sampling.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. #include "sampling.h"
  2. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
  3. struct llama_sampling_context * result = new llama_sampling_context();
  4. result->params = params;
  5. result->grammar = nullptr;
  6. // if there is a grammar, parse it
  7. if (!params.grammar.empty()) {
  8. result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  9. // will be empty (default) if there are parse errors
  10. if (result->parsed_grammar.rules.empty()) {
  11. fprintf(stderr, "%s: failed to parse grammar\n", __func__);
  12. delete result;
  13. return nullptr;
  14. }
  15. // Ensure that there is a "root" node.
  16. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
  17. fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
  18. delete result;
  19. return nullptr;
  20. }
  21. std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
  22. result->grammar = llama_grammar_init(
  23. grammar_rules.data(),
  24. grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
  25. }
  26. result->prev.resize(params.n_prev);
  27. return result;
  28. }
  29. void llama_sampling_free(struct llama_sampling_context * ctx) {
  30. if (ctx->grammar != NULL) {
  31. llama_grammar_free(ctx->grammar);
  32. }
  33. delete ctx;
  34. }
  35. void llama_sampling_reset(llama_sampling_context * ctx) {
  36. if (ctx->grammar != NULL) {
  37. llama_grammar_free(ctx->grammar);
  38. ctx->grammar = NULL;
  39. }
  40. if (!ctx->parsed_grammar.rules.empty()) {
  41. std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
  42. ctx->grammar = llama_grammar_init(
  43. grammar_rules.data(),
  44. grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
  45. }
  46. std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
  47. ctx->cur.clear();
  48. }
  49. void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
  50. if (dst->grammar) {
  51. llama_grammar_free(dst->grammar);
  52. dst->grammar = nullptr;
  53. }
  54. if (src->grammar) {
  55. dst->grammar = llama_grammar_copy(src->grammar);
  56. }
  57. dst->prev = src->prev;
  58. }
  59. llama_token llama_sampling_last(llama_sampling_context * ctx) {
  60. return ctx->prev.back();
  61. }
  62. std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
  63. const int size = ctx_sampling->prev.size();
  64. n = std::min(n, size);
  65. std::string result;
  66. for (int i = size - n; i < size; i++) {
  67. result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
  68. }
  69. return result;
  70. }
  71. std::string llama_sampling_print(const llama_sampling_params & params) {
  72. char result[1024];
  73. snprintf(result, sizeof(result),
  74. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  75. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
  76. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  77. params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
  78. params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
  79. params.mirostat, params.mirostat_eta, params.mirostat_tau);
  80. return std::string(result);
  81. }
  82. std::string llama_sampling_order_print(const llama_sampling_params & params) {
  83. std::string result = "CFG -> Penalties ";
  84. if (params.mirostat == 0) {
  85. for (auto sampler_type : params.samplers_sequence) {
  86. const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
  87. if (!sampler_type_name.empty()) {
  88. result += "-> " + sampler_type_name + " ";
  89. }
  90. }
  91. } else {
  92. result += "-> mirostat ";
  93. }
  94. return result;
  95. }
  96. // no reasons to expose this function in header
  97. static void sampler_queue(
  98. struct llama_context * ctx_main,
  99. const llama_sampling_params & params,
  100. llama_token_data_array & cur_p,
  101. size_t min_keep) {
  102. const float temp = params.temp;
  103. const float dynatemp_range = params.dynatemp_range;
  104. const float dynatemp_exponent = params.dynatemp_exponent;
  105. const int32_t top_k = params.top_k;
  106. const float top_p = params.top_p;
  107. const float min_p = params.min_p;
  108. const float tfs_z = params.tfs_z;
  109. const float typical_p = params.typical_p;
  110. const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
  111. for (auto sampler_type : samplers_sequence) {
  112. switch (sampler_type) {
  113. case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
  114. case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
  115. case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
  116. case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
  117. case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
  118. case llama_sampler_type::TEMPERATURE:
  119. if (dynatemp_range > 0) {
  120. float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
  121. float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
  122. llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
  123. } else {
  124. llama_sample_temp(ctx_main, &cur_p, temp);
  125. }
  126. break;
  127. default : break;
  128. }
  129. }
  130. }
  131. static llama_token llama_sampling_sample_impl(
  132. struct llama_sampling_context * ctx_sampling,
  133. struct llama_context * ctx_main,
  134. struct llama_context * ctx_cfg,
  135. const int idx,
  136. bool is_resampling) { // Add a parameter to indicate if we are resampling
  137. const llama_sampling_params & params = ctx_sampling->params;
  138. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  139. const float temp = params.temp;
  140. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  141. const float penalty_repeat = params.penalty_repeat;
  142. const float penalty_freq = params.penalty_freq;
  143. const float penalty_present = params.penalty_present;
  144. const int mirostat = params.mirostat;
  145. const float mirostat_tau = params.mirostat_tau;
  146. const float mirostat_eta = params.mirostat_eta;
  147. const bool penalize_nl = params.penalize_nl;
  148. auto & prev = ctx_sampling->prev;
  149. auto & cur = ctx_sampling->cur;
  150. llama_token id = 0;
  151. // Get a pointer to the logits
  152. float * logits = llama_get_logits_ith(ctx_main, idx);
  153. // Declare original_logits at the beginning of the function scope
  154. std::vector<float> original_logits;
  155. if (!is_resampling) {
  156. // Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
  157. original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
  158. }
  159. // apply params.logit_bias map
  160. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  161. logits[it->first] += it->second;
  162. }
  163. if (ctx_cfg) {
  164. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  165. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  166. }
  167. cur.clear();
  168. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  169. cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  170. }
  171. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  172. // apply penalties
  173. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  174. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  175. if (penalty_tokens_used_size) {
  176. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  177. llama_sample_repetition_penalties(ctx_main, &cur_p,
  178. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  179. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  180. if (!penalize_nl) {
  181. for (size_t idx = 0; idx < cur_p.size; idx++) {
  182. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  183. cur_p.data[idx].logit = nl_logit;
  184. break;
  185. }
  186. }
  187. }
  188. }
  189. // If we are in the resampling phase, apply grammar checks before sampling logic
  190. if (is_resampling && ctx_sampling->grammar != NULL) {
  191. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  192. }
  193. if (temp < 0.0) {
  194. // greedy sampling, with probs
  195. llama_sample_softmax(ctx_main, &cur_p);
  196. id = cur_p.data[0].id;
  197. } else if (temp == 0.0) {
  198. // greedy sampling, no probs
  199. id = llama_sample_token_greedy(ctx_main, &cur_p);
  200. } else {
  201. if (mirostat == 1) {
  202. const int mirostat_m = 100;
  203. llama_sample_temp(ctx_main, &cur_p, temp);
  204. id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
  205. } else if (mirostat == 2) {
  206. llama_sample_temp(ctx_main, &cur_p, temp);
  207. id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
  208. } else {
  209. // temperature sampling
  210. size_t min_keep = std::max(1, params.min_keep);
  211. sampler_queue(ctx_main, params, cur_p, min_keep);
  212. id = llama_sample_token(ctx_main, &cur_p);
  213. //{
  214. // const int n_top = 10;
  215. // LOG("top %d candidates:\n", n_top);
  216. // for (int i = 0; i < n_top; i++) {
  217. // const llama_token id = cur_p.data[i].id;
  218. // (void)id; // To avoid a warning that id is unused when logging is disabled.
  219. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
  220. // }
  221. //}
  222. //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
  223. }
  224. }
  225. if (ctx_sampling->grammar != NULL && !is_resampling) {
  226. // Create an array with a single token data element for the sampled id
  227. llama_token_data single_token_data = {id, logits[id], 0.0f};
  228. llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
  229. // Apply grammar constraints to the single token
  230. llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
  231. // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
  232. bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  233. // If the token is not valid according to the grammar, perform resampling
  234. if (!is_valid) {
  235. LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
  236. // Restore logits from the copy
  237. std::copy(original_logits.begin(), original_logits.end(), logits);
  238. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
  239. }
  240. }
  241. return id;
  242. }
  243. static llama_token_data_array llama_sample_probability_distribution_impl(
  244. struct llama_sampling_context * ctx_sampling,
  245. struct llama_context * ctx_main,
  246. struct llama_context * ctx_cfg,
  247. const int idx) {
  248. const llama_sampling_params & params = ctx_sampling->params;
  249. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  250. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  251. const float penalty_repeat = params.penalty_repeat;
  252. const float penalty_freq = params.penalty_freq;
  253. const float penalty_present = params.penalty_present;
  254. const bool penalize_nl = params.penalize_nl;
  255. auto & prev = ctx_sampling->prev;
  256. auto & cur = ctx_sampling->cur;
  257. // Get a pointer to the logits
  258. float * logits = llama_get_logits_ith(ctx_main, idx);
  259. // Declare original_logits at the beginning of the function scope
  260. std::vector<float> original_logits;
  261. // apply params.logit_bias map
  262. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  263. logits[it->first] += it->second;
  264. }
  265. if (ctx_cfg) {
  266. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  267. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  268. }
  269. cur.clear();
  270. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  271. cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  272. }
  273. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  274. // apply penalties
  275. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  276. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  277. if (penalty_tokens_used_size) {
  278. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  279. llama_sample_repetition_penalties(ctx_main, &cur_p,
  280. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  281. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  282. if (!penalize_nl) {
  283. for (size_t idx = 0; idx < cur_p.size; idx++) {
  284. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  285. cur_p.data[idx].logit = nl_logit;
  286. break;
  287. }
  288. }
  289. }
  290. }
  291. // apply grammar checks
  292. if (ctx_sampling->grammar != NULL) {
  293. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  294. }
  295. llama_sample_softmax(ctx_main, &cur_p);
  296. return cur_p;
  297. }
  298. llama_token llama_sampling_sample(
  299. struct llama_sampling_context * ctx_sampling,
  300. struct llama_context * ctx_main,
  301. struct llama_context * ctx_cfg,
  302. const int idx) {
  303. // Call the implementation function with is_resampling set to false by default
  304. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
  305. }
  306. llama_token_data_array llama_sampling_probability_distribution(
  307. struct llama_sampling_context * ctx_sampling,
  308. struct llama_context * ctx_main,
  309. struct llama_context * ctx_cfg,
  310. const int idx) {
  311. return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx);
  312. }
  313. void llama_sampling_accept(
  314. struct llama_sampling_context * ctx_sampling,
  315. struct llama_context * ctx_main,
  316. llama_token id,
  317. bool apply_grammar) {
  318. ctx_sampling->prev.erase(ctx_sampling->prev.begin());
  319. ctx_sampling->prev.push_back(id);
  320. if (ctx_sampling->grammar != NULL && apply_grammar) {
  321. llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
  322. }
  323. }