ggml.h 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdint.h>
  212. #include <stddef.h>
  213. #include <stdbool.h>
  214. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  215. #define GGML_FILE_VERSION 1
  216. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  217. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  218. #define GGML_MAX_DIMS 4
  219. #define GGML_MAX_PARAMS 2048
  220. #define GGML_MAX_CONTEXTS 64
  221. #define GGML_MAX_SRC 10
  222. #ifndef GGML_MAX_NAME
  223. #define GGML_MAX_NAME 64
  224. #endif
  225. #define GGML_MAX_OP_PARAMS 64
  226. #define GGML_DEFAULT_N_THREADS 4
  227. #define GGML_DEFAULT_GRAPH_SIZE 2048
  228. #if UINTPTR_MAX == 0xFFFFFFFF
  229. #define GGML_MEM_ALIGN 4
  230. #else
  231. #define GGML_MEM_ALIGN 16
  232. #endif
  233. #define GGML_EXIT_SUCCESS 0
  234. #define GGML_EXIT_ABORTED 1
  235. #define GGUF_MAGIC "GGUF"
  236. #define GGUF_VERSION 3
  237. #define GGUF_DEFAULT_ALIGNMENT 32
  238. #define GGML_UNUSED(x) (void)(x)
  239. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  240. #define GGML_ASSERT(x) \
  241. do { \
  242. if (!(x)) { \
  243. fflush(stdout); \
  244. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  245. ggml_print_backtrace(); \
  246. abort(); \
  247. } \
  248. } while (0)
  249. #ifndef NDEBUG
  250. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  251. #elif defined(__GNUC__)
  252. #define GGML_UNREACHABLE() __builtin_unreachable()
  253. #elif defined(_MSC_VER)
  254. #define GGML_UNREACHABLE() __assume(0)
  255. #else
  256. #define GGML_UNREACHABLE() ((void) 0)
  257. #endif
  258. // used to copy the number of elements and stride in bytes of tensors into local variables.
  259. // main purpose is to reduce code duplication and improve readability.
  260. //
  261. // example:
  262. //
  263. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  264. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  265. //
  266. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  267. const type prefix##0 = (pointer)->array[0]; \
  268. GGML_UNUSED(prefix##0);
  269. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  271. const type prefix##1 = (pointer)->array[1]; \
  272. GGML_UNUSED(prefix##1);
  273. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  274. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  275. const type prefix##2 = (pointer)->array[2]; \
  276. GGML_UNUSED(prefix##2);
  277. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  278. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  279. const type prefix##3 = (pointer)->array[3]; \
  280. GGML_UNUSED(prefix##3);
  281. #define GGML_TENSOR_UNARY_OP_LOCALS \
  282. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  286. #define GGML_TENSOR_BINARY_OP_LOCALS \
  287. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  289. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  293. #ifdef __cplusplus
  294. extern "C" {
  295. #endif
  296. typedef uint16_t ggml_fp16_t;
  297. // convert FP16 <-> FP32
  298. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  299. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  300. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  301. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  302. struct ggml_object;
  303. struct ggml_context;
  304. enum ggml_type {
  305. GGML_TYPE_F32 = 0,
  306. GGML_TYPE_F16 = 1,
  307. GGML_TYPE_Q4_0 = 2,
  308. GGML_TYPE_Q4_1 = 3,
  309. // GGML_TYPE_Q4_2 = 4, support has been removed
  310. // GGML_TYPE_Q4_3 (5) support has been removed
  311. GGML_TYPE_Q5_0 = 6,
  312. GGML_TYPE_Q5_1 = 7,
  313. GGML_TYPE_Q8_0 = 8,
  314. GGML_TYPE_Q8_1 = 9,
  315. // k-quantizations
  316. GGML_TYPE_Q2_K = 10,
  317. GGML_TYPE_Q3_K = 11,
  318. GGML_TYPE_Q4_K = 12,
  319. GGML_TYPE_Q5_K = 13,
  320. GGML_TYPE_Q6_K = 14,
  321. GGML_TYPE_Q8_K = 15,
  322. GGML_TYPE_IQ2_XXS = 16,
  323. GGML_TYPE_IQ2_XS = 17,
  324. GGML_TYPE_IQ3_XXS = 18,
  325. GGML_TYPE_IQ1_S = 19,
  326. GGML_TYPE_IQ4_NL = 20,
  327. GGML_TYPE_IQ3_S = 21,
  328. GGML_TYPE_IQ2_S = 22,
  329. GGML_TYPE_IQ4_XS = 23,
  330. GGML_TYPE_I8,
  331. GGML_TYPE_I16,
  332. GGML_TYPE_I32,
  333. GGML_TYPE_COUNT,
  334. };
  335. // precision
  336. enum ggml_prec {
  337. GGML_PREC_DEFAULT,
  338. GGML_PREC_F32,
  339. };
  340. enum ggml_backend_type {
  341. GGML_BACKEND_TYPE_CPU = 0,
  342. GGML_BACKEND_TYPE_GPU = 10,
  343. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  344. };
  345. // model file types
  346. enum ggml_ftype {
  347. GGML_FTYPE_UNKNOWN = -1,
  348. GGML_FTYPE_ALL_F32 = 0,
  349. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  350. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  351. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  352. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  353. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  354. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  355. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  356. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  357. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  358. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  359. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  360. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  361. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  362. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  363. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  364. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  365. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  366. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  367. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  368. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  369. };
  370. // available tensor operations:
  371. enum ggml_op {
  372. GGML_OP_NONE = 0,
  373. GGML_OP_DUP,
  374. GGML_OP_ADD,
  375. GGML_OP_ADD1,
  376. GGML_OP_ACC,
  377. GGML_OP_SUB,
  378. GGML_OP_MUL,
  379. GGML_OP_DIV,
  380. GGML_OP_SQR,
  381. GGML_OP_SQRT,
  382. GGML_OP_LOG,
  383. GGML_OP_SUM,
  384. GGML_OP_SUM_ROWS,
  385. GGML_OP_MEAN,
  386. GGML_OP_ARGMAX,
  387. GGML_OP_REPEAT,
  388. GGML_OP_REPEAT_BACK,
  389. GGML_OP_CONCAT,
  390. GGML_OP_SILU_BACK,
  391. GGML_OP_NORM, // normalize
  392. GGML_OP_RMS_NORM,
  393. GGML_OP_RMS_NORM_BACK,
  394. GGML_OP_GROUP_NORM,
  395. GGML_OP_MUL_MAT,
  396. GGML_OP_MUL_MAT_ID,
  397. GGML_OP_OUT_PROD,
  398. GGML_OP_SCALE,
  399. GGML_OP_SET,
  400. GGML_OP_CPY,
  401. GGML_OP_CONT,
  402. GGML_OP_RESHAPE,
  403. GGML_OP_VIEW,
  404. GGML_OP_PERMUTE,
  405. GGML_OP_TRANSPOSE,
  406. GGML_OP_GET_ROWS,
  407. GGML_OP_GET_ROWS_BACK,
  408. GGML_OP_DIAG,
  409. GGML_OP_DIAG_MASK_INF,
  410. GGML_OP_DIAG_MASK_ZERO,
  411. GGML_OP_SOFT_MAX,
  412. GGML_OP_SOFT_MAX_BACK,
  413. GGML_OP_ROPE,
  414. GGML_OP_ROPE_BACK,
  415. GGML_OP_ALIBI,
  416. GGML_OP_CLAMP,
  417. GGML_OP_CONV_TRANSPOSE_1D,
  418. GGML_OP_IM2COL,
  419. GGML_OP_CONV_TRANSPOSE_2D,
  420. GGML_OP_POOL_1D,
  421. GGML_OP_POOL_2D,
  422. GGML_OP_UPSCALE, // nearest interpolate
  423. GGML_OP_PAD,
  424. GGML_OP_ARANGE,
  425. GGML_OP_TIMESTEP_EMBEDDING,
  426. GGML_OP_ARGSORT,
  427. GGML_OP_LEAKY_RELU,
  428. GGML_OP_FLASH_ATTN,
  429. GGML_OP_FLASH_FF,
  430. GGML_OP_FLASH_ATTN_BACK,
  431. GGML_OP_WIN_PART,
  432. GGML_OP_WIN_UNPART,
  433. GGML_OP_GET_REL_POS,
  434. GGML_OP_ADD_REL_POS,
  435. GGML_OP_UNARY,
  436. GGML_OP_MAP_UNARY,
  437. GGML_OP_MAP_BINARY,
  438. GGML_OP_MAP_CUSTOM1_F32,
  439. GGML_OP_MAP_CUSTOM2_F32,
  440. GGML_OP_MAP_CUSTOM3_F32,
  441. GGML_OP_MAP_CUSTOM1,
  442. GGML_OP_MAP_CUSTOM2,
  443. GGML_OP_MAP_CUSTOM3,
  444. GGML_OP_CROSS_ENTROPY_LOSS,
  445. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  446. GGML_OP_COUNT,
  447. };
  448. enum ggml_unary_op {
  449. GGML_UNARY_OP_ABS,
  450. GGML_UNARY_OP_SGN,
  451. GGML_UNARY_OP_NEG,
  452. GGML_UNARY_OP_STEP,
  453. GGML_UNARY_OP_TANH,
  454. GGML_UNARY_OP_ELU,
  455. GGML_UNARY_OP_RELU,
  456. GGML_UNARY_OP_GELU,
  457. GGML_UNARY_OP_GELU_QUICK,
  458. GGML_UNARY_OP_SILU,
  459. GGML_UNARY_OP_HARDSWISH,
  460. GGML_UNARY_OP_HARDSIGMOID,
  461. GGML_UNARY_OP_COUNT,
  462. };
  463. enum ggml_object_type {
  464. GGML_OBJECT_TYPE_TENSOR,
  465. GGML_OBJECT_TYPE_GRAPH,
  466. GGML_OBJECT_TYPE_WORK_BUFFER
  467. };
  468. enum ggml_log_level {
  469. GGML_LOG_LEVEL_ERROR = 2,
  470. GGML_LOG_LEVEL_WARN = 3,
  471. GGML_LOG_LEVEL_INFO = 4,
  472. GGML_LOG_LEVEL_DEBUG = 5
  473. };
  474. enum ggml_tensor_flag {
  475. GGML_TENSOR_FLAG_INPUT = 1,
  476. GGML_TENSOR_FLAG_OUTPUT = 2,
  477. GGML_TENSOR_FLAG_PARAM = 4,
  478. };
  479. // ggml object
  480. struct ggml_object {
  481. size_t offs;
  482. size_t size;
  483. struct ggml_object * next;
  484. enum ggml_object_type type;
  485. char padding[4];
  486. };
  487. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  488. // n-dimensional tensor
  489. struct ggml_tensor {
  490. enum ggml_type type;
  491. enum ggml_backend_type backend;
  492. struct ggml_backend_buffer * buffer;
  493. int64_t ne[GGML_MAX_DIMS]; // number of elements
  494. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  495. // nb[0] = ggml_type_size(type)
  496. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  497. // nb[i] = nb[i-1] * ne[i-1]
  498. // compute data
  499. enum ggml_op op;
  500. // op params - allocated as int32_t for alignment
  501. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  502. int32_t flags;
  503. struct ggml_tensor * grad;
  504. struct ggml_tensor * src[GGML_MAX_SRC];
  505. // performance
  506. int perf_runs;
  507. int64_t perf_cycles;
  508. int64_t perf_time_us;
  509. struct ggml_tensor * view_src;
  510. size_t view_offs;
  511. void * data;
  512. char name[GGML_MAX_NAME];
  513. void * extra; // extra things e.g. for ggml-cuda.cu
  514. char padding[8];
  515. };
  516. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  517. // Abort callback
  518. // If not NULL, called before ggml computation
  519. // If it returns true, the computation is aborted
  520. typedef bool (*ggml_abort_callback)(void * data);
  521. // the compute plan that needs to be prepared for ggml_graph_compute()
  522. // since https://github.com/ggerganov/ggml/issues/287
  523. struct ggml_cplan {
  524. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  525. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  526. int n_threads;
  527. // abort ggml_graph_compute when true
  528. ggml_abort_callback abort_callback;
  529. void * abort_callback_data;
  530. };
  531. enum ggml_cgraph_eval_order {
  532. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  533. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  534. GGML_CGRAPH_EVAL_ORDER_COUNT
  535. };
  536. struct ggml_hash_set {
  537. size_t size;
  538. struct ggml_tensor ** keys;
  539. };
  540. // computation graph
  541. struct ggml_cgraph {
  542. int size;
  543. int n_nodes;
  544. int n_leafs;
  545. struct ggml_tensor ** nodes;
  546. struct ggml_tensor ** grads;
  547. struct ggml_tensor ** leafs;
  548. struct ggml_hash_set visited_hash_table;
  549. enum ggml_cgraph_eval_order order;
  550. // performance
  551. int perf_runs;
  552. int64_t perf_cycles;
  553. int64_t perf_time_us;
  554. };
  555. // scratch buffer
  556. struct ggml_scratch {
  557. size_t offs;
  558. size_t size;
  559. void * data;
  560. };
  561. struct ggml_init_params {
  562. // memory pool
  563. size_t mem_size; // bytes
  564. void * mem_buffer; // if NULL, memory will be allocated internally
  565. bool no_alloc; // don't allocate memory for the tensor data
  566. };
  567. // compute types
  568. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  569. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  570. enum ggml_task_type {
  571. GGML_TASK_TYPE_INIT = 0,
  572. GGML_TASK_TYPE_COMPUTE,
  573. GGML_TASK_TYPE_FINALIZE,
  574. };
  575. struct ggml_compute_params {
  576. enum ggml_task_type type;
  577. // ith = thread index, nth = number of threads
  578. int ith, nth;
  579. // work buffer for all threads
  580. size_t wsize;
  581. void * wdata;
  582. };
  583. // numa strategies
  584. enum ggml_numa_strategy {
  585. GGML_NUMA_STRATEGY_DISABLED = 0,
  586. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  587. GGML_NUMA_STRATEGY_ISOLATE = 2,
  588. GGML_NUMA_STRATEGY_NUMACTL = 3,
  589. GGML_NUMA_STRATEGY_MIRROR = 4,
  590. GGML_NUMA_STRATEGY_COUNT
  591. };
  592. //
  593. // GUID
  594. //
  595. // GUID types
  596. typedef uint8_t ggml_guid[16];
  597. typedef ggml_guid * ggml_guid_t;
  598. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  599. // misc
  600. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  601. GGML_API int64_t ggml_time_ms(void);
  602. GGML_API int64_t ggml_time_us(void);
  603. GGML_API int64_t ggml_cycles(void);
  604. GGML_API int64_t ggml_cycles_per_ms(void);
  605. GGML_API void ggml_print_backtrace(void);
  606. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  607. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  608. GGML_API void ggml_print_object (const struct ggml_object * obj);
  609. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  610. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  611. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  612. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  613. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  614. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  615. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  616. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  617. GGML_DEPRECATED(
  618. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  619. "use ggml_row_size() instead");
  620. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  621. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  622. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  623. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  624. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  625. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  626. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  627. // TODO: temporary until model loading of ggml examples is refactored
  628. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  629. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  630. GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  631. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  632. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  633. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  634. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  635. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  636. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  637. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  638. // use this to compute the memory overhead of a tensor
  639. GGML_API size_t ggml_tensor_overhead(void);
  640. // main
  641. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  642. GGML_API void ggml_free(struct ggml_context * ctx);
  643. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  644. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  645. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  646. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  647. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  648. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  649. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  650. GGML_API struct ggml_tensor * ggml_new_tensor(
  651. struct ggml_context * ctx,
  652. enum ggml_type type,
  653. int n_dims,
  654. const int64_t *ne);
  655. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  656. struct ggml_context * ctx,
  657. enum ggml_type type,
  658. int64_t ne0);
  659. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  660. struct ggml_context * ctx,
  661. enum ggml_type type,
  662. int64_t ne0,
  663. int64_t ne1);
  664. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  665. struct ggml_context * ctx,
  666. enum ggml_type type,
  667. int64_t ne0,
  668. int64_t ne1,
  669. int64_t ne2);
  670. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  671. struct ggml_context * ctx,
  672. enum ggml_type type,
  673. int64_t ne0,
  674. int64_t ne1,
  675. int64_t ne2,
  676. int64_t ne3);
  677. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  678. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  679. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  680. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  681. // Context tensor enumeration and lookup
  682. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  683. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  684. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  685. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  686. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  687. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  688. // Converts a flat index into coordinates
  689. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  690. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  691. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  692. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  693. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  694. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  695. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  696. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  697. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  698. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  699. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  700. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  701. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  702. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  703. GGML_ATTRIBUTE_FORMAT(2, 3)
  704. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  705. //
  706. // operations on tensors with backpropagation
  707. //
  708. GGML_API struct ggml_tensor * ggml_dup(
  709. struct ggml_context * ctx,
  710. struct ggml_tensor * a);
  711. // in-place, returns view(a)
  712. GGML_API struct ggml_tensor * ggml_dup_inplace(
  713. struct ggml_context * ctx,
  714. struct ggml_tensor * a);
  715. GGML_API struct ggml_tensor * ggml_add(
  716. struct ggml_context * ctx,
  717. struct ggml_tensor * a,
  718. struct ggml_tensor * b);
  719. GGML_API struct ggml_tensor * ggml_add_inplace(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a,
  722. struct ggml_tensor * b);
  723. GGML_API struct ggml_tensor * ggml_add_cast(
  724. struct ggml_context * ctx,
  725. struct ggml_tensor * a,
  726. struct ggml_tensor * b,
  727. enum ggml_type type);
  728. GGML_API struct ggml_tensor * ggml_add1(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a,
  731. struct ggml_tensor * b);
  732. GGML_API struct ggml_tensor * ggml_add1_inplace(
  733. struct ggml_context * ctx,
  734. struct ggml_tensor * a,
  735. struct ggml_tensor * b);
  736. // dst = a
  737. // view(dst, nb1, nb2, nb3, offset) += b
  738. // return dst
  739. GGML_API struct ggml_tensor * ggml_acc(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a,
  742. struct ggml_tensor * b,
  743. size_t nb1,
  744. size_t nb2,
  745. size_t nb3,
  746. size_t offset);
  747. GGML_API struct ggml_tensor * ggml_acc_inplace(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b,
  751. size_t nb1,
  752. size_t nb2,
  753. size_t nb3,
  754. size_t offset);
  755. GGML_API struct ggml_tensor * ggml_sub(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a,
  758. struct ggml_tensor * b);
  759. GGML_API struct ggml_tensor * ggml_sub_inplace(
  760. struct ggml_context * ctx,
  761. struct ggml_tensor * a,
  762. struct ggml_tensor * b);
  763. GGML_API struct ggml_tensor * ggml_mul(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a,
  766. struct ggml_tensor * b);
  767. GGML_API struct ggml_tensor * ggml_mul_inplace(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a,
  770. struct ggml_tensor * b);
  771. GGML_API struct ggml_tensor * ggml_div(
  772. struct ggml_context * ctx,
  773. struct ggml_tensor * a,
  774. struct ggml_tensor * b);
  775. GGML_API struct ggml_tensor * ggml_div_inplace(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b);
  779. GGML_API struct ggml_tensor * ggml_sqr(
  780. struct ggml_context * ctx,
  781. struct ggml_tensor * a);
  782. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a);
  785. GGML_API struct ggml_tensor * ggml_sqrt(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a);
  788. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a);
  791. GGML_API struct ggml_tensor * ggml_log(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a);
  794. GGML_API struct ggml_tensor * ggml_log_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a);
  797. // return scalar
  798. GGML_API struct ggml_tensor * ggml_sum(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a);
  801. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  802. GGML_API struct ggml_tensor * ggml_sum_rows(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a);
  805. // mean along rows
  806. GGML_API struct ggml_tensor * ggml_mean(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a);
  809. // argmax along rows
  810. GGML_API struct ggml_tensor * ggml_argmax(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. // if a is the same shape as b, and a is not parameter, return a
  814. // otherwise, return a new tensor: repeat(a) to fit in b
  815. GGML_API struct ggml_tensor * ggml_repeat(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a,
  818. struct ggml_tensor * b);
  819. // sums repetitions in a into shape of b
  820. GGML_API struct ggml_tensor * ggml_repeat_back(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. struct ggml_tensor * b);
  824. // concat a and b on dim 2
  825. // used in stable-diffusion
  826. GGML_API struct ggml_tensor * ggml_concat(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a,
  829. struct ggml_tensor * b);
  830. GGML_API struct ggml_tensor * ggml_abs(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. GGML_API struct ggml_tensor * ggml_abs_inplace(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a);
  836. GGML_API struct ggml_tensor * ggml_sgn(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a);
  839. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a);
  842. GGML_API struct ggml_tensor * ggml_neg(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. GGML_API struct ggml_tensor * ggml_neg_inplace(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a);
  848. GGML_API struct ggml_tensor * ggml_step(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a);
  851. GGML_API struct ggml_tensor * ggml_step_inplace(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a);
  854. GGML_API struct ggml_tensor * ggml_tanh(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a);
  857. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a);
  860. GGML_API struct ggml_tensor * ggml_elu(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a);
  863. GGML_API struct ggml_tensor * ggml_elu_inplace(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a);
  866. GGML_API struct ggml_tensor * ggml_relu(
  867. struct ggml_context * ctx,
  868. struct ggml_tensor * a);
  869. GGML_API struct ggml_tensor * ggml_leaky_relu(
  870. struct ggml_context * ctx,
  871. struct ggml_tensor * a, float negative_slope, bool inplace);
  872. GGML_API struct ggml_tensor * ggml_relu_inplace(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a);
  875. GGML_API struct ggml_tensor * ggml_gelu(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. GGML_API struct ggml_tensor * ggml_gelu_quick(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a);
  884. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_silu(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_silu_inplace(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. // a - x
  894. // b - dy
  895. GGML_API struct ggml_tensor * ggml_silu_back(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a,
  898. struct ggml_tensor * b);
  899. // hardswish(x) = x * relu6(x + 3) / 6
  900. GGML_API struct ggml_tensor * ggml_hardswish(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a);
  903. // hardsigmoid(x) = relu6(x + 3) / 6
  904. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a);
  907. // normalize along rows
  908. GGML_API struct ggml_tensor * ggml_norm(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a,
  911. float eps);
  912. GGML_API struct ggml_tensor * ggml_norm_inplace(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. float eps);
  916. GGML_API struct ggml_tensor * ggml_rms_norm(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a,
  919. float eps);
  920. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a,
  923. float eps);
  924. // group normalize along ne0*ne1*n_groups
  925. // used in stable-diffusion
  926. // TODO: eps is hardcoded to 1e-6 for now
  927. GGML_API struct ggml_tensor * ggml_group_norm(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a,
  930. int n_groups);
  931. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. int n_groups);
  935. // a - x
  936. // b - dy
  937. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  938. struct ggml_context * ctx,
  939. struct ggml_tensor * a,
  940. struct ggml_tensor * b,
  941. float eps);
  942. // A: k columns, n rows => [ne03, ne02, n, k]
  943. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  944. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  945. GGML_API struct ggml_tensor * ggml_mul_mat(
  946. struct ggml_context * ctx,
  947. struct ggml_tensor * a,
  948. struct ggml_tensor * b);
  949. // change the precision of a matrix multiplication
  950. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  951. GGML_API void ggml_mul_mat_set_prec(
  952. struct ggml_tensor * a,
  953. enum ggml_prec prec);
  954. // indirect matrix multiplication
  955. // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
  956. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  957. struct ggml_context * ctx,
  958. struct ggml_tensor * const as[],
  959. int n_as,
  960. struct ggml_tensor * ids,
  961. int id,
  962. struct ggml_tensor * b);
  963. // A: m columns, n rows,
  964. // B: p columns, n rows,
  965. // result is m columns, p rows
  966. GGML_API struct ggml_tensor * ggml_out_prod(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a,
  969. struct ggml_tensor * b);
  970. //
  971. // operations on tensors without backpropagation
  972. //
  973. GGML_API struct ggml_tensor * ggml_scale(
  974. struct ggml_context * ctx,
  975. struct ggml_tensor * a,
  976. float s);
  977. // in-place, returns view(a)
  978. GGML_API struct ggml_tensor * ggml_scale_inplace(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. float s);
  982. // b -> view(a,offset,nb1,nb2,3), return modified a
  983. GGML_API struct ggml_tensor * ggml_set(
  984. struct ggml_context * ctx,
  985. struct ggml_tensor * a,
  986. struct ggml_tensor * b,
  987. size_t nb1,
  988. size_t nb2,
  989. size_t nb3,
  990. size_t offset);
  991. // b -> view(a,offset,nb1,nb2,3), return view(a)
  992. GGML_API struct ggml_tensor * ggml_set_inplace(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. struct ggml_tensor * b,
  996. size_t nb1,
  997. size_t nb2,
  998. size_t nb3,
  999. size_t offset);
  1000. GGML_API struct ggml_tensor * ggml_set_1d(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a,
  1003. struct ggml_tensor * b,
  1004. size_t offset);
  1005. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. struct ggml_tensor * b,
  1009. size_t offset);
  1010. // b -> view(a,offset,nb1,nb2,3), return modified a
  1011. GGML_API struct ggml_tensor * ggml_set_2d(
  1012. struct ggml_context * ctx,
  1013. struct ggml_tensor * a,
  1014. struct ggml_tensor * b,
  1015. size_t nb1,
  1016. size_t offset);
  1017. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1018. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. struct ggml_tensor * b,
  1022. size_t nb1,
  1023. size_t offset);
  1024. // a -> b, return view(b)
  1025. GGML_API struct ggml_tensor * ggml_cpy(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. struct ggml_tensor * b);
  1029. GGML_API struct ggml_tensor * ggml_cast(
  1030. struct ggml_context * ctx,
  1031. struct ggml_tensor * a,
  1032. enum ggml_type type);
  1033. // make contiguous
  1034. GGML_API struct ggml_tensor * ggml_cont(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a);
  1037. // make contiguous, with new shape
  1038. GGML_API struct ggml_tensor * ggml_cont_1d(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. int64_t ne0);
  1042. GGML_API struct ggml_tensor * ggml_cont_2d(
  1043. struct ggml_context * ctx,
  1044. struct ggml_tensor * a,
  1045. int64_t ne0,
  1046. int64_t ne1);
  1047. GGML_API struct ggml_tensor * ggml_cont_3d(
  1048. struct ggml_context * ctx,
  1049. struct ggml_tensor * a,
  1050. int64_t ne0,
  1051. int64_t ne1,
  1052. int64_t ne2);
  1053. GGML_API struct ggml_tensor * ggml_cont_4d(
  1054. struct ggml_context * ctx,
  1055. struct ggml_tensor * a,
  1056. int64_t ne0,
  1057. int64_t ne1,
  1058. int64_t ne2,
  1059. int64_t ne3);
  1060. // return view(a), b specifies the new shape
  1061. // TODO: when we start computing gradient, make a copy instead of view
  1062. GGML_API struct ggml_tensor * ggml_reshape(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. struct ggml_tensor * b);
  1066. // return view(a)
  1067. // TODO: when we start computing gradient, make a copy instead of view
  1068. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a,
  1071. int64_t ne0);
  1072. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a,
  1075. int64_t ne0,
  1076. int64_t ne1);
  1077. // return view(a)
  1078. // TODO: when we start computing gradient, make a copy instead of view
  1079. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. int64_t ne0,
  1083. int64_t ne1,
  1084. int64_t ne2);
  1085. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a,
  1088. int64_t ne0,
  1089. int64_t ne1,
  1090. int64_t ne2,
  1091. int64_t ne3);
  1092. // offset in bytes
  1093. GGML_API struct ggml_tensor * ggml_view_1d(
  1094. struct ggml_context * ctx,
  1095. struct ggml_tensor * a,
  1096. int64_t ne0,
  1097. size_t offset);
  1098. GGML_API struct ggml_tensor * ggml_view_2d(
  1099. struct ggml_context * ctx,
  1100. struct ggml_tensor * a,
  1101. int64_t ne0,
  1102. int64_t ne1,
  1103. size_t nb1, // row stride in bytes
  1104. size_t offset);
  1105. GGML_API struct ggml_tensor * ggml_view_3d(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. int64_t ne0,
  1109. int64_t ne1,
  1110. int64_t ne2,
  1111. size_t nb1, // row stride in bytes
  1112. size_t nb2, // slice stride in bytes
  1113. size_t offset);
  1114. GGML_API struct ggml_tensor * ggml_view_4d(
  1115. struct ggml_context * ctx,
  1116. struct ggml_tensor * a,
  1117. int64_t ne0,
  1118. int64_t ne1,
  1119. int64_t ne2,
  1120. int64_t ne3,
  1121. size_t nb1, // row stride in bytes
  1122. size_t nb2, // slice stride in bytes
  1123. size_t nb3,
  1124. size_t offset);
  1125. GGML_API struct ggml_tensor * ggml_permute(
  1126. struct ggml_context * ctx,
  1127. struct ggml_tensor * a,
  1128. int axis0,
  1129. int axis1,
  1130. int axis2,
  1131. int axis3);
  1132. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1133. GGML_API struct ggml_tensor * ggml_transpose(
  1134. struct ggml_context * ctx,
  1135. struct ggml_tensor * a);
  1136. // supports 3D: a->ne[2] == b->ne[1]
  1137. GGML_API struct ggml_tensor * ggml_get_rows(
  1138. struct ggml_context * ctx,
  1139. struct ggml_tensor * a,
  1140. struct ggml_tensor * b);
  1141. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1142. struct ggml_context * ctx,
  1143. struct ggml_tensor * a,
  1144. struct ggml_tensor * b,
  1145. struct ggml_tensor * c);
  1146. GGML_API struct ggml_tensor * ggml_diag(
  1147. struct ggml_context * ctx,
  1148. struct ggml_tensor * a);
  1149. // set elements above the diagonal to -INF
  1150. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. int n_past);
  1154. // in-place, returns view(a)
  1155. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1156. struct ggml_context * ctx,
  1157. struct ggml_tensor * a,
  1158. int n_past);
  1159. // set elements above the diagonal to 0
  1160. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1161. struct ggml_context * ctx,
  1162. struct ggml_tensor * a,
  1163. int n_past);
  1164. // in-place, returns view(a)
  1165. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a,
  1168. int n_past);
  1169. GGML_API struct ggml_tensor * ggml_soft_max(
  1170. struct ggml_context * ctx,
  1171. struct ggml_tensor * a);
  1172. // in-place, returns view(a)
  1173. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a);
  1176. // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
  1177. // mask is optional
  1178. // pos is required when max_bias > 0.0f
  1179. // max_bias = 0.0f for no ALiBi
  1180. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1181. struct ggml_context * ctx,
  1182. struct ggml_tensor * a,
  1183. struct ggml_tensor * mask,
  1184. struct ggml_tensor * pos,
  1185. float scale,
  1186. float max_bias);
  1187. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1188. struct ggml_context * ctx,
  1189. struct ggml_tensor * a,
  1190. struct ggml_tensor * b);
  1191. // in-place, returns view(a)
  1192. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1193. struct ggml_context * ctx,
  1194. struct ggml_tensor * a,
  1195. struct ggml_tensor * b);
  1196. // rotary position embedding
  1197. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1198. // if mode & 2 == 1, GPT-NeoX style
  1199. // if mode & 4 == 1, ChatGLM style
  1200. //
  1201. // b is an int32 vector with size a->ne[2], it contains the positions
  1202. GGML_API struct ggml_tensor * ggml_rope(
  1203. struct ggml_context * ctx,
  1204. struct ggml_tensor * a,
  1205. struct ggml_tensor * b,
  1206. int n_dims,
  1207. int mode,
  1208. int n_ctx);
  1209. // in-place, returns view(a)
  1210. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1211. struct ggml_context * ctx,
  1212. struct ggml_tensor * a,
  1213. struct ggml_tensor * b,
  1214. int n_dims,
  1215. int mode,
  1216. int n_ctx);
  1217. // custom RoPE
  1218. GGML_API struct ggml_tensor * ggml_rope_custom(
  1219. struct ggml_context * ctx,
  1220. struct ggml_tensor * a,
  1221. struct ggml_tensor * b,
  1222. int n_dims,
  1223. int mode,
  1224. int n_ctx,
  1225. int n_orig_ctx,
  1226. float freq_base,
  1227. float freq_scale,
  1228. float ext_factor,
  1229. float attn_factor,
  1230. float beta_fast,
  1231. float beta_slow);
  1232. // in-place, returns view(a)
  1233. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1234. struct ggml_context * ctx,
  1235. struct ggml_tensor * a,
  1236. struct ggml_tensor * b,
  1237. int n_dims,
  1238. int mode,
  1239. int n_ctx,
  1240. int n_orig_ctx,
  1241. float freq_base,
  1242. float freq_scale,
  1243. float ext_factor,
  1244. float attn_factor,
  1245. float beta_fast,
  1246. float beta_slow);
  1247. // compute correction dims for YaRN RoPE scaling
  1248. GGML_CALL void ggml_rope_yarn_corr_dims(
  1249. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1250. // xPos RoPE, in-place, returns view(a)
  1251. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a,
  1254. struct ggml_tensor * b,
  1255. int n_dims,
  1256. float base,
  1257. bool down);
  1258. // rotary position embedding backward, i.e compute dx from dy
  1259. // a - dy
  1260. GGML_API struct ggml_tensor * ggml_rope_back(
  1261. struct ggml_context * ctx,
  1262. struct ggml_tensor * a,
  1263. struct ggml_tensor * b,
  1264. int n_dims,
  1265. int mode,
  1266. int n_ctx,
  1267. int n_orig_ctx,
  1268. float freq_base,
  1269. float freq_scale,
  1270. float ext_factor,
  1271. float attn_factor,
  1272. float beta_fast,
  1273. float beta_slow,
  1274. float xpos_base,
  1275. bool xpos_down);
  1276. // alibi position embedding
  1277. // in-place, returns view(a)
  1278. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
  1279. struct ggml_context * ctx,
  1280. struct ggml_tensor * a,
  1281. int n_past,
  1282. int n_head,
  1283. float bias_max),
  1284. "use ggml_soft_max_ext instead (will be removed in Mar 2024)");
  1285. // clamp
  1286. // in-place, returns view(a)
  1287. GGML_API struct ggml_tensor * ggml_clamp(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * a,
  1290. float min,
  1291. float max);
  1292. GGML_API struct ggml_tensor * ggml_im2col(
  1293. struct ggml_context * ctx,
  1294. struct ggml_tensor * a,
  1295. struct ggml_tensor * b,
  1296. int s0,
  1297. int s1,
  1298. int p0,
  1299. int p1,
  1300. int d0,
  1301. int d1,
  1302. bool is_2D,
  1303. enum ggml_type dst_type);
  1304. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1305. struct ggml_context * ctx,
  1306. struct ggml_tensor * a,
  1307. struct ggml_tensor * b,
  1308. int s0,
  1309. int s1,
  1310. int p0,
  1311. int p1,
  1312. int d0,
  1313. int d1);
  1314. GGML_API struct ggml_tensor * ggml_conv_1d(
  1315. struct ggml_context * ctx,
  1316. struct ggml_tensor * a,
  1317. struct ggml_tensor * b,
  1318. int s0, // stride
  1319. int p0, // padding
  1320. int d0); // dilation
  1321. // conv_1d with padding = half
  1322. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1323. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1324. struct ggml_context * ctx,
  1325. struct ggml_tensor * a,
  1326. struct ggml_tensor * b,
  1327. int s,
  1328. int d);
  1329. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. struct ggml_tensor * b,
  1333. int s0,
  1334. int p0,
  1335. int d0);
  1336. GGML_API struct ggml_tensor * ggml_conv_2d(
  1337. struct ggml_context * ctx,
  1338. struct ggml_tensor * a,
  1339. struct ggml_tensor * b,
  1340. int s0,
  1341. int s1,
  1342. int p0,
  1343. int p1,
  1344. int d0,
  1345. int d1);
  1346. // kernel size is a->ne[0] x a->ne[1]
  1347. // stride is equal to kernel size
  1348. // padding is zero
  1349. // example:
  1350. // a: 16 16 3 768
  1351. // b: 1024 1024 3 1
  1352. // res: 64 64 768 1
  1353. // used in sam
  1354. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. struct ggml_tensor * b);
  1358. // kernel size is a->ne[0] x a->ne[1]
  1359. // stride is 1
  1360. // padding is half
  1361. // example:
  1362. // a: 3 3 256 256
  1363. // b: 64 64 256 1
  1364. // res: 64 64 256 1
  1365. // used in sam
  1366. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1367. struct ggml_context * ctx,
  1368. struct ggml_tensor * a,
  1369. struct ggml_tensor * b);
  1370. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1371. struct ggml_context * ctx,
  1372. struct ggml_tensor * a,
  1373. struct ggml_tensor * b,
  1374. int stride);
  1375. enum ggml_op_pool {
  1376. GGML_OP_POOL_MAX,
  1377. GGML_OP_POOL_AVG,
  1378. GGML_OP_POOL_COUNT,
  1379. };
  1380. GGML_API struct ggml_tensor * ggml_pool_1d(
  1381. struct ggml_context * ctx,
  1382. struct ggml_tensor * a,
  1383. enum ggml_op_pool op,
  1384. int k0, // kernel size
  1385. int s0, // stride
  1386. int p0); // padding
  1387. // the result will have 2*p0 padding for the first dimension
  1388. // and 2*p1 padding for the second dimension
  1389. GGML_API struct ggml_tensor * ggml_pool_2d(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a,
  1392. enum ggml_op_pool op,
  1393. int k0,
  1394. int k1,
  1395. int s0,
  1396. int s1,
  1397. float p0,
  1398. float p1);
  1399. // nearest interpolate
  1400. // used in stable-diffusion
  1401. GGML_API struct ggml_tensor * ggml_upscale(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. int scale_factor);
  1405. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1406. GGML_API struct ggml_tensor * ggml_pad(
  1407. struct ggml_context * ctx,
  1408. struct ggml_tensor * a,
  1409. int p0,
  1410. int p1,
  1411. int p2,
  1412. int p3);
  1413. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1414. // timesteps: [N,]
  1415. // return: [N, dim]
  1416. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1417. struct ggml_context * ctx,
  1418. struct ggml_tensor * timesteps,
  1419. int dim,
  1420. int max_period);
  1421. // sort rows
  1422. enum ggml_sort_order {
  1423. GGML_SORT_ORDER_ASC,
  1424. GGML_SORT_ORDER_DESC,
  1425. };
  1426. GGML_API struct ggml_tensor * ggml_argsort(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. enum ggml_sort_order order);
  1430. GGML_API struct ggml_tensor * ggml_arange(
  1431. struct ggml_context * ctx,
  1432. float start,
  1433. float stop,
  1434. float step);
  1435. // top k elements per row
  1436. GGML_API struct ggml_tensor * ggml_top_k(
  1437. struct ggml_context * ctx,
  1438. struct ggml_tensor * a,
  1439. int k);
  1440. GGML_API struct ggml_tensor * ggml_flash_attn(
  1441. struct ggml_context * ctx,
  1442. struct ggml_tensor * q,
  1443. struct ggml_tensor * k,
  1444. struct ggml_tensor * v,
  1445. bool masked);
  1446. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * q,
  1449. struct ggml_tensor * k,
  1450. struct ggml_tensor * v,
  1451. struct ggml_tensor * d,
  1452. bool masked);
  1453. GGML_API struct ggml_tensor * ggml_flash_ff(
  1454. struct ggml_context * ctx,
  1455. struct ggml_tensor * a,
  1456. struct ggml_tensor * b0,
  1457. struct ggml_tensor * b1,
  1458. struct ggml_tensor * c0,
  1459. struct ggml_tensor * c1);
  1460. // partition into non-overlapping windows with padding if needed
  1461. // example:
  1462. // a: 768 64 64 1
  1463. // w: 14
  1464. // res: 768 14 14 25
  1465. // used in sam
  1466. GGML_API struct ggml_tensor * ggml_win_part(
  1467. struct ggml_context * ctx,
  1468. struct ggml_tensor * a,
  1469. int w);
  1470. // reverse of ggml_win_part
  1471. // used in sam
  1472. GGML_API struct ggml_tensor * ggml_win_unpart(
  1473. struct ggml_context * ctx,
  1474. struct ggml_tensor * a,
  1475. int w0,
  1476. int h0,
  1477. int w);
  1478. GGML_API struct ggml_tensor * ggml_unary(
  1479. struct ggml_context * ctx,
  1480. struct ggml_tensor * a,
  1481. enum ggml_unary_op op);
  1482. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1483. struct ggml_context * ctx,
  1484. struct ggml_tensor * a,
  1485. enum ggml_unary_op op);
  1486. // used in sam
  1487. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1488. struct ggml_context * ctx,
  1489. struct ggml_tensor * a,
  1490. int qh,
  1491. int kh);
  1492. // used in sam
  1493. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. struct ggml_tensor * pw,
  1497. struct ggml_tensor * ph);
  1498. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1499. struct ggml_context * ctx,
  1500. struct ggml_tensor * a,
  1501. struct ggml_tensor * pw,
  1502. struct ggml_tensor * ph);
  1503. // custom operators
  1504. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1505. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1506. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1507. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1508. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1509. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1510. struct ggml_context * ctx,
  1511. struct ggml_tensor * a,
  1512. ggml_unary_op_f32_t fun),
  1513. "use ggml_map_custom1 instead");
  1514. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1515. struct ggml_context * ctx,
  1516. struct ggml_tensor * a,
  1517. ggml_unary_op_f32_t fun),
  1518. "use ggml_map_custom1_inplace instead");
  1519. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1520. struct ggml_context * ctx,
  1521. struct ggml_tensor * a,
  1522. struct ggml_tensor * b,
  1523. ggml_binary_op_f32_t fun),
  1524. "use ggml_map_custom2 instead");
  1525. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1526. struct ggml_context * ctx,
  1527. struct ggml_tensor * a,
  1528. struct ggml_tensor * b,
  1529. ggml_binary_op_f32_t fun),
  1530. "use ggml_map_custom2_inplace instead");
  1531. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1532. struct ggml_context * ctx,
  1533. struct ggml_tensor * a,
  1534. ggml_custom1_op_f32_t fun),
  1535. "use ggml_map_custom1 instead");
  1536. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1537. struct ggml_context * ctx,
  1538. struct ggml_tensor * a,
  1539. ggml_custom1_op_f32_t fun),
  1540. "use ggml_map_custom1_inplace instead");
  1541. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1542. struct ggml_context * ctx,
  1543. struct ggml_tensor * a,
  1544. struct ggml_tensor * b,
  1545. ggml_custom2_op_f32_t fun),
  1546. "use ggml_map_custom2 instead");
  1547. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1548. struct ggml_context * ctx,
  1549. struct ggml_tensor * a,
  1550. struct ggml_tensor * b,
  1551. ggml_custom2_op_f32_t fun),
  1552. "use ggml_map_custom2_inplace instead");
  1553. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1554. struct ggml_context * ctx,
  1555. struct ggml_tensor * a,
  1556. struct ggml_tensor * b,
  1557. struct ggml_tensor * c,
  1558. ggml_custom3_op_f32_t fun),
  1559. "use ggml_map_custom3 instead");
  1560. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1561. struct ggml_context * ctx,
  1562. struct ggml_tensor * a,
  1563. struct ggml_tensor * b,
  1564. struct ggml_tensor * c,
  1565. ggml_custom3_op_f32_t fun),
  1566. "use ggml_map_custom3_inplace instead");
  1567. // custom operators v2
  1568. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1569. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1570. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1571. #define GGML_N_TASKS_MAX -1
  1572. GGML_API struct ggml_tensor * ggml_map_custom1(
  1573. struct ggml_context * ctx,
  1574. struct ggml_tensor * a,
  1575. ggml_custom1_op_t fun,
  1576. int n_tasks,
  1577. void * userdata);
  1578. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1579. struct ggml_context * ctx,
  1580. struct ggml_tensor * a,
  1581. ggml_custom1_op_t fun,
  1582. int n_tasks,
  1583. void * userdata);
  1584. GGML_API struct ggml_tensor * ggml_map_custom2(
  1585. struct ggml_context * ctx,
  1586. struct ggml_tensor * a,
  1587. struct ggml_tensor * b,
  1588. ggml_custom2_op_t fun,
  1589. int n_tasks,
  1590. void * userdata);
  1591. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1592. struct ggml_context * ctx,
  1593. struct ggml_tensor * a,
  1594. struct ggml_tensor * b,
  1595. ggml_custom2_op_t fun,
  1596. int n_tasks,
  1597. void * userdata);
  1598. GGML_API struct ggml_tensor * ggml_map_custom3(
  1599. struct ggml_context * ctx,
  1600. struct ggml_tensor * a,
  1601. struct ggml_tensor * b,
  1602. struct ggml_tensor * c,
  1603. ggml_custom3_op_t fun,
  1604. int n_tasks,
  1605. void * userdata);
  1606. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1607. struct ggml_context * ctx,
  1608. struct ggml_tensor * a,
  1609. struct ggml_tensor * b,
  1610. struct ggml_tensor * c,
  1611. ggml_custom3_op_t fun,
  1612. int n_tasks,
  1613. void * userdata);
  1614. // loss function
  1615. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1616. struct ggml_context * ctx,
  1617. struct ggml_tensor * a,
  1618. struct ggml_tensor * b);
  1619. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1620. struct ggml_context * ctx,
  1621. struct ggml_tensor * a,
  1622. struct ggml_tensor * b,
  1623. struct ggml_tensor * c);
  1624. //
  1625. // automatic differentiation
  1626. //
  1627. GGML_API void ggml_set_param(
  1628. struct ggml_context * ctx,
  1629. struct ggml_tensor * tensor);
  1630. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1631. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1632. // graph allocation in a context
  1633. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1634. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1635. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1636. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1637. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1638. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1639. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1640. GGML_API size_t ggml_graph_overhead(void);
  1641. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1642. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1643. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1644. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1645. GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1646. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1647. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1648. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1649. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1650. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1651. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1652. // print info and performance information for the graph
  1653. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1654. // dump the graph into a file using the dot format
  1655. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1656. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1657. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1658. // but without the second forward pass nodes.
  1659. GGML_API void ggml_build_backward_gradient_checkpointing(
  1660. struct ggml_context * ctx,
  1661. struct ggml_cgraph * gf,
  1662. struct ggml_cgraph * gb,
  1663. struct ggml_cgraph * gb_tmp,
  1664. struct ggml_tensor * * checkpoints,
  1665. int n_checkpoints);
  1666. //
  1667. // optimization
  1668. //
  1669. // optimization methods
  1670. enum ggml_opt_type {
  1671. GGML_OPT_TYPE_ADAM,
  1672. GGML_OPT_TYPE_LBFGS,
  1673. };
  1674. // linesearch methods
  1675. enum ggml_linesearch {
  1676. GGML_LINESEARCH_DEFAULT = 1,
  1677. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1678. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1679. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1680. };
  1681. // optimization return values
  1682. enum ggml_opt_result {
  1683. GGML_OPT_RESULT_OK = 0,
  1684. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1685. GGML_OPT_RESULT_NO_CONTEXT,
  1686. GGML_OPT_RESULT_INVALID_WOLFE,
  1687. GGML_OPT_RESULT_FAIL,
  1688. GGML_OPT_RESULT_CANCEL,
  1689. GGML_LINESEARCH_FAIL = -128,
  1690. GGML_LINESEARCH_MINIMUM_STEP,
  1691. GGML_LINESEARCH_MAXIMUM_STEP,
  1692. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1693. GGML_LINESEARCH_INVALID_PARAMETERS,
  1694. };
  1695. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1696. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1697. // optimization parameters
  1698. //
  1699. // see ggml.c (ggml_opt_default_params) for default values
  1700. //
  1701. struct ggml_opt_params {
  1702. enum ggml_opt_type type;
  1703. size_t graph_size;
  1704. int n_threads;
  1705. // delta-based convergence test
  1706. //
  1707. // if past == 0 - disabled
  1708. // if past > 0:
  1709. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1710. //
  1711. int past;
  1712. float delta;
  1713. // maximum number of iterations without improvement
  1714. //
  1715. // if 0 - disabled
  1716. // if > 0:
  1717. // assume convergence if no cost improvement in this number of iterations
  1718. //
  1719. int max_no_improvement;
  1720. bool print_forward_graph;
  1721. bool print_backward_graph;
  1722. int n_gradient_accumulation;
  1723. // ADAM parameters
  1724. struct {
  1725. int n_iter;
  1726. float sched; // schedule multiplier (fixed, decay or warmup)
  1727. float decay; // weight decay for AdamW, use 0.0f to disable
  1728. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1729. float alpha; // learning rate
  1730. float beta1;
  1731. float beta2;
  1732. float eps; // epsilon for numerical stability
  1733. float eps_f; // epsilon for convergence test
  1734. float eps_g; // epsilon for convergence test
  1735. float gclip; // gradient clipping
  1736. } adam;
  1737. // LBFGS parameters
  1738. struct {
  1739. int m; // number of corrections to approximate the inv. Hessian
  1740. int n_iter;
  1741. int max_linesearch;
  1742. float eps; // convergence tolerance
  1743. float ftol; // line search tolerance
  1744. float wolfe;
  1745. float min_step;
  1746. float max_step;
  1747. enum ggml_linesearch linesearch;
  1748. } lbfgs;
  1749. };
  1750. struct ggml_opt_context {
  1751. struct ggml_context * ctx;
  1752. struct ggml_opt_params params;
  1753. int iter;
  1754. int64_t nx; // number of parameter elements
  1755. bool just_initialized;
  1756. float loss_before;
  1757. float loss_after;
  1758. struct {
  1759. struct ggml_tensor * g; // current gradient
  1760. struct ggml_tensor * m; // first moment
  1761. struct ggml_tensor * v; // second moment
  1762. struct ggml_tensor * pf; // past function values
  1763. float fx_best;
  1764. float fx_prev;
  1765. int n_no_improvement;
  1766. } adam;
  1767. struct {
  1768. struct ggml_tensor * x; // current parameters
  1769. struct ggml_tensor * xp; // previous parameters
  1770. struct ggml_tensor * g; // current gradient
  1771. struct ggml_tensor * gp; // previous gradient
  1772. struct ggml_tensor * d; // search direction
  1773. struct ggml_tensor * pf; // past function values
  1774. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1775. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1776. struct ggml_tensor * lms; // the L-BFGS memory s
  1777. struct ggml_tensor * lmy; // the L-BFGS memory y
  1778. float fx_best;
  1779. float step;
  1780. int j;
  1781. int k;
  1782. int end;
  1783. int n_no_improvement;
  1784. } lbfgs;
  1785. };
  1786. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1787. // optimize the function defined by the tensor f
  1788. GGML_API enum ggml_opt_result ggml_opt(
  1789. struct ggml_context * ctx,
  1790. struct ggml_opt_params params,
  1791. struct ggml_tensor * f);
  1792. // initialize optimizer context
  1793. GGML_API void ggml_opt_init(
  1794. struct ggml_context * ctx,
  1795. struct ggml_opt_context * opt,
  1796. struct ggml_opt_params params,
  1797. int64_t nx);
  1798. // continue optimizing the function defined by the tensor f
  1799. GGML_API enum ggml_opt_result ggml_opt_resume(
  1800. struct ggml_context * ctx,
  1801. struct ggml_opt_context * opt,
  1802. struct ggml_tensor * f);
  1803. // continue optimizing the function defined by the tensor f
  1804. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1805. struct ggml_context * ctx,
  1806. struct ggml_opt_context * opt,
  1807. struct ggml_tensor * f,
  1808. struct ggml_cgraph * gf,
  1809. struct ggml_cgraph * gb,
  1810. ggml_opt_callback callback,
  1811. void * callback_data);
  1812. //
  1813. // tensor flags
  1814. //
  1815. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1816. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1817. //
  1818. // quantization
  1819. //
  1820. // - ggml_quantize_init can be called multiple times with the same type
  1821. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1822. // automatically called by ggml_quantize_chunk for convenience
  1823. //
  1824. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1825. // call this at the end of the program to avoid memory leaks
  1826. //
  1827. // note: these are thread-safe
  1828. //
  1829. GGML_API void ggml_quantize_init(enum ggml_type type);
  1830. GGML_API void ggml_quantize_free(void);
  1831. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1832. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1833. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1834. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1835. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1836. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1837. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1838. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1839. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1840. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1841. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1842. // some quantization type cannot be used without an importance matrix
  1843. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1844. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1845. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
  1846. int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
  1847. //
  1848. // gguf
  1849. //
  1850. enum gguf_type {
  1851. GGUF_TYPE_UINT8 = 0,
  1852. GGUF_TYPE_INT8 = 1,
  1853. GGUF_TYPE_UINT16 = 2,
  1854. GGUF_TYPE_INT16 = 3,
  1855. GGUF_TYPE_UINT32 = 4,
  1856. GGUF_TYPE_INT32 = 5,
  1857. GGUF_TYPE_FLOAT32 = 6,
  1858. GGUF_TYPE_BOOL = 7,
  1859. GGUF_TYPE_STRING = 8,
  1860. GGUF_TYPE_ARRAY = 9,
  1861. GGUF_TYPE_UINT64 = 10,
  1862. GGUF_TYPE_INT64 = 11,
  1863. GGUF_TYPE_FLOAT64 = 12,
  1864. GGUF_TYPE_COUNT, // marks the end of the enum
  1865. };
  1866. struct gguf_context;
  1867. struct gguf_init_params {
  1868. bool no_alloc;
  1869. // if not NULL, create a ggml_context and allocate the tensor data in it
  1870. struct ggml_context ** ctx;
  1871. };
  1872. GGML_API struct gguf_context * gguf_init_empty(void);
  1873. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1874. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1875. GGML_API void gguf_free(struct gguf_context * ctx);
  1876. GGML_API const char * gguf_type_name(enum gguf_type type);
  1877. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1878. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1879. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1880. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1881. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1882. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1883. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1884. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1885. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1886. // will abort if the wrong type is used for the key
  1887. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1888. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1889. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1890. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1891. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1892. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1893. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1894. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1895. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1896. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1897. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1898. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1899. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1900. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1901. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1902. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1903. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1904. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1905. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1906. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1907. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1908. // overrides existing values or adds a new one
  1909. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1910. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1911. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1912. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1913. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1914. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1915. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1916. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1917. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1918. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1919. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1920. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1921. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1922. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1923. // set or add KV pairs from another context
  1924. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1925. // manage tensor info
  1926. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1927. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1928. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1929. // writing gguf files can be done in 2 ways:
  1930. //
  1931. // - write the entire gguf_context to a binary file in a single pass:
  1932. //
  1933. // gguf_write_to_file(ctx, fname);
  1934. //
  1935. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1936. //
  1937. // FILE * f = fopen(fname, "wb");
  1938. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1939. // fwrite(f, ...);
  1940. // void * data = gguf_meta_get_meta_data(ctx);
  1941. // fseek(f, 0, SEEK_SET);
  1942. // fwrite(f, data, gguf_get_meta_size(ctx));
  1943. // free(data);
  1944. // fclose(f);
  1945. //
  1946. // write the entire context to a binary file
  1947. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1948. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1949. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1950. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1951. //
  1952. // system info
  1953. //
  1954. GGML_API int ggml_cpu_has_avx (void);
  1955. GGML_API int ggml_cpu_has_avx_vnni (void);
  1956. GGML_API int ggml_cpu_has_avx2 (void);
  1957. GGML_API int ggml_cpu_has_avx512 (void);
  1958. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1959. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1960. GGML_API int ggml_cpu_has_fma (void);
  1961. GGML_API int ggml_cpu_has_neon (void);
  1962. GGML_API int ggml_cpu_has_arm_fma (void);
  1963. GGML_API int ggml_cpu_has_metal (void);
  1964. GGML_API int ggml_cpu_has_f16c (void);
  1965. GGML_API int ggml_cpu_has_fp16_va (void);
  1966. GGML_API int ggml_cpu_has_wasm_simd (void);
  1967. GGML_API int ggml_cpu_has_blas (void);
  1968. GGML_API int ggml_cpu_has_cublas (void);
  1969. GGML_API int ggml_cpu_has_clblast (void);
  1970. GGML_API int ggml_cpu_has_vulkan (void);
  1971. GGML_API int ggml_cpu_has_kompute (void);
  1972. GGML_API int ggml_cpu_has_gpublas (void);
  1973. GGML_API int ggml_cpu_has_sse3 (void);
  1974. GGML_API int ggml_cpu_has_ssse3 (void);
  1975. GGML_API int ggml_cpu_has_sycl (void);
  1976. GGML_API int ggml_cpu_has_vsx (void);
  1977. GGML_API int ggml_cpu_has_matmul_int8(void);
  1978. //
  1979. // Internal types and functions exposed for tests and benchmarks
  1980. //
  1981. #ifdef __cplusplus
  1982. // restrict not standard in C++
  1983. #define GGML_RESTRICT
  1984. #else
  1985. #define GGML_RESTRICT restrict
  1986. #endif
  1987. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1988. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1989. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  1990. const void * GGML_RESTRICT y, size_t by, int nrc);
  1991. typedef struct {
  1992. const char * type_name;
  1993. int blck_size;
  1994. size_t type_size;
  1995. bool is_quantized;
  1996. ggml_to_float_t to_float;
  1997. ggml_from_float_t from_float;
  1998. ggml_from_float_t from_float_reference;
  1999. ggml_vec_dot_t vec_dot;
  2000. enum ggml_type vec_dot_type;
  2001. int64_t nrows; // number of rows to process simultaneously;
  2002. } ggml_type_traits_t;
  2003. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2004. #ifdef __cplusplus
  2005. }
  2006. #endif