_API struct ggml_tensor * ggml_map_custom3(
  1422. struct ggml_context * ctx,
  1423. struct ggml_tensor * a,
  1424. struct ggml_tensor * b,
  1425. struct ggml_tensor * c,
  1426. ggml_custom3_op_t fun,
  1427. int n_tasks,
  1428. void * userdata);
  1429. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1430. struct ggml_context * ctx,
  1431. struct ggml_tensor * a,
  1432. struct ggml_tensor * b,
  1433. struct ggml_tensor * c,
  1434. ggml_custom3_op_t fun,
  1435. int n_tasks,
  1436. void * userdata);
  1437. // loss function
  1438. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1439. struct ggml_context * ctx,
  1440. struct ggml_tensor * a,
  1441. struct ggml_tensor * b);
  1442. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1443. struct ggml_context * ctx,
  1444. struct ggml_tensor * a,
  1445. struct ggml_tensor * b,
  1446. struct ggml_tensor * c);
  1447. //
  1448. // automatic differentiation
  1449. //
  1450. GGML_API void ggml_set_param(
  1451. struct ggml_context * ctx,
  1452. struct ggml_tensor * tensor);
  1453. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1454. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1455. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1456. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1457. // graph allocation in a context
  1458. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
  1459. GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1460. GGML_API size_t ggml_graph_overhead(void);
  1461. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1462. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1463. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1464. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1465. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1466. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1467. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1468. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1469. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1470. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1471. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1472. // print info and performance information for the graph
  1473. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1474. // dump the graph into a file using the dot format
  1475. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1476. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1477. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1478. // but without the second forward pass nodes.
  1479. GGML_API void ggml_build_backward_gradient_checkpointing(
  1480. struct ggml_context * ctx,
  1481. struct ggml_cgraph * gf,
  1482. struct ggml_cgraph * gb,
  1483. struct ggml_cgraph * gb_tmp,
  1484. struct ggml_tensor * * checkpoints,
  1485. int n_checkpoints);
  1486. //
  1487. // optimization
  1488. //
  1489. // optimization methods
  1490. enum ggml_opt_type {
  1491. GGML_OPT_ADAM,
  1492. GGML_OPT_LBFGS,
  1493. };
  1494. // linesearch methods
  1495. enum ggml_linesearch {
  1496. GGML_LINESEARCH_DEFAULT = 1,
  1497. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1498. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1499. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1500. };
  1501. // optimization return values
  1502. enum ggml_opt_result {
  1503. GGML_OPT_OK = 0,
  1504. GGML_OPT_DID_NOT_CONVERGE,
  1505. GGML_OPT_NO_CONTEXT,
  1506. GGML_OPT_INVALID_WOLFE,
  1507. GGML_OPT_FAIL,
  1508. GGML_OPT_CANCEL,
  1509. GGML_LINESEARCH_FAIL = -128,
  1510. GGML_LINESEARCH_MINIMUM_STEP,
  1511. GGML_LINESEARCH_MAXIMUM_STEP,
  1512. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1513. GGML_LINESEARCH_INVALID_PARAMETERS,
  1514. };
  1515. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1516. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1517. // optimization parameters
  1518. //
  1519. // see ggml.c (ggml_opt_default_params) for default values
  1520. //
  1521. struct ggml_opt_params {
  1522. enum ggml_opt_type type;
  1523. int n_threads;
  1524. // delta-based convergence test
  1525. //
  1526. // if past == 0 - disabled
  1527. // if past > 0:
  1528. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1529. //
  1530. int past;
  1531. float delta;
  1532. // maximum number of iterations without improvement
  1533. //
  1534. // if 0 - disabled
  1535. // if > 0:
  1536. // assume convergence if no cost improvement in this number of iterations
  1537. //
  1538. int max_no_improvement;
  1539. bool print_forward_graph;
  1540. bool print_backward_graph;
  1541. int n_gradient_accumulation;
  1542. // ADAM parameters
  1543. struct {
  1544. int n_iter;
  1545. float sched; // schedule multiplier (fixed, decay or warmup)
  1546. float decay; // weight decay for AdamW, use 0.0f to disable
  1547. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1548. float alpha; // learning rate
  1549. float beta1;
  1550. float beta2;
  1551. float eps; // epsilon for numerical stability
  1552. float eps_f; // epsilon for convergence test
  1553. float eps_g; // epsilon for convergence test
  1554. float gclip; // gradient clipping
  1555. } adam;
  1556. // LBFGS parameters
  1557. struct {
  1558. int m; // number of corrections to approximate the inv. Hessian
  1559. int n_iter;
  1560. int max_linesearch;
  1561. float eps; // convergence tolerance
  1562. float ftol; // line search tolerance
  1563. float wolfe;
  1564. float min_step;
  1565. float max_step;
  1566. enum ggml_linesearch linesearch;
  1567. } lbfgs;
  1568. };
  1569. struct ggml_opt_context {
  1570. struct ggml_context * ctx;
  1571. struct ggml_opt_params params;
  1572. int iter;
  1573. int64_t nx; // number of parameter elements
  1574. bool just_initialized;
  1575. float loss_before;
  1576. float loss_after;
  1577. struct {
  1578. struct ggml_tensor * g; // current gradient
  1579. struct ggml_tensor * m; // first moment
  1580. struct ggml_tensor * v; // second moment
  1581. struct ggml_tensor * pf; // past function values
  1582. float fx_best;
  1583. float fx_prev;
  1584. int n_no_improvement;
  1585. } adam;
  1586. struct {
  1587. struct ggml_tensor * x; // current parameters
  1588. struct ggml_tensor * xp; // previous parameters
  1589. struct ggml_tensor * g; // current gradient
  1590. struct ggml_tensor * gp; // previous gradient
  1591. struct ggml_tensor * d; // search direction
  1592. struct ggml_tensor * pf; // past function values
  1593. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1594. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1595. struct ggml_tensor * lms; // the L-BFGS memory s
  1596. struct ggml_tensor * lmy; // the L-BFGS memory y
  1597. float fx_best;
  1598. float step;
  1599. int j;
  1600. int k;
  1601. int end;
  1602. int n_no_improvement;
  1603. } lbfgs;
  1604. };
  1605. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1606. // optimize the function defined by the tensor f
  1607. GGML_API enum ggml_opt_result ggml_opt(
  1608. struct ggml_context * ctx,
  1609. struct ggml_opt_params params,
  1610. struct ggml_tensor * f);
  1611. // initialize optimizer context
  1612. GGML_API void ggml_opt_init(
  1613. struct ggml_context * ctx,
  1614. struct ggml_opt_context * opt,
  1615. struct ggml_opt_params params,
  1616. int64_t nx);
  1617. // continue optimizing the function defined by the tensor f
  1618. GGML_API enum ggml_opt_result ggml_opt_resume(
  1619. struct ggml_context * ctx,
  1620. struct ggml_opt_context * opt,
  1621. struct ggml_tensor * f);
  1622. // continue optimizing the function defined by the tensor f
  1623. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1624. struct ggml_context * ctx,
  1625. struct ggml_opt_context * opt,
  1626. struct ggml_tensor * f,
  1627. struct ggml_cgraph * gf,
  1628. struct ggml_cgraph * gb,
  1629. ggml_opt_callback callback,
  1630. void * callback_data);
  1631. //
  1632. // quantization
  1633. //
  1634. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1635. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1636. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1637. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1638. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1639. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1640. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1641. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1642. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1643. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1644. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1645. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1646. //
  1647. // gguf
  1648. //
  1649. enum gguf_type {
  1650. GGUF_TYPE_UINT8 = 0,
  1651. GGUF_TYPE_INT8 = 1,
  1652. GGUF_TYPE_UINT16 = 2,
  1653. GGUF_TYPE_INT16 = 3,
  1654. GGUF_TYPE_UINT32 = 4,
  1655. GGUF_TYPE_INT32 = 5,
  1656. GGUF_TYPE_FLOAT32 = 6,
  1657. GGUF_TYPE_BOOL = 7,
  1658. GGUF_TYPE_STRING = 8,
  1659. GGUF_TYPE_ARRAY = 9,
  1660. GGUF_TYPE_UINT64 = 10,
  1661. GGUF_TYPE_INT64 = 11,
  1662. GGUF_TYPE_FLOAT64 = 12,
  1663. GGUF_TYPE_COUNT, // marks the end of the enum
  1664. };
  1665. struct gguf_context;
  1666. struct gguf_init_params {
  1667. bool no_alloc;
  1668. // if not NULL, create a ggml_context and allocate the tensor data in it
  1669. struct ggml_context ** ctx;
  1670. };
  1671. GGML_API struct gguf_context * gguf_init_empty(void);
  1672. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1673. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1674. GGML_API void gguf_free(struct gguf_context * ctx);
  1675. GGML_API const char * gguf_type_name(enum gguf_type type);
  1676. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1677. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1678. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1679. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1680. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1681. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1682. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1683. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1684. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1685. // will abort if the wrong type is used for the key
  1686. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1687. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1688. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1689. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1690. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1691. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1692. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1693. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1694. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1695. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1696. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1697. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1698. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1699. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1700. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1701. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1702. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1703. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1704. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1705. // overrides existing values or adds a new one
  1706. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1707. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1708. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1709. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1710. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1711. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1712. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1713. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1714. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1715. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1716. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1717. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1718. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1719. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1720. // set or add KV pairs from another context
  1721. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1722. // manage tensor info
  1723. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1724. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1725. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1726. // writing gguf files can be done in 2 ways:
  1727. //
  1728. // - write the entire gguf_context to a binary file in a single pass:
  1729. //
  1730. // gguf_write_to_file(ctx, fname);
  1731. //
  1732. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1733. //
  1734. // FILE * f = fopen(fname, "wb");
  1735. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1736. // fwrite(f, ...);
  1737. // void * data = gguf_meta_get_meta_data(ctx);
  1738. // fseek(f, 0, SEEK_SET);
  1739. // fwrite(f, data, gguf_get_meta_size(ctx));
  1740. // free(data);
  1741. // fclose(f);
  1742. //
  1743. // write the entire context to a binary file
  1744. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1745. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1746. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1747. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1748. //
  1749. // system info
  1750. //
  1751. GGML_API int ggml_cpu_has_avx (void);
  1752. GGML_API int ggml_cpu_has_avx2 (void);
  1753. GGML_API int ggml_cpu_has_avx512 (void);
  1754. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1755. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1756. GGML_API int ggml_cpu_has_fma (void);
  1757. GGML_API int ggml_cpu_has_neon (void);
  1758. GGML_API int ggml_cpu_has_arm_fma (void);
  1759. GGML_API int ggml_cpu_has_metal (void);
  1760. GGML_API int ggml_cpu_has_f16c (void);
  1761. GGML_API int ggml_cpu_has_fp16_va (void);
  1762. GGML_API int ggml_cpu_has_wasm_simd (void);
  1763. GGML_API int ggml_cpu_has_blas (void);
  1764. GGML_API int ggml_cpu_has_cublas (void);
  1765. GGML_API int ggml_cpu_has_clblast (void);
  1766. GGML_API int ggml_cpu_has_gpublas (void);
  1767. GGML_API int ggml_cpu_has_sse3 (void);
  1768. GGML_API int ggml_cpu_has_ssse3 (void);
  1769. GGML_API int ggml_cpu_has_vsx (void);
  1770. //
  1771. // Internal types and functions exposed for tests and benchmarks
  1772. //
  1773. #ifdef __cplusplus
  1774. // restrict not standard in C++
  1775. #define GGML_RESTRICT
  1776. #else
  1777. #define GGML_RESTRICT restrict
  1778. #endif
  1779. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1780. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1781. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1782. typedef struct {
  1783. const char * type_name;
  1784. int blck_size;
  1785. size_t type_size;
  1786. bool is_quantized;
  1787. ggml_to_float_t to_float;
  1788. ggml_from_float_t from_float;
  1789. ggml_from_float_t from_float_reference;
  1790. ggml_vec_dot_t vec_dot;
  1791. enum ggml_type vec_dot_type;
  1792. } ggml_type_traits_t;
  1793. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1794. #ifdef __cplusplus
  1795. }
  1796. #endif