tensor_mapping.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. ),
  20. # Token type embeddings
  21. MODEL_TENSOR.TOKEN_TYPES: (
  22. "embeddings.token_type_embeddings", # bert nomic-bert
  23. ),
  24. # Normalization of token embeddings
  25. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  26. "word_embeddings_layernorm", # bloom
  27. "embeddings.LayerNorm", # bert
  28. "emb_ln", # nomic-bert
  29. ),
  30. # Position embeddings
  31. MODEL_TENSOR.POS_EMBD: (
  32. "transformer.wpe", # gpt2
  33. "embeddings.position_embeddings", # bert
  34. "wpe", # gpt2
  35. ),
  36. # Output
  37. MODEL_TENSOR.OUTPUT: (
  38. "embed_out", # gptneox
  39. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  40. "output", # llama-pth bloom internlm2
  41. "word_embeddings_for_head", # persimmon
  42. "lm_head.linear", # phi2
  43. ),
  44. # Output norm
  45. MODEL_TENSOR.OUTPUT_NORM: (
  46. "gpt_neox.final_layer_norm", # gptneox
  47. "transformer.ln_f", # gpt2 gpt-j falcon
  48. "model.norm", # llama-hf baichuan internlm2
  49. "norm", # llama-pth
  50. "transformer.norm_f", # mpt
  51. "ln_f", # refact bloom qwen gpt2
  52. "language_model.encoder.final_layernorm", # persimmon
  53. "model.final_layernorm", # persimmon
  54. "lm_head.ln", # phi2
  55. ),
  56. # Rope frequencies
  57. MODEL_TENSOR.ROPE_FREQS: (
  58. "rope.freqs", # llama-pth
  59. ),
  60. }
  61. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  62. # Attention norm
  63. MODEL_TENSOR.ATTN_NORM: (
  64. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  65. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  66. "transformer.blocks.{bid}.norm_1", # mpt
  67. "transformer.h.{bid}.input_layernorm", # falcon7b
  68. "h.{bid}.input_layernorm", # bloom
  69. "transformer.h.{bid}.ln_mlp", # falcon40b
  70. "model.layers.{bid}.input_layernorm", # llama-hf
  71. "layers.{bid}.attention_norm", # llama-pth
  72. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  73. "model.layers.{bid}.ln1", # yi
  74. "h.{bid}.ln_1", # gpt2
  75. "transformer.h.{bid}.ln", # phi2
  76. "model.layers.layers.{bid}.norm", # plamo
  77. "model.layers.{bid}.attention_norm", # internlm2
  78. ),
  79. # Attention norm 2
  80. MODEL_TENSOR.ATTN_NORM_2: (
  81. "transformer.h.{bid}.ln_attn", # falcon40b
  82. ),
  83. # Attention query-key-value
  84. MODEL_TENSOR.ATTN_QKV: (
  85. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  86. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  87. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  88. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  89. "h.{bid}.self_attention.query_key_value", # bloom
  90. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  91. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  92. "h.{bid}.attn.c_attn", # gpt2
  93. "transformer.h.{bid}.mixer.Wqkv", # phi2
  94. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  95. ),
  96. # Attention query
  97. MODEL_TENSOR.ATTN_Q: (
  98. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  99. "layers.{bid}.attention.wq", # llama-pth
  100. "encoder.layer.{bid}.attention.self.query", # bert
  101. "transformer.h.{bid}.attn.q_proj", # gpt-j
  102. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  103. "model.layers.{bid}.attention.wq" # internlm2
  104. ),
  105. # Attention key
  106. MODEL_TENSOR.ATTN_K: (
  107. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  108. "layers.{bid}.attention.wk", # llama-pth
  109. "encoder.layer.{bid}.attention.self.key", # bert
  110. "transformer.h.{bid}.attn.k_proj", # gpt-j
  111. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  112. "model.layers.{bid}.attention.wk" # internlm2
  113. ),
  114. # Attention value
  115. MODEL_TENSOR.ATTN_V: (
  116. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  117. "layers.{bid}.attention.wv", # llama-pth
  118. "encoder.layer.{bid}.attention.self.value", # bert
  119. "transformer.h.{bid}.attn.v_proj", # gpt-j
  120. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  121. "model.layers.{bid}.attention.wv" # internlm2
  122. ),
  123. # Attention output
  124. MODEL_TENSOR.ATTN_OUT: (
  125. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  126. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  127. "transformer.blocks.{bid}.attn.out_proj", # mpt
  128. "transformer.h.{bid}.self_attention.dense", # falcon
  129. "h.{bid}.self_attention.dense", # bloom
  130. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  131. "layers.{bid}.attention.wo", # llama-pth
  132. "encoder.layer.{bid}.attention.output.dense", # bert
  133. "transformer.h.{bid}.attn.out_proj", # gpt-j
  134. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  135. "model.layers.{bid}.self_attn.dense", # persimmon
  136. "h.{bid}.attn.c_proj", # gpt2
  137. "transformer.h.{bid}.mixer.out_proj", # phi2
  138. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  139. "model.layers.{bid}.attention.wo", # internlm2
  140. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  141. ),
  142. # Attention output norm
  143. MODEL_TENSOR.ATTN_OUT_NORM: (
  144. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  145. "encoder.layers.{bid}.norm1", # nomic-bert
  146. ),
  147. # Rotary embeddings
  148. MODEL_TENSOR.ATTN_ROT_EMBD: (
  149. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  150. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  151. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  152. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  153. ),
  154. # Feed-forward norm
  155. MODEL_TENSOR.FFN_NORM: (
  156. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  157. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  158. "h.{bid}.post_attention_layernorm", # bloom
  159. "transformer.blocks.{bid}.norm_2", # mpt
  160. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  161. "layers.{bid}.ffn_norm", # llama-pth
  162. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  163. "model.layers.{bid}.ln2", # yi
  164. "h.{bid}.ln_2", # gpt2
  165. "model.layers.{bid}.ffn_norm", # internlm2
  166. ),
  167. MODEL_TENSOR.FFN_GATE_INP: (
  168. "layers.{bid}.feed_forward.gate", # mixtral
  169. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  170. ),
  171. # Feed-forward up
  172. MODEL_TENSOR.FFN_UP: (
  173. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  174. "transformer.h.{bid}.mlp.c_fc", # gpt2
  175. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  176. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  177. "h.{bid}.mlp.dense_h_to_4h", # bloom
  178. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  179. "layers.{bid}.feed_forward.w3", # llama-pth
  180. "encoder.layer.{bid}.intermediate.dense", # bert
  181. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  182. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  183. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  184. "transformer.h.{bid}.mlp.w1", # qwen
  185. "h.{bid}.mlp.c_fc", # gpt2
  186. "transformer.h.{bid}.mlp.fc1", # phi2
  187. "model.layers.{bid}.mlp.fc1", # phi2
  188. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  189. "model.layers.{bid}.feed_forward.w3", # internlm2
  190. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  191. "model.layers.{bid}.mlp.c_fc", # starcoder2
  192. ),
  193. MODEL_TENSOR.FFN_UP_EXP: (
  194. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  195. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  196. ),
  197. # AWQ-activation gate
  198. MODEL_TENSOR.FFN_ACT: (
  199. "transformer.blocks.{bid}.ffn.act", # mpt
  200. ),
  201. # Feed-forward gate
  202. MODEL_TENSOR.FFN_GATE: (
  203. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  204. "layers.{bid}.feed_forward.w1", # llama-pth
  205. "transformer.h.{bid}.mlp.w2", # qwen
  206. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  207. "model.layers.{bid}.feed_forward.w1", # internlm2
  208. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  209. ),
  210. MODEL_TENSOR.FFN_GATE_EXP: (
  211. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  212. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  213. ),
  214. # Feed-forward down
  215. MODEL_TENSOR.FFN_DOWN: (
  216. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  217. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  218. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  219. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  220. "h.{bid}.mlp.dense_4h_to_h", # bloom
  221. "model.layers.{bid}.mlp.down_proj", # llama-hf
  222. "layers.{bid}.feed_forward.w2", # llama-pth
  223. "encoder.layer.{bid}.output.dense", # bert
  224. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  225. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  226. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  227. "h.{bid}.mlp.c_proj", # gpt2
  228. "transformer.h.{bid}.mlp.fc2", # phi2
  229. "model.layers.{bid}.mlp.fc2", # phi2
  230. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  231. "model.layers.{bid}.feed_forward.w2", # internlm2
  232. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  233. "model.layers.{bid}.mlp.c_proj", # starcoder2
  234. ),
  235. MODEL_TENSOR.FFN_DOWN_EXP: (
  236. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  237. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  238. ),
  239. MODEL_TENSOR.ATTN_Q_NORM: (
  240. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  241. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  242. ),
  243. MODEL_TENSOR.ATTN_K_NORM: (
  244. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  245. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  246. ),
  247. MODEL_TENSOR.ROPE_FREQS: (
  248. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  249. ),
  250. MODEL_TENSOR.LAYER_OUT_NORM: (
  251. "encoder.layer.{bid}.output.LayerNorm", # bert
  252. "encoder.layers.{bid}.norm2", # nomic-bert
  253. )
  254. }
  255. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  256. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  257. self.mapping = {}
  258. for tensor, keys in self.mappings_cfg.items():
  259. if tensor not in MODEL_TENSORS[arch]:
  260. continue
  261. tensor_name = TENSOR_NAMES[tensor]
  262. self.mapping[tensor_name] = (tensor, tensor_name)
  263. for key in keys:
  264. self.mapping[key] = (tensor, tensor_name)
  265. for bid in range(n_blocks):
  266. for tensor, keys in self.block_mappings_cfg.items():
  267. if tensor not in MODEL_TENSORS[arch]:
  268. continue
  269. # TODO: make this configurable
  270. n_experts = 8
  271. for xid in range(n_experts):
  272. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  273. self.mapping[tensor_name] = (tensor, tensor_name)
  274. for key in keys:
  275. key = key.format(bid = bid, xid = xid)
  276. self.mapping[key] = (tensor, tensor_name)
  277. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  278. result = self.mapping.get(key)
  279. if result is not None:
  280. return result
  281. for suffix in try_suffixes:
  282. if key.endswith(suffix):
  283. result = self.mapping.get(key[:-len(suffix)])
  284. if result is not None:
  285. return result[0], result[1] + suffix
  286. return None
  287. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  288. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  289. if result is None:
  290. return None
  291. return result[1]
  292. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  293. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  294. if result is None:
  295. return None
  296. return result[0]
  297. def __getitem__(self, key: str) -> str:
  298. try:
  299. return self.mapping[key][1]
  300. except KeyError:
  301. raise KeyError(key)
  302. def __contains__(self, key: str) -> bool:
  303. return key in self.mapping
  304. def __repr__(self) -> str:
  305. return repr(self.mapping)
  306. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  307. return TensorNameMap(arch, n_blocks)