convert_hf_to_gguf.py 198 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. def prepare_tensors(self):
  228. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  229. for name, data_torch in self.get_tensors():
  230. # we don't need these
  231. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  232. continue
  233. old_dtype = data_torch.dtype
  234. # convert any unsupported data types to float32
  235. if data_torch.dtype not in (torch.float16, torch.float32):
  236. data_torch = data_torch.to(torch.float32)
  237. # use the first number-like part of the tensor name as the block id
  238. bid = None
  239. for part in name.split("."):
  240. if part.isdecimal():
  241. bid = int(part)
  242. break
  243. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  244. data = data_torch.squeeze().numpy()
  245. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  246. if len(data.shape) == 0:
  247. data = data_torch.numpy()
  248. n_dims = len(data.shape)
  249. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  250. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  251. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  252. data_qtype = gguf.GGMLQuantizationType.F32
  253. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  254. # Some tensor types are always in float32
  255. if data_qtype is False and (
  256. any(
  257. self.match_model_tensor_name(new_name, key, bid)
  258. for key in (
  259. gguf.MODEL_TENSOR.FFN_GATE_INP,
  260. gguf.MODEL_TENSOR.POS_EMBD,
  261. gguf.MODEL_TENSOR.TOKEN_TYPES,
  262. gguf.MODEL_TENSOR.SSM_CONV1D,
  263. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  264. gguf.MODEL_TENSOR.TIME_MIX_W1,
  265. gguf.MODEL_TENSOR.TIME_MIX_W2,
  266. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  267. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  268. )
  269. )
  270. or not new_name.endswith(".weight")
  271. ):
  272. data_qtype = gguf.GGMLQuantizationType.F32
  273. if data_qtype is False and any(
  274. self.match_model_tensor_name(new_name, key, bid)
  275. for key in (
  276. gguf.MODEL_TENSOR.TOKEN_EMBD,
  277. gguf.MODEL_TENSOR.OUTPUT,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # Fallback to model directory name if metadata name is still missing
  320. if self.metadata.name is None:
  321. self.metadata.name = self.dir_model.name
  322. # Generate parameter weight class (useful for leader boards) if not yet determined
  323. if self.metadata.size_label is None and total_params > 0:
  324. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  325. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  326. output_type: str = self.ftype.name.partition("_")[2]
  327. # Filename Output
  328. if self.fname_out.is_dir():
  329. # Generate default filename based on model specification and available metadata
  330. if not vocab_only:
  331. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  332. else:
  333. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  334. # Use the default filename
  335. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  336. else:
  337. # Output path is a custom defined templated filename
  338. # Note: `not is_dir()` is used because `.is_file()` will not detect
  339. # file template strings as it doesn't actually exist as a file
  340. # Process templated file name with the output ftype, useful with the "auto" ftype
  341. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  342. self.set_type()
  343. logger.info("Set meta model")
  344. self.metadata.set_gguf_meta_model(self.gguf_writer)
  345. logger.info("Set model parameters")
  346. self.set_gguf_parameters()
  347. logger.info("Set model tokenizer")
  348. self.set_vocab()
  349. logger.info("Set model quantization version")
  350. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  351. def write(self):
  352. self.prepare_tensors()
  353. self.prepare_metadata(vocab_only=False)
  354. self.gguf_writer.write_header_to_file(path=self.fname_out)
  355. self.gguf_writer.write_kv_data_to_file()
  356. self.gguf_writer.write_tensors_to_file(progress=True)
  357. self.gguf_writer.close()
  358. def write_vocab(self):
  359. if len(self.gguf_writer.tensors) != 1:
  360. raise ValueError('Splitting the vocabulary is not supported')
  361. self.prepare_metadata(vocab_only=True)
  362. self.gguf_writer.write_header_to_file(path=self.fname_out)
  363. self.gguf_writer.write_kv_data_to_file()
  364. self.gguf_writer.close()
  365. @staticmethod
  366. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  367. part_names: list[str] = []
  368. for filename in os.listdir(dir_model):
  369. if filename.startswith(prefix) and filename.endswith(suffix):
  370. part_names.append(filename)
  371. part_names.sort()
  372. return part_names
  373. @staticmethod
  374. def load_hparams(dir_model: Path):
  375. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  376. return json.load(f)
  377. @classmethod
  378. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  379. assert names
  380. def func(modelcls: AnyModel) -> AnyModel:
  381. for name in names:
  382. cls._model_classes[name] = modelcls
  383. return modelcls
  384. return func
  385. @classmethod
  386. def from_model_architecture(cls, arch: str) -> type[Model]:
  387. try:
  388. return cls._model_classes[arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. def does_token_look_special(self, token: str | bytes) -> bool:
  392. if isinstance(token, (bytes, bytearray)):
  393. token_text = token.decode(encoding="utf-8")
  394. elif isinstance(token, memoryview):
  395. token_text = token.tobytes().decode(encoding="utf-8")
  396. else:
  397. token_text = token
  398. # Some models mark some added tokens which ought to be control tokens as not special.
  399. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  400. seems_special = token_text in (
  401. "<pad>", # deepseek-coder
  402. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  403. )
  404. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  405. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  406. # TODO: should these be marked as UNUSED instead? (maybe not)
  407. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  408. return seems_special
  409. # used for GPT-2 BPE and WordPiece vocabs
  410. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  411. tokens: list[str] = []
  412. toktypes: list[int] = []
  413. from transformers import AutoTokenizer
  414. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  415. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  416. assert max(tokenizer.vocab.values()) < vocab_size
  417. tokpre = self.get_vocab_base_pre(tokenizer)
  418. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  419. added_vocab = tokenizer.get_added_vocab()
  420. for i in range(vocab_size):
  421. if i not in reverse_vocab:
  422. tokens.append(f"[PAD{i}]")
  423. toktypes.append(gguf.TokenType.UNUSED)
  424. else:
  425. token: str = reverse_vocab[i]
  426. if token in added_vocab:
  427. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  428. toktypes.append(gguf.TokenType.CONTROL)
  429. else:
  430. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  431. toktypes.append(gguf.TokenType.USER_DEFINED)
  432. else:
  433. toktypes.append(gguf.TokenType.NORMAL)
  434. tokens.append(token)
  435. return tokens, toktypes, tokpre
  436. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  437. # do not modify it manually!
  438. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  439. # Marker: Start get_vocab_base_pre
  440. def get_vocab_base_pre(self, tokenizer) -> str:
  441. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  442. # is specific for the BPE pre-tokenizer used by the model
  443. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  444. # use in llama.cpp to implement the same pre-tokenizer
  445. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  446. chktok = tokenizer.encode(chktxt)
  447. chkhsh = sha256(str(chktok).encode()).hexdigest()
  448. logger.debug(f"chktok: {chktok}")
  449. logger.debug(f"chkhsh: {chkhsh}")
  450. res = None
  451. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  452. # or pull the latest version of the model from Huggingface
  453. # don't edit the hashes manually!
  454. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  455. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  456. res = "llama-bpe"
  457. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  458. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  459. res = "deepseek-llm"
  460. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  461. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  462. res = "deepseek-coder"
  463. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  464. # ref: https://huggingface.co/tiiuae/falcon-7b
  465. res = "falcon"
  466. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  467. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  468. res = "bert-bge"
  469. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  470. # ref: https://huggingface.co/mosaicml/mpt-7b
  471. res = "mpt"
  472. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  473. # ref: https://huggingface.co/bigcode/starcoder2-3b
  474. res = "starcoder"
  475. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  476. # ref: https://huggingface.co/openai-community/gpt2
  477. res = "gpt-2"
  478. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  479. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  480. res = "stablelm2"
  481. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  482. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  483. res = "refact"
  484. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  485. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  486. res = "command-r"
  487. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  488. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  489. res = "qwen2"
  490. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  491. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  492. res = "olmo"
  493. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  494. # ref: https://huggingface.co/databricks/dbrx-base
  495. res = "dbrx"
  496. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  497. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  498. res = "jina-v1-en"
  499. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  500. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  501. res = "jina-v2-en"
  502. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  503. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  504. res = "jina-v2-es"
  505. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  506. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  507. res = "jina-v2-de"
  508. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  509. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  510. res = "smaug-bpe"
  511. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  512. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  513. res = "poro-chat"
  514. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  515. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  516. res = "jina-v2-code"
  517. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  518. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  519. res = "chatglm-bpe"
  520. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  521. # ref: https://huggingface.co/LumiOpen/Viking-7B
  522. res = "viking"
  523. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  524. # ref: https://huggingface.co/core42/jais-13b
  525. res = "jais"
  526. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  527. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  528. res = "codeshell"
  529. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  530. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  531. res = "tekken"
  532. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  533. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  534. res = "smollm"
  535. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  536. # ref: https://huggingface.co/bigscience/bloom
  537. res = "bloom"
  538. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  539. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  540. res = "gpt3-finnish"
  541. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  542. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  543. res = "exaone"
  544. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  545. # ref: https://huggingface.co/microsoft/phi-2
  546. res = "phi-2"
  547. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  548. # ref: https://huggingface.co/facebook/chameleon-7b
  549. res = "chameleon"
  550. if res is None:
  551. logger.warning("\n")
  552. logger.warning("**************************************************************************************")
  553. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  554. logger.warning("** There are 2 possible reasons for this:")
  555. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  556. logger.warning("** - the pre-tokenization config has changed upstream")
  557. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  558. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  559. logger.warning("**")
  560. logger.warning(f"** chkhsh: {chkhsh}")
  561. logger.warning("**************************************************************************************")
  562. logger.warning("\n")
  563. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  564. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  565. logger.debug(f"chkhsh: {chkhsh}")
  566. return res
  567. # Marker: End get_vocab_base_pre
  568. def _set_vocab_gpt2(self) -> None:
  569. tokens, toktypes, tokpre = self.get_vocab_base()
  570. self.gguf_writer.add_tokenizer_model("gpt2")
  571. self.gguf_writer.add_tokenizer_pre(tokpre)
  572. self.gguf_writer.add_token_list(tokens)
  573. self.gguf_writer.add_token_types(toktypes)
  574. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  575. special_vocab.add_to_gguf(self.gguf_writer)
  576. def _set_vocab_qwen(self):
  577. dir_model = self.dir_model
  578. hparams = self.hparams
  579. tokens: list[str] = []
  580. toktypes: list[int] = []
  581. from transformers import AutoTokenizer
  582. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  583. vocab_size = hparams["vocab_size"]
  584. assert max(tokenizer.get_vocab().values()) < vocab_size
  585. tokpre = self.get_vocab_base_pre(tokenizer)
  586. merges = []
  587. vocab = {}
  588. mergeable_ranks = tokenizer.mergeable_ranks
  589. for token, rank in mergeable_ranks.items():
  590. vocab[QwenModel.token_bytes_to_string(token)] = rank
  591. if len(token) == 1:
  592. continue
  593. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  594. assert len(merged) == 2
  595. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  596. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  597. added_vocab = tokenizer.special_tokens
  598. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  599. for i in range(vocab_size):
  600. if i not in reverse_vocab:
  601. tokens.append(f"[PAD{i}]")
  602. toktypes.append(gguf.TokenType.UNUSED)
  603. elif reverse_vocab[i] in added_vocab:
  604. tokens.append(reverse_vocab[i])
  605. toktypes.append(gguf.TokenType.CONTROL)
  606. else:
  607. tokens.append(reverse_vocab[i])
  608. toktypes.append(gguf.TokenType.NORMAL)
  609. self.gguf_writer.add_tokenizer_model("gpt2")
  610. self.gguf_writer.add_tokenizer_pre(tokpre)
  611. self.gguf_writer.add_token_list(tokens)
  612. self.gguf_writer.add_token_types(toktypes)
  613. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  614. special_vocab.merges = merges
  615. # only add special tokens when they were not already loaded from config.json
  616. if len(special_vocab.special_token_ids) == 0:
  617. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  618. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  619. # this one is usually not in config.json anyway
  620. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  621. special_vocab.add_to_gguf(self.gguf_writer)
  622. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  623. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  624. self.gguf_writer.add_tokenizer_model("llama")
  625. self.gguf_writer.add_tokenizer_pre("default")
  626. self.gguf_writer.add_token_list(tokens)
  627. self.gguf_writer.add_token_scores(scores)
  628. self.gguf_writer.add_token_types(toktypes)
  629. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  630. special_vocab.add_to_gguf(self.gguf_writer)
  631. def _create_vocab_sentencepiece(self):
  632. from sentencepiece import SentencePieceProcessor
  633. tokenizer_path = self.dir_model / 'tokenizer.model'
  634. if not tokenizer_path.is_file():
  635. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  636. tokenizer = SentencePieceProcessor()
  637. tokenizer.LoadFromFile(str(tokenizer_path))
  638. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  639. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  640. scores: list[float] = [-10000.0] * vocab_size
  641. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  642. for token_id in range(tokenizer.vocab_size()):
  643. piece = tokenizer.IdToPiece(token_id)
  644. text = piece.encode("utf-8")
  645. score = tokenizer.GetScore(token_id)
  646. toktype = SentencePieceTokenTypes.NORMAL
  647. if tokenizer.IsUnknown(token_id):
  648. toktype = SentencePieceTokenTypes.UNKNOWN
  649. elif tokenizer.IsControl(token_id):
  650. toktype = SentencePieceTokenTypes.CONTROL
  651. elif tokenizer.IsUnused(token_id):
  652. toktype = SentencePieceTokenTypes.UNUSED
  653. elif tokenizer.IsByte(token_id):
  654. toktype = SentencePieceTokenTypes.BYTE
  655. tokens[token_id] = text
  656. scores[token_id] = score
  657. toktypes[token_id] = toktype
  658. added_tokens_file = self.dir_model / 'added_tokens.json'
  659. if added_tokens_file.is_file():
  660. with open(added_tokens_file, "r", encoding="utf-8") as f:
  661. added_tokens_json = json.load(f)
  662. for key in added_tokens_json:
  663. token_id = added_tokens_json[key]
  664. if token_id >= vocab_size:
  665. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  666. continue
  667. tokens[token_id] = key.encode("utf-8")
  668. scores[token_id] = -1000.0
  669. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  670. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  671. if tokenizer_config_file.is_file():
  672. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  673. tokenizer_config_json = json.load(f)
  674. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  675. for token_id, token_data in added_tokens_decoder.items():
  676. token_id = int(token_id)
  677. token: str = token_data["content"]
  678. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  679. if tokens[token_id] != token.encode("utf-8"):
  680. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  681. if token_data.get("special") or self.does_token_look_special(token):
  682. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  683. else:
  684. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  685. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  686. scores[token_id] = -1000.0
  687. tokens[token_id] = token.encode("utf-8")
  688. if vocab_size > len(tokens):
  689. pad_count = vocab_size - len(tokens)
  690. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  691. for i in range(1, pad_count + 1):
  692. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  693. scores.append(-1000.0)
  694. toktypes.append(SentencePieceTokenTypes.UNUSED)
  695. return tokens, scores, toktypes
  696. def _set_vocab_llama_hf(self):
  697. vocab = gguf.LlamaHfVocab(self.dir_model)
  698. tokens = []
  699. scores = []
  700. toktypes = []
  701. for text, score, toktype in vocab.all_tokens():
  702. tokens.append(text)
  703. scores.append(score)
  704. toktypes.append(toktype)
  705. assert len(tokens) == vocab.vocab_size
  706. self.gguf_writer.add_tokenizer_model("llama")
  707. self.gguf_writer.add_tokenizer_pre("default")
  708. self.gguf_writer.add_token_list(tokens)
  709. self.gguf_writer.add_token_scores(scores)
  710. self.gguf_writer.add_token_types(toktypes)
  711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  712. special_vocab.add_to_gguf(self.gguf_writer)
  713. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  714. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  715. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  716. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  717. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  718. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  719. assert field # tokenizer model
  720. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  721. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  722. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  723. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  724. assert field # token list
  725. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  726. if model_name == "llama-spm":
  727. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  728. assert field # token scores
  729. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  730. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  731. assert field # token types
  732. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  733. if model_name != "llama-spm":
  734. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  735. assert field # token merges
  736. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  737. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  738. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  739. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  740. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  741. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  742. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  743. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  744. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  745. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  746. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  747. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  748. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  749. @Model.register("GPTNeoXForCausalLM")
  750. class GPTNeoXModel(Model):
  751. model_arch = gguf.MODEL_ARCH.GPTNEOX
  752. def set_gguf_parameters(self):
  753. block_count = self.hparams["num_hidden_layers"]
  754. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  755. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  756. self.gguf_writer.add_block_count(block_count)
  757. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  758. self.gguf_writer.add_rope_dimension_count(
  759. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  760. )
  761. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  762. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  763. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  765. del bid # unused
  766. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  767. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  768. tensors: list[tuple[str, Tensor]] = []
  769. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  770. # Map bloom-style qkv_linear to gpt-style qkv_linear
  771. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  772. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  773. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  774. data_torch = torch.cat(
  775. (
  776. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  777. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  778. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  779. ),
  780. dim=0,
  781. )
  782. logger.info("re-format attention.linear_qkv.weight")
  783. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  784. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  785. data_torch = torch.cat(
  786. (
  787. qkv_bias[:, 0, :].reshape((n_embed,)),
  788. qkv_bias[:, 1, :].reshape((n_embed,)),
  789. qkv_bias[:, 2, :].reshape((n_embed,)),
  790. ),
  791. dim=0,
  792. )
  793. logger.info("re-format attention.linear_qkv.bias")
  794. tensors.append((self.map_tensor_name(name), data_torch))
  795. return tensors
  796. @Model.register("BloomForCausalLM", "BloomModel")
  797. class BloomModel(Model):
  798. model_arch = gguf.MODEL_ARCH.BLOOM
  799. def set_gguf_parameters(self):
  800. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  801. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  802. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  803. self.gguf_writer.add_embedding_length(n_embed)
  804. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  805. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  806. self.gguf_writer.add_head_count(n_head)
  807. self.gguf_writer.add_head_count_kv(n_head)
  808. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  809. self.gguf_writer.add_file_type(self.ftype)
  810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  811. del bid # unused
  812. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  813. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  814. name = re.sub(r'transformer\.', '', name)
  815. tensors: list[tuple[str, Tensor]] = []
  816. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  817. # Map bloom-style qkv_linear to gpt-style qkv_linear
  818. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  819. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  820. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  821. data_torch = torch.cat(
  822. (
  823. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  824. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  825. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  826. ),
  827. dim=0,
  828. )
  829. logger.info("re-format attention.linear_qkv.weight")
  830. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  831. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  832. data_torch = torch.cat(
  833. (
  834. qkv_bias[:, 0, :].reshape((n_embed,)),
  835. qkv_bias[:, 1, :].reshape((n_embed,)),
  836. qkv_bias[:, 2, :].reshape((n_embed,)),
  837. ),
  838. dim=0,
  839. )
  840. logger.info("re-format attention.linear_qkv.bias")
  841. tensors.append((self.map_tensor_name(name), data_torch))
  842. if name == "word_embeddings.weight":
  843. assert self.tensor_names is not None
  844. # TODO: tie them at runtime, don't duplicate in the model file
  845. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  846. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  847. return tensors
  848. @Model.register("MPTForCausalLM")
  849. class MPTModel(Model):
  850. model_arch = gguf.MODEL_ARCH.MPT
  851. def set_vocab(self):
  852. try:
  853. self._set_vocab_gpt2()
  854. except Exception:
  855. # Fallback for SEA-LION model
  856. self._set_vocab_sentencepiece()
  857. self.gguf_writer.add_add_bos_token(False)
  858. self.gguf_writer.add_pad_token_id(3)
  859. self.gguf_writer.add_eos_token_id(1)
  860. self.gguf_writer.add_unk_token_id(0)
  861. def set_gguf_parameters(self):
  862. block_count = self.hparams["n_layers"]
  863. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  864. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  865. self.gguf_writer.add_block_count(block_count)
  866. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  867. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  868. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  869. self.gguf_writer.add_head_count_kv(kv_n_heads)
  870. self.gguf_writer.add_layer_norm_eps(1e-5)
  871. if self.hparams["attn_config"]["clip_qkv"] is not None:
  872. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  873. if self.hparams["attn_config"]["alibi"]:
  874. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  875. else:
  876. self.gguf_writer.add_max_alibi_bias(0.0)
  877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  878. del bid # unused
  879. if "scales" in name:
  880. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  881. new_name = new_name.replace("scales", "act.scales")
  882. else:
  883. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  884. return [(new_name, data_torch)]
  885. @Model.register("OrionForCausalLM")
  886. class OrionModel(Model):
  887. model_arch = gguf.MODEL_ARCH.ORION
  888. def set_vocab(self):
  889. self._set_vocab_sentencepiece()
  890. def set_gguf_parameters(self):
  891. block_count = self.hparams["num_hidden_layers"]
  892. head_count = self.hparams["num_attention_heads"]
  893. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  894. ctx_length = 0
  895. if "max_sequence_length" in self.hparams:
  896. ctx_length = self.hparams["max_sequence_length"]
  897. elif "max_position_embeddings" in self.hparams:
  898. ctx_length = self.hparams["max_position_embeddings"]
  899. elif "model_max_length" in self.hparams:
  900. ctx_length = self.hparams["model_max_length"]
  901. else:
  902. raise ValueError("gguf: can not find ctx length parameter.")
  903. self.gguf_writer.add_file_type(self.ftype)
  904. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  905. self.gguf_writer.add_context_length(ctx_length)
  906. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  907. self.gguf_writer.add_block_count(block_count)
  908. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  909. self.gguf_writer.add_head_count(head_count)
  910. self.gguf_writer.add_head_count_kv(head_count_kv)
  911. # note: config provides rms norm but it is actually layer norm
  912. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  913. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  914. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  915. class BaichuanModel(Model):
  916. model_arch = gguf.MODEL_ARCH.BAICHUAN
  917. def set_vocab(self):
  918. self._set_vocab_sentencepiece()
  919. def set_gguf_parameters(self):
  920. block_count = self.hparams["num_hidden_layers"]
  921. head_count = self.hparams["num_attention_heads"]
  922. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  923. ctx_length = 0
  924. if "max_sequence_length" in self.hparams:
  925. ctx_length = self.hparams["max_sequence_length"]
  926. elif "max_position_embeddings" in self.hparams:
  927. ctx_length = self.hparams["max_position_embeddings"]
  928. elif "model_max_length" in self.hparams:
  929. ctx_length = self.hparams["model_max_length"]
  930. else:
  931. raise ValueError("gguf: can not find ctx length parameter.")
  932. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  933. self.gguf_writer.add_context_length(ctx_length)
  934. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  935. self.gguf_writer.add_block_count(block_count)
  936. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  937. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  938. self.gguf_writer.add_head_count(head_count)
  939. self.gguf_writer.add_head_count_kv(head_count_kv)
  940. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  941. self.gguf_writer.add_file_type(self.ftype)
  942. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  943. if self.hparams["rope_scaling"].get("type") == "linear":
  944. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  945. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  947. head_count = self.hparams["num_attention_heads"]
  948. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  949. tensors: list[tuple[str, Tensor]] = []
  950. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  951. logger.info(f"Unpacking and permuting layer {bid}")
  952. tensors = [
  953. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  954. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  955. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  956. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  957. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  958. self._reverse_hf_part(data_torch, 2)),
  959. ]
  960. else:
  961. tensors = [(self.map_tensor_name(name), data_torch)]
  962. return tensors
  963. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  964. if n_kv_head is not None and n_head != n_kv_head:
  965. n_head //= n_kv_head
  966. return (
  967. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  968. .swapaxes(1, 2)
  969. .reshape(weights.shape)
  970. )
  971. def _reverse_hf_permute_part(
  972. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  973. ) -> Tensor:
  974. r = weights.shape[0] // 3
  975. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  976. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  977. r = weights.shape[0] // 3
  978. return weights[r * n_part:r * n_part + r, ...]
  979. @Model.register("XverseForCausalLM")
  980. class XverseModel(Model):
  981. model_arch = gguf.MODEL_ARCH.XVERSE
  982. def set_vocab(self):
  983. assert (self.dir_model / "tokenizer.json").is_file()
  984. dir_model = self.dir_model
  985. hparams = self.hparams
  986. tokens: list[bytes] = []
  987. toktypes: list[int] = []
  988. from transformers import AutoTokenizer
  989. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  990. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  991. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  992. # because vocab_size is the count of items, and indexes start at 0.
  993. max_vocab_index = max(tokenizer.get_vocab().values())
  994. if max_vocab_index >= vocab_size:
  995. raise ValueError("Vocabulary size exceeds expected maximum size.")
  996. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  997. added_vocab = tokenizer.get_added_vocab()
  998. for token_id in range(vocab_size):
  999. token_text = reverse_vocab[token_id].encode('utf-8')
  1000. # replace "\x00" to string with length > 0
  1001. if token_text == b"\x00":
  1002. toktype = gguf.TokenType.BYTE # special
  1003. token_text = f"<{token_text}>".encode('utf-8')
  1004. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1005. toktype = gguf.TokenType.BYTE # special
  1006. elif reverse_vocab[token_id] in added_vocab:
  1007. if tokenizer.added_tokens_decoder[token_id].special:
  1008. toktype = gguf.TokenType.CONTROL
  1009. else:
  1010. toktype = gguf.TokenType.USER_DEFINED
  1011. else:
  1012. toktype = gguf.TokenType.NORMAL
  1013. tokens.append(token_text)
  1014. toktypes.append(toktype)
  1015. self.gguf_writer.add_tokenizer_model("llama")
  1016. self.gguf_writer.add_tokenizer_pre("default")
  1017. self.gguf_writer.add_token_list(tokens)
  1018. self.gguf_writer.add_token_types(toktypes)
  1019. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1020. special_vocab.add_to_gguf(self.gguf_writer)
  1021. def set_gguf_parameters(self):
  1022. block_count = self.hparams["num_hidden_layers"]
  1023. head_count = self.hparams["num_attention_heads"]
  1024. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1025. ctx_length = 0
  1026. if "max_sequence_length" in self.hparams:
  1027. ctx_length = self.hparams["max_sequence_length"]
  1028. elif "max_position_embeddings" in self.hparams:
  1029. ctx_length = self.hparams["max_position_embeddings"]
  1030. elif "model_max_length" in self.hparams:
  1031. ctx_length = self.hparams["model_max_length"]
  1032. else:
  1033. raise ValueError("gguf: can not find ctx length parameter.")
  1034. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1035. self.gguf_writer.add_context_length(ctx_length)
  1036. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1037. self.gguf_writer.add_block_count(block_count)
  1038. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1039. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1040. self.gguf_writer.add_head_count(head_count)
  1041. self.gguf_writer.add_head_count_kv(head_count_kv)
  1042. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1043. self.gguf_writer.add_file_type(self.ftype)
  1044. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1045. if self.hparams["rope_scaling"].get("type") == "linear":
  1046. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1047. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1049. del bid # unused
  1050. head_count = self.hparams["num_attention_heads"]
  1051. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1052. # HF models permute some of the tensors, so we need to undo that
  1053. if name.endswith("q_proj.weight"):
  1054. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1055. if name.endswith("k_proj.weight"):
  1056. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1057. return [(self.map_tensor_name(name), data_torch)]
  1058. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1059. if n_kv_head is not None and n_head != n_kv_head:
  1060. n_head //= n_kv_head
  1061. return (
  1062. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1063. .swapaxes(1, 2)
  1064. .reshape(weights.shape)
  1065. )
  1066. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1067. class FalconModel(Model):
  1068. model_arch = gguf.MODEL_ARCH.FALCON
  1069. def set_gguf_parameters(self):
  1070. block_count = self.hparams.get("num_hidden_layers")
  1071. if block_count is None:
  1072. block_count = self.hparams["n_layer"] # old name
  1073. n_head = self.hparams.get("num_attention_heads")
  1074. if n_head is None:
  1075. n_head = self.hparams["n_head"] # old name
  1076. n_head_kv = self.hparams.get("num_kv_heads")
  1077. if n_head_kv is None:
  1078. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1079. self.gguf_writer.add_context_length(2048) # not in config.json
  1080. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1081. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1082. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1083. self.gguf_writer.add_block_count(block_count)
  1084. self.gguf_writer.add_head_count(n_head)
  1085. self.gguf_writer.add_head_count_kv(n_head_kv)
  1086. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1087. self.gguf_writer.add_file_type(self.ftype)
  1088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1089. del bid # unused
  1090. # QKV tensor transform
  1091. # The original query_key_value tensor contains n_head_kv "kv groups",
  1092. # each consisting of n_head/n_head_kv query weights followed by one key
  1093. # and one value weight (shared by all query heads in the kv group).
  1094. # This layout makes it a big pain to work with in GGML.
  1095. # So we rearrange them here,, so that we have n_head query weights
  1096. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1097. # in contiguous fashion.
  1098. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1099. if "query_key_value" in name:
  1100. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1101. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1102. head_dim = self.hparams["hidden_size"] // n_head
  1103. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1104. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1105. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1106. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1107. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1108. return [(self.map_tensor_name(name), data_torch)]
  1109. @Model.register("GPTBigCodeForCausalLM")
  1110. class StarCoderModel(Model):
  1111. model_arch = gguf.MODEL_ARCH.STARCODER
  1112. def set_gguf_parameters(self):
  1113. block_count = self.hparams["n_layer"]
  1114. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1115. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1116. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1117. self.gguf_writer.add_block_count(block_count)
  1118. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1119. self.gguf_writer.add_head_count_kv(1)
  1120. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1121. self.gguf_writer.add_file_type(self.ftype)
  1122. @Model.register("GPTRefactForCausalLM")
  1123. class RefactModel(Model):
  1124. model_arch = gguf.MODEL_ARCH.REFACT
  1125. def set_vocab(self):
  1126. super().set_vocab()
  1127. # TODO: how to determine special FIM tokens automatically?
  1128. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1129. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1130. special_vocab._set_special_token("prefix", 1)
  1131. special_vocab._set_special_token("suffix", 3)
  1132. special_vocab._set_special_token("middle", 2)
  1133. special_vocab.chat_template = None # do not add it twice
  1134. special_vocab.add_to_gguf(self.gguf_writer)
  1135. def set_gguf_parameters(self):
  1136. hidden_dim = self.hparams["n_embd"]
  1137. inner_dim = 4 * hidden_dim
  1138. hidden_dim = int(2 * inner_dim / 3)
  1139. multiple_of = 256
  1140. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1141. block_count = self.hparams["n_layer"]
  1142. # refact uses Alibi. So this is from config.json which might be used by training.
  1143. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1144. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1145. self.gguf_writer.add_feed_forward_length(ff_dim)
  1146. self.gguf_writer.add_block_count(block_count)
  1147. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1148. self.gguf_writer.add_head_count_kv(1)
  1149. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1150. self.gguf_writer.add_file_type(self.ftype)
  1151. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1152. hidden_dim = self.hparams["n_embd"]
  1153. inner_dim = 4 * hidden_dim
  1154. hidden_dim = int(2 * inner_dim / 3)
  1155. multiple_of = 256
  1156. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1157. n_head = self.hparams["n_head"]
  1158. n_head_kv = 1
  1159. head_dim = self.hparams["n_embd"] // n_head
  1160. tensors: list[tuple[str, Tensor]] = []
  1161. if bid is not None:
  1162. if name == f"transformer.h.{bid}.attn.kv.weight":
  1163. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1164. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1165. elif name == f"transformer.h.{bid}.attn.q.weight":
  1166. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1167. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1168. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1169. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1170. if len(tensors) == 0:
  1171. tensors.append((self.map_tensor_name(name), data_torch))
  1172. return tensors
  1173. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1174. class StableLMModel(Model):
  1175. model_arch = gguf.MODEL_ARCH.STABLELM
  1176. def set_vocab(self):
  1177. if (self.dir_model / "tokenizer.json").is_file():
  1178. self._set_vocab_gpt2()
  1179. else:
  1180. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1181. self._set_vocab_qwen()
  1182. def set_gguf_parameters(self):
  1183. hparams = self.hparams
  1184. block_count = hparams["num_hidden_layers"]
  1185. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1186. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1187. self.gguf_writer.add_block_count(block_count)
  1188. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1189. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1190. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1191. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1192. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1193. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1194. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1195. self.gguf_writer.add_file_type(self.ftype)
  1196. _q_norms: list[dict[str, Tensor]] | None = None
  1197. _k_norms: list[dict[str, Tensor]] | None = None
  1198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1199. n_head = self.hparams["num_attention_heads"]
  1200. n_kv_head = self.hparams["num_key_value_heads"]
  1201. if name.find("q_layernorm.norms") != -1:
  1202. assert bid is not None
  1203. if self._q_norms is None:
  1204. self._q_norms = [{} for _ in range(self.block_count)]
  1205. self._q_norms[bid][name] = data_torch
  1206. if len(self._q_norms[bid]) >= n_head:
  1207. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1208. else:
  1209. return []
  1210. if name.find("k_layernorm.norms") != -1:
  1211. assert bid is not None
  1212. if self._k_norms is None:
  1213. self._k_norms = [{} for _ in range(self.block_count)]
  1214. self._k_norms[bid][name] = data_torch
  1215. if len(self._k_norms[bid]) >= n_kv_head:
  1216. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1217. else:
  1218. return []
  1219. return [(self.map_tensor_name(name), data_torch)]
  1220. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1221. datas: list[Tensor] = []
  1222. # extract the norms in order
  1223. for xid in range(n_head):
  1224. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1225. datas.append(norms[ename])
  1226. del norms[ename]
  1227. data_torch = torch.stack(datas, dim=0)
  1228. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1229. new_name = self.map_tensor_name(merged_name)
  1230. return [(new_name, data_torch)]
  1231. def prepare_tensors(self):
  1232. super().prepare_tensors()
  1233. if self._q_norms is not None or self._k_norms is not None:
  1234. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1235. norms = (
  1236. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1237. ) + (
  1238. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1239. )
  1240. if len(norms) > 0:
  1241. raise ValueError(f"Unprocessed norms: {norms}")
  1242. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1243. class LlamaModel(Model):
  1244. model_arch = gguf.MODEL_ARCH.LLAMA
  1245. def set_vocab(self):
  1246. try:
  1247. self._set_vocab_sentencepiece()
  1248. except FileNotFoundError:
  1249. try:
  1250. self._set_vocab_llama_hf()
  1251. except (FileNotFoundError, TypeError):
  1252. # Llama 3
  1253. self._set_vocab_gpt2()
  1254. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1255. if self.hparams.get("vocab_size", 32000) == 32016:
  1256. special_vocab = gguf.SpecialVocab(
  1257. self.dir_model, load_merges=False,
  1258. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1259. )
  1260. special_vocab._set_special_token("prefix", 32007)
  1261. special_vocab._set_special_token("suffix", 32008)
  1262. special_vocab._set_special_token("middle", 32009)
  1263. special_vocab._set_special_token("eot", 32010)
  1264. special_vocab.add_to_gguf(self.gguf_writer)
  1265. def set_gguf_parameters(self):
  1266. super().set_gguf_parameters()
  1267. hparams = self.hparams
  1268. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1269. if "head_dim" in hparams:
  1270. rope_dim = hparams["head_dim"]
  1271. else:
  1272. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1273. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1274. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1275. if self.hparams["rope_scaling"].get("type") == "linear":
  1276. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1277. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1278. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1279. if tokenizer_config_file.is_file():
  1280. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1281. tokenizer_config_json = json.load(f)
  1282. if "add_prefix_space" in tokenizer_config_json:
  1283. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1284. # Apply to granite small models only
  1285. if self.hparams.get("vocab_size", 32000) == 49152:
  1286. self.gguf_writer.add_add_bos_token(False)
  1287. @staticmethod
  1288. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1289. if n_head_kv is not None and n_head != n_head_kv:
  1290. n_head = n_head_kv
  1291. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1292. .swapaxes(1, 2)
  1293. .reshape(weights.shape))
  1294. _experts: list[dict[str, Tensor]] | None = None
  1295. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1296. n_head = self.hparams["num_attention_heads"]
  1297. n_kv_head = self.hparams.get("num_key_value_heads")
  1298. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1299. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1300. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1301. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1302. # process the experts separately
  1303. if name.find("block_sparse_moe.experts") != -1:
  1304. n_experts = self.hparams["num_local_experts"]
  1305. assert bid is not None
  1306. if self._experts is None:
  1307. self._experts = [{} for _ in range(self.block_count)]
  1308. self._experts[bid][name] = data_torch
  1309. if len(self._experts[bid]) >= n_experts * 3:
  1310. tensors: list[tuple[str, Tensor]] = []
  1311. # merge the experts into a single 3d tensor
  1312. for wid in ["w1", "w2", "w3"]:
  1313. datas: list[Tensor] = []
  1314. for xid in range(n_experts):
  1315. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1316. datas.append(self._experts[bid][ename])
  1317. del self._experts[bid][ename]
  1318. data_torch = torch.stack(datas, dim=0)
  1319. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1320. new_name = self.map_tensor_name(merged_name)
  1321. tensors.append((new_name, data_torch))
  1322. return tensors
  1323. else:
  1324. return []
  1325. return [(self.map_tensor_name(name), data_torch)]
  1326. def prepare_tensors(self):
  1327. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1328. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1329. base = self.hparams.get("rope_theta", 10000.0)
  1330. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1331. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1332. factor = rope_scaling.get("factor", 8.0)
  1333. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1334. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1335. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1336. low_freq_wavelen = old_context_len / low_freq_factor
  1337. high_freq_wavelen = old_context_len / high_freq_factor
  1338. assert low_freq_wavelen != high_freq_wavelen
  1339. rope_factors = []
  1340. for freq in freqs:
  1341. wavelen = 2 * math.pi / freq
  1342. if wavelen < high_freq_wavelen:
  1343. rope_factors.append(1)
  1344. elif wavelen > low_freq_wavelen:
  1345. rope_factors.append(factor)
  1346. else:
  1347. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1348. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1349. if not self.is_lora:
  1350. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1351. super().prepare_tensors()
  1352. if self._experts is not None:
  1353. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1354. experts = [k for d in self._experts for k in d.keys()]
  1355. if len(experts) > 0:
  1356. raise ValueError(f"Unprocessed experts: {experts}")
  1357. @Model.register("BitnetForCausalLM")
  1358. class BitnetModel(Model):
  1359. model_arch = gguf.MODEL_ARCH.BITNET
  1360. def set_vocab(self):
  1361. self._set_vocab_sentencepiece()
  1362. def set_gguf_parameters(self):
  1363. super().set_gguf_parameters()
  1364. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1365. self.gguf_writer.add_rope_scaling_factor(1.0)
  1366. def weight_quant(self, weight: Tensor) -> Tensor:
  1367. dtype = weight.dtype
  1368. weight = weight.float()
  1369. scale = weight.abs().mean().clamp(min=1e-5)
  1370. iscale = 1 / scale
  1371. # TODO: multiply by the scale directly instead of inverting it twice
  1372. # (this is also unnecessarily doubly inverted upstream)
  1373. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1374. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1375. return result.type(dtype)
  1376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1377. new_name = self.map_tensor_name(name)
  1378. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1379. gguf.MODEL_TENSOR.ATTN_Q,
  1380. gguf.MODEL_TENSOR.ATTN_K,
  1381. gguf.MODEL_TENSOR.ATTN_V,
  1382. gguf.MODEL_TENSOR.ATTN_OUT,
  1383. gguf.MODEL_TENSOR.FFN_UP,
  1384. gguf.MODEL_TENSOR.FFN_DOWN,
  1385. gguf.MODEL_TENSOR.FFN_GATE,
  1386. ]):
  1387. # transform weight into 1/0/-1 (in fp32)
  1388. data_torch = self.weight_quant(data_torch)
  1389. yield (new_name, data_torch)
  1390. @Model.register("GrokForCausalLM")
  1391. class GrokModel(Model):
  1392. model_arch = gguf.MODEL_ARCH.GROK
  1393. def set_vocab(self):
  1394. self._set_vocab_sentencepiece()
  1395. def __init__(self, *args, **kwargs):
  1396. super().__init__(*args, **kwargs)
  1397. def set_gguf_parameters(self):
  1398. super().set_gguf_parameters()
  1399. _experts: list[dict[str, Tensor]] | None = None
  1400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1401. # process the experts separately
  1402. if name.find(".moe.") != -1:
  1403. n_experts = self.hparams["num_local_experts"]
  1404. assert bid is not None
  1405. if self._experts is None:
  1406. self._experts = [{} for _ in range(self.block_count)]
  1407. self._experts[bid][name] = data_torch
  1408. if len(self._experts[bid]) >= n_experts * 3:
  1409. tensors: list[tuple[str, Tensor]] = []
  1410. # merge the experts into a single 3d tensor
  1411. for wid in ["linear", "linear_1", "linear_v"]:
  1412. datas: list[Tensor] = []
  1413. for xid in range(n_experts):
  1414. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1415. datas.append(self._experts[bid][ename])
  1416. del self._experts[bid][ename]
  1417. data_torch = torch.stack(datas, dim=0)
  1418. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1419. new_name = self.map_tensor_name(merged_name)
  1420. tensors.append((new_name, data_torch))
  1421. return tensors
  1422. else:
  1423. return []
  1424. return [(self.map_tensor_name(name), data_torch)]
  1425. @Model.register("DbrxForCausalLM")
  1426. class DbrxModel(Model):
  1427. model_arch = gguf.MODEL_ARCH.DBRX
  1428. def set_gguf_parameters(self):
  1429. ffn_config = self.hparams["ffn_config"]
  1430. attn_config = self.hparams["attn_config"]
  1431. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1432. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1433. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1434. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1435. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1436. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1437. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1438. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1439. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1440. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1441. self.gguf_writer.add_layer_norm_eps(1e-5)
  1442. self.gguf_writer.add_file_type(self.ftype)
  1443. logger.info(f"gguf: file type = {self.ftype}")
  1444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1445. del bid # unused
  1446. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1447. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1448. n_embd = self.hparams["d_model"]
  1449. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1450. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1451. # But llama.cpp moe graph works differently
  1452. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1453. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1454. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1455. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1456. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1457. experts = False
  1458. for exp_tensor_name in exp_tensor_names.keys():
  1459. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1460. experts = True
  1461. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1462. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1463. data_torch = data_torch.permute(*permute_tensor)
  1464. break
  1465. # map tensor names
  1466. # In MoE models the ffn tensors are typically most of the model weights,
  1467. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1468. # Every other model has the weight names ending in .weight,
  1469. # let's assume that is the convention which is not the case for dbrx:
  1470. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1471. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1472. return [(new_name, data_torch)]
  1473. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1474. del name, new_name, bid # unused
  1475. return n_dims > 1
  1476. @Model.register("MiniCPMForCausalLM")
  1477. class MiniCPMModel(Model):
  1478. model_arch = gguf.MODEL_ARCH.MINICPM
  1479. def set_gguf_parameters(self):
  1480. block_count = self.hparams["num_hidden_layers"]
  1481. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1482. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1483. self.gguf_writer.add_block_count(block_count)
  1484. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1485. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1486. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1487. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1488. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1489. self.gguf_writer.add_file_type(self.ftype)
  1490. def set_vocab(self):
  1491. self._set_vocab_llama_hf()
  1492. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1493. if n_kv_head is not None and n_head != n_kv_head:
  1494. n_head //= n_kv_head
  1495. return (
  1496. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1497. .swapaxes(1, 2)
  1498. .reshape(weights.shape)
  1499. )
  1500. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1501. del bid # unused
  1502. n_head = self.hparams["num_attention_heads"]
  1503. n_kv_head = self.hparams.get("num_key_value_heads")
  1504. # HF models permute some of the tensors, so we need to undo that
  1505. if name.endswith(("q_proj.weight")):
  1506. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1507. if name.endswith(("k_proj.weight")):
  1508. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1509. return [(self.map_tensor_name(name), data_torch)]
  1510. @Model.register("MiniCPM3ForCausalLM")
  1511. class MiniCPM3Model(Model):
  1512. model_arch = gguf.MODEL_ARCH.MINICPM3
  1513. def set_gguf_parameters(self):
  1514. hparams = self.hparams
  1515. rope_dims = hparams["qk_rope_head_dim"]
  1516. self.gguf_writer.add_file_type(self.ftype)
  1517. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1518. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1519. self.gguf_writer.add_block_count(self.block_count)
  1520. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1521. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1522. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1523. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1524. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1525. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1526. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1527. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1528. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1529. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1530. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1531. if rope_scaling is None:
  1532. return
  1533. long_factors = rope_scaling.get('long_factor', None)
  1534. short_factors = rope_scaling.get('short_factor', None)
  1535. if long_factors is None or short_factors is None:
  1536. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1537. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1538. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1539. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1540. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1541. def set_vocab(self):
  1542. self._set_vocab_llama_hf()
  1543. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1544. if n_kv_head is not None and n_head != n_kv_head:
  1545. n_head //= n_kv_head
  1546. return (
  1547. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1548. .swapaxes(1, 2)
  1549. .reshape(weights.shape)
  1550. )
  1551. @Model.register("QWenLMHeadModel")
  1552. class QwenModel(Model):
  1553. model_arch = gguf.MODEL_ARCH.QWEN
  1554. @staticmethod
  1555. def token_bytes_to_string(b):
  1556. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1557. byte_encoder = bytes_to_unicode()
  1558. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1559. @staticmethod
  1560. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1561. parts = [bytes([b]) for b in token]
  1562. while True:
  1563. min_idx = None
  1564. min_rank = None
  1565. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1566. rank = mergeable_ranks.get(pair[0] + pair[1])
  1567. if rank is not None and (min_rank is None or rank < min_rank):
  1568. min_idx = i
  1569. min_rank = rank
  1570. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1571. break
  1572. assert min_idx is not None
  1573. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1574. return parts
  1575. def set_vocab(self):
  1576. self._set_vocab_qwen()
  1577. def set_gguf_parameters(self):
  1578. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1579. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1580. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1581. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1582. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1583. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1584. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1585. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1586. self.gguf_writer.add_file_type(self.ftype)
  1587. @Model.register("Qwen2ForCausalLM")
  1588. class Qwen2Model(Model):
  1589. model_arch = gguf.MODEL_ARCH.QWEN2
  1590. def set_vocab(self):
  1591. try:
  1592. self._set_vocab_sentencepiece()
  1593. except FileNotFoundError:
  1594. self._set_vocab_gpt2()
  1595. @Model.register("Qwen2MoeForCausalLM")
  1596. class Qwen2MoeModel(Model):
  1597. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1598. def set_gguf_parameters(self):
  1599. super().set_gguf_parameters()
  1600. if (n_experts := self.hparams.get("num_experts")) is not None:
  1601. self.gguf_writer.add_expert_count(n_experts)
  1602. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1603. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1604. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1605. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1606. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1607. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1608. _experts: list[dict[str, Tensor]] | None = None
  1609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1610. # process the experts separately
  1611. if name.find("experts") != -1:
  1612. n_experts = self.hparams["num_experts"]
  1613. assert bid is not None
  1614. if self._experts is None:
  1615. self._experts = [{} for _ in range(self.block_count)]
  1616. self._experts[bid][name] = data_torch
  1617. if len(self._experts[bid]) >= n_experts * 3:
  1618. tensors: list[tuple[str, Tensor]] = []
  1619. # merge the experts into a single 3d tensor
  1620. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1621. datas: list[Tensor] = []
  1622. for xid in range(n_experts):
  1623. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1624. datas.append(self._experts[bid][ename])
  1625. del self._experts[bid][ename]
  1626. data_torch = torch.stack(datas, dim=0)
  1627. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1628. new_name = self.map_tensor_name(merged_name)
  1629. tensors.append((new_name, data_torch))
  1630. return tensors
  1631. else:
  1632. return []
  1633. return [(self.map_tensor_name(name), data_torch)]
  1634. def prepare_tensors(self):
  1635. super().prepare_tensors()
  1636. if self._experts is not None:
  1637. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1638. experts = [k for d in self._experts for k in d.keys()]
  1639. if len(experts) > 0:
  1640. raise ValueError(f"Unprocessed experts: {experts}")
  1641. @Model.register("GPT2LMHeadModel")
  1642. class GPT2Model(Model):
  1643. model_arch = gguf.MODEL_ARCH.GPT2
  1644. def set_gguf_parameters(self):
  1645. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1646. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1647. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1648. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1649. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1650. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1651. self.gguf_writer.add_file_type(self.ftype)
  1652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1653. del bid # unused
  1654. tensors: list[tuple[str, Tensor]] = []
  1655. # we don't need these
  1656. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1657. return tensors
  1658. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1659. data_torch = data_torch.transpose(1, 0)
  1660. new_name = self.map_tensor_name(name)
  1661. tensors.append((new_name, data_torch))
  1662. # note: GPT2 output is tied to (same as) wte in original model
  1663. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1664. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1665. return tensors
  1666. @Model.register("PhiForCausalLM")
  1667. class Phi2Model(Model):
  1668. model_arch = gguf.MODEL_ARCH.PHI2
  1669. def set_gguf_parameters(self):
  1670. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1671. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1672. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1673. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1674. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1675. self.gguf_writer.add_embedding_length(n_embd)
  1676. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1677. self.gguf_writer.add_block_count(block_count)
  1678. self.gguf_writer.add_head_count(n_head)
  1679. self.gguf_writer.add_head_count_kv(n_head)
  1680. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1681. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1682. self.gguf_writer.add_file_type(self.ftype)
  1683. self.gguf_writer.add_add_bos_token(False)
  1684. @Model.register("Phi3ForCausalLM")
  1685. class Phi3MiniModel(Model):
  1686. model_arch = gguf.MODEL_ARCH.PHI3
  1687. def set_vocab(self):
  1688. from sentencepiece import SentencePieceProcessor
  1689. tokenizer_path = self.dir_model / 'tokenizer.model'
  1690. if not tokenizer_path.is_file():
  1691. raise ValueError(f'Error: Missing {tokenizer_path}')
  1692. tokenizer = SentencePieceProcessor()
  1693. tokenizer.LoadFromFile(str(tokenizer_path))
  1694. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1695. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1696. scores: list[float] = [-10000.0] * vocab_size
  1697. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1698. for token_id in range(tokenizer.vocab_size()):
  1699. piece = tokenizer.IdToPiece(token_id)
  1700. text = piece.encode("utf-8")
  1701. score = tokenizer.GetScore(token_id)
  1702. toktype = SentencePieceTokenTypes.NORMAL
  1703. if tokenizer.IsUnknown(token_id):
  1704. toktype = SentencePieceTokenTypes.UNKNOWN
  1705. elif tokenizer.IsControl(token_id):
  1706. toktype = SentencePieceTokenTypes.CONTROL
  1707. elif tokenizer.IsUnused(token_id):
  1708. toktype = SentencePieceTokenTypes.UNUSED
  1709. elif tokenizer.IsByte(token_id):
  1710. toktype = SentencePieceTokenTypes.BYTE
  1711. tokens[token_id] = text
  1712. scores[token_id] = score
  1713. toktypes[token_id] = toktype
  1714. added_tokens_file = self.dir_model / 'added_tokens.json'
  1715. if added_tokens_file.is_file():
  1716. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1717. added_tokens_json = json.load(f)
  1718. for key in added_tokens_json:
  1719. token_id = added_tokens_json[key]
  1720. if token_id >= vocab_size:
  1721. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1722. continue
  1723. tokens[token_id] = key.encode("utf-8")
  1724. scores[token_id] = -1000.0
  1725. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1726. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1727. if tokenizer_config_file.is_file():
  1728. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1729. tokenizer_config_json = json.load(f)
  1730. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1731. for token_id, foken_data in added_tokens_decoder.items():
  1732. token_id = int(token_id)
  1733. token = foken_data["content"].encode("utf-8")
  1734. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1735. if tokens[token_id] != token:
  1736. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1737. tokens[token_id] = token
  1738. scores[token_id] = -1000.0
  1739. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1740. if foken_data.get("special"):
  1741. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1742. tokenizer_file = self.dir_model / 'tokenizer.json'
  1743. if tokenizer_file.is_file():
  1744. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1745. tokenizer_json = json.load(f)
  1746. added_tokens = tokenizer_json.get("added_tokens", [])
  1747. for foken_data in added_tokens:
  1748. token_id = int(foken_data["id"])
  1749. token = foken_data["content"].encode("utf-8")
  1750. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1751. if tokens[token_id] != token:
  1752. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1753. tokens[token_id] = token
  1754. scores[token_id] = -1000.0
  1755. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1756. if foken_data.get("special"):
  1757. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1758. self.gguf_writer.add_tokenizer_model("llama")
  1759. self.gguf_writer.add_tokenizer_pre("default")
  1760. self.gguf_writer.add_token_list(tokens)
  1761. self.gguf_writer.add_token_scores(scores)
  1762. self.gguf_writer.add_token_types(toktypes)
  1763. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1764. special_vocab.add_to_gguf(self.gguf_writer)
  1765. def set_gguf_parameters(self):
  1766. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1767. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1768. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1769. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1770. rms_eps = self.find_hparam(["rms_norm_eps"])
  1771. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1772. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1773. rope_dims = n_embd // n_head
  1774. self.gguf_writer.add_context_length(max_pos_embds)
  1775. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1776. self.gguf_writer.add_embedding_length(n_embd)
  1777. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1778. self.gguf_writer.add_block_count(block_count)
  1779. self.gguf_writer.add_head_count(n_head)
  1780. self.gguf_writer.add_head_count_kv(n_head_kv)
  1781. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1782. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1783. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1784. self.gguf_writer.add_file_type(self.ftype)
  1785. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1786. # write rope scaling for long context (128k) model
  1787. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1788. if rope_scaling is None:
  1789. return
  1790. scale = max_pos_embds / orig_max_pos_embds
  1791. rope_scaling_type = rope_scaling.get('type', '').lower()
  1792. if len(rope_scaling_type) == 0:
  1793. raise KeyError('Missing the required key rope_scaling.type')
  1794. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1795. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1796. elif rope_scaling_type == 'yarn':
  1797. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1798. else:
  1799. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1800. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1801. long_factors = rope_scaling.get('long_factor', None)
  1802. short_factors = rope_scaling.get('short_factor', None)
  1803. if long_factors is None or short_factors is None:
  1804. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1805. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1806. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1807. if not self.is_lora:
  1808. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1809. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1810. @Model.register("PlamoForCausalLM")
  1811. class PlamoModel(Model):
  1812. model_arch = gguf.MODEL_ARCH.PLAMO
  1813. def set_vocab(self):
  1814. self._set_vocab_sentencepiece()
  1815. def set_gguf_parameters(self):
  1816. hparams = self.hparams
  1817. block_count = hparams["num_hidden_layers"]
  1818. self.gguf_writer.add_context_length(4096) # not in config.json
  1819. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1820. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1821. self.gguf_writer.add_block_count(block_count)
  1822. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1823. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1824. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1825. self.gguf_writer.add_file_type(self.ftype)
  1826. def shuffle_attn_q_weight(self, data_torch):
  1827. assert data_torch.size() == (5120, 5120)
  1828. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1829. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1830. data_torch = torch.reshape(data_torch, (5120, 5120))
  1831. return data_torch
  1832. def shuffle_attn_output_weight(self, data_torch):
  1833. assert data_torch.size() == (5120, 5120)
  1834. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1835. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1836. data_torch = torch.reshape(data_torch, (5120, 5120))
  1837. return data_torch
  1838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1839. del bid # unused
  1840. new_name = self.map_tensor_name(name)
  1841. # shuffle for broadcasting of gqa in ggml_mul_mat
  1842. if new_name.endswith("attn_q.weight"):
  1843. data_torch = self.shuffle_attn_q_weight(data_torch)
  1844. elif new_name.endswith("attn_output.weight"):
  1845. data_torch = self.shuffle_attn_output_weight(data_torch)
  1846. return [(new_name, data_torch)]
  1847. @Model.register("CodeShellForCausalLM")
  1848. class CodeShellModel(Model):
  1849. model_arch = gguf.MODEL_ARCH.CODESHELL
  1850. def set_gguf_parameters(self):
  1851. block_count = self.hparams["n_layer"]
  1852. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1853. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1854. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1855. self.gguf_writer.add_block_count(block_count)
  1856. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1857. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1858. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1859. self.gguf_writer.add_file_type(self.ftype)
  1860. self.gguf_writer.add_rope_freq_base(10000.0)
  1861. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1862. self.gguf_writer.add_rope_scaling_factor(1.0)
  1863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1864. del bid # unused
  1865. new_name = self.map_tensor_name(name)
  1866. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1867. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1868. assert self.tensor_names is not None
  1869. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1870. # copy tok_embd.weight to output.weight
  1871. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1872. return tensors
  1873. @Model.register("InternLM2ForCausalLM")
  1874. class InternLM2Model(Model):
  1875. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1876. def set_vocab(self):
  1877. # (TODO): Is there a better way?
  1878. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1879. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1880. # recognized as an empty string in C++.
  1881. from sentencepiece import SentencePieceProcessor
  1882. from sentencepiece import sentencepiece_model_pb2 as model
  1883. tokenizer_path = self.dir_model / 'tokenizer.model'
  1884. tokens: list[bytes] = []
  1885. scores: list[float] = []
  1886. toktypes: list[int] = []
  1887. if not tokenizer_path.is_file():
  1888. logger.error(f'Error: Missing {tokenizer_path}')
  1889. sys.exit(1)
  1890. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1891. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1892. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1893. tokenizer = SentencePieceProcessor()
  1894. tokenizer.LoadFromFile(str(tokenizer_path))
  1895. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1896. for token_id in range(vocab_size):
  1897. piece = tokenizer.IdToPiece(token_id)
  1898. text = piece.encode("utf-8")
  1899. score = tokenizer.GetScore(token_id)
  1900. if text == b"\x00":
  1901. # (TODO): fixme
  1902. # Hack here and replace the \x00 characters.
  1903. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1904. text = "🐉".encode("utf-8")
  1905. toktype = SentencePieceTokenTypes.NORMAL
  1906. if tokenizer.IsUnknown(token_id):
  1907. toktype = SentencePieceTokenTypes.UNKNOWN
  1908. elif tokenizer.IsControl(token_id):
  1909. toktype = SentencePieceTokenTypes.CONTROL
  1910. elif tokenizer.IsUnused(token_id):
  1911. toktype = SentencePieceTokenTypes.UNUSED
  1912. elif tokenizer.IsByte(token_id):
  1913. toktype = SentencePieceTokenTypes.BYTE
  1914. # take care of ununsed raw token
  1915. if piece.startswith('[UNUSED'):
  1916. toktype = SentencePieceTokenTypes.UNUSED
  1917. tokens.append(text)
  1918. scores.append(score)
  1919. toktypes.append(toktype)
  1920. added_tokens_file = self.dir_model / 'added_tokens.json'
  1921. if added_tokens_file.is_file():
  1922. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1923. added_tokens_json = json.load(f)
  1924. for key in added_tokens_json:
  1925. tokens.append(key.encode("utf-8"))
  1926. scores.append(-1000.0)
  1927. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1928. chat_eos_token = '<|im_end|>'
  1929. chat_eos_token_id = None
  1930. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1931. if tokenizer_config_file.is_file():
  1932. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1933. tokenizer_config_json = json.load(f)
  1934. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1935. for token_id, foken_data in added_tokens_decoder.items():
  1936. token_id = int(token_id)
  1937. token = foken_data["content"]
  1938. if token == chat_eos_token:
  1939. chat_eos_token_id = token_id
  1940. token = token.encode("utf-8")
  1941. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1942. if tokens[token_id] != token:
  1943. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1944. tokens[token_id] = token
  1945. scores[token_id] = -1000.0
  1946. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1947. if foken_data.get("special"):
  1948. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1949. tokenizer_file = self.dir_model / 'tokenizer.json'
  1950. if tokenizer_file.is_file():
  1951. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1952. tokenizer_json = json.load(f)
  1953. added_tokens = tokenizer_json.get("added_tokens", [])
  1954. for foken_data in added_tokens:
  1955. token_id = int(foken_data["id"])
  1956. token = foken_data["content"]
  1957. if token == chat_eos_token:
  1958. chat_eos_token_id = token_id
  1959. token = token.encode("utf-8")
  1960. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1961. if tokens[token_id] != token:
  1962. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1963. tokens[token_id] = token
  1964. scores[token_id] = -1000.0
  1965. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1966. if foken_data.get("special"):
  1967. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1968. self.gguf_writer.add_tokenizer_model("llama")
  1969. self.gguf_writer.add_tokenizer_pre("default")
  1970. self.gguf_writer.add_token_list(tokens)
  1971. self.gguf_writer.add_token_scores(scores)
  1972. self.gguf_writer.add_token_types(toktypes)
  1973. self.gguf_writer.add_add_space_prefix(add_prefix)
  1974. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1975. old_eos = special_vocab.special_token_ids["eos"]
  1976. if chat_eos_token_id is not None:
  1977. # For the chat model, we replace the eos with '<|im_end|>'.
  1978. # TODO: this is a hack, should be fixed
  1979. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1980. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1981. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1982. " in chat mode so that the conversation can end normally.")
  1983. special_vocab.add_to_gguf(self.gguf_writer)
  1984. def set_gguf_parameters(self):
  1985. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1986. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1987. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1988. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1989. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1990. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1991. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1992. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1993. self.gguf_writer.add_file_type(self.ftype)
  1994. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1995. if self.hparams["rope_scaling"].get("type") == "linear":
  1996. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1997. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1999. num_heads = self.hparams["num_attention_heads"]
  2000. num_kv_heads = self.hparams["num_key_value_heads"]
  2001. n_embd = self.hparams["hidden_size"]
  2002. q_per_kv = num_heads // num_kv_heads
  2003. head_dim = n_embd // num_heads
  2004. num_groups = num_heads // q_per_kv
  2005. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2006. qkv = data_torch
  2007. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2008. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2009. # The model weights of q and k equire additional reshape.
  2010. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2011. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2012. v = v.reshape((-1, v.shape[-1]))
  2013. return [
  2014. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2015. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2016. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2017. ]
  2018. else:
  2019. return [(self.map_tensor_name(name), data_torch)]
  2020. @Model.register("BertModel", "CamembertModel")
  2021. class BertModel(Model):
  2022. model_arch = gguf.MODEL_ARCH.BERT
  2023. def __init__(self, *args, **kwargs):
  2024. super().__init__(*args, **kwargs)
  2025. self.vocab_size = None
  2026. def set_gguf_parameters(self):
  2027. super().set_gguf_parameters()
  2028. self.gguf_writer.add_causal_attention(False)
  2029. # get pooling path
  2030. pooling_path = None
  2031. module_path = self.dir_model / "modules.json"
  2032. if module_path.is_file():
  2033. with open(module_path, encoding="utf-8") as f:
  2034. modules = json.load(f)
  2035. for mod in modules:
  2036. if mod["type"] == "sentence_transformers.models.Pooling":
  2037. pooling_path = mod["path"]
  2038. break
  2039. # get pooling type
  2040. if pooling_path is not None:
  2041. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2042. pooling = json.load(f)
  2043. if pooling["pooling_mode_mean_tokens"]:
  2044. pooling_type = gguf.PoolingType.MEAN
  2045. elif pooling["pooling_mode_cls_token"]:
  2046. pooling_type = gguf.PoolingType.CLS
  2047. else:
  2048. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2049. self.gguf_writer.add_pooling_type(pooling_type)
  2050. def set_vocab(self):
  2051. tokens, toktypes, tokpre = self.get_vocab_base()
  2052. self.vocab_size = len(tokens)
  2053. # we need this to validate the size of the token_type embeddings
  2054. # though currently we are passing all zeros to the token_type embeddings
  2055. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2056. # convert to phantom space vocab
  2057. def phantom(tok):
  2058. if tok.startswith("[") and tok.endswith("]"):
  2059. return tok
  2060. if tok.startswith("##"):
  2061. return tok[2:]
  2062. return "\u2581" + tok
  2063. tokens = list(map(phantom, tokens))
  2064. # add vocab to gguf
  2065. self.gguf_writer.add_tokenizer_model("bert")
  2066. self.gguf_writer.add_tokenizer_pre(tokpre)
  2067. self.gguf_writer.add_token_list(tokens)
  2068. self.gguf_writer.add_token_types(toktypes)
  2069. # handle special tokens
  2070. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2071. special_vocab.add_to_gguf(self.gguf_writer)
  2072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2073. del bid # unused
  2074. # we are only using BERT for embeddings so we don't need the pooling layer
  2075. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2076. return [] # we don't need these
  2077. return [(self.map_tensor_name(name), data_torch)]
  2078. @Model.register("NomicBertModel")
  2079. class NomicBertModel(BertModel):
  2080. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2081. def __init__(self, *args, **kwargs):
  2082. super().__init__(*args, **kwargs)
  2083. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2084. self.hparams["n_ctx"] = 2048
  2085. # SwigLU activation
  2086. assert self.hparams["activation_function"] == "swiglu"
  2087. # this doesn't do anything in the HF version
  2088. assert self.hparams["causal"] is False
  2089. # no bias tensors
  2090. assert self.hparams["qkv_proj_bias"] is False
  2091. assert self.hparams["mlp_fc1_bias"] is False
  2092. assert self.hparams["mlp_fc2_bias"] is False
  2093. # norm at end of layer
  2094. assert self.hparams["prenorm"] is False
  2095. # standard RoPE
  2096. assert self.hparams["rotary_emb_fraction"] == 1.0
  2097. assert self.hparams["rotary_emb_interleaved"] is False
  2098. assert self.hparams["rotary_emb_scale_base"] is None
  2099. def set_gguf_parameters(self):
  2100. super().set_gguf_parameters()
  2101. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2102. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2103. class XLMRobertaModel(BertModel):
  2104. model_arch = gguf.MODEL_ARCH.BERT
  2105. def __init__(self, *args, **kwargs):
  2106. super().__init__(*args, **kwargs)
  2107. # we need the pad_token_id to know how to chop down position_embd matrix
  2108. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2109. self._position_offset = 1 + pad_token_id
  2110. if "max_position_embeddings" in self.hparams:
  2111. self.hparams["max_position_embeddings"] -= self._position_offset
  2112. else:
  2113. self._position_offset = None
  2114. def set_vocab(self):
  2115. # to avoid TypeError: Descriptors cannot be created directly
  2116. # exception when importing sentencepiece_model_pb2
  2117. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2118. from sentencepiece import SentencePieceProcessor
  2119. from sentencepiece import sentencepiece_model_pb2 as model
  2120. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2121. if not tokenizer_path.is_file():
  2122. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2123. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2124. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2125. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2126. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2127. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2128. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2129. tokenizer = SentencePieceProcessor()
  2130. tokenizer.LoadFromFile(str(tokenizer_path))
  2131. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2132. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2133. scores: list[float] = [-10000.0] * vocab_size
  2134. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2135. for token_id in range(tokenizer.vocab_size()):
  2136. piece = tokenizer.IdToPiece(token_id)
  2137. text = piece.encode("utf-8")
  2138. score = tokenizer.GetScore(token_id)
  2139. toktype = SentencePieceTokenTypes.NORMAL
  2140. if tokenizer.IsUnknown(token_id):
  2141. toktype = SentencePieceTokenTypes.UNKNOWN
  2142. elif tokenizer.IsControl(token_id):
  2143. toktype = SentencePieceTokenTypes.CONTROL
  2144. elif tokenizer.IsUnused(token_id):
  2145. toktype = SentencePieceTokenTypes.UNUSED
  2146. elif tokenizer.IsByte(token_id):
  2147. toktype = SentencePieceTokenTypes.BYTE
  2148. tokens[token_id] = text
  2149. scores[token_id] = score
  2150. toktypes[token_id] = toktype
  2151. if vocab_size > len(tokens):
  2152. pad_count = vocab_size - len(tokens)
  2153. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2154. for i in range(1, pad_count + 1):
  2155. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2156. scores.append(-1000.0)
  2157. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2158. # realign tokens (see HF tokenizer code)
  2159. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2160. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2161. toktypes = [
  2162. SentencePieceTokenTypes.CONTROL,
  2163. SentencePieceTokenTypes.CONTROL,
  2164. SentencePieceTokenTypes.CONTROL,
  2165. SentencePieceTokenTypes.UNKNOWN,
  2166. ] + toktypes[3:-1]
  2167. self.gguf_writer.add_tokenizer_model("t5")
  2168. self.gguf_writer.add_tokenizer_pre("default")
  2169. self.gguf_writer.add_token_list(tokens)
  2170. self.gguf_writer.add_token_scores(scores)
  2171. self.gguf_writer.add_token_types(toktypes)
  2172. self.gguf_writer.add_add_space_prefix(add_prefix)
  2173. self.gguf_writer.add_token_type_count(1)
  2174. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2175. if precompiled_charsmap:
  2176. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2177. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2178. special_vocab.add_to_gguf(self.gguf_writer)
  2179. self.gguf_writer.add_add_bos_token(True)
  2180. self.gguf_writer.add_add_eos_token(True)
  2181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2182. # if name starts with "roberta.", remove the prefix
  2183. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2184. if name.startswith("roberta."):
  2185. name = name[8:]
  2186. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2187. if name == "embeddings.position_embeddings.weight":
  2188. if self._position_offset is not None:
  2189. data_torch = data_torch[self._position_offset:,:]
  2190. return super().modify_tensors(data_torch, name, bid)
  2191. @Model.register("GemmaForCausalLM")
  2192. class GemmaModel(Model):
  2193. model_arch = gguf.MODEL_ARCH.GEMMA
  2194. def set_vocab(self):
  2195. self._set_vocab_sentencepiece()
  2196. # TODO: these special tokens should be exported only for the CodeGemma family
  2197. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2198. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2199. special_vocab._set_special_token("prefix", 67)
  2200. special_vocab._set_special_token("suffix", 69)
  2201. special_vocab._set_special_token("middle", 68)
  2202. special_vocab._set_special_token("fsep", 70)
  2203. special_vocab._set_special_token("eot", 107)
  2204. special_vocab.chat_template = None # do not add it twice
  2205. special_vocab.add_to_gguf(self.gguf_writer)
  2206. self.gguf_writer.add_add_space_prefix(False)
  2207. def set_gguf_parameters(self):
  2208. hparams = self.hparams
  2209. block_count = hparams["num_hidden_layers"]
  2210. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2211. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2212. self.gguf_writer.add_block_count(block_count)
  2213. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2214. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2215. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2216. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2217. self.gguf_writer.add_key_length(hparams["head_dim"])
  2218. self.gguf_writer.add_value_length(hparams["head_dim"])
  2219. self.gguf_writer.add_file_type(self.ftype)
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. del bid # unused
  2222. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2223. # To prevent errors, skip loading lm_head.weight.
  2224. if name == "lm_head.weight":
  2225. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2226. return []
  2227. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2228. if name.endswith("norm.weight"):
  2229. data_torch = data_torch + 1
  2230. return [(self.map_tensor_name(name), data_torch)]
  2231. @Model.register("Gemma2ForCausalLM")
  2232. class Gemma2Model(Model):
  2233. model_arch = gguf.MODEL_ARCH.GEMMA2
  2234. def set_vocab(self):
  2235. self._set_vocab_sentencepiece()
  2236. self.gguf_writer.add_add_space_prefix(False)
  2237. def set_gguf_parameters(self):
  2238. hparams = self.hparams
  2239. block_count = hparams["num_hidden_layers"]
  2240. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2241. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2242. self.gguf_writer.add_block_count(block_count)
  2243. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2244. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2245. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2246. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2247. self.gguf_writer.add_key_length(hparams["head_dim"])
  2248. self.gguf_writer.add_value_length(hparams["head_dim"])
  2249. self.gguf_writer.add_file_type(self.ftype)
  2250. self.gguf_writer.add_attn_logit_softcapping(
  2251. self.hparams["attn_logit_softcapping"]
  2252. )
  2253. self.gguf_writer.add_final_logit_softcapping(
  2254. self.hparams["final_logit_softcapping"]
  2255. )
  2256. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2258. del bid # unused
  2259. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2260. # To prevent errors, skip loading lm_head.weight.
  2261. if name == "lm_head.weight":
  2262. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2263. return []
  2264. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2265. if name.endswith("norm.weight"):
  2266. data_torch = data_torch + 1
  2267. return [(self.map_tensor_name(name), data_torch)]
  2268. @Model.register("Starcoder2ForCausalLM")
  2269. class StarCoder2Model(Model):
  2270. model_arch = gguf.MODEL_ARCH.STARCODER2
  2271. @Model.register("Rwkv6ForCausalLM")
  2272. class Rwkv6Model(Model):
  2273. model_arch = gguf.MODEL_ARCH.RWKV6
  2274. def set_vocab(self):
  2275. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2276. vocab_size = self.hparams.get("vocab_size", 65536)
  2277. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2278. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2279. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2280. lines = f.readlines()
  2281. for line in lines:
  2282. parts = line.split(' ')
  2283. assert len(parts) >= 3
  2284. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2285. token = token.encode("utf-8") if isinstance(token, str) else token
  2286. assert isinstance(token, bytes)
  2287. assert len(token) == token_len
  2288. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2289. tokens.append(token_text.encode("utf-8"))
  2290. toktypes.append(gguf.TokenType.NORMAL)
  2291. remainder = vocab_size - len(tokens)
  2292. assert remainder >= 0
  2293. for i in range(len(tokens), vocab_size):
  2294. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2295. toktypes.append(gguf.TokenType.UNUSED)
  2296. self.gguf_writer.add_tokenizer_model("rwkv")
  2297. self.gguf_writer.add_token_list(tokens)
  2298. self.gguf_writer.add_token_types(toktypes)
  2299. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2300. special_vocab.add_to_gguf(self.gguf_writer)
  2301. def set_gguf_parameters(self):
  2302. block_count = self.hparams["num_hidden_layers"]
  2303. head_size = self.hparams["head_size"]
  2304. hidden_size = self.hparams["hidden_size"]
  2305. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2306. rescale_every_n_layers = self.hparams["rescale_every"]
  2307. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2308. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2309. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2310. # RWKV isn't context limited
  2311. self.gguf_writer.add_context_length(1048576)
  2312. self.gguf_writer.add_embedding_length(hidden_size)
  2313. self.gguf_writer.add_block_count(block_count)
  2314. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2315. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2316. self.gguf_writer.add_wkv_head_size(head_size)
  2317. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2318. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2319. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2320. self.gguf_writer.add_file_type(self.ftype)
  2321. # required by llama.cpp, unused
  2322. self.gguf_writer.add_head_count(0)
  2323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2324. new_name = self.map_tensor_name(name)
  2325. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2326. new_name += ".weight"
  2327. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2328. data_torch = data_torch.transpose(0, 1)
  2329. if new_name.endswith("time_mix_w2.weight"):
  2330. data_torch = data_torch.permute(0, 2, 1)
  2331. rescale_every_n_layers = self.hparams["rescale_every"]
  2332. if rescale_every_n_layers > 0:
  2333. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2334. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2335. yield (new_name, data_torch)
  2336. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2337. class MambaModel(Model):
  2338. model_arch = gguf.MODEL_ARCH.MAMBA
  2339. def set_vocab(self):
  2340. vocab_size = self.hparams["vocab_size"]
  2341. # Round vocab size to next multiple of 8
  2342. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2343. # pad using ceiling division
  2344. # ref: https://stackoverflow.com/a/17511341/22827863
  2345. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2346. self.hparams["vocab_size"] = vocab_size
  2347. if (self.dir_model / "tokenizer.json").is_file():
  2348. self._set_vocab_gpt2()
  2349. elif (self.dir_model / "tokenizer.model").is_file():
  2350. self._set_vocab_sentencepiece()
  2351. else:
  2352. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2353. self._set_vocab_builtin("gpt-neox", vocab_size)
  2354. def set_gguf_parameters(self):
  2355. d_model = self.find_hparam(["hidden_size", "d_model"])
  2356. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2357. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2358. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2359. # ceiling division
  2360. # ref: https://stackoverflow.com/a/17511341/22827863
  2361. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2362. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2363. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2364. use_dt_b_c_norm = False
  2365. # For falconmamba we do apply RMS norm on B / DT and C layers
  2366. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2367. use_dt_b_c_norm = True
  2368. # Fail early for models which don't have a block expansion factor of 2
  2369. assert d_inner == 2 * d_model
  2370. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2371. self.gguf_writer.add_embedding_length(d_model)
  2372. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2373. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2374. self.gguf_writer.add_block_count(self.block_count)
  2375. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2376. self.gguf_writer.add_ssm_inner_size(d_inner)
  2377. self.gguf_writer.add_ssm_state_size(d_state)
  2378. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2379. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2380. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2381. self.gguf_writer.add_file_type(self.ftype)
  2382. _tok_embd = None
  2383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2384. del bid # unused
  2385. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2386. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2387. new_name = self.map_tensor_name(name)
  2388. if name.endswith(".A_log"):
  2389. logger.debug("A_log --> A ==> " + new_name)
  2390. data_torch = -torch.exp(data_torch)
  2391. # assuming token_embd.weight is seen before output.weight
  2392. if self._tok_embd is not None and new_name == output_name:
  2393. if torch.equal(self._tok_embd, data_torch):
  2394. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2395. return []
  2396. elif new_name == tok_embd_name:
  2397. self._tok_embd = data_torch
  2398. return [(new_name, data_torch)]
  2399. @Model.register("CohereForCausalLM")
  2400. class CommandR2Model(Model):
  2401. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2402. def __init__(self, *args, **kwargs):
  2403. super().__init__(*args, **kwargs)
  2404. # max_position_embeddings = 8192 in config.json but model was actually
  2405. # trained on 128k context length
  2406. # aya-23 models don't have model_max_length specified
  2407. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2408. def set_gguf_parameters(self):
  2409. super().set_gguf_parameters()
  2410. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2411. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2412. @Model.register("OlmoForCausalLM")
  2413. @Model.register("OLMoForCausalLM")
  2414. class OlmoModel(Model):
  2415. model_arch = gguf.MODEL_ARCH.OLMO
  2416. def set_gguf_parameters(self):
  2417. super().set_gguf_parameters()
  2418. self.gguf_writer.add_layer_norm_eps(1e-5)
  2419. clip_qkv = self.hparams.get("clip_qkv")
  2420. if clip_qkv is not None:
  2421. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2422. # Same as super class, but permuting q_proj, k_proj
  2423. # Copied from: LlamaModel
  2424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2425. del bid # unused
  2426. n_head = self.hparams["num_attention_heads"]
  2427. n_kv_head = self.hparams.get("num_key_value_heads")
  2428. if name.endswith("q_proj.weight"):
  2429. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2430. if name.endswith("k_proj.weight"):
  2431. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2432. return [(self.map_tensor_name(name), data_torch)]
  2433. @Model.register("OlmoeForCausalLM")
  2434. class OlmoeModel(Model):
  2435. model_arch = gguf.MODEL_ARCH.OLMOE
  2436. def set_gguf_parameters(self):
  2437. super().set_gguf_parameters()
  2438. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2439. if (n_experts := self.hparams.get("num_experts")) is not None:
  2440. self.gguf_writer.add_expert_count(n_experts)
  2441. _experts: list[dict[str, Tensor]] | None = None
  2442. # Copied from: Qwen2MoeModel
  2443. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2444. # process the experts separately
  2445. if name.find("experts") != -1:
  2446. n_experts = self.hparams["num_experts"]
  2447. assert bid is not None
  2448. if self._experts is None:
  2449. self._experts = [{} for _ in range(self.block_count)]
  2450. self._experts[bid][name] = data_torch
  2451. if len(self._experts[bid]) >= n_experts * 3:
  2452. tensors: list[tuple[str, Tensor]] = []
  2453. # merge the experts into a single 3d tensor
  2454. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2455. datas: list[Tensor] = []
  2456. for xid in range(n_experts):
  2457. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2458. datas.append(self._experts[bid][ename])
  2459. del self._experts[bid][ename]
  2460. data_torch = torch.stack(datas, dim=0)
  2461. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2462. new_name = self.map_tensor_name(merged_name)
  2463. tensors.append((new_name, data_torch))
  2464. return tensors
  2465. else:
  2466. return []
  2467. return [(self.map_tensor_name(name), data_torch)]
  2468. # Copied from: Qwen2MoeModel
  2469. def prepare_tensors(self):
  2470. super().prepare_tensors()
  2471. if self._experts is not None:
  2472. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2473. experts = [k for d in self._experts for k in d.keys()]
  2474. if len(experts) > 0:
  2475. raise ValueError(f"Unprocessed experts: {experts}")
  2476. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2477. class JinaBertV2Model(BertModel):
  2478. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2479. def __init__(self, *args, **kwargs):
  2480. super().__init__(*args, **kwargs)
  2481. self.intermediate_size = self.hparams["intermediate_size"]
  2482. def get_tensors(self):
  2483. for name, data in super().get_tensors():
  2484. if 'gated_layer' in name:
  2485. d1 = data[:self.intermediate_size, :]
  2486. name1 = name.replace('gated_layers', 'gated_layers_w')
  2487. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2488. d2 = data[self.intermediate_size:, :]
  2489. name2 = name.replace('gated_layers', 'gated_layers_v')
  2490. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2491. yield name1, d1
  2492. yield name2, d2
  2493. continue
  2494. yield name, data
  2495. def set_vocab(self):
  2496. tokenizer_class = 'BertTokenizer'
  2497. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2498. tokenizer_class = json.load(f)['tokenizer_class']
  2499. if tokenizer_class == 'BertTokenizer':
  2500. super().set_vocab()
  2501. elif tokenizer_class == 'RobertaTokenizer':
  2502. self._set_vocab_gpt2()
  2503. self.gguf_writer.add_token_type_count(2)
  2504. else:
  2505. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2506. self.gguf_writer.add_add_bos_token(True)
  2507. self.gguf_writer.add_add_eos_token(True)
  2508. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2509. # if name starts with "bert.", remove the prefix
  2510. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2511. if name.startswith("bert."):
  2512. name = name[5:]
  2513. return super().modify_tensors(data_torch, name, bid)
  2514. @Model.register("OpenELMForCausalLM")
  2515. class OpenELMModel(Model):
  2516. model_arch = gguf.MODEL_ARCH.OPENELM
  2517. @staticmethod
  2518. def _make_divisible(v: float | int, divisor: int) -> int:
  2519. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2520. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2521. # Make sure that round down does not go down by more than 10%.
  2522. if new_v < 0.9 * v:
  2523. new_v += divisor
  2524. return new_v
  2525. def __init__(self, *args, **kwargs):
  2526. super().__init__(*args, **kwargs)
  2527. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2528. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2529. self._n_embd: int = self.hparams["model_dim"]
  2530. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2531. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2532. self._ffn_dims: list[int] = [
  2533. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2534. for multiplier in ffn_multipliers
  2535. ]
  2536. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2537. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2538. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2539. def set_vocab(self):
  2540. try:
  2541. self._set_vocab_sentencepiece()
  2542. except FileNotFoundError:
  2543. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2544. def set_gguf_parameters(self):
  2545. n_embd = self._n_embd
  2546. head_dim = self.hparams["head_dim"]
  2547. rot_pct = 1.0
  2548. assert self.block_count == len(self._num_kv_heads)
  2549. assert self.block_count == len(self._num_query_heads)
  2550. assert self.block_count == len(self._ffn_dims)
  2551. self.gguf_writer.add_block_count(self.block_count)
  2552. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2553. self.gguf_writer.add_embedding_length(n_embd)
  2554. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2555. self.gguf_writer.add_head_count(self._num_query_heads)
  2556. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2557. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2558. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2559. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2560. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2561. self.gguf_writer.add_key_length(head_dim)
  2562. self.gguf_writer.add_value_length(head_dim)
  2563. self.gguf_writer.add_file_type(self.ftype)
  2564. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2565. if "n_layers" in keys:
  2566. return self.hparams["num_transformer_layers"]
  2567. return super().find_hparam(keys, optional)
  2568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2569. # split ff
  2570. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2571. ff_dim = self._ffn_dims[bid]
  2572. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2573. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2574. return
  2575. yield (self.map_tensor_name(name), data_torch)
  2576. @Model.register("ArcticForCausalLM")
  2577. class ArcticModel(Model):
  2578. model_arch = gguf.MODEL_ARCH.ARCTIC
  2579. def set_vocab(self):
  2580. # The reason for using a custom implementation here is that the
  2581. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2582. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2583. from sentencepiece import SentencePieceProcessor
  2584. tokenizer_path = self.dir_model / 'tokenizer.model'
  2585. if not tokenizer_path.is_file():
  2586. logger.error(f'Error: Missing {tokenizer_path}')
  2587. sys.exit(1)
  2588. # Read the whole vocabulary from the tokenizer.model file
  2589. tokenizer = SentencePieceProcessor()
  2590. tokenizer.LoadFromFile(str(tokenizer_path))
  2591. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2592. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2593. scores: list[float] = [-10000.0] * vocab_size
  2594. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2595. for token_id in range(tokenizer.vocab_size()):
  2596. piece = tokenizer.IdToPiece(token_id)
  2597. text = piece.encode("utf-8")
  2598. score = tokenizer.GetScore(token_id)
  2599. toktype = SentencePieceTokenTypes.NORMAL
  2600. if tokenizer.IsUnknown(token_id):
  2601. toktype = SentencePieceTokenTypes.UNKNOWN
  2602. elif tokenizer.IsControl(token_id):
  2603. toktype = SentencePieceTokenTypes.CONTROL
  2604. elif tokenizer.IsUnused(token_id):
  2605. toktype = SentencePieceTokenTypes.UNUSED
  2606. elif tokenizer.IsByte(token_id):
  2607. toktype = SentencePieceTokenTypes.BYTE
  2608. tokens[token_id] = text
  2609. scores[token_id] = score
  2610. toktypes[token_id] = toktype
  2611. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2612. # of information about added/redefined tokens and modify them accordingly.
  2613. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2614. if tokenizer_config_file.is_file():
  2615. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2616. tokenizer_config_json = json.load(f)
  2617. if "added_tokens_decoder" in tokenizer_config_json:
  2618. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2619. for token_id, token_json in added_tokens_decoder.items():
  2620. token_id = int(token_id)
  2621. if token_id >= vocab_size:
  2622. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2623. continue
  2624. token_content = token_json["content"]
  2625. token_type = SentencePieceTokenTypes.USER_DEFINED
  2626. token_score = -10000.0
  2627. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2628. # Set the score to 0.0 as in the original tokenizer.model
  2629. if ("special" in token_json) and token_json["special"]:
  2630. if token_content == tokenizer_config_json["unk_token"]:
  2631. token_type = SentencePieceTokenTypes.UNKNOWN
  2632. else:
  2633. token_type = SentencePieceTokenTypes.CONTROL
  2634. token_score = 0.0
  2635. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2636. tokens[token_id] = token_content.encode("utf-8")
  2637. toktypes[token_id] = token_type
  2638. scores[token_id] = token_score
  2639. self.gguf_writer.add_tokenizer_model("llama")
  2640. self.gguf_writer.add_tokenizer_pre("default")
  2641. self.gguf_writer.add_token_list(tokens)
  2642. self.gguf_writer.add_token_scores(scores)
  2643. self.gguf_writer.add_token_types(toktypes)
  2644. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2645. special_vocab.add_to_gguf(self.gguf_writer)
  2646. def set_gguf_parameters(self):
  2647. super().set_gguf_parameters()
  2648. hparams = self.hparams
  2649. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2650. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2651. _experts: list[dict[str, Tensor]] | None = None
  2652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2653. n_head = self.hparams["num_attention_heads"]
  2654. n_kv_head = self.hparams.get("num_key_value_heads")
  2655. if name.endswith("q_proj.weight"):
  2656. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2657. if name.endswith("k_proj.weight"):
  2658. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2659. # process the experts separately
  2660. if name.find("block_sparse_moe.experts") != -1:
  2661. n_experts = self.hparams["num_local_experts"]
  2662. assert bid is not None
  2663. if self._experts is None:
  2664. self._experts = [{} for _ in range(self.block_count)]
  2665. self._experts[bid][name] = data_torch
  2666. if len(self._experts[bid]) >= n_experts * 3:
  2667. tensors: list[tuple[str, Tensor]] = []
  2668. # merge the experts into a single 3d tensor
  2669. for wid in ["w1", "w2", "w3"]:
  2670. datas: list[Tensor] = []
  2671. for xid in range(n_experts):
  2672. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2673. datas.append(self._experts[bid][ename])
  2674. del self._experts[bid][ename]
  2675. data_torch = torch.stack(datas, dim=0)
  2676. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2677. new_name = self.map_tensor_name(merged_name)
  2678. tensors.append((new_name, data_torch))
  2679. return tensors
  2680. else:
  2681. return []
  2682. return [(self.map_tensor_name(name), data_torch)]
  2683. def prepare_tensors(self):
  2684. super().prepare_tensors()
  2685. if self._experts is not None:
  2686. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2687. experts = [k for d in self._experts for k in d.keys()]
  2688. if len(experts) > 0:
  2689. raise ValueError(f"Unprocessed experts: {experts}")
  2690. @Model.register("DeepseekV2ForCausalLM")
  2691. class DeepseekV2Model(Model):
  2692. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2693. def set_vocab(self):
  2694. self._set_vocab_gpt2()
  2695. def set_gguf_parameters(self):
  2696. super().set_gguf_parameters()
  2697. hparams = self.hparams
  2698. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2699. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2700. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2701. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2702. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2703. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2704. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2705. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2706. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2707. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2708. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2709. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2710. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2711. if self.hparams["rope_scaling"].get("type") == "yarn":
  2712. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2713. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2714. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2715. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2716. _experts: list[dict[str, Tensor]] | None = None
  2717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2718. # process the experts separately
  2719. if name.find("mlp.experts") != -1:
  2720. n_experts = self.hparams["n_routed_experts"]
  2721. assert bid is not None
  2722. if self._experts is None:
  2723. self._experts = [{} for _ in range(self.block_count)]
  2724. self._experts[bid][name] = data_torch
  2725. if len(self._experts[bid]) >= n_experts * 3:
  2726. tensors: list[tuple[str, Tensor]] = []
  2727. # merge the experts into a single 3d tensor
  2728. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2729. datas: list[Tensor] = []
  2730. for xid in range(n_experts):
  2731. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2732. datas.append(self._experts[bid][ename])
  2733. del self._experts[bid][ename]
  2734. data_torch = torch.stack(datas, dim=0)
  2735. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2736. new_name = self.map_tensor_name(merged_name)
  2737. tensors.append((new_name, data_torch))
  2738. return tensors
  2739. else:
  2740. return []
  2741. return [(self.map_tensor_name(name), data_torch)]
  2742. def prepare_tensors(self):
  2743. super().prepare_tensors()
  2744. if self._experts is not None:
  2745. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2746. experts = [k for d in self._experts for k in d.keys()]
  2747. if len(experts) > 0:
  2748. raise ValueError(f"Unprocessed experts: {experts}")
  2749. @Model.register("T5WithLMHeadModel")
  2750. @Model.register("T5ForConditionalGeneration")
  2751. @Model.register("MT5ForConditionalGeneration")
  2752. @Model.register("UMT5ForConditionalGeneration")
  2753. class T5Model(Model):
  2754. model_arch = gguf.MODEL_ARCH.T5
  2755. def __init__(self, *args, **kwargs):
  2756. super().__init__(*args, **kwargs)
  2757. self.shared_token_embeddings_found = False
  2758. def set_vocab(self):
  2759. # to avoid TypeError: Descriptors cannot be created directly
  2760. # exception when importing sentencepiece_model_pb2
  2761. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2762. from sentencepiece import SentencePieceProcessor
  2763. from sentencepiece import sentencepiece_model_pb2 as model
  2764. tokenizer_path = self.dir_model / 'tokenizer.model'
  2765. # many older models use spiece.model tokenizer model filename
  2766. if not tokenizer_path.is_file():
  2767. tokenizer_path = self.dir_model / 'spiece.model'
  2768. if not tokenizer_path.is_file():
  2769. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2770. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2771. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2772. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2773. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2774. # assure the tokenizer model file name is correct
  2775. assert tokenizer_path.name == 'tokenizer.model'
  2776. return self._set_vocab_sentencepiece()
  2777. else:
  2778. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2779. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2780. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2781. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2782. tokenizer = SentencePieceProcessor()
  2783. tokenizer.LoadFromFile(str(tokenizer_path))
  2784. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2785. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2786. scores: list[float] = [-10000.0] * vocab_size
  2787. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2788. for token_id in range(tokenizer.vocab_size()):
  2789. piece = tokenizer.IdToPiece(token_id)
  2790. text = piece.encode("utf-8")
  2791. score = tokenizer.GetScore(token_id)
  2792. toktype = SentencePieceTokenTypes.NORMAL
  2793. if tokenizer.IsUnknown(token_id):
  2794. toktype = SentencePieceTokenTypes.UNKNOWN
  2795. elif tokenizer.IsControl(token_id):
  2796. toktype = SentencePieceTokenTypes.CONTROL
  2797. elif tokenizer.IsUnused(token_id):
  2798. toktype = SentencePieceTokenTypes.UNUSED
  2799. elif tokenizer.IsByte(token_id):
  2800. toktype = SentencePieceTokenTypes.BYTE
  2801. tokens[token_id] = text
  2802. scores[token_id] = score
  2803. toktypes[token_id] = toktype
  2804. added_tokens_file = self.dir_model / 'added_tokens.json'
  2805. if added_tokens_file.is_file():
  2806. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2807. added_tokens_json = json.load(f)
  2808. for key in added_tokens_json:
  2809. token_id = added_tokens_json[key]
  2810. if token_id >= vocab_size:
  2811. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2812. continue
  2813. tokens[token_id] = key.encode("utf-8")
  2814. scores[token_id] = -1000.0
  2815. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2816. if vocab_size > len(tokens):
  2817. pad_count = vocab_size - len(tokens)
  2818. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2819. for i in range(1, pad_count + 1):
  2820. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2821. scores.append(-1000.0)
  2822. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2823. self.gguf_writer.add_tokenizer_model("t5")
  2824. self.gguf_writer.add_tokenizer_pre("default")
  2825. self.gguf_writer.add_token_list(tokens)
  2826. self.gguf_writer.add_token_scores(scores)
  2827. self.gguf_writer.add_token_types(toktypes)
  2828. self.gguf_writer.add_add_space_prefix(add_prefix)
  2829. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2830. if precompiled_charsmap:
  2831. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2832. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2833. special_vocab.add_to_gguf(self.gguf_writer)
  2834. self.gguf_writer.add_add_bos_token(False)
  2835. self.gguf_writer.add_add_eos_token(True)
  2836. def set_gguf_parameters(self):
  2837. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2838. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2839. n_ctx = 512
  2840. self.gguf_writer.add_context_length(n_ctx)
  2841. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2842. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2843. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2844. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2845. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2846. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2847. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2848. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2849. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2850. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2851. self.gguf_writer.add_file_type(self.ftype)
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. del bid # unused
  2854. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2855. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2856. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2857. # and decoder and ignore the remaining ones.
  2858. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2859. if not self.shared_token_embeddings_found:
  2860. name = "shared.weight"
  2861. self.shared_token_embeddings_found = True
  2862. else:
  2863. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2864. return []
  2865. return [(self.map_tensor_name(name), data_torch)]
  2866. @Model.register("T5EncoderModel")
  2867. class T5EncoderModel(Model):
  2868. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2869. def __init__(self, *args, **kwargs):
  2870. super().__init__(*args, **kwargs)
  2871. self.shared_token_embeddings_found = False
  2872. def set_vocab(self):
  2873. # to avoid TypeError: Descriptors cannot be created directly
  2874. # exception when importing sentencepiece_model_pb2
  2875. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2876. from sentencepiece import SentencePieceProcessor
  2877. from sentencepiece import sentencepiece_model_pb2 as model
  2878. tokenizer_path = self.dir_model / 'tokenizer.model'
  2879. # many older models use spiece.model tokenizer model filename
  2880. if not tokenizer_path.is_file():
  2881. tokenizer_path = self.dir_model / 'spiece.model'
  2882. if not tokenizer_path.is_file():
  2883. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2884. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2885. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2886. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2887. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2888. # assure the tokenizer model file name is correct
  2889. assert tokenizer_path.name == 'tokenizer.model'
  2890. return self._set_vocab_sentencepiece()
  2891. else:
  2892. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2893. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2894. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2895. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2896. tokenizer = SentencePieceProcessor()
  2897. tokenizer.LoadFromFile(str(tokenizer_path))
  2898. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2899. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2900. scores: list[float] = [-10000.0] * vocab_size
  2901. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2902. for token_id in range(tokenizer.vocab_size()):
  2903. piece = tokenizer.IdToPiece(token_id)
  2904. text = piece.encode("utf-8")
  2905. score = tokenizer.GetScore(token_id)
  2906. toktype = SentencePieceTokenTypes.NORMAL
  2907. if tokenizer.IsUnknown(token_id):
  2908. toktype = SentencePieceTokenTypes.UNKNOWN
  2909. elif tokenizer.IsControl(token_id):
  2910. toktype = SentencePieceTokenTypes.CONTROL
  2911. elif tokenizer.IsUnused(token_id):
  2912. toktype = SentencePieceTokenTypes.UNUSED
  2913. elif tokenizer.IsByte(token_id):
  2914. toktype = SentencePieceTokenTypes.BYTE
  2915. tokens[token_id] = text
  2916. scores[token_id] = score
  2917. toktypes[token_id] = toktype
  2918. added_tokens_file = self.dir_model / 'added_tokens.json'
  2919. if added_tokens_file.is_file():
  2920. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2921. added_tokens_json = json.load(f)
  2922. for key in added_tokens_json:
  2923. token_id = added_tokens_json[key]
  2924. if token_id >= vocab_size:
  2925. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2926. continue
  2927. tokens[token_id] = key.encode("utf-8")
  2928. scores[token_id] = -1000.0
  2929. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2930. if vocab_size > len(tokens):
  2931. pad_count = vocab_size - len(tokens)
  2932. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2933. for i in range(1, pad_count + 1):
  2934. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2935. scores.append(-1000.0)
  2936. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2937. self.gguf_writer.add_tokenizer_model("t5")
  2938. self.gguf_writer.add_tokenizer_pre("default")
  2939. self.gguf_writer.add_token_list(tokens)
  2940. self.gguf_writer.add_token_scores(scores)
  2941. self.gguf_writer.add_token_types(toktypes)
  2942. self.gguf_writer.add_add_space_prefix(add_prefix)
  2943. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2944. if precompiled_charsmap:
  2945. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2946. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2947. special_vocab.add_to_gguf(self.gguf_writer)
  2948. self.gguf_writer.add_add_bos_token(False)
  2949. self.gguf_writer.add_add_eos_token(True)
  2950. def set_gguf_parameters(self):
  2951. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2952. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2953. n_ctx = 512
  2954. self.gguf_writer.add_context_length(n_ctx)
  2955. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2956. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2957. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2958. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2959. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2960. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2961. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2962. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2963. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2964. self.gguf_writer.add_file_type(self.ftype)
  2965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2966. del bid # unused
  2967. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2968. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2969. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2970. # and decoder and ignore the remaining ones.
  2971. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2972. if not self.shared_token_embeddings_found:
  2973. name = "shared.weight"
  2974. self.shared_token_embeddings_found = True
  2975. else:
  2976. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2977. return []
  2978. return [(self.map_tensor_name(name), data_torch)]
  2979. @Model.register("JAISLMHeadModel")
  2980. class JaisModel(Model):
  2981. model_arch = gguf.MODEL_ARCH.JAIS
  2982. def __init__(self, *args, **kwargs):
  2983. super().__init__(*args, **kwargs)
  2984. # SwigLU activation
  2985. assert self.hparams["activation_function"] == "swiglu"
  2986. # ALiBi position embedding
  2987. assert self.hparams["position_embedding_type"] == "alibi"
  2988. # Embeddings scale
  2989. self.embeddings_scale = 1.0
  2990. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2991. self.output_is_wte = False
  2992. if 'mup_embeddings_scale' in self.hparams:
  2993. self.output_is_wte = True # Hack (?)
  2994. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2995. elif 'embeddings_scale' in self.hparams:
  2996. self.embeddings_scale = self.hparams['embeddings_scale']
  2997. else:
  2998. assert False
  2999. self.width_scale = 1.0
  3000. if 'mup_output_alpha' in self.hparams:
  3001. assert 'mup_width_scale' in self.hparams
  3002. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3003. elif 'width_scale' in self.hparams:
  3004. self.width_scale = self.hparams['width_scale']
  3005. else:
  3006. assert False
  3007. self.max_alibi_bias = 8.0
  3008. def set_vocab(self):
  3009. self._set_vocab_gpt2()
  3010. def set_gguf_parameters(self):
  3011. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3012. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3013. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3014. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3015. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3016. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3017. self.gguf_writer.add_file_type(self.ftype)
  3018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3019. del bid # unused
  3020. tensors: list[tuple[str, Tensor]] = []
  3021. # we don't need these
  3022. if name.endswith((".attn.bias")):
  3023. return tensors
  3024. if name.endswith(("relative_pe.slopes")):
  3025. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3026. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3027. # but Jais's PyTorch model simply precalculates the slope values and places them
  3028. # in relative_pes.slopes
  3029. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3030. first_val = float(data_torch[0].item())
  3031. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3032. return tensors
  3033. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3034. data_torch = data_torch.transpose(1, 0)
  3035. new_name = self.map_tensor_name(name)
  3036. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3037. tensors.append((new_name, data_torch * self.embeddings_scale))
  3038. if self.output_is_wte:
  3039. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  3040. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3041. assert not self.output_is_wte
  3042. tensors.append((new_name, data_torch * self.width_scale))
  3043. else:
  3044. tensors.append((new_name, data_torch))
  3045. return tensors
  3046. def prepare_tensors(self):
  3047. super().prepare_tensors()
  3048. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3049. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3050. class ChatGLMModel(Model):
  3051. model_arch = gguf.MODEL_ARCH.CHATGLM
  3052. def set_vocab_chatglm3(self):
  3053. dir_model = self.dir_model
  3054. hparams = self.hparams
  3055. tokens: list[bytes] = []
  3056. toktypes: list[int] = []
  3057. scores: list[float] = []
  3058. from transformers import AutoTokenizer
  3059. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3060. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3061. assert max(tokenizer.get_vocab().values()) < vocab_size
  3062. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3063. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3064. for token_id in range(vocab_size):
  3065. piece = tokenizer._convert_id_to_token(token_id)
  3066. if token_id == 0:
  3067. piece = "<unk>"
  3068. elif token_id == 1:
  3069. piece = "<bos>"
  3070. elif token_id == 2:
  3071. piece = "<eos>"
  3072. text = piece.encode("utf-8")
  3073. score = 0.0
  3074. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3075. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3076. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3077. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3078. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3079. if piece in special_tokens:
  3080. toktype = SentencePieceTokenTypes.CONTROL
  3081. elif len(piece) == 0:
  3082. text = f"[PAD{token_id}]".encode("utf-8")
  3083. toktype = SentencePieceTokenTypes.UNUSED
  3084. else:
  3085. toktype = SentencePieceTokenTypes.USER_DEFINED
  3086. tokens.append(text)
  3087. scores.append(score)
  3088. toktypes.append(toktype)
  3089. continue
  3090. toktype = SentencePieceTokenTypes.NORMAL
  3091. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3092. toktype = SentencePieceTokenTypes.UNKNOWN
  3093. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3094. toktype = SentencePieceTokenTypes.CONTROL
  3095. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3096. toktype = SentencePieceTokenTypes.UNUSED
  3097. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3098. toktype = SentencePieceTokenTypes.BYTE
  3099. tokens.append(text)
  3100. scores.append(score)
  3101. toktypes.append(toktype)
  3102. self.gguf_writer.add_tokenizer_model("llama")
  3103. # glm3 needs prefix and suffix formatted as:
  3104. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3105. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3106. self.gguf_writer.add_token_list(tokens)
  3107. self.gguf_writer.add_token_scores(scores)
  3108. self.gguf_writer.add_token_types(toktypes)
  3109. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3110. special_vocab.add_to_gguf(self.gguf_writer)
  3111. @staticmethod
  3112. def token_bytes_to_string(b):
  3113. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3114. byte_encoder = bytes_to_unicode()
  3115. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3116. @staticmethod
  3117. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3118. parts = [bytes([b]) for b in token]
  3119. while True:
  3120. min_idx = None
  3121. min_rank = None
  3122. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3123. rank = mergeable_ranks.get(pair[0] + pair[1])
  3124. if rank is not None and (min_rank is None or rank < min_rank):
  3125. min_idx = i
  3126. min_rank = rank
  3127. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3128. break
  3129. assert min_idx is not None
  3130. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3131. return parts
  3132. def set_vocab(self):
  3133. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3134. self.set_vocab_chatglm3()
  3135. return
  3136. dir_model = self.dir_model
  3137. hparams = self.hparams
  3138. tokens: list[str] = []
  3139. toktypes: list[int] = []
  3140. from transformers import AutoTokenizer
  3141. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3142. vocab_size = hparams["padded_vocab_size"]
  3143. assert max(tokenizer.get_vocab().values()) < vocab_size
  3144. tokpre = self.get_vocab_base_pre(tokenizer)
  3145. merges = []
  3146. vocab = {}
  3147. mergeable_ranks = tokenizer.mergeable_ranks
  3148. for token, rank in mergeable_ranks.items():
  3149. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3150. if len(token) == 1:
  3151. continue
  3152. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3153. assert len(merged) >= 2 and len(merged) <= 7
  3154. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3155. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3156. added_vocab = tokenizer.get_added_vocab()
  3157. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3158. for i in range(vocab_size):
  3159. if i not in reverse_vocab:
  3160. tokens.append(f"[PAD{i}]")
  3161. toktypes.append(gguf.TokenType.UNUSED)
  3162. elif reverse_vocab[i] in added_vocab:
  3163. tokens.append(reverse_vocab[i])
  3164. if tokenizer.added_tokens_decoder[i].special:
  3165. toktypes.append(gguf.TokenType.CONTROL)
  3166. else:
  3167. toktypes.append(gguf.TokenType.USER_DEFINED)
  3168. else:
  3169. tokens.append(reverse_vocab[i])
  3170. toktypes.append(gguf.TokenType.NORMAL)
  3171. self.gguf_writer.add_tokenizer_model("gpt2")
  3172. self.gguf_writer.add_tokenizer_pre(tokpre)
  3173. self.gguf_writer.add_token_list(tokens)
  3174. self.gguf_writer.add_token_types(toktypes)
  3175. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3176. special_vocab.merges = merges
  3177. # only add special tokens when they were not already loaded from config.json
  3178. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3179. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3180. # this one is usually not in config.json anyway
  3181. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3182. special_vocab.add_to_gguf(self.gguf_writer)
  3183. def set_gguf_parameters(self):
  3184. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3185. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3186. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3187. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3188. self.gguf_writer.add_embedding_length(n_embed)
  3189. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3190. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3191. self.gguf_writer.add_head_count(n_head)
  3192. self.gguf_writer.add_head_count_kv(n_head_kv)
  3193. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3194. self.gguf_writer.add_file_type(self.ftype)
  3195. self.gguf_writer.add_rope_dimension_count(64)
  3196. self.gguf_writer.add_add_bos_token(False)
  3197. rope_freq = 10000
  3198. if "rope_ratio" in self.hparams:
  3199. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3200. self.gguf_writer.add_rope_freq_base(rope_freq)
  3201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3202. del bid # unused
  3203. if name.endswith(".rotary_pos_emb.inv_freq"):
  3204. return []
  3205. name = name.removeprefix("transformer.")
  3206. return [(self.map_tensor_name(name), data_torch)]
  3207. @Model.register("NemotronForCausalLM")
  3208. class NemotronModel(Model):
  3209. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3210. def set_vocab(self):
  3211. self._set_vocab_sentencepiece()
  3212. self.gguf_writer.add_pad_token_id(0)
  3213. self.gguf_writer.add_unk_token_id(1)
  3214. def set_gguf_parameters(self):
  3215. super().set_gguf_parameters()
  3216. hparams = self.hparams
  3217. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3218. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3219. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3220. # * Partial RoPE
  3221. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3222. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3223. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3224. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3225. # * RopeScaling for Nemotron
  3226. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3227. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3228. else:
  3229. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3230. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3232. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3233. # model.layers.{l}.input_layernorm.weight
  3234. # model.layers.{l}.post_attention_layernorm.weight
  3235. # model.norm.weight
  3236. if name.endswith("norm.weight"):
  3237. data_torch = data_torch + 1
  3238. return [(self.map_tensor_name(name), data_torch)]
  3239. @Model.register("ExaoneForCausalLM")
  3240. class ExaoneModel(Model):
  3241. model_arch = gguf.MODEL_ARCH.EXAONE
  3242. def set_gguf_parameters(self):
  3243. hparams = self.hparams
  3244. assert (hparams["activation_function"] == "silu")
  3245. max_position_embeddings = hparams["max_position_embeddings"]
  3246. embed_dim = hparams["hidden_size"]
  3247. num_heads = hparams["num_attention_heads"]
  3248. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3249. layer_norm_eps = hparams["layer_norm_epsilon"]
  3250. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3251. num_layers = hparams["num_layers"]
  3252. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3253. # attention_dropout_rate = hparams["attention_dropout"]
  3254. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3255. # embed_dropout_rate = hparams["embed_dropout"]
  3256. self.gguf_writer.add_embedding_length(embed_dim)
  3257. self.gguf_writer.add_head_count(num_heads)
  3258. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3259. self.gguf_writer.add_context_length(max_position_embeddings)
  3260. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3261. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3262. self.gguf_writer.add_block_count(num_layers)
  3263. self.gguf_writer.add_file_type(self.ftype)
  3264. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3265. self.gguf_writer.add_rope_freq_base(rope_theta)
  3266. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3267. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3268. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3269. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3270. if hparams["rope_scaling"].get("type") == "linear":
  3271. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3272. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3273. def prepare_tensors(self):
  3274. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3275. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3276. base = self.hparams.get("rope_theta", 10000.0)
  3277. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3278. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3279. factor = rope_scaling.get("factor", 8.0)
  3280. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3281. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3282. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3283. low_freq_wavelen = old_context_len / low_freq_factor
  3284. high_freq_wavelen = old_context_len / high_freq_factor
  3285. assert low_freq_wavelen != high_freq_wavelen
  3286. rope_factors = []
  3287. for freq in freqs:
  3288. wavelen = 2 * math.pi / freq
  3289. if wavelen < high_freq_wavelen:
  3290. rope_factors.append(1)
  3291. elif wavelen > low_freq_wavelen:
  3292. rope_factors.append(factor)
  3293. else:
  3294. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3295. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3296. if not self.is_lora:
  3297. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3298. super().prepare_tensors()
  3299. @Model.register("GraniteForCausalLM")
  3300. class GraniteModel(LlamaModel):
  3301. """Conversion for IBM's GraniteForCausalLM"""
  3302. model_arch = gguf.MODEL_ARCH.GRANITE
  3303. def set_gguf_parameters(self):
  3304. """Granite uses standard llama parameters with the following differences:
  3305. - No head_dim support
  3306. - New multiplier params:
  3307. - attention_scale
  3308. - embedding_scale
  3309. - residual_scale
  3310. - logits_scaling
  3311. """
  3312. if head_dim := self.hparams.pop("head_dim", None):
  3313. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3314. super().set_gguf_parameters()
  3315. # NOTE: Convert _multiplier params to _scale params for naming
  3316. # consistency
  3317. if attention_scale := self.hparams.get("attention_multiplier"):
  3318. self.gguf_writer.add_attention_scale(attention_scale)
  3319. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3320. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3321. self.gguf_writer.add_embedding_scale(embedding_scale)
  3322. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3323. if residual_scale := self.hparams.get("residual_multiplier"):
  3324. self.gguf_writer.add_residual_scale(residual_scale)
  3325. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3326. if logits_scale := self.hparams.get("logits_scaling"):
  3327. self.gguf_writer.add_logit_scale(logits_scale)
  3328. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3329. @Model.register("GraniteMoeForCausalLM")
  3330. class GraniteMoeModel(GraniteModel):
  3331. """Conversion for IBM's GraniteMoeForCausalLM"""
  3332. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3334. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3335. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3336. the hidden size that is then split during forward. To keep compatibility
  3337. with existing mixtral support, we pull them apart here.
  3338. """
  3339. if name.endswith("block_sparse_moe.input_linear.weight"):
  3340. ffn_dim = self.hparams["intermediate_size"]
  3341. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3342. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3343. return [
  3344. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3345. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3346. ]
  3347. return super().modify_tensors(data_torch, name, bid)
  3348. @Model.register("ChameleonForConditionalGeneration")
  3349. @Model.register("ChameleonForCausalLM") # obsolete
  3350. class ChameleonModel(Model):
  3351. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3352. def set_gguf_parameters(self):
  3353. super().set_gguf_parameters()
  3354. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3355. def set_vocab(self):
  3356. self._set_vocab_gpt2()
  3357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3358. # ignore image tokenizer for now
  3359. # TODO: remove this once image support is implemented for Chameleon
  3360. if name.startswith("model.vqmodel"):
  3361. return []
  3362. n_head = self.hparams["num_attention_heads"]
  3363. n_kv_head = self.hparams.get("num_key_value_heads")
  3364. hidden_dim = self.hparams.get("hidden_size")
  3365. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3366. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3367. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3368. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3369. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3370. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3371. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3372. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3373. return [(self.map_tensor_name(name), data_torch)]
  3374. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3375. @staticmethod
  3376. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3377. head_dim = hidden_dim // n_heads
  3378. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3379. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3380. return data_torch
  3381. ###### CONVERSION LOGIC ######
  3382. # tree of lazy tensors
  3383. class LazyTorchTensor(gguf.LazyBase):
  3384. _tensor_type = torch.Tensor
  3385. # to keep the type-checker happy
  3386. dtype: torch.dtype
  3387. shape: torch.Size
  3388. # only used when converting a torch.Tensor to a np.ndarray
  3389. _dtype_map: dict[torch.dtype, type] = {
  3390. torch.float16: np.float16,
  3391. torch.float32: np.float32,
  3392. }
  3393. # used for safetensors slices
  3394. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3395. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3396. _dtype_str_map: dict[str, torch.dtype] = {
  3397. "F64": torch.float64,
  3398. "F32": torch.float32,
  3399. "BF16": torch.bfloat16,
  3400. "F16": torch.float16,
  3401. # "U64": torch.uint64,
  3402. "I64": torch.int64,
  3403. # "U32": torch.uint32,
  3404. "I32": torch.int32,
  3405. # "U16": torch.uint16,
  3406. "I16": torch.int16,
  3407. "U8": torch.uint8,
  3408. "I8": torch.int8,
  3409. "BOOL": torch.bool,
  3410. "F8_E4M3": torch.float8_e4m3fn,
  3411. "F8_E5M2": torch.float8_e5m2,
  3412. }
  3413. def numpy(self) -> gguf.LazyNumpyTensor:
  3414. dtype = self._dtype_map[self.dtype]
  3415. return gguf.LazyNumpyTensor(
  3416. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3417. args=(self,),
  3418. func=(lambda s: s.numpy())
  3419. )
  3420. @classmethod
  3421. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3422. return torch.empty(size=shape, dtype=dtype, device="meta")
  3423. @classmethod
  3424. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3425. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3426. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3427. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3428. return cast(torch.Tensor, lazy)
  3429. @classmethod
  3430. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3431. del types # unused
  3432. if kwargs is None:
  3433. kwargs = {}
  3434. if func is torch.Tensor.numpy:
  3435. return args[0].numpy()
  3436. return cls._wrap_fn(func)(*args, **kwargs)
  3437. def parse_args() -> argparse.Namespace:
  3438. parser = argparse.ArgumentParser(
  3439. description="Convert a huggingface model to a GGML compatible file")
  3440. parser.add_argument(
  3441. "--vocab-only", action="store_true",
  3442. help="extract only the vocab",
  3443. )
  3444. parser.add_argument(
  3445. "--outfile", type=Path,
  3446. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3447. )
  3448. parser.add_argument(
  3449. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3450. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3451. )
  3452. parser.add_argument(
  3453. "--bigendian", action="store_true",
  3454. help="model is executed on big endian machine",
  3455. )
  3456. parser.add_argument(
  3457. "model", type=Path,
  3458. help="directory containing model file",
  3459. )
  3460. parser.add_argument(
  3461. "--use-temp-file", action="store_true",
  3462. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3463. )
  3464. parser.add_argument(
  3465. "--no-lazy", action="store_true",
  3466. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3467. )
  3468. parser.add_argument(
  3469. "--model-name", type=str, default=None,
  3470. help="name of the model",
  3471. )
  3472. parser.add_argument(
  3473. "--verbose", action="store_true",
  3474. help="increase output verbosity",
  3475. )
  3476. parser.add_argument(
  3477. "--split-max-tensors", type=int, default=0,
  3478. help="max tensors in each split",
  3479. )
  3480. parser.add_argument(
  3481. "--split-max-size", type=str, default="0",
  3482. help="max size per split N(M|G)",
  3483. )
  3484. parser.add_argument(
  3485. "--dry-run", action="store_true",
  3486. help="only print out a split plan and exit, without writing any new files",
  3487. )
  3488. parser.add_argument(
  3489. "--no-tensor-first-split", action="store_true",
  3490. help="do not add tensors to the first split (disabled by default)"
  3491. )
  3492. parser.add_argument(
  3493. "--metadata", type=Path,
  3494. help="Specify the path for an authorship metadata override file"
  3495. )
  3496. return parser.parse_args()
  3497. def split_str_to_n_bytes(split_str: str) -> int:
  3498. if split_str.endswith("K"):
  3499. n = int(split_str[:-1]) * 1000
  3500. elif split_str.endswith("M"):
  3501. n = int(split_str[:-1]) * 1000 * 1000
  3502. elif split_str.endswith("G"):
  3503. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3504. elif split_str.isnumeric():
  3505. n = int(split_str)
  3506. else:
  3507. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3508. if n < 0:
  3509. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3510. return n
  3511. def main() -> None:
  3512. args = parse_args()
  3513. if args.verbose:
  3514. logging.basicConfig(level=logging.DEBUG)
  3515. else:
  3516. logging.basicConfig(level=logging.INFO)
  3517. dir_model = args.model
  3518. if not dir_model.is_dir():
  3519. logger.error(f'Error: {args.model} is not a directory')
  3520. sys.exit(1)
  3521. ftype_map: dict[str, gguf.LlamaFileType] = {
  3522. "f32": gguf.LlamaFileType.ALL_F32,
  3523. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3524. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3525. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3526. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3527. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3528. "auto": gguf.LlamaFileType.GUESSED,
  3529. }
  3530. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3531. if args.use_temp_file and is_split:
  3532. logger.error("Error: Cannot use temp file when splitting")
  3533. sys.exit(1)
  3534. if args.outfile is not None:
  3535. fname_out = args.outfile
  3536. else:
  3537. fname_out = dir_model
  3538. logger.info(f"Loading model: {dir_model.name}")
  3539. hparams = Model.load_hparams(dir_model)
  3540. with torch.inference_mode():
  3541. output_type = ftype_map[args.outtype]
  3542. model_architecture = hparams["architectures"][0]
  3543. try:
  3544. model_class = Model.from_model_architecture(model_architecture)
  3545. except NotImplementedError:
  3546. logger.error(f"Model {model_architecture} is not supported")
  3547. sys.exit(1)
  3548. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3549. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3550. eager=args.no_lazy,
  3551. metadata_override=args.metadata, model_name=args.model_name,
  3552. split_max_tensors=args.split_max_tensors,
  3553. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3554. small_first_shard=args.no_tensor_first_split)
  3555. if args.vocab_only:
  3556. logger.info("Exporting model vocab...")
  3557. model_instance.write_vocab()
  3558. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3559. else:
  3560. logger.info("Exporting model...")
  3561. model_instance.write()
  3562. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3563. logger.info(f"Model successfully exported to {out_path}")
  3564. if __name__ == '__main__':
  3565. main()