convert-llama2c-to-ggml.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #include "common.h"
  4. #include <unordered_map>
  5. #include <vector>
  6. #include <cassert>
  7. #include <climits>
  8. #include <cstring>
  9. #include <cstdarg>
  10. #include <ctime>
  11. #include <random>
  12. #include <stdexcept>
  13. #include <sstream>
  14. #include <algorithm>
  15. #include <string>
  16. // GGUF keys & tensor names.
  17. #define KV_GENERAL_ARCHITECTURE "general.architecture"
  18. #define KV_GENERAL_NAME "general.name"
  19. #define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
  20. #define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
  21. #define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
  22. #define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
  23. #define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
  24. #define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
  25. #define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
  26. #define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
  27. #define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
  28. #define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
  29. #define KV_CONTEXT_LENGTH "llama.context_length"
  30. #define KV_EMBEDDING_LENGTH "llama.embedding_length"
  31. #define KV_BLOCK_COUNT "llama.block_count"
  32. #define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
  33. #define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
  34. #define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
  35. #define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
  36. #define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
  37. #define TN_TOKEN_EMBD "token_embd.weight"
  38. #define TN_OUTPUT_NORM "output_norm.weight"
  39. #define TN_OUTPUT "output.weight"
  40. #define TN_ATTN_NORM "blk.%d.attn_norm.weight"
  41. #define TN_ATTN_Q "blk.%d.attn_q.weight"
  42. #define TN_ATTN_K "blk.%d.attn_k.weight"
  43. #define TN_ATTN_V "blk.%d.attn_v.weight"
  44. #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
  45. #define TN_FFN_NORM "blk.%d.ffn_norm.weight"
  46. #define TN_FFN_GATE "blk.%d.ffn_gate.weight"
  47. #define TN_FFN_DOWN "blk.%d.ffn_down.weight"
  48. #define TN_FFN_UP "blk.%d.ffn_up.weight"
  49. #if defined(_MSC_VER)
  50. #pragma warning(disable: 4244 4267) // possible loss of data
  51. #endif
  52. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  53. #define LLAMA_FILE_VERSION_GGJT_V3 3
  54. #define TOKENIZER_NAME "llama"
  55. #define UNKNOWN_TOKEN_ID 0
  56. #define BOS_TOKEN_ID 1
  57. #define EOS_TOKEN_ID 2
  58. //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
  59. typedef struct {
  60. int dim; // transformer dimension
  61. int hidden_dim; // for ffn layers
  62. int n_layers; // number of layers
  63. int n_heads; // number of query heads
  64. int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
  65. int vocab_size; // vocabulary size, usually 256 (byte-level)
  66. int seq_len; // max sequence length
  67. } Config;
  68. struct TransformerWeights {
  69. // token embedding table
  70. float* token_embedding_table; // (vocab_size, dim)
  71. // weights for rmsnorms
  72. float* rms_att_weight; // (layer, dim) rmsnorm weights
  73. float* rms_ffn_weight; // (layer, dim)
  74. // weights for matmuls
  75. float* wq; // (layer, dim, dim)
  76. float* wk; // (layer, dim, dim)
  77. float* wv; // (layer, dim, dim)
  78. float* wo; // (layer, dim, dim)
  79. // weights for ffn
  80. float* w1; // (layer, hidden_dim, dim)
  81. float* w2; // (layer, dim, hidden_dim)
  82. float* w3; // (layer, hidden_dim, dim)
  83. // final rmsnorm
  84. float* rms_final_weight; // (dim,)
  85. // freq_cis for RoPE relatively positional embeddings
  86. // float* freq_cis_real; // (seq_len, dim/2)
  87. // float* freq_cis_imag; // (seq_len, dim/2)
  88. // (optional) classifier weights for the logits, on the last layer
  89. float* wcls;
  90. ~TransformerWeights() {
  91. delete[] token_embedding_table;
  92. delete[] rms_att_weight;
  93. delete[] rms_ffn_weight;
  94. delete[] wq;
  95. delete[] wk;
  96. delete[] wv;
  97. delete[] wo;
  98. delete[] w1;
  99. delete[] w2;
  100. delete[] w3;
  101. delete[] rms_final_weight;
  102. delete[] wcls;
  103. }
  104. };
  105. static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
  106. // we calloc instead of malloc to keep valgrind happy
  107. w->token_embedding_table = new float[p->vocab_size * p->dim]();
  108. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  109. w->rms_att_weight = new float[p->n_layers * p->dim]();
  110. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
  111. w->rms_ffn_weight = new float[p->n_layers * p->dim]();
  112. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
  113. w->wq = new float[p->n_layers * p->dim * p->dim]();
  114. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  115. w->wk = new float[p->n_layers * p->dim * p->dim]();
  116. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  117. w->wv = new float[p->n_layers * p->dim * p->dim]();
  118. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  119. w->wo = new float[p->n_layers * p->dim * p->dim]();
  120. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  121. w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
  122. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  123. w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
  124. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
  125. w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
  126. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  127. w->rms_final_weight = new float[p->dim]();
  128. printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
  129. if (shared_weights) {
  130. w->wcls = NULL;
  131. } else {
  132. w->wcls = new float[p->vocab_size * p->dim]();
  133. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  134. }
  135. }
  136. static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
  137. if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  138. if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  139. if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  140. if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  141. if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  142. if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  143. if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  144. if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  145. if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
  146. if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  147. if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
  148. // Skip freq_cis_real & freq_cis_imag
  149. int head_size = p->dim / p->n_heads;
  150. fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
  151. if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  152. // Check we didn't forget to read anything
  153. auto curr = ftell(f);
  154. fseek(f, 0, SEEK_END);
  155. auto end = ftell(f);
  156. if (curr != end) {
  157. printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
  158. return 1;
  159. }
  160. return 0;
  161. }
  162. static void print_sample_weights(TransformerWeights *w){
  163. printf("----- Quick print of first of the weight vales of all the variables\n");
  164. printf("%f\n", w->token_embedding_table[0]);
  165. printf("%f\n", w->rms_att_weight[0]);
  166. printf("%f\n", w->rms_ffn_weight[0]);
  167. printf("%f\n", w->wq[0]);
  168. printf("%f\n", w->wk[0]);
  169. printf("%f\n", w->wv[0]);
  170. printf("%f\n", w->wo[0]);
  171. printf("%f\n", w->w1[0]);
  172. printf("%f\n", w->w2[0]);
  173. printf("%f\n", w->w3[0]);
  174. printf("%f\n", w->rms_att_weight[0]);
  175. if (w->wcls) printf("%f\n", w->wcls[0]);
  176. }
  177. ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  178. //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
  179. struct llama_vocab {
  180. using id = int32_t;
  181. using token = std::string;
  182. using ttype = llama_token_type;
  183. struct token_data {
  184. token text;
  185. float score;
  186. ttype type;
  187. };
  188. std::unordered_map<token, id> token_to_id;
  189. std::vector<token_data> id_to_token;
  190. };
  191. struct my_llama_hparams {
  192. uint32_t n_vocab = 32000;
  193. uint32_t n_ctx = 512; // this is provided as user input?
  194. uint32_t n_embd = 4096;
  195. uint32_t n_ff = 11008;
  196. uint32_t n_mult = 4;
  197. uint32_t n_head = 32;
  198. uint32_t n_layer = 32;
  199. uint32_t n_rot = 64;
  200. bool operator!=(const my_llama_hparams& other) const {
  201. return memcmp(this, &other, sizeof(my_llama_hparams));
  202. }
  203. };
  204. struct my_llama_layer {
  205. // normalization
  206. struct ggml_tensor * attention_norm;
  207. // attention
  208. struct ggml_tensor * wq;
  209. struct ggml_tensor * wk;
  210. struct ggml_tensor * wv;
  211. struct ggml_tensor * wo;
  212. // normalization
  213. struct ggml_tensor * ffn_norm;
  214. // ff
  215. struct ggml_tensor * w1;
  216. struct ggml_tensor * w2;
  217. struct ggml_tensor * w3;
  218. };
  219. struct my_llama_model {
  220. struct ggml_context * ctx = NULL;
  221. std::string name;
  222. my_llama_hparams hparams;
  223. struct ggml_tensor * tok_embeddings;
  224. struct ggml_tensor * norm;
  225. struct ggml_tensor * output;
  226. std::vector<my_llama_layer> layers;
  227. uint32_t train_its = 0;
  228. uint32_t train_samples = 0;
  229. uint32_t train_tokens = 0;
  230. };
  231. struct train_params {
  232. const char * fn_vocab_model;
  233. const char * fn_llama2c_model;
  234. const char * fn_llama2c_output_model;
  235. const char * fn_train_data;
  236. const char * fn_checkpoint_in;
  237. const char * fn_checkpoint_out;
  238. const char * fn_model_out;
  239. uint32_t seed;
  240. int n_ctx;
  241. int n_embd;
  242. int n_mult;
  243. int n_head;
  244. int n_layer;
  245. int n_rotmax;
  246. int n_threads;
  247. int n_batch;
  248. int n_examples;
  249. int n_predict;
  250. int print_info_interval;
  251. int print_details_interval;
  252. bool samples_start_after_nl;
  253. bool use_adam;
  254. bool use_flash;
  255. bool use_scratch;
  256. // only adam
  257. int warmup;
  258. int cos_decay_steps;
  259. float cos_decay_restart;
  260. float cos_decay_alpha;
  261. int lbfgs_n_iter;
  262. int adam_n_iter;
  263. float adam_alpha;
  264. float adam_decay;
  265. int mem_model_gb;
  266. int mem_compute_gb;
  267. int mem_compute0_gb;
  268. int mem_compute1_gb;
  269. };
  270. static void print_params(struct my_llama_hparams * params) {
  271. printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
  272. printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
  273. printf("%s: n_embd: %u\n", __func__, params->n_embd);
  274. printf("%s: n_mult: %u\n", __func__, params->n_mult);
  275. printf("%s: n_head: %u\n", __func__, params->n_head);
  276. printf("%s: n_ff: %u\n", __func__, params->n_ff);
  277. printf("%s: n_layer: %u\n", __func__, params->n_layer);
  278. printf("%s: n_rot: %u\n", __func__, params->n_rot);
  279. }
  280. static void init_model(struct my_llama_model * model) {
  281. const auto & hparams = model->hparams;
  282. const uint32_t n_embd = hparams.n_embd;
  283. const uint32_t n_layer = hparams.n_layer;
  284. const uint32_t n_vocab = hparams.n_vocab;
  285. const uint32_t n_ff = hparams.n_ff;
  286. struct ggml_context * ctx = model->ctx;
  287. model->train_its = 0;
  288. model->train_samples = 0;
  289. model->train_tokens = 0;
  290. model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  291. printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
  292. model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  293. printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
  294. model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  295. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
  296. // printing the per-layer allocations here so we dont print in the for loop.
  297. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  298. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  299. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  300. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  301. printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
  302. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  303. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
  304. printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  305. ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
  306. ggml_set_name(model->norm, "norm.weight");
  307. ggml_set_name(model->output, "output.weight");
  308. model->layers.resize(n_layer);
  309. for (uint32_t i = 0; i < n_layer; ++i) {
  310. auto & layer = model->layers[i];
  311. std::string layers_i = "layers." + std::to_string(i);
  312. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  313. layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  314. layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  315. layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  316. layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  317. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  318. layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  319. layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  320. layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  321. ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
  322. ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
  323. ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
  324. ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
  325. ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
  326. ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
  327. ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
  328. ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
  329. ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
  330. }
  331. }
  332. static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  333. float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  334. return *ptr;
  335. }
  336. static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  337. int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  338. return *ptr;
  339. }
  340. static void print_row(struct ggml_tensor * probs, int i) {
  341. for (int k = 0; k < probs->ne[0]; ++k) {
  342. float p = get_f32_2d(probs, k, i);
  343. printf(" %f", p);
  344. }
  345. printf("\n");
  346. }
  347. static void print_matrix(struct ggml_tensor * probs) {
  348. assert(ggml_is_matrix(probs));
  349. for (int i = 0; i < probs->ne[1]; ++i) {
  350. for (int k = 0; k < probs->ne[0]; ++k) {
  351. float p = get_f32_2d(probs, k, i);
  352. printf(" %.2f", p);
  353. }
  354. printf("\n");
  355. }
  356. }
  357. #ifdef __GNUC__
  358. #ifdef __MINGW32__
  359. __attribute__((format(gnu_printf, 1, 2)))
  360. #else
  361. __attribute__((format(printf, 1, 2)))
  362. #endif
  363. #endif
  364. static std::string format(const char * fmt, ...) {
  365. va_list ap, ap2;
  366. va_start(ap, fmt);
  367. va_copy(ap2, ap);
  368. int size = vsnprintf(NULL, 0, fmt, ap);
  369. GGML_ASSERT(size >= 0 && size < INT_MAX);
  370. std::vector<char> buf(size + 1);
  371. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  372. GGML_ASSERT(size2 == size);
  373. va_end(ap2);
  374. va_end(ap);
  375. return std::string(buf.data(), size);
  376. }
  377. struct llama_file {
  378. // use FILE * so we don't have to re-open the file to mmap
  379. FILE * fp;
  380. size_t size;
  381. llama_file(const char * fname, const char * mode) {
  382. fp = std::fopen(fname, mode);
  383. if (fp == NULL) {
  384. size = 0;
  385. } else {
  386. seek(0, SEEK_END);
  387. size = tell();
  388. seek(0, SEEK_SET);
  389. }
  390. }
  391. size_t tell() const {
  392. #ifdef _WIN32
  393. __int64 ret = _ftelli64(fp);
  394. #else
  395. long ret = std::ftell(fp);
  396. #endif
  397. GGML_ASSERT(ret != -1); // this really shouldn't fail
  398. return (size_t) ret;
  399. }
  400. void seek(size_t offset, int whence) {
  401. #ifdef _WIN32
  402. int ret = _fseeki64(fp, (__int64) offset, whence);
  403. #else
  404. int ret = std::fseek(fp, (long) offset, whence);
  405. #endif
  406. GGML_ASSERT(ret == 0); // same
  407. }
  408. void read_raw(void * ptr, size_t size) {
  409. if (size == 0) {
  410. return;
  411. }
  412. errno = 0;
  413. std::size_t ret = std::fread(ptr, size, 1, fp);
  414. if (ferror(fp)) {
  415. die_fmt("fread failed: %s", strerror(errno));
  416. }
  417. if (ret != 1) {
  418. die("unexpectedly reached end of file");
  419. }
  420. }
  421. std::uint32_t read_u32() {
  422. std::uint32_t ret;
  423. read_raw(&ret, sizeof(ret));
  424. return ret;
  425. }
  426. std::float_t read_f32() {
  427. std::float_t ret;
  428. read_raw(&ret, sizeof(ret));
  429. return ret;
  430. }
  431. std::string read_string(std::uint32_t len) {
  432. std::vector<char> chars(len);
  433. read_raw(chars.data(), len);
  434. return std::string(chars.data(), len);
  435. }
  436. ~llama_file() {
  437. if (fp) {
  438. std::fclose(fp);
  439. }
  440. }
  441. };
  442. static bool is_ggml_file(const char * filename) {
  443. llama_file file(filename, "rb");
  444. if (file.size < 4) {
  445. return false;
  446. }
  447. std::string magic = file.read_string(4);
  448. return magic == GGUF_MAGIC;
  449. }
  450. static std::string llama_escape_whitespaces(const std::string & text) {
  451. std::ostringstream out;
  452. for (char c : text) {
  453. if (c == ' ') out << "\xe2\x96\x81";
  454. else out << c;
  455. }
  456. return out.str();
  457. }
  458. static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
  459. if (is_ggml_file(filename)) {
  460. struct ggml_context * ctx_data = NULL;
  461. struct gguf_init_params params = {
  462. /*.no_alloc = */ false,
  463. /*.ctx = */ &ctx_data,
  464. };
  465. struct gguf_context * ctx = gguf_init_from_file(filename, params);
  466. GGML_ASSERT(ctx != NULL);
  467. const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
  468. GGML_ASSERT(model_idx >= 0);
  469. std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
  470. GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
  471. const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
  472. GGML_ASSERT(token_idx >= 0);
  473. const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
  474. GGML_ASSERT(score_idx >= 0);
  475. const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  476. const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
  477. GGML_ASSERT(toktype_idx >= 0);
  478. const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  479. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  480. vocab->id_to_token.resize(n_vocab);
  481. for (uint32_t i = 0; i < n_vocab; i++) {
  482. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  483. vocab->token_to_id[word] = i;
  484. auto & token_data = vocab->id_to_token[i];
  485. token_data.text = std::move(word);
  486. token_data.score = scores[i];
  487. token_data.type = (llama_token_type) toktypes[i];
  488. }
  489. ggml_free(ctx_data);
  490. gguf_free(ctx);
  491. } else {
  492. // assume llama2.c vocabulary
  493. printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
  494. llama_file file(filename, "rb");
  495. if (!file.fp) {
  496. die_fmt("%s: %s", strerror(errno), filename);
  497. }
  498. const int n_vocab = config->vocab_size;
  499. /* uint32_t max_token_length = */ file.read_u32(); // unused
  500. vocab->id_to_token.resize(n_vocab);
  501. for (llama_vocab::id id=0; id<n_vocab; ++id) {
  502. float_t score = file.read_f32();
  503. uint32_t len = file.read_u32();
  504. std::string text = file.read_string(len);
  505. unsigned char byte_val;
  506. llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
  507. if (id == UNKNOWN_TOKEN_ID) {
  508. text = "<unk>";
  509. type = LLAMA_TOKEN_TYPE_UNKNOWN;
  510. } else if (id == BOS_TOKEN_ID) {
  511. text = "<s>";
  512. type = LLAMA_TOKEN_TYPE_CONTROL;
  513. } else if (id == EOS_TOKEN_ID) {
  514. text = "</s>";
  515. type = LLAMA_TOKEN_TYPE_CONTROL;
  516. } else if (text.empty()) {
  517. type = LLAMA_TOKEN_TYPE_CONTROL;
  518. } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
  519. // Text of byte tokens is already in the expected format.
  520. type = LLAMA_TOKEN_TYPE_BYTE;
  521. } else {
  522. type = LLAMA_TOKEN_TYPE_NORMAL;
  523. }
  524. text = llama_escape_whitespaces(text);
  525. vocab->id_to_token[id].text = text;
  526. vocab->id_to_token[id].score = score;
  527. vocab->id_to_token[id].type = type;
  528. vocab->token_to_id.emplace(text, id);
  529. }
  530. }
  531. }
  532. static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
  533. int ct;
  534. switch (ggml_n_dims(gg_weights)) {
  535. case 1:
  536. ct = 0;
  537. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
  538. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
  539. *ptr = karpathy_weights[ct];
  540. ct++;
  541. }
  542. break;
  543. case 2:
  544. ct = 0;
  545. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  546. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  547. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
  548. *ptr = karpathy_weights[ct];
  549. ct++;
  550. }
  551. }
  552. break;
  553. case 3:
  554. ct = 0;
  555. for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
  556. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  557. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  558. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
  559. *ptr = karpathy_weights[ct];
  560. ct++;
  561. }
  562. }
  563. }
  564. break;
  565. }
  566. }
  567. static void save_as_llama_model(
  568. struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
  569. ) {
  570. // convert AK weights into GG weights one by one.
  571. // w->token_embedding_table -> model->tok_embeddings
  572. // float* -> struct ggml_tensor
  573. convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
  574. convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
  575. convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
  576. //print_row(model->norm, 0);
  577. // for rms-att-weight
  578. int row_length = model->hparams.n_embd;
  579. int n_ff = model->hparams.n_ff;
  580. for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
  581. auto & layer = model->layers[i];
  582. // 1d
  583. convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
  584. convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
  585. // from 3d matrix layer x dim x dim to 2d matrix dim x dim
  586. convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
  587. convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
  588. convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
  589. convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
  590. convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
  591. convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
  592. convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
  593. }
  594. struct gguf_context * ctx = gguf_init_empty();
  595. std::vector<const char*> tokens;
  596. std::vector<float> scores;
  597. std::vector<llama_token_type> token_types;
  598. for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
  599. tokens.push_back(token_data.text.c_str());
  600. scores.push_back(token_data.score);
  601. token_types.push_back(token_data.type);
  602. }
  603. gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
  604. gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
  605. gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
  606. gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
  607. gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
  608. gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
  609. // special tokens
  610. gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
  611. gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
  612. gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
  613. gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
  614. gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
  615. gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
  616. gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
  617. gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
  618. gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
  619. // n_head_kv is optional, default to n_head
  620. // gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
  621. gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
  622. gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
  623. gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
  624. // write tensors
  625. ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
  626. gguf_add_tensor(ctx, model->tok_embeddings);
  627. ggml_set_name(model->norm, TN_OUTPUT_NORM);
  628. gguf_add_tensor(ctx, model->norm);
  629. ggml_set_name(model->output, TN_OUTPUT);
  630. gguf_add_tensor(ctx, model->output);
  631. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  632. auto & layer = model->layers[i];
  633. ggml_format_name(layer.wq, TN_ATTN_Q, i);
  634. gguf_add_tensor(ctx, layer.wq);
  635. ggml_format_name(layer.wk, TN_ATTN_K, i);
  636. gguf_add_tensor(ctx, layer.wk);
  637. ggml_format_name(layer.wv, TN_ATTN_V, i);
  638. gguf_add_tensor(ctx, layer.wv);
  639. ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
  640. gguf_add_tensor(ctx, layer.wo);
  641. ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
  642. gguf_add_tensor(ctx, layer.attention_norm);
  643. ggml_format_name(layer.w1, TN_FFN_GATE, i);
  644. gguf_add_tensor(ctx, layer.w1);
  645. ggml_format_name(layer.w2, TN_FFN_DOWN, i);
  646. gguf_add_tensor(ctx, layer.w2);
  647. ggml_format_name(layer.w3, TN_FFN_UP, i);
  648. gguf_add_tensor(ctx, layer.w3);
  649. ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
  650. gguf_add_tensor(ctx, layer.ffn_norm);
  651. }
  652. gguf_write_to_file(ctx, filename, false);
  653. gguf_free(ctx);
  654. }
  655. static struct train_params get_default_train_params() {
  656. struct train_params params;
  657. params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
  658. params.fn_llama2c_output_model = "ak_llama_model.bin";
  659. params.fn_train_data = "shakespeare.txt";
  660. params.fn_checkpoint_in = "checkpoint.bin";
  661. params.fn_checkpoint_out = "checkpoint.bin";
  662. params.fn_model_out = "ggml-checkpoint-f32.bin";
  663. params.seed = -1;
  664. params.n_ctx = 128;
  665. params.n_embd = 256;
  666. params.n_mult = 256;
  667. params.n_head = 8;
  668. params.n_layer = 16;
  669. params.n_rotmax = 64;
  670. params.n_threads = 6;
  671. params.n_batch = 8;
  672. params.n_examples = 8;
  673. params.n_predict = 1024;
  674. params.print_info_interval = 1;
  675. params.print_details_interval = 2;
  676. params.samples_start_after_nl = false;
  677. params.use_adam = true;
  678. params.use_flash = true;
  679. params.use_scratch = true;
  680. // only adam
  681. params.warmup = 100;
  682. params.cos_decay_steps = 1000;
  683. params.cos_decay_restart = 1.1f;
  684. params.cos_decay_alpha = 0.0f;
  685. params.lbfgs_n_iter = 16;
  686. params.adam_n_iter = 16;
  687. params.adam_alpha = 1e-3f;
  688. params.adam_decay = 1e-3f;
  689. params.mem_model_gb = 2;
  690. params.mem_compute_gb = 24;
  691. params.mem_compute0_gb = 8;
  692. params.mem_compute1_gb = 2;
  693. return params;
  694. }
  695. static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
  696. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  697. fprintf(stderr, "\n");
  698. fprintf(stderr, "options:\n");
  699. fprintf(stderr, " -h, --help show this help message and exit\n");
  700. fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
  701. fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
  702. fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
  703. fprintf(stderr, "\n");
  704. }
  705. static bool params_parse(int argc, char ** argv, struct train_params * params) {
  706. bool invalid_param = false;
  707. bool reqd_param_found = false;
  708. std::string arg;
  709. struct train_params default_params = get_default_train_params();
  710. const std::string arg_prefix = "--";
  711. for (int i = 1; i < argc; i++) {
  712. arg = argv[i];
  713. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  714. std::replace(arg.begin(), arg.end(), '_', '-');
  715. }
  716. if (arg == "--copy-vocab-from-model") {
  717. if (++i >= argc) {
  718. invalid_param = true;
  719. break;
  720. }
  721. params->fn_vocab_model = argv[i];
  722. } else if (arg == "--llama2c-model") {
  723. if (++i >= argc) {
  724. invalid_param = true;
  725. break;
  726. }
  727. reqd_param_found = true;
  728. params->fn_llama2c_model = argv[i];
  729. } else if (arg == "--llama2c-output-model") {
  730. if (++i >= argc) {
  731. invalid_param = true;
  732. break;
  733. }
  734. params->fn_llama2c_output_model = argv[i];
  735. } else if (arg == "-h" || arg == "--help") {
  736. print_usage(argc, argv, &default_params);
  737. exit(0);
  738. } else {
  739. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  740. print_usage(argc, argv, &default_params);
  741. exit(1);
  742. }
  743. }
  744. if (invalid_param) {
  745. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  746. print_usage(argc, argv, &default_params);
  747. exit(1);
  748. }
  749. if (!reqd_param_found){
  750. fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
  751. print_usage(argc, argv, &default_params);
  752. exit(1);
  753. }
  754. return true;
  755. }
  756. static std::string basename(const std::string &path) {
  757. size_t pos = path.find_last_of("/\\");
  758. if (pos == std::string::npos) {
  759. return path;
  760. }
  761. return path.substr(pos + 1);
  762. }
  763. int main(int argc, char ** argv) {
  764. struct train_params params = get_default_train_params();
  765. if (!params_parse(argc, argv, &params)) {
  766. return 1;
  767. }
  768. Config config;
  769. TransformerWeights weights = {};
  770. {
  771. FILE *file = fopen(params.fn_llama2c_model, "rb");
  772. if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
  773. // read in the config header
  774. if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
  775. auto shared_weights = config.vocab_size > 0;
  776. config.vocab_size = abs(config.vocab_size);
  777. // read in the Transformer weights
  778. malloc_weights(&weights, &config, shared_weights);
  779. if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
  780. fclose(file);
  781. }
  782. struct llama_vocab vocab;
  783. load_vocab(params.fn_vocab_model, &config, &vocab);
  784. struct my_llama_model model;
  785. model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
  786. model.hparams.n_ctx = params.n_ctx;
  787. model.hparams.n_embd = config.dim; //params.n_embd;
  788. model.hparams.n_ff = config.hidden_dim;
  789. model.hparams.n_mult = 32;//params.n_mult;
  790. model.hparams.n_head = config.n_heads; //params.n_head;
  791. model.hparams.n_layer = config.n_layers; //params.n_layer;
  792. model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
  793. print_params(&model.hparams);
  794. struct ggml_init_params lcparams;
  795. lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
  796. lcparams.mem_buffer = NULL;
  797. lcparams.no_alloc = false;
  798. model.ctx = ggml_init(lcparams);
  799. init_model(&model);
  800. model.name = basename(params.fn_llama2c_model);
  801. save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
  802. printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
  803. ggml_free(model.ctx);
  804. return 0;
  805. }