constants.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. URL = "general.url"
  22. DESCRIPTION = "general.description"
  23. LICENSE = "general.license"
  24. SOURCE_URL = "general.source.url"
  25. SOURCE_HF_REPO = "general.source.huggingface.repository"
  26. FILE_TYPE = "general.file_type"
  27. class LLM:
  28. CONTEXT_LENGTH = "{arch}.context_length"
  29. EMBEDDING_LENGTH = "{arch}.embedding_length"
  30. BLOCK_COUNT = "{arch}.block_count"
  31. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  32. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  33. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  34. EXPERT_COUNT = "{arch}.expert_count"
  35. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  36. POOLING_TYPE = "{arch}.pooling_type"
  37. class Attention:
  38. HEAD_COUNT = "{arch}.attention.head_count"
  39. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  40. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  41. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  42. KEY_LENGTH = "{arch}.attention.key_length"
  43. VALUE_LENGTH = "{arch}.attention.value_length"
  44. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  45. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  46. CAUSAL = "{arch}.attention.causal"
  47. class Rope:
  48. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  49. FREQ_BASE = "{arch}.rope.freq_base"
  50. SCALING_TYPE = "{arch}.rope.scaling.type"
  51. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  52. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  53. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  54. class Tokenizer:
  55. MODEL = "tokenizer.ggml.model"
  56. LIST = "tokenizer.ggml.tokens"
  57. TOKEN_TYPE = "tokenizer.ggml.token_type"
  58. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  59. SCORES = "tokenizer.ggml.scores"
  60. MERGES = "tokenizer.ggml.merges"
  61. BOS_ID = "tokenizer.ggml.bos_token_id"
  62. EOS_ID = "tokenizer.ggml.eos_token_id"
  63. UNK_ID = "tokenizer.ggml.unknown_token_id"
  64. SEP_ID = "tokenizer.ggml.seperator_token_id"
  65. PAD_ID = "tokenizer.ggml.padding_token_id"
  66. CLS_ID = "tokenizer.ggml.cls_token_id"
  67. MASK_ID = "tokenizer.ggml.mask_token_id"
  68. ADD_BOS = "tokenizer.ggml.add_bos_token"
  69. ADD_EOS = "tokenizer.ggml.add_eos_token"
  70. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  71. HF_JSON = "tokenizer.huggingface.json"
  72. RWKV = "tokenizer.rwkv.world"
  73. CHAT_TEMPLATE = "tokenizer.chat_template"
  74. #
  75. # recommended mapping of model tensor names for storage in gguf
  76. #
  77. class MODEL_ARCH(IntEnum):
  78. LLAMA = auto()
  79. FALCON = auto()
  80. BAICHUAN = auto()
  81. GPT2 = auto()
  82. GPTJ = auto()
  83. GPTNEOX = auto()
  84. MPT = auto()
  85. STARCODER = auto()
  86. PERSIMMON = auto()
  87. REFACT = auto()
  88. BERT = auto()
  89. NOMIC_BERT = auto()
  90. BLOOM = auto()
  91. STABLELM = auto()
  92. QWEN = auto()
  93. QWEN2 = auto()
  94. PHI2 = auto()
  95. PLAMO = auto()
  96. CODESHELL = auto()
  97. ORION = auto()
  98. INTERNLM2 = auto()
  99. MINICPM = auto()
  100. GEMMA = auto()
  101. STARCODER2 = auto()
  102. class MODEL_TENSOR(IntEnum):
  103. TOKEN_EMBD = auto()
  104. TOKEN_EMBD_NORM = auto()
  105. TOKEN_TYPES = auto()
  106. POS_EMBD = auto()
  107. OUTPUT = auto()
  108. OUTPUT_NORM = auto()
  109. ROPE_FREQS = auto()
  110. ATTN_Q = auto()
  111. ATTN_K = auto()
  112. ATTN_V = auto()
  113. ATTN_QKV = auto()
  114. ATTN_OUT = auto()
  115. ATTN_NORM = auto()
  116. ATTN_NORM_2 = auto()
  117. ATTN_OUT_NORM = auto()
  118. ATTN_ROT_EMBD = auto()
  119. FFN_GATE_INP = auto()
  120. FFN_NORM = auto()
  121. FFN_GATE = auto()
  122. FFN_DOWN = auto()
  123. FFN_UP = auto()
  124. FFN_ACT = auto()
  125. FFN_GATE_EXP = auto()
  126. FFN_DOWN_EXP = auto()
  127. FFN_UP_EXP = auto()
  128. ATTN_Q_NORM = auto()
  129. ATTN_K_NORM = auto()
  130. LAYER_OUT_NORM = auto()
  131. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  132. MODEL_ARCH.LLAMA: "llama",
  133. MODEL_ARCH.FALCON: "falcon",
  134. MODEL_ARCH.BAICHUAN: "baichuan",
  135. MODEL_ARCH.GPT2: "gpt2",
  136. MODEL_ARCH.GPTJ: "gptj",
  137. MODEL_ARCH.GPTNEOX: "gptneox",
  138. MODEL_ARCH.MPT: "mpt",
  139. MODEL_ARCH.STARCODER: "starcoder",
  140. MODEL_ARCH.PERSIMMON: "persimmon",
  141. MODEL_ARCH.REFACT: "refact",
  142. MODEL_ARCH.BERT: "bert",
  143. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  144. MODEL_ARCH.BLOOM: "bloom",
  145. MODEL_ARCH.STABLELM: "stablelm",
  146. MODEL_ARCH.QWEN: "qwen",
  147. MODEL_ARCH.QWEN2: "qwen2",
  148. MODEL_ARCH.PHI2: "phi2",
  149. MODEL_ARCH.PLAMO: "plamo",
  150. MODEL_ARCH.CODESHELL: "codeshell",
  151. MODEL_ARCH.ORION: "orion",
  152. MODEL_ARCH.INTERNLM2: "internlm2",
  153. MODEL_ARCH.MINICPM: "minicpm",
  154. MODEL_ARCH.GEMMA: "gemma",
  155. MODEL_ARCH.STARCODER2: "starcoder2",
  156. }
  157. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  158. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  159. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  160. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  161. MODEL_TENSOR.POS_EMBD: "position_embd",
  162. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  163. MODEL_TENSOR.OUTPUT: "output",
  164. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  165. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  166. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  167. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  168. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  169. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  170. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  171. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  172. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  173. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  174. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  175. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  176. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  177. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  178. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  179. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  180. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  181. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  182. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
  183. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
  184. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
  185. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  186. }
  187. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  188. MODEL_ARCH.LLAMA: [
  189. MODEL_TENSOR.TOKEN_EMBD,
  190. MODEL_TENSOR.OUTPUT_NORM,
  191. MODEL_TENSOR.OUTPUT,
  192. MODEL_TENSOR.ROPE_FREQS,
  193. MODEL_TENSOR.ATTN_NORM,
  194. MODEL_TENSOR.ATTN_Q,
  195. MODEL_TENSOR.ATTN_K,
  196. MODEL_TENSOR.ATTN_V,
  197. MODEL_TENSOR.ATTN_OUT,
  198. MODEL_TENSOR.ATTN_ROT_EMBD,
  199. MODEL_TENSOR.FFN_GATE_INP,
  200. MODEL_TENSOR.FFN_NORM,
  201. MODEL_TENSOR.FFN_GATE,
  202. MODEL_TENSOR.FFN_DOWN,
  203. MODEL_TENSOR.FFN_UP,
  204. MODEL_TENSOR.FFN_GATE_EXP,
  205. MODEL_TENSOR.FFN_DOWN_EXP,
  206. MODEL_TENSOR.FFN_UP_EXP,
  207. ],
  208. MODEL_ARCH.GPTNEOX: [
  209. MODEL_TENSOR.TOKEN_EMBD,
  210. MODEL_TENSOR.OUTPUT_NORM,
  211. MODEL_TENSOR.OUTPUT,
  212. MODEL_TENSOR.ATTN_NORM,
  213. MODEL_TENSOR.ATTN_QKV,
  214. MODEL_TENSOR.ATTN_OUT,
  215. MODEL_TENSOR.FFN_NORM,
  216. MODEL_TENSOR.FFN_DOWN,
  217. MODEL_TENSOR.FFN_UP,
  218. ],
  219. MODEL_ARCH.FALCON: [
  220. MODEL_TENSOR.TOKEN_EMBD,
  221. MODEL_TENSOR.OUTPUT_NORM,
  222. MODEL_TENSOR.OUTPUT,
  223. MODEL_TENSOR.ATTN_NORM,
  224. MODEL_TENSOR.ATTN_NORM_2,
  225. MODEL_TENSOR.ATTN_QKV,
  226. MODEL_TENSOR.ATTN_OUT,
  227. MODEL_TENSOR.FFN_DOWN,
  228. MODEL_TENSOR.FFN_UP,
  229. ],
  230. MODEL_ARCH.BAICHUAN: [
  231. MODEL_TENSOR.TOKEN_EMBD,
  232. MODEL_TENSOR.OUTPUT_NORM,
  233. MODEL_TENSOR.OUTPUT,
  234. MODEL_TENSOR.ROPE_FREQS,
  235. MODEL_TENSOR.ATTN_NORM,
  236. MODEL_TENSOR.ATTN_Q,
  237. MODEL_TENSOR.ATTN_K,
  238. MODEL_TENSOR.ATTN_V,
  239. MODEL_TENSOR.ATTN_OUT,
  240. MODEL_TENSOR.ATTN_ROT_EMBD,
  241. MODEL_TENSOR.FFN_NORM,
  242. MODEL_TENSOR.FFN_GATE,
  243. MODEL_TENSOR.FFN_DOWN,
  244. MODEL_TENSOR.FFN_UP,
  245. ],
  246. MODEL_ARCH.STARCODER: [
  247. MODEL_TENSOR.TOKEN_EMBD,
  248. MODEL_TENSOR.POS_EMBD,
  249. MODEL_TENSOR.OUTPUT_NORM,
  250. MODEL_TENSOR.OUTPUT,
  251. MODEL_TENSOR.ATTN_NORM,
  252. MODEL_TENSOR.ATTN_QKV,
  253. MODEL_TENSOR.ATTN_OUT,
  254. MODEL_TENSOR.FFN_NORM,
  255. MODEL_TENSOR.FFN_DOWN,
  256. MODEL_TENSOR.FFN_UP,
  257. ],
  258. MODEL_ARCH.BERT: [
  259. MODEL_TENSOR.TOKEN_EMBD,
  260. MODEL_TENSOR.TOKEN_EMBD_NORM,
  261. MODEL_TENSOR.TOKEN_TYPES,
  262. MODEL_TENSOR.POS_EMBD,
  263. MODEL_TENSOR.OUTPUT_NORM,
  264. MODEL_TENSOR.ATTN_OUT_NORM,
  265. MODEL_TENSOR.ATTN_Q,
  266. MODEL_TENSOR.ATTN_K,
  267. MODEL_TENSOR.ATTN_V,
  268. MODEL_TENSOR.ATTN_OUT,
  269. MODEL_TENSOR.FFN_DOWN,
  270. MODEL_TENSOR.FFN_UP,
  271. MODEL_TENSOR.LAYER_OUT_NORM,
  272. ],
  273. MODEL_ARCH.NOMIC_BERT: [
  274. MODEL_TENSOR.TOKEN_EMBD,
  275. MODEL_TENSOR.TOKEN_EMBD_NORM,
  276. MODEL_TENSOR.TOKEN_TYPES,
  277. MODEL_TENSOR.POS_EMBD,
  278. MODEL_TENSOR.OUTPUT_NORM,
  279. MODEL_TENSOR.ATTN_OUT_NORM,
  280. MODEL_TENSOR.ATTN_QKV,
  281. MODEL_TENSOR.ATTN_OUT,
  282. MODEL_TENSOR.FFN_GATE,
  283. MODEL_TENSOR.FFN_DOWN,
  284. MODEL_TENSOR.FFN_UP,
  285. MODEL_TENSOR.LAYER_OUT_NORM,
  286. ],
  287. MODEL_ARCH.MPT: [
  288. MODEL_TENSOR.TOKEN_EMBD,
  289. MODEL_TENSOR.OUTPUT_NORM,
  290. MODEL_TENSOR.OUTPUT,
  291. MODEL_TENSOR.ATTN_NORM,
  292. MODEL_TENSOR.ATTN_QKV,
  293. MODEL_TENSOR.ATTN_OUT,
  294. MODEL_TENSOR.FFN_NORM,
  295. MODEL_TENSOR.FFN_DOWN,
  296. MODEL_TENSOR.FFN_UP,
  297. MODEL_TENSOR.FFN_ACT,
  298. ],
  299. MODEL_ARCH.GPTJ: [
  300. MODEL_TENSOR.TOKEN_EMBD,
  301. MODEL_TENSOR.OUTPUT_NORM,
  302. MODEL_TENSOR.OUTPUT,
  303. MODEL_TENSOR.ATTN_NORM,
  304. MODEL_TENSOR.ATTN_Q,
  305. MODEL_TENSOR.ATTN_K,
  306. MODEL_TENSOR.ATTN_V,
  307. MODEL_TENSOR.ATTN_OUT,
  308. MODEL_TENSOR.FFN_DOWN,
  309. MODEL_TENSOR.FFN_UP,
  310. ],
  311. MODEL_ARCH.PERSIMMON: [
  312. MODEL_TENSOR.TOKEN_EMBD,
  313. MODEL_TENSOR.OUTPUT,
  314. MODEL_TENSOR.OUTPUT_NORM,
  315. MODEL_TENSOR.ATTN_NORM,
  316. MODEL_TENSOR.ATTN_QKV,
  317. MODEL_TENSOR.ATTN_OUT,
  318. MODEL_TENSOR.FFN_NORM,
  319. MODEL_TENSOR.FFN_DOWN,
  320. MODEL_TENSOR.FFN_UP,
  321. MODEL_TENSOR.ATTN_Q_NORM,
  322. MODEL_TENSOR.ATTN_K_NORM,
  323. MODEL_TENSOR.ATTN_ROT_EMBD,
  324. ],
  325. MODEL_ARCH.REFACT: [
  326. MODEL_TENSOR.TOKEN_EMBD,
  327. MODEL_TENSOR.OUTPUT_NORM,
  328. MODEL_TENSOR.OUTPUT,
  329. MODEL_TENSOR.ATTN_NORM,
  330. MODEL_TENSOR.ATTN_Q,
  331. MODEL_TENSOR.ATTN_K,
  332. MODEL_TENSOR.ATTN_V,
  333. MODEL_TENSOR.ATTN_OUT,
  334. MODEL_TENSOR.FFN_NORM,
  335. MODEL_TENSOR.FFN_GATE,
  336. MODEL_TENSOR.FFN_DOWN,
  337. MODEL_TENSOR.FFN_UP,
  338. ],
  339. MODEL_ARCH.BLOOM: [
  340. MODEL_TENSOR.TOKEN_EMBD,
  341. MODEL_TENSOR.TOKEN_EMBD_NORM,
  342. MODEL_TENSOR.OUTPUT_NORM,
  343. MODEL_TENSOR.OUTPUT,
  344. MODEL_TENSOR.ATTN_NORM,
  345. MODEL_TENSOR.ATTN_QKV,
  346. MODEL_TENSOR.ATTN_OUT,
  347. MODEL_TENSOR.FFN_NORM,
  348. MODEL_TENSOR.FFN_DOWN,
  349. MODEL_TENSOR.FFN_UP,
  350. ],
  351. MODEL_ARCH.STABLELM: [
  352. MODEL_TENSOR.TOKEN_EMBD,
  353. MODEL_TENSOR.OUTPUT_NORM,
  354. MODEL_TENSOR.OUTPUT,
  355. MODEL_TENSOR.ROPE_FREQS,
  356. MODEL_TENSOR.ATTN_NORM,
  357. MODEL_TENSOR.ATTN_Q,
  358. MODEL_TENSOR.ATTN_K,
  359. MODEL_TENSOR.ATTN_V,
  360. MODEL_TENSOR.ATTN_OUT,
  361. MODEL_TENSOR.FFN_NORM,
  362. MODEL_TENSOR.FFN_GATE,
  363. MODEL_TENSOR.FFN_DOWN,
  364. MODEL_TENSOR.FFN_UP,
  365. ],
  366. MODEL_ARCH.QWEN: [
  367. MODEL_TENSOR.TOKEN_EMBD,
  368. MODEL_TENSOR.OUTPUT_NORM,
  369. MODEL_TENSOR.OUTPUT,
  370. MODEL_TENSOR.ROPE_FREQS,
  371. MODEL_TENSOR.ATTN_NORM,
  372. MODEL_TENSOR.ATTN_QKV,
  373. MODEL_TENSOR.ATTN_OUT,
  374. MODEL_TENSOR.ATTN_ROT_EMBD,
  375. MODEL_TENSOR.FFN_NORM,
  376. MODEL_TENSOR.FFN_GATE,
  377. MODEL_TENSOR.FFN_DOWN,
  378. MODEL_TENSOR.FFN_UP,
  379. ],
  380. MODEL_ARCH.QWEN2: [
  381. MODEL_TENSOR.TOKEN_EMBD,
  382. MODEL_TENSOR.OUTPUT_NORM,
  383. MODEL_TENSOR.OUTPUT,
  384. MODEL_TENSOR.ATTN_NORM,
  385. MODEL_TENSOR.ATTN_Q,
  386. MODEL_TENSOR.ATTN_K,
  387. MODEL_TENSOR.ATTN_V,
  388. MODEL_TENSOR.ATTN_OUT,
  389. MODEL_TENSOR.FFN_NORM,
  390. MODEL_TENSOR.FFN_GATE,
  391. MODEL_TENSOR.FFN_DOWN,
  392. MODEL_TENSOR.FFN_UP,
  393. ],
  394. MODEL_ARCH.PLAMO: [
  395. MODEL_TENSOR.TOKEN_EMBD,
  396. MODEL_TENSOR.OUTPUT_NORM,
  397. MODEL_TENSOR.OUTPUT,
  398. MODEL_TENSOR.ROPE_FREQS,
  399. MODEL_TENSOR.ATTN_NORM,
  400. MODEL_TENSOR.ATTN_Q,
  401. MODEL_TENSOR.ATTN_K,
  402. MODEL_TENSOR.ATTN_V,
  403. MODEL_TENSOR.ATTN_OUT,
  404. MODEL_TENSOR.ATTN_ROT_EMBD,
  405. MODEL_TENSOR.FFN_GATE,
  406. MODEL_TENSOR.FFN_DOWN,
  407. MODEL_TENSOR.FFN_UP,
  408. ],
  409. MODEL_ARCH.GPT2: [
  410. MODEL_TENSOR.TOKEN_EMBD,
  411. MODEL_TENSOR.POS_EMBD,
  412. MODEL_TENSOR.OUTPUT_NORM,
  413. MODEL_TENSOR.OUTPUT,
  414. MODEL_TENSOR.ATTN_NORM,
  415. MODEL_TENSOR.ATTN_QKV,
  416. MODEL_TENSOR.ATTN_OUT,
  417. MODEL_TENSOR.FFN_NORM,
  418. MODEL_TENSOR.FFN_DOWN,
  419. MODEL_TENSOR.FFN_UP,
  420. ],
  421. MODEL_ARCH.PHI2: [
  422. MODEL_TENSOR.TOKEN_EMBD,
  423. MODEL_TENSOR.OUTPUT_NORM,
  424. MODEL_TENSOR.OUTPUT,
  425. MODEL_TENSOR.ATTN_NORM,
  426. MODEL_TENSOR.ATTN_QKV,
  427. MODEL_TENSOR.ATTN_Q,
  428. MODEL_TENSOR.ATTN_K,
  429. MODEL_TENSOR.ATTN_V,
  430. MODEL_TENSOR.ATTN_OUT,
  431. MODEL_TENSOR.FFN_NORM,
  432. MODEL_TENSOR.FFN_DOWN,
  433. MODEL_TENSOR.FFN_UP,
  434. ],
  435. MODEL_ARCH.CODESHELL: [
  436. MODEL_TENSOR.TOKEN_EMBD,
  437. MODEL_TENSOR.POS_EMBD,
  438. MODEL_TENSOR.OUTPUT_NORM,
  439. MODEL_TENSOR.OUTPUT,
  440. MODEL_TENSOR.ATTN_NORM,
  441. MODEL_TENSOR.ATTN_QKV,
  442. MODEL_TENSOR.ATTN_OUT,
  443. MODEL_TENSOR.ATTN_ROT_EMBD,
  444. MODEL_TENSOR.FFN_NORM,
  445. MODEL_TENSOR.FFN_DOWN,
  446. MODEL_TENSOR.FFN_UP,
  447. ],
  448. MODEL_ARCH.ORION: [
  449. MODEL_TENSOR.TOKEN_EMBD,
  450. MODEL_TENSOR.OUTPUT_NORM,
  451. MODEL_TENSOR.OUTPUT,
  452. MODEL_TENSOR.ROPE_FREQS,
  453. MODEL_TENSOR.ATTN_NORM,
  454. MODEL_TENSOR.ATTN_Q,
  455. MODEL_TENSOR.ATTN_K,
  456. MODEL_TENSOR.ATTN_V,
  457. MODEL_TENSOR.ATTN_OUT,
  458. MODEL_TENSOR.ATTN_ROT_EMBD,
  459. MODEL_TENSOR.FFN_NORM,
  460. MODEL_TENSOR.FFN_GATE,
  461. MODEL_TENSOR.FFN_DOWN,
  462. MODEL_TENSOR.FFN_UP,
  463. ],
  464. MODEL_ARCH.INTERNLM2: [
  465. MODEL_TENSOR.TOKEN_EMBD,
  466. MODEL_TENSOR.OUTPUT_NORM,
  467. MODEL_TENSOR.OUTPUT,
  468. MODEL_TENSOR.ATTN_NORM,
  469. MODEL_TENSOR.ATTN_Q,
  470. MODEL_TENSOR.ATTN_K,
  471. MODEL_TENSOR.ATTN_V,
  472. MODEL_TENSOR.ATTN_OUT,
  473. MODEL_TENSOR.ATTN_ROT_EMBD,
  474. MODEL_TENSOR.FFN_NORM,
  475. MODEL_TENSOR.FFN_GATE,
  476. MODEL_TENSOR.FFN_DOWN,
  477. MODEL_TENSOR.FFN_UP,
  478. ],
  479. MODEL_ARCH.MINICPM: [
  480. MODEL_TENSOR.TOKEN_EMBD,
  481. MODEL_TENSOR.OUTPUT_NORM,
  482. MODEL_TENSOR.ROPE_FREQS,
  483. MODEL_TENSOR.ATTN_NORM,
  484. MODEL_TENSOR.ATTN_Q,
  485. MODEL_TENSOR.ATTN_K,
  486. MODEL_TENSOR.ATTN_V,
  487. MODEL_TENSOR.ATTN_OUT,
  488. MODEL_TENSOR.ATTN_ROT_EMBD,
  489. MODEL_TENSOR.FFN_GATE_INP,
  490. MODEL_TENSOR.FFN_NORM,
  491. MODEL_TENSOR.FFN_GATE,
  492. MODEL_TENSOR.FFN_DOWN,
  493. MODEL_TENSOR.FFN_UP,
  494. MODEL_TENSOR.FFN_GATE_EXP,
  495. MODEL_TENSOR.FFN_DOWN_EXP,
  496. MODEL_TENSOR.FFN_UP_EXP,
  497. ],
  498. MODEL_ARCH.GEMMA: [
  499. MODEL_TENSOR.TOKEN_EMBD,
  500. MODEL_TENSOR.OUTPUT_NORM,
  501. MODEL_TENSOR.ATTN_NORM,
  502. MODEL_TENSOR.ATTN_Q,
  503. MODEL_TENSOR.ATTN_K,
  504. MODEL_TENSOR.ATTN_V,
  505. MODEL_TENSOR.ATTN_OUT,
  506. MODEL_TENSOR.FFN_GATE,
  507. MODEL_TENSOR.FFN_DOWN,
  508. MODEL_TENSOR.FFN_UP,
  509. MODEL_TENSOR.FFN_NORM,
  510. ],
  511. MODEL_ARCH.STARCODER2: [
  512. MODEL_TENSOR.TOKEN_EMBD,
  513. MODEL_TENSOR.OUTPUT_NORM,
  514. MODEL_TENSOR.OUTPUT,
  515. MODEL_TENSOR.ROPE_FREQS,
  516. MODEL_TENSOR.ATTN_NORM,
  517. MODEL_TENSOR.ATTN_Q,
  518. MODEL_TENSOR.ATTN_K,
  519. MODEL_TENSOR.ATTN_V,
  520. MODEL_TENSOR.ATTN_OUT,
  521. MODEL_TENSOR.ATTN_ROT_EMBD,
  522. MODEL_TENSOR.FFN_NORM,
  523. MODEL_TENSOR.FFN_DOWN,
  524. MODEL_TENSOR.FFN_UP,
  525. ],
  526. # TODO
  527. }
  528. # tensors that will not be serialized
  529. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  530. MODEL_ARCH.LLAMA: [
  531. MODEL_TENSOR.ROPE_FREQS,
  532. MODEL_TENSOR.ATTN_ROT_EMBD,
  533. ],
  534. MODEL_ARCH.BAICHUAN: [
  535. MODEL_TENSOR.ROPE_FREQS,
  536. MODEL_TENSOR.ATTN_ROT_EMBD,
  537. ],
  538. MODEL_ARCH.PERSIMMON: [
  539. MODEL_TENSOR.ROPE_FREQS,
  540. ],
  541. MODEL_ARCH.QWEN: [
  542. MODEL_TENSOR.ROPE_FREQS,
  543. MODEL_TENSOR.ATTN_ROT_EMBD,
  544. ],
  545. MODEL_ARCH.CODESHELL: [
  546. MODEL_TENSOR.ROPE_FREQS,
  547. MODEL_TENSOR.ATTN_ROT_EMBD,
  548. ],
  549. MODEL_ARCH.ORION: [
  550. MODEL_TENSOR.ROPE_FREQS,
  551. MODEL_TENSOR.ATTN_ROT_EMBD,
  552. ],
  553. MODEL_ARCH.STARCODER2: [
  554. MODEL_TENSOR.ROPE_FREQS,
  555. MODEL_TENSOR.ATTN_ROT_EMBD,
  556. ],
  557. }
  558. #
  559. # types
  560. #
  561. class TokenType(IntEnum):
  562. NORMAL = 1
  563. UNKNOWN = 2
  564. CONTROL = 3
  565. USER_DEFINED = 4
  566. UNUSED = 5
  567. BYTE = 6
  568. class RopeScalingType(Enum):
  569. NONE = 'none'
  570. LINEAR = 'linear'
  571. YARN = 'yarn'
  572. class PoolingType(IntEnum):
  573. NONE = 0
  574. MEAN = 1
  575. CLS = 2
  576. class GGMLQuantizationType(IntEnum):
  577. F32 = 0
  578. F16 = 1
  579. Q4_0 = 2
  580. Q4_1 = 3
  581. Q5_0 = 6
  582. Q5_1 = 7
  583. Q8_0 = 8
  584. Q8_1 = 9
  585. Q2_K = 10
  586. Q3_K = 11
  587. Q4_K = 12
  588. Q5_K = 13
  589. Q6_K = 14
  590. Q8_K = 15
  591. IQ2_XXS = 16
  592. IQ2_XS = 17
  593. IQ3_XXS = 18
  594. IQ1_S = 19
  595. IQ4_NL = 20
  596. IQ3_S = 21
  597. IQ2_S = 22
  598. IQ4_XS = 23
  599. class GGUFEndian(IntEnum):
  600. LITTLE = 0
  601. BIG = 1
  602. class GGUFValueType(IntEnum):
  603. UINT8 = 0
  604. INT8 = 1
  605. UINT16 = 2
  606. INT16 = 3
  607. UINT32 = 4
  608. INT32 = 5
  609. FLOAT32 = 6
  610. BOOL = 7
  611. STRING = 8
  612. ARRAY = 9
  613. UINT64 = 10
  614. INT64 = 11
  615. FLOAT64 = 12
  616. @staticmethod
  617. def get_type(val: Any) -> GGUFValueType:
  618. if isinstance(val, (str, bytes, bytearray)):
  619. return GGUFValueType.STRING
  620. elif isinstance(val, list):
  621. return GGUFValueType.ARRAY
  622. elif isinstance(val, float):
  623. return GGUFValueType.FLOAT32
  624. elif isinstance(val, bool):
  625. return GGUFValueType.BOOL
  626. elif isinstance(val, int):
  627. return GGUFValueType.INT32
  628. # TODO: need help with 64-bit types in Python
  629. else:
  630. print("Unknown type:", type(val))
  631. sys.exit()
  632. # Note: Does not support GGML_QKK_64
  633. QK_K = 256
  634. # Items here are (block size, type size)
  635. GGML_QUANT_SIZES = {
  636. GGMLQuantizationType.F32: (1, 4),
  637. GGMLQuantizationType.F16: (1, 2),
  638. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  639. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  640. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  641. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  642. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  643. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  644. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  645. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  646. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  647. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  648. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  649. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  650. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  651. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  652. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  653. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  654. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  655. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  656. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  657. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  658. }
  659. # Aliases for backward compatibility.
  660. # general
  661. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  662. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  663. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  664. KEY_GENERAL_NAME = Keys.General.NAME
  665. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  666. KEY_GENERAL_URL = Keys.General.URL
  667. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  668. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  669. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  670. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  671. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  672. # LLM
  673. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  674. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  675. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  676. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  677. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  678. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  679. # attention
  680. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  681. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  682. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  683. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  684. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  685. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  686. # RoPE
  687. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  688. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  689. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  690. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  691. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  692. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  693. # tokenization
  694. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  695. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  696. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  697. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  698. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  699. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  700. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  701. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  702. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  703. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  704. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  705. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  706. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  707. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV