ggml.c 682 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  302. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  303. }
  304. //
  305. // timing
  306. //
  307. #if defined(_MSC_VER) || defined(__MINGW32__)
  308. static int64_t timer_freq, timer_start;
  309. void ggml_time_init(void) {
  310. LARGE_INTEGER t;
  311. QueryPerformanceFrequency(&t);
  312. timer_freq = t.QuadPart;
  313. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  314. // and the uptime is high enough.
  315. // We subtract the program start time to reduce the likelihood of that happening.
  316. QueryPerformanceCounter(&t);
  317. timer_start = t.QuadPart;
  318. }
  319. int64_t ggml_time_ms(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceCounter(&t);
  322. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  323. }
  324. int64_t ggml_time_us(void) {
  325. LARGE_INTEGER t;
  326. QueryPerformanceCounter(&t);
  327. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  328. }
  329. #else
  330. void ggml_time_init(void) {}
  331. int64_t ggml_time_ms(void) {
  332. struct timespec ts;
  333. clock_gettime(CLOCK_MONOTONIC, &ts);
  334. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  335. }
  336. int64_t ggml_time_us(void) {
  337. struct timespec ts;
  338. clock_gettime(CLOCK_MONOTONIC, &ts);
  339. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  340. }
  341. #endif
  342. int64_t ggml_cycles(void) {
  343. return clock();
  344. }
  345. int64_t ggml_cycles_per_ms(void) {
  346. return CLOCKS_PER_SEC/1000;
  347. }
  348. #ifdef GGML_PERF
  349. #define ggml_perf_time_ms() ggml_time_ms()
  350. #define ggml_perf_time_us() ggml_time_us()
  351. #define ggml_perf_cycles() ggml_cycles()
  352. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  353. #else
  354. #define ggml_perf_time_ms() 0
  355. #define ggml_perf_time_us() 0
  356. #define ggml_perf_cycles() 0
  357. #define ggml_perf_cycles_per_ms() 0
  358. #endif
  359. //
  360. // cache line
  361. //
  362. #if defined(__cpp_lib_hardware_interference_size)
  363. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  364. #else
  365. #if defined(__POWER9_VECTOR__)
  366. #define CACHE_LINE_SIZE 128
  367. #else
  368. #define CACHE_LINE_SIZE 64
  369. #endif
  370. #endif
  371. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  372. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  373. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  374. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  375. [GGML_TYPE_I8] = {
  376. .type_name = "i8",
  377. .blck_size = 1,
  378. .type_size = sizeof(int8_t),
  379. .is_quantized = false,
  380. },
  381. [GGML_TYPE_I16] = {
  382. .type_name = "i16",
  383. .blck_size = 1,
  384. .type_size = sizeof(int16_t),
  385. .is_quantized = false,
  386. },
  387. [GGML_TYPE_I32] = {
  388. .type_name = "i32",
  389. .blck_size = 1,
  390. .type_size = sizeof(int32_t),
  391. .is_quantized = false,
  392. },
  393. [GGML_TYPE_F32] = {
  394. .type_name = "f32",
  395. .blck_size = 1,
  396. .type_size = sizeof(float),
  397. .is_quantized = false,
  398. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  399. .vec_dot_type = GGML_TYPE_F32,
  400. .nrows = 1,
  401. },
  402. [GGML_TYPE_F16] = {
  403. .type_name = "f16",
  404. .blck_size = 1,
  405. .type_size = sizeof(ggml_fp16_t),
  406. .is_quantized = false,
  407. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  408. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  409. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  410. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  411. .vec_dot_type = GGML_TYPE_F16,
  412. .nrows = 1,
  413. },
  414. [GGML_TYPE_Q4_0] = {
  415. .type_name = "q4_0",
  416. .blck_size = QK4_0,
  417. .type_size = sizeof(block_q4_0),
  418. .is_quantized = true,
  419. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  420. .from_float = quantize_row_q4_0,
  421. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  422. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  423. .vec_dot_type = GGML_TYPE_Q8_0,
  424. #if defined (__ARM_FEATURE_MATMUL_INT8)
  425. .nrows = 2,
  426. #else
  427. .nrows = 1,
  428. #endif
  429. },
  430. [GGML_TYPE_Q4_1] = {
  431. .type_name = "q4_1",
  432. .blck_size = QK4_1,
  433. .type_size = sizeof(block_q4_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  436. .from_float = quantize_row_q4_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  438. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. #if defined (__ARM_FEATURE_MATMUL_INT8)
  441. .nrows = 2,
  442. #else
  443. .nrows = 1,
  444. #endif
  445. },
  446. [4] = { // GGML_TYPE_Q4_2
  447. .type_name = "DEPRECATED",
  448. .blck_size = 0,
  449. .type_size = 0,
  450. .is_quantized = false,
  451. .to_float = NULL,
  452. .from_float = NULL,
  453. .from_float_reference = NULL,
  454. .vec_dot = NULL,
  455. .vec_dot_type = GGML_TYPE_COUNT,
  456. .nrows = 1,
  457. },
  458. [5] = { // GGML_TYPE_Q4_3
  459. .type_name = "DEPRECATED",
  460. .blck_size = 0,
  461. .type_size = 0,
  462. .is_quantized = false,
  463. .to_float = NULL,
  464. .from_float = NULL,
  465. .from_float_reference = NULL,
  466. .vec_dot = NULL,
  467. .vec_dot_type = GGML_TYPE_COUNT,
  468. .nrows = 1,
  469. },
  470. [GGML_TYPE_Q5_0] = {
  471. .type_name = "q5_0",
  472. .blck_size = QK5_0,
  473. .type_size = sizeof(block_q5_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  476. .from_float = quantize_row_q5_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  478. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. .nrows = 1,
  481. },
  482. [GGML_TYPE_Q5_1] = {
  483. .type_name = "q5_1",
  484. .blck_size = QK5_1,
  485. .type_size = sizeof(block_q5_1),
  486. .is_quantized = true,
  487. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  488. .from_float = quantize_row_q5_1,
  489. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  490. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  491. .vec_dot_type = GGML_TYPE_Q8_1,
  492. .nrows = 1,
  493. },
  494. [GGML_TYPE_Q8_0] = {
  495. .type_name = "q8_0",
  496. .blck_size = QK8_0,
  497. .type_size = sizeof(block_q8_0),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  500. .from_float = quantize_row_q8_0,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  502. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  503. .vec_dot_type = GGML_TYPE_Q8_0,
  504. #if defined (__ARM_FEATURE_MATMUL_INT8)
  505. .nrows = 2,
  506. #else
  507. .nrows = 1,
  508. #endif
  509. },
  510. [GGML_TYPE_Q8_1] = {
  511. .type_name = "q8_1",
  512. .blck_size = QK8_1,
  513. .type_size = sizeof(block_q8_1),
  514. .is_quantized = true,
  515. .from_float = quantize_row_q8_1,
  516. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  517. .vec_dot_type = GGML_TYPE_Q8_1,
  518. .nrows = 1,
  519. },
  520. [GGML_TYPE_Q2_K] = {
  521. .type_name = "q2_K",
  522. .blck_size = QK_K,
  523. .type_size = sizeof(block_q2_K),
  524. .is_quantized = true,
  525. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  526. .from_float = quantize_row_q2_K,
  527. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  528. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  529. .vec_dot_type = GGML_TYPE_Q8_K,
  530. .nrows = 1,
  531. },
  532. [GGML_TYPE_Q3_K] = {
  533. .type_name = "q3_K",
  534. .blck_size = QK_K,
  535. .type_size = sizeof(block_q3_K),
  536. .is_quantized = true,
  537. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  538. .from_float = quantize_row_q3_K,
  539. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  540. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  541. .vec_dot_type = GGML_TYPE_Q8_K,
  542. .nrows = 1,
  543. },
  544. [GGML_TYPE_Q4_K] = {
  545. .type_name = "q4_K",
  546. .blck_size = QK_K,
  547. .type_size = sizeof(block_q4_K),
  548. .is_quantized = true,
  549. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  550. .from_float = quantize_row_q4_K,
  551. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  552. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  553. .vec_dot_type = GGML_TYPE_Q8_K,
  554. .nrows = 1,
  555. },
  556. [GGML_TYPE_Q5_K] = {
  557. .type_name = "q5_K",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_q5_K),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  562. .from_float = quantize_row_q5_K,
  563. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  564. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. .nrows = 1,
  567. },
  568. [GGML_TYPE_Q6_K] = {
  569. .type_name = "q6_K",
  570. .blck_size = QK_K,
  571. .type_size = sizeof(block_q6_K),
  572. .is_quantized = true,
  573. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  574. .from_float = quantize_row_q6_K,
  575. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  576. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  577. .vec_dot_type = GGML_TYPE_Q8_K,
  578. .nrows = 1,
  579. },
  580. [GGML_TYPE_IQ2_XXS] = {
  581. .type_name = "iq2_xxs",
  582. .blck_size = QK_K,
  583. .type_size = sizeof(block_iq2_xxs),
  584. .is_quantized = true,
  585. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  586. .from_float = NULL,
  587. .from_float_reference = NULL,
  588. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  589. .vec_dot_type = GGML_TYPE_Q8_K,
  590. .nrows = 1,
  591. },
  592. [GGML_TYPE_IQ2_XS] = {
  593. .type_name = "iq2_xs",
  594. .blck_size = QK_K,
  595. .type_size = sizeof(block_iq2_xs),
  596. .is_quantized = true,
  597. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  598. .from_float = NULL,
  599. .from_float_reference = NULL,
  600. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  601. .vec_dot_type = GGML_TYPE_Q8_K,
  602. .nrows = 1,
  603. },
  604. [GGML_TYPE_IQ3_XXS] = {
  605. .type_name = "iq3_xxs",
  606. .blck_size = QK_K,
  607. .type_size = sizeof(block_iq3_xxs),
  608. .is_quantized = true,
  609. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  610. .from_float = quantize_row_iq3_xxs,
  611. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  612. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  613. .vec_dot_type = GGML_TYPE_Q8_K,
  614. .nrows = 1,
  615. },
  616. [GGML_TYPE_IQ3_S] = {
  617. .type_name = "iq3_s",
  618. .blck_size = QK_K,
  619. .type_size = sizeof(block_iq3_s),
  620. .is_quantized = true,
  621. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  622. .from_float = quantize_row_iq3_s,
  623. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  624. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  625. .vec_dot_type = GGML_TYPE_Q8_K,
  626. .nrows = 1,
  627. },
  628. [GGML_TYPE_IQ2_S] = {
  629. .type_name = "iq2_s",
  630. .blck_size = QK_K,
  631. .type_size = sizeof(block_iq2_s),
  632. .is_quantized = true,
  633. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  634. .from_float = quantize_row_iq2_s,
  635. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  636. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  637. .vec_dot_type = GGML_TYPE_Q8_K,
  638. .nrows = 1,
  639. },
  640. [GGML_TYPE_IQ1_S] = {
  641. .type_name = "iq1_s",
  642. .blck_size = QK_K,
  643. .type_size = sizeof(block_iq1_s),
  644. .is_quantized = true,
  645. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  646. .from_float = NULL,
  647. .from_float_reference = NULL,
  648. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  649. .vec_dot_type = GGML_TYPE_Q8_K,
  650. .nrows = 1,
  651. },
  652. [GGML_TYPE_IQ4_NL] = {
  653. .type_name = "iq4_nl",
  654. .blck_size = QK4_NL,
  655. .type_size = sizeof(block_iq4_nl),
  656. .is_quantized = true,
  657. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  658. .from_float = quantize_row_iq4_nl,
  659. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  660. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  661. .vec_dot_type = GGML_TYPE_Q8_0,
  662. .nrows = 1,
  663. },
  664. [GGML_TYPE_IQ4_XS] = {
  665. .type_name = "iq4_xs",
  666. #if QK_K == 64
  667. .blck_size = QK4_NL,
  668. #else
  669. .blck_size = QK_K,
  670. #endif
  671. .type_size = sizeof(block_iq4_xs),
  672. .is_quantized = true,
  673. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  674. .from_float = quantize_row_iq4_xs,
  675. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  676. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  677. #if QK_K == 64
  678. .vec_dot_type = GGML_TYPE_Q8_0,
  679. #else
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. #endif
  682. .nrows = 1,
  683. },
  684. [GGML_TYPE_Q8_K] = {
  685. .type_name = "q8_K",
  686. .blck_size = QK_K,
  687. .type_size = sizeof(block_q8_K),
  688. .is_quantized = true,
  689. .from_float = quantize_row_q8_K,
  690. }
  691. };
  692. // For internal test use
  693. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  694. GGML_ASSERT(type < GGML_TYPE_COUNT);
  695. return type_traits[type];
  696. }
  697. //
  698. // simd mappings
  699. //
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. // 64-bit compatibility
  703. inline static float vaddvq_f32(float32x4_t v) {
  704. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  705. }
  706. #endif
  707. #endif
  708. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  709. // we then implement the fundamental computation operations below using only these macros
  710. // adding support for new architectures requires to define the corresponding SIMD macros
  711. //
  712. // GGML_F32_STEP / GGML_F16_STEP
  713. // number of elements to process in a single step
  714. //
  715. // GGML_F32_EPR / GGML_F16_EPR
  716. // number of elements to fit in a single register
  717. //
  718. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  719. #define GGML_SIMD
  720. // F32 NEON
  721. #define GGML_F32_STEP 16
  722. #define GGML_F32_EPR 4
  723. #define GGML_F32x4 float32x4_t
  724. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  725. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  726. #define GGML_F32x4_LOAD vld1q_f32
  727. #define GGML_F32x4_STORE vst1q_f32
  728. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  729. #define GGML_F32x4_ADD vaddq_f32
  730. #define GGML_F32x4_MUL vmulq_f32
  731. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  732. #define GGML_F32x4_REDUCE(res, x) \
  733. { \
  734. int offset = GGML_F32_ARR >> 1; \
  735. for (int i = 0; i < offset; ++i) { \
  736. x[i] = vaddq_f32(x[i], x[offset+i]); \
  737. } \
  738. offset >>= 1; \
  739. for (int i = 0; i < offset; ++i) { \
  740. x[i] = vaddq_f32(x[i], x[offset+i]); \
  741. } \
  742. offset >>= 1; \
  743. for (int i = 0; i < offset; ++i) { \
  744. x[i] = vaddq_f32(x[i], x[offset+i]); \
  745. } \
  746. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  747. }
  748. #define GGML_F32_VEC GGML_F32x4
  749. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  750. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  751. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  752. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  753. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  754. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  755. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  756. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  757. // F16 NEON
  758. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  759. #define GGML_F16_STEP 32
  760. #define GGML_F16_EPR 8
  761. #define GGML_F16x8 float16x8_t
  762. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  763. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  764. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  765. #define GGML_F16x8_STORE vst1q_f16
  766. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  767. #define GGML_F16x8_ADD vaddq_f16
  768. #define GGML_F16x8_MUL vmulq_f16
  769. #define GGML_F16x8_REDUCE(res, x) \
  770. do { \
  771. int offset = GGML_F16_ARR >> 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = vaddq_f16(x[i], x[offset+i]); \
  774. } \
  775. offset >>= 1; \
  776. for (int i = 0; i < offset; ++i) { \
  777. x[i] = vaddq_f16(x[i], x[offset+i]); \
  778. } \
  779. offset >>= 1; \
  780. for (int i = 0; i < offset; ++i) { \
  781. x[i] = vaddq_f16(x[i], x[offset+i]); \
  782. } \
  783. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  784. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  785. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  786. } while (0)
  787. #define GGML_F16_VEC GGML_F16x8
  788. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  789. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  790. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  792. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  793. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  794. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  795. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  796. #else
  797. // if FP16 vector arithmetic is not supported, we use FP32 instead
  798. // and take advantage of the vcvt_ functions to convert to/from FP16
  799. #define GGML_F16_STEP 16
  800. #define GGML_F16_EPR 4
  801. #define GGML_F32Cx4 float32x4_t
  802. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  803. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  804. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  805. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  806. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  807. #define GGML_F32Cx4_ADD vaddq_f32
  808. #define GGML_F32Cx4_MUL vmulq_f32
  809. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  810. #define GGML_F16_VEC GGML_F32Cx4
  811. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  812. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  813. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  815. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  816. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  817. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  818. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  819. #endif
  820. #elif defined(__AVX__)
  821. #define GGML_SIMD
  822. // F32 AVX
  823. #define GGML_F32_STEP 32
  824. #define GGML_F32_EPR 8
  825. #define GGML_F32x8 __m256
  826. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  827. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  828. #define GGML_F32x8_LOAD _mm256_loadu_ps
  829. #define GGML_F32x8_STORE _mm256_storeu_ps
  830. #if defined(__FMA__)
  831. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  832. #else
  833. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  834. #endif
  835. #define GGML_F32x8_ADD _mm256_add_ps
  836. #define GGML_F32x8_MUL _mm256_mul_ps
  837. #define GGML_F32x8_REDUCE(res, x) \
  838. do { \
  839. int offset = GGML_F32_ARR >> 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  846. } \
  847. offset >>= 1; \
  848. for (int i = 0; i < offset; ++i) { \
  849. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  850. } \
  851. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  852. _mm256_extractf128_ps(x[0], 1)); \
  853. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  854. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  855. } while (0)
  856. // TODO: is this optimal ?
  857. #define GGML_F32_VEC GGML_F32x8
  858. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  859. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  860. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  861. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  862. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  863. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  864. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  865. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  866. // F16 AVX
  867. #define GGML_F16_STEP 32
  868. #define GGML_F16_EPR 8
  869. // F16 arithmetic is not supported by AVX, so we use F32 instead
  870. #define GGML_F32Cx8 __m256
  871. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  872. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  873. #if defined(__F16C__)
  874. // the _mm256_cvt intrinsics require F16C
  875. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  876. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  877. #else
  878. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  879. float tmp[8];
  880. for (int i = 0; i < 8; i++) {
  881. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  882. }
  883. return _mm256_loadu_ps(tmp);
  884. }
  885. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  886. float arr[8];
  887. _mm256_storeu_ps(arr, y);
  888. for (int i = 0; i < 8; i++)
  889. x[i] = GGML_FP32_TO_FP16(arr[i]);
  890. }
  891. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  892. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  893. #endif
  894. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  895. #define GGML_F32Cx8_ADD _mm256_add_ps
  896. #define GGML_F32Cx8_MUL _mm256_mul_ps
  897. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  898. #define GGML_F16_VEC GGML_F32Cx8
  899. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  900. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  901. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  902. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  903. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  904. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  905. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  906. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  907. #elif defined(__POWER9_VECTOR__)
  908. #define GGML_SIMD
  909. // F32 POWER9
  910. #define GGML_F32_STEP 32
  911. #define GGML_F32_EPR 4
  912. #define GGML_F32x4 vector float
  913. #define GGML_F32x4_ZERO 0.0f
  914. #define GGML_F32x4_SET1 vec_splats
  915. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  916. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  917. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  918. #define GGML_F32x4_ADD vec_add
  919. #define GGML_F32x4_MUL vec_mul
  920. #define GGML_F32x4_REDUCE(res, x) \
  921. { \
  922. int offset = GGML_F32_ARR >> 1; \
  923. for (int i = 0; i < offset; ++i) { \
  924. x[i] = vec_add(x[i], x[offset+i]); \
  925. } \
  926. offset >>= 1; \
  927. for (int i = 0; i < offset; ++i) { \
  928. x[i] = vec_add(x[i], x[offset+i]); \
  929. } \
  930. offset >>= 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = vec_add(x[i], x[offset+i]); \
  933. } \
  934. res = vec_extract(x[0], 0) + \
  935. vec_extract(x[0], 1) + \
  936. vec_extract(x[0], 2) + \
  937. vec_extract(x[0], 3); \
  938. }
  939. #define GGML_F32_VEC GGML_F32x4
  940. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  941. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  942. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  943. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  944. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  946. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  947. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  948. // F16 POWER9
  949. #define GGML_F16_STEP GGML_F32_STEP
  950. #define GGML_F16_EPR GGML_F32_EPR
  951. #define GGML_F16_VEC GGML_F32x4
  952. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  953. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  954. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  955. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  956. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  957. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  958. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  959. vec_extract_fp32_from_shortl(vec_xl(0, p))
  960. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  961. #define GGML_F16_VEC_STORE(p, r, i) \
  962. if (i & 0x1) \
  963. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  964. r[i - GGML_ENDIAN_BYTE(0)]), \
  965. 0, p - GGML_F16_EPR)
  966. #elif defined(__wasm_simd128__)
  967. #define GGML_SIMD
  968. // F32 WASM
  969. #define GGML_F32_STEP 16
  970. #define GGML_F32_EPR 4
  971. #define GGML_F32x4 v128_t
  972. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  973. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  974. #define GGML_F32x4_LOAD wasm_v128_load
  975. #define GGML_F32x4_STORE wasm_v128_store
  976. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  977. #define GGML_F32x4_ADD wasm_f32x4_add
  978. #define GGML_F32x4_MUL wasm_f32x4_mul
  979. #define GGML_F32x4_REDUCE(res, x) \
  980. { \
  981. int offset = GGML_F32_ARR >> 1; \
  982. for (int i = 0; i < offset; ++i) { \
  983. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  984. } \
  985. offset >>= 1; \
  986. for (int i = 0; i < offset; ++i) { \
  987. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  988. } \
  989. offset >>= 1; \
  990. for (int i = 0; i < offset; ++i) { \
  991. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  992. } \
  993. res = wasm_f32x4_extract_lane(x[0], 0) + \
  994. wasm_f32x4_extract_lane(x[0], 1) + \
  995. wasm_f32x4_extract_lane(x[0], 2) + \
  996. wasm_f32x4_extract_lane(x[0], 3); \
  997. }
  998. #define GGML_F32_VEC GGML_F32x4
  999. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1000. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1001. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1002. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1003. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1004. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1005. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1006. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1007. // F16 WASM
  1008. #define GGML_F16_STEP 16
  1009. #define GGML_F16_EPR 4
  1010. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1011. float tmp[4];
  1012. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1013. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1014. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1015. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1016. return wasm_v128_load(tmp);
  1017. }
  1018. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1019. float tmp[4];
  1020. wasm_v128_store(tmp, x);
  1021. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1022. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1023. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1024. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1025. }
  1026. #define GGML_F16x4 v128_t
  1027. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1028. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1029. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1030. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1031. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1032. #define GGML_F16x4_ADD wasm_f32x4_add
  1033. #define GGML_F16x4_MUL wasm_f32x4_mul
  1034. #define GGML_F16x4_REDUCE(res, x) \
  1035. { \
  1036. int offset = GGML_F16_ARR >> 1; \
  1037. for (int i = 0; i < offset; ++i) { \
  1038. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1039. } \
  1040. offset >>= 1; \
  1041. for (int i = 0; i < offset; ++i) { \
  1042. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1043. } \
  1044. offset >>= 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1047. } \
  1048. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1049. wasm_f32x4_extract_lane(x[0], 1) + \
  1050. wasm_f32x4_extract_lane(x[0], 2) + \
  1051. wasm_f32x4_extract_lane(x[0], 3); \
  1052. }
  1053. #define GGML_F16_VEC GGML_F16x4
  1054. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1055. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1056. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1057. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1058. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1059. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1060. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1061. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1062. #elif defined(__SSE3__)
  1063. #define GGML_SIMD
  1064. // F32 SSE
  1065. #define GGML_F32_STEP 32
  1066. #define GGML_F32_EPR 4
  1067. #define GGML_F32x4 __m128
  1068. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1069. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1070. #define GGML_F32x4_LOAD _mm_loadu_ps
  1071. #define GGML_F32x4_STORE _mm_storeu_ps
  1072. #if defined(__FMA__)
  1073. // TODO: Does this work?
  1074. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1075. #else
  1076. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1077. #endif
  1078. #define GGML_F32x4_ADD _mm_add_ps
  1079. #define GGML_F32x4_MUL _mm_mul_ps
  1080. #define GGML_F32x4_REDUCE(res, x) \
  1081. { \
  1082. int offset = GGML_F32_ARR >> 1; \
  1083. for (int i = 0; i < offset; ++i) { \
  1084. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1085. } \
  1086. offset >>= 1; \
  1087. for (int i = 0; i < offset; ++i) { \
  1088. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1089. } \
  1090. offset >>= 1; \
  1091. for (int i = 0; i < offset; ++i) { \
  1092. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1093. } \
  1094. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1095. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1096. }
  1097. // TODO: is this optimal ?
  1098. #define GGML_F32_VEC GGML_F32x4
  1099. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1100. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1101. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1102. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1103. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1105. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1106. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1107. // F16 SSE
  1108. #define GGML_F16_STEP 32
  1109. #define GGML_F16_EPR 4
  1110. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1111. float tmp[4];
  1112. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1113. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1114. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1115. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1116. return _mm_loadu_ps(tmp);
  1117. }
  1118. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1119. float arr[4];
  1120. _mm_storeu_ps(arr, y);
  1121. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1122. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1123. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1124. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1125. }
  1126. #define GGML_F32Cx4 __m128
  1127. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1128. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1129. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1130. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1131. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1132. #define GGML_F32Cx4_ADD _mm_add_ps
  1133. #define GGML_F32Cx4_MUL _mm_mul_ps
  1134. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1135. #define GGML_F16_VEC GGML_F32Cx4
  1136. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1137. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1138. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1139. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1140. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1141. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1142. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1143. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1144. #endif
  1145. // GGML_F32_ARR / GGML_F16_ARR
  1146. // number of registers to use per step
  1147. #ifdef GGML_SIMD
  1148. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1149. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1150. #endif
  1151. //
  1152. // fundamental operations
  1153. //
  1154. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1155. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1156. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1157. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1158. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1159. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1160. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1161. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1162. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1163. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1165. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1166. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1167. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1168. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1169. assert(nrc == 1);
  1170. UNUSED(nrc);
  1171. UNUSED(bx);
  1172. UNUSED(by);
  1173. UNUSED(bs);
  1174. #ifdef GGML_SIMD
  1175. float sumf = 0.0f;
  1176. const int np = (n & ~(GGML_F32_STEP - 1));
  1177. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1178. GGML_F32_VEC ax[GGML_F32_ARR];
  1179. GGML_F32_VEC ay[GGML_F32_ARR];
  1180. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1181. for (int j = 0; j < GGML_F32_ARR; j++) {
  1182. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1183. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1184. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1185. }
  1186. }
  1187. // reduce sum0..sum3 to sum0
  1188. GGML_F32_VEC_REDUCE(sumf, sum);
  1189. // leftovers
  1190. for (int i = np; i < n; ++i) {
  1191. sumf += x[i]*y[i];
  1192. }
  1193. #else
  1194. // scalar
  1195. ggml_float sumf = 0.0;
  1196. for (int i = 0; i < n; ++i) {
  1197. sumf += (ggml_float)(x[i]*y[i]);
  1198. }
  1199. #endif
  1200. *s = sumf;
  1201. }
  1202. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1203. assert(nrc == 1);
  1204. UNUSED(nrc);
  1205. UNUSED(bx);
  1206. UNUSED(by);
  1207. UNUSED(bs);
  1208. ggml_float sumf = 0.0;
  1209. #if defined(GGML_SIMD)
  1210. const int np = (n & ~(GGML_F16_STEP - 1));
  1211. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1212. GGML_F16_VEC ax[GGML_F16_ARR];
  1213. GGML_F16_VEC ay[GGML_F16_ARR];
  1214. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1215. for (int j = 0; j < GGML_F16_ARR; j++) {
  1216. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1217. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1218. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1219. }
  1220. }
  1221. // reduce sum0..sum3 to sum0
  1222. GGML_F16_VEC_REDUCE(sumf, sum);
  1223. // leftovers
  1224. for (int i = np; i < n; ++i) {
  1225. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1226. }
  1227. #else
  1228. for (int i = 0; i < n; ++i) {
  1229. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1230. }
  1231. #endif
  1232. *s = sumf;
  1233. }
  1234. // compute GGML_VEC_DOT_UNROLL dot products at once
  1235. // xs - x row stride in bytes
  1236. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1237. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1238. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1239. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1240. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1241. }
  1242. #if defined(GGML_SIMD)
  1243. const int np = (n & ~(GGML_F16_STEP - 1));
  1244. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1245. GGML_F16_VEC ax[GGML_F16_ARR];
  1246. GGML_F16_VEC ay[GGML_F16_ARR];
  1247. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1248. for (int j = 0; j < GGML_F16_ARR; j++) {
  1249. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1250. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1251. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1252. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1253. }
  1254. }
  1255. }
  1256. // reduce sum0..sum3 to sum0
  1257. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1258. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1259. }
  1260. // leftovers
  1261. for (int i = np; i < n; ++i) {
  1262. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1263. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1264. }
  1265. }
  1266. #else
  1267. for (int i = 0; i < n; ++i) {
  1268. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1269. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1270. }
  1271. }
  1272. #endif
  1273. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1274. s[i] = sumf[i];
  1275. }
  1276. }
  1277. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1278. #if defined(GGML_SIMD)
  1279. const int np = (n & ~(GGML_F32_STEP - 1));
  1280. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1281. GGML_F32_VEC ax[GGML_F32_ARR];
  1282. GGML_F32_VEC ay[GGML_F32_ARR];
  1283. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1284. for (int j = 0; j < GGML_F32_ARR; j++) {
  1285. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1286. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1287. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1288. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1289. }
  1290. }
  1291. // leftovers
  1292. for (int i = np; i < n; ++i) {
  1293. y[i] += x[i]*v;
  1294. }
  1295. #else
  1296. // scalar
  1297. for (int i = 0; i < n; ++i) {
  1298. y[i] += x[i]*v;
  1299. }
  1300. #endif
  1301. }
  1302. // xs and vs are byte strides of x and v
  1303. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1304. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1305. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1306. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1307. x[i] = (const float *) ((const char *) xv + i*xs);
  1308. v[i] = (const float *) ((const char *) vv + i*vs);
  1309. }
  1310. #if defined(GGML_SIMD)
  1311. const int np = (n & ~(GGML_F32_STEP - 1));
  1312. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1313. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1314. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1315. }
  1316. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1317. GGML_F32_VEC ay[GGML_F32_ARR];
  1318. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1319. for (int j = 0; j < GGML_F32_ARR; j++) {
  1320. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1321. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1322. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1323. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1324. }
  1325. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1326. }
  1327. }
  1328. // leftovers
  1329. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1330. for (int i = np; i < n; ++i) {
  1331. y[i] += x[k][i]*v[k][0];
  1332. }
  1333. }
  1334. #else
  1335. // scalar
  1336. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1337. for (int i = 0; i < n; ++i) {
  1338. y[i] += x[k][i]*v[k][0];
  1339. }
  1340. }
  1341. #endif
  1342. }
  1343. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1344. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1345. #if defined(GGML_USE_ACCELERATE)
  1346. vDSP_vsmul(y, 1, &v, y, 1, n);
  1347. #elif defined(GGML_SIMD)
  1348. const int np = (n & ~(GGML_F32_STEP - 1));
  1349. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1350. GGML_F32_VEC ay[GGML_F32_ARR];
  1351. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1352. for (int j = 0; j < GGML_F32_ARR; j++) {
  1353. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1354. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1355. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1356. }
  1357. }
  1358. // leftovers
  1359. for (int i = np; i < n; ++i) {
  1360. y[i] *= v;
  1361. }
  1362. #else
  1363. // scalar
  1364. for (int i = 0; i < n; ++i) {
  1365. y[i] *= v;
  1366. }
  1367. #endif
  1368. }
  1369. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1370. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1371. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1372. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1373. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1374. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1375. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1376. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1377. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1378. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1379. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1380. // TODO: optimize performance
  1381. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1382. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1383. static const float GELU_COEF_A = 0.044715f;
  1384. static const float GELU_QUICK_COEF = -1.702f;
  1385. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1386. inline static float ggml_gelu_f32(float x) {
  1387. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1388. }
  1389. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1390. const uint16_t * i16 = (const uint16_t *) x;
  1391. for (int i = 0; i < n; ++i) {
  1392. y[i] = ggml_table_gelu_f16[i16[i]];
  1393. }
  1394. }
  1395. #ifdef GGML_GELU_FP16
  1396. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1397. uint16_t t;
  1398. for (int i = 0; i < n; ++i) {
  1399. if (x[i] <= -10.0f) {
  1400. y[i] = 0.0f;
  1401. } else if (x[i] >= 10.0f) {
  1402. y[i] = x[i];
  1403. } else {
  1404. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1405. memcpy(&t, &fp16, sizeof(uint16_t));
  1406. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1407. }
  1408. }
  1409. }
  1410. #else
  1411. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1412. for (int i = 0; i < n; ++i) {
  1413. y[i] = ggml_gelu_f32(x[i]);
  1414. }
  1415. }
  1416. #endif
  1417. inline static float ggml_gelu_quick_f32(float x) {
  1418. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1419. }
  1420. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1421. // const uint16_t * i16 = (const uint16_t *) x;
  1422. // for (int i = 0; i < n; ++i) {
  1423. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1424. // }
  1425. //}
  1426. #ifdef GGML_GELU_QUICK_FP16
  1427. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1428. uint16_t t;
  1429. for (int i = 0; i < n; ++i) {
  1430. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1431. memcpy(&t, &fp16, sizeof(uint16_t));
  1432. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1433. }
  1434. }
  1435. #else
  1436. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1437. for (int i = 0; i < n; ++i) {
  1438. y[i] = ggml_gelu_quick_f32(x[i]);
  1439. }
  1440. }
  1441. #endif
  1442. // Sigmoid Linear Unit (SiLU) function
  1443. inline static float ggml_silu_f32(float x) {
  1444. return x/(1.0f + expf(-x));
  1445. }
  1446. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1447. // const uint16_t * i16 = (const uint16_t *) x;
  1448. // for (int i = 0; i < n; ++i) {
  1449. // y[i] = ggml_table_silu_f16[i16[i]];
  1450. // }
  1451. //}
  1452. #ifdef GGML_SILU_FP16
  1453. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1454. uint16_t t;
  1455. for (int i = 0; i < n; ++i) {
  1456. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1457. memcpy(&t, &fp16, sizeof(uint16_t));
  1458. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1459. }
  1460. }
  1461. #else
  1462. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1463. for (int i = 0; i < n; ++i) {
  1464. y[i] = ggml_silu_f32(x[i]);
  1465. }
  1466. }
  1467. #endif
  1468. inline static float ggml_silu_backward_f32(float x, float dy) {
  1469. const float s = 1.0f/(1.0f + expf(-x));
  1470. return dy*s*(1.0f + x*(1.0f - s));
  1471. }
  1472. #ifdef GGML_SILU_FP16
  1473. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1474. for (int i = 0; i < n; ++i) {
  1475. // we did not use x[i] to compute forward silu but its f16 equivalent
  1476. // take derivative at f16 of x[i]:
  1477. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1478. float usedx = GGML_FP16_TO_FP32(fp16);
  1479. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1480. }
  1481. }
  1482. #else
  1483. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1484. for (int i = 0; i < n; ++i) {
  1485. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1486. }
  1487. }
  1488. #endif
  1489. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1490. #ifndef GGML_USE_ACCELERATE
  1491. ggml_float sum = 0.0;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += (ggml_float)x[i];
  1494. }
  1495. *s = sum;
  1496. #else
  1497. vDSP_sve(x, 1, s, n);
  1498. #endif
  1499. }
  1500. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1501. ggml_float sum = 0.0;
  1502. for (int i = 0; i < n; ++i) {
  1503. sum += (ggml_float)x[i];
  1504. }
  1505. *s = sum;
  1506. }
  1507. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1508. float sum = 0.0f;
  1509. for (int i = 0; i < n; ++i) {
  1510. sum += GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. *s = sum;
  1513. }
  1514. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1515. #ifndef GGML_USE_ACCELERATE
  1516. float max = -INFINITY;
  1517. for (int i = 0; i < n; ++i) {
  1518. max = MAX(max, x[i]);
  1519. }
  1520. *s = max;
  1521. #else
  1522. vDSP_maxv(x, 1, s, n);
  1523. #endif
  1524. }
  1525. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1526. ggml_vec_norm_f32(n, s, x);
  1527. *s = 1.f/(*s);
  1528. }
  1529. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1530. float max = -INFINITY;
  1531. int idx = 0;
  1532. for (int i = 0; i < n; ++i) {
  1533. max = MAX(max, x[i]);
  1534. if (max == x[i]) { idx = i; }
  1535. }
  1536. *s = idx;
  1537. }
  1538. //
  1539. // data types
  1540. //
  1541. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1542. "NONE",
  1543. "DUP",
  1544. "ADD",
  1545. "ADD1",
  1546. "ACC",
  1547. "SUB",
  1548. "MUL",
  1549. "DIV",
  1550. "SQR",
  1551. "SQRT",
  1552. "LOG",
  1553. "SUM",
  1554. "SUM_ROWS",
  1555. "MEAN",
  1556. "ARGMAX",
  1557. "REPEAT",
  1558. "REPEAT_BACK",
  1559. "CONCAT",
  1560. "SILU_BACK",
  1561. "NORM",
  1562. "RMS_NORM",
  1563. "RMS_NORM_BACK",
  1564. "GROUP_NORM",
  1565. "MUL_MAT",
  1566. "MUL_MAT_ID",
  1567. "OUT_PROD",
  1568. "SCALE",
  1569. "SET",
  1570. "CPY",
  1571. "CONT",
  1572. "RESHAPE",
  1573. "VIEW",
  1574. "PERMUTE",
  1575. "TRANSPOSE",
  1576. "GET_ROWS",
  1577. "GET_ROWS_BACK",
  1578. "DIAG",
  1579. "DIAG_MASK_INF",
  1580. "DIAG_MASK_ZERO",
  1581. "SOFT_MAX",
  1582. "SOFT_MAX_BACK",
  1583. "ROPE",
  1584. "ROPE_BACK",
  1585. "ALIBI",
  1586. "CLAMP",
  1587. "CONV_TRANSPOSE_1D",
  1588. "IM2COL",
  1589. "CONV_TRANSPOSE_2D",
  1590. "POOL_1D",
  1591. "POOL_2D",
  1592. "UPSCALE",
  1593. "PAD",
  1594. "ARANGE",
  1595. "TIMESTEP_EMBEDDING",
  1596. "ARGSORT",
  1597. "LEAKY_RELU",
  1598. "FLASH_ATTN",
  1599. "FLASH_FF",
  1600. "FLASH_ATTN_BACK",
  1601. "WIN_PART",
  1602. "WIN_UNPART",
  1603. "GET_REL_POS",
  1604. "ADD_REL_POS",
  1605. "UNARY",
  1606. "MAP_UNARY",
  1607. "MAP_BINARY",
  1608. "MAP_CUSTOM1_F32",
  1609. "MAP_CUSTOM2_F32",
  1610. "MAP_CUSTOM3_F32",
  1611. "MAP_CUSTOM1",
  1612. "MAP_CUSTOM2",
  1613. "MAP_CUSTOM3",
  1614. "CROSS_ENTROPY_LOSS",
  1615. "CROSS_ENTROPY_LOSS_BACK",
  1616. };
  1617. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  1618. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1619. "none",
  1620. "x",
  1621. "x+y",
  1622. "x+y",
  1623. "view(x,nb,offset)+=y->x",
  1624. "x-y",
  1625. "x*y",
  1626. "x/y",
  1627. "x^2",
  1628. "√x",
  1629. "log(x)",
  1630. "Σx",
  1631. "Σx_k",
  1632. "Σx/n",
  1633. "argmax(x)",
  1634. "repeat(x)",
  1635. "repeat_back(x)",
  1636. "concat(x, y)",
  1637. "silu_back(x)",
  1638. "norm(x)",
  1639. "rms_norm(x)",
  1640. "rms_norm_back(x)",
  1641. "group_norm(x)",
  1642. "X*Y",
  1643. "X[i]*Y",
  1644. "X*Y",
  1645. "x*v",
  1646. "y-\\>view(x)",
  1647. "x-\\>y",
  1648. "cont(x)",
  1649. "reshape(x)",
  1650. "view(x)",
  1651. "permute(x)",
  1652. "transpose(x)",
  1653. "get_rows(x)",
  1654. "get_rows_back(x)",
  1655. "diag(x)",
  1656. "diag_mask_inf(x)",
  1657. "diag_mask_zero(x)",
  1658. "soft_max(x)",
  1659. "soft_max_back(x)",
  1660. "rope(x)",
  1661. "rope_back(x)",
  1662. "alibi(x)",
  1663. "clamp(x)",
  1664. "conv_transpose_1d(x)",
  1665. "im2col(x)",
  1666. "conv_transpose_2d(x)",
  1667. "pool_1d(x)",
  1668. "pool_2d(x)",
  1669. "upscale(x)",
  1670. "pad(x)",
  1671. "arange(start, stop, step)",
  1672. "timestep_embedding(timesteps, dim, max_period)",
  1673. "argsort(x)",
  1674. "leaky_relu(x)",
  1675. "flash_attn(x)",
  1676. "flash_ff(x)",
  1677. "flash_attn_back(x)",
  1678. "win_part(x)",
  1679. "win_unpart(x)",
  1680. "get_rel_pos(x)",
  1681. "add_rel_pos(x)",
  1682. "unary(x)",
  1683. "f(x)",
  1684. "f(x,y)",
  1685. "custom_f32(x)",
  1686. "custom_f32(x,y)",
  1687. "custom_f32(x,y,z)",
  1688. "custom(x)",
  1689. "custom(x,y)",
  1690. "custom(x,y,z)",
  1691. "cross_entropy_loss(x,y)",
  1692. "cross_entropy_loss_back(x,y)",
  1693. };
  1694. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  1695. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1696. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1697. "ABS",
  1698. "SGN",
  1699. "NEG",
  1700. "STEP",
  1701. "TANH",
  1702. "ELU",
  1703. "RELU",
  1704. "GELU",
  1705. "GELU_QUICK",
  1706. "SILU",
  1707. "HARDSWISH",
  1708. "HARDSIGMOID",
  1709. };
  1710. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1711. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1712. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1713. // WARN:
  1714. // Mis-configuration can lead to problem that's hard to reason about:
  1715. // * At best it crash or talks nosense.
  1716. // * At worst it talks slightly difference but hard to perceive.
  1717. //
  1718. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1719. // Take care about compile options (e.g., GGML_USE_xxx).
  1720. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1721. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1722. static void ggml_setup_op_has_task_pass(void) {
  1723. { // INIT
  1724. bool * p = GGML_OP_HAS_INIT;
  1725. p[GGML_OP_ACC ] = true;
  1726. p[GGML_OP_MUL_MAT ] = true;
  1727. p[GGML_OP_MUL_MAT_ID ] = true;
  1728. p[GGML_OP_OUT_PROD ] = true;
  1729. p[GGML_OP_SET ] = true;
  1730. p[GGML_OP_GET_ROWS_BACK ] = true;
  1731. p[GGML_OP_DIAG_MASK_INF ] = true;
  1732. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1733. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1734. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1735. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1736. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1737. p[GGML_OP_ADD_REL_POS ] = true;
  1738. }
  1739. { // FINALIZE
  1740. bool * p = GGML_OP_HAS_FINALIZE;
  1741. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1742. }
  1743. }
  1744. //
  1745. // ggml context
  1746. //
  1747. struct ggml_context {
  1748. size_t mem_size;
  1749. void * mem_buffer;
  1750. bool mem_buffer_owned;
  1751. bool no_alloc;
  1752. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1753. int n_objects;
  1754. struct ggml_object * objects_begin;
  1755. struct ggml_object * objects_end;
  1756. struct ggml_scratch scratch;
  1757. struct ggml_scratch scratch_save;
  1758. };
  1759. struct ggml_context_container {
  1760. bool used;
  1761. struct ggml_context context;
  1762. };
  1763. //
  1764. // NUMA support
  1765. //
  1766. #define GGML_NUMA_MAX_NODES 8
  1767. #define GGML_NUMA_MAX_CPUS 512
  1768. struct ggml_numa_node {
  1769. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1770. uint32_t n_cpus;
  1771. };
  1772. struct ggml_numa_nodes {
  1773. enum ggml_numa_strategy numa_strategy;
  1774. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1775. uint32_t n_nodes;
  1776. uint32_t total_cpus; // hardware threads on system
  1777. uint32_t current_node; // node on which main process is execting
  1778. #if defined(__gnu_linux__)
  1779. cpu_set_t cpuset; // cpuset from numactl
  1780. #else
  1781. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1782. #endif
  1783. };
  1784. //
  1785. // ggml state
  1786. //
  1787. struct ggml_state {
  1788. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1789. struct ggml_numa_nodes numa;
  1790. };
  1791. // global state
  1792. static struct ggml_state g_state;
  1793. static atomic_int g_state_barrier = 0;
  1794. // barrier via spin lock
  1795. inline static void ggml_critical_section_start(void) {
  1796. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1797. while (processing > 0) {
  1798. // wait for other threads to finish
  1799. atomic_fetch_sub(&g_state_barrier, 1);
  1800. sched_yield(); // TODO: reconsider this
  1801. processing = atomic_fetch_add(&g_state_barrier, 1);
  1802. }
  1803. }
  1804. // TODO: make this somehow automatically executed
  1805. // some sort of "sentry" mechanism
  1806. inline static void ggml_critical_section_end(void) {
  1807. atomic_fetch_sub(&g_state_barrier, 1);
  1808. }
  1809. #if defined(__gnu_linux__)
  1810. static cpu_set_t ggml_get_numa_affinity(void) {
  1811. cpu_set_t cpuset;
  1812. pthread_t thread;
  1813. thread = pthread_self();
  1814. CPU_ZERO(&cpuset);
  1815. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1816. return cpuset;
  1817. }
  1818. #else
  1819. static uint32_t ggml_get_numa_affinity(void) {
  1820. return 0; // no NUMA support
  1821. }
  1822. #endif
  1823. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1824. if (g_state.numa.n_nodes > 0) {
  1825. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1826. return;
  1827. }
  1828. #if defined(__gnu_linux__)
  1829. struct stat st;
  1830. char path[256];
  1831. int rv;
  1832. // set numa scheme
  1833. g_state.numa.numa_strategy = numa_flag;
  1834. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1835. g_state.numa.cpuset = ggml_get_numa_affinity();
  1836. // enumerate nodes
  1837. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1838. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1839. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1840. if (stat(path, &st) != 0) { break; }
  1841. ++g_state.numa.n_nodes;
  1842. }
  1843. // enumerate CPUs
  1844. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1845. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1846. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1847. if (stat(path, &st) != 0) { break; }
  1848. ++g_state.numa.total_cpus;
  1849. }
  1850. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1851. // figure out which node we're on
  1852. uint current_cpu;
  1853. int getcpu_ret = 0;
  1854. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1855. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1856. #else
  1857. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1858. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1859. #endif
  1860. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1861. g_state.numa.n_nodes = 0;
  1862. return;
  1863. }
  1864. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1865. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1866. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1867. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1868. node->n_cpus = 0;
  1869. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1870. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1871. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1872. if (stat(path, &st) == 0) {
  1873. node->cpus[node->n_cpus++] = c;
  1874. GGML_PRINT_DEBUG(" %u", c);
  1875. }
  1876. }
  1877. GGML_PRINT_DEBUG("\n");
  1878. }
  1879. if (ggml_is_numa()) {
  1880. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1881. if (fptr != NULL) {
  1882. char buf[42];
  1883. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1884. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1885. }
  1886. fclose(fptr);
  1887. }
  1888. }
  1889. #else
  1890. GGML_UNUSED(numa_flag);
  1891. // TODO
  1892. #endif
  1893. }
  1894. bool ggml_is_numa(void) {
  1895. return g_state.numa.n_nodes > 1;
  1896. }
  1897. ////////////////////////////////////////////////////////////////////////////////
  1898. void ggml_print_object(const struct ggml_object * obj) {
  1899. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1900. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1901. }
  1902. void ggml_print_objects(const struct ggml_context * ctx) {
  1903. struct ggml_object * obj = ctx->objects_begin;
  1904. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1905. while (obj != NULL) {
  1906. ggml_print_object(obj);
  1907. obj = obj->next;
  1908. }
  1909. GGML_PRINT("%s: --- end ---\n", __func__);
  1910. }
  1911. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1912. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1913. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1914. }
  1915. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1916. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1917. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1918. }
  1919. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1920. size_t nbytes;
  1921. size_t blck_size = ggml_blck_size(tensor->type);
  1922. if (blck_size == 1) {
  1923. nbytes = ggml_type_size(tensor->type);
  1924. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1925. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1926. }
  1927. }
  1928. else {
  1929. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1930. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1931. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1932. }
  1933. }
  1934. return nbytes;
  1935. }
  1936. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1937. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1938. }
  1939. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1940. return type_traits[type].blck_size;
  1941. }
  1942. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1943. return type_traits[type].type_size;
  1944. }
  1945. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1946. assert(ne % ggml_blck_size(type) == 0);
  1947. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1948. }
  1949. double ggml_type_sizef(enum ggml_type type) {
  1950. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1951. }
  1952. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1953. return type_traits[type].type_name;
  1954. }
  1955. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1956. return type_traits[type].is_quantized;
  1957. }
  1958. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1959. return GGML_OP_NAME[op];
  1960. }
  1961. const char * ggml_op_symbol(enum ggml_op op) {
  1962. return GGML_OP_SYMBOL[op];
  1963. }
  1964. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1965. return GGML_UNARY_OP_NAME[op];
  1966. }
  1967. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1968. if (t->op == GGML_OP_UNARY) {
  1969. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1970. return ggml_unary_op_name(uop);
  1971. }
  1972. else {
  1973. return ggml_op_name(t->op);
  1974. }
  1975. }
  1976. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1977. return ggml_type_size(tensor->type);
  1978. }
  1979. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1980. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1981. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1982. }
  1983. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1984. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1985. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1986. }
  1987. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1990. }
  1991. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1992. return tensor->ne[3] == 1;
  1993. }
  1994. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1995. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1996. if (tensor->ne[i] > 1) {
  1997. return i + 1;
  1998. }
  1999. }
  2000. return 1;
  2001. }
  2002. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2003. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2004. return (t0->ne[0] == t1->ne[0]) &&
  2005. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2006. (t1->ne[3]%t0->ne[3] == 0);
  2007. }
  2008. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2010. return (t0->ne[1] == t1->ne[1]) &&
  2011. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2012. (t1->ne[3]%t0->ne[3] == 0);
  2013. }
  2014. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2015. enum ggml_type wtype = GGML_TYPE_COUNT;
  2016. switch (ftype) {
  2017. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2018. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2019. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2020. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2021. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2022. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2023. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2024. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2025. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2026. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2027. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2028. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2029. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2030. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2031. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2032. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2033. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2034. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2035. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2036. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2037. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2038. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2039. }
  2040. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2041. return wtype;
  2042. }
  2043. size_t ggml_tensor_overhead(void) {
  2044. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2045. }
  2046. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2047. return tensor->nb[0] > tensor->nb[1];
  2048. }
  2049. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2050. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2051. return
  2052. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2053. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2054. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2055. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2056. }
  2057. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2058. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2059. return
  2060. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2061. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2062. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2063. }
  2064. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2066. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2067. }
  2068. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2069. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2070. return
  2071. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2072. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2073. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2074. }
  2075. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return
  2078. (t0->ne[0] == t1->ne[0] ) &&
  2079. (t0->ne[1] == t1->ne[1] ) &&
  2080. (t0->ne[2] == t1->ne[2] ) &&
  2081. (t0->ne[3] == t1->ne[3] );
  2082. }
  2083. // check if t1 can be represented as a repeatition of t0
  2084. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2085. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2086. return
  2087. (t1->ne[0]%t0->ne[0] == 0) &&
  2088. (t1->ne[1]%t0->ne[1] == 0) &&
  2089. (t1->ne[2]%t0->ne[2] == 0) &&
  2090. (t1->ne[3]%t0->ne[3] == 0);
  2091. }
  2092. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2094. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2095. }
  2096. static inline int ggml_up32(int n) {
  2097. return (n + 31) & ~31;
  2098. }
  2099. //static inline int ggml_up64(int n) {
  2100. // return (n + 63) & ~63;
  2101. //}
  2102. static inline int ggml_up(int n, int m) {
  2103. // assert m is a power of 2
  2104. GGML_ASSERT((m & (m - 1)) == 0);
  2105. return (n + m - 1) & ~(m - 1);
  2106. }
  2107. // assert that pointer is aligned to GGML_MEM_ALIGN
  2108. #define ggml_assert_aligned(ptr) \
  2109. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2110. ////////////////////////////////////////////////////////////////////////////////
  2111. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2112. // make this function thread safe
  2113. ggml_critical_section_start();
  2114. static bool is_first_call = true;
  2115. if (is_first_call) {
  2116. // initialize time system (required on Windows)
  2117. ggml_time_init();
  2118. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2119. {
  2120. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2121. ggml_fp16_t ii;
  2122. for (int i = 0; i < (1 << 16); ++i) {
  2123. uint16_t ui = i;
  2124. memcpy(&ii, &ui, sizeof(ii));
  2125. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2126. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2127. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2128. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2129. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2130. }
  2131. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2132. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2133. }
  2134. // initialize g_state
  2135. {
  2136. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2137. g_state = (struct ggml_state) {
  2138. /*.contexts =*/ { { 0 } },
  2139. /*.numa =*/ {
  2140. .n_nodes = 0,
  2141. .total_cpus = 0,
  2142. },
  2143. };
  2144. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2145. g_state.contexts[i].used = false;
  2146. }
  2147. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2148. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2149. }
  2150. #if defined(GGML_USE_CUBLAS)
  2151. ggml_init_cublas();
  2152. #elif defined(GGML_USE_CLBLAST)
  2153. ggml_cl_init();
  2154. #elif defined(GGML_USE_VULKAN)
  2155. ggml_vk_init_cpu_assist();
  2156. #elif defined(GGML_USE_SYCL)
  2157. ggml_init_sycl();
  2158. #endif
  2159. ggml_setup_op_has_task_pass();
  2160. is_first_call = false;
  2161. }
  2162. // find non-used context in g_state
  2163. struct ggml_context * ctx = NULL;
  2164. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2165. if (!g_state.contexts[i].used) {
  2166. g_state.contexts[i].used = true;
  2167. ctx = &g_state.contexts[i].context;
  2168. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2169. break;
  2170. }
  2171. }
  2172. if (ctx == NULL) {
  2173. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2174. ggml_critical_section_end();
  2175. return NULL;
  2176. }
  2177. // allow to call ggml_init with 0 size
  2178. if (params.mem_size == 0) {
  2179. params.mem_size = GGML_MEM_ALIGN;
  2180. }
  2181. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2182. *ctx = (struct ggml_context) {
  2183. /*.mem_size =*/ mem_size,
  2184. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2185. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2186. /*.no_alloc =*/ params.no_alloc,
  2187. /*.no_alloc_save =*/ params.no_alloc,
  2188. /*.n_objects =*/ 0,
  2189. /*.objects_begin =*/ NULL,
  2190. /*.objects_end =*/ NULL,
  2191. /*.scratch =*/ { 0, 0, NULL, },
  2192. /*.scratch_save =*/ { 0, 0, NULL, },
  2193. };
  2194. GGML_ASSERT(ctx->mem_buffer != NULL);
  2195. ggml_assert_aligned(ctx->mem_buffer);
  2196. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2197. ggml_critical_section_end();
  2198. return ctx;
  2199. }
  2200. void ggml_free(struct ggml_context * ctx) {
  2201. if (ctx == NULL) {
  2202. return;
  2203. }
  2204. // make this function thread safe
  2205. ggml_critical_section_start();
  2206. bool found = false;
  2207. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2208. if (&g_state.contexts[i].context == ctx) {
  2209. g_state.contexts[i].used = false;
  2210. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2211. __func__, i, ggml_used_mem(ctx));
  2212. if (ctx->mem_buffer_owned) {
  2213. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2214. }
  2215. found = true;
  2216. break;
  2217. }
  2218. }
  2219. if (!found) {
  2220. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2221. }
  2222. ggml_critical_section_end();
  2223. }
  2224. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2225. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2226. }
  2227. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2228. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2229. ctx->scratch = scratch;
  2230. return result;
  2231. }
  2232. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2233. return ctx->no_alloc;
  2234. }
  2235. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2236. ctx->no_alloc = no_alloc;
  2237. }
  2238. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2239. return ctx->mem_buffer;
  2240. }
  2241. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2242. return ctx->mem_size;
  2243. }
  2244. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2245. size_t max_size = 0;
  2246. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2247. size_t bytes = ggml_nbytes(tensor);
  2248. max_size = MAX(max_size, bytes);
  2249. }
  2250. return max_size;
  2251. }
  2252. // IMPORTANT:
  2253. // when creating "opt" tensors, always save and load the scratch buffer
  2254. // this is an error prone process, but it is necessary to support inplace
  2255. // operators when using scratch buffers
  2256. // TODO: implement a better way
  2257. static void ggml_scratch_save(struct ggml_context * ctx) {
  2258. // this is needed to allow opt tensors to store their data
  2259. // TODO: again, need to find a better way
  2260. ctx->no_alloc_save = ctx->no_alloc;
  2261. ctx->no_alloc = false;
  2262. ctx->scratch_save = ctx->scratch;
  2263. ctx->scratch.data = NULL;
  2264. }
  2265. static void ggml_scratch_load(struct ggml_context * ctx) {
  2266. ctx->no_alloc = ctx->no_alloc_save;
  2267. ctx->scratch = ctx->scratch_save;
  2268. }
  2269. ////////////////////////////////////////////////////////////////////////////////
  2270. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2271. // always insert objects at the end of the context's memory pool
  2272. struct ggml_object * obj_cur = ctx->objects_end;
  2273. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2274. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2275. const size_t cur_end = cur_offs + cur_size;
  2276. // align to GGML_MEM_ALIGN
  2277. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2278. char * const mem_buffer = ctx->mem_buffer;
  2279. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2280. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2281. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2282. __func__, cur_end + size_needed, ctx->mem_size);
  2283. assert(false);
  2284. return NULL;
  2285. }
  2286. *obj_new = (struct ggml_object) {
  2287. .offs = cur_end + GGML_OBJECT_SIZE,
  2288. .size = size_needed,
  2289. .next = NULL,
  2290. .type = type,
  2291. };
  2292. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2293. if (obj_cur != NULL) {
  2294. obj_cur->next = obj_new;
  2295. } else {
  2296. // this is the first object in this context
  2297. ctx->objects_begin = obj_new;
  2298. }
  2299. ctx->objects_end = obj_new;
  2300. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2301. return obj_new;
  2302. }
  2303. static struct ggml_tensor * ggml_new_tensor_impl(
  2304. struct ggml_context * ctx,
  2305. enum ggml_type type,
  2306. int n_dims,
  2307. const int64_t * ne,
  2308. struct ggml_tensor * view_src,
  2309. size_t view_offs) {
  2310. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2311. // find the base tensor and absolute offset
  2312. if (view_src != NULL && view_src->view_src != NULL) {
  2313. view_offs += view_src->view_offs;
  2314. view_src = view_src->view_src;
  2315. }
  2316. size_t data_size = ggml_row_size(type, ne[0]);
  2317. for (int i = 1; i < n_dims; i++) {
  2318. data_size *= ne[i];
  2319. }
  2320. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2321. void * data = view_src != NULL ? view_src->data : NULL;
  2322. if (data != NULL) {
  2323. data = (char *) data + view_offs;
  2324. }
  2325. size_t obj_alloc_size = 0;
  2326. if (view_src == NULL && !ctx->no_alloc) {
  2327. if (ctx->scratch.data != NULL) {
  2328. // allocate tensor data in the scratch buffer
  2329. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2330. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2331. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2332. assert(false);
  2333. return NULL;
  2334. }
  2335. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2336. ctx->scratch.offs += data_size;
  2337. } else {
  2338. // allocate tensor data in the context's memory pool
  2339. obj_alloc_size = data_size;
  2340. }
  2341. }
  2342. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2343. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2344. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2345. *result = (struct ggml_tensor) {
  2346. /*.type =*/ type,
  2347. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2348. /*.buffer =*/ NULL,
  2349. /*.ne =*/ { 1, 1, 1, 1 },
  2350. /*.nb =*/ { 0, 0, 0, 0 },
  2351. /*.op =*/ GGML_OP_NONE,
  2352. /*.op_params =*/ { 0 },
  2353. /*.flags =*/ 0,
  2354. /*.grad =*/ NULL,
  2355. /*.src =*/ { NULL },
  2356. /*.perf_runs =*/ 0,
  2357. /*.perf_cycles =*/ 0,
  2358. /*.perf_time_us =*/ 0,
  2359. /*.view_src =*/ view_src,
  2360. /*.view_offs =*/ view_offs,
  2361. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2362. /*.name =*/ { 0 },
  2363. /*.extra =*/ NULL,
  2364. /*.padding =*/ { 0 },
  2365. };
  2366. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2367. //ggml_assert_aligned(result->data);
  2368. for (int i = 0; i < n_dims; i++) {
  2369. result->ne[i] = ne[i];
  2370. }
  2371. result->nb[0] = ggml_type_size(type);
  2372. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2373. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2374. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2375. }
  2376. ctx->n_objects++;
  2377. return result;
  2378. }
  2379. struct ggml_tensor * ggml_new_tensor(
  2380. struct ggml_context * ctx,
  2381. enum ggml_type type,
  2382. int n_dims,
  2383. const int64_t * ne) {
  2384. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2385. }
  2386. struct ggml_tensor * ggml_new_tensor_1d(
  2387. struct ggml_context * ctx,
  2388. enum ggml_type type,
  2389. int64_t ne0) {
  2390. return ggml_new_tensor(ctx, type, 1, &ne0);
  2391. }
  2392. struct ggml_tensor * ggml_new_tensor_2d(
  2393. struct ggml_context * ctx,
  2394. enum ggml_type type,
  2395. int64_t ne0,
  2396. int64_t ne1) {
  2397. const int64_t ne[2] = { ne0, ne1 };
  2398. return ggml_new_tensor(ctx, type, 2, ne);
  2399. }
  2400. struct ggml_tensor * ggml_new_tensor_3d(
  2401. struct ggml_context * ctx,
  2402. enum ggml_type type,
  2403. int64_t ne0,
  2404. int64_t ne1,
  2405. int64_t ne2) {
  2406. const int64_t ne[3] = { ne0, ne1, ne2 };
  2407. return ggml_new_tensor(ctx, type, 3, ne);
  2408. }
  2409. struct ggml_tensor * ggml_new_tensor_4d(
  2410. struct ggml_context * ctx,
  2411. enum ggml_type type,
  2412. int64_t ne0,
  2413. int64_t ne1,
  2414. int64_t ne2,
  2415. int64_t ne3) {
  2416. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2417. return ggml_new_tensor(ctx, type, 4, ne);
  2418. }
  2419. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2420. ggml_scratch_save(ctx);
  2421. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2422. ggml_scratch_load(ctx);
  2423. ggml_set_i32(result, value);
  2424. return result;
  2425. }
  2426. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2427. ggml_scratch_save(ctx);
  2428. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2429. ggml_scratch_load(ctx);
  2430. ggml_set_f32(result, value);
  2431. return result;
  2432. }
  2433. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2434. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2435. }
  2436. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2437. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2438. assert(params_size <= GGML_MAX_OP_PARAMS);
  2439. memcpy(tensor->op_params, params, params_size);
  2440. }
  2441. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2442. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2443. return ((const int32_t *)(tensor->op_params))[i];
  2444. }
  2445. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2446. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2447. return ((const float *)(tensor->op_params))[i];
  2448. }
  2449. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2450. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2451. ((int32_t *)(tensor->op_params))[i] = value;
  2452. }
  2453. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2454. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2455. ((float *)(tensor->op_params))[i] = value;
  2456. }
  2457. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2458. memset(tensor->data, 0, ggml_nbytes(tensor));
  2459. return tensor;
  2460. }
  2461. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2462. const int n = ggml_nrows(tensor);
  2463. const int nc = tensor->ne[0];
  2464. const size_t n1 = tensor->nb[1];
  2465. char * const data = tensor->data;
  2466. switch (tensor->type) {
  2467. case GGML_TYPE_I8:
  2468. {
  2469. assert(tensor->nb[0] == sizeof(int8_t));
  2470. for (int i = 0; i < n; i++) {
  2471. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2472. }
  2473. } break;
  2474. case GGML_TYPE_I16:
  2475. {
  2476. assert(tensor->nb[0] == sizeof(int16_t));
  2477. for (int i = 0; i < n; i++) {
  2478. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2479. }
  2480. } break;
  2481. case GGML_TYPE_I32:
  2482. {
  2483. assert(tensor->nb[0] == sizeof(int32_t));
  2484. for (int i = 0; i < n; i++) {
  2485. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2486. }
  2487. } break;
  2488. case GGML_TYPE_F16:
  2489. {
  2490. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2491. for (int i = 0; i < n; i++) {
  2492. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2493. }
  2494. } break;
  2495. case GGML_TYPE_F32:
  2496. {
  2497. assert(tensor->nb[0] == sizeof(float));
  2498. for (int i = 0; i < n; i++) {
  2499. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2500. }
  2501. } break;
  2502. default:
  2503. {
  2504. GGML_ASSERT(false);
  2505. } break;
  2506. }
  2507. return tensor;
  2508. }
  2509. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2510. const int n = ggml_nrows(tensor);
  2511. const int nc = tensor->ne[0];
  2512. const size_t n1 = tensor->nb[1];
  2513. char * const data = tensor->data;
  2514. switch (tensor->type) {
  2515. case GGML_TYPE_I8:
  2516. {
  2517. assert(tensor->nb[0] == sizeof(int8_t));
  2518. for (int i = 0; i < n; i++) {
  2519. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2520. }
  2521. } break;
  2522. case GGML_TYPE_I16:
  2523. {
  2524. assert(tensor->nb[0] == sizeof(int16_t));
  2525. for (int i = 0; i < n; i++) {
  2526. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2527. }
  2528. } break;
  2529. case GGML_TYPE_I32:
  2530. {
  2531. assert(tensor->nb[0] == sizeof(int32_t));
  2532. for (int i = 0; i < n; i++) {
  2533. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2534. }
  2535. } break;
  2536. case GGML_TYPE_F16:
  2537. {
  2538. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2539. for (int i = 0; i < n; i++) {
  2540. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2541. }
  2542. } break;
  2543. case GGML_TYPE_F32:
  2544. {
  2545. assert(tensor->nb[0] == sizeof(float));
  2546. for (int i = 0; i < n; i++) {
  2547. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2548. }
  2549. } break;
  2550. default:
  2551. {
  2552. GGML_ASSERT(false);
  2553. } break;
  2554. }
  2555. return tensor;
  2556. }
  2557. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2558. const int64_t ne2 = tensor->ne[2];
  2559. const int64_t ne1 = tensor->ne[1];
  2560. const int64_t ne0 = tensor->ne[0];
  2561. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2562. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2563. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2564. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2565. if (i0) {
  2566. * i0 = i0_;
  2567. }
  2568. if (i1) {
  2569. * i1 = i1_;
  2570. }
  2571. if (i2) {
  2572. * i2 = i2_;
  2573. }
  2574. if (i3) {
  2575. * i3 = i3_;
  2576. }
  2577. }
  2578. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2579. if (!ggml_is_contiguous(tensor)) {
  2580. int64_t id[4] = { 0, 0, 0, 0 };
  2581. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2582. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2583. }
  2584. switch (tensor->type) {
  2585. case GGML_TYPE_I8:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2588. return ((int8_t *)(tensor->data))[i];
  2589. }
  2590. case GGML_TYPE_I16:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2593. return ((int16_t *)(tensor->data))[i];
  2594. }
  2595. case GGML_TYPE_I32:
  2596. {
  2597. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2598. return ((int32_t *)(tensor->data))[i];
  2599. }
  2600. case GGML_TYPE_F16:
  2601. {
  2602. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2603. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2604. }
  2605. case GGML_TYPE_F32:
  2606. {
  2607. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2608. return ((float *)(tensor->data))[i];
  2609. }
  2610. default:
  2611. {
  2612. GGML_ASSERT(false);
  2613. }
  2614. }
  2615. return 0.0f;
  2616. }
  2617. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2618. if (!ggml_is_contiguous(tensor)) {
  2619. int64_t id[4] = { 0, 0, 0, 0 };
  2620. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2621. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2622. return;
  2623. }
  2624. switch (tensor->type) {
  2625. case GGML_TYPE_I8:
  2626. {
  2627. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2628. ((int8_t *)(tensor->data))[i] = value;
  2629. } break;
  2630. case GGML_TYPE_I16:
  2631. {
  2632. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2633. ((int16_t *)(tensor->data))[i] = value;
  2634. } break;
  2635. case GGML_TYPE_I32:
  2636. {
  2637. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2638. ((int32_t *)(tensor->data))[i] = value;
  2639. } break;
  2640. case GGML_TYPE_F16:
  2641. {
  2642. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2643. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2644. } break;
  2645. case GGML_TYPE_F32:
  2646. {
  2647. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2648. ((float *)(tensor->data))[i] = value;
  2649. } break;
  2650. default:
  2651. {
  2652. GGML_ASSERT(false);
  2653. } break;
  2654. }
  2655. }
  2656. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2657. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2658. switch (tensor->type) {
  2659. case GGML_TYPE_I8:
  2660. return ((int8_t *) data)[0];
  2661. case GGML_TYPE_I16:
  2662. return ((int16_t *) data)[0];
  2663. case GGML_TYPE_I32:
  2664. return ((int32_t *) data)[0];
  2665. case GGML_TYPE_F16:
  2666. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2667. case GGML_TYPE_F32:
  2668. return ((float *) data)[0];
  2669. default:
  2670. GGML_ASSERT(false);
  2671. }
  2672. return 0.0f;
  2673. }
  2674. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2675. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2676. switch (tensor->type) {
  2677. case GGML_TYPE_I8:
  2678. {
  2679. ((int8_t *)(data))[0] = value;
  2680. } break;
  2681. case GGML_TYPE_I16:
  2682. {
  2683. ((int16_t *)(data))[0] = value;
  2684. } break;
  2685. case GGML_TYPE_I32:
  2686. {
  2687. ((int32_t *)(data))[0] = value;
  2688. } break;
  2689. case GGML_TYPE_F16:
  2690. {
  2691. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2692. } break;
  2693. case GGML_TYPE_F32:
  2694. {
  2695. ((float *)(data))[0] = value;
  2696. } break;
  2697. default:
  2698. {
  2699. GGML_ASSERT(false);
  2700. } break;
  2701. }
  2702. }
  2703. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2704. if (!ggml_is_contiguous(tensor)) {
  2705. int64_t id[4] = { 0, 0, 0, 0 };
  2706. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2707. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2708. }
  2709. switch (tensor->type) {
  2710. case GGML_TYPE_I8:
  2711. {
  2712. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2713. return ((int8_t *)(tensor->data))[i];
  2714. }
  2715. case GGML_TYPE_I16:
  2716. {
  2717. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2718. return ((int16_t *)(tensor->data))[i];
  2719. }
  2720. case GGML_TYPE_I32:
  2721. {
  2722. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2723. return ((int32_t *)(tensor->data))[i];
  2724. }
  2725. case GGML_TYPE_F16:
  2726. {
  2727. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2728. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2729. }
  2730. case GGML_TYPE_F32:
  2731. {
  2732. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2733. return ((float *)(tensor->data))[i];
  2734. }
  2735. default:
  2736. {
  2737. GGML_ASSERT(false);
  2738. }
  2739. }
  2740. return 0.0f;
  2741. }
  2742. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2743. if (!ggml_is_contiguous(tensor)) {
  2744. int64_t id[4] = { 0, 0, 0, 0 };
  2745. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2746. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2747. return;
  2748. }
  2749. switch (tensor->type) {
  2750. case GGML_TYPE_I8:
  2751. {
  2752. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2753. ((int8_t *)(tensor->data))[i] = value;
  2754. } break;
  2755. case GGML_TYPE_I16:
  2756. {
  2757. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2758. ((int16_t *)(tensor->data))[i] = value;
  2759. } break;
  2760. case GGML_TYPE_I32:
  2761. {
  2762. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2763. ((int32_t *)(tensor->data))[i] = value;
  2764. } break;
  2765. case GGML_TYPE_F16:
  2766. {
  2767. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2768. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2769. } break;
  2770. case GGML_TYPE_F32:
  2771. {
  2772. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2773. ((float *)(tensor->data))[i] = value;
  2774. } break;
  2775. default:
  2776. {
  2777. GGML_ASSERT(false);
  2778. } break;
  2779. }
  2780. }
  2781. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2782. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2783. switch (tensor->type) {
  2784. case GGML_TYPE_I8:
  2785. return ((int8_t *) data)[0];
  2786. case GGML_TYPE_I16:
  2787. return ((int16_t *) data)[0];
  2788. case GGML_TYPE_I32:
  2789. return ((int32_t *) data)[0];
  2790. case GGML_TYPE_F16:
  2791. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2792. case GGML_TYPE_F32:
  2793. return ((float *) data)[0];
  2794. default:
  2795. GGML_ASSERT(false);
  2796. }
  2797. return 0.0f;
  2798. }
  2799. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2800. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2801. switch (tensor->type) {
  2802. case GGML_TYPE_I8:
  2803. {
  2804. ((int8_t *)(data))[0] = value;
  2805. } break;
  2806. case GGML_TYPE_I16:
  2807. {
  2808. ((int16_t *)(data))[0] = value;
  2809. } break;
  2810. case GGML_TYPE_I32:
  2811. {
  2812. ((int32_t *)(data))[0] = value;
  2813. } break;
  2814. case GGML_TYPE_F16:
  2815. {
  2816. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2817. } break;
  2818. case GGML_TYPE_F32:
  2819. {
  2820. ((float *)(data))[0] = value;
  2821. } break;
  2822. default:
  2823. {
  2824. GGML_ASSERT(false);
  2825. } break;
  2826. }
  2827. }
  2828. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2829. return tensor->data;
  2830. }
  2831. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2832. assert(tensor->type == GGML_TYPE_F32);
  2833. return (float *)(tensor->data);
  2834. }
  2835. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2836. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2837. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2838. }
  2839. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2840. return tensor->name;
  2841. }
  2842. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2843. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2844. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2845. return tensor;
  2846. }
  2847. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2848. va_list args;
  2849. va_start(args, fmt);
  2850. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2851. va_end(args);
  2852. return tensor;
  2853. }
  2854. struct ggml_tensor * ggml_view_tensor(
  2855. struct ggml_context * ctx,
  2856. struct ggml_tensor * src) {
  2857. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2858. ggml_format_name(result, "%s (view)", src->name);
  2859. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2860. result->nb[i] = src->nb[i];
  2861. }
  2862. return result;
  2863. }
  2864. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2865. struct ggml_object * obj = ctx->objects_begin;
  2866. char * const mem_buffer = ctx->mem_buffer;
  2867. while (obj != NULL) {
  2868. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2869. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2870. }
  2871. obj = obj->next;
  2872. }
  2873. return NULL;
  2874. }
  2875. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2876. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2877. obj = obj->next;
  2878. char * const mem_buffer = ctx->mem_buffer;
  2879. while (obj != NULL) {
  2880. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2881. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2882. }
  2883. obj = obj->next;
  2884. }
  2885. return NULL;
  2886. }
  2887. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2888. struct ggml_object * obj = ctx->objects_begin;
  2889. char * const mem_buffer = ctx->mem_buffer;
  2890. while (obj != NULL) {
  2891. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2892. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2893. if (strcmp(cur->name, name) == 0) {
  2894. return cur;
  2895. }
  2896. }
  2897. obj = obj->next;
  2898. }
  2899. return NULL;
  2900. }
  2901. ////////////////////////////////////////////////////////////////////////////////
  2902. // ggml_dup
  2903. static struct ggml_tensor * ggml_dup_impl(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. bool inplace) {
  2907. bool is_node = false;
  2908. if (!inplace && (a->grad)) {
  2909. is_node = true;
  2910. }
  2911. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2912. result->op = GGML_OP_DUP;
  2913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2914. result->src[0] = a;
  2915. return result;
  2916. }
  2917. struct ggml_tensor * ggml_dup(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. return ggml_dup_impl(ctx, a, false);
  2921. }
  2922. struct ggml_tensor * ggml_dup_inplace(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a) {
  2925. return ggml_dup_impl(ctx, a, true);
  2926. }
  2927. // ggml_add
  2928. static struct ggml_tensor * ggml_add_impl(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a,
  2931. struct ggml_tensor * b,
  2932. bool inplace) {
  2933. GGML_ASSERT(ggml_can_repeat(b, a));
  2934. bool is_node = false;
  2935. if (!inplace && (a->grad || b->grad)) {
  2936. // TODO: support backward pass for broadcasting
  2937. GGML_ASSERT(ggml_are_same_shape(a, b));
  2938. is_node = true;
  2939. }
  2940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2941. result->op = GGML_OP_ADD;
  2942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2943. result->src[0] = a;
  2944. result->src[1] = b;
  2945. return result;
  2946. }
  2947. struct ggml_tensor * ggml_add(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a,
  2950. struct ggml_tensor * b) {
  2951. return ggml_add_impl(ctx, a, b, false);
  2952. }
  2953. struct ggml_tensor * ggml_add_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a,
  2956. struct ggml_tensor * b) {
  2957. return ggml_add_impl(ctx, a, b, true);
  2958. }
  2959. // ggml_add_cast
  2960. static struct ggml_tensor * ggml_add_cast_impl(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a,
  2963. struct ggml_tensor * b,
  2964. enum ggml_type type) {
  2965. // TODO: support less-strict constraint
  2966. // GGML_ASSERT(ggml_can_repeat(b, a));
  2967. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2968. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2969. bool is_node = false;
  2970. if (a->grad || b->grad) {
  2971. // TODO: support backward pass for broadcasting
  2972. GGML_ASSERT(ggml_are_same_shape(a, b));
  2973. is_node = true;
  2974. }
  2975. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2976. result->op = GGML_OP_ADD;
  2977. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2978. result->src[0] = a;
  2979. result->src[1] = b;
  2980. return result;
  2981. }
  2982. struct ggml_tensor * ggml_add_cast(
  2983. struct ggml_context * ctx,
  2984. struct ggml_tensor * a,
  2985. struct ggml_tensor * b,
  2986. enum ggml_type type) {
  2987. return ggml_add_cast_impl(ctx, a, b, type);
  2988. }
  2989. // ggml_add1
  2990. static struct ggml_tensor * ggml_add1_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. struct ggml_tensor * b,
  2994. bool inplace) {
  2995. GGML_ASSERT(ggml_is_scalar(b));
  2996. GGML_ASSERT(ggml_is_padded_1d(a));
  2997. bool is_node = false;
  2998. if (a->grad || b->grad) {
  2999. is_node = true;
  3000. }
  3001. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3002. result->op = GGML_OP_ADD1;
  3003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3004. result->src[0] = a;
  3005. result->src[1] = b;
  3006. return result;
  3007. }
  3008. struct ggml_tensor * ggml_add1(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. struct ggml_tensor * b) {
  3012. return ggml_add1_impl(ctx, a, b, false);
  3013. }
  3014. struct ggml_tensor * ggml_add1_inplace(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. struct ggml_tensor * b) {
  3018. return ggml_add1_impl(ctx, a, b, true);
  3019. }
  3020. // ggml_acc
  3021. static struct ggml_tensor * ggml_acc_impl(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a,
  3024. struct ggml_tensor * b,
  3025. size_t nb1,
  3026. size_t nb2,
  3027. size_t nb3,
  3028. size_t offset,
  3029. bool inplace) {
  3030. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3031. GGML_ASSERT(ggml_is_contiguous(a));
  3032. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3033. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3034. bool is_node = false;
  3035. if (!inplace && (a->grad || b->grad)) {
  3036. is_node = true;
  3037. }
  3038. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3039. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3040. ggml_set_op_params(result, params, sizeof(params));
  3041. result->op = GGML_OP_ACC;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src[0] = a;
  3044. result->src[1] = b;
  3045. return result;
  3046. }
  3047. struct ggml_tensor * ggml_acc(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a,
  3050. struct ggml_tensor * b,
  3051. size_t nb1,
  3052. size_t nb2,
  3053. size_t nb3,
  3054. size_t offset) {
  3055. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3056. }
  3057. struct ggml_tensor * ggml_acc_inplace(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a,
  3060. struct ggml_tensor * b,
  3061. size_t nb1,
  3062. size_t nb2,
  3063. size_t nb3,
  3064. size_t offset) {
  3065. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3066. }
  3067. // ggml_sub
  3068. static struct ggml_tensor * ggml_sub_impl(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a,
  3071. struct ggml_tensor * b,
  3072. bool inplace) {
  3073. GGML_ASSERT(ggml_are_same_shape(a, b));
  3074. bool is_node = false;
  3075. if (!inplace && (a->grad || b->grad)) {
  3076. is_node = true;
  3077. }
  3078. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3079. result->op = GGML_OP_SUB;
  3080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3081. result->src[0] = a;
  3082. result->src[1] = b;
  3083. return result;
  3084. }
  3085. struct ggml_tensor * ggml_sub(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a,
  3088. struct ggml_tensor * b) {
  3089. return ggml_sub_impl(ctx, a, b, false);
  3090. }
  3091. struct ggml_tensor * ggml_sub_inplace(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a,
  3094. struct ggml_tensor * b) {
  3095. return ggml_sub_impl(ctx, a, b, true);
  3096. }
  3097. // ggml_mul
  3098. static struct ggml_tensor * ggml_mul_impl(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a,
  3101. struct ggml_tensor * b,
  3102. bool inplace) {
  3103. GGML_ASSERT(ggml_can_repeat(b, a));
  3104. bool is_node = false;
  3105. if (!inplace && (a->grad || b->grad)) {
  3106. // TODO: support backward pass for broadcasting
  3107. GGML_ASSERT(ggml_are_same_shape(a, b));
  3108. is_node = true;
  3109. }
  3110. if (inplace) {
  3111. GGML_ASSERT(!is_node);
  3112. }
  3113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3114. result->op = GGML_OP_MUL;
  3115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3116. result->src[0] = a;
  3117. result->src[1] = b;
  3118. return result;
  3119. }
  3120. struct ggml_tensor * ggml_mul(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a,
  3123. struct ggml_tensor * b) {
  3124. return ggml_mul_impl(ctx, a, b, false);
  3125. }
  3126. struct ggml_tensor * ggml_mul_inplace(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a,
  3129. struct ggml_tensor * b) {
  3130. return ggml_mul_impl(ctx, a, b, true);
  3131. }
  3132. // ggml_div
  3133. static struct ggml_tensor * ggml_div_impl(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a,
  3136. struct ggml_tensor * b,
  3137. bool inplace) {
  3138. GGML_ASSERT(ggml_can_repeat(b, a));
  3139. bool is_node = false;
  3140. if (!inplace && (a->grad || b->grad)) {
  3141. is_node = true;
  3142. }
  3143. if (inplace) {
  3144. GGML_ASSERT(!is_node);
  3145. }
  3146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3147. result->op = GGML_OP_DIV;
  3148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3149. result->src[0] = a;
  3150. result->src[1] = b;
  3151. return result;
  3152. }
  3153. struct ggml_tensor * ggml_div(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a,
  3156. struct ggml_tensor * b) {
  3157. return ggml_div_impl(ctx, a, b, false);
  3158. }
  3159. struct ggml_tensor * ggml_div_inplace(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a,
  3162. struct ggml_tensor * b) {
  3163. return ggml_div_impl(ctx, a, b, true);
  3164. }
  3165. // ggml_sqr
  3166. static struct ggml_tensor * ggml_sqr_impl(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a,
  3169. bool inplace) {
  3170. bool is_node = false;
  3171. if (!inplace && (a->grad)) {
  3172. is_node = true;
  3173. }
  3174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3175. result->op = GGML_OP_SQR;
  3176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3177. result->src[0] = a;
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_sqr(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a) {
  3183. return ggml_sqr_impl(ctx, a, false);
  3184. }
  3185. struct ggml_tensor * ggml_sqr_inplace(
  3186. struct ggml_context * ctx,
  3187. struct ggml_tensor * a) {
  3188. return ggml_sqr_impl(ctx, a, true);
  3189. }
  3190. // ggml_sqrt
  3191. static struct ggml_tensor * ggml_sqrt_impl(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a,
  3194. bool inplace) {
  3195. bool is_node = false;
  3196. if (!inplace && (a->grad)) {
  3197. is_node = true;
  3198. }
  3199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3200. result->op = GGML_OP_SQRT;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src[0] = a;
  3203. return result;
  3204. }
  3205. struct ggml_tensor * ggml_sqrt(
  3206. struct ggml_context * ctx,
  3207. struct ggml_tensor * a) {
  3208. return ggml_sqrt_impl(ctx, a, false);
  3209. }
  3210. struct ggml_tensor * ggml_sqrt_inplace(
  3211. struct ggml_context * ctx,
  3212. struct ggml_tensor * a) {
  3213. return ggml_sqrt_impl(ctx, a, true);
  3214. }
  3215. // ggml_log
  3216. static struct ggml_tensor * ggml_log_impl(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. bool inplace) {
  3220. bool is_node = false;
  3221. if (!inplace && (a->grad)) {
  3222. is_node = true;
  3223. }
  3224. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3225. result->op = GGML_OP_LOG;
  3226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3227. result->src[0] = a;
  3228. return result;
  3229. }
  3230. struct ggml_tensor * ggml_log(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_log_impl(ctx, a, false);
  3234. }
  3235. struct ggml_tensor * ggml_log_inplace(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_log_impl(ctx, a, true);
  3239. }
  3240. // ggml_sum
  3241. struct ggml_tensor * ggml_sum(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. bool is_node = false;
  3245. if (a->grad) {
  3246. is_node = true;
  3247. }
  3248. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3249. result->op = GGML_OP_SUM;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src[0] = a;
  3252. return result;
  3253. }
  3254. // ggml_sum_rows
  3255. struct ggml_tensor * ggml_sum_rows(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a) {
  3258. bool is_node = false;
  3259. if (a->grad) {
  3260. is_node = true;
  3261. }
  3262. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3263. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3264. ne[i] = a->ne[i];
  3265. }
  3266. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3267. result->op = GGML_OP_SUM_ROWS;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. return result;
  3271. }
  3272. // ggml_mean
  3273. struct ggml_tensor * ggml_mean(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a) {
  3276. bool is_node = false;
  3277. if (a->grad) {
  3278. GGML_ASSERT(false); // TODO: implement
  3279. is_node = true;
  3280. }
  3281. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3282. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3283. result->op = GGML_OP_MEAN;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. // ggml_argmax
  3289. struct ggml_tensor * ggml_argmax(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. GGML_ASSERT(ggml_is_matrix(a));
  3293. bool is_node = false;
  3294. if (a->grad) {
  3295. GGML_ASSERT(false);
  3296. is_node = true;
  3297. }
  3298. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3299. result->op = GGML_OP_ARGMAX;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src[0] = a;
  3302. return result;
  3303. }
  3304. // ggml_repeat
  3305. struct ggml_tensor * ggml_repeat(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. struct ggml_tensor * b) {
  3309. GGML_ASSERT(ggml_can_repeat(a, b));
  3310. bool is_node = false;
  3311. if (a->grad) {
  3312. is_node = true;
  3313. }
  3314. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3315. result->op = GGML_OP_REPEAT;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. return result;
  3319. }
  3320. // ggml_repeat_back
  3321. struct ggml_tensor * ggml_repeat_back(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. GGML_ASSERT(ggml_can_repeat(b, a));
  3326. bool is_node = false;
  3327. if (a->grad) {
  3328. is_node = true;
  3329. }
  3330. if (ggml_are_same_shape(a, b) && !is_node) {
  3331. return a;
  3332. }
  3333. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3334. result->op = GGML_OP_REPEAT_BACK;
  3335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3336. result->src[0] = a;
  3337. return result;
  3338. }
  3339. // ggml_concat
  3340. struct ggml_tensor * ggml_concat(
  3341. struct ggml_context* ctx,
  3342. struct ggml_tensor* a,
  3343. struct ggml_tensor* b) {
  3344. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3345. bool is_node = false;
  3346. if (a->grad || b->grad) {
  3347. is_node = true;
  3348. }
  3349. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3350. result->op = GGML_OP_CONCAT;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src[0] = a;
  3353. result->src[1] = b;
  3354. return result;
  3355. }
  3356. // ggml_abs
  3357. struct ggml_tensor * ggml_abs(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a) {
  3360. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3361. }
  3362. struct ggml_tensor * ggml_abs_inplace(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a) {
  3365. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3366. }
  3367. // ggml_sgn
  3368. struct ggml_tensor * ggml_sgn(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a) {
  3371. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3372. }
  3373. struct ggml_tensor * ggml_sgn_inplace(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3377. }
  3378. // ggml_neg
  3379. struct ggml_tensor * ggml_neg(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a) {
  3382. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3383. }
  3384. struct ggml_tensor * ggml_neg_inplace(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3388. }
  3389. // ggml_step
  3390. struct ggml_tensor * ggml_step(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a) {
  3393. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3394. }
  3395. struct ggml_tensor * ggml_step_inplace(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3399. }
  3400. // ggml_tanh
  3401. struct ggml_tensor * ggml_tanh(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a) {
  3404. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3405. }
  3406. struct ggml_tensor * ggml_tanh_inplace(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a) {
  3409. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3410. }
  3411. // ggml_elu
  3412. struct ggml_tensor * ggml_elu(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a) {
  3415. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3416. }
  3417. struct ggml_tensor * ggml_elu_inplace(
  3418. struct ggml_context * ctx,
  3419. struct ggml_tensor * a) {
  3420. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3421. }
  3422. // ggml_relu
  3423. struct ggml_tensor * ggml_relu(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3427. }
  3428. struct ggml_tensor * ggml_relu_inplace(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a) {
  3431. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3432. }
  3433. // ggml_leaky_relu
  3434. struct ggml_tensor * ggml_leaky_relu(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3437. bool is_node = false;
  3438. if (!inplace && (a->grad)) {
  3439. is_node = true;
  3440. }
  3441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3442. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3443. result->op = GGML_OP_LEAKY_RELU;
  3444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3445. result->src[0] = a;
  3446. return result;
  3447. }
  3448. // ggml_gelu
  3449. struct ggml_tensor * ggml_gelu(
  3450. struct ggml_context * ctx,
  3451. struct ggml_tensor * a) {
  3452. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3453. }
  3454. struct ggml_tensor * ggml_gelu_inplace(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a) {
  3457. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3458. }
  3459. // ggml_gelu_quick
  3460. struct ggml_tensor * ggml_gelu_quick(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a) {
  3463. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3464. }
  3465. struct ggml_tensor * ggml_gelu_quick_inplace(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a) {
  3468. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3469. }
  3470. // ggml_silu
  3471. struct ggml_tensor * ggml_silu(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a) {
  3474. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3475. }
  3476. struct ggml_tensor * ggml_silu_inplace(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a) {
  3479. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3480. }
  3481. // ggml_silu_back
  3482. struct ggml_tensor * ggml_silu_back(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a,
  3485. struct ggml_tensor * b) {
  3486. bool is_node = false;
  3487. if (a->grad || b->grad) {
  3488. // TODO: implement backward
  3489. is_node = true;
  3490. }
  3491. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3492. result->op = GGML_OP_SILU_BACK;
  3493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3494. result->src[0] = a;
  3495. result->src[1] = b;
  3496. return result;
  3497. }
  3498. // ggml hardswish
  3499. struct ggml_tensor * ggml_hardswish(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a) {
  3502. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3503. }
  3504. // ggml hardsigmoid
  3505. struct ggml_tensor * ggml_hardsigmoid(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a) {
  3508. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3509. }
  3510. // ggml_norm
  3511. static struct ggml_tensor * ggml_norm_impl(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. float eps,
  3515. bool inplace) {
  3516. bool is_node = false;
  3517. if (!inplace && (a->grad)) {
  3518. GGML_ASSERT(false); // TODO: implement backward
  3519. is_node = true;
  3520. }
  3521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3522. ggml_set_op_params(result, &eps, sizeof(eps));
  3523. result->op = GGML_OP_NORM;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src[0] = a;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_norm(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. float eps) {
  3532. return ggml_norm_impl(ctx, a, eps, false);
  3533. }
  3534. struct ggml_tensor * ggml_norm_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. float eps) {
  3538. return ggml_norm_impl(ctx, a, eps, true);
  3539. }
  3540. // ggml_rms_norm
  3541. static struct ggml_tensor * ggml_rms_norm_impl(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. float eps,
  3545. bool inplace) {
  3546. bool is_node = false;
  3547. if (!inplace && (a->grad)) {
  3548. is_node = true;
  3549. }
  3550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3551. ggml_set_op_params(result, &eps, sizeof(eps));
  3552. result->op = GGML_OP_RMS_NORM;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src[0] = a;
  3555. return result;
  3556. }
  3557. struct ggml_tensor * ggml_rms_norm(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. float eps) {
  3561. return ggml_rms_norm_impl(ctx, a, eps, false);
  3562. }
  3563. struct ggml_tensor * ggml_rms_norm_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. float eps) {
  3567. return ggml_rms_norm_impl(ctx, a, eps, true);
  3568. }
  3569. // ggml_rms_norm_back
  3570. struct ggml_tensor * ggml_rms_norm_back(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b,
  3574. float eps) {
  3575. bool is_node = false;
  3576. if (a->grad) {
  3577. // TODO: implement backward
  3578. is_node = true;
  3579. }
  3580. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3581. ggml_set_op_params(result, &eps, sizeof(eps));
  3582. result->op = GGML_OP_RMS_NORM_BACK;
  3583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3584. result->src[0] = a;
  3585. result->src[1] = b;
  3586. return result;
  3587. }
  3588. // ggml_group_norm
  3589. static struct ggml_tensor * ggml_group_norm_impl(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. int n_groups,
  3593. bool inplace) {
  3594. bool is_node = false;
  3595. if (!inplace && (a->grad)) {
  3596. GGML_ASSERT(false); // TODO: implement backward
  3597. is_node = true;
  3598. }
  3599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3600. result->op_params[0] = n_groups;
  3601. result->op = GGML_OP_GROUP_NORM;
  3602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3603. result->src[0] = a;
  3604. return result;
  3605. }
  3606. struct ggml_tensor * ggml_group_norm(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a,
  3609. int n_groups) {
  3610. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3611. }
  3612. struct ggml_tensor * ggml_group_norm_inplace(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int n_groups) {
  3616. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3617. }
  3618. // ggml_mul_mat
  3619. struct ggml_tensor * ggml_mul_mat(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. struct ggml_tensor * b) {
  3623. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3624. GGML_ASSERT(!ggml_is_transposed(a));
  3625. bool is_node = false;
  3626. if (a->grad || b->grad) {
  3627. is_node = true;
  3628. }
  3629. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3630. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3631. result->op = GGML_OP_MUL_MAT;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src[0] = a;
  3634. result->src[1] = b;
  3635. return result;
  3636. }
  3637. void ggml_mul_mat_set_prec(
  3638. struct ggml_tensor * a,
  3639. enum ggml_prec prec) {
  3640. const int32_t prec_i32 = (int32_t) prec;
  3641. ggml_set_op_params_i32(a, 0, prec_i32);
  3642. }
  3643. // ggml_mul_mat_id
  3644. struct ggml_tensor * ggml_mul_mat_id(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * const as[],
  3647. int n_as,
  3648. struct ggml_tensor * ids,
  3649. int id,
  3650. struct ggml_tensor * b) {
  3651. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3652. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3653. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3654. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3655. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3656. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3657. bool is_node = false;
  3658. if (as[0]->grad || b->grad) {
  3659. is_node = true;
  3660. }
  3661. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3662. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3663. ggml_set_op_params_i32(result, 0, id);
  3664. ggml_set_op_params_i32(result, 1, n_as);
  3665. result->op = GGML_OP_MUL_MAT_ID;
  3666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3667. result->src[0] = ids;
  3668. result->src[1] = b;
  3669. for (int i = 0; i < n_as; i++) {
  3670. struct ggml_tensor * a = as[i];
  3671. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3672. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3673. GGML_ASSERT(!ggml_is_transposed(a));
  3674. result->src[i + 2] = a;
  3675. }
  3676. return result;
  3677. }
  3678. // ggml_out_prod
  3679. struct ggml_tensor * ggml_out_prod(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. struct ggml_tensor * b) {
  3683. GGML_ASSERT(ggml_can_out_prod(a, b));
  3684. GGML_ASSERT(!ggml_is_transposed(a));
  3685. bool is_node = false;
  3686. if (a->grad || b->grad) {
  3687. is_node = true;
  3688. }
  3689. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3690. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3691. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3692. result->op = GGML_OP_OUT_PROD;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src[0] = a;
  3695. result->src[1] = b;
  3696. return result;
  3697. }
  3698. // ggml_scale
  3699. static struct ggml_tensor * ggml_scale_impl(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. float s,
  3703. bool inplace) {
  3704. GGML_ASSERT(ggml_is_padded_1d(a));
  3705. bool is_node = false;
  3706. if (a->grad) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. ggml_set_op_params(result, &s, sizeof(s));
  3711. result->op = GGML_OP_SCALE;
  3712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3713. result->src[0] = a;
  3714. return result;
  3715. }
  3716. struct ggml_tensor * ggml_scale(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. float s) {
  3720. return ggml_scale_impl(ctx, a, s, false);
  3721. }
  3722. struct ggml_tensor * ggml_scale_inplace(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. float s) {
  3726. return ggml_scale_impl(ctx, a, s, true);
  3727. }
  3728. // ggml_set
  3729. static struct ggml_tensor * ggml_set_impl(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. struct ggml_tensor * b,
  3733. size_t nb1,
  3734. size_t nb2,
  3735. size_t nb3,
  3736. size_t offset,
  3737. bool inplace) {
  3738. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3739. bool is_node = false;
  3740. if (a->grad || b->grad) {
  3741. is_node = true;
  3742. }
  3743. // make a view of the destination
  3744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3745. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3746. ggml_set_op_params(result, params, sizeof(params));
  3747. result->op = GGML_OP_SET;
  3748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3749. result->src[0] = a;
  3750. result->src[1] = b;
  3751. return result;
  3752. }
  3753. struct ggml_tensor * ggml_set(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. struct ggml_tensor * b,
  3757. size_t nb1,
  3758. size_t nb2,
  3759. size_t nb3,
  3760. size_t offset) {
  3761. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3762. }
  3763. struct ggml_tensor * ggml_set_inplace(
  3764. struct ggml_context * ctx,
  3765. struct ggml_tensor * a,
  3766. struct ggml_tensor * b,
  3767. size_t nb1,
  3768. size_t nb2,
  3769. size_t nb3,
  3770. size_t offset) {
  3771. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3772. }
  3773. struct ggml_tensor * ggml_set_1d(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b,
  3777. size_t offset) {
  3778. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3779. }
  3780. struct ggml_tensor * ggml_set_1d_inplace(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b,
  3784. size_t offset) {
  3785. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3786. }
  3787. struct ggml_tensor * ggml_set_2d(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b,
  3791. size_t nb1,
  3792. size_t offset) {
  3793. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3794. }
  3795. struct ggml_tensor * ggml_set_2d_inplace(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. struct ggml_tensor * b,
  3799. size_t nb1,
  3800. size_t offset) {
  3801. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3802. }
  3803. // ggml_cpy
  3804. static struct ggml_tensor * ggml_cpy_impl(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b) {
  3808. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3809. bool is_node = false;
  3810. if (a->grad || b->grad) {
  3811. // inplace is false and either one have a grad
  3812. is_node = true;
  3813. }
  3814. // make a view of the destination
  3815. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3816. if (strlen(b->name) > 0) {
  3817. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3818. } else {
  3819. ggml_format_name(result, "%s (copy)", a->name);
  3820. }
  3821. result->op = GGML_OP_CPY;
  3822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3823. result->src[0] = a;
  3824. result->src[1] = b;
  3825. return result;
  3826. }
  3827. struct ggml_tensor * ggml_cpy(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b) {
  3831. return ggml_cpy_impl(ctx, a, b);
  3832. }
  3833. struct ggml_tensor * ggml_cast(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. enum ggml_type type) {
  3837. bool is_node = false;
  3838. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3839. ggml_format_name(result, "%s (copy)", a->name);
  3840. result->op = GGML_OP_CPY;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src[0] = a;
  3843. result->src[1] = result;
  3844. return result;
  3845. }
  3846. // ggml_cont
  3847. static struct ggml_tensor * ggml_cont_impl(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. bool is_node = false;
  3851. if (a->grad) {
  3852. is_node = true;
  3853. }
  3854. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3855. ggml_format_name(result, "%s (cont)", a->name);
  3856. result->op = GGML_OP_CONT;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. return result;
  3860. }
  3861. struct ggml_tensor * ggml_cont(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a) {
  3864. return ggml_cont_impl(ctx, a);
  3865. }
  3866. // make contiguous, with new shape
  3867. GGML_API struct ggml_tensor * ggml_cont_1d(
  3868. struct ggml_context * ctx,
  3869. struct ggml_tensor * a,
  3870. int64_t ne0) {
  3871. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3872. }
  3873. GGML_API struct ggml_tensor * ggml_cont_2d(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. int64_t ne0,
  3877. int64_t ne1) {
  3878. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3879. }
  3880. GGML_API struct ggml_tensor * ggml_cont_3d(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. int64_t ne0,
  3884. int64_t ne1,
  3885. int64_t ne2) {
  3886. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3887. }
  3888. struct ggml_tensor * ggml_cont_4d(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. int64_t ne0,
  3892. int64_t ne1,
  3893. int64_t ne2,
  3894. int64_t ne3) {
  3895. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3896. bool is_node = false;
  3897. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3898. ggml_format_name(result, "%s (cont)", a->name);
  3899. result->op = GGML_OP_CONT;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src[0] = a;
  3902. return result;
  3903. }
  3904. // ggml_reshape
  3905. struct ggml_tensor * ggml_reshape(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a,
  3908. struct ggml_tensor * b) {
  3909. GGML_ASSERT(ggml_is_contiguous(a));
  3910. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3911. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3912. bool is_node = false;
  3913. if (a->grad) {
  3914. is_node = true;
  3915. }
  3916. if (b->grad) {
  3917. // gradient propagation is not supported
  3918. //GGML_ASSERT(false);
  3919. }
  3920. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3921. ggml_format_name(result, "%s (reshaped)", a->name);
  3922. result->op = GGML_OP_RESHAPE;
  3923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3924. result->src[0] = a;
  3925. return result;
  3926. }
  3927. struct ggml_tensor * ggml_reshape_1d(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. int64_t ne0) {
  3931. GGML_ASSERT(ggml_is_contiguous(a));
  3932. GGML_ASSERT(ggml_nelements(a) == ne0);
  3933. bool is_node = false;
  3934. if (a->grad) {
  3935. is_node = true;
  3936. }
  3937. const int64_t ne[1] = { ne0 };
  3938. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3939. ggml_format_name(result, "%s (reshaped)", a->name);
  3940. result->op = GGML_OP_RESHAPE;
  3941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3942. result->src[0] = a;
  3943. return result;
  3944. }
  3945. struct ggml_tensor * ggml_reshape_2d(
  3946. struct ggml_context * ctx,
  3947. struct ggml_tensor * a,
  3948. int64_t ne0,
  3949. int64_t ne1) {
  3950. GGML_ASSERT(ggml_is_contiguous(a));
  3951. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3952. bool is_node = false;
  3953. if (a->grad) {
  3954. is_node = true;
  3955. }
  3956. const int64_t ne[2] = { ne0, ne1 };
  3957. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3958. ggml_format_name(result, "%s (reshaped)", a->name);
  3959. result->op = GGML_OP_RESHAPE;
  3960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3961. result->src[0] = a;
  3962. return result;
  3963. }
  3964. struct ggml_tensor * ggml_reshape_3d(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. int64_t ne0,
  3968. int64_t ne1,
  3969. int64_t ne2) {
  3970. GGML_ASSERT(ggml_is_contiguous(a));
  3971. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3972. bool is_node = false;
  3973. if (a->grad) {
  3974. is_node = true;
  3975. }
  3976. const int64_t ne[3] = { ne0, ne1, ne2 };
  3977. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3978. ggml_format_name(result, "%s (reshaped)", a->name);
  3979. result->op = GGML_OP_RESHAPE;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src[0] = a;
  3982. return result;
  3983. }
  3984. struct ggml_tensor * ggml_reshape_4d(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. int64_t ne0,
  3988. int64_t ne1,
  3989. int64_t ne2,
  3990. int64_t ne3) {
  3991. GGML_ASSERT(ggml_is_contiguous(a));
  3992. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3993. bool is_node = false;
  3994. if (a->grad) {
  3995. is_node = true;
  3996. }
  3997. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3998. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3999. ggml_format_name(result, "%s (reshaped)", a->name);
  4000. result->op = GGML_OP_RESHAPE;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. static struct ggml_tensor * ggml_view_impl(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. int n_dims,
  4009. const int64_t * ne,
  4010. size_t offset) {
  4011. bool is_node = false;
  4012. if (a->grad) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4016. ggml_format_name(result, "%s (view)", a->name);
  4017. ggml_set_op_params(result, &offset, sizeof(offset));
  4018. result->op = GGML_OP_VIEW;
  4019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4020. result->src[0] = a;
  4021. return result;
  4022. }
  4023. // ggml_view_1d
  4024. struct ggml_tensor * ggml_view_1d(
  4025. struct ggml_context * ctx,
  4026. struct ggml_tensor * a,
  4027. int64_t ne0,
  4028. size_t offset) {
  4029. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4030. return result;
  4031. }
  4032. // ggml_view_2d
  4033. struct ggml_tensor * ggml_view_2d(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. int64_t ne0,
  4037. int64_t ne1,
  4038. size_t nb1,
  4039. size_t offset) {
  4040. const int64_t ne[2] = { ne0, ne1 };
  4041. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4042. result->nb[1] = nb1;
  4043. result->nb[2] = result->nb[1]*ne1;
  4044. result->nb[3] = result->nb[2];
  4045. return result;
  4046. }
  4047. // ggml_view_3d
  4048. struct ggml_tensor * ggml_view_3d(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. int64_t ne0,
  4052. int64_t ne1,
  4053. int64_t ne2,
  4054. size_t nb1,
  4055. size_t nb2,
  4056. size_t offset) {
  4057. const int64_t ne[3] = { ne0, ne1, ne2 };
  4058. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4059. result->nb[1] = nb1;
  4060. result->nb[2] = nb2;
  4061. result->nb[3] = result->nb[2]*ne2;
  4062. return result;
  4063. }
  4064. // ggml_view_4d
  4065. struct ggml_tensor * ggml_view_4d(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a,
  4068. int64_t ne0,
  4069. int64_t ne1,
  4070. int64_t ne2,
  4071. int64_t ne3,
  4072. size_t nb1,
  4073. size_t nb2,
  4074. size_t nb3,
  4075. size_t offset) {
  4076. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4077. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4078. result->nb[1] = nb1;
  4079. result->nb[2] = nb2;
  4080. result->nb[3] = nb3;
  4081. return result;
  4082. }
  4083. // ggml_permute
  4084. struct ggml_tensor * ggml_permute(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. int axis0,
  4088. int axis1,
  4089. int axis2,
  4090. int axis3) {
  4091. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4092. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4093. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4094. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4095. GGML_ASSERT(axis0 != axis1);
  4096. GGML_ASSERT(axis0 != axis2);
  4097. GGML_ASSERT(axis0 != axis3);
  4098. GGML_ASSERT(axis1 != axis2);
  4099. GGML_ASSERT(axis1 != axis3);
  4100. GGML_ASSERT(axis2 != axis3);
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4106. ggml_format_name(result, "%s (permuted)", a->name);
  4107. int ne[GGML_MAX_DIMS];
  4108. int nb[GGML_MAX_DIMS];
  4109. ne[axis0] = a->ne[0];
  4110. ne[axis1] = a->ne[1];
  4111. ne[axis2] = a->ne[2];
  4112. ne[axis3] = a->ne[3];
  4113. nb[axis0] = a->nb[0];
  4114. nb[axis1] = a->nb[1];
  4115. nb[axis2] = a->nb[2];
  4116. nb[axis3] = a->nb[3];
  4117. result->ne[0] = ne[0];
  4118. result->ne[1] = ne[1];
  4119. result->ne[2] = ne[2];
  4120. result->ne[3] = ne[3];
  4121. result->nb[0] = nb[0];
  4122. result->nb[1] = nb[1];
  4123. result->nb[2] = nb[2];
  4124. result->nb[3] = nb[3];
  4125. result->op = GGML_OP_PERMUTE;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4129. ggml_set_op_params(result, params, sizeof(params));
  4130. return result;
  4131. }
  4132. // ggml_transpose
  4133. struct ggml_tensor * ggml_transpose(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a) {
  4136. bool is_node = false;
  4137. if (a->grad) {
  4138. is_node = true;
  4139. }
  4140. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4141. ggml_format_name(result, "%s (transposed)", a->name);
  4142. result->ne[0] = a->ne[1];
  4143. result->ne[1] = a->ne[0];
  4144. result->nb[0] = a->nb[1];
  4145. result->nb[1] = a->nb[0];
  4146. result->op = GGML_OP_TRANSPOSE;
  4147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4148. result->src[0] = a;
  4149. return result;
  4150. }
  4151. // ggml_get_rows
  4152. struct ggml_tensor * ggml_get_rows(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a,
  4155. struct ggml_tensor * b) {
  4156. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4157. GGML_ASSERT(b->ne[3] == 1);
  4158. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4159. bool is_node = false;
  4160. if (a->grad || b->grad) {
  4161. is_node = true;
  4162. }
  4163. // TODO: implement non F32 return
  4164. enum ggml_type type = GGML_TYPE_F32;
  4165. if (a->type == GGML_TYPE_I32) {
  4166. type = a->type;
  4167. }
  4168. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4169. result->op = GGML_OP_GET_ROWS;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. result->src[1] = b;
  4173. return result;
  4174. }
  4175. // ggml_get_rows_back
  4176. struct ggml_tensor * ggml_get_rows_back(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b,
  4180. struct ggml_tensor * c) {
  4181. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4182. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4183. bool is_node = false;
  4184. if (a->grad || b->grad) {
  4185. is_node = true;
  4186. }
  4187. // TODO: implement non F32 return
  4188. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4189. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4190. result->op = GGML_OP_GET_ROWS_BACK;
  4191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4192. result->src[0] = a;
  4193. result->src[1] = b;
  4194. return result;
  4195. }
  4196. // ggml_diag
  4197. struct ggml_tensor * ggml_diag(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. GGML_ASSERT(a->ne[1] == 1);
  4201. bool is_node = false;
  4202. if (a->grad) {
  4203. is_node = true;
  4204. }
  4205. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4206. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4207. result->op = GGML_OP_DIAG;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src[0] = a;
  4210. return result;
  4211. }
  4212. // ggml_diag_mask_inf
  4213. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. int n_past,
  4217. bool inplace) {
  4218. bool is_node = false;
  4219. if (a->grad) {
  4220. is_node = true;
  4221. }
  4222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4223. int32_t params[] = { n_past };
  4224. ggml_set_op_params(result, params, sizeof(params));
  4225. result->op = GGML_OP_DIAG_MASK_INF;
  4226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4227. result->src[0] = a;
  4228. return result;
  4229. }
  4230. struct ggml_tensor * ggml_diag_mask_inf(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. int n_past) {
  4234. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4235. }
  4236. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. int n_past) {
  4240. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4241. }
  4242. // ggml_diag_mask_zero
  4243. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. int n_past,
  4247. bool inplace) {
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. is_node = true;
  4251. }
  4252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4253. int32_t params[] = { n_past };
  4254. ggml_set_op_params(result, params, sizeof(params));
  4255. result->op = GGML_OP_DIAG_MASK_ZERO;
  4256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4257. result->src[0] = a;
  4258. return result;
  4259. }
  4260. struct ggml_tensor * ggml_diag_mask_zero(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. int n_past) {
  4264. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4265. }
  4266. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. int n_past) {
  4270. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4271. }
  4272. // ggml_soft_max
  4273. static struct ggml_tensor * ggml_soft_max_impl(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. struct ggml_tensor * mask,
  4277. struct ggml_tensor * pos,
  4278. float scale,
  4279. float max_bias,
  4280. bool inplace) {
  4281. GGML_ASSERT(ggml_is_contiguous(a));
  4282. if (mask) {
  4283. GGML_ASSERT(ggml_is_contiguous(mask));
  4284. GGML_ASSERT(ggml_is_matrix(mask));
  4285. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4286. }
  4287. if (pos) {
  4288. GGML_ASSERT(ggml_is_vector(pos));
  4289. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4290. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4291. }
  4292. if (max_bias > 0.0f) {
  4293. GGML_ASSERT(pos);
  4294. }
  4295. bool is_node = false;
  4296. if (a->grad) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. float params[] = { scale, max_bias };
  4301. ggml_set_op_params(result, params, sizeof(params));
  4302. result->op = GGML_OP_SOFT_MAX;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src[0] = a;
  4305. result->src[1] = mask;
  4306. result->src[2] = pos;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_soft_max(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4313. }
  4314. struct ggml_tensor * ggml_soft_max_inplace(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a) {
  4317. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4318. }
  4319. struct ggml_tensor * ggml_soft_max_ext(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a,
  4322. struct ggml_tensor * mask,
  4323. struct ggml_tensor * pos,
  4324. float scale,
  4325. float max_bias) {
  4326. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4327. }
  4328. // ggml_soft_max_back
  4329. static struct ggml_tensor * ggml_soft_max_back_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. bool inplace) {
  4334. bool is_node = false;
  4335. if (a->grad || b->grad) {
  4336. is_node = true; // TODO : implement backward pass
  4337. }
  4338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4339. result->op = GGML_OP_SOFT_MAX_BACK;
  4340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4341. result->src[0] = a;
  4342. result->src[1] = b;
  4343. return result;
  4344. }
  4345. struct ggml_tensor * ggml_soft_max_back(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b) {
  4349. return ggml_soft_max_back_impl(ctx, a, b, false);
  4350. }
  4351. struct ggml_tensor * ggml_soft_max_back_inplace(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. struct ggml_tensor * b) {
  4355. return ggml_soft_max_back_impl(ctx, a, b, true);
  4356. }
  4357. // ggml_rope
  4358. static struct ggml_tensor * ggml_rope_impl(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. struct ggml_tensor * b,
  4362. int n_dims,
  4363. int mode,
  4364. int n_ctx,
  4365. int n_orig_ctx,
  4366. float freq_base,
  4367. float freq_scale,
  4368. float ext_factor,
  4369. float attn_factor,
  4370. float beta_fast,
  4371. float beta_slow,
  4372. float xpos_base,
  4373. bool xpos_down,
  4374. bool inplace) {
  4375. GGML_ASSERT(ggml_is_vector(b));
  4376. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4377. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4378. bool is_node = false;
  4379. if (a->grad) {
  4380. is_node = true;
  4381. }
  4382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4383. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4384. memcpy(params + 5, &freq_base, sizeof(float));
  4385. memcpy(params + 6, &freq_scale, sizeof(float));
  4386. memcpy(params + 7, &ext_factor, sizeof(float));
  4387. memcpy(params + 8, &attn_factor, sizeof(float));
  4388. memcpy(params + 9, &beta_fast, sizeof(float));
  4389. memcpy(params + 10, &beta_slow, sizeof(float));
  4390. memcpy(params + 11, &xpos_base, sizeof(float));
  4391. memcpy(params + 12, &xpos_down, sizeof(bool));
  4392. ggml_set_op_params(result, params, sizeof(params));
  4393. result->op = GGML_OP_ROPE;
  4394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4395. result->src[0] = a;
  4396. result->src[1] = b;
  4397. return result;
  4398. }
  4399. struct ggml_tensor * ggml_rope(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. struct ggml_tensor * b,
  4403. int n_dims,
  4404. int mode,
  4405. int n_ctx) {
  4406. return ggml_rope_impl(
  4407. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4408. );
  4409. }
  4410. struct ggml_tensor * ggml_rope_inplace(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a,
  4413. struct ggml_tensor * b,
  4414. int n_dims,
  4415. int mode,
  4416. int n_ctx) {
  4417. return ggml_rope_impl(
  4418. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4419. );
  4420. }
  4421. struct ggml_tensor * ggml_rope_custom(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. struct ggml_tensor * b,
  4425. int n_dims,
  4426. int mode,
  4427. int n_ctx,
  4428. int n_orig_ctx,
  4429. float freq_base,
  4430. float freq_scale,
  4431. float ext_factor,
  4432. float attn_factor,
  4433. float beta_fast,
  4434. float beta_slow) {
  4435. return ggml_rope_impl(
  4436. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4437. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4438. );
  4439. }
  4440. struct ggml_tensor * ggml_rope_custom_inplace(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. struct ggml_tensor * b,
  4444. int n_dims,
  4445. int mode,
  4446. int n_ctx,
  4447. int n_orig_ctx,
  4448. float freq_base,
  4449. float freq_scale,
  4450. float ext_factor,
  4451. float attn_factor,
  4452. float beta_fast,
  4453. float beta_slow) {
  4454. return ggml_rope_impl(
  4455. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4456. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4457. );
  4458. }
  4459. struct ggml_tensor * ggml_rope_xpos_inplace(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. struct ggml_tensor * b,
  4463. int n_dims,
  4464. float base,
  4465. bool down) {
  4466. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4467. }
  4468. // ggml_rope_back
  4469. struct ggml_tensor * ggml_rope_back(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b,
  4473. int n_dims,
  4474. int mode,
  4475. int n_ctx,
  4476. int n_orig_ctx,
  4477. float freq_base,
  4478. float freq_scale,
  4479. float ext_factor,
  4480. float attn_factor,
  4481. float beta_fast,
  4482. float beta_slow,
  4483. float xpos_base,
  4484. bool xpos_down) {
  4485. GGML_ASSERT(ggml_is_vector(b));
  4486. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4487. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4488. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4489. bool is_node = false;
  4490. if (a->grad) {
  4491. is_node = false; // TODO: implement backward
  4492. }
  4493. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4494. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4495. memcpy(params + 5, &freq_base, sizeof(float));
  4496. memcpy(params + 6, &freq_scale, sizeof(float));
  4497. memcpy(params + 7, &ext_factor, sizeof(float));
  4498. memcpy(params + 8, &attn_factor, sizeof(float));
  4499. memcpy(params + 9, &beta_fast, sizeof(float));
  4500. memcpy(params + 10, &beta_slow, sizeof(float));
  4501. memcpy(params + 11, &xpos_base, sizeof(float));
  4502. memcpy(params + 12, &xpos_down, sizeof(bool));
  4503. ggml_set_op_params(result, params, sizeof(params));
  4504. result->op = GGML_OP_ROPE_BACK;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src[0] = a;
  4507. result->src[1] = b;
  4508. return result;
  4509. }
  4510. // ggml_alibi
  4511. struct ggml_tensor * ggml_alibi(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. int n_past,
  4515. int n_head,
  4516. float bias_max) {
  4517. GGML_ASSERT(n_past >= 0);
  4518. bool is_node = false;
  4519. if (a->grad) {
  4520. GGML_ASSERT(false); // TODO: implement backward
  4521. is_node = true;
  4522. }
  4523. // TODO: when implement backward, fix this:
  4524. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4525. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4526. int32_t op_params[3] = { n_past, n_head };
  4527. memcpy(op_params + 2, &bias_max, sizeof(float));
  4528. ggml_set_op_params(result, op_params, sizeof(op_params));
  4529. result->op = GGML_OP_ALIBI;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. return result;
  4533. }
  4534. // ggml_clamp
  4535. struct ggml_tensor * ggml_clamp(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a,
  4538. float min,
  4539. float max) {
  4540. bool is_node = false;
  4541. if (a->grad) {
  4542. GGML_ASSERT(false); // TODO: implement backward
  4543. is_node = true;
  4544. }
  4545. // TODO: when implement backward, fix this:
  4546. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4547. float params[] = { min, max };
  4548. ggml_set_op_params(result, params, sizeof(params));
  4549. result->op = GGML_OP_CLAMP;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src[0] = a;
  4552. return result;
  4553. }
  4554. // ggml_conv_1d
  4555. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4556. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4557. }
  4558. GGML_API struct ggml_tensor * ggml_conv_1d(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. struct ggml_tensor * b,
  4562. int s0,
  4563. int p0,
  4564. int d0) {
  4565. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4566. struct ggml_tensor * result =
  4567. ggml_mul_mat(ctx,
  4568. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4569. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4570. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4571. return result;
  4572. }
  4573. // ggml_conv_1d_ph
  4574. struct ggml_tensor* ggml_conv_1d_ph(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int s,
  4579. int d) {
  4580. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4581. }
  4582. // ggml_conv_transpose_1d
  4583. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4584. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4585. }
  4586. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. struct ggml_tensor * b,
  4590. int s0,
  4591. int p0,
  4592. int d0) {
  4593. GGML_ASSERT(ggml_is_matrix(b));
  4594. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4595. GGML_ASSERT(a->ne[3] == 1);
  4596. GGML_ASSERT(p0 == 0);
  4597. GGML_ASSERT(d0 == 1);
  4598. bool is_node = false;
  4599. if (a->grad || b->grad) {
  4600. GGML_ASSERT(false); // TODO: implement backward
  4601. is_node = true;
  4602. }
  4603. const int64_t ne[4] = {
  4604. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4605. a->ne[1], b->ne[2], 1,
  4606. };
  4607. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4608. int32_t params[] = { s0, p0, d0 };
  4609. ggml_set_op_params(result, params, sizeof(params));
  4610. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src[0] = a;
  4613. result->src[1] = b;
  4614. return result;
  4615. }
  4616. // ggml_conv_depthwise
  4617. struct ggml_tensor * ggml_conv_depthwise_2d(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b,
  4621. int s0,
  4622. int s1,
  4623. int p0,
  4624. int p1,
  4625. int d0,
  4626. int d1) {
  4627. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4628. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4629. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4630. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4631. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4632. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4633. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4634. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4635. return result;
  4636. }
  4637. // ggml_conv_2d
  4638. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4639. // a: [OC,IC, KH, KW]
  4640. // b: [N, IC, IH, IW]
  4641. // result: [N, OH, OW, IC*KH*KW]
  4642. struct ggml_tensor * ggml_im2col(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b,
  4646. int s0,
  4647. int s1,
  4648. int p0,
  4649. int p1,
  4650. int d0,
  4651. int d1,
  4652. bool is_2D,
  4653. enum ggml_type dst_type) {
  4654. if(is_2D) {
  4655. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4656. } else {
  4657. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4658. }
  4659. bool is_node = false;
  4660. if (a->grad || b->grad) {
  4661. GGML_ASSERT(false); // TODO: implement backward
  4662. is_node = true;
  4663. }
  4664. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4665. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4666. const int64_t ne[4] = {
  4667. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4668. OW,
  4669. is_2D ? OH : b->ne[2],
  4670. is_2D ? b->ne[3] : 1,
  4671. };
  4672. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4673. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4674. ggml_set_op_params(result, params, sizeof(params));
  4675. result->op = GGML_OP_IM2COL;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = b;
  4679. return result;
  4680. }
  4681. // a: [OC,IC, KH, KW]
  4682. // b: [N, IC, IH, IW]
  4683. // result: [N, OC, OH, OW]
  4684. struct ggml_tensor * ggml_conv_2d(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a,
  4687. struct ggml_tensor * b,
  4688. int s0,
  4689. int s1,
  4690. int p0,
  4691. int p1,
  4692. int d0,
  4693. int d1) {
  4694. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4695. struct ggml_tensor * result =
  4696. ggml_mul_mat(ctx,
  4697. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4698. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4699. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4700. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4701. return result;
  4702. }
  4703. // ggml_conv_2d_sk_p0
  4704. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. struct ggml_tensor * b) {
  4708. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4709. }
  4710. // ggml_conv_2d_s1_ph
  4711. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a,
  4714. struct ggml_tensor * b) {
  4715. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4716. }
  4717. // ggml_conv_transpose_2d_p0
  4718. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4719. return (ins - 1) * s - 2 * p + ks;
  4720. }
  4721. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. struct ggml_tensor * b,
  4725. int stride) {
  4726. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4727. bool is_node = false;
  4728. if (a->grad || b->grad) {
  4729. GGML_ASSERT(false); // TODO: implement backward
  4730. is_node = true;
  4731. }
  4732. const int64_t ne[4] = {
  4733. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4734. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4735. a->ne[2], b->ne[3],
  4736. };
  4737. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4738. ggml_set_op_params_i32(result, 0, stride);
  4739. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src[0] = a;
  4742. result->src[1] = b;
  4743. return result;
  4744. }
  4745. // ggml_pool_*
  4746. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4747. return (ins + 2 * p - ks) / s + 1;
  4748. }
  4749. // ggml_pool_1d
  4750. struct ggml_tensor * ggml_pool_1d(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. enum ggml_op_pool op,
  4754. int k0,
  4755. int s0,
  4756. int p0) {
  4757. bool is_node = false;
  4758. if (a->grad) {
  4759. GGML_ASSERT(false); // TODO: implement backward
  4760. is_node = true;
  4761. }
  4762. const int64_t ne[4] = {
  4763. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4764. a->ne[1],
  4765. a->ne[2],
  4766. a->ne[3],
  4767. };
  4768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4769. int32_t params[] = { op, k0, s0, p0 };
  4770. ggml_set_op_params(result, params, sizeof(params));
  4771. result->op = GGML_OP_POOL_1D;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. return result;
  4775. }
  4776. // ggml_pool_2d
  4777. struct ggml_tensor * ggml_pool_2d(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. enum ggml_op_pool op,
  4781. int k0,
  4782. int k1,
  4783. int s0,
  4784. int s1,
  4785. float p0,
  4786. float p1) {
  4787. bool is_node = false;
  4788. if (a->grad) {
  4789. GGML_ASSERT(false); // TODO: implement backward
  4790. is_node = true;
  4791. }
  4792. struct ggml_tensor * result;
  4793. const int64_t ne[3] = {
  4794. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4795. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4796. a->ne[2],
  4797. };
  4798. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4799. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4800. ggml_set_op_params(result, params, sizeof(params));
  4801. result->op = GGML_OP_POOL_2D;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. return result;
  4805. }
  4806. // ggml_upscale
  4807. static struct ggml_tensor * ggml_upscale_impl(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. int scale_factor) {
  4811. bool is_node = false;
  4812. if (a->grad) {
  4813. GGML_ASSERT(false); // TODO: implement backward
  4814. is_node = true;
  4815. }
  4816. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4817. a->ne[0] * scale_factor,
  4818. a->ne[1] * scale_factor,
  4819. a->ne[2], a->ne[3]);
  4820. result->op = GGML_OP_UPSCALE;
  4821. result->op_params[0] = scale_factor;
  4822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4823. result->src[0] = a;
  4824. return result;
  4825. }
  4826. struct ggml_tensor * ggml_pad(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. int p0, int p1, int p2, int p3) {
  4830. bool is_node = false;
  4831. if (a->grad) {
  4832. GGML_ASSERT(false); // TODO: implement backward
  4833. is_node = true;
  4834. }
  4835. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4836. a->ne[0] + p0,
  4837. a->ne[1] + p1,
  4838. a->ne[2] + p2,
  4839. a->ne[3] + p3);
  4840. result->op = GGML_OP_PAD;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src[0] = a;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_upscale(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. int scale_factor) {
  4849. return ggml_upscale_impl(ctx, a, scale_factor);
  4850. }
  4851. struct ggml_tensor * ggml_arange(
  4852. struct ggml_context * ctx,
  4853. float start,
  4854. float stop,
  4855. float step) {
  4856. GGML_ASSERT(stop > start);
  4857. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4858. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4859. result->op = GGML_OP_ARANGE;
  4860. ggml_set_op_params_f32(result, 0, start);
  4861. ggml_set_op_params_f32(result, 1, stop);
  4862. ggml_set_op_params_f32(result, 2, step);
  4863. return result;
  4864. }
  4865. struct ggml_tensor * ggml_timestep_embedding(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * timesteps,
  4868. int dim,
  4869. int max_period) {
  4870. bool is_node = false;
  4871. if (timesteps->grad) {
  4872. GGML_ASSERT(false); // TODO: implement backward
  4873. is_node = true;
  4874. }
  4875. int actual_dim = dim;
  4876. if (dim % 2 != 0) {
  4877. actual_dim = dim + 1;
  4878. }
  4879. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4880. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4881. ggml_set_op_params_i32(result, 0, dim);
  4882. ggml_set_op_params_i32(result, 1, max_period);
  4883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4884. result->src[0] = timesteps;
  4885. return result;
  4886. }
  4887. // ggml_argsort
  4888. struct ggml_tensor * ggml_argsort(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. enum ggml_sort_order order) {
  4892. bool is_node = false;
  4893. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4894. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4895. result->op = GGML_OP_ARGSORT;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src[0] = a;
  4898. return result;
  4899. }
  4900. // ggml_top_k
  4901. struct ggml_tensor * ggml_top_k(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. int k) {
  4905. GGML_ASSERT(a->ne[0] >= k);
  4906. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4907. result = ggml_view_4d(ctx, result,
  4908. k, result->ne[1], result->ne[2], result->ne[3],
  4909. result->nb[1], result->nb[2], result->nb[3],
  4910. 0);
  4911. return result;
  4912. }
  4913. // ggml_flash_attn
  4914. struct ggml_tensor * ggml_flash_attn(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * q,
  4917. struct ggml_tensor * k,
  4918. struct ggml_tensor * v,
  4919. bool masked) {
  4920. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4921. // TODO: check if vT can be multiplied by (k*qT)
  4922. bool is_node = false;
  4923. if (q->grad || k->grad || v->grad) {
  4924. is_node = true;
  4925. }
  4926. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4927. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4928. int32_t t = masked ? 1 : 0;
  4929. ggml_set_op_params(result, &t, sizeof(t));
  4930. result->op = GGML_OP_FLASH_ATTN;
  4931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4932. result->src[0] = q;
  4933. result->src[1] = k;
  4934. result->src[2] = v;
  4935. return result;
  4936. }
  4937. // ggml_flash_ff
  4938. struct ggml_tensor * ggml_flash_ff(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b0,
  4942. struct ggml_tensor * b1,
  4943. struct ggml_tensor * c0,
  4944. struct ggml_tensor * c1) {
  4945. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4946. // TODO: more checks
  4947. bool is_node = false;
  4948. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4949. is_node = true;
  4950. }
  4951. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4952. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4953. result->op = GGML_OP_FLASH_FF;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src[0] = a;
  4956. result->src[1] = b0;
  4957. result->src[2] = b1;
  4958. result->src[3] = c0;
  4959. result->src[4] = c1;
  4960. return result;
  4961. }
  4962. // ggml_flash_attn_back
  4963. struct ggml_tensor * ggml_flash_attn_back(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * q,
  4966. struct ggml_tensor * k,
  4967. struct ggml_tensor * v,
  4968. struct ggml_tensor * d,
  4969. bool masked) {
  4970. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4971. // TODO: check if vT can be multiplied by (k*qT)
  4972. // d shape [D,N,ne2,ne3]
  4973. // q shape [D,N,ne2,ne3]
  4974. // k shape [D,M,kvne2,ne3]
  4975. // v shape [M,D,kvne2,ne3]
  4976. const int64_t D = q->ne[0];
  4977. const int64_t N = q->ne[1];
  4978. const int64_t M = k->ne[1];
  4979. const int64_t ne2 = q->ne[2];
  4980. const int64_t ne3 = q->ne[3];
  4981. const int64_t kvne2 = k->ne[2];
  4982. GGML_ASSERT(k->ne[0] == D);
  4983. GGML_ASSERT(v->ne[0] == M);
  4984. GGML_ASSERT(v->ne[1] == D);
  4985. GGML_ASSERT(d->ne[0] == D);
  4986. GGML_ASSERT(d->ne[1] == N);
  4987. GGML_ASSERT(k->ne[2] == kvne2);
  4988. GGML_ASSERT(k->ne[3] == ne3);
  4989. GGML_ASSERT(v->ne[2] == kvne2);
  4990. GGML_ASSERT(v->ne[3] == ne3);
  4991. GGML_ASSERT(d->ne[2] == ne2);
  4992. GGML_ASSERT(d->ne[3] == ne3);
  4993. GGML_ASSERT(ne2 % kvne2 == 0);
  4994. bool is_node = false;
  4995. if (q->grad || k->grad || v->grad) {
  4996. // when using this operation (in backwards pass) these grads are set.
  4997. // we don't want to create (big) grad of our result, so is_node is false.
  4998. is_node = false;
  4999. }
  5000. // store gradients of q, k and v as continuous tensors concatenated in result.
  5001. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5002. const int64_t elem_q = ggml_nelements(q);
  5003. const int64_t elem_k = ggml_nelements(k);
  5004. const int64_t elem_v = ggml_nelements(v);
  5005. enum ggml_type result_type = GGML_TYPE_F32;
  5006. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5007. const size_t tsize = ggml_type_size(result_type);
  5008. const size_t offs_q = 0;
  5009. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5010. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5011. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5012. const size_t nelements = (end + tsize - 1)/tsize;
  5013. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5014. int32_t masked_i = masked ? 1 : 0;
  5015. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5016. result->op = GGML_OP_FLASH_ATTN_BACK;
  5017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5018. result->src[0] = q;
  5019. result->src[1] = k;
  5020. result->src[2] = v;
  5021. result->src[3] = d;
  5022. return result;
  5023. }
  5024. // ggml_win_part
  5025. struct ggml_tensor * ggml_win_part(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a,
  5028. int w) {
  5029. GGML_ASSERT(a->ne[3] == 1);
  5030. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5031. bool is_node = false;
  5032. if (a->grad) {
  5033. GGML_ASSERT(false); // TODO: implement backward
  5034. is_node = true;
  5035. }
  5036. // padding
  5037. const int px = (w - a->ne[1]%w)%w;
  5038. const int py = (w - a->ne[2]%w)%w;
  5039. const int npx = (px + a->ne[1])/w;
  5040. const int npy = (py + a->ne[2])/w;
  5041. const int np = npx*npy;
  5042. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5043. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5044. int32_t params[] = { npx, npy, w };
  5045. ggml_set_op_params(result, params, sizeof(params));
  5046. result->op = GGML_OP_WIN_PART;
  5047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5048. result->src[0] = a;
  5049. return result;
  5050. }
  5051. // ggml_win_unpart
  5052. struct ggml_tensor * ggml_win_unpart(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. int w0,
  5056. int h0,
  5057. int w) {
  5058. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5059. bool is_node = false;
  5060. if (a->grad) {
  5061. GGML_ASSERT(false); // TODO: implement backward
  5062. is_node = true;
  5063. }
  5064. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5065. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5066. int32_t params[] = { w };
  5067. ggml_set_op_params(result, params, sizeof(params));
  5068. result->op = GGML_OP_WIN_UNPART;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src[0] = a;
  5071. return result;
  5072. }
  5073. // ggml_get_rel_pos
  5074. struct ggml_tensor * ggml_get_rel_pos(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int qh,
  5078. int kh) {
  5079. GGML_ASSERT(qh == kh);
  5080. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5081. bool is_node = false;
  5082. if (a->grad) {
  5083. GGML_ASSERT(false); // TODO: implement backward
  5084. is_node = true;
  5085. }
  5086. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5087. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5088. result->op = GGML_OP_GET_REL_POS;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src[0] = a;
  5091. return result;
  5092. }
  5093. // ggml_add_rel_pos
  5094. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. struct ggml_tensor * pw,
  5098. struct ggml_tensor * ph,
  5099. bool inplace) {
  5100. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5101. GGML_ASSERT(ggml_is_contiguous(a));
  5102. GGML_ASSERT(ggml_is_contiguous(pw));
  5103. GGML_ASSERT(ggml_is_contiguous(ph));
  5104. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5105. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5106. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5107. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5108. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5109. bool is_node = false;
  5110. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5111. is_node = true;
  5112. }
  5113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5114. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5115. result->op = GGML_OP_ADD_REL_POS;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = pw;
  5119. result->src[2] = ph;
  5120. return result;
  5121. }
  5122. struct ggml_tensor * ggml_add_rel_pos(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * pw,
  5126. struct ggml_tensor * ph) {
  5127. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5128. }
  5129. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * pw,
  5133. struct ggml_tensor * ph) {
  5134. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5135. }
  5136. // gmml_unary
  5137. static struct ggml_tensor * ggml_unary_impl(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. enum ggml_unary_op op,
  5141. bool inplace) {
  5142. bool is_node = false;
  5143. if (!inplace && (a->grad)) {
  5144. is_node = true;
  5145. }
  5146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5147. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5148. result->op = GGML_OP_UNARY;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. return result;
  5152. }
  5153. struct ggml_tensor * ggml_unary(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. enum ggml_unary_op op) {
  5157. return ggml_unary_impl(ctx, a, op, false);
  5158. }
  5159. struct ggml_tensor * ggml_unary_inplace(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. enum ggml_unary_op op) {
  5163. return ggml_unary_impl(ctx, a, op, true);
  5164. }
  5165. // ggml_map_unary
  5166. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. const ggml_unary_op_f32_t fun,
  5170. bool inplace) {
  5171. bool is_node = false;
  5172. if (!inplace && a->grad) {
  5173. is_node = true;
  5174. }
  5175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5176. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5177. result->op = GGML_OP_MAP_UNARY;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src[0] = a;
  5180. return result;
  5181. }
  5182. struct ggml_tensor * ggml_map_unary_f32(
  5183. struct ggml_context * ctx,
  5184. struct ggml_tensor * a,
  5185. const ggml_unary_op_f32_t fun) {
  5186. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5187. }
  5188. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5189. struct ggml_context * ctx,
  5190. struct ggml_tensor * a,
  5191. const ggml_unary_op_f32_t fun) {
  5192. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5193. }
  5194. // ggml_map_binary
  5195. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * a,
  5198. struct ggml_tensor * b,
  5199. const ggml_binary_op_f32_t fun,
  5200. bool inplace) {
  5201. GGML_ASSERT(ggml_are_same_shape(a, b));
  5202. bool is_node = false;
  5203. if (!inplace && (a->grad || b->grad)) {
  5204. is_node = true;
  5205. }
  5206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5207. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5208. result->op = GGML_OP_MAP_BINARY;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src[0] = a;
  5211. result->src[1] = b;
  5212. return result;
  5213. }
  5214. struct ggml_tensor * ggml_map_binary_f32(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. struct ggml_tensor * b,
  5218. const ggml_binary_op_f32_t fun) {
  5219. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5220. }
  5221. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. struct ggml_tensor * b,
  5225. const ggml_binary_op_f32_t fun) {
  5226. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5227. }
  5228. // ggml_map_custom1_f32
  5229. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. const ggml_custom1_op_f32_t fun,
  5233. bool inplace) {
  5234. bool is_node = false;
  5235. if (!inplace && a->grad) {
  5236. is_node = true;
  5237. }
  5238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5239. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5240. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5242. result->src[0] = a;
  5243. return result;
  5244. }
  5245. struct ggml_tensor * ggml_map_custom1_f32(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a,
  5248. const ggml_custom1_op_f32_t fun) {
  5249. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5250. }
  5251. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a,
  5254. const ggml_custom1_op_f32_t fun) {
  5255. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5256. }
  5257. // ggml_map_custom2_f32
  5258. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5259. struct ggml_context * ctx,
  5260. struct ggml_tensor * a,
  5261. struct ggml_tensor * b,
  5262. const ggml_custom2_op_f32_t fun,
  5263. bool inplace) {
  5264. bool is_node = false;
  5265. if (!inplace && (a->grad || b->grad)) {
  5266. is_node = true;
  5267. }
  5268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5269. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5270. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5272. result->src[0] = a;
  5273. result->src[1] = b;
  5274. return result;
  5275. }
  5276. struct ggml_tensor * ggml_map_custom2_f32(
  5277. struct ggml_context * ctx,
  5278. struct ggml_tensor * a,
  5279. struct ggml_tensor * b,
  5280. const ggml_custom2_op_f32_t fun) {
  5281. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5282. }
  5283. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. struct ggml_tensor * b,
  5287. const ggml_custom2_op_f32_t fun) {
  5288. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5289. }
  5290. // ggml_map_custom3_f32
  5291. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5292. struct ggml_context * ctx,
  5293. struct ggml_tensor * a,
  5294. struct ggml_tensor * b,
  5295. struct ggml_tensor * c,
  5296. const ggml_custom3_op_f32_t fun,
  5297. bool inplace) {
  5298. bool is_node = false;
  5299. if (!inplace && (a->grad || b->grad || c->grad)) {
  5300. is_node = true;
  5301. }
  5302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5303. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5304. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. result->src[1] = b;
  5308. result->src[2] = c;
  5309. return result;
  5310. }
  5311. struct ggml_tensor * ggml_map_custom3_f32(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. struct ggml_tensor * b,
  5315. struct ggml_tensor * c,
  5316. const ggml_custom3_op_f32_t fun) {
  5317. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5318. }
  5319. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5320. struct ggml_context * ctx,
  5321. struct ggml_tensor * a,
  5322. struct ggml_tensor * b,
  5323. struct ggml_tensor * c,
  5324. const ggml_custom3_op_f32_t fun) {
  5325. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5326. }
  5327. // ggml_map_custom1
  5328. struct ggml_map_custom1_op_params {
  5329. ggml_custom1_op_t fun;
  5330. int n_tasks;
  5331. void * userdata;
  5332. };
  5333. static struct ggml_tensor * ggml_map_custom1_impl(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * a,
  5336. const ggml_custom1_op_t fun,
  5337. int n_tasks,
  5338. void * userdata,
  5339. bool inplace) {
  5340. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5341. bool is_node = false;
  5342. if (!inplace && a->grad) {
  5343. is_node = true;
  5344. }
  5345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5346. struct ggml_map_custom1_op_params params = {
  5347. /*.fun =*/ fun,
  5348. /*.n_tasks =*/ n_tasks,
  5349. /*.userdata =*/ userdata
  5350. };
  5351. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5352. result->op = GGML_OP_MAP_CUSTOM1;
  5353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5354. result->src[0] = a;
  5355. return result;
  5356. }
  5357. struct ggml_tensor * ggml_map_custom1(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * a,
  5360. const ggml_custom1_op_t fun,
  5361. int n_tasks,
  5362. void * userdata) {
  5363. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5364. }
  5365. struct ggml_tensor * ggml_map_custom1_inplace(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a,
  5368. const ggml_custom1_op_t fun,
  5369. int n_tasks,
  5370. void * userdata) {
  5371. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5372. }
  5373. // ggml_map_custom2
  5374. struct ggml_map_custom2_op_params {
  5375. ggml_custom2_op_t fun;
  5376. int n_tasks;
  5377. void * userdata;
  5378. };
  5379. static struct ggml_tensor * ggml_map_custom2_impl(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. struct ggml_tensor * b,
  5383. const ggml_custom2_op_t fun,
  5384. int n_tasks,
  5385. void * userdata,
  5386. bool inplace) {
  5387. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5388. bool is_node = false;
  5389. if (!inplace && (a->grad || b->grad)) {
  5390. is_node = true;
  5391. }
  5392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5393. struct ggml_map_custom2_op_params params = {
  5394. /*.fun =*/ fun,
  5395. /*.n_tasks =*/ n_tasks,
  5396. /*.userdata =*/ userdata
  5397. };
  5398. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5399. result->op = GGML_OP_MAP_CUSTOM2;
  5400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5401. result->src[0] = a;
  5402. result->src[1] = b;
  5403. return result;
  5404. }
  5405. struct ggml_tensor * ggml_map_custom2(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. struct ggml_tensor * b,
  5409. const ggml_custom2_op_t fun,
  5410. int n_tasks,
  5411. void * userdata) {
  5412. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5413. }
  5414. struct ggml_tensor * ggml_map_custom2_inplace(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. struct ggml_tensor * b,
  5418. const ggml_custom2_op_t fun,
  5419. int n_tasks,
  5420. void * userdata) {
  5421. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5422. }
  5423. // ggml_map_custom3
  5424. struct ggml_map_custom3_op_params {
  5425. ggml_custom3_op_t fun;
  5426. int n_tasks;
  5427. void * userdata;
  5428. };
  5429. static struct ggml_tensor * ggml_map_custom3_impl(
  5430. struct ggml_context * ctx,
  5431. struct ggml_tensor * a,
  5432. struct ggml_tensor * b,
  5433. struct ggml_tensor * c,
  5434. const ggml_custom3_op_t fun,
  5435. int n_tasks,
  5436. void * userdata,
  5437. bool inplace) {
  5438. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5439. bool is_node = false;
  5440. if (!inplace && (a->grad || b->grad || c->grad)) {
  5441. is_node = true;
  5442. }
  5443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5444. struct ggml_map_custom3_op_params params = {
  5445. /*.fun =*/ fun,
  5446. /*.n_tasks =*/ n_tasks,
  5447. /*.userdata =*/ userdata
  5448. };
  5449. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5450. result->op = GGML_OP_MAP_CUSTOM3;
  5451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5452. result->src[0] = a;
  5453. result->src[1] = b;
  5454. result->src[2] = c;
  5455. return result;
  5456. }
  5457. struct ggml_tensor * ggml_map_custom3(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. struct ggml_tensor * b,
  5461. struct ggml_tensor * c,
  5462. const ggml_custom3_op_t fun,
  5463. int n_tasks,
  5464. void * userdata) {
  5465. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5466. }
  5467. struct ggml_tensor * ggml_map_custom3_inplace(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. struct ggml_tensor * c,
  5472. const ggml_custom3_op_t fun,
  5473. int n_tasks,
  5474. void * userdata) {
  5475. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5476. }
  5477. // ggml_cross_entropy_loss
  5478. struct ggml_tensor * ggml_cross_entropy_loss(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. struct ggml_tensor * b) {
  5482. GGML_ASSERT(ggml_are_same_shape(a, b));
  5483. bool is_node = false;
  5484. if (a->grad || b->grad) {
  5485. is_node = true;
  5486. }
  5487. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5488. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5490. result->src[0] = a;
  5491. result->src[1] = b;
  5492. return result;
  5493. }
  5494. // ggml_cross_entropy_loss_back
  5495. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5496. struct ggml_context * ctx,
  5497. struct ggml_tensor * a,
  5498. struct ggml_tensor * b,
  5499. struct ggml_tensor * c) {
  5500. GGML_ASSERT(ggml_are_same_shape(a, b));
  5501. GGML_ASSERT(ggml_is_scalar(c));
  5502. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5503. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5504. result->grad = NULL;
  5505. result->src[0] = a;
  5506. result->src[1] = b;
  5507. result->src[2] = c;
  5508. return result;
  5509. }
  5510. ////////////////////////////////////////////////////////////////////////////////
  5511. void ggml_set_param(
  5512. struct ggml_context * ctx,
  5513. struct ggml_tensor * tensor) {
  5514. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5515. GGML_ASSERT(tensor->grad == NULL);
  5516. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5517. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5518. }
  5519. // ggml_compute_forward_dup
  5520. static void ggml_compute_forward_dup_same_cont(
  5521. const struct ggml_compute_params * params,
  5522. struct ggml_tensor * dst) {
  5523. const struct ggml_tensor * src0 = dst->src[0];
  5524. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5525. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5526. GGML_ASSERT(src0->type == dst->type);
  5527. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5528. return;
  5529. }
  5530. const size_t nb00 = src0->nb[0];
  5531. const size_t nb0 = dst->nb[0];
  5532. const int ith = params->ith; // thread index
  5533. const int nth = params->nth; // number of threads
  5534. // parallelize by elements
  5535. const int ne = ggml_nelements(dst);
  5536. const int dr = (ne + nth - 1) / nth;
  5537. const int ie0 = dr * ith;
  5538. const int ie1 = MIN(ie0 + dr, ne);
  5539. if (ie0 < ie1) {
  5540. memcpy(
  5541. ((char *) dst->data + ie0*nb0),
  5542. ((char *) src0->data + ie0*nb00),
  5543. (ie1 - ie0) * ggml_type_size(src0->type));
  5544. }
  5545. }
  5546. static void ggml_compute_forward_dup_f16(
  5547. const struct ggml_compute_params * params,
  5548. struct ggml_tensor * dst) {
  5549. const struct ggml_tensor * src0 = dst->src[0];
  5550. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5551. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5552. return;
  5553. }
  5554. GGML_TENSOR_UNARY_OP_LOCALS
  5555. const int ith = params->ith; // thread index
  5556. const int nth = params->nth; // number of threads
  5557. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5558. ggml_compute_forward_dup_same_cont(params, dst);
  5559. return;
  5560. }
  5561. // parallelize by rows
  5562. const int nr = ne01;
  5563. // number of rows per thread
  5564. const int dr = (nr + nth - 1) / nth;
  5565. // row range for this thread
  5566. const int ir0 = dr * ith;
  5567. const int ir1 = MIN(ir0 + dr, nr);
  5568. if (src0->type == dst->type &&
  5569. ne00 == ne0 &&
  5570. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5571. // copy by rows
  5572. const size_t rs = ne00*nb00;
  5573. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5574. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5575. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5576. memcpy(
  5577. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5578. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5579. rs);
  5580. }
  5581. }
  5582. }
  5583. return;
  5584. }
  5585. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5586. if (ggml_is_contiguous(dst)) {
  5587. if (nb00 == sizeof(ggml_fp16_t)) {
  5588. if (dst->type == GGML_TYPE_F16) {
  5589. size_t id = 0;
  5590. const size_t rs = ne00 * nb00;
  5591. char * dst_ptr = (char *) dst->data;
  5592. for (int i03 = 0; i03 < ne03; i03++) {
  5593. for (int i02 = 0; i02 < ne02; i02++) {
  5594. id += rs * ir0;
  5595. for (int i01 = ir0; i01 < ir1; i01++) {
  5596. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5597. memcpy(dst_ptr + id, src0_ptr, rs);
  5598. id += rs;
  5599. }
  5600. id += rs * (ne01 - ir1);
  5601. }
  5602. }
  5603. } else if (dst->type == GGML_TYPE_F32) {
  5604. size_t id = 0;
  5605. float * dst_ptr = (float *) dst->data;
  5606. for (int i03 = 0; i03 < ne03; i03++) {
  5607. for (int i02 = 0; i02 < ne02; i02++) {
  5608. id += ne00 * ir0;
  5609. for (int i01 = ir0; i01 < ir1; i01++) {
  5610. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5611. for (int i00 = 0; i00 < ne00; i00++) {
  5612. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5613. id++;
  5614. }
  5615. }
  5616. id += ne00 * (ne01 - ir1);
  5617. }
  5618. }
  5619. } else if (type_traits[dst->type].from_float) {
  5620. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5621. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5622. size_t id = 0;
  5623. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5624. char * dst_ptr = (char *) dst->data;
  5625. for (int i03 = 0; i03 < ne03; i03++) {
  5626. for (int i02 = 0; i02 < ne02; i02++) {
  5627. id += rs * ir0;
  5628. for (int i01 = ir0; i01 < ir1; i01++) {
  5629. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5630. for (int i00 = 0; i00 < ne00; i00++) {
  5631. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5632. }
  5633. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5634. id += rs;
  5635. }
  5636. id += rs * (ne01 - ir1);
  5637. }
  5638. }
  5639. } else {
  5640. GGML_ASSERT(false); // TODO: implement
  5641. }
  5642. } else {
  5643. //printf("%s: this is not optimal - fix me\n", __func__);
  5644. if (dst->type == GGML_TYPE_F32) {
  5645. size_t id = 0;
  5646. float * dst_ptr = (float *) dst->data;
  5647. for (int i03 = 0; i03 < ne03; i03++) {
  5648. for (int i02 = 0; i02 < ne02; i02++) {
  5649. id += ne00 * ir0;
  5650. for (int i01 = ir0; i01 < ir1; i01++) {
  5651. for (int i00 = 0; i00 < ne00; i00++) {
  5652. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5653. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5654. id++;
  5655. }
  5656. }
  5657. id += ne00 * (ne01 - ir1);
  5658. }
  5659. }
  5660. } else if (dst->type == GGML_TYPE_F16) {
  5661. size_t id = 0;
  5662. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5663. for (int i03 = 0; i03 < ne03; i03++) {
  5664. for (int i02 = 0; i02 < ne02; i02++) {
  5665. id += ne00 * ir0;
  5666. for (int i01 = ir0; i01 < ir1; i01++) {
  5667. for (int i00 = 0; i00 < ne00; i00++) {
  5668. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5669. dst_ptr[id] = *src0_ptr;
  5670. id++;
  5671. }
  5672. }
  5673. id += ne00 * (ne01 - ir1);
  5674. }
  5675. }
  5676. } else {
  5677. GGML_ASSERT(false); // TODO: implement
  5678. }
  5679. }
  5680. return;
  5681. }
  5682. // dst counters
  5683. int64_t i10 = 0;
  5684. int64_t i11 = 0;
  5685. int64_t i12 = 0;
  5686. int64_t i13 = 0;
  5687. if (dst->type == GGML_TYPE_F16) {
  5688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5690. i10 += ne00 * ir0;
  5691. while (i10 >= ne0) {
  5692. i10 -= ne0;
  5693. if (++i11 == ne1) {
  5694. i11 = 0;
  5695. if (++i12 == ne2) {
  5696. i12 = 0;
  5697. if (++i13 == ne3) {
  5698. i13 = 0;
  5699. }
  5700. }
  5701. }
  5702. }
  5703. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5704. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5705. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5706. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5707. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5708. if (++i10 == ne00) {
  5709. i10 = 0;
  5710. if (++i11 == ne01) {
  5711. i11 = 0;
  5712. if (++i12 == ne02) {
  5713. i12 = 0;
  5714. if (++i13 == ne03) {
  5715. i13 = 0;
  5716. }
  5717. }
  5718. }
  5719. }
  5720. }
  5721. }
  5722. i10 += ne00 * (ne01 - ir1);
  5723. while (i10 >= ne0) {
  5724. i10 -= ne0;
  5725. if (++i11 == ne1) {
  5726. i11 = 0;
  5727. if (++i12 == ne2) {
  5728. i12 = 0;
  5729. if (++i13 == ne3) {
  5730. i13 = 0;
  5731. }
  5732. }
  5733. }
  5734. }
  5735. }
  5736. }
  5737. } else if (dst->type == GGML_TYPE_F32) {
  5738. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5739. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5740. i10 += ne00 * ir0;
  5741. while (i10 >= ne0) {
  5742. i10 -= ne0;
  5743. if (++i11 == ne1) {
  5744. i11 = 0;
  5745. if (++i12 == ne2) {
  5746. i12 = 0;
  5747. if (++i13 == ne3) {
  5748. i13 = 0;
  5749. }
  5750. }
  5751. }
  5752. }
  5753. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5754. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5755. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5756. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5757. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5758. if (++i10 == ne0) {
  5759. i10 = 0;
  5760. if (++i11 == ne1) {
  5761. i11 = 0;
  5762. if (++i12 == ne2) {
  5763. i12 = 0;
  5764. if (++i13 == ne3) {
  5765. i13 = 0;
  5766. }
  5767. }
  5768. }
  5769. }
  5770. }
  5771. }
  5772. i10 += ne00 * (ne01 - ir1);
  5773. while (i10 >= ne0) {
  5774. i10 -= ne0;
  5775. if (++i11 == ne1) {
  5776. i11 = 0;
  5777. if (++i12 == ne2) {
  5778. i12 = 0;
  5779. if (++i13 == ne3) {
  5780. i13 = 0;
  5781. }
  5782. }
  5783. }
  5784. }
  5785. }
  5786. }
  5787. } else {
  5788. GGML_ASSERT(false); // TODO: implement
  5789. }
  5790. }
  5791. static void ggml_compute_forward_dup_f32(
  5792. const struct ggml_compute_params * params,
  5793. struct ggml_tensor * dst) {
  5794. const struct ggml_tensor * src0 = dst->src[0];
  5795. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5797. return;
  5798. }
  5799. GGML_TENSOR_UNARY_OP_LOCALS
  5800. const int ith = params->ith; // thread index
  5801. const int nth = params->nth; // number of threads
  5802. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5803. ggml_compute_forward_dup_same_cont(params, dst);
  5804. return;
  5805. }
  5806. // parallelize by rows
  5807. const int nr = ne01;
  5808. // number of rows per thread
  5809. const int dr = (nr + nth - 1) / nth;
  5810. // row range for this thread
  5811. const int ir0 = dr * ith;
  5812. const int ir1 = MIN(ir0 + dr, nr);
  5813. if (src0->type == dst->type &&
  5814. ne00 == ne0 &&
  5815. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5816. // copy by rows
  5817. const size_t rs = ne00*nb00;
  5818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5820. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5821. memcpy(
  5822. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5823. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5824. rs);
  5825. }
  5826. }
  5827. }
  5828. return;
  5829. }
  5830. if (ggml_is_contiguous(dst)) {
  5831. // TODO: simplify
  5832. if (nb00 == sizeof(float)) {
  5833. if (dst->type == GGML_TYPE_F32) {
  5834. size_t id = 0;
  5835. const size_t rs = ne00 * nb00;
  5836. char * dst_ptr = (char *) dst->data;
  5837. for (int i03 = 0; i03 < ne03; i03++) {
  5838. for (int i02 = 0; i02 < ne02; i02++) {
  5839. id += rs * ir0;
  5840. for (int i01 = ir0; i01 < ir1; i01++) {
  5841. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5842. memcpy(dst_ptr + id, src0_ptr, rs);
  5843. id += rs;
  5844. }
  5845. id += rs * (ne01 - ir1);
  5846. }
  5847. }
  5848. } else if (type_traits[dst->type].from_float) {
  5849. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5850. size_t id = 0;
  5851. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5852. char * dst_ptr = (char *) dst->data;
  5853. for (int i03 = 0; i03 < ne03; i03++) {
  5854. for (int i02 = 0; i02 < ne02; i02++) {
  5855. id += rs * ir0;
  5856. for (int i01 = ir0; i01 < ir1; i01++) {
  5857. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5858. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5859. id += rs;
  5860. }
  5861. id += rs * (ne01 - ir1);
  5862. }
  5863. }
  5864. } else {
  5865. GGML_ASSERT(false); // TODO: implement
  5866. }
  5867. } else {
  5868. //printf("%s: this is not optimal - fix me\n", __func__);
  5869. if (dst->type == GGML_TYPE_F32) {
  5870. size_t id = 0;
  5871. float * dst_ptr = (float *) dst->data;
  5872. for (int i03 = 0; i03 < ne03; i03++) {
  5873. for (int i02 = 0; i02 < ne02; i02++) {
  5874. id += ne00 * ir0;
  5875. for (int i01 = ir0; i01 < ir1; i01++) {
  5876. for (int i00 = 0; i00 < ne00; i00++) {
  5877. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5878. dst_ptr[id] = *src0_ptr;
  5879. id++;
  5880. }
  5881. }
  5882. id += ne00 * (ne01 - ir1);
  5883. }
  5884. }
  5885. } else if (dst->type == GGML_TYPE_F16) {
  5886. size_t id = 0;
  5887. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5888. for (int i03 = 0; i03 < ne03; i03++) {
  5889. for (int i02 = 0; i02 < ne02; i02++) {
  5890. id += ne00 * ir0;
  5891. for (int i01 = ir0; i01 < ir1; i01++) {
  5892. for (int i00 = 0; i00 < ne00; i00++) {
  5893. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5894. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5895. id++;
  5896. }
  5897. }
  5898. id += ne00 * (ne01 - ir1);
  5899. }
  5900. }
  5901. } else {
  5902. GGML_ASSERT(false); // TODO: implement
  5903. }
  5904. }
  5905. return;
  5906. }
  5907. // dst counters
  5908. int64_t i10 = 0;
  5909. int64_t i11 = 0;
  5910. int64_t i12 = 0;
  5911. int64_t i13 = 0;
  5912. if (dst->type == GGML_TYPE_F32) {
  5913. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5914. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5915. i10 += ne00 * ir0;
  5916. while (i10 >= ne0) {
  5917. i10 -= ne0;
  5918. if (++i11 == ne1) {
  5919. i11 = 0;
  5920. if (++i12 == ne2) {
  5921. i12 = 0;
  5922. if (++i13 == ne3) {
  5923. i13 = 0;
  5924. }
  5925. }
  5926. }
  5927. }
  5928. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5929. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5930. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5931. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5932. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5933. if (++i10 == ne0) {
  5934. i10 = 0;
  5935. if (++i11 == ne1) {
  5936. i11 = 0;
  5937. if (++i12 == ne2) {
  5938. i12 = 0;
  5939. if (++i13 == ne3) {
  5940. i13 = 0;
  5941. }
  5942. }
  5943. }
  5944. }
  5945. }
  5946. }
  5947. i10 += ne00 * (ne01 - ir1);
  5948. while (i10 >= ne0) {
  5949. i10 -= ne0;
  5950. if (++i11 == ne1) {
  5951. i11 = 0;
  5952. if (++i12 == ne2) {
  5953. i12 = 0;
  5954. if (++i13 == ne3) {
  5955. i13 = 0;
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. } else if (dst->type == GGML_TYPE_F16) {
  5963. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5964. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5965. i10 += ne00 * ir0;
  5966. while (i10 >= ne0) {
  5967. i10 -= ne0;
  5968. if (++i11 == ne1) {
  5969. i11 = 0;
  5970. if (++i12 == ne2) {
  5971. i12 = 0;
  5972. if (++i13 == ne3) {
  5973. i13 = 0;
  5974. }
  5975. }
  5976. }
  5977. }
  5978. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5979. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5980. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5981. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5982. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5983. if (++i10 == ne0) {
  5984. i10 = 0;
  5985. if (++i11 == ne1) {
  5986. i11 = 0;
  5987. if (++i12 == ne2) {
  5988. i12 = 0;
  5989. if (++i13 == ne3) {
  5990. i13 = 0;
  5991. }
  5992. }
  5993. }
  5994. }
  5995. }
  5996. }
  5997. i10 += ne00 * (ne01 - ir1);
  5998. while (i10 >= ne0) {
  5999. i10 -= ne0;
  6000. if (++i11 == ne1) {
  6001. i11 = 0;
  6002. if (++i12 == ne2) {
  6003. i12 = 0;
  6004. if (++i13 == ne3) {
  6005. i13 = 0;
  6006. }
  6007. }
  6008. }
  6009. }
  6010. }
  6011. }
  6012. } else {
  6013. GGML_ASSERT(false); // TODO: implement
  6014. }
  6015. }
  6016. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6017. static void ggml_compute_forward_dup_bytes(
  6018. const struct ggml_compute_params * params,
  6019. struct ggml_tensor * dst) {
  6020. const struct ggml_tensor * src0 = dst->src[0];
  6021. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6022. GGML_ASSERT(src0->type == dst->type);
  6023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6024. return;
  6025. }
  6026. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6027. ggml_compute_forward_dup_same_cont(params, dst);
  6028. return;
  6029. }
  6030. GGML_TENSOR_UNARY_OP_LOCALS;
  6031. const size_t type_size = ggml_type_size(src0->type);
  6032. const int ith = params->ith; // thread index
  6033. const int nth = params->nth; // number of threads
  6034. // parallelize by rows
  6035. const int nr = ne01;
  6036. // number of rows per thread
  6037. const int dr = (nr + nth - 1) / nth;
  6038. // row range for this thread
  6039. const int ir0 = dr * ith;
  6040. const int ir1 = MIN(ir0 + dr, nr);
  6041. if (src0->type == dst->type &&
  6042. ne00 == ne0 &&
  6043. nb00 == type_size && nb0 == type_size) {
  6044. // copy by rows
  6045. const size_t rs = ne00 * type_size;
  6046. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6047. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6048. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6049. memcpy(
  6050. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6051. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6052. rs);
  6053. }
  6054. }
  6055. }
  6056. return;
  6057. }
  6058. if (ggml_is_contiguous(dst)) {
  6059. size_t id = 0;
  6060. char * dst_ptr = (char *) dst->data;
  6061. const size_t rs = ne00 * type_size;
  6062. if (nb00 == type_size) {
  6063. // src0 is contigous on first dimension, copy by rows
  6064. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6065. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6066. id += rs * ir0;
  6067. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6068. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6069. memcpy(dst_ptr + id, src0_ptr, rs);
  6070. id += rs;
  6071. }
  6072. id += rs * (ne01 - ir1);
  6073. }
  6074. }
  6075. } else {
  6076. //printf("%s: this is not optimal - fix me\n", __func__);
  6077. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6078. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6079. id += rs * ir0;
  6080. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6081. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6082. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6083. memcpy(dst_ptr + id, src0_ptr, type_size);
  6084. id += type_size;
  6085. }
  6086. }
  6087. id += rs * (ne01 - ir1);
  6088. }
  6089. }
  6090. }
  6091. return;
  6092. }
  6093. // dst counters
  6094. int64_t i10 = 0;
  6095. int64_t i11 = 0;
  6096. int64_t i12 = 0;
  6097. int64_t i13 = 0;
  6098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6100. i10 += ne00 * ir0;
  6101. while (i10 >= ne0) {
  6102. i10 -= ne0;
  6103. if (++i11 == ne1) {
  6104. i11 = 0;
  6105. if (++i12 == ne2) {
  6106. i12 = 0;
  6107. if (++i13 == ne3) {
  6108. i13 = 0;
  6109. }
  6110. }
  6111. }
  6112. }
  6113. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6115. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6116. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6117. memcpy(dst_ptr, src0_ptr, type_size);
  6118. if (++i10 == ne0) {
  6119. i10 = 0;
  6120. if (++i11 == ne1) {
  6121. i11 = 0;
  6122. if (++i12 == ne2) {
  6123. i12 = 0;
  6124. if (++i13 == ne3) {
  6125. i13 = 0;
  6126. }
  6127. }
  6128. }
  6129. }
  6130. }
  6131. }
  6132. i10 += ne00 * (ne01 - ir1);
  6133. while (i10 >= ne0) {
  6134. i10 -= ne0;
  6135. if (++i11 == ne1) {
  6136. i11 = 0;
  6137. if (++i12 == ne2) {
  6138. i12 = 0;
  6139. if (++i13 == ne3) {
  6140. i13 = 0;
  6141. }
  6142. }
  6143. }
  6144. }
  6145. }
  6146. }
  6147. }
  6148. static void ggml_compute_forward_dup(
  6149. const struct ggml_compute_params * params,
  6150. struct ggml_tensor * dst) {
  6151. const struct ggml_tensor * src0 = dst->src[0];
  6152. if (src0->type == dst->type) {
  6153. ggml_compute_forward_dup_bytes(params, dst);
  6154. return;
  6155. }
  6156. switch (src0->type) {
  6157. case GGML_TYPE_F16:
  6158. {
  6159. ggml_compute_forward_dup_f16(params, dst);
  6160. } break;
  6161. case GGML_TYPE_F32:
  6162. {
  6163. ggml_compute_forward_dup_f32(params, dst);
  6164. } break;
  6165. default:
  6166. {
  6167. GGML_ASSERT(false);
  6168. } break;
  6169. }
  6170. }
  6171. // ggml_compute_forward_add
  6172. static void ggml_compute_forward_add_f32(
  6173. const struct ggml_compute_params * params,
  6174. struct ggml_tensor * dst) {
  6175. const struct ggml_tensor * src0 = dst->src[0];
  6176. const struct ggml_tensor * src1 = dst->src[1];
  6177. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6179. return;
  6180. }
  6181. const int ith = params->ith;
  6182. const int nth = params->nth;
  6183. #ifdef GGML_USE_CLBLAST
  6184. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6185. // TODO: OpenCL kernel support full broadcast
  6186. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6187. if (ith == 0) {
  6188. ggml_cl_add(src0, src1, dst);
  6189. }
  6190. return;
  6191. }
  6192. #endif
  6193. const int nr = ggml_nrows(src0);
  6194. GGML_TENSOR_BINARY_OP_LOCALS
  6195. GGML_ASSERT( nb0 == sizeof(float));
  6196. GGML_ASSERT(nb00 == sizeof(float));
  6197. // rows per thread
  6198. const int dr = (nr + nth - 1)/nth;
  6199. // row range for this thread
  6200. const int ir0 = dr*ith;
  6201. const int ir1 = MIN(ir0 + dr, nr);
  6202. if (nb10 == sizeof(float)) {
  6203. for (int ir = ir0; ir < ir1; ++ir) {
  6204. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6205. const int64_t i03 = ir/(ne02*ne01);
  6206. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6207. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6208. const int64_t i13 = i03 % ne13;
  6209. const int64_t i12 = i02 % ne12;
  6210. const int64_t i11 = i01 % ne11;
  6211. const int64_t nr0 = ne00 / ne10;
  6212. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6213. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6214. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6215. for (int64_t r = 0; r < nr0; ++r) {
  6216. #ifdef GGML_USE_ACCELERATE
  6217. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6218. #else
  6219. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6220. #endif
  6221. }
  6222. }
  6223. } else {
  6224. // src1 is not contiguous
  6225. for (int ir = ir0; ir < ir1; ++ir) {
  6226. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6227. const int64_t i03 = ir/(ne02*ne01);
  6228. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6229. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6230. const int64_t i13 = i03 % ne13;
  6231. const int64_t i12 = i02 % ne12;
  6232. const int64_t i11 = i01 % ne11;
  6233. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6234. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6235. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6236. const int64_t i10 = i0 % ne10;
  6237. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6238. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6239. }
  6240. }
  6241. }
  6242. }
  6243. static void ggml_compute_forward_add_f16_f32(
  6244. const struct ggml_compute_params * params,
  6245. struct ggml_tensor * dst) {
  6246. const struct ggml_tensor * src0 = dst->src[0];
  6247. const struct ggml_tensor * src1 = dst->src[1];
  6248. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6250. return;
  6251. }
  6252. const int ith = params->ith;
  6253. const int nth = params->nth;
  6254. const int nr = ggml_nrows(src0);
  6255. GGML_TENSOR_BINARY_OP_LOCALS
  6256. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6257. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6258. if (dst->type == GGML_TYPE_F32) {
  6259. GGML_ASSERT( nb0 == sizeof(float));
  6260. }
  6261. else {
  6262. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6263. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6264. }
  6265. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6266. // rows per thread
  6267. const int dr = (nr + nth - 1)/nth;
  6268. // row range for this thread
  6269. const int ir0 = dr*ith;
  6270. const int ir1 = MIN(ir0 + dr, nr);
  6271. if (nb10 == sizeof(float)) {
  6272. if (dst->type == GGML_TYPE_F16) {
  6273. for (int ir = ir0; ir < ir1; ++ir) {
  6274. // src0, src1 and dst are same shape => same indices
  6275. const int i3 = ir/(ne2*ne1);
  6276. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6277. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6278. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6279. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6280. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6281. for (int i = 0; i < ne0; i++) {
  6282. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6283. }
  6284. }
  6285. } else {
  6286. for (int ir = ir0; ir < ir1; ++ir) {
  6287. // src0, src1 and dst are same shape => same indices
  6288. const int i3 = ir/(ne2*ne1);
  6289. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6290. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6291. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6292. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6293. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6294. for (int i = 0; i < ne0; i++) {
  6295. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6296. }
  6297. }
  6298. }
  6299. }
  6300. else {
  6301. // src1 is not contiguous
  6302. GGML_ASSERT(false);
  6303. }
  6304. }
  6305. static void ggml_compute_forward_add_f16_f16(
  6306. const struct ggml_compute_params * params,
  6307. struct ggml_tensor * dst) {
  6308. const struct ggml_tensor * src0 = dst->src[0];
  6309. const struct ggml_tensor * src1 = dst->src[1];
  6310. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6311. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6312. return;
  6313. }
  6314. const int ith = params->ith;
  6315. const int nth = params->nth;
  6316. const int nr = ggml_nrows(src0);
  6317. GGML_TENSOR_BINARY_OP_LOCALS
  6318. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6319. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6320. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6321. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6322. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6323. // rows per thread
  6324. const int dr = (nr + nth - 1)/nth;
  6325. // row range for this thread
  6326. const int ir0 = dr*ith;
  6327. const int ir1 = MIN(ir0 + dr, nr);
  6328. if (nb10 == sizeof(ggml_fp16_t)) {
  6329. for (int ir = ir0; ir < ir1; ++ir) {
  6330. // src0, src1 and dst are same shape => same indices
  6331. const int i3 = ir/(ne2*ne1);
  6332. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6333. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6334. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6335. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6336. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6337. for (int i = 0; i < ne0; i++) {
  6338. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6339. }
  6340. }
  6341. }
  6342. else {
  6343. // src1 is not contiguous
  6344. GGML_ASSERT(false);
  6345. }
  6346. }
  6347. static void ggml_compute_forward_add_q_f32(
  6348. const struct ggml_compute_params * params,
  6349. struct ggml_tensor * dst) {
  6350. const struct ggml_tensor * src0 = dst->src[0];
  6351. const struct ggml_tensor * src1 = dst->src[1];
  6352. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6353. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6354. return;
  6355. }
  6356. const int nr = ggml_nrows(src0);
  6357. GGML_TENSOR_BINARY_OP_LOCALS
  6358. const int ith = params->ith;
  6359. const int nth = params->nth;
  6360. const enum ggml_type type = src0->type;
  6361. const enum ggml_type dtype = dst->type;
  6362. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6363. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6364. // we don't support permuted src0 or src1
  6365. GGML_ASSERT(nb00 == ggml_type_size(type));
  6366. GGML_ASSERT(nb10 == sizeof(float));
  6367. // dst cannot be transposed or permuted
  6368. GGML_ASSERT(nb0 <= nb1);
  6369. GGML_ASSERT(nb1 <= nb2);
  6370. GGML_ASSERT(nb2 <= nb3);
  6371. GGML_ASSERT(ggml_is_quantized(src0->type));
  6372. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6373. // rows per thread
  6374. const int dr = (nr + nth - 1)/nth;
  6375. // row range for this thread
  6376. const int ir0 = dr*ith;
  6377. const int ir1 = MIN(ir0 + dr, nr);
  6378. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6379. for (int ir = ir0; ir < ir1; ++ir) {
  6380. // src0 indices
  6381. const int i03 = ir/(ne02*ne01);
  6382. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6383. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6384. // src1 and dst are same shape as src0 => same indices
  6385. const int i13 = i03;
  6386. const int i12 = i02;
  6387. const int i11 = i01;
  6388. const int i3 = i03;
  6389. const int i2 = i02;
  6390. const int i1 = i01;
  6391. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6392. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6393. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6394. assert(ne00 % 32 == 0);
  6395. // unquantize row from src0 to temp buffer
  6396. dequantize_row_q(src0_row, wdata, ne00);
  6397. // add src1
  6398. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6399. // quantize row to dst
  6400. if (quantize_row_q != NULL) {
  6401. quantize_row_q(wdata, dst_row, ne00);
  6402. } else {
  6403. memcpy(dst_row, wdata, ne0*nb0);
  6404. }
  6405. }
  6406. }
  6407. static void ggml_compute_forward_add(
  6408. const struct ggml_compute_params * params,
  6409. struct ggml_tensor * dst) {
  6410. const struct ggml_tensor * src0 = dst->src[0];
  6411. const struct ggml_tensor * src1 = dst->src[1];
  6412. switch (src0->type) {
  6413. case GGML_TYPE_F32:
  6414. {
  6415. if (src1->type == GGML_TYPE_F32) {
  6416. ggml_compute_forward_add_f32(params, dst);
  6417. }
  6418. else {
  6419. GGML_ASSERT(false);
  6420. }
  6421. } break;
  6422. case GGML_TYPE_F16:
  6423. {
  6424. if (src1->type == GGML_TYPE_F16) {
  6425. ggml_compute_forward_add_f16_f16(params, dst);
  6426. }
  6427. else if (src1->type == GGML_TYPE_F32) {
  6428. ggml_compute_forward_add_f16_f32(params, dst);
  6429. }
  6430. else {
  6431. GGML_ASSERT(false);
  6432. }
  6433. } break;
  6434. case GGML_TYPE_Q4_0:
  6435. case GGML_TYPE_Q4_1:
  6436. case GGML_TYPE_Q5_0:
  6437. case GGML_TYPE_Q5_1:
  6438. case GGML_TYPE_Q8_0:
  6439. case GGML_TYPE_Q2_K:
  6440. case GGML_TYPE_Q3_K:
  6441. case GGML_TYPE_Q4_K:
  6442. case GGML_TYPE_Q5_K:
  6443. case GGML_TYPE_Q6_K:
  6444. case GGML_TYPE_IQ2_XXS:
  6445. case GGML_TYPE_IQ2_XS:
  6446. case GGML_TYPE_IQ3_XXS:
  6447. case GGML_TYPE_IQ1_S:
  6448. case GGML_TYPE_IQ4_NL:
  6449. case GGML_TYPE_IQ4_XS:
  6450. case GGML_TYPE_IQ3_S:
  6451. case GGML_TYPE_IQ2_S:
  6452. {
  6453. ggml_compute_forward_add_q_f32(params, dst);
  6454. } break;
  6455. default:
  6456. {
  6457. GGML_ASSERT(false);
  6458. } break;
  6459. }
  6460. }
  6461. // ggml_compute_forward_add1
  6462. static void ggml_compute_forward_add1_f32(
  6463. const struct ggml_compute_params * params,
  6464. struct ggml_tensor * dst) {
  6465. const struct ggml_tensor * src0 = dst->src[0];
  6466. const struct ggml_tensor * src1 = dst->src[1];
  6467. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6468. GGML_ASSERT(ggml_is_scalar(src1));
  6469. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6470. return;
  6471. }
  6472. const int ith = params->ith;
  6473. const int nth = params->nth;
  6474. const int nr = ggml_nrows(src0);
  6475. GGML_TENSOR_UNARY_OP_LOCALS
  6476. GGML_ASSERT( nb0 == sizeof(float));
  6477. GGML_ASSERT(nb00 == sizeof(float));
  6478. // rows per thread
  6479. const int dr = (nr + nth - 1)/nth;
  6480. // row range for this thread
  6481. const int ir0 = dr*ith;
  6482. const int ir1 = MIN(ir0 + dr, nr);
  6483. for (int ir = ir0; ir < ir1; ++ir) {
  6484. // src0 and dst are same shape => same indices
  6485. const int i3 = ir/(ne2*ne1);
  6486. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6487. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6488. #ifdef GGML_USE_ACCELERATE
  6489. UNUSED(ggml_vec_add1_f32);
  6490. vDSP_vadd(
  6491. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6492. (float *) ((char *) src1->data), 0,
  6493. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6494. ne0);
  6495. #else
  6496. ggml_vec_add1_f32(ne0,
  6497. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6498. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6499. *(float *) src1->data);
  6500. #endif
  6501. }
  6502. }
  6503. static void ggml_compute_forward_add1_f16_f32(
  6504. const struct ggml_compute_params * params,
  6505. struct ggml_tensor * dst) {
  6506. const struct ggml_tensor * src0 = dst->src[0];
  6507. const struct ggml_tensor * src1 = dst->src[1];
  6508. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6509. GGML_ASSERT(ggml_is_scalar(src1));
  6510. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6511. return;
  6512. }
  6513. // scalar to add
  6514. const float v = *(float *) src1->data;
  6515. const int ith = params->ith;
  6516. const int nth = params->nth;
  6517. const int nr = ggml_nrows(src0);
  6518. GGML_TENSOR_UNARY_OP_LOCALS
  6519. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6520. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6521. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6522. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6523. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6524. // rows per thread
  6525. const int dr = (nr + nth - 1)/nth;
  6526. // row range for this thread
  6527. const int ir0 = dr*ith;
  6528. const int ir1 = MIN(ir0 + dr, nr);
  6529. for (int ir = ir0; ir < ir1; ++ir) {
  6530. // src0 and dst are same shape => same indices
  6531. const int i3 = ir/(ne2*ne1);
  6532. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6533. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6534. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6535. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6536. for (int i = 0; i < ne0; i++) {
  6537. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6538. }
  6539. }
  6540. }
  6541. static void ggml_compute_forward_add1_f16_f16(
  6542. const struct ggml_compute_params * params,
  6543. struct ggml_tensor * dst) {
  6544. const struct ggml_tensor * src0 = dst->src[0];
  6545. const struct ggml_tensor * src1 = dst->src[1];
  6546. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6547. GGML_ASSERT(ggml_is_scalar(src1));
  6548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6549. return;
  6550. }
  6551. // scalar to add
  6552. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6553. const int ith = params->ith;
  6554. const int nth = params->nth;
  6555. const int nr = ggml_nrows(src0);
  6556. GGML_TENSOR_UNARY_OP_LOCALS
  6557. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6558. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6559. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6560. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6561. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6562. // rows per thread
  6563. const int dr = (nr + nth - 1)/nth;
  6564. // row range for this thread
  6565. const int ir0 = dr*ith;
  6566. const int ir1 = MIN(ir0 + dr, nr);
  6567. for (int ir = ir0; ir < ir1; ++ir) {
  6568. // src0 and dst are same shape => same indices
  6569. const int i3 = ir/(ne2*ne1);
  6570. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6571. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6572. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6573. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6574. for (int i = 0; i < ne0; i++) {
  6575. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6576. }
  6577. }
  6578. }
  6579. static void ggml_compute_forward_add1_q_f32(
  6580. const struct ggml_compute_params * params,
  6581. struct ggml_tensor * dst) {
  6582. const struct ggml_tensor * src0 = dst->src[0];
  6583. const struct ggml_tensor * src1 = dst->src[1];
  6584. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6585. GGML_ASSERT(ggml_is_scalar(src1));
  6586. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6587. return;
  6588. }
  6589. // scalar to add
  6590. const float v = *(float *) src1->data;
  6591. const int ith = params->ith;
  6592. const int nth = params->nth;
  6593. const int nr = ggml_nrows(src0);
  6594. GGML_TENSOR_UNARY_OP_LOCALS
  6595. const enum ggml_type type = src0->type;
  6596. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6597. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6598. // we don't support permuted src0
  6599. GGML_ASSERT(nb00 == ggml_type_size(type));
  6600. // dst cannot be transposed or permuted
  6601. GGML_ASSERT(nb0 <= nb1);
  6602. GGML_ASSERT(nb1 <= nb2);
  6603. GGML_ASSERT(nb2 <= nb3);
  6604. GGML_ASSERT(ggml_is_quantized(src0->type));
  6605. GGML_ASSERT(dst->type == src0->type);
  6606. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6607. // rows per thread
  6608. const int dr = (nr + nth - 1)/nth;
  6609. // row range for this thread
  6610. const int ir0 = dr*ith;
  6611. const int ir1 = MIN(ir0 + dr, nr);
  6612. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6613. for (int ir = ir0; ir < ir1; ++ir) {
  6614. // src0 and dst are same shape => same indices
  6615. const int i3 = ir/(ne2*ne1);
  6616. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6617. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6618. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6619. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6620. assert(ne0 % 32 == 0);
  6621. // unquantize row from src0 to temp buffer
  6622. dequantize_row_q(src0_row, wdata, ne0);
  6623. // add src1
  6624. ggml_vec_acc1_f32(ne0, wdata, v);
  6625. // quantize row to dst
  6626. quantize_row_q(wdata, dst_row, ne0);
  6627. }
  6628. }
  6629. static void ggml_compute_forward_add1(
  6630. const struct ggml_compute_params * params,
  6631. struct ggml_tensor * dst) {
  6632. const struct ggml_tensor * src0 = dst->src[0];
  6633. const struct ggml_tensor * src1 = dst->src[1];
  6634. switch (src0->type) {
  6635. case GGML_TYPE_F32:
  6636. {
  6637. ggml_compute_forward_add1_f32(params, dst);
  6638. } break;
  6639. case GGML_TYPE_F16:
  6640. {
  6641. if (src1->type == GGML_TYPE_F16) {
  6642. ggml_compute_forward_add1_f16_f16(params, dst);
  6643. }
  6644. else if (src1->type == GGML_TYPE_F32) {
  6645. ggml_compute_forward_add1_f16_f32(params, dst);
  6646. }
  6647. else {
  6648. GGML_ASSERT(false);
  6649. }
  6650. } break;
  6651. case GGML_TYPE_Q4_0:
  6652. case GGML_TYPE_Q4_1:
  6653. case GGML_TYPE_Q5_0:
  6654. case GGML_TYPE_Q5_1:
  6655. case GGML_TYPE_Q8_0:
  6656. case GGML_TYPE_Q8_1:
  6657. case GGML_TYPE_Q2_K:
  6658. case GGML_TYPE_Q3_K:
  6659. case GGML_TYPE_Q4_K:
  6660. case GGML_TYPE_Q5_K:
  6661. case GGML_TYPE_Q6_K:
  6662. case GGML_TYPE_IQ2_XXS:
  6663. case GGML_TYPE_IQ2_XS:
  6664. case GGML_TYPE_IQ3_XXS:
  6665. case GGML_TYPE_IQ1_S:
  6666. case GGML_TYPE_IQ4_NL:
  6667. case GGML_TYPE_IQ4_XS:
  6668. case GGML_TYPE_IQ3_S:
  6669. case GGML_TYPE_IQ2_S:
  6670. {
  6671. ggml_compute_forward_add1_q_f32(params, dst);
  6672. } break;
  6673. default:
  6674. {
  6675. GGML_ASSERT(false);
  6676. } break;
  6677. }
  6678. }
  6679. // ggml_compute_forward_acc
  6680. static void ggml_compute_forward_acc_f32(
  6681. const struct ggml_compute_params * params,
  6682. struct ggml_tensor * dst) {
  6683. const struct ggml_tensor * src0 = dst->src[0];
  6684. const struct ggml_tensor * src1 = dst->src[1];
  6685. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6686. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6687. // view src0 and dst with these strides and data offset inbytes during acc
  6688. // nb0 is implicitly element_size because src0 and dst are contiguous
  6689. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6690. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6691. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6692. size_t offset = ((int32_t *) dst->op_params)[3];
  6693. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6694. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6695. if (params->ith != 0) {
  6696. return;
  6697. }
  6698. // memcpy needs to be synchronized across threads to avoid race conditions.
  6699. // => do it in INIT phase
  6700. memcpy(
  6701. ((char *) dst->data),
  6702. ((char *) src0->data),
  6703. ggml_nbytes(dst));
  6704. }
  6705. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6706. return;
  6707. }
  6708. const int ith = params->ith;
  6709. const int nth = params->nth;
  6710. const int nr = ggml_nrows(src1);
  6711. const int nc = src1->ne[0];
  6712. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6713. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6714. // src0 and dst as viewed during acc
  6715. const size_t nb0 = ggml_element_size(src0);
  6716. const size_t nb00 = nb0;
  6717. const size_t nb01 = nb1;
  6718. const size_t nb02 = nb2;
  6719. const size_t nb03 = nb3;
  6720. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6721. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6722. GGML_ASSERT(nb10 == sizeof(float));
  6723. // rows per thread
  6724. const int dr = (nr + nth - 1)/nth;
  6725. // row range for this thread
  6726. const int ir0 = dr*ith;
  6727. const int ir1 = MIN(ir0 + dr, nr);
  6728. for (int ir = ir0; ir < ir1; ++ir) {
  6729. // src0 and dst are viewed with shape of src1 and offset
  6730. // => same indices
  6731. const int i3 = ir/(ne12*ne11);
  6732. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6733. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6734. #ifdef GGML_USE_ACCELERATE
  6735. vDSP_vadd(
  6736. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6737. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6738. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6739. #else
  6740. ggml_vec_add_f32(nc,
  6741. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6742. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6743. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6744. #endif
  6745. }
  6746. }
  6747. static void ggml_compute_forward_acc(
  6748. const struct ggml_compute_params * params,
  6749. struct ggml_tensor * dst) {
  6750. const struct ggml_tensor * src0 = dst->src[0];
  6751. switch (src0->type) {
  6752. case GGML_TYPE_F32:
  6753. {
  6754. ggml_compute_forward_acc_f32(params, dst);
  6755. } break;
  6756. case GGML_TYPE_F16:
  6757. case GGML_TYPE_Q4_0:
  6758. case GGML_TYPE_Q4_1:
  6759. case GGML_TYPE_Q5_0:
  6760. case GGML_TYPE_Q5_1:
  6761. case GGML_TYPE_Q8_0:
  6762. case GGML_TYPE_Q8_1:
  6763. case GGML_TYPE_Q2_K:
  6764. case GGML_TYPE_Q3_K:
  6765. case GGML_TYPE_Q4_K:
  6766. case GGML_TYPE_Q5_K:
  6767. case GGML_TYPE_Q6_K:
  6768. case GGML_TYPE_IQ2_XXS:
  6769. case GGML_TYPE_IQ2_XS:
  6770. case GGML_TYPE_IQ3_XXS:
  6771. case GGML_TYPE_IQ1_S:
  6772. case GGML_TYPE_IQ4_NL:
  6773. case GGML_TYPE_IQ4_XS:
  6774. case GGML_TYPE_IQ3_S:
  6775. case GGML_TYPE_IQ2_S:
  6776. default:
  6777. {
  6778. GGML_ASSERT(false);
  6779. } break;
  6780. }
  6781. }
  6782. // ggml_compute_forward_sub
  6783. static void ggml_compute_forward_sub_f32(
  6784. const struct ggml_compute_params * params,
  6785. struct ggml_tensor * dst) {
  6786. const struct ggml_tensor * src0 = dst->src[0];
  6787. const struct ggml_tensor * src1 = dst->src[1];
  6788. assert(params->ith == 0);
  6789. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6791. return;
  6792. }
  6793. const int nr = ggml_nrows(src0);
  6794. GGML_TENSOR_BINARY_OP_LOCALS
  6795. GGML_ASSERT( nb0 == sizeof(float));
  6796. GGML_ASSERT(nb00 == sizeof(float));
  6797. if (nb10 == sizeof(float)) {
  6798. for (int ir = 0; ir < nr; ++ir) {
  6799. // src0, src1 and dst are same shape => same indices
  6800. const int i3 = ir/(ne2*ne1);
  6801. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6802. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6803. #ifdef GGML_USE_ACCELERATE
  6804. vDSP_vsub(
  6805. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6806. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6807. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6808. ne0);
  6809. #else
  6810. ggml_vec_sub_f32(ne0,
  6811. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6812. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6813. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6814. #endif
  6815. // }
  6816. // }
  6817. }
  6818. } else {
  6819. // src1 is not contiguous
  6820. for (int ir = 0; ir < nr; ++ir) {
  6821. // src0, src1 and dst are same shape => same indices
  6822. const int i3 = ir/(ne2*ne1);
  6823. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6824. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6825. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6826. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6827. for (int i0 = 0; i0 < ne0; i0++) {
  6828. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6829. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6830. }
  6831. }
  6832. }
  6833. }
  6834. static void ggml_compute_forward_sub(
  6835. const struct ggml_compute_params * params,
  6836. struct ggml_tensor * dst) {
  6837. const struct ggml_tensor * src0 = dst->src[0];
  6838. switch (src0->type) {
  6839. case GGML_TYPE_F32:
  6840. {
  6841. ggml_compute_forward_sub_f32(params, dst);
  6842. } break;
  6843. default:
  6844. {
  6845. GGML_ASSERT(false);
  6846. } break;
  6847. }
  6848. }
  6849. // ggml_compute_forward_mul
  6850. static void ggml_compute_forward_mul_f32(
  6851. const struct ggml_compute_params * params,
  6852. struct ggml_tensor * dst) {
  6853. const struct ggml_tensor * src0 = dst->src[0];
  6854. const struct ggml_tensor * src1 = dst->src[1];
  6855. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6856. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6857. return;
  6858. }
  6859. const int ith = params->ith;
  6860. const int nth = params->nth;
  6861. #if defined(GGML_USE_CLBLAST)
  6862. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6863. // TODO: OpenCL kernel support full broadcast
  6864. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6865. if (ith == 0) {
  6866. ggml_cl_mul(src0, src1, dst);
  6867. }
  6868. return;
  6869. }
  6870. #endif
  6871. const int64_t nr = ggml_nrows(src0);
  6872. GGML_TENSOR_BINARY_OP_LOCALS
  6873. GGML_ASSERT( nb0 == sizeof(float));
  6874. GGML_ASSERT(nb00 == sizeof(float));
  6875. if (nb10 == sizeof(float)) {
  6876. for (int64_t ir = ith; ir < nr; ir += nth) {
  6877. // src0 and dst are same shape => same indices
  6878. const int64_t i03 = ir/(ne02*ne01);
  6879. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6880. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6881. const int64_t i13 = i03 % ne13;
  6882. const int64_t i12 = i02 % ne12;
  6883. const int64_t i11 = i01 % ne11;
  6884. const int64_t nr0 = ne00 / ne10;
  6885. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6886. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6887. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6888. for (int64_t r = 0 ; r < nr0; ++r) {
  6889. #ifdef GGML_USE_ACCELERATE
  6890. UNUSED(ggml_vec_mul_f32);
  6891. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6892. #else
  6893. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6894. #endif
  6895. }
  6896. }
  6897. } else {
  6898. // src1 is not contiguous
  6899. for (int64_t ir = ith; ir < nr; ir += nth) {
  6900. // src0 and dst are same shape => same indices
  6901. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6902. const int64_t i03 = ir/(ne02*ne01);
  6903. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6904. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6905. const int64_t i13 = i03 % ne13;
  6906. const int64_t i12 = i02 % ne12;
  6907. const int64_t i11 = i01 % ne11;
  6908. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6909. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6910. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6911. const int64_t i10 = i0 % ne10;
  6912. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6913. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6914. }
  6915. }
  6916. }
  6917. }
  6918. static void ggml_compute_forward_mul(
  6919. const struct ggml_compute_params * params,
  6920. struct ggml_tensor * dst) {
  6921. const struct ggml_tensor * src0 = dst->src[0];
  6922. const struct ggml_tensor * src1 = dst->src[1];
  6923. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6924. switch (src0->type) {
  6925. case GGML_TYPE_F32:
  6926. {
  6927. ggml_compute_forward_mul_f32(params, dst);
  6928. } break;
  6929. default:
  6930. {
  6931. GGML_ASSERT(false);
  6932. } break;
  6933. }
  6934. }
  6935. // ggml_compute_forward_div
  6936. static void ggml_compute_forward_div_f32(
  6937. const struct ggml_compute_params * params,
  6938. struct ggml_tensor * dst) {
  6939. const struct ggml_tensor * src0 = dst->src[0];
  6940. const struct ggml_tensor * src1 = dst->src[1];
  6941. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6942. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6943. return;
  6944. }
  6945. const int ith = params->ith;
  6946. const int nth = params->nth;
  6947. const int64_t nr = ggml_nrows(src0);
  6948. GGML_TENSOR_BINARY_OP_LOCALS
  6949. GGML_ASSERT( nb0 == sizeof(float));
  6950. GGML_ASSERT(nb00 == sizeof(float));
  6951. if (nb10 == sizeof(float)) {
  6952. for (int64_t ir = ith; ir < nr; ir += nth) {
  6953. // src0 and dst are same shape => same indices
  6954. const int64_t i03 = ir/(ne02*ne01);
  6955. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6956. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6957. const int64_t i13 = i03 % ne13;
  6958. const int64_t i12 = i02 % ne12;
  6959. const int64_t i11 = i01 % ne11;
  6960. const int64_t nr0 = ne00 / ne10;
  6961. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6962. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6963. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6964. for (int64_t r = 0; r < nr0; ++r) {
  6965. #ifdef GGML_USE_ACCELERATE
  6966. UNUSED(ggml_vec_div_f32);
  6967. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6968. #else
  6969. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6970. #endif
  6971. }
  6972. }
  6973. } else {
  6974. // src1 is not contiguous
  6975. for (int64_t ir = ith; ir < nr; ir += nth) {
  6976. // src0 and dst are same shape => same indices
  6977. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6978. const int64_t i03 = ir/(ne02*ne01);
  6979. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6980. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6981. const int64_t i13 = i03 % ne13;
  6982. const int64_t i12 = i02 % ne12;
  6983. const int64_t i11 = i01 % ne11;
  6984. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6985. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6986. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6987. const int64_t i10 = i0 % ne10;
  6988. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6989. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6990. }
  6991. }
  6992. }
  6993. }
  6994. static void ggml_compute_forward_div(
  6995. const struct ggml_compute_params * params,
  6996. struct ggml_tensor * dst) {
  6997. const struct ggml_tensor * src0 = dst->src[0];
  6998. switch (src0->type) {
  6999. case GGML_TYPE_F32:
  7000. {
  7001. ggml_compute_forward_div_f32(params, dst);
  7002. } break;
  7003. default:
  7004. {
  7005. GGML_ASSERT(false);
  7006. } break;
  7007. }
  7008. }
  7009. // ggml_compute_forward_sqr
  7010. static void ggml_compute_forward_sqr_f32(
  7011. const struct ggml_compute_params * params,
  7012. struct ggml_tensor * dst) {
  7013. const struct ggml_tensor * src0 = dst->src[0];
  7014. assert(params->ith == 0);
  7015. assert(ggml_are_same_shape(src0, dst));
  7016. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7017. return;
  7018. }
  7019. const int n = ggml_nrows(src0);
  7020. const int nc = src0->ne[0];
  7021. assert( dst->nb[0] == sizeof(float));
  7022. assert(src0->nb[0] == sizeof(float));
  7023. for (int i = 0; i < n; i++) {
  7024. ggml_vec_sqr_f32(nc,
  7025. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7026. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7027. }
  7028. }
  7029. static void ggml_compute_forward_sqr(
  7030. const struct ggml_compute_params * params,
  7031. struct ggml_tensor * dst) {
  7032. const struct ggml_tensor * src0 = dst->src[0];
  7033. switch (src0->type) {
  7034. case GGML_TYPE_F32:
  7035. {
  7036. ggml_compute_forward_sqr_f32(params, dst);
  7037. } break;
  7038. default:
  7039. {
  7040. GGML_ASSERT(false);
  7041. } break;
  7042. }
  7043. }
  7044. // ggml_compute_forward_sqrt
  7045. static void ggml_compute_forward_sqrt_f32(
  7046. const struct ggml_compute_params * params,
  7047. struct ggml_tensor * dst) {
  7048. const struct ggml_tensor * src0 = dst->src[0];
  7049. assert(params->ith == 0);
  7050. assert(ggml_are_same_shape(src0, dst));
  7051. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7052. return;
  7053. }
  7054. const int n = ggml_nrows(src0);
  7055. const int nc = src0->ne[0];
  7056. assert( dst->nb[0] == sizeof(float));
  7057. assert(src0->nb[0] == sizeof(float));
  7058. for (int i = 0; i < n; i++) {
  7059. ggml_vec_sqrt_f32(nc,
  7060. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7061. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7062. }
  7063. }
  7064. static void ggml_compute_forward_sqrt(
  7065. const struct ggml_compute_params * params,
  7066. struct ggml_tensor * dst) {
  7067. const struct ggml_tensor * src0 = dst->src[0];
  7068. switch (src0->type) {
  7069. case GGML_TYPE_F32:
  7070. {
  7071. ggml_compute_forward_sqrt_f32(params, dst);
  7072. } break;
  7073. default:
  7074. {
  7075. GGML_ASSERT(false);
  7076. } break;
  7077. }
  7078. }
  7079. // ggml_compute_forward_log
  7080. static void ggml_compute_forward_log_f32(
  7081. const struct ggml_compute_params * params,
  7082. struct ggml_tensor * dst) {
  7083. const struct ggml_tensor * src0 = dst->src[0];
  7084. GGML_ASSERT(params->ith == 0);
  7085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7087. return;
  7088. }
  7089. const int n = ggml_nrows(src0);
  7090. const int nc = src0->ne[0];
  7091. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7092. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7093. for (int i = 0; i < n; i++) {
  7094. ggml_vec_log_f32(nc,
  7095. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7096. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7097. }
  7098. }
  7099. static void ggml_compute_forward_log(
  7100. const struct ggml_compute_params * params,
  7101. struct ggml_tensor * dst) {
  7102. const struct ggml_tensor * src0 = dst->src[0];
  7103. switch (src0->type) {
  7104. case GGML_TYPE_F32:
  7105. {
  7106. ggml_compute_forward_log_f32(params, dst);
  7107. } break;
  7108. default:
  7109. {
  7110. GGML_ASSERT(false);
  7111. } break;
  7112. }
  7113. }
  7114. // ggml_compute_forward_sum
  7115. static void ggml_compute_forward_sum_f32(
  7116. const struct ggml_compute_params * params,
  7117. struct ggml_tensor * dst) {
  7118. const struct ggml_tensor * src0 = dst->src[0];
  7119. assert(params->ith == 0);
  7120. assert(ggml_is_scalar(dst));
  7121. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7122. return;
  7123. }
  7124. assert(ggml_is_scalar(dst));
  7125. assert(src0->nb[0] == sizeof(float));
  7126. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7127. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7128. ggml_float sum = 0;
  7129. ggml_float row_sum = 0;
  7130. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7131. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7132. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7133. ggml_vec_sum_f32_ggf(ne00,
  7134. &row_sum,
  7135. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7136. sum += row_sum;
  7137. }
  7138. }
  7139. }
  7140. ((float *) dst->data)[0] = sum;
  7141. }
  7142. static void ggml_compute_forward_sum_f16(
  7143. const struct ggml_compute_params * params,
  7144. struct ggml_tensor * dst) {
  7145. const struct ggml_tensor * src0 = dst->src[0];
  7146. assert(params->ith == 0);
  7147. assert(ggml_is_scalar(dst));
  7148. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7149. return;
  7150. }
  7151. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7152. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7153. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7154. float sum = 0;
  7155. float row_sum = 0;
  7156. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7157. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7158. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7159. ggml_vec_sum_f16_ggf(ne00,
  7160. &row_sum,
  7161. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7162. sum += row_sum;
  7163. }
  7164. }
  7165. }
  7166. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7167. }
  7168. static void ggml_compute_forward_sum(
  7169. const struct ggml_compute_params * params,
  7170. struct ggml_tensor * dst) {
  7171. const struct ggml_tensor * src0 = dst->src[0];
  7172. switch (src0->type) {
  7173. case GGML_TYPE_F32:
  7174. {
  7175. ggml_compute_forward_sum_f32(params, dst);
  7176. } break;
  7177. case GGML_TYPE_F16:
  7178. {
  7179. ggml_compute_forward_sum_f16(params, dst);
  7180. } break;
  7181. default:
  7182. {
  7183. GGML_ASSERT(false);
  7184. } break;
  7185. }
  7186. }
  7187. // ggml_compute_forward_sum_rows
  7188. static void ggml_compute_forward_sum_rows_f32(
  7189. const struct ggml_compute_params * params,
  7190. struct ggml_tensor * dst) {
  7191. const struct ggml_tensor * src0 = dst->src[0];
  7192. GGML_ASSERT(params->ith == 0);
  7193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7194. return;
  7195. }
  7196. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7197. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7198. GGML_TENSOR_UNARY_OP_LOCALS
  7199. GGML_ASSERT(ne0 == 1);
  7200. GGML_ASSERT(ne1 == ne01);
  7201. GGML_ASSERT(ne2 == ne02);
  7202. GGML_ASSERT(ne3 == ne03);
  7203. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7204. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7205. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7206. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7207. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7208. float row_sum = 0;
  7209. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7210. dst_row[0] = row_sum;
  7211. }
  7212. }
  7213. }
  7214. }
  7215. static void ggml_compute_forward_sum_rows(
  7216. const struct ggml_compute_params * params,
  7217. struct ggml_tensor * dst) {
  7218. const struct ggml_tensor * src0 = dst->src[0];
  7219. switch (src0->type) {
  7220. case GGML_TYPE_F32:
  7221. {
  7222. ggml_compute_forward_sum_rows_f32(params, dst);
  7223. } break;
  7224. default:
  7225. {
  7226. GGML_ASSERT(false);
  7227. } break;
  7228. }
  7229. }
  7230. // ggml_compute_forward_mean
  7231. static void ggml_compute_forward_mean_f32(
  7232. const struct ggml_compute_params * params,
  7233. struct ggml_tensor * dst) {
  7234. const struct ggml_tensor * src0 = dst->src[0];
  7235. assert(params->ith == 0);
  7236. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7237. return;
  7238. }
  7239. assert(src0->nb[0] == sizeof(float));
  7240. GGML_TENSOR_UNARY_OP_LOCALS
  7241. assert(ne0 == 1);
  7242. assert(ne1 == ne01);
  7243. assert(ne2 == ne02);
  7244. assert(ne3 == ne03);
  7245. UNUSED(ne0);
  7246. UNUSED(ne1);
  7247. UNUSED(ne2);
  7248. UNUSED(ne3);
  7249. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7250. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7251. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7252. ggml_vec_sum_f32(ne00,
  7253. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7254. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7255. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7256. }
  7257. }
  7258. }
  7259. }
  7260. static void ggml_compute_forward_mean(
  7261. const struct ggml_compute_params * params,
  7262. struct ggml_tensor * dst) {
  7263. const struct ggml_tensor * src0 = dst->src[0];
  7264. switch (src0->type) {
  7265. case GGML_TYPE_F32:
  7266. {
  7267. ggml_compute_forward_mean_f32(params, dst);
  7268. } break;
  7269. default:
  7270. {
  7271. GGML_ASSERT(false);
  7272. } break;
  7273. }
  7274. }
  7275. // ggml_compute_forward_argmax
  7276. static void ggml_compute_forward_argmax_f32(
  7277. const struct ggml_compute_params * params,
  7278. struct ggml_tensor * dst) {
  7279. const struct ggml_tensor * src0 = dst->src[0];
  7280. assert(params->ith == 0);
  7281. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7282. return;
  7283. }
  7284. assert(src0->nb[0] == sizeof(float));
  7285. assert(dst->nb[0] == sizeof(float));
  7286. const int64_t ne00 = src0->ne[0];
  7287. const int64_t ne01 = src0->ne[1];
  7288. const size_t nb01 = src0->nb[1];
  7289. const size_t nb0 = dst->nb[0];
  7290. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7291. float * src = (float *) ((char *) src0->data + i1*nb01);
  7292. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7293. int v = 0;
  7294. ggml_vec_argmax_f32(ne00, &v, src);
  7295. dst_[0] = v;
  7296. }
  7297. }
  7298. static void ggml_compute_forward_argmax(
  7299. const struct ggml_compute_params * params,
  7300. struct ggml_tensor * dst) {
  7301. const struct ggml_tensor * src0 = dst->src[0];
  7302. switch (src0->type) {
  7303. case GGML_TYPE_F32:
  7304. {
  7305. ggml_compute_forward_argmax_f32(params, dst);
  7306. } break;
  7307. default:
  7308. {
  7309. GGML_ASSERT(false);
  7310. } break;
  7311. }
  7312. }
  7313. // ggml_compute_forward_repeat
  7314. static void ggml_compute_forward_repeat_f32(
  7315. const struct ggml_compute_params * params,
  7316. struct ggml_tensor * dst) {
  7317. const struct ggml_tensor * src0 = dst->src[0];
  7318. GGML_ASSERT(params->ith == 0);
  7319. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7320. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7321. return;
  7322. }
  7323. GGML_TENSOR_UNARY_OP_LOCALS
  7324. // guaranteed to be an integer due to the check in ggml_can_repeat
  7325. const int nr0 = (int)(ne0/ne00);
  7326. const int nr1 = (int)(ne1/ne01);
  7327. const int nr2 = (int)(ne2/ne02);
  7328. const int nr3 = (int)(ne3/ne03);
  7329. // TODO: support for transposed / permuted tensors
  7330. GGML_ASSERT(nb0 == sizeof(float));
  7331. GGML_ASSERT(nb00 == sizeof(float));
  7332. // TODO: maybe this is not optimal?
  7333. for (int i3 = 0; i3 < nr3; i3++) {
  7334. for (int k3 = 0; k3 < ne03; k3++) {
  7335. for (int i2 = 0; i2 < nr2; i2++) {
  7336. for (int k2 = 0; k2 < ne02; k2++) {
  7337. for (int i1 = 0; i1 < nr1; i1++) {
  7338. for (int k1 = 0; k1 < ne01; k1++) {
  7339. for (int i0 = 0; i0 < nr0; i0++) {
  7340. ggml_vec_cpy_f32(ne00,
  7341. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7342. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7343. }
  7344. }
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. }
  7351. static void ggml_compute_forward_repeat_f16(
  7352. const struct ggml_compute_params * params,
  7353. struct ggml_tensor * dst) {
  7354. const struct ggml_tensor * src0 = dst->src[0];
  7355. GGML_ASSERT(params->ith == 0);
  7356. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7358. return;
  7359. }
  7360. GGML_TENSOR_UNARY_OP_LOCALS
  7361. // guaranteed to be an integer due to the check in ggml_can_repeat
  7362. const int nr0 = (int)(ne0/ne00);
  7363. const int nr1 = (int)(ne1/ne01);
  7364. const int nr2 = (int)(ne2/ne02);
  7365. const int nr3 = (int)(ne3/ne03);
  7366. // TODO: support for transposed / permuted tensors
  7367. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7368. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7369. // TODO: maybe this is not optimal?
  7370. for (int i3 = 0; i3 < nr3; i3++) {
  7371. for (int k3 = 0; k3 < ne03; k3++) {
  7372. for (int i2 = 0; i2 < nr2; i2++) {
  7373. for (int k2 = 0; k2 < ne02; k2++) {
  7374. for (int i1 = 0; i1 < nr1; i1++) {
  7375. for (int k1 = 0; k1 < ne01; k1++) {
  7376. for (int i0 = 0; i0 < nr0; i0++) {
  7377. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7378. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7379. // ggml_vec_cpy_f16(ne00, y, x)
  7380. for (int i = 0; i < ne00; ++i) {
  7381. y[i] = x[i];
  7382. }
  7383. }
  7384. }
  7385. }
  7386. }
  7387. }
  7388. }
  7389. }
  7390. }
  7391. static void ggml_compute_forward_repeat(
  7392. const struct ggml_compute_params * params,
  7393. struct ggml_tensor * dst) {
  7394. const struct ggml_tensor * src0 = dst->src[0];
  7395. switch (src0->type) {
  7396. case GGML_TYPE_F16:
  7397. case GGML_TYPE_I16:
  7398. {
  7399. ggml_compute_forward_repeat_f16(params, dst);
  7400. } break;
  7401. case GGML_TYPE_F32:
  7402. case GGML_TYPE_I32:
  7403. {
  7404. ggml_compute_forward_repeat_f32(params, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. }
  7412. // ggml_compute_forward_repeat_back
  7413. static void ggml_compute_forward_repeat_back_f32(
  7414. const struct ggml_compute_params * params,
  7415. struct ggml_tensor * dst) {
  7416. const struct ggml_tensor * src0 = dst->src[0];
  7417. GGML_ASSERT(params->ith == 0);
  7418. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7419. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7420. return;
  7421. }
  7422. GGML_TENSOR_UNARY_OP_LOCALS
  7423. // guaranteed to be an integer due to the check in ggml_can_repeat
  7424. const int nr0 = (int)(ne00/ne0);
  7425. const int nr1 = (int)(ne01/ne1);
  7426. const int nr2 = (int)(ne02/ne2);
  7427. const int nr3 = (int)(ne03/ne3);
  7428. // TODO: support for transposed / permuted tensors
  7429. GGML_ASSERT(nb0 == sizeof(float));
  7430. GGML_ASSERT(nb00 == sizeof(float));
  7431. if (ggml_is_contiguous(dst)) {
  7432. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7433. } else {
  7434. for (int k3 = 0; k3 < ne3; k3++) {
  7435. for (int k2 = 0; k2 < ne2; k2++) {
  7436. for (int k1 = 0; k1 < ne1; k1++) {
  7437. ggml_vec_set_f32(ne0,
  7438. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7439. 0);
  7440. }
  7441. }
  7442. }
  7443. }
  7444. // TODO: maybe this is not optimal?
  7445. for (int i3 = 0; i3 < nr3; i3++) {
  7446. for (int k3 = 0; k3 < ne3; k3++) {
  7447. for (int i2 = 0; i2 < nr2; i2++) {
  7448. for (int k2 = 0; k2 < ne2; k2++) {
  7449. for (int i1 = 0; i1 < nr1; i1++) {
  7450. for (int k1 = 0; k1 < ne1; k1++) {
  7451. for (int i0 = 0; i0 < nr0; i0++) {
  7452. ggml_vec_acc_f32(ne0,
  7453. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7454. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7455. }
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. }
  7462. }
  7463. static void ggml_compute_forward_repeat_back(
  7464. const struct ggml_compute_params * params,
  7465. struct ggml_tensor * dst) {
  7466. const struct ggml_tensor * src0 = dst->src[0];
  7467. switch (src0->type) {
  7468. case GGML_TYPE_F32:
  7469. {
  7470. ggml_compute_forward_repeat_back_f32(params, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_concat
  7479. static void ggml_compute_forward_concat_f32(
  7480. const struct ggml_compute_params * params,
  7481. struct ggml_tensor * dst) {
  7482. const struct ggml_tensor * src0 = dst->src[0];
  7483. const struct ggml_tensor * src1 = dst->src[1];
  7484. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7485. return;
  7486. }
  7487. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7488. const int ith = params->ith;
  7489. const int nth = params->nth;
  7490. GGML_TENSOR_BINARY_OP_LOCALS
  7491. // TODO: support for transposed / permuted tensors
  7492. GGML_ASSERT(nb0 == sizeof(float));
  7493. GGML_ASSERT(nb00 == sizeof(float));
  7494. GGML_ASSERT(nb10 == sizeof(float));
  7495. for (int i3 = 0; i3 < ne3; i3++) {
  7496. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7497. if (i2 < ne02) { // src0
  7498. for (int i1 = 0; i1 < ne1; i1++) {
  7499. for (int i0 = 0; i0 < ne0; i0++) {
  7500. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7501. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7502. *y = *x;
  7503. }
  7504. }
  7505. } // src1
  7506. else {
  7507. for (int i1 = 0; i1 < ne1; i1++) {
  7508. for (int i0 = 0; i0 < ne0; i0++) {
  7509. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7510. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7511. *y = *x;
  7512. }
  7513. }
  7514. }
  7515. }
  7516. }
  7517. }
  7518. static void ggml_compute_forward_concat(
  7519. const struct ggml_compute_params* params,
  7520. struct ggml_tensor* dst) {
  7521. const struct ggml_tensor * src0 = dst->src[0];
  7522. switch (src0->type) {
  7523. case GGML_TYPE_F32:
  7524. case GGML_TYPE_I32:
  7525. {
  7526. ggml_compute_forward_concat_f32(params, dst);
  7527. } break;
  7528. default:
  7529. {
  7530. GGML_ASSERT(false);
  7531. } break;
  7532. }
  7533. }
  7534. // ggml_compute_forward_abs
  7535. static void ggml_compute_forward_abs_f32(
  7536. const struct ggml_compute_params * params,
  7537. struct ggml_tensor * dst) {
  7538. const struct ggml_tensor * src0 = dst->src[0];
  7539. assert(params->ith == 0);
  7540. assert(ggml_are_same_shape(src0, dst));
  7541. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7542. return;
  7543. }
  7544. const int n = ggml_nrows(src0);
  7545. const int nc = src0->ne[0];
  7546. assert(dst->nb[0] == sizeof(float));
  7547. assert(src0->nb[0] == sizeof(float));
  7548. for (int i = 0; i < n; i++) {
  7549. ggml_vec_abs_f32(nc,
  7550. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7551. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7552. }
  7553. }
  7554. static void ggml_compute_forward_abs(
  7555. const struct ggml_compute_params * params,
  7556. struct ggml_tensor * dst) {
  7557. const struct ggml_tensor * src0 = dst->src[0];
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_abs_f32(params, dst);
  7562. } break;
  7563. default:
  7564. {
  7565. GGML_ASSERT(false);
  7566. } break;
  7567. }
  7568. }
  7569. // ggml_compute_forward_sgn
  7570. static void ggml_compute_forward_sgn_f32(
  7571. const struct ggml_compute_params * params,
  7572. struct ggml_tensor * dst) {
  7573. const struct ggml_tensor * src0 = dst->src[0];
  7574. assert(params->ith == 0);
  7575. assert(ggml_are_same_shape(src0, dst));
  7576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7577. return;
  7578. }
  7579. const int n = ggml_nrows(src0);
  7580. const int nc = src0->ne[0];
  7581. assert(dst->nb[0] == sizeof(float));
  7582. assert(src0->nb[0] == sizeof(float));
  7583. for (int i = 0; i < n; i++) {
  7584. ggml_vec_sgn_f32(nc,
  7585. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7586. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7587. }
  7588. }
  7589. static void ggml_compute_forward_sgn(
  7590. const struct ggml_compute_params * params,
  7591. struct ggml_tensor * dst) {
  7592. const struct ggml_tensor * src0 = dst->src[0];
  7593. switch (src0->type) {
  7594. case GGML_TYPE_F32:
  7595. {
  7596. ggml_compute_forward_sgn_f32(params, dst);
  7597. } break;
  7598. default:
  7599. {
  7600. GGML_ASSERT(false);
  7601. } break;
  7602. }
  7603. }
  7604. // ggml_compute_forward_neg
  7605. static void ggml_compute_forward_neg_f32(
  7606. const struct ggml_compute_params * params,
  7607. struct ggml_tensor * dst) {
  7608. const struct ggml_tensor * src0 = dst->src[0];
  7609. assert(params->ith == 0);
  7610. assert(ggml_are_same_shape(src0, dst));
  7611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7612. return;
  7613. }
  7614. const int n = ggml_nrows(src0);
  7615. const int nc = src0->ne[0];
  7616. assert(dst->nb[0] == sizeof(float));
  7617. assert(src0->nb[0] == sizeof(float));
  7618. for (int i = 0; i < n; i++) {
  7619. ggml_vec_neg_f32(nc,
  7620. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7621. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7622. }
  7623. }
  7624. static void ggml_compute_forward_neg(
  7625. const struct ggml_compute_params * params,
  7626. struct ggml_tensor * dst) {
  7627. const struct ggml_tensor * src0 = dst->src[0];
  7628. switch (src0->type) {
  7629. case GGML_TYPE_F32:
  7630. {
  7631. ggml_compute_forward_neg_f32(params, dst);
  7632. } break;
  7633. default:
  7634. {
  7635. GGML_ASSERT(false);
  7636. } break;
  7637. }
  7638. }
  7639. // ggml_compute_forward_step
  7640. static void ggml_compute_forward_step_f32(
  7641. const struct ggml_compute_params * params,
  7642. struct ggml_tensor * dst) {
  7643. const struct ggml_tensor * src0 = dst->src[0];
  7644. assert(params->ith == 0);
  7645. assert(ggml_are_same_shape(src0, dst));
  7646. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7647. return;
  7648. }
  7649. const int n = ggml_nrows(src0);
  7650. const int nc = src0->ne[0];
  7651. assert(dst->nb[0] == sizeof(float));
  7652. assert(src0->nb[0] == sizeof(float));
  7653. for (int i = 0; i < n; i++) {
  7654. ggml_vec_step_f32(nc,
  7655. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7656. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7657. }
  7658. }
  7659. static void ggml_compute_forward_step(
  7660. const struct ggml_compute_params * params,
  7661. struct ggml_tensor * dst) {
  7662. const struct ggml_tensor * src0 = dst->src[0];
  7663. switch (src0->type) {
  7664. case GGML_TYPE_F32:
  7665. {
  7666. ggml_compute_forward_step_f32(params, dst);
  7667. } break;
  7668. default:
  7669. {
  7670. GGML_ASSERT(false);
  7671. } break;
  7672. }
  7673. }
  7674. // ggml_compute_forward_tanh
  7675. static void ggml_compute_forward_tanh_f32(
  7676. const struct ggml_compute_params * params,
  7677. struct ggml_tensor * dst) {
  7678. const struct ggml_tensor * src0 = dst->src[0];
  7679. assert(params->ith == 0);
  7680. assert(ggml_are_same_shape(src0, dst));
  7681. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7682. return;
  7683. }
  7684. const int n = ggml_nrows(src0);
  7685. const int nc = src0->ne[0];
  7686. assert(dst->nb[0] == sizeof(float));
  7687. assert(src0->nb[0] == sizeof(float));
  7688. for (int i = 0; i < n; i++) {
  7689. ggml_vec_tanh_f32(nc,
  7690. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7691. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7692. }
  7693. }
  7694. static void ggml_compute_forward_tanh(
  7695. const struct ggml_compute_params * params,
  7696. struct ggml_tensor * dst) {
  7697. const struct ggml_tensor * src0 = dst->src[0];
  7698. switch (src0->type) {
  7699. case GGML_TYPE_F32:
  7700. {
  7701. ggml_compute_forward_tanh_f32(params, dst);
  7702. } break;
  7703. default:
  7704. {
  7705. GGML_ASSERT(false);
  7706. } break;
  7707. }
  7708. }
  7709. // ggml_compute_forward_elu
  7710. static void ggml_compute_forward_elu_f32(
  7711. const struct ggml_compute_params * params,
  7712. struct ggml_tensor * dst) {
  7713. const struct ggml_tensor * src0 = dst->src[0];
  7714. assert(params->ith == 0);
  7715. assert(ggml_are_same_shape(src0, dst));
  7716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7717. return;
  7718. }
  7719. const int n = ggml_nrows(src0);
  7720. const int nc = src0->ne[0];
  7721. assert(dst->nb[0] == sizeof(float));
  7722. assert(src0->nb[0] == sizeof(float));
  7723. for (int i = 0; i < n; i++) {
  7724. ggml_vec_elu_f32(nc,
  7725. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7726. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7727. }
  7728. }
  7729. static void ggml_compute_forward_elu(
  7730. const struct ggml_compute_params * params,
  7731. struct ggml_tensor * dst) {
  7732. const struct ggml_tensor * src0 = dst->src[0];
  7733. switch (src0->type) {
  7734. case GGML_TYPE_F32:
  7735. {
  7736. ggml_compute_forward_elu_f32(params, dst);
  7737. } break;
  7738. default:
  7739. {
  7740. GGML_ASSERT(false);
  7741. } break;
  7742. }
  7743. }
  7744. // ggml_compute_forward_relu
  7745. static void ggml_compute_forward_relu_f32(
  7746. const struct ggml_compute_params * params,
  7747. struct ggml_tensor * dst) {
  7748. const struct ggml_tensor * src0 = dst->src[0];
  7749. assert(params->ith == 0);
  7750. assert(ggml_are_same_shape(src0, dst));
  7751. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7752. return;
  7753. }
  7754. const int n = ggml_nrows(src0);
  7755. const int nc = src0->ne[0];
  7756. assert(dst->nb[0] == sizeof(float));
  7757. assert(src0->nb[0] == sizeof(float));
  7758. for (int i = 0; i < n; i++) {
  7759. ggml_vec_relu_f32(nc,
  7760. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7761. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7762. }
  7763. }
  7764. static void ggml_compute_forward_relu(
  7765. const struct ggml_compute_params * params,
  7766. struct ggml_tensor * dst) {
  7767. const struct ggml_tensor * src0 = dst->src[0];
  7768. switch (src0->type) {
  7769. case GGML_TYPE_F32:
  7770. {
  7771. ggml_compute_forward_relu_f32(params, dst);
  7772. } break;
  7773. default:
  7774. {
  7775. GGML_ASSERT(false);
  7776. } break;
  7777. }
  7778. }
  7779. // ggml_compute_forward_gelu
  7780. static void ggml_compute_forward_gelu_f32(
  7781. const struct ggml_compute_params * params,
  7782. struct ggml_tensor * dst) {
  7783. const struct ggml_tensor * src0 = dst->src[0];
  7784. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7785. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7786. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7787. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7788. return;
  7789. }
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. const int nc = src0->ne[0];
  7793. const int nr = ggml_nrows(src0);
  7794. // rows per thread
  7795. const int dr = (nr + nth - 1)/nth;
  7796. // row range for this thread
  7797. const int ir0 = dr*ith;
  7798. const int ir1 = MIN(ir0 + dr, nr);
  7799. for (int i1 = ir0; i1 < ir1; i1++) {
  7800. ggml_vec_gelu_f32(nc,
  7801. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7802. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7803. #ifndef NDEBUG
  7804. for (int k = 0; k < nc; k++) {
  7805. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7806. UNUSED(x);
  7807. assert(!isnan(x));
  7808. assert(!isinf(x));
  7809. }
  7810. #endif
  7811. }
  7812. }
  7813. static void ggml_compute_forward_gelu(
  7814. const struct ggml_compute_params * params,
  7815. struct ggml_tensor * dst) {
  7816. const struct ggml_tensor * src0 = dst->src[0];
  7817. switch (src0->type) {
  7818. case GGML_TYPE_F32:
  7819. {
  7820. ggml_compute_forward_gelu_f32(params, dst);
  7821. } break;
  7822. default:
  7823. {
  7824. GGML_ASSERT(false);
  7825. } break;
  7826. }
  7827. }
  7828. // ggml_compute_forward_gelu_quick
  7829. static void ggml_compute_forward_gelu_quick_f32(
  7830. const struct ggml_compute_params * params,
  7831. struct ggml_tensor * dst) {
  7832. const struct ggml_tensor * src0 = dst->src[0];
  7833. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7834. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7835. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7836. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7837. return;
  7838. }
  7839. const int ith = params->ith;
  7840. const int nth = params->nth;
  7841. const int nc = src0->ne[0];
  7842. const int nr = ggml_nrows(src0);
  7843. // rows per thread
  7844. const int dr = (nr + nth - 1)/nth;
  7845. // row range for this thread
  7846. const int ir0 = dr*ith;
  7847. const int ir1 = MIN(ir0 + dr, nr);
  7848. for (int i1 = ir0; i1 < ir1; i1++) {
  7849. ggml_vec_gelu_quick_f32(nc,
  7850. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7851. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7852. #ifndef NDEBUG
  7853. for (int k = 0; k < nc; k++) {
  7854. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7855. UNUSED(x);
  7856. assert(!isnan(x));
  7857. assert(!isinf(x));
  7858. }
  7859. #endif
  7860. }
  7861. }
  7862. static void ggml_compute_forward_gelu_quick(
  7863. const struct ggml_compute_params * params,
  7864. struct ggml_tensor * dst) {
  7865. const struct ggml_tensor * src0 = dst->src[0];
  7866. switch (src0->type) {
  7867. case GGML_TYPE_F32:
  7868. {
  7869. ggml_compute_forward_gelu_quick_f32(params, dst);
  7870. } break;
  7871. default:
  7872. {
  7873. GGML_ASSERT(false);
  7874. } break;
  7875. }
  7876. }
  7877. // ggml_compute_forward_silu
  7878. static void ggml_compute_forward_silu_f32(
  7879. const struct ggml_compute_params * params,
  7880. struct ggml_tensor * dst) {
  7881. const struct ggml_tensor * src0 = dst->src[0];
  7882. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7883. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7884. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7885. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7886. return;
  7887. }
  7888. const int ith = params->ith;
  7889. const int nth = params->nth;
  7890. const int nc = src0->ne[0];
  7891. const int nr = ggml_nrows(src0);
  7892. // rows per thread
  7893. const int dr = (nr + nth - 1)/nth;
  7894. // row range for this thread
  7895. const int ir0 = dr*ith;
  7896. const int ir1 = MIN(ir0 + dr, nr);
  7897. for (int i1 = ir0; i1 < ir1; i1++) {
  7898. ggml_vec_silu_f32(nc,
  7899. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7900. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7901. #ifndef NDEBUG
  7902. for (int k = 0; k < nc; k++) {
  7903. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7904. UNUSED(x);
  7905. assert(!isnan(x));
  7906. assert(!isinf(x));
  7907. }
  7908. #endif
  7909. }
  7910. }
  7911. static void ggml_compute_forward_silu(
  7912. const struct ggml_compute_params * params,
  7913. struct ggml_tensor * dst) {
  7914. const struct ggml_tensor * src0 = dst->src[0];
  7915. switch (src0->type) {
  7916. case GGML_TYPE_F32:
  7917. {
  7918. ggml_compute_forward_silu_f32(params, dst);
  7919. } break;
  7920. default:
  7921. {
  7922. GGML_ASSERT(false);
  7923. } break;
  7924. }
  7925. }
  7926. // ggml_compute_forward_leaky_relu
  7927. static void ggml_compute_forward_leaky_relu_f32(
  7928. const struct ggml_compute_params * params,
  7929. struct ggml_tensor * dst) {
  7930. const struct ggml_tensor * src0 = dst->src[0];
  7931. assert(params->ith == 0);
  7932. assert(ggml_are_same_shape(src0, dst));
  7933. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7934. return;
  7935. }
  7936. const int n = ggml_nrows(src0);
  7937. const int nc = src0->ne[0];
  7938. float negative_slope;
  7939. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7940. assert(dst->nb[0] == sizeof(float));
  7941. assert(src0->nb[0] == sizeof(float));
  7942. for (int i = 0; i < n; i++) {
  7943. ggml_vec_leaky_relu_f32(nc,
  7944. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7945. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7946. }
  7947. }
  7948. static void ggml_compute_forward_leaky_relu(
  7949. const struct ggml_compute_params * params,
  7950. struct ggml_tensor * dst) {
  7951. const struct ggml_tensor * src0 = dst->src[0];
  7952. switch (src0->type) {
  7953. case GGML_TYPE_F32:
  7954. {
  7955. ggml_compute_forward_leaky_relu_f32(params, dst);
  7956. } break;
  7957. default:
  7958. {
  7959. GGML_ASSERT(false);
  7960. } break;
  7961. }
  7962. }
  7963. // ggml_compute_forward_silu_back
  7964. static void ggml_compute_forward_silu_back_f32(
  7965. const struct ggml_compute_params * params,
  7966. struct ggml_tensor * dst) {
  7967. const struct ggml_tensor * src0 = dst->src[0];
  7968. const struct ggml_tensor * grad = dst->src[1];
  7969. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7970. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7971. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7972. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7973. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7974. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7975. return;
  7976. }
  7977. const int ith = params->ith;
  7978. const int nth = params->nth;
  7979. const int nc = src0->ne[0];
  7980. const int nr = ggml_nrows(src0);
  7981. // rows per thread
  7982. const int dr = (nr + nth - 1)/nth;
  7983. // row range for this thread
  7984. const int ir0 = dr*ith;
  7985. const int ir1 = MIN(ir0 + dr, nr);
  7986. for (int i1 = ir0; i1 < ir1; i1++) {
  7987. ggml_vec_silu_backward_f32(nc,
  7988. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7989. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7990. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7991. #ifndef NDEBUG
  7992. for (int k = 0; k < nc; k++) {
  7993. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7994. UNUSED(x);
  7995. assert(!isnan(x));
  7996. assert(!isinf(x));
  7997. }
  7998. #endif
  7999. }
  8000. }
  8001. static void ggml_compute_forward_silu_back(
  8002. const struct ggml_compute_params * params,
  8003. struct ggml_tensor * dst) {
  8004. const struct ggml_tensor * src0 = dst->src[0];
  8005. switch (src0->type) {
  8006. case GGML_TYPE_F32:
  8007. {
  8008. ggml_compute_forward_silu_back_f32(params, dst);
  8009. } break;
  8010. default:
  8011. {
  8012. GGML_ASSERT(false);
  8013. } break;
  8014. }
  8015. }
  8016. static void ggml_compute_forward_hardswish_f32(
  8017. const struct ggml_compute_params * params,
  8018. struct ggml_tensor * dst) {
  8019. const struct ggml_tensor * src0 = dst->src[0];
  8020. assert(params->ith == 0);
  8021. assert(ggml_are_same_shape(src0, dst));
  8022. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8023. return;
  8024. }
  8025. const int n = ggml_nrows(src0);
  8026. const int nc = src0->ne[0];
  8027. assert(dst->nb[0] == sizeof(float));
  8028. assert(src0->nb[0] == sizeof(float));
  8029. for (int i = 0; i < n; i++) {
  8030. ggml_vec_hardswish_f32(nc,
  8031. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8032. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8033. }
  8034. }
  8035. static void ggml_compute_forward_hardswish(
  8036. const struct ggml_compute_params * params,
  8037. struct ggml_tensor * dst) {
  8038. const struct ggml_tensor * src0 = dst->src[0];
  8039. switch (src0->type) {
  8040. case GGML_TYPE_F32:
  8041. {
  8042. ggml_compute_forward_hardswish_f32(params, dst);
  8043. } break;
  8044. default:
  8045. {
  8046. GGML_ASSERT(false);
  8047. } break;
  8048. }
  8049. }
  8050. static void ggml_compute_forward_hardsigmoid_f32(
  8051. const struct ggml_compute_params * params,
  8052. struct ggml_tensor * dst) {
  8053. const struct ggml_tensor * src0 = dst->src[0];
  8054. assert(params->ith == 0);
  8055. assert(ggml_are_same_shape(src0, dst));
  8056. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8057. return;
  8058. }
  8059. const int n = ggml_nrows(src0);
  8060. const int nc = src0->ne[0];
  8061. assert(dst->nb[0] == sizeof(float));
  8062. assert(src0->nb[0] == sizeof(float));
  8063. for (int i = 0; i < n; i++) {
  8064. ggml_vec_hardsigmoid_f32(nc,
  8065. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8066. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8067. }
  8068. }
  8069. static void ggml_compute_forward_hardsigmoid(
  8070. const struct ggml_compute_params * params,
  8071. struct ggml_tensor * dst) {
  8072. const struct ggml_tensor * src0 = dst->src[0];
  8073. switch (src0->type) {
  8074. case GGML_TYPE_F32:
  8075. {
  8076. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8077. } break;
  8078. default:
  8079. {
  8080. GGML_ASSERT(false);
  8081. } break;
  8082. }
  8083. }
  8084. // ggml_compute_forward_norm
  8085. static void ggml_compute_forward_norm_f32(
  8086. const struct ggml_compute_params * params,
  8087. struct ggml_tensor * dst) {
  8088. const struct ggml_tensor * src0 = dst->src[0];
  8089. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8090. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8091. return;
  8092. }
  8093. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8094. const int ith = params->ith;
  8095. const int nth = params->nth;
  8096. GGML_TENSOR_UNARY_OP_LOCALS
  8097. float eps;
  8098. memcpy(&eps, dst->op_params, sizeof(float));
  8099. GGML_ASSERT(eps > 0.0f);
  8100. // TODO: optimize
  8101. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8102. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8103. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8104. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8105. ggml_float sum = 0.0;
  8106. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8107. sum += (ggml_float)x[i00];
  8108. }
  8109. float mean = sum/ne00;
  8110. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8111. ggml_float sum2 = 0.0;
  8112. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8113. float v = x[i00] - mean;
  8114. y[i00] = v;
  8115. sum2 += (ggml_float)(v*v);
  8116. }
  8117. float variance = sum2/ne00;
  8118. const float scale = 1.0f/sqrtf(variance + eps);
  8119. ggml_vec_scale_f32(ne00, y, scale);
  8120. }
  8121. }
  8122. }
  8123. }
  8124. static void ggml_compute_forward_norm(
  8125. const struct ggml_compute_params * params,
  8126. struct ggml_tensor * dst) {
  8127. const struct ggml_tensor * src0 = dst->src[0];
  8128. switch (src0->type) {
  8129. case GGML_TYPE_F32:
  8130. {
  8131. ggml_compute_forward_norm_f32(params, dst);
  8132. } break;
  8133. default:
  8134. {
  8135. GGML_ASSERT(false);
  8136. } break;
  8137. }
  8138. }
  8139. // ggml_compute_forward_group_rms_norm
  8140. static void ggml_compute_forward_rms_norm_f32(
  8141. const struct ggml_compute_params * params,
  8142. struct ggml_tensor * dst) {
  8143. const struct ggml_tensor * src0 = dst->src[0];
  8144. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8145. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8146. return;
  8147. }
  8148. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8149. const int ith = params->ith;
  8150. const int nth = params->nth;
  8151. GGML_TENSOR_UNARY_OP_LOCALS
  8152. float eps;
  8153. memcpy(&eps, dst->op_params, sizeof(float));
  8154. GGML_ASSERT(eps > 0.0f);
  8155. // TODO: optimize
  8156. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8157. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8158. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8159. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8160. ggml_float sum = 0.0;
  8161. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8162. sum += (ggml_float)(x[i00] * x[i00]);
  8163. }
  8164. const float mean = sum/ne00;
  8165. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8166. memcpy(y, x, ne00 * sizeof(float));
  8167. // for (int i00 = 0; i00 < ne00; i00++) {
  8168. // y[i00] = x[i00];
  8169. // }
  8170. const float scale = 1.0f/sqrtf(mean + eps);
  8171. ggml_vec_scale_f32(ne00, y, scale);
  8172. }
  8173. }
  8174. }
  8175. }
  8176. static void ggml_compute_forward_rms_norm(
  8177. const struct ggml_compute_params * params,
  8178. struct ggml_tensor * dst) {
  8179. const struct ggml_tensor * src0 = dst->src[0];
  8180. switch (src0->type) {
  8181. case GGML_TYPE_F32:
  8182. {
  8183. ggml_compute_forward_rms_norm_f32(params, dst);
  8184. } break;
  8185. default:
  8186. {
  8187. GGML_ASSERT(false);
  8188. } break;
  8189. }
  8190. }
  8191. static void ggml_compute_forward_rms_norm_back_f32(
  8192. const struct ggml_compute_params * params,
  8193. struct ggml_tensor * dst) {
  8194. const struct ggml_tensor * src0 = dst->src[0];
  8195. const struct ggml_tensor * src1 = dst->src[1];
  8196. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8198. return;
  8199. }
  8200. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8201. const int ith = params->ith;
  8202. const int nth = params->nth;
  8203. GGML_TENSOR_BINARY_OP_LOCALS
  8204. float eps;
  8205. memcpy(&eps, dst->op_params, sizeof(float));
  8206. // TODO: optimize
  8207. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8208. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8209. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8210. // src1 is same shape as src0 => same indices
  8211. const int64_t i11 = i01;
  8212. const int64_t i12 = i02;
  8213. const int64_t i13 = i03;
  8214. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8215. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8216. ggml_float sum_xx = 0.0;
  8217. ggml_float sum_xdz = 0.0;
  8218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8219. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8220. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8221. }
  8222. //const float mean = (float)(sum_xx)/ne00;
  8223. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8224. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8225. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8226. // we could cache rms from forward pass to improve performance.
  8227. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8228. //const float rms = sqrtf(mean_eps);
  8229. const float rrms = 1.0f / sqrtf(mean_eps);
  8230. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8231. {
  8232. // z = rms_norm(x)
  8233. //
  8234. // rms_norm(src0) =
  8235. // scale(
  8236. // src0,
  8237. // div(
  8238. // 1,
  8239. // sqrt(
  8240. // add(
  8241. // scale(
  8242. // sum(
  8243. // sqr(
  8244. // src0)),
  8245. // (1.0/N)),
  8246. // eps))));
  8247. // postorder:
  8248. // ## op args grad
  8249. // 00 param src0 grad[#00]
  8250. // 01 const 1
  8251. // 02 sqr (#00) grad[#02]
  8252. // 03 sum (#02) grad[#03]
  8253. // 04 const 1/N
  8254. // 05 scale (#03, #04) grad[#05]
  8255. // 06 const eps
  8256. // 07 add (#05, #06) grad[#07]
  8257. // 08 sqrt (#07) grad[#08]
  8258. // 09 div (#01,#08) grad[#09]
  8259. // 10 scale (#00,#09) grad[#10]
  8260. //
  8261. // backward pass, given grad[#10]
  8262. // #10: scale
  8263. // grad[#00] += scale(grad[#10],#09)
  8264. // grad[#09] += sum(mul(grad[#10],#00))
  8265. // #09: div
  8266. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8267. // #08: sqrt
  8268. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8269. // #07: add
  8270. // grad[#05] += grad[#07]
  8271. // #05: scale
  8272. // grad[#03] += scale(grad[#05],#04)
  8273. // #03: sum
  8274. // grad[#02] += repeat(grad[#03], #02)
  8275. // #02:
  8276. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8277. //
  8278. // substitute and simplify:
  8279. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8280. // grad[#02] = repeat(grad[#03], #02)
  8281. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8282. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8283. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8284. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8285. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8286. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8287. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8288. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8289. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8290. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8291. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8292. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8293. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8294. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8295. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8296. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8297. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8298. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8299. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8300. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8301. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8302. // a = b*c + d*e
  8303. // a = b*c*f/f + d*e*f/f
  8304. // a = (b*c*f + d*e*f)*(1/f)
  8305. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8306. // a = (b + d*e/c)*c
  8307. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8308. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8309. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8310. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8311. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8312. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8313. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8314. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8315. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8316. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8317. }
  8318. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8319. // post-order:
  8320. // dx := x
  8321. // dx := scale(dx,-mean_xdz/mean_eps)
  8322. // dx := add(dx, dz)
  8323. // dx := scale(dx, rrms)
  8324. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8325. ggml_vec_cpy_f32 (ne00, dx, x);
  8326. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8327. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8328. ggml_vec_acc_f32 (ne00, dx, dz);
  8329. ggml_vec_scale_f32(ne00, dx, rrms);
  8330. }
  8331. }
  8332. }
  8333. }
  8334. static void ggml_compute_forward_rms_norm_back(
  8335. const struct ggml_compute_params * params,
  8336. struct ggml_tensor * dst) {
  8337. const struct ggml_tensor * src0 = dst->src[0];
  8338. switch (src0->type) {
  8339. case GGML_TYPE_F32:
  8340. {
  8341. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8342. } break;
  8343. default:
  8344. {
  8345. GGML_ASSERT(false);
  8346. } break;
  8347. }
  8348. }
  8349. // ggml_compute_forward_group_norm
  8350. static void ggml_compute_forward_group_norm_f32(
  8351. const struct ggml_compute_params * params,
  8352. struct ggml_tensor * dst) {
  8353. const struct ggml_tensor * src0 = dst->src[0];
  8354. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8355. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8356. return;
  8357. }
  8358. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8359. const int ith = params->ith;
  8360. const int nth = params->nth;
  8361. GGML_TENSOR_UNARY_OP_LOCALS
  8362. const float eps = 1e-6f; // TODO: make this a parameter
  8363. // TODO: optimize
  8364. int n_channels = src0->ne[2];
  8365. int n_groups = dst->op_params[0];
  8366. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8367. for (int i = ith; i < n_groups; i += nth) {
  8368. int start = i * n_channels_per_group;
  8369. int end = start + n_channels_per_group;
  8370. if (end > n_channels) {
  8371. end = n_channels;
  8372. }
  8373. int step = end - start;
  8374. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8375. ggml_float sum = 0.0;
  8376. for (int64_t i02 = start; i02 < end; i02++) {
  8377. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8378. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8379. ggml_float sumr = 0.0;
  8380. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8381. sumr += (ggml_float)x[i00];
  8382. }
  8383. sum += sumr;
  8384. }
  8385. }
  8386. const float mean = sum / (ne00 * ne01 * step);
  8387. ggml_float sum2 = 0.0;
  8388. for (int64_t i02 = start; i02 < end; i02++) {
  8389. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8390. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8391. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8392. ggml_float sumr = 0.0;
  8393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8394. float v = x[i00] - mean;
  8395. y[i00] = v;
  8396. sumr += (ggml_float)(v * v);
  8397. }
  8398. sum2 += sumr;
  8399. }
  8400. }
  8401. const float variance = sum2 / (ne00 * ne01 * step);
  8402. const float scale = 1.0f / sqrtf(variance + eps);
  8403. for (int64_t i02 = start; i02 < end; i02++) {
  8404. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8405. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8406. ggml_vec_scale_f32(ne00, y, scale);
  8407. }
  8408. }
  8409. }
  8410. }
  8411. }
  8412. static void ggml_compute_forward_group_norm(
  8413. const struct ggml_compute_params * params,
  8414. struct ggml_tensor * dst) {
  8415. const struct ggml_tensor * src0 = dst->src[0];
  8416. switch (src0->type) {
  8417. case GGML_TYPE_F32:
  8418. {
  8419. ggml_compute_forward_group_norm_f32(params, dst);
  8420. } break;
  8421. default:
  8422. {
  8423. GGML_ASSERT(false);
  8424. } break;
  8425. }
  8426. }
  8427. // ggml_compute_forward_mul_mat
  8428. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8429. // helper function to determine if it is better to use BLAS or not
  8430. // for large matrices, BLAS is faster
  8431. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8432. const struct ggml_tensor * src0 = dst->src[0];
  8433. const struct ggml_tensor * src1 = dst->src[1];
  8434. //const int64_t ne00 = src0->ne[0];
  8435. //const int64_t ne01 = src0->ne[1];
  8436. const int64_t ne10 = src1->ne[0];
  8437. const int64_t ne0 = dst->ne[0];
  8438. const int64_t ne1 = dst->ne[1];
  8439. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8440. // all the experts for each batch element and the processing would become incredibly slow
  8441. // TODO: find the optimal values for these
  8442. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8443. ggml_is_contiguous(src0) &&
  8444. ggml_is_contiguous(src1) &&
  8445. //src0->type == GGML_TYPE_F32 &&
  8446. src1->type == GGML_TYPE_F32 &&
  8447. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8448. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8449. return true;
  8450. }
  8451. return false;
  8452. }
  8453. #endif
  8454. static void ggml_compute_forward_mul_mat(
  8455. const struct ggml_compute_params * params,
  8456. struct ggml_tensor * dst) {
  8457. const struct ggml_tensor * src0 = dst->src[0];
  8458. const struct ggml_tensor * src1 = dst->src[1];
  8459. int64_t t0 = ggml_perf_time_us();
  8460. UNUSED(t0);
  8461. GGML_TENSOR_BINARY_OP_LOCALS
  8462. const int ith = params->ith;
  8463. const int nth = params->nth;
  8464. const enum ggml_type type = src0->type;
  8465. const bool src1_cont = ggml_is_contiguous(src1);
  8466. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8467. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8468. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8469. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8470. GGML_ASSERT(ne0 == ne01);
  8471. GGML_ASSERT(ne1 == ne11);
  8472. GGML_ASSERT(ne2 == ne12);
  8473. GGML_ASSERT(ne3 == ne13);
  8474. // we don't support permuted src0 or src1
  8475. GGML_ASSERT(nb00 == ggml_type_size(type));
  8476. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8477. // dst cannot be transposed or permuted
  8478. GGML_ASSERT(nb0 == sizeof(float));
  8479. GGML_ASSERT(nb0 <= nb1);
  8480. GGML_ASSERT(nb1 <= nb2);
  8481. GGML_ASSERT(nb2 <= nb3);
  8482. // broadcast factors
  8483. const int64_t r2 = ne12/ne02;
  8484. const int64_t r3 = ne13/ne03;
  8485. // nb01 >= nb00 - src0 is not transposed
  8486. // compute by src0 rows
  8487. #if defined(GGML_USE_CLBLAST)
  8488. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8489. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8490. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8491. }
  8492. return;
  8493. }
  8494. #endif
  8495. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8496. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8497. const int64_t ne_plane = ne01*ne00;
  8498. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8499. UNUSED(desired_wsize);
  8500. if (params->type == GGML_TASK_TYPE_INIT) {
  8501. if (type != GGML_TYPE_F32) {
  8502. assert(params->wsize >= desired_wsize);
  8503. // parallelize by src0 rows
  8504. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8505. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8506. // broadcast src0 into src1 across 2nd,3rd dimension
  8507. const int64_t i03 = i13/r3;
  8508. const int64_t i02 = i12/r2;
  8509. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8510. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8511. ggml_to_float_t const to_float = type_traits[type].to_float;
  8512. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8513. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8514. }
  8515. }
  8516. }
  8517. }
  8518. return;
  8519. }
  8520. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8521. return;
  8522. }
  8523. // perform sgemm, parallelization controlled by blas lib
  8524. if (ith != 0) {
  8525. return;
  8526. }
  8527. //const int64_t tgemm0 = ggml_perf_time_us();
  8528. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8529. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8530. const int64_t i03 = i13/r3;
  8531. const int64_t i02 = i12/r2;
  8532. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8533. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8534. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8535. if (type != GGML_TYPE_F32) {
  8536. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8537. }
  8538. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8539. ne1, ne01, ne10,
  8540. 1.0f, y, ne10,
  8541. x, ne00,
  8542. 0.0f, d, ne01);
  8543. }
  8544. }
  8545. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8546. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8547. return;
  8548. }
  8549. #endif
  8550. if (params->type == GGML_TASK_TYPE_INIT) {
  8551. if (ith != 0) {
  8552. return;
  8553. }
  8554. if (src1->type != vec_dot_type) {
  8555. char * wdata = params->wdata;
  8556. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8557. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8558. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8559. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8560. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8561. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8562. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8563. wdata += row_size;
  8564. }
  8565. }
  8566. }
  8567. }
  8568. return;
  8569. }
  8570. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8571. return;
  8572. }
  8573. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8574. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8575. const int64_t nr0 = ne01; // src0 rows
  8576. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8577. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8578. // distribute the thread work across the inner or outer loop based on which one is larger
  8579. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8580. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8581. const int64_t ith0 = ith % nth0;
  8582. const int64_t ith1 = ith / nth0;
  8583. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8584. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8585. const int64_t ir010 = dr0*ith0;
  8586. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8587. const int64_t ir110 = dr1*ith1;
  8588. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8589. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8590. // threads with no work simply yield (not sure if it helps)
  8591. if (ir010 >= ir011 || ir110 >= ir111) {
  8592. sched_yield();
  8593. return;
  8594. }
  8595. assert(ne12 % ne02 == 0);
  8596. assert(ne13 % ne03 == 0);
  8597. // block-tiling attempt
  8598. const int64_t blck_0 = 16;
  8599. const int64_t blck_1 = 16;
  8600. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8601. int64_t nrc = vec_dot_num_rows;
  8602. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8603. // this check can be removed once they are extended to support odd numbered rows/cols too
  8604. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8605. nrc = 1;
  8606. }
  8607. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8608. // attempt to reduce false-sharing (does not seem to make a difference)
  8609. // 16 * 2, accounting for mmla kernels
  8610. float tmp[32];
  8611. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8612. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8613. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8614. const int64_t i13 = (ir1/(ne12*ne1));
  8615. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8616. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8617. // broadcast src0 into src1
  8618. const int64_t i03 = i13/r3;
  8619. const int64_t i02 = i12/r2;
  8620. const int64_t i1 = i11;
  8621. const int64_t i2 = i12;
  8622. const int64_t i3 = i13;
  8623. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8624. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8625. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8626. // the original src1 data pointer, so we should index using the indices directly
  8627. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8628. const char * src1_col = (const char *) wdata +
  8629. (src1_cont || src1->type != vec_dot_type
  8630. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8631. : (i11*nb11 + i12*nb12 + i13*nb13));
  8632. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8633. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8634. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8635. //}
  8636. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8637. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8638. }
  8639. for (int cn = 0; cn < nrc; ++cn) {
  8640. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8641. }
  8642. }
  8643. }
  8644. }
  8645. }
  8646. // ggml_compute_forward_mul_mat_id
  8647. static void ggml_compute_forward_mul_mat_id(
  8648. const struct ggml_compute_params * params,
  8649. struct ggml_tensor * dst) {
  8650. const struct ggml_tensor * ids = dst->src[0];
  8651. const struct ggml_tensor * src1 = dst->src[1];
  8652. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8653. GGML_TENSOR_BINARY_OP_LOCALS
  8654. const int ith = params->ith;
  8655. const int nth = params->nth;
  8656. const enum ggml_type type = src0->type;
  8657. const bool src1_cont = ggml_is_contiguous(src1);
  8658. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8659. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8660. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8661. GGML_ASSERT(ne0 == ne01);
  8662. GGML_ASSERT(ne1 == ne11);
  8663. GGML_ASSERT(ne2 == ne12);
  8664. GGML_ASSERT(ne3 == ne13);
  8665. // we don't support permuted src0 or src1
  8666. GGML_ASSERT(nb00 == ggml_type_size(type));
  8667. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8668. // dst cannot be transposed or permuted
  8669. GGML_ASSERT(nb0 == sizeof(float));
  8670. GGML_ASSERT(nb0 <= nb1);
  8671. GGML_ASSERT(nb1 <= nb2);
  8672. GGML_ASSERT(nb2 <= nb3);
  8673. // broadcast factors
  8674. const int64_t r2 = ne12/ne02;
  8675. const int64_t r3 = ne13/ne03;
  8676. // row groups
  8677. const int id = ggml_get_op_params_i32(dst, 0);
  8678. const int n_as = ggml_get_op_params_i32(dst, 1);
  8679. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8680. (char *) params->wdata :
  8681. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8682. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8683. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8684. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8685. if (params->type == GGML_TASK_TYPE_INIT) {
  8686. if (ith != 0) {
  8687. return;
  8688. }
  8689. char * wdata = params->wdata;
  8690. if (src1->type != vec_dot_type) {
  8691. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8692. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8693. assert(src1->type == GGML_TYPE_F32);
  8694. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8695. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8696. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8697. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8698. wdata += row_size;
  8699. }
  8700. }
  8701. }
  8702. }
  8703. // initialize matrix_row_counts
  8704. GGML_ASSERT(wdata == wdata_src1_end);
  8705. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8706. // group rows by src0 matrix
  8707. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8708. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8709. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8710. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8711. matrix_row_counts[row_id] += 1;
  8712. }
  8713. return;
  8714. }
  8715. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8716. return;
  8717. }
  8718. // compute each matrix multiplication in sequence
  8719. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8720. const int64_t cne1 = matrix_row_counts[cur_a];
  8721. if (cne1 == 0) {
  8722. continue;
  8723. }
  8724. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8725. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8726. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8727. const int64_t nr0 = ne01; // src0 rows
  8728. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8729. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8730. // distribute the thread work across the inner or outer loop based on which one is larger
  8731. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8732. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8733. const int64_t ith0 = ith % nth0;
  8734. const int64_t ith1 = ith / nth0;
  8735. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8736. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8737. const int64_t ir010 = dr0*ith0;
  8738. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8739. const int64_t ir110 = dr1*ith1;
  8740. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8741. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8742. // threads with no work simply yield (not sure if it helps)
  8743. if (ir010 >= ir011 || ir110 >= ir111) {
  8744. sched_yield();
  8745. continue;
  8746. }
  8747. assert(ne12 % ne02 == 0);
  8748. assert(ne13 % ne03 == 0);
  8749. // block-tiling attempt
  8750. const int64_t blck_0 = 16;
  8751. const int64_t blck_1 = 16;
  8752. // attempt to reduce false-sharing (does not seem to make a difference)
  8753. float tmp[16];
  8754. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8755. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8756. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8757. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8758. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8759. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8760. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8761. // broadcast src0 into src1
  8762. const int64_t i03 = i13/r3;
  8763. const int64_t i02 = i12/r2;
  8764. const int64_t i1 = i11;
  8765. const int64_t i2 = i12;
  8766. const int64_t i3 = i13;
  8767. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8768. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8769. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8770. // the original src1 data pointer, so we should index using the indices directly
  8771. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8772. const char * src1_col = (const char *) wdata +
  8773. (src1_cont || src1->type != vec_dot_type
  8774. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8775. : (i11*nb11 + i12*nb12 + i13*nb13));
  8776. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8777. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8778. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8779. //}
  8780. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8781. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8782. }
  8783. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8784. }
  8785. }
  8786. }
  8787. }
  8788. #undef MMID_MATRIX_ROW
  8789. }
  8790. // ggml_compute_forward_out_prod
  8791. static void ggml_compute_forward_out_prod_f32(
  8792. const struct ggml_compute_params * params,
  8793. struct ggml_tensor * dst) {
  8794. const struct ggml_tensor * src0 = dst->src[0];
  8795. const struct ggml_tensor * src1 = dst->src[1];
  8796. // int64_t t0 = ggml_perf_time_us();
  8797. // UNUSED(t0);
  8798. GGML_TENSOR_BINARY_OP_LOCALS
  8799. const int ith = params->ith;
  8800. const int nth = params->nth;
  8801. GGML_ASSERT(ne0 == ne00);
  8802. GGML_ASSERT(ne1 == ne10);
  8803. GGML_ASSERT(ne2 == ne02);
  8804. GGML_ASSERT(ne02 == ne12);
  8805. GGML_ASSERT(ne3 == ne13);
  8806. GGML_ASSERT(ne03 == ne13);
  8807. // we don't support permuted src0 or src1
  8808. GGML_ASSERT(nb00 == sizeof(float));
  8809. // dst cannot be transposed or permuted
  8810. GGML_ASSERT(nb0 == sizeof(float));
  8811. // GGML_ASSERT(nb0 <= nb1);
  8812. // GGML_ASSERT(nb1 <= nb2);
  8813. // GGML_ASSERT(nb2 <= nb3);
  8814. // nb01 >= nb00 - src0 is not transposed
  8815. // compute by src0 rows
  8816. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8817. // TODO: #if defined(GGML_USE_CLBLAST)
  8818. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8819. bool use_blas = ggml_is_matrix(src0) &&
  8820. ggml_is_matrix(src1) &&
  8821. ggml_is_contiguous(src0) &&
  8822. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8823. #endif
  8824. if (params->type == GGML_TASK_TYPE_INIT) {
  8825. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8826. if (use_blas) {
  8827. return;
  8828. }
  8829. #endif
  8830. if (ith != 0) {
  8831. return;
  8832. }
  8833. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8834. return;
  8835. }
  8836. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8837. return;
  8838. }
  8839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8840. if (use_blas) {
  8841. if (params->ith != 0) { // All threads other than the first do no work.
  8842. return;
  8843. }
  8844. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8845. // src0: (k,n)
  8846. // src1: (k,m)
  8847. // dst: (m,n)
  8848. //
  8849. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8850. // Also expressed as (major,minor)
  8851. // a: (m,k): so src1 transposed
  8852. // b: (k,n): so src0
  8853. // c: (m,n)
  8854. //
  8855. // However, if ggml_is_transposed(src1) is true, then
  8856. // src1->data already contains a transposed version, so sgemm mustn't
  8857. // transpose it further.
  8858. int n = src0->ne[0];
  8859. int k = src0->ne[1];
  8860. int m = src1->ne[0];
  8861. int transposeA, lda;
  8862. if (!ggml_is_transposed(src1)) {
  8863. transposeA = CblasTrans;
  8864. lda = m;
  8865. } else {
  8866. transposeA = CblasNoTrans;
  8867. lda = k;
  8868. }
  8869. float * a = (float *) ((char *) src1->data);
  8870. float * b = (float *) ((char *) src0->data);
  8871. float * c = (float *) ((char *) dst->data);
  8872. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8873. return;
  8874. }
  8875. #endif
  8876. // dst[:,:,:,:] = 0
  8877. // for i2,i3:
  8878. // for i1:
  8879. // for i01:
  8880. // for i0:
  8881. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8882. // parallelize by last three dimensions
  8883. // total rows in dst
  8884. const int64_t nr = ne1*ne2*ne3;
  8885. // rows per thread
  8886. const int64_t dr = (nr + nth - 1)/nth;
  8887. // row range for this thread
  8888. const int64_t ir0 = dr*ith;
  8889. const int64_t ir1 = MIN(ir0 + dr, nr);
  8890. // block-tiling attempt
  8891. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8892. const int64_t blck_1 = 16;
  8893. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8894. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8895. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8896. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8897. for (int64_t ir = bir; ir < bir1; ++ir) {
  8898. // dst indices
  8899. const int64_t i3 = ir/(ne2*ne1);
  8900. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8901. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8902. const int64_t i02 = i2;
  8903. const int64_t i03 = i3;
  8904. //const int64_t i10 = i1;
  8905. const int64_t i12 = i2;
  8906. const int64_t i13 = i3;
  8907. #if GGML_VEC_MAD_UNROLL > 2
  8908. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8909. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8910. const int64_t i11 = i01;
  8911. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8912. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8913. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8914. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8915. }
  8916. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8917. const int64_t i11 = i01;
  8918. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8919. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8920. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8921. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8922. }
  8923. #else
  8924. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8925. const int64_t i11 = i01;
  8926. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8927. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8928. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8929. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8930. }
  8931. #endif
  8932. }
  8933. }
  8934. }
  8935. //int64_t t1 = ggml_perf_time_us();
  8936. //static int64_t acc = 0;
  8937. //acc += t1 - t0;
  8938. //if (t1 - t0 > 10) {
  8939. // printf("\n");
  8940. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8941. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8942. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8943. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8944. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8945. //}
  8946. }
  8947. static void ggml_compute_forward_out_prod_q_f32(
  8948. const struct ggml_compute_params * params,
  8949. struct ggml_tensor * dst) {
  8950. const struct ggml_tensor * src0 = dst->src[0];
  8951. const struct ggml_tensor * src1 = dst->src[1];
  8952. // int64_t t0 = ggml_perf_time_us();
  8953. // UNUSED(t0);
  8954. GGML_TENSOR_BINARY_OP_LOCALS;
  8955. const int ith = params->ith;
  8956. const int nth = params->nth;
  8957. const enum ggml_type type = src0->type;
  8958. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8959. GGML_ASSERT(ne02 == ne12);
  8960. GGML_ASSERT(ne03 == ne13);
  8961. GGML_ASSERT(ne2 == ne12);
  8962. GGML_ASSERT(ne3 == ne13);
  8963. // we don't support permuted src0 dim0
  8964. GGML_ASSERT(nb00 == ggml_type_size(type));
  8965. // dst dim0 cannot be transposed or permuted
  8966. GGML_ASSERT(nb0 == sizeof(float));
  8967. // GGML_ASSERT(nb0 <= nb1);
  8968. // GGML_ASSERT(nb1 <= nb2);
  8969. // GGML_ASSERT(nb2 <= nb3);
  8970. GGML_ASSERT(ne0 == ne00);
  8971. GGML_ASSERT(ne1 == ne10);
  8972. GGML_ASSERT(ne2 == ne02);
  8973. GGML_ASSERT(ne3 == ne03);
  8974. // nb01 >= nb00 - src0 is not transposed
  8975. // compute by src0 rows
  8976. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8977. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8978. if (params->type == GGML_TASK_TYPE_INIT) {
  8979. if (ith != 0) {
  8980. return;
  8981. }
  8982. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8983. return;
  8984. }
  8985. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8986. return;
  8987. }
  8988. // parallelize by last three dimensions
  8989. // total rows in dst
  8990. const int64_t nr = ne1*ne2*ne3;
  8991. // rows per thread
  8992. const int64_t dr = (nr + nth - 1)/nth;
  8993. // row range for this thread
  8994. const int64_t ir0 = dr*ith;
  8995. const int64_t ir1 = MIN(ir0 + dr, nr);
  8996. // dst[:,:,:,:] = 0
  8997. // for i2,i3:
  8998. // for i1:
  8999. // for i01:
  9000. // for i0:
  9001. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9002. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9003. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9004. // dst indices
  9005. const int64_t i3 = ir/(ne2*ne1);
  9006. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9007. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9008. const int64_t i02 = i2;
  9009. const int64_t i03 = i3;
  9010. //const int64_t i10 = i1;
  9011. const int64_t i12 = i2;
  9012. const int64_t i13 = i3;
  9013. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9014. const int64_t i11 = i01;
  9015. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9016. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9017. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9018. dequantize_row_q(s0, wdata, ne0);
  9019. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9020. }
  9021. }
  9022. //int64_t t1 = ggml_perf_time_us();
  9023. //static int64_t acc = 0;
  9024. //acc += t1 - t0;
  9025. //if (t1 - t0 > 10) {
  9026. // printf("\n");
  9027. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9028. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9029. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9030. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9031. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9032. //}
  9033. }
  9034. static void ggml_compute_forward_out_prod(
  9035. const struct ggml_compute_params * params,
  9036. struct ggml_tensor * dst) {
  9037. const struct ggml_tensor * src0 = dst->src[0];
  9038. switch (src0->type) {
  9039. case GGML_TYPE_Q4_0:
  9040. case GGML_TYPE_Q4_1:
  9041. case GGML_TYPE_Q5_0:
  9042. case GGML_TYPE_Q5_1:
  9043. case GGML_TYPE_Q8_0:
  9044. case GGML_TYPE_Q2_K:
  9045. case GGML_TYPE_Q3_K:
  9046. case GGML_TYPE_Q4_K:
  9047. case GGML_TYPE_Q5_K:
  9048. case GGML_TYPE_Q6_K:
  9049. case GGML_TYPE_IQ2_XXS:
  9050. case GGML_TYPE_IQ2_XS:
  9051. case GGML_TYPE_IQ3_XXS:
  9052. case GGML_TYPE_IQ1_S:
  9053. case GGML_TYPE_IQ4_NL:
  9054. case GGML_TYPE_IQ4_XS:
  9055. case GGML_TYPE_IQ3_S:
  9056. case GGML_TYPE_IQ2_S:
  9057. {
  9058. ggml_compute_forward_out_prod_q_f32(params, dst);
  9059. } break;
  9060. case GGML_TYPE_F16:
  9061. {
  9062. GGML_ASSERT(false); // todo
  9063. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9064. } break;
  9065. case GGML_TYPE_F32:
  9066. {
  9067. ggml_compute_forward_out_prod_f32(params, dst);
  9068. } break;
  9069. default:
  9070. {
  9071. GGML_ASSERT(false);
  9072. } break;
  9073. }
  9074. }
  9075. // ggml_compute_forward_scale
  9076. static void ggml_compute_forward_scale_f32(
  9077. const struct ggml_compute_params * params,
  9078. struct ggml_tensor * dst) {
  9079. const struct ggml_tensor * src0 = dst->src[0];
  9080. GGML_ASSERT(ggml_is_contiguous(src0));
  9081. GGML_ASSERT(ggml_is_contiguous(dst));
  9082. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9083. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9084. return;
  9085. }
  9086. // scale factor
  9087. float v;
  9088. memcpy(&v, dst->op_params, sizeof(float));
  9089. const int ith = params->ith;
  9090. const int nth = params->nth;
  9091. const int nc = src0->ne[0];
  9092. const int nr = ggml_nrows(src0);
  9093. // rows per thread
  9094. const int dr = (nr + nth - 1)/nth;
  9095. // row range for this thread
  9096. const int ir0 = dr*ith;
  9097. const int ir1 = MIN(ir0 + dr, nr);
  9098. const size_t nb01 = src0->nb[1];
  9099. const size_t nb1 = dst->nb[1];
  9100. for (int i1 = ir0; i1 < ir1; i1++) {
  9101. if (dst->data != src0->data) {
  9102. // src0 is same shape as dst => same indices
  9103. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9104. }
  9105. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9106. }
  9107. }
  9108. static void ggml_compute_forward_scale(
  9109. const struct ggml_compute_params * params,
  9110. struct ggml_tensor * dst) {
  9111. const struct ggml_tensor * src0 = dst->src[0];
  9112. switch (src0->type) {
  9113. case GGML_TYPE_F32:
  9114. {
  9115. ggml_compute_forward_scale_f32(params, dst);
  9116. } break;
  9117. default:
  9118. {
  9119. GGML_ASSERT(false);
  9120. } break;
  9121. }
  9122. }
  9123. // ggml_compute_forward_set
  9124. static void ggml_compute_forward_set_f32(
  9125. const struct ggml_compute_params * params,
  9126. struct ggml_tensor * dst) {
  9127. const struct ggml_tensor * src0 = dst->src[0];
  9128. const struct ggml_tensor * src1 = dst->src[1];
  9129. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9130. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9131. // view src0 and dst with these strides and data offset inbytes during set
  9132. // nb0 is implicitly element_size because src0 and dst are contiguous
  9133. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9134. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9135. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9136. size_t offset = ((int32_t *) dst->op_params)[3];
  9137. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9138. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9139. if (params->ith != 0) {
  9140. return;
  9141. }
  9142. // memcpy needs to be synchronized across threads to avoid race conditions.
  9143. // => do it in INIT phase
  9144. memcpy(
  9145. ((char *) dst->data),
  9146. ((char *) src0->data),
  9147. ggml_nbytes(dst));
  9148. }
  9149. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9150. return;
  9151. }
  9152. const int ith = params->ith;
  9153. const int nth = params->nth;
  9154. const int nr = ggml_nrows(src1);
  9155. const int nc = src1->ne[0];
  9156. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9157. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9158. // src0 and dst as viewed during set
  9159. const size_t nb0 = ggml_element_size(src0);
  9160. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9161. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9162. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9163. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9164. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9165. GGML_ASSERT(nb10 == sizeof(float));
  9166. // rows per thread
  9167. const int dr = (nr + nth - 1)/nth;
  9168. // row range for this thread
  9169. const int ir0 = dr*ith;
  9170. const int ir1 = MIN(ir0 + dr, nr);
  9171. for (int ir = ir0; ir < ir1; ++ir) {
  9172. // src0 and dst are viewed with shape of src1 and offset
  9173. // => same indices
  9174. const int i3 = ir/(ne12*ne11);
  9175. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9176. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9177. ggml_vec_cpy_f32(nc,
  9178. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9179. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9180. }
  9181. }
  9182. static void ggml_compute_forward_set(
  9183. const struct ggml_compute_params * params,
  9184. struct ggml_tensor * dst) {
  9185. const struct ggml_tensor * src0 = dst->src[0];
  9186. switch (src0->type) {
  9187. case GGML_TYPE_F32:
  9188. {
  9189. ggml_compute_forward_set_f32(params, dst);
  9190. } break;
  9191. case GGML_TYPE_F16:
  9192. case GGML_TYPE_Q4_0:
  9193. case GGML_TYPE_Q4_1:
  9194. case GGML_TYPE_Q5_0:
  9195. case GGML_TYPE_Q5_1:
  9196. case GGML_TYPE_Q8_0:
  9197. case GGML_TYPE_Q8_1:
  9198. case GGML_TYPE_Q2_K:
  9199. case GGML_TYPE_Q3_K:
  9200. case GGML_TYPE_Q4_K:
  9201. case GGML_TYPE_Q5_K:
  9202. case GGML_TYPE_Q6_K:
  9203. case GGML_TYPE_IQ2_XXS:
  9204. case GGML_TYPE_IQ2_XS:
  9205. case GGML_TYPE_IQ3_XXS:
  9206. case GGML_TYPE_IQ1_S:
  9207. case GGML_TYPE_IQ4_NL:
  9208. case GGML_TYPE_IQ4_XS:
  9209. case GGML_TYPE_IQ3_S:
  9210. case GGML_TYPE_IQ2_S:
  9211. default:
  9212. {
  9213. GGML_ASSERT(false);
  9214. } break;
  9215. }
  9216. }
  9217. // ggml_compute_forward_cpy
  9218. static void ggml_compute_forward_cpy(
  9219. const struct ggml_compute_params * params,
  9220. struct ggml_tensor * dst) {
  9221. ggml_compute_forward_dup(params, dst);
  9222. }
  9223. // ggml_compute_forward_cont
  9224. static void ggml_compute_forward_cont(
  9225. const struct ggml_compute_params * params,
  9226. struct ggml_tensor * dst) {
  9227. ggml_compute_forward_dup(params, dst);
  9228. }
  9229. // ggml_compute_forward_reshape
  9230. static void ggml_compute_forward_reshape(
  9231. const struct ggml_compute_params * params,
  9232. struct ggml_tensor * dst) {
  9233. // NOP
  9234. UNUSED(params);
  9235. UNUSED(dst);
  9236. }
  9237. // ggml_compute_forward_view
  9238. static void ggml_compute_forward_view(
  9239. const struct ggml_compute_params * params,
  9240. const struct ggml_tensor * dst) {
  9241. // NOP
  9242. UNUSED(params);
  9243. UNUSED(dst);
  9244. }
  9245. // ggml_compute_forward_permute
  9246. static void ggml_compute_forward_permute(
  9247. const struct ggml_compute_params * params,
  9248. const struct ggml_tensor * dst) {
  9249. // NOP
  9250. UNUSED(params);
  9251. UNUSED(dst);
  9252. }
  9253. // ggml_compute_forward_transpose
  9254. static void ggml_compute_forward_transpose(
  9255. const struct ggml_compute_params * params,
  9256. const struct ggml_tensor * dst) {
  9257. // NOP
  9258. UNUSED(params);
  9259. UNUSED(dst);
  9260. }
  9261. // ggml_compute_forward_get_rows
  9262. static void ggml_compute_forward_get_rows_q(
  9263. const struct ggml_compute_params * params,
  9264. struct ggml_tensor * dst) {
  9265. const struct ggml_tensor * src0 = dst->src[0];
  9266. const struct ggml_tensor * src1 = dst->src[1];
  9267. assert(params->ith == 0);
  9268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9269. return;
  9270. }
  9271. GGML_TENSOR_BINARY_OP_LOCALS
  9272. const int64_t nc = ne00;
  9273. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9274. const enum ggml_type type = src0->type;
  9275. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9276. assert(ne0 == nc);
  9277. assert(ne02 == ne11);
  9278. assert(nb00 == ggml_type_size(type));
  9279. assert(ggml_nrows(dst) == nr);
  9280. // TODO: multi-thread
  9281. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9282. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9283. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9284. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9285. dequantize_row_q(
  9286. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9287. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9288. }
  9289. }
  9290. }
  9291. }
  9292. static void ggml_compute_forward_get_rows_f16(
  9293. const struct ggml_compute_params * params,
  9294. struct ggml_tensor * dst) {
  9295. const struct ggml_tensor * src0 = dst->src[0];
  9296. const struct ggml_tensor * src1 = dst->src[1];
  9297. assert(params->ith == 0);
  9298. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9299. return;
  9300. }
  9301. GGML_TENSOR_BINARY_OP_LOCALS
  9302. const int64_t nc = ne00;
  9303. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9304. assert(ne0 == nc);
  9305. assert(ne02 == ne11);
  9306. assert(nb00 == sizeof(ggml_fp16_t));
  9307. assert(ggml_nrows(dst) == nr);
  9308. // TODO: multi-thread
  9309. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9310. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9311. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9312. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9313. ggml_fp16_to_fp32_row(
  9314. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9315. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9316. }
  9317. }
  9318. }
  9319. }
  9320. static void ggml_compute_forward_get_rows_f32(
  9321. const struct ggml_compute_params * params,
  9322. struct ggml_tensor * dst) {
  9323. const struct ggml_tensor * src0 = dst->src[0];
  9324. const struct ggml_tensor * src1 = dst->src[1];
  9325. assert(params->ith == 0);
  9326. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9327. return;
  9328. }
  9329. GGML_TENSOR_BINARY_OP_LOCALS
  9330. const int64_t nc = ne00;
  9331. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9332. assert(ne0 == nc);
  9333. assert(ne02 == ne11);
  9334. assert(nb00 == sizeof(float));
  9335. assert(ggml_nrows(dst) == nr);
  9336. // TODO: multi-thread
  9337. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9338. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9339. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9340. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9341. ggml_vec_cpy_f32(nc,
  9342. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9343. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9344. }
  9345. }
  9346. }
  9347. }
  9348. static void ggml_compute_forward_get_rows(
  9349. const struct ggml_compute_params * params,
  9350. struct ggml_tensor * dst) {
  9351. const struct ggml_tensor * src0 = dst->src[0];
  9352. switch (src0->type) {
  9353. case GGML_TYPE_Q4_0:
  9354. case GGML_TYPE_Q4_1:
  9355. case GGML_TYPE_Q5_0:
  9356. case GGML_TYPE_Q5_1:
  9357. case GGML_TYPE_Q8_0:
  9358. case GGML_TYPE_Q8_1:
  9359. case GGML_TYPE_Q2_K:
  9360. case GGML_TYPE_Q3_K:
  9361. case GGML_TYPE_Q4_K:
  9362. case GGML_TYPE_Q5_K:
  9363. case GGML_TYPE_Q6_K:
  9364. case GGML_TYPE_IQ2_XXS:
  9365. case GGML_TYPE_IQ2_XS:
  9366. case GGML_TYPE_IQ3_XXS:
  9367. case GGML_TYPE_IQ1_S:
  9368. case GGML_TYPE_IQ4_NL:
  9369. case GGML_TYPE_IQ4_XS:
  9370. case GGML_TYPE_IQ3_S:
  9371. case GGML_TYPE_IQ2_S:
  9372. {
  9373. ggml_compute_forward_get_rows_q(params, dst);
  9374. } break;
  9375. case GGML_TYPE_F16:
  9376. {
  9377. ggml_compute_forward_get_rows_f16(params, dst);
  9378. } break;
  9379. case GGML_TYPE_F32:
  9380. case GGML_TYPE_I32:
  9381. {
  9382. ggml_compute_forward_get_rows_f32(params, dst);
  9383. } break;
  9384. default:
  9385. {
  9386. GGML_ASSERT(false);
  9387. } break;
  9388. }
  9389. //static bool first = true;
  9390. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9391. //if (first) {
  9392. // first = false;
  9393. //} else {
  9394. // for (int k = 0; k < dst->ne[1]; ++k) {
  9395. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9396. // for (int i = 0; i < 16; ++i) {
  9397. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9398. // }
  9399. // printf("\n");
  9400. // }
  9401. // printf("\n");
  9402. // }
  9403. // printf("\n");
  9404. // exit(0);
  9405. //}
  9406. }
  9407. // ggml_compute_forward_get_rows_back
  9408. static void ggml_compute_forward_get_rows_back_f32_f16(
  9409. const struct ggml_compute_params * params,
  9410. struct ggml_tensor * dst) {
  9411. const struct ggml_tensor * src0 = dst->src[0];
  9412. const struct ggml_tensor * src1 = dst->src[1];
  9413. GGML_ASSERT(params->ith == 0);
  9414. GGML_ASSERT(ggml_is_contiguous(dst));
  9415. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9416. if (params->type == GGML_TASK_TYPE_INIT) {
  9417. if (params->ith != 0) {
  9418. return;
  9419. }
  9420. memset(dst->data, 0, ggml_nbytes(dst));
  9421. }
  9422. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9423. return;
  9424. }
  9425. const int nc = src0->ne[0];
  9426. const int nr = ggml_nelements(src1);
  9427. GGML_ASSERT( dst->ne[0] == nc);
  9428. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9429. for (int i = 0; i < nr; ++i) {
  9430. const int r = ((int32_t *) src1->data)[i];
  9431. for (int j = 0; j < nc; ++j) {
  9432. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9433. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9434. }
  9435. }
  9436. }
  9437. static void ggml_compute_forward_get_rows_back_f32(
  9438. const struct ggml_compute_params * params,
  9439. struct ggml_tensor * dst) {
  9440. const struct ggml_tensor * src0 = dst->src[0];
  9441. const struct ggml_tensor * src1 = dst->src[1];
  9442. GGML_ASSERT(params->ith == 0);
  9443. GGML_ASSERT(ggml_is_contiguous(dst));
  9444. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9445. if (params->type == GGML_TASK_TYPE_INIT) {
  9446. if (params->ith != 0) {
  9447. return;
  9448. }
  9449. memset(dst->data, 0, ggml_nbytes(dst));
  9450. }
  9451. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9452. return;
  9453. }
  9454. const int nc = src0->ne[0];
  9455. const int nr = ggml_nelements(src1);
  9456. GGML_ASSERT( dst->ne[0] == nc);
  9457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9458. for (int i = 0; i < nr; ++i) {
  9459. const int r = ((int32_t *) src1->data)[i];
  9460. ggml_vec_add_f32(nc,
  9461. (float *) ((char *) dst->data + r*dst->nb[1]),
  9462. (float *) ((char *) dst->data + r*dst->nb[1]),
  9463. (float *) ((char *) src0->data + i*src0->nb[1]));
  9464. }
  9465. }
  9466. static void ggml_compute_forward_get_rows_back(
  9467. const struct ggml_compute_params * params,
  9468. struct ggml_tensor * dst) {
  9469. const struct ggml_tensor * src0 = dst->src[0];
  9470. switch (src0->type) {
  9471. case GGML_TYPE_F16:
  9472. {
  9473. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9474. } break;
  9475. case GGML_TYPE_F32:
  9476. {
  9477. ggml_compute_forward_get_rows_back_f32(params, dst);
  9478. } break;
  9479. default:
  9480. {
  9481. GGML_ASSERT(false);
  9482. } break;
  9483. }
  9484. //static bool first = true;
  9485. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9486. //if (first) {
  9487. // first = false;
  9488. //} else {
  9489. // for (int k = 0; k < dst->ne[1]; ++k) {
  9490. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9491. // for (int i = 0; i < 16; ++i) {
  9492. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9493. // }
  9494. // printf("\n");
  9495. // }
  9496. // printf("\n");
  9497. // }
  9498. // printf("\n");
  9499. // exit(0);
  9500. //}
  9501. }
  9502. // ggml_compute_forward_diag
  9503. static void ggml_compute_forward_diag_f32(
  9504. const struct ggml_compute_params * params,
  9505. struct ggml_tensor * dst) {
  9506. const struct ggml_tensor * src0 = dst->src[0];
  9507. GGML_ASSERT(params->ith == 0);
  9508. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9509. return;
  9510. }
  9511. // TODO: handle transposed/permuted matrices
  9512. GGML_TENSOR_UNARY_OP_LOCALS
  9513. GGML_ASSERT(ne00 == ne0);
  9514. GGML_ASSERT(ne00 == ne1);
  9515. GGML_ASSERT(ne01 == 1);
  9516. GGML_ASSERT(ne02 == ne2);
  9517. GGML_ASSERT(ne03 == ne3);
  9518. GGML_ASSERT(nb00 == sizeof(float));
  9519. GGML_ASSERT(nb0 == sizeof(float));
  9520. for (int i3 = 0; i3 < ne3; i3++) {
  9521. for (int i2 = 0; i2 < ne2; i2++) {
  9522. for (int i1 = 0; i1 < ne1; i1++) {
  9523. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9524. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9525. for (int i0 = 0; i0 < i1; i0++) {
  9526. d[i0] = 0;
  9527. }
  9528. d[i1] = s[i1];
  9529. for (int i0 = i1+1; i0 < ne0; i0++) {
  9530. d[i0] = 0;
  9531. }
  9532. }
  9533. }
  9534. }
  9535. }
  9536. static void ggml_compute_forward_diag(
  9537. const struct ggml_compute_params * params,
  9538. struct ggml_tensor * dst) {
  9539. const struct ggml_tensor * src0 = dst->src[0];
  9540. switch (src0->type) {
  9541. case GGML_TYPE_F32:
  9542. {
  9543. ggml_compute_forward_diag_f32(params, dst);
  9544. } break;
  9545. default:
  9546. {
  9547. GGML_ASSERT(false);
  9548. } break;
  9549. }
  9550. }
  9551. // ggml_compute_forward_diag_mask_inf
  9552. static void ggml_compute_forward_diag_mask_f32(
  9553. const struct ggml_compute_params * params,
  9554. struct ggml_tensor * dst,
  9555. const float value) {
  9556. const struct ggml_tensor * src0 = dst->src[0];
  9557. const int ith = params->ith;
  9558. const int nth = params->nth;
  9559. const int n_past = ((int32_t *) dst->op_params)[0];
  9560. const bool inplace = src0->data == dst->data;
  9561. GGML_ASSERT(n_past >= 0);
  9562. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9563. if (ith != 0) {
  9564. return;
  9565. }
  9566. // memcpy needs to be synchronized across threads to avoid race conditions.
  9567. // => do it in INIT phase
  9568. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9569. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9570. memcpy(
  9571. ((char *) dst->data),
  9572. ((char *) src0->data),
  9573. ggml_nbytes(dst));
  9574. }
  9575. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9576. return;
  9577. }
  9578. // TODO: handle transposed/permuted matrices
  9579. const int n = ggml_nrows(src0);
  9580. const int nc = src0->ne[0];
  9581. const int nr = src0->ne[1];
  9582. const int nz = n/nr;
  9583. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9584. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9585. for (int k = 0; k < nz; k++) {
  9586. for (int j = ith; j < nr; j += nth) {
  9587. for (int i = n_past; i < nc; i++) {
  9588. if (i > n_past + j) {
  9589. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9590. }
  9591. }
  9592. }
  9593. }
  9594. }
  9595. static void ggml_compute_forward_diag_mask_inf(
  9596. const struct ggml_compute_params * params,
  9597. struct ggml_tensor * dst) {
  9598. const struct ggml_tensor * src0 = dst->src[0];
  9599. switch (src0->type) {
  9600. case GGML_TYPE_F32:
  9601. {
  9602. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9603. } break;
  9604. default:
  9605. {
  9606. GGML_ASSERT(false);
  9607. } break;
  9608. }
  9609. }
  9610. static void ggml_compute_forward_diag_mask_zero(
  9611. const struct ggml_compute_params * params,
  9612. struct ggml_tensor * dst) {
  9613. const struct ggml_tensor * src0 = dst->src[0];
  9614. switch (src0->type) {
  9615. case GGML_TYPE_F32:
  9616. {
  9617. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9618. } break;
  9619. default:
  9620. {
  9621. GGML_ASSERT(false);
  9622. } break;
  9623. }
  9624. }
  9625. // ggml_compute_forward_soft_max
  9626. static void ggml_compute_forward_soft_max_f32(
  9627. const struct ggml_compute_params * params,
  9628. struct ggml_tensor * dst) {
  9629. const struct ggml_tensor * src0 = dst->src[0];
  9630. const struct ggml_tensor * src1 = dst->src[1];
  9631. const struct ggml_tensor * src2 = dst->src[2];
  9632. assert(ggml_is_contiguous(dst));
  9633. assert(ggml_are_same_shape(src0, dst));
  9634. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9635. return;
  9636. }
  9637. float scale = 1.0f;
  9638. float max_bias = 0.0f;
  9639. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9640. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9641. // TODO: handle transposed/permuted matrices
  9642. const int ith = params->ith;
  9643. const int nth = params->nth;
  9644. GGML_TENSOR_UNARY_OP_LOCALS
  9645. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9646. // TODO: is this supposed to be ceil instead of floor?
  9647. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9648. const uint32_t n_head_kv = ne02;
  9649. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9650. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9651. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9652. const int nc = src0->ne[0];
  9653. const int nr = ggml_nrows(src0);
  9654. // rows per thread
  9655. const int dr = (nr + nth - 1)/nth;
  9656. // row range for this thread
  9657. const int ir0 = dr*ith;
  9658. const int ir1 = MIN(ir0 + dr, nr);
  9659. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9660. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9661. float * pos = src2 ? (float *) src2->data : src0->data;
  9662. for (int i1 = ir0; i1 < ir1; i1++) {
  9663. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9664. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9665. // broadcast the mask across rows
  9666. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9667. ggml_vec_cpy_f32 (nc, wp, sp);
  9668. ggml_vec_scale_f32(nc, wp, scale);
  9669. if (mp) {
  9670. ggml_vec_acc_f32(nc, wp, mp);
  9671. }
  9672. // ALiBi bias
  9673. if (max_bias > 0.0f) {
  9674. const uint32_t h = (i1/ne01)%ne02; // head
  9675. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9676. for (int i = 0; i < nc; i++) {
  9677. wp[i] = wp[i] + slope*pos[i];
  9678. }
  9679. }
  9680. #ifndef NDEBUG
  9681. for (int i = 0; i < nc; ++i) {
  9682. //printf("p[%d] = %f\n", i, p[i]);
  9683. assert(!isnan(wp[i]));
  9684. }
  9685. #endif
  9686. float max = -INFINITY;
  9687. ggml_vec_max_f32(nc, &max, wp);
  9688. ggml_float sum = 0.0;
  9689. uint16_t scvt;
  9690. for (int i = 0; i < nc; i++) {
  9691. if (wp[i] == -INFINITY) {
  9692. dp[i] = 0.0f;
  9693. } else {
  9694. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9695. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9696. memcpy(&scvt, &s, sizeof(scvt));
  9697. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9698. sum += (ggml_float)val;
  9699. dp[i] = val;
  9700. }
  9701. }
  9702. assert(sum > 0.0);
  9703. sum = 1.0/sum;
  9704. ggml_vec_scale_f32(nc, dp, sum);
  9705. #ifndef NDEBUG
  9706. for (int i = 0; i < nc; ++i) {
  9707. assert(!isnan(dp[i]));
  9708. assert(!isinf(dp[i]));
  9709. }
  9710. #endif
  9711. }
  9712. }
  9713. static void ggml_compute_forward_soft_max(
  9714. const struct ggml_compute_params * params,
  9715. struct ggml_tensor * dst) {
  9716. const struct ggml_tensor * src0 = dst->src[0];
  9717. switch (src0->type) {
  9718. case GGML_TYPE_F32:
  9719. {
  9720. ggml_compute_forward_soft_max_f32(params, dst);
  9721. } break;
  9722. default:
  9723. {
  9724. GGML_ASSERT(false);
  9725. } break;
  9726. }
  9727. }
  9728. // ggml_compute_forward_soft_max_back
  9729. static void ggml_compute_forward_soft_max_back_f32(
  9730. const struct ggml_compute_params * params,
  9731. struct ggml_tensor * dst) {
  9732. const struct ggml_tensor * src0 = dst->src[0];
  9733. const struct ggml_tensor * src1 = dst->src[1];
  9734. GGML_ASSERT(ggml_is_contiguous(src0));
  9735. GGML_ASSERT(ggml_is_contiguous(src1));
  9736. GGML_ASSERT(ggml_is_contiguous(dst));
  9737. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9738. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9739. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9740. return;
  9741. }
  9742. // TODO: handle transposed/permuted matrices
  9743. const int ith = params->ith;
  9744. const int nth = params->nth;
  9745. const int nc = src0->ne[0];
  9746. const int nr = ggml_nrows(src0);
  9747. // rows per thread
  9748. const int dr = (nr + nth - 1)/nth;
  9749. // row range for this thread
  9750. const int ir0 = dr*ith;
  9751. const int ir1 = MIN(ir0 + dr, nr);
  9752. for (int i1 = ir0; i1 < ir1; i1++) {
  9753. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9754. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9755. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9756. #ifndef NDEBUG
  9757. for (int i = 0; i < nc; ++i) {
  9758. //printf("p[%d] = %f\n", i, p[i]);
  9759. assert(!isnan(dy[i]));
  9760. assert(!isnan(y[i]));
  9761. }
  9762. #endif
  9763. // Jii = yi - yi*yi
  9764. // Jij = -yi*yj
  9765. // J = diag(y)-y.T*y
  9766. // dx = J * dy
  9767. // dxk = sum_i(Jki * dyi)
  9768. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9769. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9770. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9771. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9772. // dxk = -yk * dot(y, dy) + yk*dyk
  9773. // dxk = yk * (- dot(y, dy) + dyk)
  9774. // dxk = yk * (dyk - dot(y, dy))
  9775. //
  9776. // post-order:
  9777. // dot_y_dy := dot(y, dy)
  9778. // dx := dy
  9779. // dx := dx - dot_y_dy
  9780. // dx := dx * y
  9781. // linear runtime, no additional memory
  9782. float dot_y_dy = 0;
  9783. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9784. ggml_vec_cpy_f32 (nc, dx, dy);
  9785. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9786. ggml_vec_mul_f32 (nc, dx, dx, y);
  9787. #ifndef NDEBUG
  9788. for (int i = 0; i < nc; ++i) {
  9789. assert(!isnan(dx[i]));
  9790. assert(!isinf(dx[i]));
  9791. }
  9792. #endif
  9793. }
  9794. }
  9795. static void ggml_compute_forward_soft_max_back(
  9796. const struct ggml_compute_params * params,
  9797. struct ggml_tensor * dst) {
  9798. const struct ggml_tensor * src0 = dst->src[0];
  9799. switch (src0->type) {
  9800. case GGML_TYPE_F32:
  9801. {
  9802. ggml_compute_forward_soft_max_back_f32(params, dst);
  9803. } break;
  9804. default:
  9805. {
  9806. GGML_ASSERT(false);
  9807. } break;
  9808. }
  9809. }
  9810. // ggml_compute_forward_alibi
  9811. static void ggml_compute_forward_alibi_f32(
  9812. const struct ggml_compute_params * params,
  9813. struct ggml_tensor * dst) {
  9814. const struct ggml_tensor * src0 = dst->src[0];
  9815. assert(params->ith == 0);
  9816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9817. return;
  9818. }
  9819. //const int n_past = ((int32_t *) dst->op_params)[0];
  9820. const int n_head = ((int32_t *) dst->op_params)[1];
  9821. float max_bias;
  9822. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9823. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9824. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9825. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9826. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9827. const int64_t n = ggml_nrows(src0);
  9828. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9829. const size_t nb0 = src0->nb[0];
  9830. const size_t nb1 = src0->nb[1];
  9831. const size_t nb2 = src0->nb[2];
  9832. //const int nb3 = src0->nb[3];
  9833. GGML_ASSERT(nb0 == sizeof(float));
  9834. GGML_ASSERT(n_head == ne2);
  9835. // add alibi to src0 (KQ_scaled)
  9836. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9837. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9838. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9839. for (int64_t k = 0; k < ne2_ne3; k++) {
  9840. // TODO: k*nb2 or k*nb3
  9841. float m_k;
  9842. if (k < n_heads_log2_floor) {
  9843. m_k = powf(m0, k + 1);
  9844. } else {
  9845. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9846. }
  9847. for (int64_t i = 0; i < ne0; i++) {
  9848. for (int64_t j = 0; j < ne1; j++) {
  9849. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9850. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9851. pdst[0] = i * m_k + src[0];
  9852. }
  9853. }
  9854. }
  9855. }
  9856. static void ggml_compute_forward_alibi_f16(
  9857. const struct ggml_compute_params * params,
  9858. struct ggml_tensor * dst) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. assert(params->ith == 0);
  9861. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9862. return;
  9863. }
  9864. //const int n_past = ((int32_t *) dst->op_params)[0];
  9865. const int n_head = ((int32_t *) dst->op_params)[1];
  9866. float max_bias;
  9867. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9868. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9869. const int ne1 = src0->ne[1]; // seq_len_without_past
  9870. const int ne2 = src0->ne[2]; // n_head -> this is k
  9871. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9872. const int n = ggml_nrows(src0);
  9873. const int ne2_ne3 = n/ne1; // ne2*ne3
  9874. const int nb0 = src0->nb[0];
  9875. const int nb1 = src0->nb[1];
  9876. const int nb2 = src0->nb[2];
  9877. //const int nb3 = src0->nb[3];
  9878. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9879. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9880. GGML_ASSERT(n_head == ne2);
  9881. // add alibi to src0 (KQ_scaled)
  9882. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9883. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9884. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9885. for (int k = 0; k < ne2_ne3; k++) {
  9886. // TODO: k*nb2 or k*nb3
  9887. float m_k;
  9888. if (k < n_heads_log2_floor) {
  9889. m_k = powf(m0, k + 1);
  9890. } else {
  9891. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9892. }
  9893. for (int i = 0; i < ne0; i++) {
  9894. for (int j = 0; j < ne1; j++) {
  9895. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9896. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9897. // we return F32
  9898. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9899. }
  9900. }
  9901. }
  9902. }
  9903. static void ggml_compute_forward_alibi(
  9904. const struct ggml_compute_params * params,
  9905. struct ggml_tensor * dst) {
  9906. const struct ggml_tensor * src0 = dst->src[0];
  9907. switch (src0->type) {
  9908. case GGML_TYPE_F16:
  9909. {
  9910. ggml_compute_forward_alibi_f16(params, dst);
  9911. } break;
  9912. case GGML_TYPE_F32:
  9913. {
  9914. ggml_compute_forward_alibi_f32(params, dst);
  9915. } break;
  9916. case GGML_TYPE_Q4_0:
  9917. case GGML_TYPE_Q4_1:
  9918. case GGML_TYPE_Q5_0:
  9919. case GGML_TYPE_Q5_1:
  9920. case GGML_TYPE_Q8_0:
  9921. case GGML_TYPE_Q8_1:
  9922. case GGML_TYPE_Q2_K:
  9923. case GGML_TYPE_Q3_K:
  9924. case GGML_TYPE_Q4_K:
  9925. case GGML_TYPE_Q5_K:
  9926. case GGML_TYPE_Q6_K:
  9927. case GGML_TYPE_IQ2_XXS:
  9928. case GGML_TYPE_IQ2_XS:
  9929. case GGML_TYPE_IQ3_XXS:
  9930. case GGML_TYPE_IQ1_S:
  9931. case GGML_TYPE_IQ4_NL:
  9932. case GGML_TYPE_IQ4_XS:
  9933. case GGML_TYPE_IQ3_S:
  9934. case GGML_TYPE_IQ2_S:
  9935. case GGML_TYPE_Q8_K:
  9936. case GGML_TYPE_I8:
  9937. case GGML_TYPE_I16:
  9938. case GGML_TYPE_I32:
  9939. case GGML_TYPE_COUNT:
  9940. {
  9941. GGML_ASSERT(false);
  9942. } break;
  9943. }
  9944. }
  9945. // ggml_compute_forward_clamp
  9946. static void ggml_compute_forward_clamp_f32(
  9947. const struct ggml_compute_params * params,
  9948. struct ggml_tensor * dst) {
  9949. const struct ggml_tensor * src0 = dst->src[0];
  9950. assert(params->ith == 0);
  9951. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9952. return;
  9953. }
  9954. float min;
  9955. float max;
  9956. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9957. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9958. const int ith = params->ith;
  9959. const int nth = params->nth;
  9960. const int n = ggml_nrows(src0);
  9961. const int nc = src0->ne[0];
  9962. const size_t nb00 = src0->nb[0];
  9963. const size_t nb01 = src0->nb[1];
  9964. const size_t nb0 = dst->nb[0];
  9965. const size_t nb1 = dst->nb[1];
  9966. GGML_ASSERT( nb0 == sizeof(float));
  9967. GGML_ASSERT(nb00 == sizeof(float));
  9968. for (int j = ith; j < n; j += nth) {
  9969. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9970. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9971. for (int i = 0; i < nc; i++) {
  9972. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9973. }
  9974. }
  9975. }
  9976. static void ggml_compute_forward_clamp(
  9977. const struct ggml_compute_params * params,
  9978. struct ggml_tensor * dst) {
  9979. const struct ggml_tensor * src0 = dst->src[0];
  9980. switch (src0->type) {
  9981. case GGML_TYPE_F32:
  9982. {
  9983. ggml_compute_forward_clamp_f32(params, dst);
  9984. } break;
  9985. case GGML_TYPE_F16:
  9986. case GGML_TYPE_Q4_0:
  9987. case GGML_TYPE_Q4_1:
  9988. case GGML_TYPE_Q5_0:
  9989. case GGML_TYPE_Q5_1:
  9990. case GGML_TYPE_Q8_0:
  9991. case GGML_TYPE_Q8_1:
  9992. case GGML_TYPE_Q2_K:
  9993. case GGML_TYPE_Q3_K:
  9994. case GGML_TYPE_Q4_K:
  9995. case GGML_TYPE_Q5_K:
  9996. case GGML_TYPE_Q6_K:
  9997. case GGML_TYPE_IQ2_XXS:
  9998. case GGML_TYPE_IQ2_XS:
  9999. case GGML_TYPE_IQ3_XXS:
  10000. case GGML_TYPE_IQ1_S:
  10001. case GGML_TYPE_IQ4_NL:
  10002. case GGML_TYPE_IQ4_XS:
  10003. case GGML_TYPE_IQ3_S:
  10004. case GGML_TYPE_IQ2_S:
  10005. case GGML_TYPE_Q8_K:
  10006. case GGML_TYPE_I8:
  10007. case GGML_TYPE_I16:
  10008. case GGML_TYPE_I32:
  10009. case GGML_TYPE_COUNT:
  10010. {
  10011. GGML_ASSERT(false);
  10012. } break;
  10013. }
  10014. }
  10015. // ggml_compute_forward_rope
  10016. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10017. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10018. return 1 - MIN(1, MAX(0, y));
  10019. }
  10020. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10021. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10022. static void rope_yarn(
  10023. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10024. float * cos_theta, float * sin_theta
  10025. ) {
  10026. // Get n-d rotational scaling corrected for extrapolation
  10027. float theta_interp = freq_scale * theta_extrap;
  10028. float theta = theta_interp;
  10029. if (ext_factor != 0.0f) {
  10030. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10031. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10032. // Get n-d magnitude scaling corrected for interpolation
  10033. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10034. }
  10035. *cos_theta = cosf(theta) * mscale;
  10036. *sin_theta = sinf(theta) * mscale;
  10037. }
  10038. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10039. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10040. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10041. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10042. }
  10043. static void ggml_rope_cache_init(
  10044. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10045. float * cache, float sin_sign, float theta_scale
  10046. ) {
  10047. float theta = theta_base;
  10048. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10049. rope_yarn(
  10050. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10051. );
  10052. cache[i0 + 1] *= sin_sign;
  10053. theta *= theta_scale;
  10054. }
  10055. }
  10056. GGML_CALL void ggml_rope_yarn_corr_dims(
  10057. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10058. ) {
  10059. // start and end correction dims
  10060. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10061. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10062. dims[0] = MAX(0, start);
  10063. dims[1] = MIN(n_dims - 1, end);
  10064. }
  10065. static void ggml_compute_forward_rope_f32(
  10066. const struct ggml_compute_params * params,
  10067. struct ggml_tensor * dst,
  10068. const bool forward) {
  10069. const struct ggml_tensor * src0 = dst->src[0];
  10070. const struct ggml_tensor * src1 = dst->src[1];
  10071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10072. return;
  10073. }
  10074. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10075. // these two only relevant for xPos RoPE:
  10076. float xpos_base;
  10077. bool xpos_down;
  10078. //const int n_past = ((int32_t *) dst->op_params)[0];
  10079. const int n_dims = ((int32_t *) dst->op_params)[1];
  10080. const int mode = ((int32_t *) dst->op_params)[2];
  10081. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10082. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10083. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10084. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10085. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10086. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10087. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10088. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10089. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10090. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10091. GGML_TENSOR_UNARY_OP_LOCALS
  10092. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10093. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10094. GGML_ASSERT(nb00 == sizeof(float));
  10095. const int ith = params->ith;
  10096. const int nth = params->nth;
  10097. const int nr = ggml_nrows(dst);
  10098. GGML_ASSERT(n_dims <= ne0);
  10099. GGML_ASSERT(n_dims % 2 == 0);
  10100. // rows per thread
  10101. const int dr = (nr + nth - 1)/nth;
  10102. // row range for this thread
  10103. const int ir0 = dr*ith;
  10104. const int ir1 = MIN(ir0 + dr, nr);
  10105. // row index used to determine which thread to use
  10106. int ir = 0;
  10107. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10108. const float inv_ndims = -1.f/n_dims;
  10109. float corr_dims[2];
  10110. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10111. const bool is_neox = mode & 2;
  10112. const bool is_glm = mode & 4;
  10113. // backward process uses inverse rotation by cos and sin.
  10114. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10115. // this essentially just switches the sign of sin.
  10116. const float sin_sign = forward ? 1.0f : -1.0f;
  10117. const int32_t * pos = (const int32_t *) src1->data;
  10118. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10119. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10120. const int64_t p = pos[i2];
  10121. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10122. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10123. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10124. }
  10125. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10126. if (ir++ < ir0) continue;
  10127. if (ir > ir1) break;
  10128. float theta_base = (float)p;
  10129. if (is_glm) {
  10130. theta_base = MIN(p, n_ctx - 2);
  10131. float block_theta = MAX(p - (n_ctx - 2), 0);
  10132. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10133. const float cos_theta = cosf(theta_base);
  10134. const float sin_theta = sinf(theta_base) * sin_sign;
  10135. const float cos_block_theta = cosf(block_theta);
  10136. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10137. theta_base *= theta_scale;
  10138. block_theta *= theta_scale;
  10139. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10140. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10141. const float x0 = src[0];
  10142. const float x1 = src[n_dims/2];
  10143. const float x2 = src[n_dims];
  10144. const float x3 = src[n_dims/2*3];
  10145. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10146. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10147. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10148. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10149. }
  10150. } else if (!is_neox) {
  10151. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10152. const float cos_theta = cache[i0 + 0];
  10153. const float sin_theta = cache[i0 + 1];
  10154. // zeta scaling for xPos only:
  10155. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10156. if (xpos_down) zeta = 1.0f / zeta;
  10157. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10158. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10159. const float x0 = src[0];
  10160. const float x1 = src[1];
  10161. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10162. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10163. }
  10164. } else {
  10165. // TODO: this might be wrong for ne0 != n_dims - need double check
  10166. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10167. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10168. theta_base *= freq_scale;
  10169. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10170. if (ic < n_dims) {
  10171. const int64_t ib = 0;
  10172. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10173. float cur_rot = inv_ndims * ic - ib;
  10174. float cos_theta, sin_theta;
  10175. rope_yarn(
  10176. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10177. &cos_theta, &sin_theta
  10178. );
  10179. sin_theta *= sin_sign;
  10180. theta_base *= theta_scale;
  10181. const int64_t i0 = ib*n_dims + ic/2;
  10182. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10183. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10184. const float x0 = src[0];
  10185. const float x1 = src[n_dims/2];
  10186. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10187. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10188. } else {
  10189. const int64_t i0 = ic;
  10190. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10191. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10192. dst_data[0] = src[0];
  10193. dst_data[1] = src[1];
  10194. }
  10195. }
  10196. }
  10197. }
  10198. }
  10199. }
  10200. }
  10201. static void ggml_compute_forward_rope_f16(
  10202. const struct ggml_compute_params * params,
  10203. struct ggml_tensor * dst,
  10204. const bool forward) {
  10205. const struct ggml_tensor * src0 = dst->src[0];
  10206. const struct ggml_tensor * src1 = dst->src[1];
  10207. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10208. return;
  10209. }
  10210. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10211. //const int n_past = ((int32_t *) dst->op_params)[0];
  10212. const int n_dims = ((int32_t *) dst->op_params)[1];
  10213. const int mode = ((int32_t *) dst->op_params)[2];
  10214. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10215. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10216. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10217. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10218. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10219. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10220. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10221. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10222. GGML_TENSOR_UNARY_OP_LOCALS
  10223. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10224. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10225. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10226. const int ith = params->ith;
  10227. const int nth = params->nth;
  10228. const int nr = ggml_nrows(dst);
  10229. GGML_ASSERT(n_dims <= ne0);
  10230. GGML_ASSERT(n_dims % 2 == 0);
  10231. // rows per thread
  10232. const int dr = (nr + nth - 1)/nth;
  10233. // row range for this thread
  10234. const int ir0 = dr*ith;
  10235. const int ir1 = MIN(ir0 + dr, nr);
  10236. // row index used to determine which thread to use
  10237. int ir = 0;
  10238. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10239. const float inv_ndims = -1.f/n_dims;
  10240. float corr_dims[2];
  10241. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10242. const bool is_neox = mode & 2;
  10243. const bool is_glm = mode & 4;
  10244. // backward process uses inverse rotation by cos and sin.
  10245. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10246. // this essentially just switches the sign of sin.
  10247. const float sin_sign = forward ? 1.0f : -1.0f;
  10248. const int32_t * pos = (const int32_t *) src1->data;
  10249. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10250. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10251. const int64_t p = pos[i2];
  10252. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10253. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10254. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10255. }
  10256. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10257. if (ir++ < ir0) continue;
  10258. if (ir > ir1) break;
  10259. float theta_base = (float)p;
  10260. if (is_glm) {
  10261. theta_base = MIN(p, n_ctx - 2);
  10262. float block_theta = MAX(p - (n_ctx - 2), 0);
  10263. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10264. const float cos_theta = cosf(theta_base);
  10265. const float sin_theta = sinf(theta_base) * sin_sign;
  10266. const float cos_block_theta = cosf(block_theta);
  10267. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10268. theta_base *= theta_scale;
  10269. block_theta *= theta_scale;
  10270. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10271. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10272. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10273. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10274. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10275. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10276. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10277. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10278. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10279. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10280. }
  10281. } else if (!is_neox) {
  10282. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10283. const float cos_theta = cache[i0 + 0];
  10284. const float sin_theta = cache[i0 + 1];
  10285. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10286. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10287. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10288. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10289. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10290. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10291. }
  10292. } else {
  10293. // TODO: this might be wrong for ne0 != n_dims - need double check
  10294. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10295. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10296. theta_base *= freq_scale;
  10297. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10298. if (ic < n_dims) {
  10299. const int64_t ib = 0;
  10300. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10301. float cur_rot = inv_ndims * ic - ib;
  10302. float cos_theta, sin_theta;
  10303. rope_yarn(
  10304. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10305. &cos_theta, &sin_theta
  10306. );
  10307. sin_theta *= sin_sign;
  10308. theta_base *= theta_scale;
  10309. const int64_t i0 = ib*n_dims + ic/2;
  10310. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10311. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10312. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10313. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10314. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10315. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10316. } else {
  10317. const int64_t i0 = ic;
  10318. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10319. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10320. dst_data[0] = src[0];
  10321. dst_data[1] = src[1];
  10322. }
  10323. }
  10324. }
  10325. }
  10326. }
  10327. }
  10328. }
  10329. static void ggml_compute_forward_rope(
  10330. const struct ggml_compute_params * params,
  10331. struct ggml_tensor * dst) {
  10332. const struct ggml_tensor * src0 = dst->src[0];
  10333. switch (src0->type) {
  10334. case GGML_TYPE_F16:
  10335. {
  10336. ggml_compute_forward_rope_f16(params, dst, true);
  10337. } break;
  10338. case GGML_TYPE_F32:
  10339. {
  10340. ggml_compute_forward_rope_f32(params, dst, true);
  10341. } break;
  10342. default:
  10343. {
  10344. GGML_ASSERT(false);
  10345. } break;
  10346. }
  10347. }
  10348. // ggml_compute_forward_rope_back
  10349. static void ggml_compute_forward_rope_back(
  10350. const struct ggml_compute_params * params,
  10351. struct ggml_tensor * dst) {
  10352. const struct ggml_tensor * src0 = dst->src[0];
  10353. switch (src0->type) {
  10354. case GGML_TYPE_F16:
  10355. {
  10356. ggml_compute_forward_rope_f16(params, dst, false);
  10357. } break;
  10358. case GGML_TYPE_F32:
  10359. {
  10360. ggml_compute_forward_rope_f32(params, dst, false);
  10361. } break;
  10362. default:
  10363. {
  10364. GGML_ASSERT(false);
  10365. } break;
  10366. }
  10367. }
  10368. // ggml_compute_forward_conv_transpose_1d
  10369. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10370. const struct ggml_compute_params * params,
  10371. struct ggml_tensor * dst) {
  10372. const struct ggml_tensor * src0 = dst->src[0];
  10373. const struct ggml_tensor * src1 = dst->src[1];
  10374. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10375. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10376. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10377. int64_t t0 = ggml_perf_time_us();
  10378. UNUSED(t0);
  10379. GGML_TENSOR_BINARY_OP_LOCALS
  10380. const int ith = params->ith;
  10381. const int nth = params->nth;
  10382. const int nk = ne00*ne01*ne02;
  10383. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10384. GGML_ASSERT(nb10 == sizeof(float));
  10385. if (params->type == GGML_TASK_TYPE_INIT) {
  10386. if (ith != 0) {
  10387. return;
  10388. }
  10389. memset(params->wdata, 0, params->wsize);
  10390. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10391. {
  10392. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10394. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10395. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10396. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10398. dst_data[i00*ne02 + i02] = src[i00];
  10399. }
  10400. }
  10401. }
  10402. }
  10403. // permute source data (src1) from (L x Cin) to (Cin x L)
  10404. {
  10405. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10406. ggml_fp16_t * dst_data = wdata;
  10407. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10408. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10409. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10410. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10411. }
  10412. }
  10413. }
  10414. // need to zero dst since we are accumulating into it
  10415. memset(dst->data, 0, ggml_nbytes(dst));
  10416. return;
  10417. }
  10418. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10419. return;
  10420. }
  10421. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10422. // total rows in dst
  10423. const int nr = ne1;
  10424. // rows per thread
  10425. const int dr = (nr + nth - 1)/nth;
  10426. // row range for this thread
  10427. const int ir0 = dr*ith;
  10428. const int ir1 = MIN(ir0 + dr, nr);
  10429. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10430. ggml_fp16_t * const wdata_src = wdata + nk;
  10431. for (int i1 = ir0; i1 < ir1; i1++) {
  10432. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10433. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10434. for (int i10 = 0; i10 < ne10; i10++) {
  10435. const int i1n = i10*ne11;
  10436. for (int i00 = 0; i00 < ne00; i00++) {
  10437. float v = 0;
  10438. ggml_vec_dot_f16(ne02, &v, 0,
  10439. (ggml_fp16_t *) wdata_src + i1n, 0,
  10440. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10441. dst_data[i10*s0 + i00] += v;
  10442. }
  10443. }
  10444. }
  10445. }
  10446. static void ggml_compute_forward_conv_transpose_1d_f32(
  10447. const struct ggml_compute_params * params,
  10448. struct ggml_tensor * dst) {
  10449. const struct ggml_tensor * src0 = dst->src[0];
  10450. const struct ggml_tensor * src1 = dst->src[1];
  10451. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10452. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10453. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10454. int64_t t0 = ggml_perf_time_us();
  10455. UNUSED(t0);
  10456. GGML_TENSOR_BINARY_OP_LOCALS
  10457. const int ith = params->ith;
  10458. const int nth = params->nth;
  10459. const int nk = ne00*ne01*ne02;
  10460. GGML_ASSERT(nb00 == sizeof(float));
  10461. GGML_ASSERT(nb10 == sizeof(float));
  10462. if (params->type == GGML_TASK_TYPE_INIT) {
  10463. if (ith != 0) {
  10464. return;
  10465. }
  10466. memset(params->wdata, 0, params->wsize);
  10467. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10468. {
  10469. float * const wdata = (float *) params->wdata + 0;
  10470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10471. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10472. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10473. float * dst_data = wdata + i01*ne00*ne02;
  10474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10475. dst_data[i00*ne02 + i02] = src[i00];
  10476. }
  10477. }
  10478. }
  10479. }
  10480. // prepare source data (src1)
  10481. {
  10482. float * const wdata = (float *) params->wdata + nk;
  10483. float * dst_data = wdata;
  10484. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10485. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10486. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10487. dst_data[i10*ne11 + i11] = src[i10];
  10488. }
  10489. }
  10490. }
  10491. // need to zero dst since we are accumulating into it
  10492. memset(dst->data, 0, ggml_nbytes(dst));
  10493. return;
  10494. }
  10495. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10496. return;
  10497. }
  10498. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10499. // total rows in dst
  10500. const int nr = ne1;
  10501. // rows per thread
  10502. const int dr = (nr + nth - 1)/nth;
  10503. // row range for this thread
  10504. const int ir0 = dr*ith;
  10505. const int ir1 = MIN(ir0 + dr, nr);
  10506. float * const wdata = (float *) params->wdata + 0;
  10507. float * const wdata_src = wdata + nk;
  10508. for (int i1 = ir0; i1 < ir1; i1++) {
  10509. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10510. float * wdata_kernel = wdata + i1*ne02*ne00;
  10511. for (int i10 = 0; i10 < ne10; i10++) {
  10512. const int i1n = i10*ne11;
  10513. for (int i00 = 0; i00 < ne00; i00++) {
  10514. float v = 0;
  10515. ggml_vec_dot_f32(ne02, &v, 0,
  10516. wdata_src + i1n, 0,
  10517. wdata_kernel + i00*ne02, 0, 1);
  10518. dst_data[i10*s0 + i00] += v;
  10519. }
  10520. }
  10521. }
  10522. }
  10523. static void ggml_compute_forward_conv_transpose_1d(
  10524. const struct ggml_compute_params * params,
  10525. struct ggml_tensor * dst) {
  10526. const struct ggml_tensor * src0 = dst->src[0];
  10527. switch (src0->type) {
  10528. case GGML_TYPE_F16:
  10529. {
  10530. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10531. } break;
  10532. case GGML_TYPE_F32:
  10533. {
  10534. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10535. } break;
  10536. default:
  10537. {
  10538. GGML_ASSERT(false);
  10539. } break;
  10540. }
  10541. }
  10542. // src0: kernel [OC, IC, KH, KW]
  10543. // src1: image [N, IC, IH, IW]
  10544. // dst: result [N, OH, OW, IC*KH*KW]
  10545. static void ggml_compute_forward_im2col_f32(
  10546. const struct ggml_compute_params * params,
  10547. struct ggml_tensor * dst) {
  10548. const struct ggml_tensor * src0 = dst->src[0];
  10549. const struct ggml_tensor * src1 = dst->src[1];
  10550. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10551. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10552. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10553. int64_t t0 = ggml_perf_time_us();
  10554. UNUSED(t0);
  10555. GGML_TENSOR_BINARY_OP_LOCALS;
  10556. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10557. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10558. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10559. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10560. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10561. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10562. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10563. const int ith = params->ith;
  10564. const int nth = params->nth;
  10565. const int64_t N = is_2D ? ne13 : ne12;
  10566. const int64_t IC = is_2D ? ne12 : ne11;
  10567. const int64_t IH = is_2D ? ne11 : 1;
  10568. const int64_t IW = ne10;
  10569. const int64_t KH = is_2D ? ne01 : 1;
  10570. const int64_t KW = ne00;
  10571. const int64_t OH = is_2D ? ne2 : 1;
  10572. const int64_t OW = ne1;
  10573. int ofs0 = is_2D ? nb13 : nb12;
  10574. int ofs1 = is_2D ? nb12 : nb11;
  10575. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10576. GGML_ASSERT(nb10 == sizeof(float));
  10577. if (params->type == GGML_TASK_TYPE_INIT) {
  10578. return;
  10579. }
  10580. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10581. return;
  10582. }
  10583. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10584. {
  10585. float * const wdata = (float *) dst->data;
  10586. for (int64_t in = 0; in < N; in++) {
  10587. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10588. for (int64_t iow = 0; iow < OW; iow++) {
  10589. for (int64_t iic = ith; iic < IC; iic += nth) {
  10590. // micro kernel
  10591. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10592. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10593. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10594. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10595. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10596. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10597. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10598. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10599. } else {
  10600. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10601. }
  10602. }
  10603. }
  10604. }
  10605. }
  10606. }
  10607. }
  10608. }
  10609. }
  10610. // src0: kernel [OC, IC, KH, KW]
  10611. // src1: image [N, IC, IH, IW]
  10612. // dst: result [N, OH, OW, IC*KH*KW]
  10613. static void ggml_compute_forward_im2col_f16(
  10614. const struct ggml_compute_params * params,
  10615. struct ggml_tensor * dst) {
  10616. const struct ggml_tensor * src0 = dst->src[0];
  10617. const struct ggml_tensor * src1 = dst->src[1];
  10618. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10619. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10620. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10621. int64_t t0 = ggml_perf_time_us();
  10622. UNUSED(t0);
  10623. GGML_TENSOR_BINARY_OP_LOCALS;
  10624. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10625. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10626. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10627. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10628. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10629. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10630. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10631. const int ith = params->ith;
  10632. const int nth = params->nth;
  10633. const int64_t N = is_2D ? ne13 : ne12;
  10634. const int64_t IC = is_2D ? ne12 : ne11;
  10635. const int64_t IH = is_2D ? ne11 : 1;
  10636. const int64_t IW = ne10;
  10637. const int64_t KH = is_2D ? ne01 : 1;
  10638. const int64_t KW = ne00;
  10639. const int64_t OH = is_2D ? ne2 : 1;
  10640. const int64_t OW = ne1;
  10641. int ofs0 = is_2D ? nb13 : nb12;
  10642. int ofs1 = is_2D ? nb12 : nb11;
  10643. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10644. GGML_ASSERT(nb10 == sizeof(float));
  10645. if (params->type == GGML_TASK_TYPE_INIT) {
  10646. return;
  10647. }
  10648. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10649. return;
  10650. }
  10651. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10652. {
  10653. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10654. for (int64_t in = 0; in < N; in++) {
  10655. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10656. for (int64_t iow = 0; iow < OW; iow++) {
  10657. for (int64_t iic = ith; iic < IC; iic += nth) {
  10658. // micro kernel
  10659. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10660. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10661. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10662. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10663. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10664. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10665. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10666. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10667. } else {
  10668. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10669. }
  10670. }
  10671. }
  10672. }
  10673. }
  10674. }
  10675. }
  10676. }
  10677. }
  10678. static void ggml_compute_forward_im2col(
  10679. const struct ggml_compute_params * params,
  10680. struct ggml_tensor * dst) {
  10681. switch (dst->type) {
  10682. case GGML_TYPE_F16:
  10683. {
  10684. ggml_compute_forward_im2col_f16(params, dst);
  10685. } break;
  10686. case GGML_TYPE_F32:
  10687. {
  10688. ggml_compute_forward_im2col_f32(params, dst);
  10689. } break;
  10690. default:
  10691. {
  10692. GGML_ASSERT(false);
  10693. } break;
  10694. }
  10695. }
  10696. // ggml_compute_forward_conv_transpose_2d
  10697. static void ggml_compute_forward_conv_transpose_2d(
  10698. const struct ggml_compute_params * params,
  10699. struct ggml_tensor * dst) {
  10700. const struct ggml_tensor * src0 = dst->src[0];
  10701. const struct ggml_tensor * src1 = dst->src[1];
  10702. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10703. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10704. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10705. int64_t t0 = ggml_perf_time_us();
  10706. UNUSED(t0);
  10707. GGML_TENSOR_BINARY_OP_LOCALS
  10708. const int ith = params->ith;
  10709. const int nth = params->nth;
  10710. const int nk = ne00*ne01*ne02*ne03;
  10711. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10712. GGML_ASSERT(nb10 == sizeof(float));
  10713. if (params->type == GGML_TASK_TYPE_INIT) {
  10714. if (ith != 0) {
  10715. return;
  10716. }
  10717. memset(params->wdata, 0, params->wsize);
  10718. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10719. {
  10720. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10721. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10722. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10723. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10724. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10725. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10726. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10727. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10728. }
  10729. }
  10730. }
  10731. }
  10732. }
  10733. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10734. {
  10735. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10736. for (int i12 = 0; i12 < ne12; i12++) {
  10737. for (int i11 = 0; i11 < ne11; i11++) {
  10738. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10739. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10740. for (int i10 = 0; i10 < ne10; i10++) {
  10741. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10742. }
  10743. }
  10744. }
  10745. }
  10746. memset(dst->data, 0, ggml_nbytes(dst));
  10747. return;
  10748. }
  10749. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10750. return;
  10751. }
  10752. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10753. // total patches in dst
  10754. const int np = ne2;
  10755. // patches per thread
  10756. const int dp = (np + nth - 1)/nth;
  10757. // patch range for this thread
  10758. const int ip0 = dp*ith;
  10759. const int ip1 = MIN(ip0 + dp, np);
  10760. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10761. ggml_fp16_t * const wdata_src = wdata + nk;
  10762. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10763. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10764. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10765. for (int i11 = 0; i11 < ne11; i11++) {
  10766. for (int i10 = 0; i10 < ne10; i10++) {
  10767. const int i1n = i11*ne10*ne12 + i10*ne12;
  10768. for (int i01 = 0; i01 < ne01; i01++) {
  10769. for (int i00 = 0; i00 < ne00; i00++) {
  10770. float v = 0;
  10771. ggml_vec_dot_f16(ne03, &v, 0,
  10772. wdata_src + i1n, 0,
  10773. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10774. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10775. }
  10776. }
  10777. }
  10778. }
  10779. }
  10780. }
  10781. // ggml_compute_forward_pool_1d_sk_p0
  10782. static void ggml_compute_forward_pool_1d_sk_p0(
  10783. const struct ggml_compute_params * params,
  10784. const enum ggml_op_pool op,
  10785. const int k,
  10786. struct ggml_tensor * dst) {
  10787. const struct ggml_tensor * src = dst->src[0];
  10788. assert(src->type == GGML_TYPE_F32);
  10789. assert(params->ith == 0);
  10790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10791. return;
  10792. }
  10793. const char * cdata = (const char *)src->data;
  10794. const char * const data_end = cdata + ggml_nbytes(src);
  10795. float * drow = (float *)dst->data;
  10796. const int64_t rs = dst->ne[0];
  10797. while (cdata < data_end) {
  10798. const float * const srow = (const float *)cdata;
  10799. int j = 0;
  10800. for (int64_t i = 0; i < rs; ++i) {
  10801. switch (op) {
  10802. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10803. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10804. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10805. }
  10806. for (int ki = 0; ki < k; ++ki) {
  10807. switch (op) {
  10808. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10809. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10810. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10811. }
  10812. ++j;
  10813. }
  10814. switch (op) {
  10815. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10816. case GGML_OP_POOL_MAX: break;
  10817. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10818. }
  10819. }
  10820. cdata += src->nb[1];
  10821. drow += rs;
  10822. }
  10823. }
  10824. // ggml_compute_forward_pool_1d
  10825. static void ggml_compute_forward_pool_1d(
  10826. const struct ggml_compute_params * params,
  10827. struct ggml_tensor * dst) {
  10828. const int32_t * opts = (const int32_t *)dst->op_params;
  10829. enum ggml_op_pool op = opts[0];
  10830. const int k0 = opts[1];
  10831. const int s0 = opts[2];
  10832. const int p0 = opts[3];
  10833. GGML_ASSERT(p0 == 0); // padding not supported
  10834. GGML_ASSERT(k0 == s0); // only s = k supported
  10835. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10836. }
  10837. // ggml_compute_forward_pool_2d
  10838. static void ggml_compute_forward_pool_2d(
  10839. const struct ggml_compute_params * params,
  10840. struct ggml_tensor * dst) {
  10841. const struct ggml_tensor * src = dst->src[0];
  10842. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10843. GGML_ASSERT(params->ith == 0);
  10844. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10845. return;
  10846. }
  10847. const int32_t * opts = (const int32_t *)dst->op_params;
  10848. enum ggml_op_pool op = opts[0];
  10849. const int k0 = opts[1];
  10850. const int k1 = opts[2];
  10851. const int s0 = opts[3];
  10852. const int s1 = opts[4];
  10853. const int p0 = opts[5];
  10854. const int p1 = opts[6];
  10855. const char * cdata = (const char*)src->data;
  10856. const char * const data_end = cdata + ggml_nbytes(src);
  10857. const int64_t px = dst->ne[0];
  10858. const int64_t py = dst->ne[1];
  10859. const int64_t pa = px * py;
  10860. float * dplane = (float *)dst->data;
  10861. const int ka = k0 * k1;
  10862. const int offset0 = -p0;
  10863. const int offset1 = -p1;
  10864. while (cdata < data_end) {
  10865. for (int oy = 0; oy < py; ++oy) {
  10866. float * const drow = dplane + oy * px;
  10867. for (int ox = 0; ox < px; ++ox) {
  10868. float * const out = drow + ox;
  10869. switch (op) {
  10870. case GGML_OP_POOL_AVG: *out = 0; break;
  10871. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10872. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10873. }
  10874. const int ix = offset0 + ox * s0;
  10875. const int iy = offset1 + oy * s1;
  10876. for (int ky = 0; ky < k1; ++ky) {
  10877. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10878. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10879. for (int kx = 0; kx < k0; ++kx) {
  10880. int j = ix + kx;
  10881. if (j < 0 || j >= src->ne[0]) continue;
  10882. switch (op) {
  10883. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10884. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10885. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10886. }
  10887. }
  10888. }
  10889. switch (op) {
  10890. case GGML_OP_POOL_AVG: *out /= ka; break;
  10891. case GGML_OP_POOL_MAX: break;
  10892. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10893. }
  10894. }
  10895. }
  10896. cdata += src->nb[2];
  10897. dplane += pa;
  10898. }
  10899. }
  10900. // ggml_compute_forward_upscale
  10901. static void ggml_compute_forward_upscale_f32(
  10902. const struct ggml_compute_params * params,
  10903. struct ggml_tensor * dst) {
  10904. const struct ggml_tensor * src0 = dst->src[0];
  10905. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10906. return;
  10907. }
  10908. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10909. const int ith = params->ith;
  10910. const int nth = params->nth;
  10911. GGML_TENSOR_UNARY_OP_LOCALS
  10912. const int scale_factor = dst->op_params[0];
  10913. // TODO: optimize
  10914. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10915. const int64_t i03 = i3;
  10916. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10917. const int64_t i02 = i2;
  10918. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10919. const int64_t i01 = i1 / scale_factor;
  10920. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10921. const int64_t i00 = i0 / scale_factor;
  10922. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10923. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10924. *y = *x;
  10925. }
  10926. }
  10927. }
  10928. }
  10929. }
  10930. static void ggml_compute_forward_upscale(
  10931. const struct ggml_compute_params * params,
  10932. struct ggml_tensor * dst) {
  10933. const struct ggml_tensor * src0 = dst->src[0];
  10934. switch (src0->type) {
  10935. case GGML_TYPE_F32:
  10936. {
  10937. ggml_compute_forward_upscale_f32(params, dst);
  10938. } break;
  10939. default:
  10940. {
  10941. GGML_ASSERT(false);
  10942. } break;
  10943. }
  10944. }
  10945. // ggml_compute_forward_pad
  10946. static void ggml_compute_forward_pad_f32(
  10947. const struct ggml_compute_params * params,
  10948. struct ggml_tensor * dst) {
  10949. const struct ggml_tensor * src0 = dst->src[0];
  10950. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10951. return;
  10952. }
  10953. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10954. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10955. const int ith = params->ith;
  10956. const int nth = params->nth;
  10957. GGML_TENSOR_UNARY_OP_LOCALS
  10958. float * dst_ptr = (float *) dst->data;
  10959. // TODO: optimize
  10960. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10961. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10962. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10963. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10964. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10965. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10966. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10967. dst_ptr[dst_idx] = *src_ptr;
  10968. } else {
  10969. dst_ptr[dst_idx] = 0;
  10970. }
  10971. }
  10972. }
  10973. }
  10974. }
  10975. }
  10976. static void ggml_compute_forward_pad(
  10977. const struct ggml_compute_params * params,
  10978. struct ggml_tensor * dst) {
  10979. const struct ggml_tensor * src0 = dst->src[0];
  10980. switch (src0->type) {
  10981. case GGML_TYPE_F32:
  10982. {
  10983. ggml_compute_forward_pad_f32(params, dst);
  10984. } break;
  10985. default:
  10986. {
  10987. GGML_ASSERT(false);
  10988. } break;
  10989. }
  10990. }
  10991. // ggml_compute_forward_arange
  10992. static void ggml_compute_forward_arange_f32(
  10993. const struct ggml_compute_params * params,
  10994. struct ggml_tensor * dst) {
  10995. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10996. return;
  10997. }
  10998. GGML_ASSERT(dst->nb[0] == sizeof(float));
  10999. const int ith = params->ith;
  11000. const int nth = params->nth;
  11001. const float start = ggml_get_op_params_f32(dst, 0);
  11002. const float stop = ggml_get_op_params_f32(dst, 1);
  11003. const float step = ggml_get_op_params_f32(dst, 2);
  11004. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11005. GGML_ASSERT(ggml_nelements(dst) == steps);
  11006. for (int64_t i = ith; i < steps; i+= nth) {
  11007. float value = start + step * i;
  11008. ((float *)dst->data)[i] = value;
  11009. }
  11010. }
  11011. static void ggml_compute_forward_arange(
  11012. const struct ggml_compute_params * params,
  11013. struct ggml_tensor * dst) {
  11014. switch (dst->type) {
  11015. case GGML_TYPE_F32:
  11016. {
  11017. ggml_compute_forward_arange_f32(params, dst);
  11018. } break;
  11019. default:
  11020. {
  11021. GGML_ASSERT(false);
  11022. } break;
  11023. }
  11024. }
  11025. static void ggml_compute_forward_timestep_embedding_f32(
  11026. const struct ggml_compute_params * params,
  11027. struct ggml_tensor * dst) {
  11028. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11029. return;
  11030. }
  11031. const struct ggml_tensor * src0 = dst->src[0];
  11032. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11033. const int ith = params->ith;
  11034. const int nth = params->nth;
  11035. GGML_TENSOR_UNARY_OP_LOCALS
  11036. const int dim = ggml_get_op_params_i32(dst, 0);
  11037. const int max_period = ggml_get_op_params_i32(dst, 1);
  11038. int half = dim / 2;
  11039. for (int64_t i = 0; i < ne00; i++) {
  11040. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11041. for (int64_t j = ith; j < half; j += nth) {
  11042. float timestep = ((float *)src0->data)[i];
  11043. float freq = (float)expf(-logf(max_period) * j / half);
  11044. float arg = timestep * freq;
  11045. embed_data[j] = cosf(arg);
  11046. embed_data[j + half] = sinf(arg);
  11047. }
  11048. if (dim % 2 != 0 && ith == 0) {
  11049. embed_data[dim] = 0.f;
  11050. }
  11051. }
  11052. }
  11053. static void ggml_compute_forward_timestep_embedding(
  11054. const struct ggml_compute_params * params,
  11055. struct ggml_tensor * dst) {
  11056. const struct ggml_tensor * src0 = dst->src[0];
  11057. switch (src0->type) {
  11058. case GGML_TYPE_F32:
  11059. {
  11060. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11061. } break;
  11062. default:
  11063. {
  11064. GGML_ASSERT(false);
  11065. } break;
  11066. }
  11067. }
  11068. // ggml_compute_forward_argsort
  11069. static void ggml_compute_forward_argsort_f32(
  11070. const struct ggml_compute_params * params,
  11071. struct ggml_tensor * dst) {
  11072. const struct ggml_tensor * src0 = dst->src[0];
  11073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11074. return;
  11075. }
  11076. GGML_TENSOR_UNARY_OP_LOCALS
  11077. GGML_ASSERT(nb0 == sizeof(float));
  11078. const int ith = params->ith;
  11079. const int nth = params->nth;
  11080. const int64_t nr = ggml_nrows(src0);
  11081. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11082. for (int64_t i = ith; i < nr; i += nth) {
  11083. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11084. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11085. for (int64_t j = 0; j < ne0; j++) {
  11086. dst_data[j] = j;
  11087. }
  11088. // C doesn't have a functional sort, so we do a bubble sort instead
  11089. for (int64_t j = 0; j < ne0; j++) {
  11090. for (int64_t k = j + 1; k < ne0; k++) {
  11091. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11092. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11093. int32_t tmp = dst_data[j];
  11094. dst_data[j] = dst_data[k];
  11095. dst_data[k] = tmp;
  11096. }
  11097. }
  11098. }
  11099. }
  11100. }
  11101. static void ggml_compute_forward_argsort(
  11102. const struct ggml_compute_params * params,
  11103. struct ggml_tensor * dst) {
  11104. const struct ggml_tensor * src0 = dst->src[0];
  11105. switch (src0->type) {
  11106. case GGML_TYPE_F32:
  11107. {
  11108. ggml_compute_forward_argsort_f32(params, dst);
  11109. } break;
  11110. default:
  11111. {
  11112. GGML_ASSERT(false);
  11113. } break;
  11114. }
  11115. }
  11116. // ggml_compute_forward_flash_attn
  11117. static void ggml_compute_forward_flash_attn_f32(
  11118. const struct ggml_compute_params * params,
  11119. const bool masked,
  11120. struct ggml_tensor * dst) {
  11121. const struct ggml_tensor * q = dst->src[0];
  11122. const struct ggml_tensor * k = dst->src[1];
  11123. const struct ggml_tensor * v = dst->src[2];
  11124. int64_t t0 = ggml_perf_time_us();
  11125. UNUSED(t0);
  11126. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11127. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11128. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11129. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11130. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11131. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11132. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11133. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11134. const int ith = params->ith;
  11135. const int nth = params->nth;
  11136. const int64_t D = neq0;
  11137. const int64_t N = neq1;
  11138. const int64_t P = nek1 - N;
  11139. const int64_t M = P + N;
  11140. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11141. GGML_ASSERT(ne0 == D);
  11142. GGML_ASSERT(ne1 == N);
  11143. GGML_ASSERT(P >= 0);
  11144. GGML_ASSERT(nbq0 == sizeof(float));
  11145. GGML_ASSERT(nbk0 == sizeof(float));
  11146. GGML_ASSERT(nbv0 == sizeof(float));
  11147. GGML_ASSERT(neq0 == D);
  11148. GGML_ASSERT(nek0 == D);
  11149. GGML_ASSERT(nev1 == D);
  11150. GGML_ASSERT(neq1 == N);
  11151. GGML_ASSERT(nek1 == N + P);
  11152. GGML_ASSERT(nev1 == D);
  11153. // dst cannot be transposed or permuted
  11154. GGML_ASSERT(nb0 == sizeof(float));
  11155. GGML_ASSERT(nb0 <= nb1);
  11156. GGML_ASSERT(nb1 <= nb2);
  11157. GGML_ASSERT(nb2 <= nb3);
  11158. if (params->type == GGML_TASK_TYPE_INIT) {
  11159. return;
  11160. }
  11161. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11162. return;
  11163. }
  11164. // parallelize by q rows using ggml_vec_dot_f32
  11165. // total rows in q
  11166. const int nr = neq1*neq2*neq3;
  11167. // rows per thread
  11168. const int dr = (nr + nth - 1)/nth;
  11169. // row range for this thread
  11170. const int ir0 = dr*ith;
  11171. const int ir1 = MIN(ir0 + dr, nr);
  11172. const float scale = 1.0f/sqrtf(D);
  11173. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11174. for (int ir = ir0; ir < ir1; ++ir) {
  11175. // q indices
  11176. const int iq3 = ir/(neq2*neq1);
  11177. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11178. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11179. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11180. for (int i = M; i < Mup; ++i) {
  11181. S[i] = -INFINITY;
  11182. }
  11183. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11184. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11185. // k indices
  11186. const int ik3 = iq3;
  11187. const int ik2 = iq2 % nek2;
  11188. const int ik1 = ic;
  11189. // S indices
  11190. const int i1 = ik1;
  11191. ggml_vec_dot_f32(neq0,
  11192. S + i1, 0,
  11193. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11194. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11195. }
  11196. // scale
  11197. ggml_vec_scale_f32(masked_begin, S, scale);
  11198. for (int64_t i = masked_begin; i < M; i++) {
  11199. S[i] = -INFINITY;
  11200. }
  11201. // softmax
  11202. // exclude known -INF S[..] values from max and loop
  11203. // dont forget to set their SW values to zero
  11204. {
  11205. float max = -INFINITY;
  11206. ggml_vec_max_f32(masked_begin, &max, S);
  11207. ggml_float sum = 0.0;
  11208. {
  11209. #ifdef GGML_SOFT_MAX_ACCELERATE
  11210. max = -max;
  11211. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11212. vvexpf(S, S, &Mup);
  11213. ggml_vec_sum_f32(Mup, &sum, S);
  11214. #else
  11215. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11216. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11217. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11218. if (i >= masked_begin) {
  11219. break;
  11220. }
  11221. float * SS = S + i;
  11222. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11223. if (i + j >= masked_begin) {
  11224. break;
  11225. } else if (SS[j] == -INFINITY) {
  11226. SS[j] = 0.0f;
  11227. } else {
  11228. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11229. const float val = expf(SS[j] - max);
  11230. #else
  11231. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11232. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11233. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11234. #endif
  11235. sump[j] += (ggml_float)val;
  11236. SS[j] = val;
  11237. }
  11238. }
  11239. }
  11240. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11241. sum += sump[i];
  11242. }
  11243. #endif
  11244. }
  11245. assert(sum > 0.0);
  11246. sum = 1.0/sum;
  11247. ggml_vec_scale_f32(masked_begin, S, sum);
  11248. #ifndef NDEBUG
  11249. for (int i = 0; i < masked_begin; ++i) {
  11250. assert(!isnan(S[i]));
  11251. assert(!isinf(S[i]));
  11252. }
  11253. #endif
  11254. }
  11255. for (int64_t ic = 0; ic < nev1; ++ic) {
  11256. // dst indices
  11257. const int i1 = iq1;
  11258. const int i2 = iq2;
  11259. const int i3 = iq3;
  11260. // v indices
  11261. const int iv2 = iq2 % nev2;
  11262. const int iv3 = iq3;
  11263. ggml_vec_dot_f32(masked_begin,
  11264. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11265. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11266. S, 0, 1);
  11267. }
  11268. }
  11269. }
  11270. static void ggml_compute_forward_flash_attn_f16(
  11271. const struct ggml_compute_params * params,
  11272. const bool masked,
  11273. struct ggml_tensor * dst) {
  11274. const struct ggml_tensor * q = dst->src[0];
  11275. const struct ggml_tensor * k = dst->src[1];
  11276. const struct ggml_tensor * v = dst->src[2];
  11277. int64_t t0 = ggml_perf_time_us();
  11278. UNUSED(t0);
  11279. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11280. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11281. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11282. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11283. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11284. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11287. const int ith = params->ith;
  11288. const int nth = params->nth;
  11289. const int64_t D = neq0;
  11290. const int64_t N = neq1;
  11291. const int64_t P = nek1 - N;
  11292. const int64_t M = P + N;
  11293. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11294. GGML_ASSERT(ne0 == D);
  11295. GGML_ASSERT(ne1 == N);
  11296. GGML_ASSERT(P >= 0);
  11297. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11298. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11299. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11300. GGML_ASSERT(neq0 == D);
  11301. GGML_ASSERT(nek0 == D);
  11302. GGML_ASSERT(nev1 == D);
  11303. GGML_ASSERT(neq1 == N);
  11304. GGML_ASSERT(nek1 == N + P);
  11305. GGML_ASSERT(nev1 == D);
  11306. // dst cannot be transposed or permuted
  11307. GGML_ASSERT(nb0 == sizeof(float));
  11308. GGML_ASSERT(nb0 <= nb1);
  11309. GGML_ASSERT(nb1 <= nb2);
  11310. GGML_ASSERT(nb2 <= nb3);
  11311. if (params->type == GGML_TASK_TYPE_INIT) {
  11312. return;
  11313. }
  11314. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11315. return;
  11316. }
  11317. // parallelize by q rows using ggml_vec_dot_f32
  11318. // total rows in q
  11319. const int nr = neq1*neq2*neq3;
  11320. // rows per thread
  11321. const int dr = (nr + nth - 1)/nth;
  11322. // row range for this thread
  11323. const int ir0 = dr*ith;
  11324. const int ir1 = MIN(ir0 + dr, nr);
  11325. const float scale = 1.0f/sqrtf(D);
  11326. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11327. for (int ir = ir0; ir < ir1; ++ir) {
  11328. // q indices
  11329. const int iq3 = ir/(neq2*neq1);
  11330. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11331. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11332. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11333. for (int i = M; i < Mup; ++i) {
  11334. S[i] = -INFINITY;
  11335. }
  11336. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11337. for (int64_t ic = 0; ic < nek1; ++ic) {
  11338. // k indices
  11339. const int ik3 = iq3;
  11340. const int ik2 = iq2 % nek2;
  11341. const int ik1 = ic;
  11342. // S indices
  11343. const int i1 = ik1;
  11344. ggml_vec_dot_f16(neq0,
  11345. S + i1, 0,
  11346. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11347. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11348. }
  11349. } else {
  11350. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11351. // k indices
  11352. const int ik3 = iq3;
  11353. const int ik2 = iq2 % nek2;
  11354. const int ik1 = ic;
  11355. // S indices
  11356. const int i1 = ik1;
  11357. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11358. S + i1,
  11359. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11360. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11361. }
  11362. }
  11363. // scale
  11364. ggml_vec_scale_f32(nek1, S, scale);
  11365. if (masked) {
  11366. for (int64_t i = P; i < M; i++) {
  11367. if (i > P + iq1) {
  11368. S[i] = -INFINITY;
  11369. }
  11370. }
  11371. }
  11372. // softmax
  11373. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11374. // dont forget to set their S values to zero
  11375. {
  11376. float max = -INFINITY;
  11377. ggml_vec_max_f32(M, &max, S);
  11378. ggml_float sum = 0.0;
  11379. {
  11380. #ifdef GGML_SOFT_MAX_ACCELERATE
  11381. max = -max;
  11382. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11383. vvexpf(S, S, &Mup);
  11384. ggml_vec_sum_f32(Mup, &sum, S);
  11385. #else
  11386. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11387. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11388. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11389. float * SS = S + i;
  11390. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11391. if (SS[j] == -INFINITY) {
  11392. SS[j] = 0.0f;
  11393. } else {
  11394. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11395. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11396. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11397. sump[j] += (ggml_float)val;
  11398. SS[j] = val;
  11399. }
  11400. }
  11401. }
  11402. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11403. sum += sump[i];
  11404. }
  11405. #endif
  11406. }
  11407. assert(sum > 0.0);
  11408. sum = 1.0/sum;
  11409. ggml_vec_scale_f32(M, S, sum);
  11410. #ifndef NDEBUG
  11411. for (int i = 0; i < M; ++i) {
  11412. assert(!isnan(S[i]));
  11413. assert(!isinf(S[i]));
  11414. }
  11415. #endif
  11416. }
  11417. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11418. for (int64_t i = 0; i < M; i++) {
  11419. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11420. }
  11421. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11422. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11423. for (int64_t ic = 0; ic < nev1; ++ic) {
  11424. // dst indices
  11425. const int i1 = iq1;
  11426. const int i2 = iq2;
  11427. const int i3 = iq3;
  11428. // v indices
  11429. const int iv2 = iq2 % nev2;
  11430. const int iv3 = iq3;
  11431. ggml_vec_dot_f16(nev0,
  11432. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11433. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11434. S16, 0, 1);
  11435. }
  11436. } else {
  11437. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11438. // dst indices
  11439. const int i1 = iq1;
  11440. const int i2 = iq2;
  11441. const int i3 = iq3;
  11442. // v indices
  11443. const int iv2 = iq2 % nev2;
  11444. const int iv3 = iq3;
  11445. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11446. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11447. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11448. S16);
  11449. }
  11450. }
  11451. }
  11452. }
  11453. static void ggml_compute_forward_flash_attn(
  11454. const struct ggml_compute_params * params,
  11455. const bool masked,
  11456. struct ggml_tensor * dst) {
  11457. const struct ggml_tensor * q = dst->src[0];
  11458. switch (q->type) {
  11459. case GGML_TYPE_F16:
  11460. {
  11461. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11462. } break;
  11463. case GGML_TYPE_F32:
  11464. {
  11465. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11466. } break;
  11467. default:
  11468. {
  11469. GGML_ASSERT(false);
  11470. } break;
  11471. }
  11472. }
  11473. // ggml_compute_forward_flash_ff
  11474. static void ggml_compute_forward_flash_ff_f16(
  11475. const struct ggml_compute_params * params,
  11476. struct ggml_tensor * dst) {
  11477. const struct ggml_tensor * a = dst->src[0]; // F16
  11478. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11479. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11480. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11481. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11482. int64_t t0 = ggml_perf_time_us();
  11483. UNUSED(t0);
  11484. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11485. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11486. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11487. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11488. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11489. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11490. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11491. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11492. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11493. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11494. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11495. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11496. const int ith = params->ith;
  11497. const int nth = params->nth;
  11498. const int64_t D = nea0;
  11499. //const int64_t N = nea1;
  11500. const int64_t M = neb01;
  11501. GGML_ASSERT(ne0 == nea0);
  11502. GGML_ASSERT(ne1 == nea1);
  11503. GGML_ASSERT(ne2 == nea2);
  11504. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11505. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11506. GGML_ASSERT(nbb10 == sizeof(float));
  11507. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11508. GGML_ASSERT(nbc10 == sizeof(float));
  11509. GGML_ASSERT(neb00 == D);
  11510. GGML_ASSERT(neb01 == M);
  11511. GGML_ASSERT(neb10 == M);
  11512. GGML_ASSERT(neb11 == 1);
  11513. GGML_ASSERT(nec00 == M);
  11514. GGML_ASSERT(nec01 == D);
  11515. GGML_ASSERT(nec10 == D);
  11516. GGML_ASSERT(nec11 == 1);
  11517. // dst cannot be transposed or permuted
  11518. GGML_ASSERT(nb0 == sizeof(float));
  11519. GGML_ASSERT(nb0 <= nb1);
  11520. GGML_ASSERT(nb1 <= nb2);
  11521. GGML_ASSERT(nb2 <= nb3);
  11522. if (params->type == GGML_TASK_TYPE_INIT) {
  11523. return;
  11524. }
  11525. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11526. return;
  11527. }
  11528. // parallelize by a rows using ggml_vec_dot_f32
  11529. // total rows in a
  11530. const int nr = nea1*nea2*nea3;
  11531. // rows per thread
  11532. const int dr = (nr + nth - 1)/nth;
  11533. // row range for this thread
  11534. const int ir0 = dr*ith;
  11535. const int ir1 = MIN(ir0 + dr, nr);
  11536. for (int ir = ir0; ir < ir1; ++ir) {
  11537. // a indices
  11538. const int ia3 = ir/(nea2*nea1);
  11539. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11540. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11541. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11542. for (int64_t ic = 0; ic < neb01; ++ic) {
  11543. // b0 indices
  11544. const int ib03 = ia3;
  11545. const int ib02 = ia2;
  11546. const int ib01 = ic;
  11547. // S indices
  11548. const int i1 = ib01;
  11549. ggml_vec_dot_f16(nea0,
  11550. S + i1, 0,
  11551. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11552. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11553. }
  11554. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11555. //ggml_vec_gelu_f32(neb01, S, S);
  11556. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11557. for (int64_t i = 0; i < M; i++) {
  11558. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11559. }
  11560. ggml_vec_gelu_f16(neb01, S16, S16);
  11561. {
  11562. // dst indices
  11563. const int i1 = ia1;
  11564. const int i2 = ia2;
  11565. const int i3 = ia3;
  11566. for (int64_t ic = 0; ic < nec01; ++ic) {
  11567. ggml_vec_dot_f16(neb01,
  11568. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11569. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11570. S16, 0, 1);
  11571. }
  11572. ggml_vec_add_f32(nec01,
  11573. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11574. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11575. (float *) c1->data);
  11576. }
  11577. }
  11578. }
  11579. static void ggml_compute_forward_flash_ff(
  11580. const struct ggml_compute_params * params,
  11581. struct ggml_tensor * dst) {
  11582. const struct ggml_tensor * b0 = dst->src[1];
  11583. switch (b0->type) {
  11584. case GGML_TYPE_F16:
  11585. {
  11586. ggml_compute_forward_flash_ff_f16(params, dst);
  11587. } break;
  11588. case GGML_TYPE_F32:
  11589. {
  11590. GGML_ASSERT(false); // TODO
  11591. } break;
  11592. default:
  11593. {
  11594. GGML_ASSERT(false);
  11595. } break;
  11596. }
  11597. }
  11598. // ggml_compute_forward_flash_attn_back
  11599. static void ggml_compute_forward_flash_attn_back_f32(
  11600. const struct ggml_compute_params * params,
  11601. const bool masked,
  11602. struct ggml_tensor * dst) {
  11603. const struct ggml_tensor * q = dst->src[0];
  11604. const struct ggml_tensor * k = dst->src[1];
  11605. const struct ggml_tensor * v = dst->src[2];
  11606. const struct ggml_tensor * d = dst->src[3];
  11607. int64_t t0 = ggml_perf_time_us();
  11608. UNUSED(t0);
  11609. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11610. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11611. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11612. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11613. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11614. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11615. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11616. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11617. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11618. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11619. const int ith = params->ith;
  11620. const int nth = params->nth;
  11621. const int64_t D = neq0;
  11622. const int64_t N = neq1;
  11623. const int64_t P = nek1 - N;
  11624. const int64_t M = P + N;
  11625. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11626. const int mxDM = MAX(D, Mup);
  11627. // GGML_ASSERT(ne0 == D);
  11628. // GGML_ASSERT(ne1 == N);
  11629. GGML_ASSERT(P >= 0);
  11630. GGML_ASSERT(nbq0 == sizeof(float));
  11631. GGML_ASSERT(nbk0 == sizeof(float));
  11632. GGML_ASSERT(nbv0 == sizeof(float));
  11633. GGML_ASSERT(neq0 == D);
  11634. GGML_ASSERT(nek0 == D);
  11635. GGML_ASSERT(nev1 == D);
  11636. GGML_ASSERT(ned0 == D);
  11637. GGML_ASSERT(neq1 == N);
  11638. GGML_ASSERT(nek1 == N + P);
  11639. GGML_ASSERT(nev1 == D);
  11640. GGML_ASSERT(ned1 == N);
  11641. // dst cannot be transposed or permuted
  11642. GGML_ASSERT(nb0 == sizeof(float));
  11643. GGML_ASSERT(nb0 <= nb1);
  11644. GGML_ASSERT(nb1 <= nb2);
  11645. GGML_ASSERT(nb2 <= nb3);
  11646. if (params->type == GGML_TASK_TYPE_INIT) {
  11647. if (ith == 0) {
  11648. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11649. }
  11650. return;
  11651. }
  11652. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11653. return;
  11654. }
  11655. const int64_t elem_q = ggml_nelements(q);
  11656. const int64_t elem_k = ggml_nelements(k);
  11657. enum ggml_type result_type = dst->type;
  11658. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11659. const size_t tsize = ggml_type_size(result_type);
  11660. const size_t offs_q = 0;
  11661. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11662. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11663. void * grad_q = (char *) dst->data;
  11664. void * grad_k = (char *) dst->data + offs_k;
  11665. void * grad_v = (char *) dst->data + offs_v;
  11666. const size_t nbgq1 = nb0*neq0;
  11667. const size_t nbgq2 = nb0*neq0*neq1;
  11668. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11669. const size_t nbgk1 = nb0*nek0;
  11670. const size_t nbgk2 = nb0*nek0*nek1;
  11671. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11672. const size_t nbgv1 = nb0*nev0;
  11673. const size_t nbgv2 = nb0*nev0*nev1;
  11674. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11675. // parallelize by k rows using ggml_vec_dot_f32
  11676. // total rows in k
  11677. const int nr = nek2*nek3;
  11678. // rows per thread
  11679. const int dr = (nr + nth - 1)/nth;
  11680. // row range for this thread
  11681. const int ir0 = dr*ith;
  11682. const int ir1 = MIN(ir0 + dr, nr);
  11683. const float scale = 1.0f/sqrtf(D);
  11684. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11685. // how often k2 (and v2) is repeated in q2
  11686. int nrep = neq2/nek2;
  11687. for (int ir = ir0; ir < ir1; ++ir) {
  11688. // q indices
  11689. const int ik3 = ir/(nek2);
  11690. const int ik2 = ir - ik3*nek2;
  11691. const int iq3 = ik3;
  11692. const int id3 = ik3;
  11693. const int iv3 = ik3;
  11694. const int iv2 = ik2;
  11695. for (int irep = 0; irep < nrep; ++irep) {
  11696. const int iq2 = ik2 + irep*nek2;
  11697. const int id2 = iq2;
  11698. // (ik2 + irep*nek2) % nek2 == ik2
  11699. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11700. const int id1 = iq1;
  11701. // not sure about CACHE_LINE_SIZE_F32..
  11702. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11703. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11704. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11705. for (int i = M; i < Mup; ++i) {
  11706. S[i] = -INFINITY;
  11707. }
  11708. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11709. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11710. // k indices
  11711. const int ik1 = ic;
  11712. // S indices
  11713. const int i1 = ik1;
  11714. ggml_vec_dot_f32(neq0,
  11715. S + i1, 0,
  11716. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11717. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11718. }
  11719. // scale
  11720. ggml_vec_scale_f32(masked_begin, S, scale);
  11721. for (int64_t i = masked_begin; i < M; i++) {
  11722. S[i] = -INFINITY;
  11723. }
  11724. // softmax
  11725. // exclude known -INF S[..] values from max and loop
  11726. // dont forget to set their SM values to zero
  11727. {
  11728. float max = -INFINITY;
  11729. ggml_vec_max_f32(masked_begin, &max, S);
  11730. ggml_float sum = 0.0;
  11731. {
  11732. #ifdef GGML_SOFT_MAX_ACCELERATE
  11733. max = -max;
  11734. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11735. vvexpf(SM, SM, &Mup);
  11736. ggml_vec_sum_f32(Mup, &sum, SM);
  11737. #else
  11738. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11739. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11740. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11741. if (i >= masked_begin) {
  11742. break;
  11743. }
  11744. float * SR = S + i;
  11745. float * SW = SM + i;
  11746. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11747. if (i + j >= masked_begin) {
  11748. break;
  11749. } else if (SR[j] == -INFINITY) {
  11750. SW[j] = 0.0f;
  11751. } else {
  11752. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11753. const float val = expf(SR[j] - max);
  11754. #else
  11755. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11756. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11757. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11758. #endif
  11759. sump[j] += (ggml_float)val;
  11760. SW[j] = val;
  11761. }
  11762. }
  11763. }
  11764. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11765. sum += sump[i];
  11766. }
  11767. #endif
  11768. }
  11769. assert(sum > 0.0);
  11770. sum = 1.0/sum;
  11771. ggml_vec_scale_f32(masked_begin, SM, sum);
  11772. }
  11773. // step-by-step explanation
  11774. {
  11775. // forward-process shape grads from backward process
  11776. // parallel_for ik2,ik3:
  11777. // for irep:
  11778. // iq2 = ik2 + irep*nek2
  11779. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11780. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11781. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11782. // for iq1:
  11783. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11784. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11785. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11786. // S0 = -Inf [D,1,1,1]
  11787. // ~S1[i] = dot(kcur[:D,i], qcur)
  11788. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11789. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11790. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11791. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11792. // ~S5[i] = dot(vcur[:,i], S4)
  11793. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11794. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11795. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11796. // dst backward-/ grad[dst] = d
  11797. //
  11798. // output gradients with their dependencies:
  11799. //
  11800. // grad[kcur] = grad[S1].T @ qcur
  11801. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11802. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11803. // grad[S4] = grad[S5] @ vcur
  11804. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11805. // grad[qcur] = grad[S1] @ kcur
  11806. // grad[vcur] = grad[S5].T @ S4
  11807. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11808. //
  11809. // in post-order:
  11810. //
  11811. // S1 = qcur @ kcur.T
  11812. // S2 = S1 * scale
  11813. // S3 = diag_mask_inf(S2, P)
  11814. // S4 = softmax(S3)
  11815. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11816. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11817. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11818. // grad[qcur] = grad[S1] @ kcur
  11819. // grad[kcur] = grad[S1].T @ qcur
  11820. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11821. //
  11822. // using less variables (SM=S4):
  11823. //
  11824. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11825. // SM = softmax(S)
  11826. // S = d[:D,iq1,iq2,iq3] @ vcur
  11827. // dot_SM_gradSM = dot(SM, S)
  11828. // S = SM * (S - dot(SM, S))
  11829. // S = diag_mask_zero(S, P) * scale
  11830. //
  11831. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11832. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11833. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11834. }
  11835. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11836. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11837. // for ic:
  11838. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11839. // exclude known future zero S[..] values from operation
  11840. ggml_vec_set_f32(masked_begin, S, 0);
  11841. for (int64_t ic = 0; ic < D; ++ic) {
  11842. ggml_vec_mad_f32(masked_begin,
  11843. S,
  11844. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11845. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11846. }
  11847. // S = SM * (S - dot(SM, S))
  11848. float dot_SM_gradSM = 0;
  11849. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11850. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11851. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11852. // S = diag_mask_zero(S, P) * scale
  11853. // already done by above ggml_vec_set_f32
  11854. // exclude known zero S[..] values from operation
  11855. ggml_vec_scale_f32(masked_begin, S, scale);
  11856. // S shape [M,1]
  11857. // SM shape [M,1]
  11858. // kcur shape [D,M]
  11859. // qcur shape [D,1]
  11860. // vcur shape [M,D]
  11861. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11862. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11863. // for ic:
  11864. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11865. // exclude known zero S[..] values from loop
  11866. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11867. ggml_vec_mad_f32(D,
  11868. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11869. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11870. S[ic]);
  11871. }
  11872. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11873. // for ic:
  11874. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11875. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11876. // exclude known zero S[..] values from loop
  11877. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11878. ggml_vec_mad_f32(D,
  11879. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11880. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11881. S[ic]);
  11882. }
  11883. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11884. // for ic:
  11885. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11886. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11887. // exclude known zero SM[..] values from mad
  11888. for (int64_t ic = 0; ic < D; ++ic) {
  11889. ggml_vec_mad_f32(masked_begin,
  11890. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11891. SM,
  11892. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11893. }
  11894. }
  11895. }
  11896. }
  11897. }
  11898. static void ggml_compute_forward_flash_attn_back(
  11899. const struct ggml_compute_params * params,
  11900. const bool masked,
  11901. struct ggml_tensor * dst) {
  11902. const struct ggml_tensor * q = dst->src[0];
  11903. switch (q->type) {
  11904. case GGML_TYPE_F32:
  11905. {
  11906. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11907. } break;
  11908. default:
  11909. {
  11910. GGML_ASSERT(false);
  11911. } break;
  11912. }
  11913. }
  11914. // ggml_compute_forward_win_part
  11915. static void ggml_compute_forward_win_part_f32(
  11916. const struct ggml_compute_params * params,
  11917. struct ggml_tensor * dst) {
  11918. const struct ggml_tensor * src0 = dst->src[0];
  11919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11920. return;
  11921. }
  11922. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11923. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11924. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11925. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11926. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11927. assert(ne00 == ne0);
  11928. assert(ne3 == nep0*nep1);
  11929. // TODO: optimize / multi-thread
  11930. for (int py = 0; py < nep1; ++py) {
  11931. for (int px = 0; px < nep0; ++px) {
  11932. const int64_t i3 = py*nep0 + px;
  11933. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11934. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11935. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11936. const int64_t i02 = py*w + i2;
  11937. const int64_t i01 = px*w + i1;
  11938. const int64_t i00 = i0;
  11939. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11940. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11941. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11942. ((float *) dst->data)[i] = 0.0f;
  11943. } else {
  11944. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11945. }
  11946. }
  11947. }
  11948. }
  11949. }
  11950. }
  11951. }
  11952. static void ggml_compute_forward_win_part(
  11953. const struct ggml_compute_params * params,
  11954. struct ggml_tensor * dst) {
  11955. const struct ggml_tensor * src0 = dst->src[0];
  11956. switch (src0->type) {
  11957. case GGML_TYPE_F32:
  11958. {
  11959. ggml_compute_forward_win_part_f32(params, dst);
  11960. } break;
  11961. default:
  11962. {
  11963. GGML_ASSERT(false);
  11964. } break;
  11965. }
  11966. }
  11967. // ggml_compute_forward_win_unpart
  11968. static void ggml_compute_forward_win_unpart_f32(
  11969. const struct ggml_compute_params * params,
  11970. struct ggml_tensor * dst) {
  11971. const struct ggml_tensor * src0 = dst->src[0];
  11972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11973. return;
  11974. }
  11975. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11976. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11977. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11978. // padding
  11979. const int px = (w - ne1%w)%w;
  11980. //const int py = (w - ne2%w)%w;
  11981. const int npx = (px + ne1)/w;
  11982. //const int npy = (py + ne2)/w;
  11983. assert(ne0 == ne00);
  11984. // TODO: optimize / multi-thread
  11985. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11986. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11987. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11988. const int ip2 = i2/w;
  11989. const int ip1 = i1/w;
  11990. const int64_t i02 = i2%w;
  11991. const int64_t i01 = i1%w;
  11992. const int64_t i00 = i0;
  11993. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11994. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11995. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11996. }
  11997. }
  11998. }
  11999. }
  12000. static void ggml_compute_forward_win_unpart(
  12001. const struct ggml_compute_params * params,
  12002. struct ggml_tensor * dst) {
  12003. const struct ggml_tensor * src0 = dst->src[0];
  12004. switch (src0->type) {
  12005. case GGML_TYPE_F32:
  12006. {
  12007. ggml_compute_forward_win_unpart_f32(params, dst);
  12008. } break;
  12009. default:
  12010. {
  12011. GGML_ASSERT(false);
  12012. } break;
  12013. }
  12014. }
  12015. //gmml_compute_forward_unary
  12016. static void ggml_compute_forward_unary(
  12017. const struct ggml_compute_params * params,
  12018. struct ggml_tensor * dst) {
  12019. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12020. switch (op) {
  12021. case GGML_UNARY_OP_ABS:
  12022. {
  12023. ggml_compute_forward_abs(params, dst);
  12024. } break;
  12025. case GGML_UNARY_OP_SGN:
  12026. {
  12027. ggml_compute_forward_sgn(params, dst);
  12028. } break;
  12029. case GGML_UNARY_OP_NEG:
  12030. {
  12031. ggml_compute_forward_neg(params, dst);
  12032. } break;
  12033. case GGML_UNARY_OP_STEP:
  12034. {
  12035. ggml_compute_forward_step(params, dst);
  12036. } break;
  12037. case GGML_UNARY_OP_TANH:
  12038. {
  12039. ggml_compute_forward_tanh(params, dst);
  12040. } break;
  12041. case GGML_UNARY_OP_ELU:
  12042. {
  12043. ggml_compute_forward_elu(params, dst);
  12044. } break;
  12045. case GGML_UNARY_OP_RELU:
  12046. {
  12047. ggml_compute_forward_relu(params, dst);
  12048. } break;
  12049. case GGML_UNARY_OP_GELU:
  12050. {
  12051. ggml_compute_forward_gelu(params, dst);
  12052. } break;
  12053. case GGML_UNARY_OP_GELU_QUICK:
  12054. {
  12055. ggml_compute_forward_gelu_quick(params, dst);
  12056. } break;
  12057. case GGML_UNARY_OP_SILU:
  12058. {
  12059. ggml_compute_forward_silu(params, dst);
  12060. } break;
  12061. case GGML_UNARY_OP_HARDSWISH:
  12062. {
  12063. ggml_compute_forward_hardswish(params, dst);
  12064. } break;
  12065. case GGML_UNARY_OP_HARDSIGMOID:
  12066. {
  12067. ggml_compute_forward_hardsigmoid(params, dst);
  12068. } break;
  12069. default:
  12070. {
  12071. GGML_ASSERT(false);
  12072. } break;
  12073. }
  12074. }
  12075. // ggml_compute_forward_get_rel_pos
  12076. static void ggml_compute_forward_get_rel_pos_f16(
  12077. const struct ggml_compute_params * params,
  12078. struct ggml_tensor * dst) {
  12079. const struct ggml_tensor * src0 = dst->src[0];
  12080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12081. return;
  12082. }
  12083. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12084. GGML_TENSOR_UNARY_OP_LOCALS
  12085. const int64_t w = ne1;
  12086. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12087. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12088. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12089. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12090. const int64_t pos = (w - i1 - 1) + i2;
  12091. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12092. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12093. }
  12094. }
  12095. }
  12096. }
  12097. static void ggml_compute_forward_get_rel_pos(
  12098. const struct ggml_compute_params * params,
  12099. struct ggml_tensor * dst) {
  12100. const struct ggml_tensor * src0 = dst->src[0];
  12101. switch (src0->type) {
  12102. case GGML_TYPE_F16:
  12103. {
  12104. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12105. } break;
  12106. default:
  12107. {
  12108. GGML_ASSERT(false);
  12109. } break;
  12110. }
  12111. }
  12112. // ggml_compute_forward_add_rel_pos
  12113. static void ggml_compute_forward_add_rel_pos_f32(
  12114. const struct ggml_compute_params * params,
  12115. struct ggml_tensor * dst) {
  12116. const struct ggml_tensor * src0 = dst->src[0];
  12117. const struct ggml_tensor * src1 = dst->src[1];
  12118. const struct ggml_tensor * src2 = dst->src[2];
  12119. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12120. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12121. if (params->ith != 0) {
  12122. return;
  12123. }
  12124. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12125. return;
  12126. }
  12127. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12128. return;
  12129. }
  12130. int64_t t0 = ggml_perf_time_us();
  12131. UNUSED(t0);
  12132. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12133. float * src1_data = (float *) src1->data;
  12134. float * src2_data = (float *) src2->data;
  12135. float * dst_data = (float *) dst->data;
  12136. const int64_t ne10 = src1->ne[0];
  12137. const int64_t ne11 = src1->ne[1];
  12138. const int64_t ne12 = src1->ne[2];
  12139. const int64_t ne13 = src1->ne[3];
  12140. const int ith = params->ith;
  12141. const int nth = params->nth;
  12142. // total patches in dst
  12143. const int np = ne13;
  12144. // patches per thread
  12145. const int dp = (np + nth - 1)/nth;
  12146. // patch range for this thread
  12147. const int ip0 = dp*ith;
  12148. const int ip1 = MIN(ip0 + dp, np);
  12149. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12150. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12151. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12152. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12153. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12154. const int64_t jp0 = jp1 + i10;
  12155. const float src1_e = src1_data[jp0];
  12156. const float src2_e = src2_data[jp0];
  12157. const int64_t jdh = jp0 * ne10;
  12158. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12159. for (int64_t j = 0; j < ne10; ++j) {
  12160. dst_data[jdh + j ] += src2_e;
  12161. dst_data[jdw + j*ne10] += src1_e;
  12162. }
  12163. }
  12164. }
  12165. }
  12166. }
  12167. }
  12168. static void ggml_compute_forward_add_rel_pos(
  12169. const struct ggml_compute_params * params,
  12170. struct ggml_tensor * dst) {
  12171. const struct ggml_tensor * src0 = dst->src[0];
  12172. switch (src0->type) {
  12173. case GGML_TYPE_F32:
  12174. {
  12175. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12176. } break;
  12177. default:
  12178. {
  12179. GGML_ASSERT(false);
  12180. } break;
  12181. }
  12182. }
  12183. // ggml_compute_forward_map_unary
  12184. static void ggml_compute_forward_map_unary_f32(
  12185. const struct ggml_compute_params * params,
  12186. struct ggml_tensor * dst,
  12187. const ggml_unary_op_f32_t fun) {
  12188. const struct ggml_tensor * src0 = dst->src[0];
  12189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12191. return;
  12192. }
  12193. const int n = ggml_nrows(src0);
  12194. const int nc = src0->ne[0];
  12195. assert( dst->nb[0] == sizeof(float));
  12196. assert(src0->nb[0] == sizeof(float));
  12197. for (int i = 0; i < n; i++) {
  12198. fun(nc,
  12199. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12200. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12201. }
  12202. }
  12203. static void ggml_compute_forward_map_unary(
  12204. const struct ggml_compute_params * params,
  12205. struct ggml_tensor * dst,
  12206. const ggml_unary_op_f32_t fun) {
  12207. const struct ggml_tensor * src0 = dst->src[0];
  12208. switch (src0->type) {
  12209. case GGML_TYPE_F32:
  12210. {
  12211. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12212. } break;
  12213. default:
  12214. {
  12215. GGML_ASSERT(false);
  12216. } break;
  12217. }
  12218. }
  12219. // ggml_compute_forward_map_binary
  12220. static void ggml_compute_forward_map_binary_f32(
  12221. const struct ggml_compute_params * params,
  12222. struct ggml_tensor * dst,
  12223. const ggml_binary_op_f32_t fun) {
  12224. const struct ggml_tensor * src0 = dst->src[0];
  12225. const struct ggml_tensor * src1 = dst->src[1];
  12226. assert(params->ith == 0);
  12227. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12229. return;
  12230. }
  12231. const int n = ggml_nrows(src0);
  12232. const int nc = src0->ne[0];
  12233. assert( dst->nb[0] == sizeof(float));
  12234. assert(src0->nb[0] == sizeof(float));
  12235. assert(src1->nb[0] == sizeof(float));
  12236. for (int i = 0; i < n; i++) {
  12237. fun(nc,
  12238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12239. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12240. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12241. }
  12242. }
  12243. static void ggml_compute_forward_map_binary(
  12244. const struct ggml_compute_params * params,
  12245. struct ggml_tensor * dst,
  12246. const ggml_binary_op_f32_t fun) {
  12247. const struct ggml_tensor * src0 = dst->src[0];
  12248. switch (src0->type) {
  12249. case GGML_TYPE_F32:
  12250. {
  12251. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12252. } break;
  12253. default:
  12254. {
  12255. GGML_ASSERT(false);
  12256. } break;
  12257. }
  12258. }
  12259. // ggml_compute_forward_map_custom1
  12260. static void ggml_compute_forward_map_custom1_f32(
  12261. const struct ggml_compute_params * params,
  12262. struct ggml_tensor * dst,
  12263. const ggml_custom1_op_f32_t fun) {
  12264. const struct ggml_tensor * a = dst->src[0];
  12265. assert(params->ith == 0);
  12266. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12267. return;
  12268. }
  12269. fun(dst, a);
  12270. }
  12271. // ggml_compute_forward_map_custom2
  12272. static void ggml_compute_forward_map_custom2_f32(
  12273. const struct ggml_compute_params * params,
  12274. struct ggml_tensor * dst,
  12275. const ggml_custom2_op_f32_t fun) {
  12276. const struct ggml_tensor * a = dst->src[0];
  12277. const struct ggml_tensor * b = dst->src[1];
  12278. assert(params->ith == 0);
  12279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12280. return;
  12281. }
  12282. fun(dst, a, b);
  12283. }
  12284. // ggml_compute_forward_map_custom3
  12285. static void ggml_compute_forward_map_custom3_f32(
  12286. const struct ggml_compute_params * params,
  12287. struct ggml_tensor * dst,
  12288. const ggml_custom3_op_f32_t fun) {
  12289. const struct ggml_tensor * a = dst->src[0];
  12290. const struct ggml_tensor * b = dst->src[1];
  12291. const struct ggml_tensor * c = dst->src[1];
  12292. assert(params->ith == 0);
  12293. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12294. return;
  12295. }
  12296. fun(dst, a, b, c);
  12297. }
  12298. // ggml_compute_forward_map_custom1
  12299. static void ggml_compute_forward_map_custom1(
  12300. const struct ggml_compute_params * params,
  12301. struct ggml_tensor * dst) {
  12302. const struct ggml_tensor * a = dst->src[0];
  12303. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12304. return;
  12305. }
  12306. struct ggml_map_custom1_op_params p;
  12307. memcpy(&p, dst->op_params, sizeof(p));
  12308. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12309. }
  12310. // ggml_compute_forward_map_custom2
  12311. static void ggml_compute_forward_map_custom2(
  12312. const struct ggml_compute_params * params,
  12313. struct ggml_tensor * dst) {
  12314. const struct ggml_tensor * a = dst->src[0];
  12315. const struct ggml_tensor * b = dst->src[1];
  12316. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12317. return;
  12318. }
  12319. struct ggml_map_custom2_op_params p;
  12320. memcpy(&p, dst->op_params, sizeof(p));
  12321. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12322. }
  12323. // ggml_compute_forward_map_custom3
  12324. static void ggml_compute_forward_map_custom3(
  12325. const struct ggml_compute_params * params,
  12326. struct ggml_tensor * dst) {
  12327. const struct ggml_tensor * a = dst->src[0];
  12328. const struct ggml_tensor * b = dst->src[1];
  12329. const struct ggml_tensor * c = dst->src[2];
  12330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12331. return;
  12332. }
  12333. struct ggml_map_custom3_op_params p;
  12334. memcpy(&p, dst->op_params, sizeof(p));
  12335. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12336. }
  12337. // ggml_compute_forward_cross_entropy_loss
  12338. static void ggml_compute_forward_cross_entropy_loss_f32(
  12339. const struct ggml_compute_params * params,
  12340. struct ggml_tensor * dst) {
  12341. const struct ggml_tensor * src0 = dst->src[0];
  12342. const struct ggml_tensor * src1 = dst->src[1];
  12343. GGML_ASSERT(ggml_is_contiguous(src0));
  12344. GGML_ASSERT(ggml_is_contiguous(src1));
  12345. GGML_ASSERT(ggml_is_scalar(dst));
  12346. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12347. const int ith = params->ith;
  12348. const int nth = params->nth;
  12349. float * sums = (float *) params->wdata;
  12350. // TODO: handle transposed/permuted matrices
  12351. const int nc = src0->ne[0];
  12352. const int nr = ggml_nrows(src0);
  12353. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12354. if (params->type == GGML_TASK_TYPE_INIT) {
  12355. if (ith == 0) {
  12356. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12357. }
  12358. return;
  12359. }
  12360. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12361. if (ith == 0) {
  12362. float * dp = (float *) dst->data;
  12363. ggml_vec_sum_f32(nth, dp, sums);
  12364. dp[0] *= -1.0f / (float) nr;
  12365. }
  12366. return;
  12367. }
  12368. const double eps = 1e-9;
  12369. // rows per thread
  12370. const int dr = (nr + nth - 1)/nth;
  12371. // row range for this thread
  12372. const int ir0 = dr*ith;
  12373. const int ir1 = MIN(ir0 + dr, nr);
  12374. for (int i1 = ir0; i1 < ir1; i1++) {
  12375. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12376. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12377. float * st = ((float *) params->wdata) + nth + ith*nc;
  12378. #ifndef NDEBUG
  12379. for (int i = 0; i < nc; ++i) {
  12380. //printf("p[%d] = %f\n", i, p[i]);
  12381. assert(!isnan(s0[i]));
  12382. assert(!isnan(s1[i]));
  12383. }
  12384. #endif
  12385. // soft_max
  12386. ggml_float sum = 0.0;
  12387. {
  12388. float max = -INFINITY;
  12389. ggml_vec_max_f32(nc, &max, s0);
  12390. uint16_t scvt; UNUSED(scvt);
  12391. for (int i = 0; i < nc; i++) {
  12392. if (s0[i] == -INFINITY) {
  12393. st[i] = 0.0f;
  12394. } else {
  12395. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12396. const float s = s0[i] - max;
  12397. const float val = expf(s);
  12398. #else
  12399. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12400. memcpy(&scvt, &s, sizeof(scvt));
  12401. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12402. #endif
  12403. sum += (ggml_float)val;
  12404. st[i] = val;
  12405. }
  12406. }
  12407. assert(sum > 0.0);
  12408. // sum = 1.0/sum;
  12409. }
  12410. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12411. sum = (1.0 - eps) / sum;
  12412. ggml_vec_scale_f32(nc, st, sum);
  12413. ggml_vec_add1_f32(nc, st, st, eps);
  12414. ggml_vec_log_f32(nc, st, st);
  12415. ggml_vec_mul_f32(nc, st, st, s1);
  12416. float st_sum = 0;
  12417. ggml_vec_sum_f32(nc, &st_sum, st);
  12418. sums[ith] += st_sum;
  12419. #ifndef NDEBUG
  12420. for (int i = 0; i < nc; ++i) {
  12421. assert(!isnan(st[i]));
  12422. assert(!isinf(st[i]));
  12423. }
  12424. #endif
  12425. }
  12426. }
  12427. static void ggml_compute_forward_cross_entropy_loss(
  12428. const struct ggml_compute_params * params,
  12429. struct ggml_tensor * dst) {
  12430. const struct ggml_tensor * src0 = dst->src[0];
  12431. switch (src0->type) {
  12432. case GGML_TYPE_F32:
  12433. {
  12434. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12435. } break;
  12436. default:
  12437. {
  12438. GGML_ASSERT(false);
  12439. } break;
  12440. }
  12441. }
  12442. // ggml_compute_forward_cross_entropy_loss_back
  12443. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12444. const struct ggml_compute_params * params,
  12445. struct ggml_tensor * dst) {
  12446. const struct ggml_tensor * src0 = dst->src[0];
  12447. const struct ggml_tensor * src1 = dst->src[1];
  12448. const struct ggml_tensor * opt0 = dst->src[2];
  12449. GGML_ASSERT(ggml_is_contiguous(dst));
  12450. GGML_ASSERT(ggml_is_contiguous(src0));
  12451. GGML_ASSERT(ggml_is_contiguous(src1));
  12452. GGML_ASSERT(ggml_is_contiguous(opt0));
  12453. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12454. const int64_t ith = params->ith;
  12455. const int64_t nth = params->nth;
  12456. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12457. return;
  12458. }
  12459. const double eps = 1e-9;
  12460. // TODO: handle transposed/permuted matrices
  12461. const int64_t nc = src0->ne[0];
  12462. const int64_t nr = ggml_nrows(src0);
  12463. // rows per thread
  12464. const int64_t dr = (nr + nth - 1)/nth;
  12465. // row range for this thread
  12466. const int64_t ir0 = dr*ith;
  12467. const int64_t ir1 = MIN(ir0 + dr, nr);
  12468. float * d = (float *) opt0->data;
  12469. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12470. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12471. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12472. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12473. #ifndef NDEBUG
  12474. for (int i = 0; i < nc; ++i) {
  12475. //printf("p[%d] = %f\n", i, p[i]);
  12476. assert(!isnan(s0[i]));
  12477. assert(!isnan(s1[i]));
  12478. }
  12479. #endif
  12480. // soft_max
  12481. ggml_float sum = 0.0;
  12482. {
  12483. float max = -INFINITY;
  12484. ggml_vec_max_f32(nc, &max, s0);
  12485. uint16_t scvt; UNUSED(scvt);
  12486. for (int i = 0; i < nc; i++) {
  12487. if (s0[i] == -INFINITY) {
  12488. ds0[i] = 0.0f;
  12489. } else {
  12490. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12491. const float s = s0[i] - max;
  12492. const float val = expf(s);
  12493. #else
  12494. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12495. memcpy(&scvt, &s, sizeof(scvt));
  12496. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12497. #endif
  12498. sum += (ggml_float)val;
  12499. ds0[i] = val;
  12500. }
  12501. }
  12502. assert(sum > 0.0);
  12503. sum = (1.0 - eps)/sum;
  12504. }
  12505. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12506. ggml_vec_scale_f32(nc, ds0, sum);
  12507. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12508. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12509. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12510. #ifndef NDEBUG
  12511. for (int i = 0; i < nc; ++i) {
  12512. assert(!isnan(ds0[i]));
  12513. assert(!isinf(ds0[i]));
  12514. }
  12515. #endif
  12516. }
  12517. }
  12518. static void ggml_compute_forward_cross_entropy_loss_back(
  12519. const struct ggml_compute_params * params,
  12520. struct ggml_tensor * dst) {
  12521. const struct ggml_tensor * src0 = dst->src[0];
  12522. switch (src0->type) {
  12523. case GGML_TYPE_F32:
  12524. {
  12525. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12526. } break;
  12527. default:
  12528. {
  12529. GGML_ASSERT(false);
  12530. } break;
  12531. }
  12532. }
  12533. /////////////////////////////////
  12534. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12535. GGML_ASSERT(params);
  12536. if (tensor->op == GGML_OP_NONE) {
  12537. return;
  12538. }
  12539. #ifdef GGML_USE_CUBLAS
  12540. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12541. if (skip_cpu) {
  12542. return;
  12543. }
  12544. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12545. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12546. #elif defined(GGML_USE_VULKAN)
  12547. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12548. #ifdef GGML_VULKAN_CHECK_RESULTS
  12549. if (skip_cpu) {
  12550. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12551. }
  12552. #endif
  12553. if (skip_cpu) {
  12554. return;
  12555. }
  12556. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12557. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12558. #endif // GGML_USE_CUBLAS
  12559. #ifdef GGML_USE_SYCL
  12560. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12561. if (skip_cpu) {
  12562. return;
  12563. }
  12564. #endif // GGML_USE_SYCL
  12565. switch (tensor->op) {
  12566. case GGML_OP_DUP:
  12567. {
  12568. ggml_compute_forward_dup(params, tensor);
  12569. } break;
  12570. case GGML_OP_ADD:
  12571. {
  12572. ggml_compute_forward_add(params, tensor);
  12573. } break;
  12574. case GGML_OP_ADD1:
  12575. {
  12576. ggml_compute_forward_add1(params, tensor);
  12577. } break;
  12578. case GGML_OP_ACC:
  12579. {
  12580. ggml_compute_forward_acc(params, tensor);
  12581. } break;
  12582. case GGML_OP_SUB:
  12583. {
  12584. ggml_compute_forward_sub(params, tensor);
  12585. } break;
  12586. case GGML_OP_MUL:
  12587. {
  12588. ggml_compute_forward_mul(params, tensor);
  12589. } break;
  12590. case GGML_OP_DIV:
  12591. {
  12592. ggml_compute_forward_div(params, tensor);
  12593. } break;
  12594. case GGML_OP_SQR:
  12595. {
  12596. ggml_compute_forward_sqr(params, tensor);
  12597. } break;
  12598. case GGML_OP_SQRT:
  12599. {
  12600. ggml_compute_forward_sqrt(params, tensor);
  12601. } break;
  12602. case GGML_OP_LOG:
  12603. {
  12604. ggml_compute_forward_log(params, tensor);
  12605. } break;
  12606. case GGML_OP_SUM:
  12607. {
  12608. ggml_compute_forward_sum(params, tensor);
  12609. } break;
  12610. case GGML_OP_SUM_ROWS:
  12611. {
  12612. ggml_compute_forward_sum_rows(params, tensor);
  12613. } break;
  12614. case GGML_OP_MEAN:
  12615. {
  12616. ggml_compute_forward_mean(params, tensor);
  12617. } break;
  12618. case GGML_OP_ARGMAX:
  12619. {
  12620. ggml_compute_forward_argmax(params, tensor);
  12621. } break;
  12622. case GGML_OP_REPEAT:
  12623. {
  12624. ggml_compute_forward_repeat(params, tensor);
  12625. } break;
  12626. case GGML_OP_REPEAT_BACK:
  12627. {
  12628. ggml_compute_forward_repeat_back(params, tensor);
  12629. } break;
  12630. case GGML_OP_CONCAT:
  12631. {
  12632. ggml_compute_forward_concat(params, tensor);
  12633. } break;
  12634. case GGML_OP_SILU_BACK:
  12635. {
  12636. ggml_compute_forward_silu_back(params, tensor);
  12637. } break;
  12638. case GGML_OP_NORM:
  12639. {
  12640. ggml_compute_forward_norm(params, tensor);
  12641. } break;
  12642. case GGML_OP_RMS_NORM:
  12643. {
  12644. ggml_compute_forward_rms_norm(params, tensor);
  12645. } break;
  12646. case GGML_OP_RMS_NORM_BACK:
  12647. {
  12648. ggml_compute_forward_rms_norm_back(params, tensor);
  12649. } break;
  12650. case GGML_OP_GROUP_NORM:
  12651. {
  12652. ggml_compute_forward_group_norm(params, tensor);
  12653. } break;
  12654. case GGML_OP_MUL_MAT:
  12655. {
  12656. ggml_compute_forward_mul_mat(params, tensor);
  12657. } break;
  12658. case GGML_OP_MUL_MAT_ID:
  12659. {
  12660. ggml_compute_forward_mul_mat_id(params, tensor);
  12661. } break;
  12662. case GGML_OP_OUT_PROD:
  12663. {
  12664. ggml_compute_forward_out_prod(params, tensor);
  12665. } break;
  12666. case GGML_OP_SCALE:
  12667. {
  12668. ggml_compute_forward_scale(params, tensor);
  12669. } break;
  12670. case GGML_OP_SET:
  12671. {
  12672. ggml_compute_forward_set(params, tensor);
  12673. } break;
  12674. case GGML_OP_CPY:
  12675. {
  12676. ggml_compute_forward_cpy(params, tensor);
  12677. } break;
  12678. case GGML_OP_CONT:
  12679. {
  12680. ggml_compute_forward_cont(params, tensor);
  12681. } break;
  12682. case GGML_OP_RESHAPE:
  12683. {
  12684. ggml_compute_forward_reshape(params, tensor);
  12685. } break;
  12686. case GGML_OP_VIEW:
  12687. {
  12688. ggml_compute_forward_view(params, tensor);
  12689. } break;
  12690. case GGML_OP_PERMUTE:
  12691. {
  12692. ggml_compute_forward_permute(params, tensor);
  12693. } break;
  12694. case GGML_OP_TRANSPOSE:
  12695. {
  12696. ggml_compute_forward_transpose(params, tensor);
  12697. } break;
  12698. case GGML_OP_GET_ROWS:
  12699. {
  12700. ggml_compute_forward_get_rows(params, tensor);
  12701. } break;
  12702. case GGML_OP_GET_ROWS_BACK:
  12703. {
  12704. ggml_compute_forward_get_rows_back(params, tensor);
  12705. } break;
  12706. case GGML_OP_DIAG:
  12707. {
  12708. ggml_compute_forward_diag(params, tensor);
  12709. } break;
  12710. case GGML_OP_DIAG_MASK_INF:
  12711. {
  12712. ggml_compute_forward_diag_mask_inf(params, tensor);
  12713. } break;
  12714. case GGML_OP_DIAG_MASK_ZERO:
  12715. {
  12716. ggml_compute_forward_diag_mask_zero(params, tensor);
  12717. } break;
  12718. case GGML_OP_SOFT_MAX:
  12719. {
  12720. ggml_compute_forward_soft_max(params, tensor);
  12721. } break;
  12722. case GGML_OP_SOFT_MAX_BACK:
  12723. {
  12724. ggml_compute_forward_soft_max_back(params, tensor);
  12725. } break;
  12726. case GGML_OP_ROPE:
  12727. {
  12728. ggml_compute_forward_rope(params, tensor);
  12729. } break;
  12730. case GGML_OP_ROPE_BACK:
  12731. {
  12732. ggml_compute_forward_rope_back(params, tensor);
  12733. } break;
  12734. case GGML_OP_ALIBI:
  12735. {
  12736. ggml_compute_forward_alibi(params, tensor);
  12737. } break;
  12738. case GGML_OP_CLAMP:
  12739. {
  12740. ggml_compute_forward_clamp(params, tensor);
  12741. } break;
  12742. case GGML_OP_CONV_TRANSPOSE_1D:
  12743. {
  12744. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12745. } break;
  12746. case GGML_OP_IM2COL:
  12747. {
  12748. ggml_compute_forward_im2col(params, tensor);
  12749. } break;
  12750. case GGML_OP_CONV_TRANSPOSE_2D:
  12751. {
  12752. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12753. } break;
  12754. case GGML_OP_POOL_1D:
  12755. {
  12756. ggml_compute_forward_pool_1d(params, tensor);
  12757. } break;
  12758. case GGML_OP_POOL_2D:
  12759. {
  12760. ggml_compute_forward_pool_2d(params, tensor);
  12761. } break;
  12762. case GGML_OP_UPSCALE:
  12763. {
  12764. ggml_compute_forward_upscale(params, tensor);
  12765. } break;
  12766. case GGML_OP_PAD:
  12767. {
  12768. ggml_compute_forward_pad(params, tensor);
  12769. } break;
  12770. case GGML_OP_ARANGE:
  12771. {
  12772. ggml_compute_forward_arange(params, tensor);
  12773. } break;
  12774. case GGML_OP_TIMESTEP_EMBEDDING:
  12775. {
  12776. ggml_compute_forward_timestep_embedding(params, tensor);
  12777. } break;
  12778. case GGML_OP_ARGSORT:
  12779. {
  12780. ggml_compute_forward_argsort(params, tensor);
  12781. } break;
  12782. case GGML_OP_LEAKY_RELU:
  12783. {
  12784. ggml_compute_forward_leaky_relu(params, tensor);
  12785. } break;
  12786. case GGML_OP_FLASH_ATTN:
  12787. {
  12788. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12789. GGML_ASSERT(t == 0 || t == 1);
  12790. const bool masked = t != 0;
  12791. ggml_compute_forward_flash_attn(params, masked, tensor);
  12792. } break;
  12793. case GGML_OP_FLASH_FF:
  12794. {
  12795. ggml_compute_forward_flash_ff(params, tensor);
  12796. } break;
  12797. case GGML_OP_FLASH_ATTN_BACK:
  12798. {
  12799. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12800. GGML_ASSERT(t == 0 || t == 1);
  12801. bool masked = t != 0;
  12802. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12803. } break;
  12804. case GGML_OP_WIN_PART:
  12805. {
  12806. ggml_compute_forward_win_part(params, tensor);
  12807. } break;
  12808. case GGML_OP_WIN_UNPART:
  12809. {
  12810. ggml_compute_forward_win_unpart(params, tensor);
  12811. } break;
  12812. case GGML_OP_UNARY:
  12813. {
  12814. ggml_compute_forward_unary(params, tensor);
  12815. } break;
  12816. case GGML_OP_GET_REL_POS:
  12817. {
  12818. ggml_compute_forward_get_rel_pos(params, tensor);
  12819. } break;
  12820. case GGML_OP_ADD_REL_POS:
  12821. {
  12822. ggml_compute_forward_add_rel_pos(params, tensor);
  12823. } break;
  12824. case GGML_OP_MAP_UNARY:
  12825. {
  12826. ggml_unary_op_f32_t fun;
  12827. memcpy(&fun, tensor->op_params, sizeof(fun));
  12828. ggml_compute_forward_map_unary(params, tensor, fun);
  12829. }
  12830. break;
  12831. case GGML_OP_MAP_BINARY:
  12832. {
  12833. ggml_binary_op_f32_t fun;
  12834. memcpy(&fun, tensor->op_params, sizeof(fun));
  12835. ggml_compute_forward_map_binary(params, tensor, fun);
  12836. }
  12837. break;
  12838. case GGML_OP_MAP_CUSTOM1_F32:
  12839. {
  12840. ggml_custom1_op_f32_t fun;
  12841. memcpy(&fun, tensor->op_params, sizeof(fun));
  12842. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12843. }
  12844. break;
  12845. case GGML_OP_MAP_CUSTOM2_F32:
  12846. {
  12847. ggml_custom2_op_f32_t fun;
  12848. memcpy(&fun, tensor->op_params, sizeof(fun));
  12849. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12850. }
  12851. break;
  12852. case GGML_OP_MAP_CUSTOM3_F32:
  12853. {
  12854. ggml_custom3_op_f32_t fun;
  12855. memcpy(&fun, tensor->op_params, sizeof(fun));
  12856. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12857. }
  12858. break;
  12859. case GGML_OP_MAP_CUSTOM1:
  12860. {
  12861. ggml_compute_forward_map_custom1(params, tensor);
  12862. }
  12863. break;
  12864. case GGML_OP_MAP_CUSTOM2:
  12865. {
  12866. ggml_compute_forward_map_custom2(params, tensor);
  12867. }
  12868. break;
  12869. case GGML_OP_MAP_CUSTOM3:
  12870. {
  12871. ggml_compute_forward_map_custom3(params, tensor);
  12872. }
  12873. break;
  12874. case GGML_OP_CROSS_ENTROPY_LOSS:
  12875. {
  12876. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12877. }
  12878. break;
  12879. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12880. {
  12881. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12882. }
  12883. break;
  12884. case GGML_OP_NONE:
  12885. {
  12886. // nop
  12887. } break;
  12888. case GGML_OP_COUNT:
  12889. {
  12890. GGML_ASSERT(false);
  12891. } break;
  12892. }
  12893. }
  12894. ////////////////////////////////////////////////////////////////////////////////
  12895. static size_t ggml_hash_size(size_t min_sz) {
  12896. // next primes after powers of two
  12897. static const size_t primes[] = {
  12898. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12899. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12900. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12901. 16777259, 33554467, 67108879, 134217757, 268435459,
  12902. 536870923, 1073741827, 2147483659
  12903. };
  12904. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12905. // find the smallest prime that is larger or equal to min_sz
  12906. size_t l = 0;
  12907. size_t r = n_primes;
  12908. while (l < r) {
  12909. size_t m = (l + r)/2;
  12910. if (primes[m] < min_sz) {
  12911. l = m + 1;
  12912. } else {
  12913. r = m;
  12914. }
  12915. }
  12916. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12917. return sz;
  12918. }
  12919. static size_t ggml_hash(const void * p) {
  12920. return (size_t)p;
  12921. }
  12922. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12923. size_t h = ggml_hash(key) % hash_set.size;
  12924. // linear probing
  12925. size_t i = h;
  12926. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12927. i = (i + 1) % hash_set.size;
  12928. if (i == h) {
  12929. // visited all hash table entries -> not found
  12930. return GGML_HASHTABLE_FULL;
  12931. }
  12932. }
  12933. return i;
  12934. }
  12935. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12936. size_t i = ggml_hash_find(hash_set, key);
  12937. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12938. }
  12939. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12940. size_t i = ggml_hash_find(hash_set, key);
  12941. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12942. if (hash_set.keys[i] == key) {
  12943. return GGML_HASHTABLE_ALREADY_EXISTS;
  12944. }
  12945. // insert
  12946. GGML_ASSERT(hash_set.keys[i] == NULL);
  12947. hash_set.keys[i] = key;
  12948. return i;
  12949. }
  12950. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12951. size_t i = ggml_hash_find(hash_set, key);
  12952. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12953. hash_set.keys[i] = key;
  12954. return i;
  12955. }
  12956. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12957. size = ggml_hash_size(size);
  12958. struct ggml_hash_set result;
  12959. result.size = size;
  12960. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12961. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12962. return result;
  12963. }
  12964. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12965. GGML_FREE(hash_set.keys);
  12966. }
  12967. struct hash_map {
  12968. struct ggml_hash_set set;
  12969. struct ggml_tensor ** vals;
  12970. };
  12971. static struct hash_map * ggml_new_hash_map(size_t size) {
  12972. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12973. result->set = ggml_hash_set_new(size);
  12974. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12975. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12976. return result;
  12977. }
  12978. static void ggml_hash_map_free(struct hash_map * map) {
  12979. ggml_hash_set_free(map->set);
  12980. GGML_FREE(map->vals);
  12981. GGML_FREE(map);
  12982. }
  12983. // gradient checkpointing
  12984. static struct ggml_tensor * ggml_recompute_graph_node(
  12985. struct ggml_context * ctx,
  12986. struct ggml_cgraph * graph,
  12987. struct hash_map * replacements,
  12988. struct ggml_tensor * node) {
  12989. if (node == NULL) {
  12990. return NULL;
  12991. }
  12992. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12993. return node;
  12994. }
  12995. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12996. return node;
  12997. }
  12998. int count_children = 0;
  12999. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13000. if (node->src[k]) {
  13001. ++count_children;
  13002. }
  13003. }
  13004. if (count_children == 0) {
  13005. return node;
  13006. }
  13007. size_t i = ggml_hash_find(replacements->set, node);
  13008. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13009. if (replacements->set.keys[i] == node) {
  13010. return replacements->vals[i];
  13011. }
  13012. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13013. // insert clone into replacements
  13014. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13015. replacements->set.keys[i] = node;
  13016. replacements->vals[i] = clone;
  13017. clone->op = node->op;
  13018. clone->grad = node->grad;
  13019. clone->flags = node->flags;
  13020. clone->extra = node->extra;
  13021. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13022. clone->nb[k] = node->nb[k];
  13023. }
  13024. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13025. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13026. }
  13027. if (node->view_src != NULL) {
  13028. clone->data = (node->view_src->data == NULL)
  13029. ? NULL // view_src not yet allocated
  13030. : (char *) node->view_src->data // view_src already allocated
  13031. + node->view_offs;
  13032. clone->view_src = node->view_src;
  13033. clone->view_offs = node->view_offs;
  13034. }
  13035. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13036. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13037. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13038. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13039. return clone;
  13040. }
  13041. void ggml_build_backward_gradient_checkpointing(
  13042. struct ggml_context * ctx,
  13043. struct ggml_cgraph * gf,
  13044. struct ggml_cgraph * gb,
  13045. struct ggml_cgraph * gb_tmp,
  13046. struct ggml_tensor * * checkpoints,
  13047. int n_checkpoints) {
  13048. ggml_graph_cpy(gf, gb_tmp);
  13049. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13050. if (n_checkpoints <= 0) {
  13051. ggml_graph_cpy(gb_tmp, gb);
  13052. return;
  13053. }
  13054. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13055. // insert checkpoints in replacements
  13056. for (int i = 0; i < n_checkpoints; ++i) {
  13057. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13058. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13059. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13060. replacements->set.keys[k] = checkpoints[i];
  13061. replacements->vals[k] = checkpoints[i];
  13062. }
  13063. ggml_graph_cpy(gf, gb);
  13064. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13065. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13066. // by recomputing them from checkpoints
  13067. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13068. struct ggml_tensor * node = gb_tmp->nodes[i];
  13069. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13070. // insert new tensors recomputing src, reusing already made replacements,
  13071. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13072. // recurse for input tensors,
  13073. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13074. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13075. }
  13076. // insert rewritten backward node with replacements made into resulting backward graph gb
  13077. ggml_build_forward_expand(gb, node);
  13078. }
  13079. ggml_hash_map_free(replacements);
  13080. }
  13081. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13082. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13083. if (ggml_hash_contains(zero_table, a)) {
  13084. return b;
  13085. } else {
  13086. return ggml_add_impl(ctx, a, b, false);
  13087. }
  13088. }
  13089. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13090. if (ggml_hash_contains(zero_table, a)) {
  13091. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13092. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13093. } else {
  13094. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13095. }
  13096. }
  13097. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13098. if (ggml_hash_contains(zero_table, a)) {
  13099. return ggml_repeat(ctx, b, a);
  13100. } else {
  13101. return ggml_add1_impl(ctx, a, b, false);
  13102. }
  13103. }
  13104. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13105. if (ggml_hash_contains(zero_table, a)) {
  13106. return ggml_neg(ctx, b);
  13107. } else {
  13108. return ggml_sub_impl(ctx, a, b, false);
  13109. }
  13110. }
  13111. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13112. struct ggml_tensor * src0 = tensor->src[0];
  13113. struct ggml_tensor * src1 = tensor->src[1];
  13114. switch (tensor->op) {
  13115. case GGML_OP_DUP:
  13116. {
  13117. if (src0->grad) {
  13118. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13119. }
  13120. } break;
  13121. case GGML_OP_ADD:
  13122. {
  13123. if (src0->grad) {
  13124. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13125. }
  13126. if (src1->grad) {
  13127. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13128. }
  13129. } break;
  13130. case GGML_OP_ADD1:
  13131. {
  13132. if (src0->grad) {
  13133. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13134. }
  13135. if (src1->grad) {
  13136. src1->grad = ggml_add_or_set(ctx,
  13137. src1->grad,
  13138. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13139. zero_table);
  13140. }
  13141. } break;
  13142. case GGML_OP_ACC:
  13143. {
  13144. if (src0->grad) {
  13145. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13146. }
  13147. if (src1->grad) {
  13148. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13149. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13150. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13151. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13152. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13153. tensor->grad,
  13154. src1->grad->ne[0],
  13155. src1->grad->ne[1],
  13156. src1->grad->ne[2],
  13157. src1->grad->ne[3],
  13158. nb1, nb2, nb3, offset);
  13159. src1->grad =
  13160. ggml_add_or_set(ctx,
  13161. src1->grad,
  13162. ggml_reshape(ctx,
  13163. ggml_cont(ctx, tensor_grad_view),
  13164. src1->grad),
  13165. zero_table);
  13166. }
  13167. } break;
  13168. case GGML_OP_SUB:
  13169. {
  13170. if (src0->grad) {
  13171. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13172. }
  13173. if (src1->grad) {
  13174. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13175. }
  13176. } break;
  13177. case GGML_OP_MUL:
  13178. {
  13179. if (src0->grad) {
  13180. src0->grad =
  13181. ggml_add_or_set(ctx,
  13182. src0->grad,
  13183. ggml_mul(ctx, src1, tensor->grad),
  13184. zero_table);
  13185. }
  13186. if (src1->grad) {
  13187. src1->grad =
  13188. ggml_add_or_set(ctx,
  13189. src1->grad,
  13190. ggml_mul(ctx, src0, tensor->grad),
  13191. zero_table);
  13192. }
  13193. } break;
  13194. case GGML_OP_DIV:
  13195. {
  13196. if (src0->grad) {
  13197. src0->grad =
  13198. ggml_add_or_set(ctx,
  13199. src0->grad,
  13200. ggml_div(ctx, tensor->grad, src1),
  13201. zero_table);
  13202. }
  13203. if (src1->grad) {
  13204. src1->grad =
  13205. ggml_sub_or_set(ctx,
  13206. src1->grad,
  13207. ggml_mul(ctx,
  13208. tensor->grad,
  13209. ggml_div(ctx, tensor, src1)),
  13210. zero_table);
  13211. }
  13212. } break;
  13213. case GGML_OP_SQR:
  13214. {
  13215. if (src0->grad) {
  13216. src0->grad =
  13217. ggml_add_or_set(ctx,
  13218. src0->grad,
  13219. ggml_scale(ctx,
  13220. ggml_mul(ctx, src0, tensor->grad),
  13221. 2.0f),
  13222. zero_table);
  13223. }
  13224. } break;
  13225. case GGML_OP_SQRT:
  13226. {
  13227. if (src0->grad) {
  13228. src0->grad =
  13229. ggml_add_or_set(ctx,
  13230. src0->grad,
  13231. ggml_scale(ctx,
  13232. ggml_div(ctx,
  13233. tensor->grad,
  13234. tensor),
  13235. 0.5f),
  13236. zero_table);
  13237. }
  13238. } break;
  13239. case GGML_OP_LOG:
  13240. {
  13241. if (src0->grad) {
  13242. src0->grad =
  13243. ggml_add_or_set(ctx,
  13244. src0->grad,
  13245. ggml_div(ctx,
  13246. tensor->grad,
  13247. src0),
  13248. zero_table);
  13249. }
  13250. } break;
  13251. case GGML_OP_SUM:
  13252. {
  13253. if (src0->grad) {
  13254. src0->grad =
  13255. ggml_add1_or_set(ctx,
  13256. src0->grad,
  13257. tensor->grad,
  13258. zero_table);
  13259. }
  13260. } break;
  13261. case GGML_OP_SUM_ROWS:
  13262. {
  13263. if (src0->grad) {
  13264. src0->grad =
  13265. ggml_add_or_set(ctx,
  13266. src0->grad,
  13267. ggml_repeat(ctx,
  13268. tensor->grad,
  13269. src0->grad),
  13270. zero_table);
  13271. }
  13272. } break;
  13273. case GGML_OP_MEAN:
  13274. case GGML_OP_ARGMAX:
  13275. {
  13276. GGML_ASSERT(false); // TODO: implement
  13277. } break;
  13278. case GGML_OP_REPEAT:
  13279. {
  13280. // necessary for llama
  13281. if (src0->grad) {
  13282. src0->grad = ggml_add_or_set(ctx,
  13283. src0->grad,
  13284. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13285. zero_table);
  13286. }
  13287. } break;
  13288. case GGML_OP_REPEAT_BACK:
  13289. {
  13290. if (src0->grad) {
  13291. // TODO: test this
  13292. src0->grad = ggml_add_or_set(ctx,
  13293. src0->grad,
  13294. ggml_repeat(ctx, tensor->grad, src0->grad),
  13295. zero_table);
  13296. }
  13297. } break;
  13298. case GGML_OP_CONCAT:
  13299. {
  13300. GGML_ASSERT(false); // TODO: implement
  13301. } break;
  13302. case GGML_OP_SILU_BACK:
  13303. {
  13304. GGML_ASSERT(false); // TODO: not implemented
  13305. } break;
  13306. case GGML_OP_NORM:
  13307. {
  13308. GGML_ASSERT(false); // TODO: not implemented
  13309. } break;
  13310. case GGML_OP_RMS_NORM:
  13311. {
  13312. // necessary for llama
  13313. if (src0->grad) {
  13314. float eps;
  13315. memcpy(&eps, tensor->op_params, sizeof(float));
  13316. src0->grad = ggml_add_or_set(ctx,
  13317. src0->grad,
  13318. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13319. zero_table);
  13320. }
  13321. } break;
  13322. case GGML_OP_RMS_NORM_BACK:
  13323. {
  13324. GGML_ASSERT(false); // TODO: not implemented
  13325. } break;
  13326. case GGML_OP_GROUP_NORM:
  13327. {
  13328. GGML_ASSERT(false); // TODO: not implemented
  13329. } break;
  13330. case GGML_OP_MUL_MAT:
  13331. {
  13332. // https://cs231n.github.io/optimization-2/#staged
  13333. // # forward pass
  13334. // s0 = np.random.randn(5, 10)
  13335. // s1 = np.random.randn(10, 3)
  13336. // t = s0.dot(s1)
  13337. // # now suppose we had the gradient on t from above in the circuit
  13338. // dt = np.random.randn(*t.shape) # same shape as t
  13339. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13340. // ds1 = t.T.dot(dt)
  13341. // tensor.shape [m,p,qq,rr]
  13342. // src0.shape [n,m,q1,r1]
  13343. // src1.shape [n,p,qq,rr]
  13344. // necessary for llama
  13345. if (src0->grad) {
  13346. struct ggml_tensor * s1_tg =
  13347. ggml_out_prod(ctx, // [n,m,qq,rr]
  13348. src1, // [n,p,qq,rr]
  13349. tensor->grad); // [m,p,qq,rr]
  13350. const int64_t qq = s1_tg->ne[2];
  13351. const int64_t rr = s1_tg->ne[3];
  13352. const int64_t q1 = src0->ne[2];
  13353. const int64_t r1 = src0->ne[3];
  13354. const bool ne2_broadcasted = qq > q1;
  13355. const bool ne3_broadcasted = rr > r1;
  13356. if (ne2_broadcasted || ne3_broadcasted) {
  13357. // sum broadcast repetitions of s1_tg into shape of src0
  13358. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13359. }
  13360. src0->grad =
  13361. ggml_add_or_set(ctx,
  13362. src0->grad, // [n,m,q1,r1]
  13363. s1_tg, // [n,m,q1,r1]
  13364. zero_table);
  13365. }
  13366. if (src1->grad) {
  13367. src1->grad =
  13368. ggml_add_or_set(ctx,
  13369. src1->grad, // [n,p,qq,rr]
  13370. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13371. // ggml_cont(ctx, // [m,n,q1,r1]
  13372. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13373. // tensor->grad), // [m,p,qq,rr]
  13374. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13375. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13376. // // and then use ggml_out_prod
  13377. ggml_out_prod(ctx, // [n,p,qq,rr]
  13378. src0, // [n,m,q1,r1]
  13379. ggml_transpose(ctx, // [p,m,qq,rr]
  13380. tensor->grad)), // [m,p,qq,rr]
  13381. zero_table);
  13382. }
  13383. } break;
  13384. case GGML_OP_MUL_MAT_ID:
  13385. {
  13386. GGML_ASSERT(false); // TODO: not implemented
  13387. } break;
  13388. case GGML_OP_OUT_PROD:
  13389. {
  13390. GGML_ASSERT(false); // TODO: not implemented
  13391. } break;
  13392. case GGML_OP_SCALE:
  13393. {
  13394. // necessary for llama
  13395. if (src0->grad) {
  13396. float s;
  13397. memcpy(&s, tensor->op_params, sizeof(float));
  13398. src0->grad =
  13399. ggml_add_or_set(ctx,
  13400. src0->grad,
  13401. ggml_scale_impl(ctx, tensor->grad, s, false),
  13402. zero_table);
  13403. }
  13404. } break;
  13405. case GGML_OP_SET:
  13406. {
  13407. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13408. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13409. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13410. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13411. struct ggml_tensor * tensor_grad_view = NULL;
  13412. if (src0->grad || src1->grad) {
  13413. GGML_ASSERT(src0->type == tensor->type);
  13414. GGML_ASSERT(tensor->grad->type == tensor->type);
  13415. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13416. tensor_grad_view = ggml_view_4d(ctx,
  13417. tensor->grad,
  13418. src1->grad->ne[0],
  13419. src1->grad->ne[1],
  13420. src1->grad->ne[2],
  13421. src1->grad->ne[3],
  13422. nb1, nb2, nb3, offset);
  13423. }
  13424. if (src0->grad) {
  13425. src0->grad = ggml_add_or_set(ctx,
  13426. src0->grad,
  13427. ggml_acc_impl(ctx,
  13428. tensor->grad,
  13429. ggml_neg(ctx, tensor_grad_view),
  13430. nb1, nb2, nb3, offset, false),
  13431. zero_table);
  13432. }
  13433. if (src1->grad) {
  13434. src1->grad =
  13435. ggml_add_or_set(ctx,
  13436. src1->grad,
  13437. ggml_reshape(ctx,
  13438. ggml_cont(ctx, tensor_grad_view),
  13439. src1->grad),
  13440. zero_table);
  13441. }
  13442. } break;
  13443. case GGML_OP_CPY:
  13444. {
  13445. // necessary for llama
  13446. // cpy overwrites value of src1 by src0 and returns view(src1)
  13447. // the overwriting is mathematically equivalent to:
  13448. // tensor = src0 * 1 + src1 * 0
  13449. if (src0->grad) {
  13450. // dsrc0 = dtensor * 1
  13451. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13452. }
  13453. if (src1->grad) {
  13454. // dsrc1 = dtensor * 0 -> noop
  13455. }
  13456. } break;
  13457. case GGML_OP_CONT:
  13458. {
  13459. // same as cpy
  13460. if (src0->grad) {
  13461. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13462. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13463. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13464. }
  13465. } break;
  13466. case GGML_OP_RESHAPE:
  13467. {
  13468. // necessary for llama
  13469. if (src0->grad) {
  13470. src0->grad =
  13471. ggml_add_or_set(ctx, src0->grad,
  13472. ggml_reshape(ctx,
  13473. ggml_is_contiguous(tensor->grad)
  13474. ? tensor->grad
  13475. : ggml_cont(ctx, tensor->grad),
  13476. src0->grad),
  13477. zero_table);
  13478. }
  13479. } break;
  13480. case GGML_OP_VIEW:
  13481. {
  13482. // necessary for llama
  13483. if (src0->grad) {
  13484. size_t offset;
  13485. memcpy(&offset, tensor->op_params, sizeof(offset));
  13486. size_t nb1 = tensor->nb[1];
  13487. size_t nb2 = tensor->nb[2];
  13488. size_t nb3 = tensor->nb[3];
  13489. if (src0->type != src0->grad->type) {
  13490. // gradient is typically F32, but src0 could be other type
  13491. size_t ng = ggml_element_size(src0->grad);
  13492. size_t n0 = ggml_element_size(src0);
  13493. GGML_ASSERT(offset % n0 == 0);
  13494. GGML_ASSERT(nb1 % n0 == 0);
  13495. GGML_ASSERT(nb2 % n0 == 0);
  13496. GGML_ASSERT(nb3 % n0 == 0);
  13497. offset = (offset / n0) * ng;
  13498. nb1 = (nb1 / n0) * ng;
  13499. nb2 = (nb2 / n0) * ng;
  13500. nb3 = (nb3 / n0) * ng;
  13501. }
  13502. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13503. }
  13504. } break;
  13505. case GGML_OP_PERMUTE:
  13506. {
  13507. // necessary for llama
  13508. if (src0->grad) {
  13509. int32_t * axes = (int32_t *) tensor->op_params;
  13510. int axis0 = axes[0] & 0x3;
  13511. int axis1 = axes[1] & 0x3;
  13512. int axis2 = axes[2] & 0x3;
  13513. int axis3 = axes[3] & 0x3;
  13514. int axes_backward[4] = {0,0,0,0};
  13515. axes_backward[axis0] = 0;
  13516. axes_backward[axis1] = 1;
  13517. axes_backward[axis2] = 2;
  13518. axes_backward[axis3] = 3;
  13519. src0->grad =
  13520. ggml_add_or_set(ctx, src0->grad,
  13521. ggml_permute(ctx,
  13522. tensor->grad,
  13523. axes_backward[0],
  13524. axes_backward[1],
  13525. axes_backward[2],
  13526. axes_backward[3]),
  13527. zero_table);
  13528. }
  13529. } break;
  13530. case GGML_OP_TRANSPOSE:
  13531. {
  13532. // necessary for llama
  13533. if (src0->grad) {
  13534. src0->grad =
  13535. ggml_add_or_set(ctx, src0->grad,
  13536. ggml_transpose(ctx, tensor->grad),
  13537. zero_table);
  13538. }
  13539. } break;
  13540. case GGML_OP_GET_ROWS:
  13541. {
  13542. // necessary for llama (only for tokenizer)
  13543. if (src0->grad) {
  13544. src0->grad =
  13545. ggml_add_or_set(ctx, src0->grad,
  13546. // last ggml_get_rows_back argument src0->grad is only
  13547. // necessary to setup correct output shape
  13548. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13549. zero_table);
  13550. }
  13551. if (src1->grad) {
  13552. // noop
  13553. }
  13554. } break;
  13555. case GGML_OP_GET_ROWS_BACK:
  13556. {
  13557. GGML_ASSERT(false); // TODO: not implemented
  13558. } break;
  13559. case GGML_OP_DIAG:
  13560. {
  13561. GGML_ASSERT(false); // TODO: not implemented
  13562. } break;
  13563. case GGML_OP_DIAG_MASK_INF:
  13564. {
  13565. // necessary for llama
  13566. if (src0->grad) {
  13567. const int n_past = ((int32_t *) tensor->op_params)[0];
  13568. src0->grad =
  13569. ggml_add_or_set(ctx, src0->grad,
  13570. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13571. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13572. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13573. zero_table);
  13574. }
  13575. } break;
  13576. case GGML_OP_DIAG_MASK_ZERO:
  13577. {
  13578. // necessary for llama
  13579. if (src0->grad) {
  13580. const int n_past = ((int32_t *) tensor->op_params)[0];
  13581. src0->grad =
  13582. ggml_add_or_set(ctx, src0->grad,
  13583. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13584. zero_table);
  13585. }
  13586. } break;
  13587. case GGML_OP_SOFT_MAX:
  13588. {
  13589. // necessary for llama
  13590. if (src0->grad) {
  13591. src0->grad =
  13592. ggml_add_or_set(ctx, src0->grad,
  13593. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13594. zero_table);
  13595. }
  13596. } break;
  13597. case GGML_OP_SOFT_MAX_BACK:
  13598. {
  13599. GGML_ASSERT(false); // TODO: not implemented
  13600. } break;
  13601. case GGML_OP_ROPE:
  13602. {
  13603. // necessary for llama
  13604. if (src0->grad) {
  13605. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13606. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13607. const int mode = ((int32_t *) tensor->op_params)[2];
  13608. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13609. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13610. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13611. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13612. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13613. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13614. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13615. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13616. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13617. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13618. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13619. src0->grad = ggml_add_or_set(ctx,
  13620. src0->grad,
  13621. ggml_rope_back(ctx,
  13622. tensor->grad,
  13623. src1,
  13624. n_dims,
  13625. mode,
  13626. n_ctx,
  13627. n_orig_ctx,
  13628. freq_base,
  13629. freq_scale,
  13630. ext_factor,
  13631. attn_factor,
  13632. beta_fast,
  13633. beta_slow,
  13634. xpos_base,
  13635. xpos_down),
  13636. zero_table);
  13637. }
  13638. } break;
  13639. case GGML_OP_ROPE_BACK:
  13640. {
  13641. if (src0->grad) {
  13642. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13643. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13644. const int mode = ((int32_t *) tensor->op_params)[2];
  13645. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13646. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13647. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13648. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13649. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13650. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13651. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13652. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13653. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13654. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13655. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13656. src0->grad = ggml_add_or_set(ctx,
  13657. src0->grad,
  13658. ggml_rope_impl(ctx,
  13659. tensor->grad,
  13660. src1,
  13661. n_dims,
  13662. mode,
  13663. n_ctx,
  13664. n_orig_ctx,
  13665. freq_base,
  13666. freq_scale,
  13667. ext_factor,
  13668. attn_factor,
  13669. beta_fast,
  13670. beta_slow,
  13671. xpos_base,
  13672. xpos_down,
  13673. false),
  13674. zero_table);
  13675. }
  13676. } break;
  13677. case GGML_OP_ALIBI:
  13678. {
  13679. GGML_ASSERT(false); // TODO: not implemented
  13680. } break;
  13681. case GGML_OP_CLAMP:
  13682. {
  13683. GGML_ASSERT(false); // TODO: not implemented
  13684. } break;
  13685. case GGML_OP_CONV_TRANSPOSE_1D:
  13686. {
  13687. GGML_ASSERT(false); // TODO: not implemented
  13688. } break;
  13689. case GGML_OP_IM2COL:
  13690. {
  13691. GGML_ASSERT(false); // TODO: not implemented
  13692. } break;
  13693. case GGML_OP_CONV_TRANSPOSE_2D:
  13694. {
  13695. GGML_ASSERT(false); // TODO: not implemented
  13696. } break;
  13697. case GGML_OP_POOL_1D:
  13698. {
  13699. GGML_ASSERT(false); // TODO: not implemented
  13700. } break;
  13701. case GGML_OP_POOL_2D:
  13702. {
  13703. GGML_ASSERT(false); // TODO: not implemented
  13704. } break;
  13705. case GGML_OP_UPSCALE:
  13706. {
  13707. GGML_ASSERT(false); // TODO: not implemented
  13708. } break;
  13709. case GGML_OP_PAD:
  13710. {
  13711. GGML_ASSERT(false); // TODO: not implemented
  13712. } break;
  13713. case GGML_OP_ARANGE:
  13714. {
  13715. GGML_ASSERT(false); // TODO: not implemented
  13716. } break;
  13717. case GGML_OP_TIMESTEP_EMBEDDING:
  13718. {
  13719. GGML_ASSERT(false); // TODO: not implemented
  13720. } break;
  13721. case GGML_OP_ARGSORT:
  13722. {
  13723. GGML_ASSERT(false); // TODO: not implemented
  13724. } break;
  13725. case GGML_OP_LEAKY_RELU:
  13726. {
  13727. GGML_ASSERT(false); // TODO: not implemented
  13728. } break;
  13729. case GGML_OP_FLASH_ATTN:
  13730. {
  13731. struct ggml_tensor * flash_grad = NULL;
  13732. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13733. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13734. GGML_ASSERT(t == 0 || t == 1);
  13735. bool masked = t != 0;
  13736. flash_grad =
  13737. ggml_flash_attn_back(ctx,
  13738. src0,
  13739. src1,
  13740. tensor->src[2],
  13741. tensor->grad,
  13742. masked);
  13743. }
  13744. struct ggml_tensor * src2 = tensor->src[2];
  13745. const int64_t elem_q = ggml_nelements(src0);
  13746. const int64_t elem_k = ggml_nelements(src1);
  13747. const int64_t elem_v = ggml_nelements(src2);
  13748. enum ggml_type result_type = flash_grad->type;
  13749. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13750. const size_t tsize = ggml_type_size(result_type);
  13751. const size_t offs_q = 0;
  13752. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13753. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13754. if (src0->grad) {
  13755. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13756. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13757. src0->grad = ggml_add_or_set(ctx,
  13758. src0->grad,
  13759. grad_q,
  13760. zero_table);
  13761. }
  13762. if (src1->grad) {
  13763. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13764. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13765. src1->grad = ggml_add_or_set(ctx,
  13766. src1->grad,
  13767. grad_k,
  13768. zero_table);
  13769. }
  13770. if (src2->grad) {
  13771. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13772. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13773. src2->grad = ggml_add_or_set(ctx,
  13774. src2->grad,
  13775. grad_v,
  13776. zero_table);
  13777. }
  13778. } break;
  13779. case GGML_OP_FLASH_FF:
  13780. {
  13781. GGML_ASSERT(false); // not supported
  13782. } break;
  13783. case GGML_OP_FLASH_ATTN_BACK:
  13784. {
  13785. GGML_ASSERT(false); // not supported
  13786. } break;
  13787. case GGML_OP_WIN_PART:
  13788. case GGML_OP_WIN_UNPART:
  13789. case GGML_OP_UNARY:
  13790. {
  13791. switch (ggml_get_unary_op(tensor)) {
  13792. case GGML_UNARY_OP_ABS:
  13793. {
  13794. if (src0->grad) {
  13795. src0->grad =
  13796. ggml_add_or_set(ctx,
  13797. src0->grad,
  13798. ggml_mul(ctx,
  13799. ggml_sgn(ctx, src0),
  13800. tensor->grad),
  13801. zero_table);
  13802. }
  13803. } break;
  13804. case GGML_UNARY_OP_SGN:
  13805. {
  13806. if (src0->grad) {
  13807. // noop
  13808. }
  13809. } break;
  13810. case GGML_UNARY_OP_NEG:
  13811. {
  13812. if (src0->grad) {
  13813. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13814. }
  13815. } break;
  13816. case GGML_UNARY_OP_STEP:
  13817. {
  13818. if (src0->grad) {
  13819. // noop
  13820. }
  13821. } break;
  13822. case GGML_UNARY_OP_TANH:
  13823. {
  13824. GGML_ASSERT(false); // TODO: not implemented
  13825. } break;
  13826. case GGML_UNARY_OP_ELU:
  13827. {
  13828. GGML_ASSERT(false); // TODO: not implemented
  13829. } break;
  13830. case GGML_UNARY_OP_RELU:
  13831. {
  13832. if (src0->grad) {
  13833. src0->grad = ggml_add_or_set(ctx,
  13834. src0->grad,
  13835. ggml_mul(ctx,
  13836. ggml_step(ctx, src0),
  13837. tensor->grad),
  13838. zero_table);
  13839. }
  13840. } break;
  13841. case GGML_UNARY_OP_GELU:
  13842. {
  13843. GGML_ASSERT(false); // TODO: not implemented
  13844. } break;
  13845. case GGML_UNARY_OP_GELU_QUICK:
  13846. {
  13847. GGML_ASSERT(false); // TODO: not implemented
  13848. } break;
  13849. case GGML_UNARY_OP_SILU:
  13850. {
  13851. // necessary for llama
  13852. if (src0->grad) {
  13853. src0->grad = ggml_add_or_set(ctx,
  13854. src0->grad,
  13855. ggml_silu_back(ctx, src0, tensor->grad),
  13856. zero_table);
  13857. }
  13858. } break;
  13859. default:
  13860. GGML_ASSERT(false);
  13861. }
  13862. } break;
  13863. case GGML_OP_GET_REL_POS:
  13864. case GGML_OP_ADD_REL_POS:
  13865. case GGML_OP_MAP_UNARY:
  13866. case GGML_OP_MAP_BINARY:
  13867. case GGML_OP_MAP_CUSTOM1_F32:
  13868. case GGML_OP_MAP_CUSTOM2_F32:
  13869. case GGML_OP_MAP_CUSTOM3_F32:
  13870. case GGML_OP_MAP_CUSTOM1:
  13871. case GGML_OP_MAP_CUSTOM2:
  13872. case GGML_OP_MAP_CUSTOM3:
  13873. {
  13874. GGML_ASSERT(false); // not supported
  13875. } break;
  13876. case GGML_OP_CROSS_ENTROPY_LOSS:
  13877. {
  13878. if (src0->grad) {
  13879. src0->grad = ggml_add_or_set(ctx,
  13880. src0->grad,
  13881. ggml_cross_entropy_loss_back(ctx,
  13882. src0,
  13883. src1,
  13884. tensor->grad),
  13885. zero_table);
  13886. }
  13887. } break;
  13888. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13889. {
  13890. GGML_ASSERT(false); // not supported
  13891. } break;
  13892. case GGML_OP_NONE:
  13893. {
  13894. // nop
  13895. } break;
  13896. case GGML_OP_COUNT:
  13897. {
  13898. GGML_ASSERT(false);
  13899. } break;
  13900. }
  13901. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13902. if (tensor->src[i] && tensor->src[i]->grad) {
  13903. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13904. }
  13905. }
  13906. }
  13907. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13908. if (node->grad == NULL) {
  13909. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13910. // it can also happen during forward pass, if the user performs computations with constants
  13911. if (node->op != GGML_OP_NONE) {
  13912. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13913. }
  13914. }
  13915. // check if already visited
  13916. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13917. return;
  13918. }
  13919. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13920. const int k =
  13921. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13922. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13923. /* unknown order, just fall back to using i*/ i;
  13924. if (node->src[k]) {
  13925. ggml_visit_parents(cgraph, node->src[k]);
  13926. }
  13927. }
  13928. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13929. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13930. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13931. if (strlen(node->name) == 0) {
  13932. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13933. }
  13934. cgraph->leafs[cgraph->n_leafs] = node;
  13935. cgraph->n_leafs++;
  13936. } else {
  13937. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13938. if (strlen(node->name) == 0) {
  13939. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13940. }
  13941. cgraph->nodes[cgraph->n_nodes] = node;
  13942. if (cgraph->grads) {
  13943. cgraph->grads[cgraph->n_nodes] = node->grad;
  13944. }
  13945. cgraph->n_nodes++;
  13946. }
  13947. }
  13948. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13949. if (!expand) {
  13950. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13951. ggml_graph_clear(cgraph);
  13952. }
  13953. const int n0 = cgraph->n_nodes;
  13954. UNUSED(n0);
  13955. ggml_visit_parents(cgraph, tensor);
  13956. const int n_new = cgraph->n_nodes - n0;
  13957. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13958. if (n_new > 0) {
  13959. // the last added node should always be starting point
  13960. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13961. }
  13962. }
  13963. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13964. ggml_build_forward_impl(cgraph, tensor, true);
  13965. }
  13966. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13967. GGML_ASSERT(gf->n_nodes > 0);
  13968. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13969. if (keep) {
  13970. for (int i = 0; i < gf->n_nodes; i++) {
  13971. struct ggml_tensor * node = gf->nodes[i];
  13972. if (node->grad) {
  13973. node->grad = ggml_dup_tensor(ctx, node);
  13974. gf->grads[i] = node->grad;
  13975. }
  13976. }
  13977. }
  13978. // remember original gradients which start with zero values
  13979. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13980. for (int i = 0; i < gf->n_nodes; i++) {
  13981. if (gf->grads[i]) {
  13982. ggml_hash_insert(zero_table, gf->grads[i]);
  13983. }
  13984. }
  13985. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13986. struct ggml_tensor * node = gf->nodes[i];
  13987. // inplace operations to add gradients are not created by ggml_compute_backward
  13988. // use allocator to automatically make inplace operations
  13989. if (node->grad) {
  13990. ggml_compute_backward(ctx, node, zero_table);
  13991. }
  13992. }
  13993. for (int i = 0; i < gf->n_nodes; i++) {
  13994. struct ggml_tensor * node = gf->nodes[i];
  13995. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13996. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13997. ggml_build_forward_expand(gb, node->grad);
  13998. }
  13999. }
  14000. ggml_hash_set_free(zero_table);
  14001. }
  14002. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14003. size_t nbytes = sizeof(struct ggml_cgraph);
  14004. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14005. if (grads) {
  14006. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14007. }
  14008. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14009. return nbytes;
  14010. }
  14011. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14012. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14013. }
  14014. size_t ggml_graph_overhead(void) {
  14015. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14016. }
  14017. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14018. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14019. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14020. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14021. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14022. size_t hash_size = ggml_hash_size(size * 2);
  14023. struct ggml_tensor ** nodes_ptr = data_start;
  14024. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14025. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14026. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14027. // check that we allocated the correct amount of memory
  14028. assert(obj_size == (size_t) (
  14029. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14030. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14031. *cgraph = (struct ggml_cgraph) {
  14032. /*.size =*/ size,
  14033. /*.n_nodes =*/ 0,
  14034. /*.n_leafs =*/ 0,
  14035. /*.nodes =*/ nodes_ptr,
  14036. /*.grads =*/ grads_ptr,
  14037. /*.leafs =*/ leafs_ptr,
  14038. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14039. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14040. /*.perf_runs =*/ 0,
  14041. /*.perf_cycles =*/ 0,
  14042. /*.perf_time_us =*/ 0,
  14043. };
  14044. return cgraph;
  14045. }
  14046. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14047. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14048. }
  14049. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14050. struct ggml_cgraph cgraph = {
  14051. /*.size =*/ 0,
  14052. /*.n_nodes =*/ i1 - i0,
  14053. /*.n_leafs =*/ 0,
  14054. /*.nodes =*/ cgraph0->nodes + i0,
  14055. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14056. /*.leafs =*/ NULL,
  14057. /*.hash_table =*/ { 0, NULL },
  14058. /*.order =*/ cgraph0->order,
  14059. /*.perf_runs =*/ 0,
  14060. /*.perf_cycles =*/ 0,
  14061. /*.perf_time_us =*/ 0,
  14062. };
  14063. return cgraph;
  14064. }
  14065. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14066. GGML_ASSERT(dst->size >= src->n_leafs);
  14067. GGML_ASSERT(dst->size >= src->n_nodes);
  14068. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14069. dst->n_leafs = src->n_leafs;
  14070. dst->n_nodes = src->n_nodes;
  14071. dst->order = src->order;
  14072. for (int i = 0; i < src->n_leafs; ++i) {
  14073. dst->leafs[i] = src->leafs[i];
  14074. }
  14075. for (int i = 0; i < src->n_nodes; ++i) {
  14076. dst->nodes[i] = src->nodes[i];
  14077. }
  14078. if (src->grads) {
  14079. GGML_ASSERT(dst->grads != NULL);
  14080. for (int i = 0; i < src->n_nodes; ++i) {
  14081. dst->grads[i] = src->grads[i];
  14082. }
  14083. }
  14084. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14085. if (src->visited_hash_table.keys[i]) {
  14086. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14087. }
  14088. }
  14089. }
  14090. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14091. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14092. ggml_graph_cpy(cgraph, result);
  14093. return result;
  14094. }
  14095. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14096. GGML_ASSERT(cgraph->grads != NULL);
  14097. for (int i = 0; i < cgraph->n_nodes; i++) {
  14098. struct ggml_tensor * grad = cgraph->grads[i];
  14099. if (grad) {
  14100. ggml_set_zero(grad);
  14101. }
  14102. }
  14103. }
  14104. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14105. cgraph->n_leafs = 0;
  14106. cgraph->n_nodes = 0;
  14107. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14108. }
  14109. //
  14110. // thread data
  14111. //
  14112. // synchronization is done via busy loops
  14113. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14114. //
  14115. #ifdef __APPLE__
  14116. //#include <os/lock.h>
  14117. //
  14118. //typedef os_unfair_lock ggml_lock_t;
  14119. //
  14120. //#define ggml_lock_init(x) UNUSED(x)
  14121. //#define ggml_lock_destroy(x) UNUSED(x)
  14122. //#define ggml_lock_lock os_unfair_lock_lock
  14123. //#define ggml_lock_unlock os_unfair_lock_unlock
  14124. //
  14125. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14126. typedef int ggml_lock_t;
  14127. #define ggml_lock_init(x) UNUSED(x)
  14128. #define ggml_lock_destroy(x) UNUSED(x)
  14129. #define ggml_lock_lock(x) UNUSED(x)
  14130. #define ggml_lock_unlock(x) UNUSED(x)
  14131. #define GGML_LOCK_INITIALIZER 0
  14132. typedef pthread_t ggml_thread_t;
  14133. #define ggml_thread_create pthread_create
  14134. #define ggml_thread_join pthread_join
  14135. #else
  14136. //typedef pthread_spinlock_t ggml_lock_t;
  14137. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14138. //#define ggml_lock_destroy pthread_spin_destroy
  14139. //#define ggml_lock_lock pthread_spin_lock
  14140. //#define ggml_lock_unlock pthread_spin_unlock
  14141. typedef int ggml_lock_t;
  14142. #define ggml_lock_init(x) UNUSED(x)
  14143. #define ggml_lock_destroy(x) UNUSED(x)
  14144. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14145. #define ggml_lock_lock(x) _mm_pause()
  14146. #else
  14147. #define ggml_lock_lock(x) UNUSED(x)
  14148. #endif
  14149. #define ggml_lock_unlock(x) UNUSED(x)
  14150. #define GGML_LOCK_INITIALIZER 0
  14151. typedef pthread_t ggml_thread_t;
  14152. #define ggml_thread_create pthread_create
  14153. #define ggml_thread_join pthread_join
  14154. #endif
  14155. // Android's libc implementation "bionic" does not support setting affinity
  14156. #if defined(__gnu_linux__)
  14157. static void set_numa_thread_affinity(int thread_n) {
  14158. if (!ggml_is_numa()) {
  14159. return;
  14160. }
  14161. int node_num;
  14162. int rv;
  14163. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14164. switch(g_state.numa.numa_strategy) {
  14165. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14166. // run thread on node_num thread_n / (threads per node)
  14167. node_num = thread_n % g_state.numa.n_nodes;
  14168. break;
  14169. case GGML_NUMA_STRATEGY_ISOLATE:
  14170. // run thread on current_node
  14171. node_num = g_state.numa.current_node;
  14172. break;
  14173. case GGML_NUMA_STRATEGY_NUMACTL:
  14174. // use the cpuset that numactl gave us
  14175. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14176. if (rv) {
  14177. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14178. }
  14179. return;
  14180. default:
  14181. return;
  14182. }
  14183. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14184. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14185. CPU_ZERO_S(setsize, cpus);
  14186. for (size_t i = 0; i < node->n_cpus; ++i) {
  14187. CPU_SET_S(node->cpus[i], setsize, cpus);
  14188. }
  14189. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14190. if (rv) {
  14191. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14192. }
  14193. CPU_FREE(cpus);
  14194. }
  14195. static void clear_numa_thread_affinity(void) {
  14196. if (!ggml_is_numa()) {
  14197. return;
  14198. }
  14199. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14200. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14201. CPU_ZERO_S(setsize, cpus);
  14202. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14203. CPU_SET_S(i, setsize, cpus);
  14204. }
  14205. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14206. if (rv) {
  14207. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14208. }
  14209. CPU_FREE(cpus);
  14210. }
  14211. #else
  14212. // TODO: Windows etc.
  14213. // (the linux implementation may also work on BSD, someone should test)
  14214. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14215. static void clear_numa_thread_affinity(void) {}
  14216. #endif
  14217. struct ggml_compute_state_shared {
  14218. const struct ggml_cgraph * cgraph;
  14219. const struct ggml_cplan * cplan;
  14220. int64_t perf_node_start_cycles;
  14221. int64_t perf_node_start_time_us;
  14222. const int n_threads;
  14223. // synchronization primitives
  14224. atomic_int n_active; // num active threads
  14225. atomic_int node_n; // active graph node
  14226. atomic_int node_task; // active graph node task phase
  14227. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14228. void * abort_callback_data;
  14229. };
  14230. struct ggml_compute_state {
  14231. ggml_thread_t thrd;
  14232. int ith;
  14233. struct ggml_compute_state_shared * shared;
  14234. };
  14235. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14236. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14237. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14238. node->perf_runs++;
  14239. node->perf_cycles += cycles_cur;
  14240. node->perf_time_us += time_us_cur;
  14241. }
  14242. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14243. int n_tasks = 0;
  14244. switch (node->op) {
  14245. case GGML_OP_CPY:
  14246. case GGML_OP_DUP:
  14247. case GGML_OP_ADD:
  14248. case GGML_OP_ADD1:
  14249. case GGML_OP_ACC:
  14250. {
  14251. n_tasks = n_threads;
  14252. } break;
  14253. case GGML_OP_SUB:
  14254. case GGML_OP_SQR:
  14255. case GGML_OP_SQRT:
  14256. case GGML_OP_LOG:
  14257. case GGML_OP_SUM:
  14258. case GGML_OP_SUM_ROWS:
  14259. case GGML_OP_MEAN:
  14260. case GGML_OP_ARGMAX:
  14261. case GGML_OP_REPEAT:
  14262. case GGML_OP_REPEAT_BACK:
  14263. case GGML_OP_LEAKY_RELU:
  14264. {
  14265. n_tasks = 1;
  14266. } break;
  14267. case GGML_OP_UNARY:
  14268. switch (ggml_get_unary_op(node)) {
  14269. case GGML_UNARY_OP_ABS:
  14270. case GGML_UNARY_OP_SGN:
  14271. case GGML_UNARY_OP_NEG:
  14272. case GGML_UNARY_OP_STEP:
  14273. case GGML_UNARY_OP_TANH:
  14274. case GGML_UNARY_OP_ELU:
  14275. case GGML_UNARY_OP_RELU:
  14276. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14277. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14278. {
  14279. n_tasks = 1;
  14280. } break;
  14281. case GGML_UNARY_OP_GELU:
  14282. case GGML_UNARY_OP_GELU_QUICK:
  14283. case GGML_UNARY_OP_SILU:
  14284. {
  14285. n_tasks = n_threads;
  14286. } break;
  14287. default:
  14288. GGML_ASSERT(false);
  14289. }
  14290. break;
  14291. case GGML_OP_SILU_BACK:
  14292. case GGML_OP_MUL:
  14293. case GGML_OP_DIV:
  14294. case GGML_OP_NORM:
  14295. case GGML_OP_RMS_NORM:
  14296. case GGML_OP_RMS_NORM_BACK:
  14297. case GGML_OP_GROUP_NORM:
  14298. case GGML_OP_CONCAT:
  14299. {
  14300. n_tasks = n_threads;
  14301. } break;
  14302. case GGML_OP_MUL_MAT:
  14303. {
  14304. n_tasks = n_threads;
  14305. // TODO: use different scheduling for different matrix sizes
  14306. //const int nr0 = ggml_nrows(node->src[0]);
  14307. //const int nr1 = ggml_nrows(node->src[1]);
  14308. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14309. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14310. } break;
  14311. case GGML_OP_MUL_MAT_ID:
  14312. {
  14313. n_tasks = n_threads;
  14314. } break;
  14315. case GGML_OP_OUT_PROD:
  14316. {
  14317. n_tasks = n_threads;
  14318. } break;
  14319. case GGML_OP_SCALE:
  14320. case GGML_OP_SET:
  14321. case GGML_OP_CONT:
  14322. case GGML_OP_RESHAPE:
  14323. case GGML_OP_VIEW:
  14324. case GGML_OP_PERMUTE:
  14325. case GGML_OP_TRANSPOSE:
  14326. case GGML_OP_GET_ROWS:
  14327. case GGML_OP_GET_ROWS_BACK:
  14328. case GGML_OP_DIAG:
  14329. {
  14330. n_tasks = 1;
  14331. } break;
  14332. case GGML_OP_DIAG_MASK_ZERO:
  14333. case GGML_OP_DIAG_MASK_INF:
  14334. case GGML_OP_SOFT_MAX_BACK:
  14335. case GGML_OP_ROPE:
  14336. case GGML_OP_ROPE_BACK:
  14337. case GGML_OP_ADD_REL_POS:
  14338. {
  14339. n_tasks = n_threads;
  14340. } break;
  14341. case GGML_OP_ALIBI:
  14342. {
  14343. n_tasks = 1; //TODO
  14344. } break;
  14345. case GGML_OP_CLAMP:
  14346. {
  14347. n_tasks = 1; //TODO
  14348. } break;
  14349. case GGML_OP_SOFT_MAX:
  14350. {
  14351. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14352. } break;
  14353. case GGML_OP_CONV_TRANSPOSE_1D:
  14354. {
  14355. n_tasks = n_threads;
  14356. } break;
  14357. case GGML_OP_IM2COL:
  14358. {
  14359. n_tasks = n_threads;
  14360. } break;
  14361. case GGML_OP_CONV_TRANSPOSE_2D:
  14362. {
  14363. n_tasks = n_threads;
  14364. } break;
  14365. case GGML_OP_POOL_1D:
  14366. case GGML_OP_POOL_2D:
  14367. {
  14368. n_tasks = 1;
  14369. } break;
  14370. case GGML_OP_UPSCALE:
  14371. {
  14372. n_tasks = n_threads;
  14373. } break;
  14374. case GGML_OP_PAD:
  14375. {
  14376. n_tasks = n_threads;
  14377. } break;
  14378. case GGML_OP_ARANGE:
  14379. {
  14380. n_tasks = n_threads;
  14381. } break;
  14382. case GGML_OP_TIMESTEP_EMBEDDING:
  14383. {
  14384. n_tasks = n_threads;
  14385. } break;
  14386. case GGML_OP_ARGSORT:
  14387. {
  14388. n_tasks = n_threads;
  14389. } break;
  14390. case GGML_OP_FLASH_ATTN:
  14391. {
  14392. n_tasks = n_threads;
  14393. } break;
  14394. case GGML_OP_FLASH_FF:
  14395. {
  14396. n_tasks = n_threads;
  14397. } break;
  14398. case GGML_OP_FLASH_ATTN_BACK:
  14399. {
  14400. n_tasks = n_threads;
  14401. } break;
  14402. case GGML_OP_WIN_PART:
  14403. case GGML_OP_WIN_UNPART:
  14404. case GGML_OP_GET_REL_POS:
  14405. case GGML_OP_MAP_UNARY:
  14406. case GGML_OP_MAP_BINARY:
  14407. case GGML_OP_MAP_CUSTOM1_F32:
  14408. case GGML_OP_MAP_CUSTOM2_F32:
  14409. case GGML_OP_MAP_CUSTOM3_F32:
  14410. {
  14411. n_tasks = 1;
  14412. } break;
  14413. case GGML_OP_MAP_CUSTOM1:
  14414. {
  14415. struct ggml_map_custom1_op_params p;
  14416. memcpy(&p, node->op_params, sizeof(p));
  14417. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14418. n_tasks = n_threads;
  14419. } else {
  14420. n_tasks = MIN(p.n_tasks, n_threads);
  14421. }
  14422. } break;
  14423. case GGML_OP_MAP_CUSTOM2:
  14424. {
  14425. struct ggml_map_custom2_op_params p;
  14426. memcpy(&p, node->op_params, sizeof(p));
  14427. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14428. n_tasks = n_threads;
  14429. } else {
  14430. n_tasks = MIN(p.n_tasks, n_threads);
  14431. }
  14432. } break;
  14433. case GGML_OP_MAP_CUSTOM3:
  14434. {
  14435. struct ggml_map_custom3_op_params p;
  14436. memcpy(&p, node->op_params, sizeof(p));
  14437. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14438. n_tasks = n_threads;
  14439. } else {
  14440. n_tasks = MIN(p.n_tasks, n_threads);
  14441. }
  14442. } break;
  14443. case GGML_OP_CROSS_ENTROPY_LOSS:
  14444. {
  14445. n_tasks = n_threads;
  14446. } break;
  14447. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14448. {
  14449. n_tasks = n_threads;
  14450. } break;
  14451. case GGML_OP_NONE:
  14452. {
  14453. n_tasks = 1;
  14454. } break;
  14455. case GGML_OP_COUNT:
  14456. {
  14457. GGML_ASSERT(false);
  14458. } break;
  14459. default:
  14460. {
  14461. fprintf(stderr, "%s: op not implemented: ", __func__);
  14462. if (node->op < GGML_OP_COUNT) {
  14463. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14464. } else {
  14465. fprintf(stderr, "%d\n", node->op);
  14466. }
  14467. GGML_ASSERT(false);
  14468. } break;
  14469. }
  14470. assert(n_tasks > 0);
  14471. return n_tasks;
  14472. }
  14473. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14474. // wait for other threads to finish
  14475. const int last_node_n = * node_n;
  14476. while (true) {
  14477. if (do_yield) {
  14478. sched_yield();
  14479. }
  14480. * node_n = atomic_load(&state->shared->node_n);
  14481. if (* node_n != last_node_n) break;
  14482. }
  14483. }
  14484. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14485. // wait for other threads to finish
  14486. const int last_task_phase = * task_phase;
  14487. while (true) {
  14488. if (do_yield) {
  14489. sched_yield();
  14490. }
  14491. * task_phase = atomic_load(&state->shared->node_task);
  14492. if (* task_phase != last_task_phase) break;
  14493. }
  14494. }
  14495. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14496. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14497. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14498. const struct ggml_cplan * cplan = state->shared->cplan;
  14499. const int n_threads = state->shared->n_threads;
  14500. set_numa_thread_affinity(state->ith);
  14501. int node_n = -1;
  14502. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14503. while (true) {
  14504. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14505. state->shared->node_n += 1;
  14506. return (thread_ret_t) GGML_EXIT_ABORTED;
  14507. }
  14508. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14509. // all other threads are finished and spinning
  14510. // do finalize and init here so we don't have synchronize again
  14511. struct ggml_compute_params params = {
  14512. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14513. /*.ith =*/ 0,
  14514. /*.nth =*/ 0,
  14515. /*.wsize =*/ cplan->work_size,
  14516. /*.wdata =*/ cplan->work_data,
  14517. };
  14518. if (node_n != -1) {
  14519. /* FINALIZE */
  14520. struct ggml_tensor * node = cgraph->nodes[node_n];
  14521. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14522. params.nth = ggml_get_n_tasks(node, n_threads);
  14523. ggml_compute_forward(&params, node);
  14524. }
  14525. ggml_graph_compute_perf_stats_node(node, state->shared);
  14526. }
  14527. // distribute new work or execute it direct if 1T
  14528. while (++node_n < cgraph->n_nodes) {
  14529. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14530. struct ggml_tensor * node = cgraph->nodes[node_n];
  14531. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14532. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14533. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14534. params.nth = n_tasks;
  14535. if (n_tasks == 1) {
  14536. /* INIT */
  14537. if (GGML_OP_HAS_INIT[node->op]) {
  14538. params.type = GGML_TASK_TYPE_INIT;
  14539. ggml_compute_forward(&params, node);
  14540. }
  14541. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14542. // they do something more efficient than spinning (?)
  14543. params.type = GGML_TASK_TYPE_COMPUTE;
  14544. ggml_compute_forward(&params, node);
  14545. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14546. params.type = GGML_TASK_TYPE_FINALIZE;
  14547. ggml_compute_forward(&params, node);
  14548. }
  14549. ggml_graph_compute_perf_stats_node(node, state->shared);
  14550. } else {
  14551. break;
  14552. }
  14553. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14554. break;
  14555. }
  14556. }
  14557. task_phase = GGML_TASK_TYPE_INIT;
  14558. atomic_store(&state->shared->n_active, n_threads);
  14559. atomic_store(&state->shared->node_n, node_n);
  14560. atomic_store(&state->shared->node_task, task_phase);
  14561. } else {
  14562. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14563. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14564. }
  14565. // check if we should stop
  14566. if (node_n >= cgraph->n_nodes) break;
  14567. /* INIT & COMPUTE */
  14568. struct ggml_tensor * node = cgraph->nodes[node_n];
  14569. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14570. struct ggml_compute_params params = {
  14571. /*.type =*/ GGML_TASK_TYPE_INIT,
  14572. /*.ith =*/ state->ith,
  14573. /*.nth =*/ n_tasks,
  14574. /*.wsize =*/ cplan->work_size,
  14575. /*.wdata =*/ cplan->work_data,
  14576. };
  14577. if (state->ith < n_tasks) {
  14578. if (GGML_OP_HAS_INIT[node->op]) {
  14579. ggml_compute_forward(&params, node);
  14580. }
  14581. }
  14582. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14583. task_phase = GGML_TASK_TYPE_COMPUTE;
  14584. atomic_store(&state->shared->n_active, n_threads);
  14585. atomic_store(&state->shared->node_task, task_phase);
  14586. }
  14587. else {
  14588. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14589. // depending on the workload and the operating system.
  14590. // since it is not clear what is the best approach, it should potentially become user-configurable
  14591. // ref: https://github.com/ggerganov/ggml/issues/291
  14592. // UPD: adding the do_yield flag seems to resolve the issue universally
  14593. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14594. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14595. }
  14596. if (state->ith < n_tasks) {
  14597. params.type = GGML_TASK_TYPE_COMPUTE;
  14598. ggml_compute_forward(&params, node);
  14599. }
  14600. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14601. task_phase = GGML_TASK_TYPE_FINALIZE;
  14602. atomic_store(&state->shared->n_active, n_threads);
  14603. atomic_store(&state->shared->node_task, task_phase);
  14604. }
  14605. else {
  14606. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14607. }
  14608. }
  14609. return GGML_EXIT_SUCCESS;
  14610. }
  14611. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14612. if (n_threads <= 0) {
  14613. n_threads = GGML_DEFAULT_N_THREADS;
  14614. }
  14615. size_t work_size = 0;
  14616. struct ggml_cplan cplan;
  14617. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14618. int max_tasks = 1;
  14619. // thread scheduling for the different operations + work buffer size estimation
  14620. for (int i = 0; i < cgraph->n_nodes; i++) {
  14621. struct ggml_tensor * node = cgraph->nodes[i];
  14622. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14623. max_tasks = MAX(max_tasks, n_tasks);
  14624. size_t cur = 0;
  14625. switch (node->op) {
  14626. case GGML_OP_CPY:
  14627. case GGML_OP_DUP:
  14628. {
  14629. if (ggml_is_quantized(node->type)) {
  14630. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14631. }
  14632. } break;
  14633. case GGML_OP_ADD:
  14634. case GGML_OP_ADD1:
  14635. {
  14636. if (ggml_is_quantized(node->src[0]->type)) {
  14637. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14638. }
  14639. } break;
  14640. case GGML_OP_ACC:
  14641. {
  14642. if (ggml_is_quantized(node->src[0]->type)) {
  14643. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14644. }
  14645. } break;
  14646. case GGML_OP_MUL_MAT:
  14647. {
  14648. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14649. #if defined(GGML_USE_CLBLAST)
  14650. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14651. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14652. } else
  14653. #endif
  14654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14655. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14656. if (node->src[0]->type != GGML_TYPE_F32) {
  14657. // here we need memory for fully dequantized matrix from src0
  14658. // take into account that src0 can be broadcasted into src1[2,3]
  14659. cur = ggml_type_size(GGML_TYPE_F32)
  14660. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14661. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14662. }
  14663. } else
  14664. #endif
  14665. if (node->src[1]->type != vec_dot_type) {
  14666. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14667. }
  14668. } break;
  14669. case GGML_OP_MUL_MAT_ID:
  14670. {
  14671. cur = 0;
  14672. const struct ggml_tensor * src0 = node->src[2];
  14673. const struct ggml_tensor * src1 = node->src[1];
  14674. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14675. if (src1->type != vec_dot_type) {
  14676. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14677. }
  14678. const int n_as = ggml_get_op_params_i32(node, 1);
  14679. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14680. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14681. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14682. } break;
  14683. case GGML_OP_OUT_PROD:
  14684. {
  14685. if (ggml_is_quantized(node->src[0]->type)) {
  14686. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14687. }
  14688. } break;
  14689. case GGML_OP_SOFT_MAX:
  14690. case GGML_OP_ROPE:
  14691. {
  14692. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14693. } break;
  14694. case GGML_OP_CONV_TRANSPOSE_1D:
  14695. {
  14696. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14697. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14698. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14699. const int64_t ne00 = node->src[0]->ne[0]; // K
  14700. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14701. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14702. const int64_t ne10 = node->src[1]->ne[0]; // L
  14703. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14704. if (node->src[0]->type == GGML_TYPE_F16 &&
  14705. node->src[1]->type == GGML_TYPE_F32) {
  14706. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14707. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14708. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14709. node->src[1]->type == GGML_TYPE_F32) {
  14710. cur += sizeof(float)*ne00*ne01*ne02;
  14711. cur += sizeof(float)*ne10*ne11;
  14712. } else {
  14713. GGML_ASSERT(false);
  14714. }
  14715. } break;
  14716. case GGML_OP_CONV_TRANSPOSE_2D:
  14717. {
  14718. const int64_t ne00 = node->src[0]->ne[0]; // W
  14719. const int64_t ne01 = node->src[0]->ne[1]; // H
  14720. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14721. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14722. const int64_t ne10 = node->src[1]->ne[0]; // W
  14723. const int64_t ne11 = node->src[1]->ne[1]; // H
  14724. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14725. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14726. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14727. } break;
  14728. case GGML_OP_FLASH_ATTN:
  14729. {
  14730. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14731. if (node->src[1]->type == GGML_TYPE_F32) {
  14732. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14733. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14734. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14735. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14736. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14737. }
  14738. } break;
  14739. case GGML_OP_FLASH_FF:
  14740. {
  14741. if (node->src[1]->type == GGML_TYPE_F32) {
  14742. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14743. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14744. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14745. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14746. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14747. }
  14748. } break;
  14749. case GGML_OP_FLASH_ATTN_BACK:
  14750. {
  14751. const int64_t D = node->src[0]->ne[0];
  14752. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14753. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14754. if (node->src[1]->type == GGML_TYPE_F32) {
  14755. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14756. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14757. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14758. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14759. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14760. }
  14761. } break;
  14762. case GGML_OP_CROSS_ENTROPY_LOSS:
  14763. {
  14764. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14765. } break;
  14766. case GGML_OP_COUNT:
  14767. {
  14768. GGML_ASSERT(false);
  14769. } break;
  14770. default:
  14771. break;
  14772. }
  14773. work_size = MAX(work_size, cur);
  14774. }
  14775. if (work_size > 0) {
  14776. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14777. }
  14778. cplan.n_threads = MIN(max_tasks, n_threads);
  14779. cplan.work_size = work_size;
  14780. cplan.work_data = NULL;
  14781. return cplan;
  14782. }
  14783. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14784. {
  14785. GGML_ASSERT(cplan);
  14786. GGML_ASSERT(cplan->n_threads > 0);
  14787. if (cplan->work_size > 0) {
  14788. GGML_ASSERT(cplan->work_data);
  14789. }
  14790. }
  14791. #ifdef GGML_USE_VULKAN
  14792. for (int i = 0; i < cgraph->n_nodes; i++) {
  14793. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14794. }
  14795. ggml_vk_preallocate_buffers_cpu_assist();
  14796. for (int i = 0; i < cgraph->n_nodes; i++) {
  14797. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14798. }
  14799. #endif
  14800. const int n_threads = cplan->n_threads;
  14801. struct ggml_compute_state_shared state_shared = {
  14802. /*.cgraph =*/ cgraph,
  14803. /*.cgraph_plan =*/ cplan,
  14804. /*.perf_node_start_cycles =*/ 0,
  14805. /*.perf_node_start_time_us =*/ 0,
  14806. /*.n_threads =*/ n_threads,
  14807. /*.n_active =*/ n_threads,
  14808. /*.node_n =*/ -1,
  14809. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14810. /*.abort_callback =*/ NULL,
  14811. /*.abort_callback_data =*/ NULL,
  14812. };
  14813. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14814. // create thread pool
  14815. if (n_threads > 1) {
  14816. for (int j = 1; j < n_threads; ++j) {
  14817. workers[j] = (struct ggml_compute_state) {
  14818. .thrd = 0,
  14819. .ith = j,
  14820. .shared = &state_shared,
  14821. };
  14822. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14823. GGML_ASSERT(rc == 0);
  14824. UNUSED(rc);
  14825. }
  14826. }
  14827. workers[0].ith = 0;
  14828. workers[0].shared = &state_shared;
  14829. const int64_t perf_start_cycles = ggml_perf_cycles();
  14830. const int64_t perf_start_time_us = ggml_perf_time_us();
  14831. // this is a work thread too
  14832. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14833. // don't leave affinity set on the main thread
  14834. clear_numa_thread_affinity();
  14835. // join or kill thread pool
  14836. if (n_threads > 1) {
  14837. for (int j = 1; j < n_threads; j++) {
  14838. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14839. GGML_ASSERT(rc == 0);
  14840. }
  14841. }
  14842. #ifdef GGML_USE_VULKAN
  14843. ggml_vk_graph_cleanup_cpu_assist();
  14844. #endif
  14845. // performance stats (graph)
  14846. {
  14847. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14848. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14849. cgraph->perf_runs++;
  14850. cgraph->perf_cycles += perf_cycles_cur;
  14851. cgraph->perf_time_us += perf_time_us_cur;
  14852. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14853. __func__, cgraph->perf_runs,
  14854. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14855. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14856. (double) perf_time_us_cur / 1000.0,
  14857. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14858. }
  14859. return compute_status;
  14860. }
  14861. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14862. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14863. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14864. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14865. ggml_graph_compute(cgraph, &cplan);
  14866. }
  14867. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14868. for (int i = 0; i < cgraph->n_leafs; i++) {
  14869. struct ggml_tensor * leaf = cgraph->leafs[i];
  14870. if (strcmp(leaf->name, name) == 0) {
  14871. return leaf;
  14872. }
  14873. }
  14874. for (int i = 0; i < cgraph->n_nodes; i++) {
  14875. struct ggml_tensor * node = cgraph->nodes[i];
  14876. if (strcmp(node->name, name) == 0) {
  14877. return node;
  14878. }
  14879. }
  14880. return NULL;
  14881. }
  14882. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14883. const int64_t * ne = tensor->ne;
  14884. const size_t * nb = tensor->nb;
  14885. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14886. ggml_type_name(tensor->type),
  14887. ggml_op_name (tensor->op),
  14888. ggml_n_dims(tensor),
  14889. ne[0], ne[1], ne[2], ne[3],
  14890. nb[0], nb[1], nb[2], nb[3],
  14891. tensor->data,
  14892. tensor->name);
  14893. }
  14894. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14895. const int64_t * ne = tensor->ne;
  14896. const size_t * nb = tensor->nb;
  14897. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14898. arg,
  14899. ggml_type_name(tensor->type),
  14900. ggml_op_name (tensor->op),
  14901. ggml_n_dims(tensor),
  14902. ne[0], ne[1], ne[2], ne[3],
  14903. nb[0], nb[1], nb[2], nb[3],
  14904. tensor->data,
  14905. tensor->name);
  14906. }
  14907. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14908. uint64_t size_eval = 0;
  14909. // compute size of intermediate results
  14910. // TODO: does not take into account scratch buffers !!!!
  14911. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14912. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14913. }
  14914. // print
  14915. {
  14916. FILE * fout = stdout;
  14917. fprintf(fout, "\n");
  14918. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14919. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14920. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14921. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14922. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14923. // header
  14924. fprintf(fout, "\n");
  14925. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14926. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14927. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14928. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14929. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14930. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14931. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14932. }
  14933. // header
  14934. fprintf(fout, "\n");
  14935. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14936. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14937. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14938. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14939. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14940. if (cgraph->nodes[i]->src[j]) {
  14941. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14942. }
  14943. }
  14944. fprintf(fout, "\n");
  14945. }
  14946. fprintf(fout, "\n");
  14947. }
  14948. // write binary data
  14949. {
  14950. FILE * fout = fopen(fname, "wb");
  14951. if (!fout) {
  14952. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14953. return;
  14954. }
  14955. // header
  14956. {
  14957. const uint32_t magic = GGML_FILE_MAGIC;
  14958. const uint32_t version = GGML_FILE_VERSION;
  14959. const uint32_t n_leafs = cgraph->n_leafs;
  14960. const uint32_t n_nodes = cgraph->n_nodes;
  14961. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14962. fwrite(&version, sizeof(uint32_t), 1, fout);
  14963. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14964. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14965. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14966. }
  14967. // leafs
  14968. {
  14969. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14970. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14971. const uint32_t type = tensor->type;
  14972. const uint32_t op = tensor->op;
  14973. fwrite(&type, sizeof(uint32_t), 1, fout);
  14974. fwrite(&op, sizeof(uint32_t), 1, fout);
  14975. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14976. const uint64_t ne = tensor->ne[j];
  14977. const uint64_t nb = tensor->nb[j];
  14978. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14979. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14980. }
  14981. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14982. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14983. // dump the data
  14984. // TODO: pad this to 32 byte boundary
  14985. {
  14986. const size_t size = ggml_nbytes(tensor);
  14987. fwrite(tensor->data, sizeof(char), size, fout);
  14988. }
  14989. }
  14990. }
  14991. // nodes
  14992. {
  14993. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14994. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14995. const uint32_t type = tensor->type;
  14996. const uint32_t op = tensor->op;
  14997. fwrite(&type, sizeof(uint32_t), 1, fout);
  14998. fwrite(&op, sizeof(uint32_t), 1, fout);
  14999. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15000. const uint64_t ne = tensor->ne[j];
  15001. const uint64_t nb = tensor->nb[j];
  15002. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15003. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15004. }
  15005. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15006. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15007. // output the op arguments
  15008. {
  15009. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15010. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15011. args[j] = tensor->src[j];
  15012. }
  15013. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15014. if (args[j]) {
  15015. int32_t idx = -1;
  15016. // check if leaf
  15017. {
  15018. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15019. if (args[j] == cgraph->leafs[k]) {
  15020. idx = k;
  15021. break;
  15022. }
  15023. }
  15024. }
  15025. // check if node
  15026. if (idx == -1) {
  15027. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15028. if (args[j] == cgraph->nodes[k]) {
  15029. idx = cgraph->n_leafs + k;
  15030. break;
  15031. }
  15032. }
  15033. }
  15034. if (idx == -1) {
  15035. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15036. fclose(fout);
  15037. return;
  15038. }
  15039. fwrite(&idx, sizeof(int32_t), 1, fout);
  15040. } else {
  15041. const int32_t nul = -1;
  15042. fwrite(&nul, sizeof(int32_t), 1, fout);
  15043. }
  15044. }
  15045. }
  15046. }
  15047. }
  15048. fclose(fout);
  15049. }
  15050. }
  15051. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15052. assert(*ctx_data == NULL);
  15053. assert(*ctx_eval == NULL);
  15054. struct ggml_cgraph * result = NULL;
  15055. struct ggml_tensor * data = NULL;
  15056. // read file into data
  15057. {
  15058. FILE * fin = fopen(fname, "rb");
  15059. if (!fin) {
  15060. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15061. return result;
  15062. }
  15063. size_t fsize = 0;
  15064. fseek(fin, 0, SEEK_END);
  15065. fsize = ftell(fin);
  15066. fseek(fin, 0, SEEK_SET);
  15067. // create the data context
  15068. {
  15069. const size_t overhead = 1*ggml_tensor_overhead();
  15070. struct ggml_init_params params = {
  15071. .mem_size = fsize + overhead,
  15072. .mem_buffer = NULL,
  15073. .no_alloc = false,
  15074. };
  15075. *ctx_data = ggml_init(params);
  15076. if (!*ctx_data) {
  15077. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15078. fclose(fin);
  15079. return result;
  15080. }
  15081. }
  15082. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15083. {
  15084. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15085. if (ret != fsize) {
  15086. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15087. fclose(fin);
  15088. return result;
  15089. }
  15090. }
  15091. fclose(fin);
  15092. }
  15093. // populate result
  15094. {
  15095. char * ptr = (char *) data->data;
  15096. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15097. if (magic != GGML_FILE_MAGIC) {
  15098. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15099. return result;
  15100. }
  15101. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15102. if (version != GGML_FILE_VERSION) {
  15103. fprintf(stderr, "%s: invalid version number\n", __func__);
  15104. return result;
  15105. }
  15106. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15107. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15108. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15109. const int graph_size = MAX(n_leafs, n_nodes);
  15110. // create the data context
  15111. {
  15112. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15113. struct ggml_init_params params = {
  15114. .mem_size = size_eval + overhead,
  15115. .mem_buffer = NULL,
  15116. .no_alloc = true,
  15117. };
  15118. *ctx_eval = ggml_init(params);
  15119. if (!*ctx_eval) {
  15120. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15121. return result;
  15122. }
  15123. }
  15124. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15125. result->n_leafs = n_leafs;
  15126. result->n_nodes = n_nodes;
  15127. // leafs
  15128. {
  15129. uint32_t type;
  15130. uint32_t op;
  15131. for (uint32_t i = 0; i < n_leafs; ++i) {
  15132. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15133. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15134. int64_t ne[GGML_MAX_DIMS];
  15135. size_t nb[GGML_MAX_DIMS];
  15136. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15137. uint64_t ne_cur;
  15138. uint64_t nb_cur;
  15139. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15140. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15141. ne[j] = ne_cur;
  15142. nb[j] = nb_cur;
  15143. }
  15144. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15145. tensor->op = (enum ggml_op) op;
  15146. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15147. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15148. tensor->data = (void *) ptr;
  15149. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15150. tensor->nb[j] = nb[j];
  15151. }
  15152. result->leafs[i] = tensor;
  15153. ptr += ggml_nbytes(tensor);
  15154. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15155. }
  15156. }
  15157. ggml_set_no_alloc(*ctx_eval, false);
  15158. // nodes
  15159. {
  15160. uint32_t type;
  15161. uint32_t op;
  15162. for (uint32_t i = 0; i < n_nodes; ++i) {
  15163. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15164. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15165. enum ggml_op eop = (enum ggml_op) op;
  15166. int64_t ne[GGML_MAX_DIMS];
  15167. size_t nb[GGML_MAX_DIMS];
  15168. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15169. uint64_t ne_cur;
  15170. uint64_t nb_cur;
  15171. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15172. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15173. ne[j] = ne_cur;
  15174. nb[j] = nb_cur;
  15175. }
  15176. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15177. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15178. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15179. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15180. // parse args
  15181. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15182. const int32_t arg_idx = ptr_arg_idx[j];
  15183. if (arg_idx == -1) {
  15184. continue;
  15185. }
  15186. if (arg_idx < result->n_leafs) {
  15187. args[j] = result->leafs[arg_idx];
  15188. } else {
  15189. args[j] = result->nodes[arg_idx - result->n_leafs];
  15190. }
  15191. }
  15192. // create the tensor
  15193. // "view" operations are handled differently
  15194. // TODO: handle inplace ops - currently a copy is always made
  15195. struct ggml_tensor * tensor = NULL;
  15196. switch (eop) {
  15197. // TODO: implement other view ops
  15198. case GGML_OP_RESHAPE:
  15199. {
  15200. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15201. } break;
  15202. case GGML_OP_VIEW:
  15203. {
  15204. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15205. size_t offs;
  15206. memcpy(&offs, ptr_op_params, sizeof(offs));
  15207. tensor->data = ((char *) tensor->data) + offs;
  15208. } break;
  15209. case GGML_OP_TRANSPOSE:
  15210. {
  15211. tensor = ggml_transpose(*ctx_eval, args[0]);
  15212. } break;
  15213. case GGML_OP_PERMUTE:
  15214. {
  15215. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15216. } break;
  15217. default:
  15218. {
  15219. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15220. tensor->op = eop;
  15221. } break;
  15222. }
  15223. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15224. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15225. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15226. tensor->nb[j] = nb[j];
  15227. }
  15228. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15229. tensor->src[j] = args[j];
  15230. }
  15231. result->nodes[i] = tensor;
  15232. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15233. }
  15234. }
  15235. }
  15236. return result;
  15237. }
  15238. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15239. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15240. GGML_PRINT("=== GRAPH ===\n");
  15241. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15242. for (int i = 0; i < cgraph->n_nodes; i++) {
  15243. struct ggml_tensor * node = cgraph->nodes[i];
  15244. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15245. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15246. i,
  15247. node->ne[0], node->ne[1], node->ne[2],
  15248. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15249. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15250. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15251. (double) node->perf_time_us / 1000.0,
  15252. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15253. }
  15254. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15255. for (int i = 0; i < cgraph->n_leafs; i++) {
  15256. struct ggml_tensor * node = cgraph->leafs[i];
  15257. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15258. i,
  15259. node->ne[0], node->ne[1],
  15260. ggml_op_name(node->op),
  15261. ggml_get_name(node));
  15262. }
  15263. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15264. if (perf_total_per_op_us[i] == 0) {
  15265. continue;
  15266. }
  15267. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15268. }
  15269. GGML_PRINT("========================================\n");
  15270. }
  15271. // check if node is part of the graph
  15272. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15273. if (cgraph == NULL) {
  15274. return true;
  15275. }
  15276. for (int i = 0; i < cgraph->n_nodes; i++) {
  15277. if (cgraph->nodes[i] == node) {
  15278. return true;
  15279. }
  15280. }
  15281. return false;
  15282. }
  15283. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15284. for (int i = 0; i < cgraph->n_nodes; i++) {
  15285. struct ggml_tensor * parent = cgraph->nodes[i];
  15286. if (parent->grad == node) {
  15287. return parent;
  15288. }
  15289. }
  15290. return NULL;
  15291. }
  15292. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15293. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15294. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15295. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15296. gparent0 ? (void *) gparent0 : (void *) parent,
  15297. gparent0 ? "g" : "x",
  15298. gparent ? (void *) gparent : (void *) node,
  15299. gparent ? "g" : "x",
  15300. gparent ? "empty" : "vee",
  15301. gparent ? "dashed" : "solid",
  15302. label);
  15303. }
  15304. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15305. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15306. (void *) parent, "x",
  15307. (void *) node, "x",
  15308. label);
  15309. }
  15310. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15311. char color[16];
  15312. FILE * fp = fopen(filename, "w");
  15313. GGML_ASSERT(fp);
  15314. fprintf(fp, "digraph G {\n");
  15315. fprintf(fp, " newrank = true;\n");
  15316. fprintf(fp, " rankdir = LR;\n");
  15317. for (int i = 0; i < gb->n_nodes; i++) {
  15318. struct ggml_tensor * node = gb->nodes[i];
  15319. if (ggml_graph_get_parent(gb, node) != NULL) {
  15320. continue;
  15321. }
  15322. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15323. snprintf(color, sizeof(color), "yellow");
  15324. } else if (node->grad) {
  15325. if (ggml_graph_find(gf, node)) {
  15326. snprintf(color, sizeof(color), "green");
  15327. } else {
  15328. snprintf(color, sizeof(color), "lightblue");
  15329. }
  15330. } else {
  15331. snprintf(color, sizeof(color), "white");
  15332. }
  15333. fprintf(fp, " \"%p\" [ "
  15334. "style = filled; fillcolor = %s; shape = record; "
  15335. "label=\"",
  15336. (void *) node, color);
  15337. if (strlen(node->name) > 0) {
  15338. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15339. } else {
  15340. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15341. }
  15342. if (ggml_is_matrix(node)) {
  15343. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15344. } else {
  15345. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15346. }
  15347. if (node->grad) {
  15348. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15349. } else {
  15350. fprintf(fp, "\"; ]\n");
  15351. }
  15352. }
  15353. for (int i = 0; i < gb->n_leafs; i++) {
  15354. struct ggml_tensor * node = gb->leafs[i];
  15355. snprintf(color, sizeof(color), "pink");
  15356. fprintf(fp, " \"%p\" [ "
  15357. "style = filled; fillcolor = %s; shape = record; "
  15358. "label=\"<x>",
  15359. (void *) node, color);
  15360. if (strlen(node->name) > 0) {
  15361. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15362. } else {
  15363. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15364. }
  15365. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15366. if (ggml_nelements(node) < 5) {
  15367. fprintf(fp, " | (");
  15368. for (int j = 0; j < ggml_nelements(node); j++) {
  15369. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15370. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15371. }
  15372. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15373. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15374. }
  15375. else {
  15376. fprintf(fp, "#");
  15377. }
  15378. if (j < ggml_nelements(node) - 1) {
  15379. fprintf(fp, ", ");
  15380. }
  15381. }
  15382. fprintf(fp, ")");
  15383. }
  15384. fprintf(fp, "\"; ]\n");
  15385. }
  15386. for (int i = 0; i < gb->n_nodes; i++) {
  15387. struct ggml_tensor * node = gb->nodes[i];
  15388. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15389. if (node->src[j]) {
  15390. char label[16];
  15391. snprintf(label, sizeof(label), "src %d", j);
  15392. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15393. }
  15394. }
  15395. }
  15396. for (int i = 0; i < gb->n_leafs; i++) {
  15397. struct ggml_tensor * node = gb->leafs[i];
  15398. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15399. if (node->src[j]) {
  15400. char label[16];
  15401. snprintf(label, sizeof(label), "src %d", j);
  15402. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15403. }
  15404. }
  15405. }
  15406. fprintf(fp, "}\n");
  15407. fclose(fp);
  15408. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15409. }
  15410. ////////////////////////////////////////////////////////////////////////////////
  15411. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15412. int i = 0;
  15413. for (int p = 0; p < np; ++p) {
  15414. const int64_t ne = ggml_nelements(ps[p]) ;
  15415. // TODO: add function to set tensor from array
  15416. for (int64_t j = 0; j < ne; ++j) {
  15417. ggml_set_f32_1d(ps[p], j, x[i++]);
  15418. }
  15419. }
  15420. }
  15421. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15422. int i = 0;
  15423. for (int p = 0; p < np; ++p) {
  15424. const int64_t ne = ggml_nelements(ps[p]) ;
  15425. // TODO: add function to get all elements at once
  15426. for (int64_t j = 0; j < ne; ++j) {
  15427. x[i++] = ggml_get_f32_1d(ps[p], j);
  15428. }
  15429. }
  15430. }
  15431. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15432. int64_t i = 0;
  15433. for (int p = 0; p < np; ++p) {
  15434. const int64_t ne = ggml_nelements(ps[p]) ;
  15435. // TODO: add function to get all elements at once
  15436. for (int64_t j = 0; j < ne; ++j) {
  15437. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15438. }
  15439. }
  15440. }
  15441. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15442. int64_t i = 0;
  15443. for (int p = 0; p < np; ++p) {
  15444. const int64_t ne = ggml_nelements(ps[p]) ;
  15445. // TODO: add function to get all elements at once
  15446. for (int64_t j = 0; j < ne; ++j) {
  15447. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15448. }
  15449. }
  15450. }
  15451. //
  15452. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15453. //
  15454. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15455. //
  15456. static enum ggml_opt_result ggml_opt_adam(
  15457. struct ggml_context * ctx,
  15458. struct ggml_opt_context * opt,
  15459. struct ggml_opt_params params,
  15460. struct ggml_tensor * f,
  15461. struct ggml_cgraph * gf,
  15462. struct ggml_cgraph * gb,
  15463. ggml_opt_callback callback,
  15464. void * callback_data) {
  15465. GGML_ASSERT(ggml_is_scalar(f));
  15466. // these will store the parameters we want to optimize
  15467. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15468. int np = 0;
  15469. int64_t nx = 0;
  15470. for (int i = 0; i < gf->n_nodes; ++i) {
  15471. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15472. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15473. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15474. ps[np++] = gf->nodes[i];
  15475. nx += ggml_nelements(gf->nodes[i]);
  15476. }
  15477. }
  15478. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15479. int iter = opt->iter;
  15480. ggml_opt_init(opt->ctx, opt, params, nx);
  15481. opt->iter = iter;
  15482. }
  15483. // constants
  15484. float sched = params.adam.sched;
  15485. const float alpha = params.adam.alpha;
  15486. const float decay = params.adam.decay * alpha;
  15487. const float beta1 = params.adam.beta1;
  15488. const float beta2 = params.adam.beta2;
  15489. const float eps = params.adam.eps;
  15490. const float gclip = params.adam.gclip;
  15491. const int decay_min_ndim = params.adam.decay_min_ndim;
  15492. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15493. const float accum_norm = 1.0f / (float) n_accum;
  15494. float * g = opt->adam.g->data; // gradients
  15495. float * m = opt->adam.m->data; // first moment
  15496. float * v = opt->adam.v->data; // second moment
  15497. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15498. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15499. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15500. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15501. bool cancel = false;
  15502. // compute the function value
  15503. float fx = 0;
  15504. ggml_set_zero(opt->adam.g);
  15505. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15506. if (callback) {
  15507. callback(callback_data, accum_step, &sched, &cancel);
  15508. if (cancel) {
  15509. return GGML_OPT_RESULT_CANCEL;
  15510. }
  15511. }
  15512. // ggml_graph_reset (gf);
  15513. ggml_set_f32 (f->grad, 1.0f);
  15514. ggml_graph_compute(gb, &cplan);
  15515. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15516. fx += ggml_get_f32_1d(f, 0);
  15517. }
  15518. fx *= accum_norm;
  15519. opt->adam.fx_prev = fx;
  15520. opt->adam.fx_best = opt->adam.fx_prev;
  15521. if (pf) {
  15522. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15523. }
  15524. opt->loss_before = opt->adam.fx_prev;
  15525. opt->loss_after = opt->adam.fx_prev;
  15526. // initialize
  15527. if (opt->just_initialized) {
  15528. opt->adam.n_no_improvement = 0;
  15529. opt->just_initialized = false;
  15530. }
  15531. float * fx_best = &opt->adam.fx_best;
  15532. float * fx_prev = &opt->adam.fx_prev;
  15533. int * n_no_improvement = &opt->adam.n_no_improvement;
  15534. int iter0 = opt->iter;
  15535. // run the optimizer
  15536. for (int t = 0; t < params.adam.n_iter; ++t) {
  15537. opt->iter = iter0 + t + 1;
  15538. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15539. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15540. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15541. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15542. for (int i = 0; i < np; ++i) {
  15543. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15544. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15545. }
  15546. const int64_t t_start_wall = ggml_time_us();
  15547. const int64_t t_start_cpu = ggml_cycles();
  15548. UNUSED(t_start_wall);
  15549. UNUSED(t_start_cpu);
  15550. {
  15551. float gnorm = 1.0f;
  15552. if (gclip > 0.0f) {
  15553. // gradient clipping
  15554. ggml_float sum = 0.0;
  15555. for (int64_t i = 0; i < nx; ++i) {
  15556. sum += (ggml_float)(g[i]*g[i]);
  15557. }
  15558. ggml_float norm = sqrt(sum);
  15559. if (norm > (ggml_float) gclip) {
  15560. gnorm = (float) ((ggml_float) gclip / norm);
  15561. }
  15562. }
  15563. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15564. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15565. int64_t i = 0;
  15566. for (int p = 0; p < np; ++p) {
  15567. const int64_t ne = ggml_nelements(ps[p]);
  15568. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15569. for (int64_t j = 0; j < ne; ++j) {
  15570. float x = ggml_get_f32_1d(ps[p], j);
  15571. float g_ = g[i]*gnorm;
  15572. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15573. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15574. float mh = m[i]*beta1h;
  15575. float vh = v[i]*beta2h;
  15576. vh = sqrtf(vh) + eps;
  15577. x = x*(1.0f - p_decay) - mh/vh;
  15578. ggml_set_f32_1d(ps[p], j, x);
  15579. ++i;
  15580. }
  15581. }
  15582. }
  15583. fx = 0;
  15584. ggml_set_zero(opt->adam.g);
  15585. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15586. if (callback) {
  15587. callback(callback_data, accum_step, &sched, &cancel);
  15588. if (cancel) {
  15589. return GGML_OPT_RESULT_CANCEL;;
  15590. }
  15591. }
  15592. // ggml_graph_reset (gf);
  15593. ggml_set_f32 (f->grad, 1.0f);
  15594. ggml_graph_compute(gb, &cplan);
  15595. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15596. fx += ggml_get_f32_1d(f, 0);
  15597. }
  15598. fx *= accum_norm;
  15599. opt->loss_after = fx;
  15600. // check convergence
  15601. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15602. GGML_PRINT_DEBUG("converged\n");
  15603. return GGML_OPT_RESULT_OK;
  15604. }
  15605. // delta-based convergence test
  15606. if (pf != NULL) {
  15607. // need at least params.past iterations to start checking for convergence
  15608. if (params.past <= iter0 + t) {
  15609. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15610. if (fabsf(rate) < params.delta) {
  15611. return GGML_OPT_RESULT_OK;
  15612. }
  15613. }
  15614. pf[(iter0 + t)%params.past] = fx;
  15615. }
  15616. // check for improvement
  15617. if (params.max_no_improvement > 0) {
  15618. if (fx_best[0] > fx) {
  15619. fx_best[0] = fx;
  15620. n_no_improvement[0] = 0;
  15621. } else {
  15622. ++n_no_improvement[0];
  15623. if (n_no_improvement[0] >= params.max_no_improvement) {
  15624. return GGML_OPT_RESULT_OK;
  15625. }
  15626. }
  15627. }
  15628. fx_prev[0] = fx;
  15629. {
  15630. const int64_t t_end_cpu = ggml_cycles();
  15631. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15632. UNUSED(t_end_cpu);
  15633. const int64_t t_end_wall = ggml_time_us();
  15634. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15635. UNUSED(t_end_wall);
  15636. }
  15637. }
  15638. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15639. }
  15640. //
  15641. // L-BFGS
  15642. //
  15643. // the L-BFGS implementation below is based on the following implementation:
  15644. //
  15645. // https://github.com/chokkan/liblbfgs
  15646. //
  15647. struct ggml_lbfgs_iteration_data {
  15648. float alpha;
  15649. float ys;
  15650. float * s;
  15651. float * y;
  15652. };
  15653. static enum ggml_opt_result linesearch_backtracking(
  15654. const struct ggml_opt_params * params,
  15655. int nx,
  15656. float * x,
  15657. float * fx,
  15658. float * g,
  15659. float * d,
  15660. float * step,
  15661. const float * xp,
  15662. struct ggml_tensor * f,
  15663. struct ggml_cgraph * gb,
  15664. struct ggml_cplan * cplan,
  15665. const int np,
  15666. struct ggml_tensor * ps[],
  15667. bool * cancel,
  15668. ggml_opt_callback callback,
  15669. void * callback_data) {
  15670. int count = 0;
  15671. float width = 0.0f;
  15672. float dg = 0.0f;
  15673. float finit = 0.0f;
  15674. float dginit = 0.0f;
  15675. float dgtest = 0.0f;
  15676. const float dec = 0.5f;
  15677. const float inc = 2.1f;
  15678. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15679. const float accum_norm = 1.0f / (float) n_accum;
  15680. if (*step <= 0.f) {
  15681. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15682. }
  15683. // compute the initial gradient in the search direction
  15684. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15685. // make sure that d points to a descent direction
  15686. if (0 < dginit) {
  15687. return GGML_LINESEARCH_FAIL;
  15688. }
  15689. // initialize local variables
  15690. finit = *fx;
  15691. dgtest = params->lbfgs.ftol*dginit;
  15692. while (true) {
  15693. ggml_vec_cpy_f32(nx, x, xp);
  15694. ggml_vec_mad_f32(nx, x, d, *step);
  15695. // evaluate the function and gradient values
  15696. {
  15697. ggml_opt_set_params(np, ps, x);
  15698. *fx = 0;
  15699. memset(g, 0, sizeof(float)*nx);
  15700. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15701. if (callback) {
  15702. // LBFG-S does not support learning rate -> ignore learning schedule
  15703. float sched = 0;
  15704. callback(callback_data, accum_step, &sched, cancel);
  15705. if (*cancel) {
  15706. return GGML_OPT_RESULT_CANCEL;
  15707. }
  15708. }
  15709. // ggml_graph_reset (gf);
  15710. ggml_set_f32 (f->grad, 1.0f);
  15711. ggml_graph_compute(gb, cplan);
  15712. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15713. *fx += ggml_get_f32_1d(f, 0);
  15714. }
  15715. *fx *= accum_norm;
  15716. }
  15717. ++count;
  15718. if (*fx > finit + (*step)*dgtest) {
  15719. width = dec;
  15720. } else {
  15721. // Armijo condition is satisfied
  15722. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15723. return count;
  15724. }
  15725. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15726. // check the Wolfe condition
  15727. if (dg < params->lbfgs.wolfe * dginit) {
  15728. width = inc;
  15729. } else {
  15730. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15731. // regular Wolfe conditions
  15732. return count;
  15733. }
  15734. if(dg > -params->lbfgs.wolfe*dginit) {
  15735. width = dec;
  15736. } else {
  15737. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15738. return count;
  15739. }
  15740. }
  15741. }
  15742. if (*step < params->lbfgs.min_step) {
  15743. return GGML_LINESEARCH_MINIMUM_STEP;
  15744. }
  15745. if (*step > params->lbfgs.max_step) {
  15746. return GGML_LINESEARCH_MAXIMUM_STEP;
  15747. }
  15748. if (params->lbfgs.max_linesearch <= count) {
  15749. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15750. }
  15751. (*step) *= width;
  15752. }
  15753. GGML_ASSERT(false && "line search failed");
  15754. return GGML_LINESEARCH_FAIL;
  15755. }
  15756. static enum ggml_opt_result ggml_opt_lbfgs(
  15757. struct ggml_context * ctx,
  15758. struct ggml_opt_context * opt,
  15759. struct ggml_opt_params params,
  15760. struct ggml_tensor * f,
  15761. struct ggml_cgraph * gf,
  15762. struct ggml_cgraph * gb,
  15763. ggml_opt_callback callback,
  15764. void * callback_data) {
  15765. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15766. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15767. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15768. return GGML_OPT_RESULT_INVALID_WOLFE;
  15769. }
  15770. }
  15771. const int m = params.lbfgs.m;
  15772. // these will store the parameters we want to optimize
  15773. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15774. int np = 0;
  15775. int nx = 0;
  15776. for (int i = 0; i < gf->n_nodes; ++i) {
  15777. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15778. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15779. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15780. ps[np++] = gf->nodes[i];
  15781. nx += ggml_nelements(gf->nodes[i]);
  15782. }
  15783. }
  15784. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15785. int iter = opt->iter;
  15786. ggml_opt_init(ctx, opt, params, nx);
  15787. opt->iter = iter;
  15788. }
  15789. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15790. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15791. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15792. float * x = opt->lbfgs.x->data; // current parameters
  15793. float * xp = opt->lbfgs.xp->data; // previous parameters
  15794. float * g = opt->lbfgs.g->data; // current gradient
  15795. float * gp = opt->lbfgs.gp->data; // previous gradient
  15796. float * d = opt->lbfgs.d->data; // search direction
  15797. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15798. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15799. const float accum_norm = 1.0f / (float) n_accum;
  15800. float fx = 0.0f; // cost function value
  15801. float xnorm = 0.0f; // ||x||
  15802. float gnorm = 0.0f; // ||g||
  15803. // initialize x from the graph nodes
  15804. ggml_opt_get_params(np, ps, x);
  15805. // the L-BFGS memory
  15806. float * lm_alpha = opt->lbfgs.lmal->data;
  15807. float * lm_ys = opt->lbfgs.lmys->data;
  15808. float * lm_s = opt->lbfgs.lms->data;
  15809. float * lm_y = opt->lbfgs.lmy->data;
  15810. bool cancel = false;
  15811. // evaluate the function value and its gradient
  15812. {
  15813. ggml_opt_set_params(np, ps, x);
  15814. fx = 0;
  15815. memset(g, 0, sizeof(float)*nx);
  15816. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15817. if (callback) {
  15818. // LBFG-S does not support learning rate -> ignore learning schedule
  15819. float sched = 0;
  15820. callback(callback_data, accum_step, &sched, &cancel);
  15821. if (cancel) {
  15822. return GGML_OPT_RESULT_CANCEL;
  15823. }
  15824. }
  15825. // ggml_graph_reset (gf);
  15826. ggml_set_f32 (f->grad, 1.0f);
  15827. ggml_graph_compute(gb, &cplan);
  15828. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15829. fx += ggml_get_f32_1d(f, 0);
  15830. }
  15831. fx *= accum_norm;
  15832. opt->loss_before = fx;
  15833. opt->loss_after = fx;
  15834. }
  15835. // search direction = -gradient
  15836. ggml_vec_neg_f32(nx, d, g);
  15837. // ||x||, ||g||
  15838. ggml_vec_norm_f32(nx, &xnorm, x);
  15839. ggml_vec_norm_f32(nx, &gnorm, g);
  15840. if (xnorm < 1.0f) {
  15841. xnorm = 1.0f;
  15842. }
  15843. // already optimized
  15844. if (gnorm/xnorm <= params.lbfgs.eps) {
  15845. return GGML_OPT_RESULT_OK;
  15846. }
  15847. if (opt->just_initialized) {
  15848. if (pf) {
  15849. pf[0] = fx;
  15850. }
  15851. opt->lbfgs.fx_best = fx;
  15852. // initial step
  15853. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15854. opt->lbfgs.j = 0;
  15855. opt->lbfgs.k = 1;
  15856. opt->lbfgs.end = 0;
  15857. opt->lbfgs.n_no_improvement = 0;
  15858. opt->just_initialized = false;
  15859. }
  15860. float * fx_best = &opt->lbfgs.fx_best;
  15861. float * step = &opt->lbfgs.step;
  15862. int * j = &opt->lbfgs.j;
  15863. int * k = &opt->lbfgs.k;
  15864. int * end = &opt->lbfgs.end;
  15865. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15866. int ls = 0;
  15867. int bound = 0;
  15868. float ys = 0.0f;
  15869. float yy = 0.0f;
  15870. float beta = 0.0f;
  15871. int it = 0;
  15872. while (true) {
  15873. // store the current position and gradient vectors
  15874. ggml_vec_cpy_f32(nx, xp, x);
  15875. ggml_vec_cpy_f32(nx, gp, g);
  15876. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15877. // to determine if the optimization should be cancelled
  15878. // this is a simple change, but not doing this atm, since I don't have a nice
  15879. // way to test and don't want to break something with so many changes lined up
  15880. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15881. if (cancel) {
  15882. return GGML_OPT_RESULT_CANCEL;
  15883. }
  15884. if (ls < 0) {
  15885. // linesearch failed - go back to the previous point and return
  15886. ggml_vec_cpy_f32(nx, x, xp);
  15887. ggml_vec_cpy_f32(nx, g, gp);
  15888. return ls;
  15889. }
  15890. opt->loss_after = fx;
  15891. ggml_vec_norm_f32(nx, &xnorm, x);
  15892. ggml_vec_norm_f32(nx, &gnorm, g);
  15893. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15894. if (xnorm < 1.0f) {
  15895. xnorm = 1.0f;
  15896. }
  15897. if (gnorm/xnorm <= params.lbfgs.eps) {
  15898. // converged
  15899. return GGML_OPT_RESULT_OK;
  15900. }
  15901. // delta-based convergence test
  15902. if (pf != NULL) {
  15903. // need at least params.past iterations to start checking for convergence
  15904. if (params.past <= k[0]) {
  15905. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15906. if (fabsf(rate) < params.delta) {
  15907. return GGML_OPT_RESULT_OK;
  15908. }
  15909. }
  15910. pf[k[0]%params.past] = fx;
  15911. }
  15912. // check for improvement
  15913. if (params.max_no_improvement > 0) {
  15914. if (fx < fx_best[0]) {
  15915. fx_best[0] = fx;
  15916. n_no_improvement[0] = 0;
  15917. } else {
  15918. n_no_improvement[0]++;
  15919. if (n_no_improvement[0] >= params.max_no_improvement) {
  15920. return GGML_OPT_RESULT_OK;
  15921. }
  15922. }
  15923. }
  15924. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15925. // reached the maximum number of iterations
  15926. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15927. }
  15928. // update vectors s and y:
  15929. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15930. // y_{k+1} = g_{k+1} - g_{k}.
  15931. //
  15932. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15933. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15934. // compute scalars ys and yy:
  15935. // ys = y^t \cdot s -> 1 / \rho.
  15936. // yy = y^t \cdot y.
  15937. //
  15938. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15939. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15940. lm_ys[end[0]] = ys;
  15941. // find new search direction
  15942. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15943. bound = (m <= k[0]) ? m : k[0];
  15944. k[0]++;
  15945. it++;
  15946. end[0] = (end[0] + 1)%m;
  15947. // initialize search direction with -g
  15948. ggml_vec_neg_f32(nx, d, g);
  15949. j[0] = end[0];
  15950. for (int i = 0; i < bound; ++i) {
  15951. j[0] = (j[0] + m - 1) % m;
  15952. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15953. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15954. lm_alpha[j[0]] /= lm_ys[j[0]];
  15955. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15956. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15957. }
  15958. ggml_vec_scale_f32(nx, d, ys/yy);
  15959. for (int i = 0; i < bound; ++i) {
  15960. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15961. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15962. beta /= lm_ys[j[0]];
  15963. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15964. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15965. j[0] = (j[0] + 1)%m;
  15966. }
  15967. step[0] = 1.0;
  15968. }
  15969. GGML_ASSERT(false && "lbfgs failed");
  15970. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15971. }
  15972. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15973. struct ggml_opt_params result;
  15974. switch (type) {
  15975. case GGML_OPT_TYPE_ADAM:
  15976. {
  15977. result = (struct ggml_opt_params) {
  15978. .type = GGML_OPT_TYPE_ADAM,
  15979. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15980. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15981. .past = 0,
  15982. .delta = 1e-5f,
  15983. .max_no_improvement = 100,
  15984. .print_forward_graph = true,
  15985. .print_backward_graph = true,
  15986. .n_gradient_accumulation = 1,
  15987. .adam = {
  15988. .n_iter = 10000,
  15989. .sched = 1.000f,
  15990. .decay = 0.0f,
  15991. .decay_min_ndim = 2,
  15992. .alpha = 0.001f,
  15993. .beta1 = 0.9f,
  15994. .beta2 = 0.999f,
  15995. .eps = 1e-8f,
  15996. .eps_f = 1e-5f,
  15997. .eps_g = 1e-3f,
  15998. .gclip = 0.0f,
  15999. },
  16000. };
  16001. } break;
  16002. case GGML_OPT_TYPE_LBFGS:
  16003. {
  16004. result = (struct ggml_opt_params) {
  16005. .type = GGML_OPT_TYPE_LBFGS,
  16006. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16007. .n_threads = 1,
  16008. .past = 0,
  16009. .delta = 1e-5f,
  16010. .max_no_improvement = 0,
  16011. .print_forward_graph = true,
  16012. .print_backward_graph = true,
  16013. .n_gradient_accumulation = 1,
  16014. .lbfgs = {
  16015. .m = 6,
  16016. .n_iter = 100,
  16017. .max_linesearch = 20,
  16018. .eps = 1e-5f,
  16019. .ftol = 1e-4f,
  16020. .wolfe = 0.9f,
  16021. .min_step = 1e-20f,
  16022. .max_step = 1e+20f,
  16023. .linesearch = GGML_LINESEARCH_DEFAULT,
  16024. },
  16025. };
  16026. } break;
  16027. }
  16028. return result;
  16029. }
  16030. GGML_API void ggml_opt_init(
  16031. struct ggml_context * ctx,
  16032. struct ggml_opt_context * opt,
  16033. struct ggml_opt_params params,
  16034. int64_t nx) {
  16035. opt->ctx = ctx;
  16036. opt->params = params;
  16037. opt->iter = 0;
  16038. opt->nx = nx;
  16039. opt->just_initialized = true;
  16040. if (opt->ctx == NULL) {
  16041. struct ggml_init_params ctx_opt_params;
  16042. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16043. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16044. if (opt->params.past > 0) {
  16045. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16046. }
  16047. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16048. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16049. if (opt->params.past > 0) {
  16050. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16051. }
  16052. }
  16053. ctx_opt_params.mem_buffer = NULL;
  16054. ctx_opt_params.no_alloc = false;
  16055. opt->ctx = ggml_init(ctx_opt_params);
  16056. }
  16057. switch (opt->params.type) {
  16058. case GGML_OPT_TYPE_ADAM:
  16059. {
  16060. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16061. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16062. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16063. opt->adam.pf = params.past > 0
  16064. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16065. : NULL;
  16066. ggml_set_zero(opt->adam.m);
  16067. ggml_set_zero(opt->adam.v);
  16068. if (opt->adam.pf) {
  16069. ggml_set_zero(opt->adam.pf);
  16070. }
  16071. } break;
  16072. case GGML_OPT_TYPE_LBFGS:
  16073. {
  16074. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16075. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16076. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16077. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16078. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16079. opt->lbfgs.pf = params.past > 0
  16080. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16081. : NULL;
  16082. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16083. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16084. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16085. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16086. ggml_set_zero(opt->lbfgs.x);
  16087. ggml_set_zero(opt->lbfgs.xp);
  16088. ggml_set_zero(opt->lbfgs.g);
  16089. ggml_set_zero(opt->lbfgs.gp);
  16090. ggml_set_zero(opt->lbfgs.d);
  16091. if (opt->lbfgs.pf) {
  16092. ggml_set_zero(opt->lbfgs.pf);
  16093. }
  16094. ggml_set_zero(opt->lbfgs.lmal);
  16095. ggml_set_zero(opt->lbfgs.lmys);
  16096. ggml_set_zero(opt->lbfgs.lms);
  16097. ggml_set_zero(opt->lbfgs.lmy);
  16098. } break;
  16099. }
  16100. }
  16101. enum ggml_opt_result ggml_opt(
  16102. struct ggml_context * ctx,
  16103. struct ggml_opt_params params,
  16104. struct ggml_tensor * f) {
  16105. bool free_ctx = false;
  16106. if (ctx == NULL) {
  16107. struct ggml_init_params params_ctx = {
  16108. .mem_size = 16*1024*1024,
  16109. .mem_buffer = NULL,
  16110. .no_alloc = false,
  16111. };
  16112. ctx = ggml_init(params_ctx);
  16113. if (ctx == NULL) {
  16114. return GGML_OPT_RESULT_NO_CONTEXT;
  16115. }
  16116. free_ctx = true;
  16117. }
  16118. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16119. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16120. ggml_opt_init(ctx, opt, params, 0);
  16121. result = ggml_opt_resume(ctx, opt, f);
  16122. if (free_ctx) {
  16123. ggml_free(ctx);
  16124. }
  16125. return result;
  16126. }
  16127. enum ggml_opt_result ggml_opt_resume(
  16128. struct ggml_context * ctx,
  16129. struct ggml_opt_context * opt,
  16130. struct ggml_tensor * f) {
  16131. // build forward + backward compute graphs
  16132. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16133. ggml_build_forward_expand(gf, f);
  16134. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16135. ggml_build_backward_expand(ctx, gf, gb, true);
  16136. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16137. }
  16138. enum ggml_opt_result ggml_opt_resume_g(
  16139. struct ggml_context * ctx,
  16140. struct ggml_opt_context * opt,
  16141. struct ggml_tensor * f,
  16142. struct ggml_cgraph * gf,
  16143. struct ggml_cgraph * gb,
  16144. ggml_opt_callback callback,
  16145. void * callback_data) {
  16146. // build forward + backward compute graphs
  16147. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16148. switch (opt->params.type) {
  16149. case GGML_OPT_TYPE_ADAM:
  16150. {
  16151. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16152. } break;
  16153. case GGML_OPT_TYPE_LBFGS:
  16154. {
  16155. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16156. } break;
  16157. }
  16158. if (opt->params.print_forward_graph) {
  16159. ggml_graph_print (gf);
  16160. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16161. }
  16162. if (opt->params.print_backward_graph) {
  16163. ggml_graph_print (gb);
  16164. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16165. }
  16166. return result;
  16167. }
  16168. ////////////////////////////////////////////////////////////////////////////////
  16169. void ggml_set_input(struct ggml_tensor * tensor) {
  16170. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16171. }
  16172. void ggml_set_output(struct ggml_tensor * tensor) {
  16173. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16174. }
  16175. ////////////////////////////////////////////////////////////////////////////////
  16176. void ggml_quantize_init(enum ggml_type type) {
  16177. ggml_critical_section_start();
  16178. switch (type) {
  16179. case GGML_TYPE_IQ2_XXS:
  16180. case GGML_TYPE_IQ2_XS:
  16181. case GGML_TYPE_IQ2_S:
  16182. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16183. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16184. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16185. default: // nothing
  16186. break;
  16187. }
  16188. ggml_critical_section_end();
  16189. }
  16190. void ggml_quantize_free(void) {
  16191. ggml_critical_section_start();
  16192. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16193. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16194. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16195. iq3xs_free_impl(256);
  16196. ggml_critical_section_end();
  16197. }
  16198. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16199. assert(k % QK4_0 == 0);
  16200. const int nb = k / QK4_0;
  16201. for (int b = 0; b < n; b += k) {
  16202. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16203. quantize_row_q4_0_reference(src + b, y, k);
  16204. for (int i = 0; i < nb; i++) {
  16205. for (int j = 0; j < QK4_0; j += 2) {
  16206. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16207. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16208. hist[vi0]++;
  16209. hist[vi1]++;
  16210. }
  16211. }
  16212. }
  16213. return (n/QK4_0*sizeof(block_q4_0));
  16214. }
  16215. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16216. assert(k % QK4_1 == 0);
  16217. const int nb = k / QK4_1;
  16218. for (int b = 0; b < n; b += k) {
  16219. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16220. quantize_row_q4_1_reference(src + b, y, k);
  16221. for (int i = 0; i < nb; i++) {
  16222. for (int j = 0; j < QK4_1; j += 2) {
  16223. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16224. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16225. hist[vi0]++;
  16226. hist[vi1]++;
  16227. }
  16228. }
  16229. }
  16230. return (n/QK4_1*sizeof(block_q4_1));
  16231. }
  16232. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16233. assert(k % QK5_0 == 0);
  16234. const int nb = k / QK5_0;
  16235. for (int b = 0; b < n; b += k) {
  16236. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16237. quantize_row_q5_0_reference(src + b, y, k);
  16238. for (int i = 0; i < nb; i++) {
  16239. uint32_t qh;
  16240. memcpy(&qh, &y[i].qh, sizeof(qh));
  16241. for (int j = 0; j < QK5_0; j += 2) {
  16242. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16243. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16244. // cast to 16 bins
  16245. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16246. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16247. hist[vi0]++;
  16248. hist[vi1]++;
  16249. }
  16250. }
  16251. }
  16252. return (n/QK5_0*sizeof(block_q5_0));
  16253. }
  16254. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16255. assert(k % QK5_1 == 0);
  16256. const int nb = k / QK5_1;
  16257. for (int b = 0; b < n; b += k) {
  16258. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16259. quantize_row_q5_1_reference(src + b, y, k);
  16260. for (int i = 0; i < nb; i++) {
  16261. uint32_t qh;
  16262. memcpy(&qh, &y[i].qh, sizeof(qh));
  16263. for (int j = 0; j < QK5_1; j += 2) {
  16264. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16265. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16266. // cast to 16 bins
  16267. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16268. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16269. hist[vi0]++;
  16270. hist[vi1]++;
  16271. }
  16272. }
  16273. }
  16274. return (n/QK5_1*sizeof(block_q5_1));
  16275. }
  16276. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16277. assert(k % QK8_0 == 0);
  16278. const int nb = k / QK8_0;
  16279. for (int b = 0; b < n; b += k) {
  16280. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16281. quantize_row_q8_0_reference(src + b, y, k);
  16282. for (int i = 0; i < nb; i++) {
  16283. for (int j = 0; j < QK8_0; ++j) {
  16284. const int8_t vi = y[i].qs[j];
  16285. hist[vi/16 + 8]++;
  16286. }
  16287. }
  16288. }
  16289. return (n/QK8_0*sizeof(block_q8_0));
  16290. }
  16291. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16292. return
  16293. type == GGML_TYPE_IQ2_XXS ||
  16294. type == GGML_TYPE_IQ2_XS ||
  16295. type == GGML_TYPE_IQ1_S;
  16296. }
  16297. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16298. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16299. ggml_quantize_init(type); // this is noop if already initialized
  16300. size_t result = 0;
  16301. int n = nrows * n_per_row;
  16302. switch (type) {
  16303. case GGML_TYPE_Q4_0:
  16304. {
  16305. GGML_ASSERT(start % QK4_0 == 0);
  16306. GGML_ASSERT(start % n_per_row == 0);
  16307. size_t start_row = start / n_per_row;
  16308. size_t row_size = ggml_row_size(type, n_per_row);
  16309. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16310. GGML_ASSERT(result == row_size * nrows);
  16311. } break;
  16312. case GGML_TYPE_Q4_1:
  16313. {
  16314. GGML_ASSERT(start % QK4_1 == 0);
  16315. GGML_ASSERT(start % n_per_row == 0);
  16316. size_t start_row = start / n_per_row;
  16317. size_t row_size = ggml_row_size(type, n_per_row);
  16318. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16319. GGML_ASSERT(result == row_size * nrows);
  16320. } break;
  16321. case GGML_TYPE_Q5_0:
  16322. {
  16323. GGML_ASSERT(start % QK5_0 == 0);
  16324. GGML_ASSERT(start % n_per_row == 0);
  16325. size_t start_row = start / n_per_row;
  16326. size_t row_size = ggml_row_size(type, n_per_row);
  16327. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16328. GGML_ASSERT(result == row_size * nrows);
  16329. } break;
  16330. case GGML_TYPE_Q5_1:
  16331. {
  16332. GGML_ASSERT(start % QK5_1 == 0);
  16333. GGML_ASSERT(start % n_per_row == 0);
  16334. size_t start_row = start / n_per_row;
  16335. size_t row_size = ggml_row_size(type, n_per_row);
  16336. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16337. GGML_ASSERT(result == row_size * nrows);
  16338. } break;
  16339. case GGML_TYPE_Q8_0:
  16340. {
  16341. GGML_ASSERT(start % QK8_0 == 0);
  16342. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16343. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16344. } break;
  16345. case GGML_TYPE_Q2_K:
  16346. {
  16347. GGML_ASSERT(start % QK_K == 0);
  16348. GGML_ASSERT(start % n_per_row == 0);
  16349. size_t start_row = start / n_per_row;
  16350. size_t row_size = ggml_row_size(type, n_per_row);
  16351. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16352. GGML_ASSERT(result == row_size * nrows);
  16353. } break;
  16354. case GGML_TYPE_Q3_K:
  16355. {
  16356. GGML_ASSERT(start % QK_K == 0);
  16357. GGML_ASSERT(start % n_per_row == 0);
  16358. size_t start_row = start / n_per_row;
  16359. size_t row_size = ggml_row_size(type, n_per_row);
  16360. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16361. GGML_ASSERT(result == row_size * nrows);
  16362. } break;
  16363. case GGML_TYPE_Q4_K:
  16364. {
  16365. GGML_ASSERT(start % QK_K == 0);
  16366. GGML_ASSERT(start % n_per_row == 0);
  16367. size_t start_row = start / n_per_row;
  16368. size_t row_size = ggml_row_size(type, n_per_row);
  16369. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16370. GGML_ASSERT(result == row_size * nrows);
  16371. } break;
  16372. case GGML_TYPE_Q5_K:
  16373. {
  16374. GGML_ASSERT(start % QK_K == 0);
  16375. GGML_ASSERT(start % n_per_row == 0);
  16376. size_t start_row = start / n_per_row;
  16377. size_t row_size = ggml_row_size(type, n_per_row);
  16378. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16379. GGML_ASSERT(result == row_size * nrows);
  16380. } break;
  16381. case GGML_TYPE_Q6_K:
  16382. {
  16383. GGML_ASSERT(start % QK_K == 0);
  16384. GGML_ASSERT(start % n_per_row == 0);
  16385. size_t start_row = start / n_per_row;
  16386. size_t row_size = ggml_row_size(type, n_per_row);
  16387. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16388. GGML_ASSERT(result == row_size * nrows);
  16389. } break;
  16390. case GGML_TYPE_IQ2_XXS:
  16391. {
  16392. GGML_ASSERT(start % QK_K == 0);
  16393. GGML_ASSERT(start % n_per_row == 0);
  16394. GGML_ASSERT(imatrix);
  16395. size_t start_row = start / n_per_row;
  16396. size_t row_size = ggml_row_size(type, n_per_row);
  16397. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16398. GGML_ASSERT(result == row_size * nrows);
  16399. } break;
  16400. case GGML_TYPE_IQ2_XS:
  16401. {
  16402. GGML_ASSERT(start % QK_K == 0);
  16403. GGML_ASSERT(start % n_per_row == 0);
  16404. GGML_ASSERT(imatrix);
  16405. size_t start_row = start / n_per_row;
  16406. size_t row_size = ggml_row_size(type, n_per_row);
  16407. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16408. GGML_ASSERT(result == row_size * nrows);
  16409. } break;
  16410. case GGML_TYPE_IQ3_XXS:
  16411. {
  16412. GGML_ASSERT(start % QK_K == 0);
  16413. GGML_ASSERT(start % n_per_row == 0);
  16414. size_t start_row = start / n_per_row;
  16415. size_t row_size = ggml_row_size(type, n_per_row);
  16416. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16417. GGML_ASSERT(result == row_size * nrows);
  16418. } break;
  16419. case GGML_TYPE_IQ3_S:
  16420. {
  16421. GGML_ASSERT(start % QK_K == 0);
  16422. GGML_ASSERT(start % n_per_row == 0);
  16423. size_t start_row = start / n_per_row;
  16424. size_t row_size = ggml_row_size(type, n_per_row);
  16425. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16426. GGML_ASSERT(result == row_size * nrows);
  16427. } break;
  16428. case GGML_TYPE_IQ2_S:
  16429. {
  16430. GGML_ASSERT(start % QK_K == 0);
  16431. GGML_ASSERT(start % n_per_row == 0);
  16432. size_t start_row = start / n_per_row;
  16433. size_t row_size = ggml_row_size(type, n_per_row);
  16434. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16435. GGML_ASSERT(result == row_size * nrows);
  16436. } break;
  16437. case GGML_TYPE_IQ1_S:
  16438. {
  16439. GGML_ASSERT(start % QK_K == 0);
  16440. GGML_ASSERT(start % n_per_row == 0);
  16441. size_t start_row = start / n_per_row;
  16442. size_t row_size = ggml_row_size(type, n_per_row);
  16443. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16444. GGML_ASSERT(result == row_size * nrows);
  16445. } break;
  16446. case GGML_TYPE_IQ4_NL:
  16447. #if QK_K == 64
  16448. case GGML_TYPE_IQ4_XS:
  16449. #endif
  16450. {
  16451. GGML_ASSERT(start % QK4_NL == 0);
  16452. GGML_ASSERT(start % n_per_row == 0);
  16453. size_t start_row = start / n_per_row;
  16454. size_t row_size = ggml_row_size(type, n_per_row);
  16455. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16456. GGML_ASSERT(result == row_size * nrows);
  16457. } break;
  16458. #if QK_K != 64
  16459. case GGML_TYPE_IQ4_XS:
  16460. {
  16461. GGML_ASSERT(start % QK_K == 0);
  16462. GGML_ASSERT(start % n_per_row == 0);
  16463. size_t start_row = start / n_per_row;
  16464. size_t row_size = ggml_row_size(type, n_per_row);
  16465. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16466. GGML_ASSERT(result == row_size * nrows);
  16467. } break;
  16468. #endif
  16469. case GGML_TYPE_F16:
  16470. {
  16471. size_t elemsize = sizeof(ggml_fp16_t);
  16472. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16473. result = n * elemsize;
  16474. } break;
  16475. case GGML_TYPE_F32:
  16476. {
  16477. size_t elemsize = sizeof(float);
  16478. result = n * elemsize;
  16479. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16480. } break;
  16481. default:
  16482. assert(false);
  16483. }
  16484. return result;
  16485. }
  16486. ////////////////////////////////////////////////////////////////////////////////
  16487. struct gguf_str {
  16488. uint64_t n; // GGUFv2
  16489. char * data;
  16490. };
  16491. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16492. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16493. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16494. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16495. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16496. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16497. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16498. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16499. [GGUF_TYPE_BOOL] = sizeof(bool),
  16500. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16501. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16502. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16503. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16504. [GGUF_TYPE_ARRAY] = 0, // undefined
  16505. };
  16506. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16507. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16508. [GGUF_TYPE_UINT8] = "u8",
  16509. [GGUF_TYPE_INT8] = "i8",
  16510. [GGUF_TYPE_UINT16] = "u16",
  16511. [GGUF_TYPE_INT16] = "i16",
  16512. [GGUF_TYPE_UINT32] = "u32",
  16513. [GGUF_TYPE_INT32] = "i32",
  16514. [GGUF_TYPE_FLOAT32] = "f32",
  16515. [GGUF_TYPE_BOOL] = "bool",
  16516. [GGUF_TYPE_STRING] = "str",
  16517. [GGUF_TYPE_ARRAY] = "arr",
  16518. [GGUF_TYPE_UINT64] = "u64",
  16519. [GGUF_TYPE_INT64] = "i64",
  16520. [GGUF_TYPE_FLOAT64] = "f64",
  16521. };
  16522. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16523. union gguf_value {
  16524. uint8_t uint8;
  16525. int8_t int8;
  16526. uint16_t uint16;
  16527. int16_t int16;
  16528. uint32_t uint32;
  16529. int32_t int32;
  16530. float float32;
  16531. uint64_t uint64;
  16532. int64_t int64;
  16533. double float64;
  16534. bool bool_;
  16535. struct gguf_str str;
  16536. struct {
  16537. enum gguf_type type;
  16538. uint64_t n; // GGUFv2
  16539. void * data;
  16540. } arr;
  16541. };
  16542. struct gguf_kv {
  16543. struct gguf_str key;
  16544. enum gguf_type type;
  16545. union gguf_value value;
  16546. };
  16547. struct gguf_header {
  16548. char magic[4];
  16549. uint32_t version;
  16550. uint64_t n_tensors; // GGUFv2
  16551. uint64_t n_kv; // GGUFv2
  16552. };
  16553. struct gguf_tensor_info {
  16554. struct gguf_str name;
  16555. uint32_t n_dims;
  16556. uint64_t ne[GGML_MAX_DIMS];
  16557. enum ggml_type type;
  16558. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16559. // for writing API
  16560. const void * data;
  16561. size_t size;
  16562. };
  16563. struct gguf_context {
  16564. struct gguf_header header;
  16565. struct gguf_kv * kv;
  16566. struct gguf_tensor_info * infos;
  16567. size_t alignment;
  16568. size_t offset; // offset of `data` from beginning of file
  16569. size_t size; // size of `data` in bytes
  16570. //uint8_t * padding;
  16571. void * data;
  16572. };
  16573. static size_t gguf_type_size(enum gguf_type type) {
  16574. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16575. return GGUF_TYPE_SIZE[type];
  16576. }
  16577. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16578. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16579. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16580. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16581. GGML_ASSERT(info->ne[i] > 0);
  16582. }
  16583. // prevent overflow for total number of elements
  16584. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16585. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16586. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16587. }
  16588. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16589. const size_t n = fread(dst, 1, size, file);
  16590. *offset += n;
  16591. return n == size;
  16592. }
  16593. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16594. p->n = 0;
  16595. p->data = NULL;
  16596. bool ok = true;
  16597. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16598. // early exit if string length is invalid, prevents from integer overflow
  16599. if (p->n == SIZE_MAX) {
  16600. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16601. return false;
  16602. }
  16603. p->data = GGML_CALLOC(p->n + 1, 1);
  16604. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16605. return ok;
  16606. }
  16607. struct gguf_context * gguf_init_empty(void) {
  16608. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16609. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16610. ctx->header.version = GGUF_VERSION;
  16611. ctx->header.n_tensors = 0;
  16612. ctx->header.n_kv = 0;
  16613. ctx->kv = NULL;
  16614. ctx->infos = NULL;
  16615. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16616. ctx->offset = 0;
  16617. ctx->size = 0;
  16618. ctx->data = NULL;
  16619. return ctx;
  16620. }
  16621. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16622. FILE * file = fopen(fname, "rb");
  16623. if (!file) {
  16624. return NULL;
  16625. }
  16626. // offset from start of file
  16627. size_t offset = 0;
  16628. char magic[4];
  16629. // check the magic before making allocations
  16630. {
  16631. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16632. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16633. if (magic[i] != GGUF_MAGIC[i]) {
  16634. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16635. fclose(file);
  16636. return NULL;
  16637. }
  16638. }
  16639. }
  16640. bool ok = true;
  16641. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16642. // read the header
  16643. {
  16644. strncpy(ctx->header.magic, magic, 4);
  16645. ctx->kv = NULL;
  16646. ctx->infos = NULL;
  16647. ctx->data = NULL;
  16648. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16649. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16650. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16651. if (ctx->header.version == 1) {
  16652. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16653. fclose(file);
  16654. gguf_free(ctx);
  16655. return NULL;
  16656. }
  16657. // sanity-checks to prevent from integer/buffer overflows
  16658. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16659. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16660. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16661. if (!ok) {
  16662. fprintf(stderr, "%s: failed to read header\n", __func__);
  16663. fclose(file);
  16664. gguf_free(ctx);
  16665. return NULL;
  16666. }
  16667. }
  16668. // read the kv pairs
  16669. {
  16670. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16671. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16672. struct gguf_kv * kv = &ctx->kv[i];
  16673. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16674. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16675. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16676. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16677. switch (kv->type) {
  16678. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16679. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16680. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16681. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16682. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16683. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16684. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16685. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16686. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16687. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16688. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16689. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16690. case GGUF_TYPE_ARRAY:
  16691. {
  16692. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16693. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16694. switch (kv->value.arr.type) {
  16695. case GGUF_TYPE_UINT8:
  16696. case GGUF_TYPE_INT8:
  16697. case GGUF_TYPE_UINT16:
  16698. case GGUF_TYPE_INT16:
  16699. case GGUF_TYPE_UINT32:
  16700. case GGUF_TYPE_INT32:
  16701. case GGUF_TYPE_FLOAT32:
  16702. case GGUF_TYPE_UINT64:
  16703. case GGUF_TYPE_INT64:
  16704. case GGUF_TYPE_FLOAT64:
  16705. case GGUF_TYPE_BOOL:
  16706. {
  16707. // prevent from integer overflow in the malloc below
  16708. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16709. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16710. fclose(file);
  16711. gguf_free(ctx);
  16712. return NULL;
  16713. }
  16714. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16715. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16716. } break;
  16717. case GGUF_TYPE_STRING:
  16718. {
  16719. // prevent from integer overflow in the malloc below
  16720. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16721. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16722. fclose(file);
  16723. gguf_free(ctx);
  16724. return NULL;
  16725. }
  16726. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16727. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16728. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16729. }
  16730. } break;
  16731. case GGUF_TYPE_ARRAY:
  16732. default: GGML_ASSERT(false && "invalid type"); break;
  16733. }
  16734. } break;
  16735. default: GGML_ASSERT(false && "invalid type");
  16736. }
  16737. if (!ok) {
  16738. break;
  16739. }
  16740. }
  16741. if (!ok) {
  16742. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16743. fclose(file);
  16744. gguf_free(ctx);
  16745. return NULL;
  16746. }
  16747. }
  16748. // read the tensor infos
  16749. {
  16750. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16751. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16752. struct gguf_tensor_info * info = &ctx->infos[i];
  16753. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16754. info->ne[j] = 1;
  16755. }
  16756. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16757. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16758. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16759. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16760. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16761. }
  16762. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16763. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16764. gguf_tensor_info_sanitize(info);
  16765. if (!ok) {
  16766. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16767. fclose(file);
  16768. gguf_free(ctx);
  16769. return NULL;
  16770. }
  16771. }
  16772. }
  16773. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16774. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16775. if (alignment_idx != -1) {
  16776. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16777. }
  16778. // we require the data section to be aligned, so take into account any padding
  16779. {
  16780. const size_t offset_pad = offset % ctx->alignment;
  16781. if (offset_pad != 0) {
  16782. offset += ctx->alignment - offset_pad;
  16783. fseek(file, offset, SEEK_SET);
  16784. }
  16785. }
  16786. // store the current file offset - this is where the data section starts
  16787. ctx->offset = offset;
  16788. // compute the total size of the data section, taking into account the alignment
  16789. {
  16790. ctx->size = 0;
  16791. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16792. struct gguf_tensor_info * info = &ctx->infos[i];
  16793. const int64_t ne =
  16794. (int64_t) info->ne[0] *
  16795. (int64_t) info->ne[1] *
  16796. (int64_t) info->ne[2] *
  16797. (int64_t) info->ne[3];
  16798. if (ne % ggml_blck_size(info->type) != 0) {
  16799. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16800. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16801. fclose(file);
  16802. gguf_free(ctx);
  16803. return NULL;
  16804. }
  16805. const size_t size_cur = ggml_row_size(info->type, ne);
  16806. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16807. }
  16808. }
  16809. // load the tensor data only if requested
  16810. if (params.ctx != NULL) {
  16811. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16812. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16813. // the ggml_tensor structs to the appropriate locations in the binary blob
  16814. // compute the exact size needed for the new ggml_context
  16815. const size_t mem_size =
  16816. params.no_alloc ?
  16817. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16818. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16819. struct ggml_init_params pdata = {
  16820. .mem_size = mem_size,
  16821. .mem_buffer = NULL,
  16822. .no_alloc = params.no_alloc,
  16823. };
  16824. *params.ctx = ggml_init(pdata);
  16825. struct ggml_context * ctx_data = *params.ctx;
  16826. struct ggml_tensor * data = NULL;
  16827. if (!params.no_alloc) {
  16828. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16829. ok = ok && data != NULL;
  16830. // read the binary blob with the tensor data
  16831. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16832. if (!ok) {
  16833. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16834. fclose(file);
  16835. ggml_free(ctx_data);
  16836. gguf_free(ctx);
  16837. return NULL;
  16838. }
  16839. ctx->data = data->data;
  16840. }
  16841. ggml_set_no_alloc(ctx_data, true);
  16842. // create the tensors
  16843. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16844. const int64_t ne[GGML_MAX_DIMS] = {
  16845. ctx->infos[i].ne[0],
  16846. ctx->infos[i].ne[1],
  16847. ctx->infos[i].ne[2],
  16848. ctx->infos[i].ne[3],
  16849. };
  16850. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16851. ok = ok && cur != NULL;
  16852. ggml_set_name(cur, ctx->infos[i].name.data);
  16853. if (!ok) {
  16854. break;
  16855. }
  16856. // point the data member to the appropriate location in the binary blob using the tensor infos
  16857. if (!params.no_alloc) {
  16858. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16859. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16860. }
  16861. }
  16862. if (!ok) {
  16863. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16864. fclose(file);
  16865. ggml_free(ctx_data);
  16866. gguf_free(ctx);
  16867. return NULL;
  16868. }
  16869. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16870. }
  16871. fclose(file);
  16872. return ctx;
  16873. }
  16874. void gguf_free(struct gguf_context * ctx) {
  16875. if (ctx == NULL) {
  16876. return;
  16877. }
  16878. if (ctx->kv) {
  16879. // free string memory - not great..
  16880. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16881. struct gguf_kv * kv = &ctx->kv[i];
  16882. if (kv->key.data) {
  16883. GGML_FREE(kv->key.data);
  16884. }
  16885. if (kv->type == GGUF_TYPE_STRING) {
  16886. if (kv->value.str.data) {
  16887. GGML_FREE(kv->value.str.data);
  16888. }
  16889. }
  16890. if (kv->type == GGUF_TYPE_ARRAY) {
  16891. if (kv->value.arr.data) {
  16892. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16893. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16894. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16895. if (str->data) {
  16896. GGML_FREE(str->data);
  16897. }
  16898. }
  16899. }
  16900. GGML_FREE(kv->value.arr.data);
  16901. }
  16902. }
  16903. }
  16904. GGML_FREE(ctx->kv);
  16905. }
  16906. if (ctx->infos) {
  16907. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16908. struct gguf_tensor_info * info = &ctx->infos[i];
  16909. if (info->name.data) {
  16910. GGML_FREE(info->name.data);
  16911. }
  16912. }
  16913. GGML_FREE(ctx->infos);
  16914. }
  16915. GGML_ALIGNED_FREE(ctx);
  16916. }
  16917. const char * gguf_type_name(enum gguf_type type) {
  16918. return GGUF_TYPE_NAME[type];
  16919. }
  16920. int gguf_get_version(const struct gguf_context * ctx) {
  16921. return ctx->header.version;
  16922. }
  16923. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16924. return ctx->alignment;
  16925. }
  16926. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16927. return ctx->offset;
  16928. }
  16929. void * gguf_get_data(const struct gguf_context * ctx) {
  16930. return ctx->data;
  16931. }
  16932. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16933. return ctx->header.n_kv;
  16934. }
  16935. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16936. // return -1 if key not found
  16937. int keyfound = -1;
  16938. const int n_kv = gguf_get_n_kv(ctx);
  16939. for (int i = 0; i < n_kv; ++i) {
  16940. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16941. keyfound = i;
  16942. break;
  16943. }
  16944. }
  16945. return keyfound;
  16946. }
  16947. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16948. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16949. return ctx->kv[key_id].key.data;
  16950. }
  16951. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16952. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16953. return ctx->kv[key_id].type;
  16954. }
  16955. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16956. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16957. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16958. return ctx->kv[key_id].value.arr.type;
  16959. }
  16960. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16961. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16962. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16963. return ctx->kv[key_id].value.arr.data;
  16964. }
  16965. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16966. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16967. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16968. struct gguf_kv * kv = &ctx->kv[key_id];
  16969. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16970. return str->data;
  16971. }
  16972. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16973. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16974. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16975. return ctx->kv[key_id].value.arr.n;
  16976. }
  16977. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16978. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16979. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16980. return ctx->kv[key_id].value.uint8;
  16981. }
  16982. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16983. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16984. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16985. return ctx->kv[key_id].value.int8;
  16986. }
  16987. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16988. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16989. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16990. return ctx->kv[key_id].value.uint16;
  16991. }
  16992. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16993. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16994. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16995. return ctx->kv[key_id].value.int16;
  16996. }
  16997. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16998. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16999. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17000. return ctx->kv[key_id].value.uint32;
  17001. }
  17002. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17003. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17004. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17005. return ctx->kv[key_id].value.int32;
  17006. }
  17007. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17008. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17009. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17010. return ctx->kv[key_id].value.float32;
  17011. }
  17012. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17013. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17014. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17015. return ctx->kv[key_id].value.uint64;
  17016. }
  17017. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17018. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17019. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17020. return ctx->kv[key_id].value.int64;
  17021. }
  17022. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17023. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17024. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17025. return ctx->kv[key_id].value.float64;
  17026. }
  17027. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17028. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17029. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17030. return ctx->kv[key_id].value.bool_;
  17031. }
  17032. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17033. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17034. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17035. return ctx->kv[key_id].value.str.data;
  17036. }
  17037. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17038. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17039. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17040. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17041. return &ctx->kv[key_id].value;
  17042. }
  17043. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17044. return ctx->header.n_tensors;
  17045. }
  17046. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17047. // return -1 if tensor not found
  17048. int tensorfound = -1;
  17049. const int n_tensors = gguf_get_n_tensors(ctx);
  17050. for (int i = 0; i < n_tensors; ++i) {
  17051. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17052. tensorfound = i;
  17053. break;
  17054. }
  17055. }
  17056. return tensorfound;
  17057. }
  17058. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17059. return ctx->infos[i].offset;
  17060. }
  17061. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17062. return ctx->infos[i].name.data;
  17063. }
  17064. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17065. return ctx->infos[i].type;
  17066. }
  17067. // returns the index
  17068. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17069. const int idx = gguf_find_key(ctx, key);
  17070. if (idx >= 0) {
  17071. return idx;
  17072. }
  17073. const int n_kv = gguf_get_n_kv(ctx);
  17074. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17075. ctx->kv[n_kv].key.n = strlen(key);
  17076. ctx->kv[n_kv].key.data = strdup(key);
  17077. ctx->header.n_kv++;
  17078. return n_kv;
  17079. }
  17080. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17081. const int idx = gguf_get_or_add_key(ctx, key);
  17082. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17083. ctx->kv[idx].value.uint8 = val;
  17084. }
  17085. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17086. const int idx = gguf_get_or_add_key(ctx, key);
  17087. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17088. ctx->kv[idx].value.int8 = val;
  17089. }
  17090. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17091. const int idx = gguf_get_or_add_key(ctx, key);
  17092. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17093. ctx->kv[idx].value.uint16 = val;
  17094. }
  17095. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17096. const int idx = gguf_get_or_add_key(ctx, key);
  17097. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17098. ctx->kv[idx].value.int16 = val;
  17099. }
  17100. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17101. const int idx = gguf_get_or_add_key(ctx, key);
  17102. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17103. ctx->kv[idx].value.uint32 = val;
  17104. }
  17105. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17106. const int idx = gguf_get_or_add_key(ctx, key);
  17107. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17108. ctx->kv[idx].value.int32 = val;
  17109. }
  17110. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17111. const int idx = gguf_get_or_add_key(ctx, key);
  17112. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17113. ctx->kv[idx].value.float32 = val;
  17114. }
  17115. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17116. const int idx = gguf_get_or_add_key(ctx, key);
  17117. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17118. ctx->kv[idx].value.uint64 = val;
  17119. }
  17120. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17121. const int idx = gguf_get_or_add_key(ctx, key);
  17122. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17123. ctx->kv[idx].value.int64 = val;
  17124. }
  17125. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17126. const int idx = gguf_get_or_add_key(ctx, key);
  17127. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17128. ctx->kv[idx].value.float64 = val;
  17129. }
  17130. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17131. const int idx = gguf_get_or_add_key(ctx, key);
  17132. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17133. ctx->kv[idx].value.bool_ = val;
  17134. }
  17135. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17136. const int idx = gguf_get_or_add_key(ctx, key);
  17137. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17138. ctx->kv[idx].value.str.n = strlen(val);
  17139. ctx->kv[idx].value.str.data = strdup(val);
  17140. }
  17141. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17142. const int idx = gguf_get_or_add_key(ctx, key);
  17143. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17144. ctx->kv[idx].value.arr.type = type;
  17145. ctx->kv[idx].value.arr.n = n;
  17146. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17147. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17148. }
  17149. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17150. const int idx = gguf_get_or_add_key(ctx, key);
  17151. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17152. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17153. ctx->kv[idx].value.arr.n = n;
  17154. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17155. for (int i = 0; i < n; i++) {
  17156. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17157. str->n = strlen(data[i]);
  17158. str->data = strdup(data[i]);
  17159. }
  17160. }
  17161. // set or add KV pairs from another context
  17162. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17163. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17164. switch (src->kv[i].type) {
  17165. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17166. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17167. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17168. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17169. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17170. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17171. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17172. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17173. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17174. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17175. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17176. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17177. case GGUF_TYPE_ARRAY:
  17178. {
  17179. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17180. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17181. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17182. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17183. }
  17184. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17185. GGML_FREE((void *)data);
  17186. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17187. GGML_ASSERT(false && "nested arrays not supported");
  17188. } else {
  17189. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17190. }
  17191. } break;
  17192. default: GGML_ASSERT(false && "invalid type"); break;
  17193. }
  17194. }
  17195. }
  17196. void gguf_add_tensor(
  17197. struct gguf_context * ctx,
  17198. const struct ggml_tensor * tensor) {
  17199. const int idx = ctx->header.n_tensors;
  17200. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17201. ctx->infos[idx].name.n = strlen(tensor->name);
  17202. ctx->infos[idx].name.data = strdup(tensor->name);
  17203. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17204. ctx->infos[idx].ne[i] = 1;
  17205. }
  17206. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17207. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17208. ctx->infos[idx].ne[i] = tensor->ne[i];
  17209. }
  17210. ctx->infos[idx].type = tensor->type;
  17211. ctx->infos[idx].offset = 0;
  17212. ctx->infos[idx].data = tensor->data;
  17213. ctx->infos[idx].size = ggml_nbytes(tensor);
  17214. if (ctx->header.n_tensors > 0) {
  17215. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17216. }
  17217. ctx->header.n_tensors++;
  17218. }
  17219. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17220. const int idx = gguf_find_tensor(ctx, name);
  17221. if (idx < 0) {
  17222. GGML_ASSERT(false && "tensor not found");
  17223. }
  17224. ctx->infos[idx].type = type;
  17225. }
  17226. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17227. const int idx = gguf_find_tensor(ctx, name);
  17228. if (idx < 0) {
  17229. GGML_ASSERT(false && "tensor not found");
  17230. }
  17231. ctx->infos[idx].data = data;
  17232. ctx->infos[idx].size = size;
  17233. // update offsets
  17234. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17235. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17236. }
  17237. }
  17238. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17239. // fwrite(&val->n, sizeof(val->n), 1, file);
  17240. // fwrite(val->data, sizeof(char), val->n, file);
  17241. //}
  17242. //
  17243. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17244. // fwrite(val, sizeof(char), size, file);
  17245. //}
  17246. struct gguf_buf {
  17247. void * data;
  17248. size_t size;
  17249. size_t offset;
  17250. };
  17251. static struct gguf_buf gguf_buf_init(size_t size) {
  17252. struct gguf_buf buf = {
  17253. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17254. /*buf.size =*/ size,
  17255. /*buf.offset =*/ 0,
  17256. };
  17257. return buf;
  17258. }
  17259. static void gguf_buf_free(struct gguf_buf buf) {
  17260. if (buf.data) {
  17261. GGML_FREE(buf.data);
  17262. }
  17263. }
  17264. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17265. if (buf->offset + size > buf->size) {
  17266. buf->size = 1.5*(buf->offset + size);
  17267. if (buf->data) {
  17268. buf->data = realloc(buf->data, buf->size);
  17269. }
  17270. }
  17271. }
  17272. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17273. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17274. if (buf->data) {
  17275. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17276. }
  17277. buf->offset += sizeof(val->n);
  17278. if (buf->data) {
  17279. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17280. }
  17281. buf->offset += val->n;
  17282. }
  17283. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17284. gguf_buf_grow(buf, el_size);
  17285. if (buf->data) {
  17286. memcpy((char *) buf->data + buf->offset, val, el_size);
  17287. }
  17288. buf->offset += el_size;
  17289. }
  17290. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17291. // write header
  17292. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17293. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17294. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17295. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17296. // write key-value pairs
  17297. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17298. struct gguf_kv * kv = &ctx->kv[i];
  17299. gguf_bwrite_str(buf, &kv->key);
  17300. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17301. switch (kv->type) {
  17302. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17303. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17304. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17305. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17306. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17307. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17308. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17309. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17310. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17311. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17312. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17313. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17314. case GGUF_TYPE_ARRAY:
  17315. {
  17316. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17317. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17318. switch (kv->value.arr.type) {
  17319. case GGUF_TYPE_UINT8:
  17320. case GGUF_TYPE_INT8:
  17321. case GGUF_TYPE_UINT16:
  17322. case GGUF_TYPE_INT16:
  17323. case GGUF_TYPE_UINT32:
  17324. case GGUF_TYPE_INT32:
  17325. case GGUF_TYPE_FLOAT32:
  17326. case GGUF_TYPE_UINT64:
  17327. case GGUF_TYPE_INT64:
  17328. case GGUF_TYPE_FLOAT64:
  17329. case GGUF_TYPE_BOOL:
  17330. {
  17331. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17332. } break;
  17333. case GGUF_TYPE_STRING:
  17334. {
  17335. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17336. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17337. }
  17338. } break;
  17339. case GGUF_TYPE_ARRAY:
  17340. default: GGML_ASSERT(false && "invalid type"); break;
  17341. }
  17342. } break;
  17343. default: GGML_ASSERT(false && "invalid type");
  17344. }
  17345. }
  17346. // write tensor infos
  17347. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17348. struct gguf_tensor_info * info = &ctx->infos[i];
  17349. gguf_bwrite_str(buf, &info->name);
  17350. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17351. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17352. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17353. }
  17354. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17355. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17356. }
  17357. // we require the data section to be aligned, so take into account any padding
  17358. {
  17359. const size_t offset = buf->offset;
  17360. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17361. if (offset_pad != offset) {
  17362. uint8_t pad = 0;
  17363. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17364. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17365. }
  17366. }
  17367. }
  17368. if (only_meta) {
  17369. return;
  17370. }
  17371. size_t offset = 0;
  17372. // write tensor data
  17373. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17374. struct gguf_tensor_info * info = &ctx->infos[i];
  17375. const size_t size = info->size;
  17376. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17377. gguf_bwrite_el(buf, info->data, size);
  17378. if (size_pad != size) {
  17379. uint8_t pad = 0;
  17380. for (size_t j = 0; j < size_pad - size; ++j) {
  17381. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17382. }
  17383. }
  17384. GGML_ASSERT(offset == info->offset);
  17385. offset += size_pad;
  17386. }
  17387. }
  17388. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17389. FILE * file = fopen(fname, "wb");
  17390. if (!file) {
  17391. GGML_ASSERT(false && "failed to open file for writing");
  17392. }
  17393. struct gguf_buf buf = gguf_buf_init(16*1024);
  17394. gguf_write_to_buf(ctx, &buf, only_meta);
  17395. fwrite(buf.data, 1, buf.offset, file);
  17396. gguf_buf_free(buf);
  17397. fclose(file);
  17398. }
  17399. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17400. // no allocs - only compute size
  17401. struct gguf_buf buf = gguf_buf_init(0);
  17402. gguf_write_to_buf(ctx, &buf, true);
  17403. return buf.offset;
  17404. }
  17405. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17406. struct gguf_buf buf = gguf_buf_init(16*1024);
  17407. gguf_write_to_buf(ctx, &buf, true);
  17408. memcpy(data, buf.data, buf.offset);
  17409. gguf_buf_free(buf);
  17410. }
  17411. ////////////////////////////////////////////////////////////////////////////////
  17412. int ggml_cpu_has_avx(void) {
  17413. #if defined(__AVX__)
  17414. return 1;
  17415. #else
  17416. return 0;
  17417. #endif
  17418. }
  17419. int ggml_cpu_has_avx_vnni(void) {
  17420. #if defined(__AVXVNNI__)
  17421. return 1;
  17422. #else
  17423. return 0;
  17424. #endif
  17425. }
  17426. int ggml_cpu_has_avx2(void) {
  17427. #if defined(__AVX2__)
  17428. return 1;
  17429. #else
  17430. return 0;
  17431. #endif
  17432. }
  17433. int ggml_cpu_has_avx512(void) {
  17434. #if defined(__AVX512F__)
  17435. return 1;
  17436. #else
  17437. return 0;
  17438. #endif
  17439. }
  17440. int ggml_cpu_has_avx512_vbmi(void) {
  17441. #if defined(__AVX512VBMI__)
  17442. return 1;
  17443. #else
  17444. return 0;
  17445. #endif
  17446. }
  17447. int ggml_cpu_has_avx512_vnni(void) {
  17448. #if defined(__AVX512VNNI__)
  17449. return 1;
  17450. #else
  17451. return 0;
  17452. #endif
  17453. }
  17454. int ggml_cpu_has_fma(void) {
  17455. #if defined(__FMA__)
  17456. return 1;
  17457. #else
  17458. return 0;
  17459. #endif
  17460. }
  17461. int ggml_cpu_has_neon(void) {
  17462. #if defined(__ARM_NEON)
  17463. return 1;
  17464. #else
  17465. return 0;
  17466. #endif
  17467. }
  17468. int ggml_cpu_has_arm_fma(void) {
  17469. #if defined(__ARM_FEATURE_FMA)
  17470. return 1;
  17471. #else
  17472. return 0;
  17473. #endif
  17474. }
  17475. int ggml_cpu_has_metal(void) {
  17476. #if defined(GGML_USE_METAL)
  17477. return 1;
  17478. #else
  17479. return 0;
  17480. #endif
  17481. }
  17482. int ggml_cpu_has_f16c(void) {
  17483. #if defined(__F16C__)
  17484. return 1;
  17485. #else
  17486. return 0;
  17487. #endif
  17488. }
  17489. int ggml_cpu_has_fp16_va(void) {
  17490. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17491. return 1;
  17492. #else
  17493. return 0;
  17494. #endif
  17495. }
  17496. int ggml_cpu_has_wasm_simd(void) {
  17497. #if defined(__wasm_simd128__)
  17498. return 1;
  17499. #else
  17500. return 0;
  17501. #endif
  17502. }
  17503. int ggml_cpu_has_blas(void) {
  17504. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17505. return 1;
  17506. #else
  17507. return 0;
  17508. #endif
  17509. }
  17510. int ggml_cpu_has_cublas(void) {
  17511. #if defined(GGML_USE_CUBLAS)
  17512. return 1;
  17513. #else
  17514. return 0;
  17515. #endif
  17516. }
  17517. int ggml_cpu_has_clblast(void) {
  17518. #if defined(GGML_USE_CLBLAST)
  17519. return 1;
  17520. #else
  17521. return 0;
  17522. #endif
  17523. }
  17524. int ggml_cpu_has_vulkan(void) {
  17525. #if defined(GGML_USE_VULKAN)
  17526. return 1;
  17527. #else
  17528. return 0;
  17529. #endif
  17530. }
  17531. int ggml_cpu_has_kompute(void) {
  17532. #if defined(GGML_USE_KOMPUTE)
  17533. return 1;
  17534. #else
  17535. return 0;
  17536. #endif
  17537. }
  17538. int ggml_cpu_has_sycl(void) {
  17539. #if defined(GGML_USE_SYCL)
  17540. return 1;
  17541. #else
  17542. return 0;
  17543. #endif
  17544. }
  17545. int ggml_cpu_has_gpublas(void) {
  17546. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17547. ggml_cpu_has_sycl();
  17548. }
  17549. int ggml_cpu_has_sse3(void) {
  17550. #if defined(__SSE3__)
  17551. return 1;
  17552. #else
  17553. return 0;
  17554. #endif
  17555. }
  17556. int ggml_cpu_has_ssse3(void) {
  17557. #if defined(__SSSE3__)
  17558. return 1;
  17559. #else
  17560. return 0;
  17561. #endif
  17562. }
  17563. int ggml_cpu_has_vsx(void) {
  17564. #if defined(__POWER9_VECTOR__)
  17565. return 1;
  17566. #else
  17567. return 0;
  17568. #endif
  17569. }
  17570. int ggml_cpu_has_matmul_int8(void) {
  17571. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17572. return 1;
  17573. #else
  17574. return 0;
  17575. #endif
  17576. }
  17577. ////////////////////////////////////////////////////////////////////////////////