constants.py 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. FILE_TYPE = "general.file_type"
  21. # Authorship Metadata
  22. NAME = "general.name"
  23. AUTHOR = "general.author"
  24. VERSION = "general.version"
  25. ORGANIZATION = "general.organization"
  26. FINETUNE = "general.finetune"
  27. BASENAME = "general.basename"
  28. DESCRIPTION = "general.description"
  29. QUANTIZED_BY = "general.quantized_by"
  30. SIZE_LABEL = "general.size_label"
  31. # Licensing details
  32. LICENSE = "general.license"
  33. LICENSE_NAME = "general.license.name"
  34. LICENSE_LINK = "general.license.link"
  35. # Typically represents the converted GGUF repo (Unless native)
  36. URL = "general.url" # Model Website/Paper
  37. DOI = "general.doi"
  38. UUID = "general.uuid"
  39. REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
  40. # Model Source during conversion
  41. SOURCE_URL = "general.source.url" # Model Website/Paper
  42. SOURCE_DOI = "general.source.doi"
  43. SOURCE_UUID = "general.source.uuid"
  44. SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
  45. # Base Model Source. There can be more than one source if it's a merged
  46. # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
  47. # tracing linage of models as it is finetuned or merged over time.
  48. BASE_MODEL_COUNT = "general.base_model.count"
  49. BASE_MODEL_NAME = "general.base_model.{id}.name"
  50. BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
  51. BASE_MODEL_VERSION = "general.base_model.{id}.version"
  52. BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
  53. BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
  54. BASE_MODEL_DOI = "general.base_model.{id}.doi"
  55. BASE_MODEL_UUID = "general.base_model.{id}.uuid"
  56. BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  57. # Array based KV stores
  58. TAGS = "general.tags"
  59. LANGUAGES = "general.languages"
  60. DATASETS = "general.datasets"
  61. class LLM:
  62. VOCAB_SIZE = "{arch}.vocab_size"
  63. CONTEXT_LENGTH = "{arch}.context_length"
  64. EMBEDDING_LENGTH = "{arch}.embedding_length"
  65. BLOCK_COUNT = "{arch}.block_count"
  66. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  67. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  68. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  69. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  70. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  71. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  72. EXPERT_COUNT = "{arch}.expert_count"
  73. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  74. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  75. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  76. POOLING_TYPE = "{arch}.pooling_type"
  77. LOGIT_SCALE = "{arch}.logit_scale"
  78. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  79. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  80. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  81. SWIN_NORM = "{arch}.swin_norm"
  82. RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
  83. TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
  84. TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
  85. RESIDUAL_SCALE = "{arch}.residual_scale"
  86. EMBEDDING_SCALE = "{arch}.embedding_scale"
  87. class Attention:
  88. HEAD_COUNT = "{arch}.attention.head_count"
  89. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  90. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  91. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  92. KEY_LENGTH = "{arch}.attention.key_length"
  93. VALUE_LENGTH = "{arch}.attention.value_length"
  94. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  95. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  96. CAUSAL = "{arch}.attention.causal"
  97. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  98. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  99. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  100. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  101. SCALE = "{arch}.attention.scale"
  102. class Rope:
  103. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  104. FREQ_BASE = "{arch}.rope.freq_base"
  105. SCALING_TYPE = "{arch}.rope.scaling.type"
  106. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  107. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  108. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  109. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  110. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  111. class Split:
  112. LLM_KV_SPLIT_NO = "split.no"
  113. LLM_KV_SPLIT_COUNT = "split.count"
  114. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  115. class SSM:
  116. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  117. INNER_SIZE = "{arch}.ssm.inner_size"
  118. STATE_SIZE = "{arch}.ssm.state_size"
  119. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  120. DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
  121. class WKV:
  122. HEAD_SIZE = "{arch}.wkv.head_size"
  123. class Tokenizer:
  124. MODEL = "tokenizer.ggml.model"
  125. PRE = "tokenizer.ggml.pre"
  126. LIST = "tokenizer.ggml.tokens"
  127. TOKEN_TYPE = "tokenizer.ggml.token_type"
  128. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  129. SCORES = "tokenizer.ggml.scores"
  130. MERGES = "tokenizer.ggml.merges"
  131. BOS_ID = "tokenizer.ggml.bos_token_id"
  132. EOS_ID = "tokenizer.ggml.eos_token_id"
  133. UNK_ID = "tokenizer.ggml.unknown_token_id"
  134. SEP_ID = "tokenizer.ggml.seperator_token_id"
  135. PAD_ID = "tokenizer.ggml.padding_token_id"
  136. CLS_ID = "tokenizer.ggml.cls_token_id"
  137. MASK_ID = "tokenizer.ggml.mask_token_id"
  138. ADD_BOS = "tokenizer.ggml.add_bos_token"
  139. ADD_EOS = "tokenizer.ggml.add_eos_token"
  140. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  141. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  142. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  143. HF_JSON = "tokenizer.huggingface.json"
  144. RWKV = "tokenizer.rwkv.world"
  145. CHAT_TEMPLATE = "tokenizer.chat_template"
  146. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  147. CHAT_TEMPLATES = "tokenizer.chat_templates"
  148. # FIM/Infill special tokens constants
  149. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  150. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  151. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  152. EOT_ID = "tokenizer.ggml.eot_token_id"
  153. EOM_ID = "tokenizer.ggml.eom_token_id"
  154. class Adapter:
  155. TYPE = "adapter.type"
  156. LORA_ALPHA = "adapter.lora.alpha"
  157. #
  158. # recommended mapping of model tensor names for storage in gguf
  159. #
  160. class GGUFType:
  161. MODEL = "model"
  162. ADAPTER = "adapter"
  163. class MODEL_ARCH(IntEnum):
  164. LLAMA = auto()
  165. FALCON = auto()
  166. BAICHUAN = auto()
  167. GROK = auto()
  168. GPT2 = auto()
  169. GPTJ = auto()
  170. GPTNEOX = auto()
  171. MPT = auto()
  172. STARCODER = auto()
  173. REFACT = auto()
  174. BERT = auto()
  175. NOMIC_BERT = auto()
  176. JINA_BERT_V2 = auto()
  177. BLOOM = auto()
  178. STABLELM = auto()
  179. QWEN = auto()
  180. QWEN2 = auto()
  181. QWEN2MOE = auto()
  182. PHI2 = auto()
  183. PHI3 = auto()
  184. PLAMO = auto()
  185. CODESHELL = auto()
  186. ORION = auto()
  187. INTERNLM2 = auto()
  188. MINICPM = auto()
  189. MINICPM3 = auto()
  190. GEMMA = auto()
  191. GEMMA2 = auto()
  192. STARCODER2 = auto()
  193. RWKV6 = auto()
  194. MAMBA = auto()
  195. XVERSE = auto()
  196. COMMAND_R = auto()
  197. DBRX = auto()
  198. OLMO = auto()
  199. OLMOE = auto()
  200. OPENELM = auto()
  201. ARCTIC = auto()
  202. DEEPSEEK2 = auto()
  203. CHATGLM = auto()
  204. BITNET = auto()
  205. T5 = auto()
  206. T5ENCODER = auto()
  207. JAIS = auto()
  208. NEMOTRON = auto()
  209. EXAONE = auto()
  210. GRANITE = auto()
  211. GRANITE_MOE = auto()
  212. CHAMELEON = auto()
  213. class MODEL_TENSOR(IntEnum):
  214. TOKEN_EMBD = auto()
  215. TOKEN_EMBD_NORM = auto()
  216. TOKEN_TYPES = auto()
  217. POS_EMBD = auto()
  218. OUTPUT = auto()
  219. OUTPUT_NORM = auto()
  220. ROPE_FREQS = auto()
  221. ROPE_FACTORS_LONG = auto()
  222. ROPE_FACTORS_SHORT = auto()
  223. ATTN_Q = auto()
  224. ATTN_K = auto()
  225. ATTN_V = auto()
  226. ATTN_QKV = auto()
  227. ATTN_OUT = auto()
  228. ATTN_NORM = auto()
  229. ATTN_NORM_2 = auto()
  230. ATTN_OUT_NORM = auto()
  231. ATTN_POST_NORM = auto()
  232. ATTN_ROT_EMBD = auto()
  233. FFN_GATE_INP = auto()
  234. FFN_GATE_INP_SHEXP = auto()
  235. FFN_NORM = auto()
  236. FFN_PRE_NORM = auto()
  237. FFN_POST_NORM = auto()
  238. FFN_GATE = auto()
  239. FFN_DOWN = auto()
  240. FFN_UP = auto()
  241. FFN_ACT = auto()
  242. FFN_NORM_EXP = auto()
  243. FFN_GATE_EXP = auto()
  244. FFN_DOWN_EXP = auto()
  245. FFN_UP_EXP = auto()
  246. FFN_GATE_SHEXP = auto()
  247. FFN_DOWN_SHEXP = auto()
  248. FFN_UP_SHEXP = auto()
  249. ATTN_Q_NORM = auto()
  250. ATTN_K_NORM = auto()
  251. LAYER_OUT_NORM = auto()
  252. SSM_IN = auto()
  253. SSM_CONV1D = auto()
  254. SSM_X = auto()
  255. SSM_DT = auto()
  256. SSM_A = auto()
  257. SSM_D = auto()
  258. SSM_OUT = auto()
  259. TIME_MIX_W1 = auto()
  260. TIME_MIX_W2 = auto()
  261. TIME_MIX_LERP_X = auto()
  262. TIME_MIX_LERP_K = auto()
  263. TIME_MIX_LERP_V = auto()
  264. TIME_MIX_LERP_R = auto()
  265. TIME_MIX_LERP_G = auto()
  266. TIME_MIX_LERP_W = auto()
  267. TIME_MIX_FIRST = auto()
  268. TIME_MIX_DECAY = auto()
  269. TIME_MIX_DECAY_W1 = auto()
  270. TIME_MIX_DECAY_W2 = auto()
  271. TIME_MIX_KEY = auto()
  272. TIME_MIX_VALUE = auto()
  273. TIME_MIX_RECEPTANCE = auto()
  274. TIME_MIX_GATE = auto()
  275. TIME_MIX_LN = auto()
  276. TIME_MIX_OUTPUT = auto()
  277. CHANNEL_MIX_LERP_K = auto()
  278. CHANNEL_MIX_LERP_R = auto()
  279. CHANNEL_MIX_KEY = auto()
  280. CHANNEL_MIX_RECEPTANCE = auto()
  281. CHANNEL_MIX_VALUE = auto()
  282. ATTN_Q_A = auto()
  283. ATTN_Q_B = auto()
  284. ATTN_KV_A_MQA = auto()
  285. ATTN_KV_B = auto()
  286. ATTN_Q_A_NORM = auto()
  287. ATTN_KV_A_NORM = auto()
  288. FFN_SUB_NORM = auto()
  289. ATTN_SUB_NORM = auto()
  290. DEC_ATTN_NORM = auto()
  291. DEC_ATTN_Q = auto()
  292. DEC_ATTN_K = auto()
  293. DEC_ATTN_V = auto()
  294. DEC_ATTN_OUT = auto()
  295. DEC_ATTN_REL_B = auto()
  296. DEC_CROSS_ATTN_NORM = auto()
  297. DEC_CROSS_ATTN_Q = auto()
  298. DEC_CROSS_ATTN_K = auto()
  299. DEC_CROSS_ATTN_V = auto()
  300. DEC_CROSS_ATTN_OUT = auto()
  301. DEC_CROSS_ATTN_REL_B = auto()
  302. DEC_FFN_NORM = auto()
  303. DEC_FFN_GATE = auto()
  304. DEC_FFN_DOWN = auto()
  305. DEC_FFN_UP = auto()
  306. DEC_OUTPUT_NORM = auto()
  307. ENC_ATTN_NORM = auto()
  308. ENC_ATTN_Q = auto()
  309. ENC_ATTN_K = auto()
  310. ENC_ATTN_V = auto()
  311. ENC_ATTN_OUT = auto()
  312. ENC_ATTN_REL_B = auto()
  313. ENC_FFN_NORM = auto()
  314. ENC_FFN_GATE = auto()
  315. ENC_FFN_DOWN = auto()
  316. ENC_FFN_UP = auto()
  317. ENC_OUTPUT_NORM = auto()
  318. CLS = auto() # classifier
  319. CLS_OUT = auto() # classifier output projection
  320. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  321. MODEL_ARCH.LLAMA: "llama",
  322. MODEL_ARCH.FALCON: "falcon",
  323. MODEL_ARCH.BAICHUAN: "baichuan",
  324. MODEL_ARCH.GROK: "grok",
  325. MODEL_ARCH.GPT2: "gpt2",
  326. MODEL_ARCH.GPTJ: "gptj",
  327. MODEL_ARCH.GPTNEOX: "gptneox",
  328. MODEL_ARCH.MPT: "mpt",
  329. MODEL_ARCH.STARCODER: "starcoder",
  330. MODEL_ARCH.REFACT: "refact",
  331. MODEL_ARCH.BERT: "bert",
  332. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  333. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  334. MODEL_ARCH.BLOOM: "bloom",
  335. MODEL_ARCH.STABLELM: "stablelm",
  336. MODEL_ARCH.QWEN: "qwen",
  337. MODEL_ARCH.QWEN2: "qwen2",
  338. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  339. MODEL_ARCH.PHI2: "phi2",
  340. MODEL_ARCH.PHI3: "phi3",
  341. MODEL_ARCH.PLAMO: "plamo",
  342. MODEL_ARCH.CODESHELL: "codeshell",
  343. MODEL_ARCH.ORION: "orion",
  344. MODEL_ARCH.INTERNLM2: "internlm2",
  345. MODEL_ARCH.MINICPM: "minicpm",
  346. MODEL_ARCH.MINICPM3: "minicpm3",
  347. MODEL_ARCH.GEMMA: "gemma",
  348. MODEL_ARCH.GEMMA2: "gemma2",
  349. MODEL_ARCH.STARCODER2: "starcoder2",
  350. MODEL_ARCH.RWKV6: "rwkv6",
  351. MODEL_ARCH.MAMBA: "mamba",
  352. MODEL_ARCH.XVERSE: "xverse",
  353. MODEL_ARCH.COMMAND_R: "command-r",
  354. MODEL_ARCH.DBRX: "dbrx",
  355. MODEL_ARCH.OLMO: "olmo",
  356. MODEL_ARCH.OLMOE: "olmoe",
  357. MODEL_ARCH.OPENELM: "openelm",
  358. MODEL_ARCH.ARCTIC: "arctic",
  359. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  360. MODEL_ARCH.CHATGLM: "chatglm",
  361. MODEL_ARCH.BITNET: "bitnet",
  362. MODEL_ARCH.T5: "t5",
  363. MODEL_ARCH.T5ENCODER: "t5encoder",
  364. MODEL_ARCH.JAIS: "jais",
  365. MODEL_ARCH.NEMOTRON: "nemotron",
  366. MODEL_ARCH.EXAONE: "exaone",
  367. MODEL_ARCH.GRANITE: "granite",
  368. MODEL_ARCH.GRANITE_MOE: "granitemoe",
  369. MODEL_ARCH.CHAMELEON: "chameleon",
  370. }
  371. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  372. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  373. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  374. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  375. MODEL_TENSOR.POS_EMBD: "position_embd",
  376. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  377. MODEL_TENSOR.OUTPUT: "output",
  378. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  379. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  380. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  381. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  382. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  383. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  384. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  385. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  386. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  387. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  388. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  389. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  390. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  391. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  392. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  393. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  394. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  395. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  396. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  397. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  398. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  399. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  400. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  401. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  402. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  403. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  404. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  405. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  406. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  407. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  408. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  409. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  410. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  411. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  412. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  413. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  414. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  415. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  416. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  417. MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
  418. MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
  419. MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
  420. MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
  421. MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
  422. MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
  423. MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
  424. MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
  425. MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
  426. MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
  427. MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
  428. MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
  429. MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
  430. MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
  431. MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
  432. MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
  433. MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
  434. MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
  435. MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
  436. MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
  437. MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
  438. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
  439. MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
  440. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  441. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  442. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  443. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  444. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  445. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  446. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  447. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  448. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  449. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  450. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  451. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  452. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  453. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  454. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  455. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  456. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  457. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  458. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  459. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  460. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  461. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  462. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  463. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  464. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  465. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  466. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  467. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  468. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  469. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  470. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  471. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  472. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  473. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  474. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  475. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  476. MODEL_TENSOR.CLS: "cls",
  477. MODEL_TENSOR.CLS_OUT: "cls.output",
  478. }
  479. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  480. MODEL_ARCH.LLAMA: [
  481. MODEL_TENSOR.TOKEN_EMBD,
  482. MODEL_TENSOR.OUTPUT_NORM,
  483. MODEL_TENSOR.OUTPUT,
  484. MODEL_TENSOR.ROPE_FREQS,
  485. MODEL_TENSOR.ATTN_NORM,
  486. MODEL_TENSOR.ATTN_Q,
  487. MODEL_TENSOR.ATTN_K,
  488. MODEL_TENSOR.ATTN_V,
  489. MODEL_TENSOR.ATTN_OUT,
  490. MODEL_TENSOR.ATTN_ROT_EMBD,
  491. MODEL_TENSOR.FFN_GATE_INP,
  492. MODEL_TENSOR.FFN_NORM,
  493. MODEL_TENSOR.FFN_GATE,
  494. MODEL_TENSOR.FFN_DOWN,
  495. MODEL_TENSOR.FFN_UP,
  496. MODEL_TENSOR.FFN_GATE_EXP,
  497. MODEL_TENSOR.FFN_DOWN_EXP,
  498. MODEL_TENSOR.FFN_UP_EXP,
  499. ],
  500. MODEL_ARCH.GROK: [
  501. MODEL_TENSOR.TOKEN_EMBD,
  502. MODEL_TENSOR.OUTPUT_NORM,
  503. MODEL_TENSOR.OUTPUT,
  504. MODEL_TENSOR.ROPE_FREQS,
  505. MODEL_TENSOR.ATTN_NORM,
  506. MODEL_TENSOR.ATTN_Q,
  507. MODEL_TENSOR.ATTN_K,
  508. MODEL_TENSOR.ATTN_V,
  509. MODEL_TENSOR.ATTN_OUT,
  510. MODEL_TENSOR.ATTN_ROT_EMBD,
  511. MODEL_TENSOR.ATTN_OUT_NORM,
  512. MODEL_TENSOR.FFN_GATE_INP,
  513. MODEL_TENSOR.FFN_NORM,
  514. MODEL_TENSOR.FFN_GATE,
  515. MODEL_TENSOR.FFN_DOWN,
  516. MODEL_TENSOR.FFN_UP,
  517. MODEL_TENSOR.FFN_GATE_EXP,
  518. MODEL_TENSOR.FFN_DOWN_EXP,
  519. MODEL_TENSOR.FFN_UP_EXP,
  520. MODEL_TENSOR.LAYER_OUT_NORM,
  521. ],
  522. MODEL_ARCH.GPTNEOX: [
  523. MODEL_TENSOR.TOKEN_EMBD,
  524. MODEL_TENSOR.OUTPUT_NORM,
  525. MODEL_TENSOR.OUTPUT,
  526. MODEL_TENSOR.ATTN_NORM,
  527. MODEL_TENSOR.ATTN_QKV,
  528. MODEL_TENSOR.ATTN_OUT,
  529. MODEL_TENSOR.FFN_NORM,
  530. MODEL_TENSOR.FFN_DOWN,
  531. MODEL_TENSOR.FFN_UP,
  532. ],
  533. MODEL_ARCH.FALCON: [
  534. MODEL_TENSOR.TOKEN_EMBD,
  535. MODEL_TENSOR.OUTPUT_NORM,
  536. MODEL_TENSOR.OUTPUT,
  537. MODEL_TENSOR.ATTN_NORM,
  538. MODEL_TENSOR.ATTN_NORM_2,
  539. MODEL_TENSOR.ATTN_QKV,
  540. MODEL_TENSOR.ATTN_OUT,
  541. MODEL_TENSOR.FFN_DOWN,
  542. MODEL_TENSOR.FFN_UP,
  543. ],
  544. MODEL_ARCH.BAICHUAN: [
  545. MODEL_TENSOR.TOKEN_EMBD,
  546. MODEL_TENSOR.OUTPUT_NORM,
  547. MODEL_TENSOR.OUTPUT,
  548. MODEL_TENSOR.ROPE_FREQS,
  549. MODEL_TENSOR.ATTN_NORM,
  550. MODEL_TENSOR.ATTN_Q,
  551. MODEL_TENSOR.ATTN_K,
  552. MODEL_TENSOR.ATTN_V,
  553. MODEL_TENSOR.ATTN_OUT,
  554. MODEL_TENSOR.ATTN_ROT_EMBD,
  555. MODEL_TENSOR.FFN_NORM,
  556. MODEL_TENSOR.FFN_GATE,
  557. MODEL_TENSOR.FFN_DOWN,
  558. MODEL_TENSOR.FFN_UP,
  559. ],
  560. MODEL_ARCH.STARCODER: [
  561. MODEL_TENSOR.TOKEN_EMBD,
  562. MODEL_TENSOR.POS_EMBD,
  563. MODEL_TENSOR.OUTPUT_NORM,
  564. MODEL_TENSOR.OUTPUT,
  565. MODEL_TENSOR.ATTN_NORM,
  566. MODEL_TENSOR.ATTN_QKV,
  567. MODEL_TENSOR.ATTN_OUT,
  568. MODEL_TENSOR.FFN_NORM,
  569. MODEL_TENSOR.FFN_DOWN,
  570. MODEL_TENSOR.FFN_UP,
  571. ],
  572. MODEL_ARCH.BERT: [
  573. MODEL_TENSOR.TOKEN_EMBD,
  574. MODEL_TENSOR.TOKEN_EMBD_NORM,
  575. MODEL_TENSOR.TOKEN_TYPES,
  576. MODEL_TENSOR.POS_EMBD,
  577. MODEL_TENSOR.OUTPUT_NORM,
  578. MODEL_TENSOR.ATTN_OUT_NORM,
  579. MODEL_TENSOR.ATTN_Q,
  580. MODEL_TENSOR.ATTN_K,
  581. MODEL_TENSOR.ATTN_V,
  582. MODEL_TENSOR.ATTN_OUT,
  583. MODEL_TENSOR.FFN_DOWN,
  584. MODEL_TENSOR.FFN_UP,
  585. MODEL_TENSOR.LAYER_OUT_NORM,
  586. MODEL_TENSOR.CLS,
  587. MODEL_TENSOR.CLS_OUT,
  588. ],
  589. MODEL_ARCH.NOMIC_BERT: [
  590. MODEL_TENSOR.TOKEN_EMBD,
  591. MODEL_TENSOR.TOKEN_EMBD_NORM,
  592. MODEL_TENSOR.TOKEN_TYPES,
  593. MODEL_TENSOR.POS_EMBD,
  594. MODEL_TENSOR.OUTPUT_NORM,
  595. MODEL_TENSOR.ATTN_OUT_NORM,
  596. MODEL_TENSOR.ATTN_QKV,
  597. MODEL_TENSOR.ATTN_OUT,
  598. MODEL_TENSOR.FFN_GATE,
  599. MODEL_TENSOR.FFN_DOWN,
  600. MODEL_TENSOR.FFN_UP,
  601. MODEL_TENSOR.LAYER_OUT_NORM,
  602. ],
  603. MODEL_ARCH.JINA_BERT_V2: [
  604. MODEL_TENSOR.TOKEN_EMBD,
  605. MODEL_TENSOR.TOKEN_EMBD_NORM,
  606. MODEL_TENSOR.TOKEN_TYPES,
  607. MODEL_TENSOR.ATTN_NORM_2,
  608. MODEL_TENSOR.ATTN_OUT_NORM,
  609. MODEL_TENSOR.ATTN_Q,
  610. MODEL_TENSOR.ATTN_Q_NORM,
  611. MODEL_TENSOR.ATTN_K,
  612. MODEL_TENSOR.ATTN_K_NORM,
  613. MODEL_TENSOR.ATTN_V,
  614. MODEL_TENSOR.ATTN_OUT,
  615. MODEL_TENSOR.FFN_UP,
  616. MODEL_TENSOR.FFN_GATE,
  617. MODEL_TENSOR.FFN_DOWN,
  618. MODEL_TENSOR.LAYER_OUT_NORM,
  619. MODEL_TENSOR.CLS,
  620. ],
  621. MODEL_ARCH.MPT: [
  622. MODEL_TENSOR.TOKEN_EMBD,
  623. MODEL_TENSOR.OUTPUT_NORM,
  624. MODEL_TENSOR.OUTPUT,
  625. MODEL_TENSOR.ATTN_NORM,
  626. MODEL_TENSOR.ATTN_QKV,
  627. MODEL_TENSOR.ATTN_OUT,
  628. MODEL_TENSOR.FFN_NORM,
  629. MODEL_TENSOR.FFN_DOWN,
  630. MODEL_TENSOR.FFN_UP,
  631. MODEL_TENSOR.FFN_ACT,
  632. MODEL_TENSOR.ATTN_Q_NORM,
  633. MODEL_TENSOR.ATTN_K_NORM,
  634. MODEL_TENSOR.POS_EMBD,
  635. ],
  636. MODEL_ARCH.GPTJ: [
  637. MODEL_TENSOR.TOKEN_EMBD,
  638. MODEL_TENSOR.OUTPUT_NORM,
  639. MODEL_TENSOR.OUTPUT,
  640. MODEL_TENSOR.ATTN_NORM,
  641. MODEL_TENSOR.ATTN_Q,
  642. MODEL_TENSOR.ATTN_K,
  643. MODEL_TENSOR.ATTN_V,
  644. MODEL_TENSOR.ATTN_OUT,
  645. MODEL_TENSOR.FFN_DOWN,
  646. MODEL_TENSOR.FFN_UP,
  647. ],
  648. MODEL_ARCH.REFACT: [
  649. MODEL_TENSOR.TOKEN_EMBD,
  650. MODEL_TENSOR.OUTPUT_NORM,
  651. MODEL_TENSOR.OUTPUT,
  652. MODEL_TENSOR.ATTN_NORM,
  653. MODEL_TENSOR.ATTN_Q,
  654. MODEL_TENSOR.ATTN_K,
  655. MODEL_TENSOR.ATTN_V,
  656. MODEL_TENSOR.ATTN_OUT,
  657. MODEL_TENSOR.FFN_NORM,
  658. MODEL_TENSOR.FFN_GATE,
  659. MODEL_TENSOR.FFN_DOWN,
  660. MODEL_TENSOR.FFN_UP,
  661. ],
  662. MODEL_ARCH.BLOOM: [
  663. MODEL_TENSOR.TOKEN_EMBD,
  664. MODEL_TENSOR.TOKEN_EMBD_NORM,
  665. MODEL_TENSOR.OUTPUT_NORM,
  666. MODEL_TENSOR.OUTPUT,
  667. MODEL_TENSOR.ATTN_NORM,
  668. MODEL_TENSOR.ATTN_QKV,
  669. MODEL_TENSOR.ATTN_OUT,
  670. MODEL_TENSOR.FFN_NORM,
  671. MODEL_TENSOR.FFN_DOWN,
  672. MODEL_TENSOR.FFN_UP,
  673. ],
  674. MODEL_ARCH.STABLELM: [
  675. MODEL_TENSOR.TOKEN_EMBD,
  676. MODEL_TENSOR.OUTPUT_NORM,
  677. MODEL_TENSOR.OUTPUT,
  678. MODEL_TENSOR.ROPE_FREQS,
  679. MODEL_TENSOR.ATTN_NORM,
  680. MODEL_TENSOR.ATTN_Q,
  681. MODEL_TENSOR.ATTN_K,
  682. MODEL_TENSOR.ATTN_V,
  683. MODEL_TENSOR.ATTN_OUT,
  684. MODEL_TENSOR.FFN_NORM,
  685. MODEL_TENSOR.FFN_GATE,
  686. MODEL_TENSOR.FFN_DOWN,
  687. MODEL_TENSOR.FFN_UP,
  688. MODEL_TENSOR.ATTN_Q_NORM,
  689. MODEL_TENSOR.ATTN_K_NORM,
  690. ],
  691. MODEL_ARCH.QWEN: [
  692. MODEL_TENSOR.TOKEN_EMBD,
  693. MODEL_TENSOR.OUTPUT_NORM,
  694. MODEL_TENSOR.OUTPUT,
  695. MODEL_TENSOR.ROPE_FREQS,
  696. MODEL_TENSOR.ATTN_NORM,
  697. MODEL_TENSOR.ATTN_QKV,
  698. MODEL_TENSOR.ATTN_OUT,
  699. MODEL_TENSOR.ATTN_ROT_EMBD,
  700. MODEL_TENSOR.FFN_NORM,
  701. MODEL_TENSOR.FFN_GATE,
  702. MODEL_TENSOR.FFN_DOWN,
  703. MODEL_TENSOR.FFN_UP,
  704. ],
  705. MODEL_ARCH.QWEN2: [
  706. MODEL_TENSOR.TOKEN_EMBD,
  707. MODEL_TENSOR.OUTPUT_NORM,
  708. MODEL_TENSOR.OUTPUT,
  709. MODEL_TENSOR.ATTN_NORM,
  710. MODEL_TENSOR.ATTN_Q,
  711. MODEL_TENSOR.ATTN_K,
  712. MODEL_TENSOR.ATTN_V,
  713. MODEL_TENSOR.ATTN_OUT,
  714. MODEL_TENSOR.FFN_NORM,
  715. MODEL_TENSOR.FFN_GATE,
  716. MODEL_TENSOR.FFN_DOWN,
  717. MODEL_TENSOR.FFN_UP,
  718. ],
  719. MODEL_ARCH.QWEN2MOE: [
  720. MODEL_TENSOR.TOKEN_EMBD,
  721. MODEL_TENSOR.OUTPUT_NORM,
  722. MODEL_TENSOR.OUTPUT,
  723. MODEL_TENSOR.ATTN_NORM,
  724. MODEL_TENSOR.ATTN_Q,
  725. MODEL_TENSOR.ATTN_K,
  726. MODEL_TENSOR.ATTN_V,
  727. MODEL_TENSOR.ATTN_OUT,
  728. MODEL_TENSOR.FFN_NORM,
  729. MODEL_TENSOR.FFN_GATE_INP,
  730. MODEL_TENSOR.FFN_GATE_EXP,
  731. MODEL_TENSOR.FFN_DOWN_EXP,
  732. MODEL_TENSOR.FFN_UP_EXP,
  733. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  734. MODEL_TENSOR.FFN_GATE_SHEXP,
  735. MODEL_TENSOR.FFN_DOWN_SHEXP,
  736. MODEL_TENSOR.FFN_UP_SHEXP,
  737. ],
  738. MODEL_ARCH.PLAMO: [
  739. MODEL_TENSOR.TOKEN_EMBD,
  740. MODEL_TENSOR.OUTPUT_NORM,
  741. MODEL_TENSOR.OUTPUT,
  742. MODEL_TENSOR.ROPE_FREQS,
  743. MODEL_TENSOR.ATTN_NORM,
  744. MODEL_TENSOR.ATTN_Q,
  745. MODEL_TENSOR.ATTN_K,
  746. MODEL_TENSOR.ATTN_V,
  747. MODEL_TENSOR.ATTN_OUT,
  748. MODEL_TENSOR.ATTN_ROT_EMBD,
  749. MODEL_TENSOR.FFN_GATE,
  750. MODEL_TENSOR.FFN_DOWN,
  751. MODEL_TENSOR.FFN_UP,
  752. ],
  753. MODEL_ARCH.GPT2: [
  754. MODEL_TENSOR.TOKEN_EMBD,
  755. MODEL_TENSOR.POS_EMBD,
  756. MODEL_TENSOR.OUTPUT_NORM,
  757. MODEL_TENSOR.OUTPUT,
  758. MODEL_TENSOR.ATTN_NORM,
  759. MODEL_TENSOR.ATTN_QKV,
  760. MODEL_TENSOR.ATTN_OUT,
  761. MODEL_TENSOR.FFN_NORM,
  762. MODEL_TENSOR.FFN_DOWN,
  763. MODEL_TENSOR.FFN_UP,
  764. ],
  765. MODEL_ARCH.PHI2: [
  766. MODEL_TENSOR.TOKEN_EMBD,
  767. MODEL_TENSOR.OUTPUT_NORM,
  768. MODEL_TENSOR.OUTPUT,
  769. MODEL_TENSOR.ATTN_NORM,
  770. MODEL_TENSOR.ATTN_QKV,
  771. MODEL_TENSOR.ATTN_Q,
  772. MODEL_TENSOR.ATTN_K,
  773. MODEL_TENSOR.ATTN_V,
  774. MODEL_TENSOR.ATTN_OUT,
  775. MODEL_TENSOR.FFN_NORM,
  776. MODEL_TENSOR.FFN_DOWN,
  777. MODEL_TENSOR.FFN_UP,
  778. ],
  779. MODEL_ARCH.PHI3: [
  780. MODEL_TENSOR.TOKEN_EMBD,
  781. MODEL_TENSOR.OUTPUT_NORM,
  782. MODEL_TENSOR.OUTPUT,
  783. MODEL_TENSOR.ATTN_NORM,
  784. MODEL_TENSOR.ATTN_QKV,
  785. MODEL_TENSOR.ATTN_Q,
  786. MODEL_TENSOR.ATTN_K,
  787. MODEL_TENSOR.ATTN_V,
  788. MODEL_TENSOR.ATTN_OUT,
  789. MODEL_TENSOR.FFN_NORM,
  790. MODEL_TENSOR.FFN_DOWN,
  791. MODEL_TENSOR.FFN_UP,
  792. ],
  793. MODEL_ARCH.CODESHELL: [
  794. MODEL_TENSOR.TOKEN_EMBD,
  795. MODEL_TENSOR.POS_EMBD,
  796. MODEL_TENSOR.OUTPUT_NORM,
  797. MODEL_TENSOR.OUTPUT,
  798. MODEL_TENSOR.ATTN_NORM,
  799. MODEL_TENSOR.ATTN_QKV,
  800. MODEL_TENSOR.ATTN_OUT,
  801. MODEL_TENSOR.ATTN_ROT_EMBD,
  802. MODEL_TENSOR.FFN_NORM,
  803. MODEL_TENSOR.FFN_DOWN,
  804. MODEL_TENSOR.FFN_UP,
  805. ],
  806. MODEL_ARCH.ORION: [
  807. MODEL_TENSOR.TOKEN_EMBD,
  808. MODEL_TENSOR.OUTPUT_NORM,
  809. MODEL_TENSOR.OUTPUT,
  810. MODEL_TENSOR.ROPE_FREQS,
  811. MODEL_TENSOR.ATTN_NORM,
  812. MODEL_TENSOR.ATTN_Q,
  813. MODEL_TENSOR.ATTN_K,
  814. MODEL_TENSOR.ATTN_V,
  815. MODEL_TENSOR.ATTN_OUT,
  816. MODEL_TENSOR.ATTN_ROT_EMBD,
  817. MODEL_TENSOR.FFN_NORM,
  818. MODEL_TENSOR.FFN_GATE,
  819. MODEL_TENSOR.FFN_DOWN,
  820. MODEL_TENSOR.FFN_UP,
  821. ],
  822. MODEL_ARCH.INTERNLM2: [
  823. MODEL_TENSOR.TOKEN_EMBD,
  824. MODEL_TENSOR.OUTPUT_NORM,
  825. MODEL_TENSOR.OUTPUT,
  826. MODEL_TENSOR.ATTN_NORM,
  827. MODEL_TENSOR.ATTN_Q,
  828. MODEL_TENSOR.ATTN_K,
  829. MODEL_TENSOR.ATTN_V,
  830. MODEL_TENSOR.ATTN_OUT,
  831. MODEL_TENSOR.ATTN_ROT_EMBD,
  832. MODEL_TENSOR.FFN_NORM,
  833. MODEL_TENSOR.FFN_GATE,
  834. MODEL_TENSOR.FFN_DOWN,
  835. MODEL_TENSOR.FFN_UP,
  836. ],
  837. MODEL_ARCH.MINICPM: [
  838. MODEL_TENSOR.TOKEN_EMBD,
  839. MODEL_TENSOR.OUTPUT,
  840. MODEL_TENSOR.OUTPUT_NORM,
  841. MODEL_TENSOR.ROPE_FREQS,
  842. MODEL_TENSOR.ATTN_NORM,
  843. MODEL_TENSOR.ATTN_Q,
  844. MODEL_TENSOR.ATTN_K,
  845. MODEL_TENSOR.ATTN_V,
  846. MODEL_TENSOR.ATTN_OUT,
  847. MODEL_TENSOR.ATTN_ROT_EMBD,
  848. MODEL_TENSOR.FFN_GATE_INP,
  849. MODEL_TENSOR.FFN_NORM,
  850. MODEL_TENSOR.FFN_GATE,
  851. MODEL_TENSOR.FFN_DOWN,
  852. MODEL_TENSOR.FFN_UP,
  853. MODEL_TENSOR.FFN_GATE_EXP,
  854. MODEL_TENSOR.FFN_DOWN_EXP,
  855. MODEL_TENSOR.FFN_UP_EXP,
  856. ],
  857. MODEL_ARCH.MINICPM3: [
  858. MODEL_TENSOR.TOKEN_EMBD,
  859. MODEL_TENSOR.OUTPUT_NORM,
  860. MODEL_TENSOR.OUTPUT,
  861. MODEL_TENSOR.ATTN_NORM,
  862. MODEL_TENSOR.ATTN_Q_A,
  863. MODEL_TENSOR.ATTN_Q_B,
  864. MODEL_TENSOR.ATTN_KV_A_MQA,
  865. MODEL_TENSOR.ATTN_KV_B,
  866. MODEL_TENSOR.ATTN_Q_A_NORM,
  867. MODEL_TENSOR.ATTN_KV_A_NORM,
  868. MODEL_TENSOR.ATTN_OUT,
  869. MODEL_TENSOR.FFN_NORM,
  870. MODEL_TENSOR.FFN_GATE,
  871. MODEL_TENSOR.FFN_DOWN,
  872. MODEL_TENSOR.FFN_UP,
  873. ],
  874. MODEL_ARCH.GEMMA: [
  875. MODEL_TENSOR.TOKEN_EMBD,
  876. MODEL_TENSOR.OUTPUT_NORM,
  877. MODEL_TENSOR.ATTN_NORM,
  878. MODEL_TENSOR.ATTN_Q,
  879. MODEL_TENSOR.ATTN_K,
  880. MODEL_TENSOR.ATTN_V,
  881. MODEL_TENSOR.ATTN_OUT,
  882. MODEL_TENSOR.FFN_GATE,
  883. MODEL_TENSOR.FFN_DOWN,
  884. MODEL_TENSOR.FFN_UP,
  885. MODEL_TENSOR.FFN_NORM,
  886. ],
  887. MODEL_ARCH.GEMMA2: [
  888. MODEL_TENSOR.TOKEN_EMBD,
  889. MODEL_TENSOR.OUTPUT_NORM,
  890. MODEL_TENSOR.ATTN_Q,
  891. MODEL_TENSOR.ATTN_K,
  892. MODEL_TENSOR.ATTN_V,
  893. MODEL_TENSOR.ATTN_OUT,
  894. MODEL_TENSOR.FFN_GATE,
  895. MODEL_TENSOR.FFN_DOWN,
  896. MODEL_TENSOR.FFN_UP,
  897. MODEL_TENSOR.ATTN_NORM,
  898. MODEL_TENSOR.ATTN_POST_NORM,
  899. MODEL_TENSOR.FFN_PRE_NORM,
  900. MODEL_TENSOR.FFN_POST_NORM,
  901. ],
  902. MODEL_ARCH.STARCODER2: [
  903. MODEL_TENSOR.TOKEN_EMBD,
  904. MODEL_TENSOR.OUTPUT_NORM,
  905. MODEL_TENSOR.OUTPUT,
  906. MODEL_TENSOR.ROPE_FREQS,
  907. MODEL_TENSOR.ATTN_NORM,
  908. MODEL_TENSOR.ATTN_Q,
  909. MODEL_TENSOR.ATTN_K,
  910. MODEL_TENSOR.ATTN_V,
  911. MODEL_TENSOR.ATTN_OUT,
  912. MODEL_TENSOR.ATTN_ROT_EMBD,
  913. MODEL_TENSOR.FFN_NORM,
  914. MODEL_TENSOR.FFN_DOWN,
  915. MODEL_TENSOR.FFN_UP,
  916. ],
  917. MODEL_ARCH.RWKV6: [
  918. MODEL_TENSOR.TOKEN_EMBD,
  919. MODEL_TENSOR.TOKEN_EMBD_NORM,
  920. MODEL_TENSOR.OUTPUT_NORM,
  921. MODEL_TENSOR.OUTPUT,
  922. MODEL_TENSOR.ATTN_NORM,
  923. MODEL_TENSOR.ATTN_NORM_2,
  924. MODEL_TENSOR.TIME_MIX_W1,
  925. MODEL_TENSOR.TIME_MIX_W2,
  926. MODEL_TENSOR.TIME_MIX_LERP_X,
  927. MODEL_TENSOR.TIME_MIX_LERP_K,
  928. MODEL_TENSOR.TIME_MIX_LERP_V,
  929. MODEL_TENSOR.TIME_MIX_LERP_R,
  930. MODEL_TENSOR.TIME_MIX_LERP_G,
  931. MODEL_TENSOR.TIME_MIX_LERP_W,
  932. MODEL_TENSOR.TIME_MIX_FIRST,
  933. MODEL_TENSOR.TIME_MIX_DECAY,
  934. MODEL_TENSOR.TIME_MIX_DECAY_W1,
  935. MODEL_TENSOR.TIME_MIX_DECAY_W2,
  936. MODEL_TENSOR.TIME_MIX_KEY,
  937. MODEL_TENSOR.TIME_MIX_VALUE,
  938. MODEL_TENSOR.TIME_MIX_RECEPTANCE,
  939. MODEL_TENSOR.TIME_MIX_GATE,
  940. MODEL_TENSOR.TIME_MIX_LN,
  941. MODEL_TENSOR.TIME_MIX_OUTPUT,
  942. MODEL_TENSOR.CHANNEL_MIX_LERP_K,
  943. MODEL_TENSOR.CHANNEL_MIX_LERP_R,
  944. MODEL_TENSOR.CHANNEL_MIX_KEY,
  945. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
  946. MODEL_TENSOR.CHANNEL_MIX_VALUE,
  947. ],
  948. MODEL_ARCH.MAMBA: [
  949. MODEL_TENSOR.TOKEN_EMBD,
  950. MODEL_TENSOR.OUTPUT_NORM,
  951. MODEL_TENSOR.OUTPUT,
  952. MODEL_TENSOR.ATTN_NORM,
  953. MODEL_TENSOR.SSM_IN,
  954. MODEL_TENSOR.SSM_CONV1D,
  955. MODEL_TENSOR.SSM_X,
  956. MODEL_TENSOR.SSM_DT,
  957. MODEL_TENSOR.SSM_A,
  958. MODEL_TENSOR.SSM_D,
  959. MODEL_TENSOR.SSM_OUT,
  960. ],
  961. MODEL_ARCH.XVERSE: [
  962. MODEL_TENSOR.TOKEN_EMBD,
  963. MODEL_TENSOR.OUTPUT_NORM,
  964. MODEL_TENSOR.OUTPUT,
  965. MODEL_TENSOR.ROPE_FREQS,
  966. MODEL_TENSOR.ATTN_NORM,
  967. MODEL_TENSOR.ATTN_Q,
  968. MODEL_TENSOR.ATTN_K,
  969. MODEL_TENSOR.ATTN_V,
  970. MODEL_TENSOR.ATTN_OUT,
  971. MODEL_TENSOR.ATTN_ROT_EMBD,
  972. MODEL_TENSOR.FFN_NORM,
  973. MODEL_TENSOR.FFN_GATE,
  974. MODEL_TENSOR.FFN_DOWN,
  975. MODEL_TENSOR.FFN_UP,
  976. ],
  977. MODEL_ARCH.COMMAND_R: [
  978. MODEL_TENSOR.TOKEN_EMBD,
  979. MODEL_TENSOR.OUTPUT_NORM,
  980. MODEL_TENSOR.ATTN_NORM,
  981. MODEL_TENSOR.ATTN_Q,
  982. MODEL_TENSOR.ATTN_K,
  983. MODEL_TENSOR.ATTN_V,
  984. MODEL_TENSOR.ATTN_OUT,
  985. MODEL_TENSOR.FFN_GATE,
  986. MODEL_TENSOR.FFN_DOWN,
  987. MODEL_TENSOR.FFN_UP,
  988. MODEL_TENSOR.ATTN_K_NORM,
  989. MODEL_TENSOR.ATTN_Q_NORM,
  990. ],
  991. MODEL_ARCH.DBRX: [
  992. MODEL_TENSOR.TOKEN_EMBD,
  993. MODEL_TENSOR.OUTPUT_NORM,
  994. MODEL_TENSOR.OUTPUT,
  995. MODEL_TENSOR.ATTN_NORM,
  996. MODEL_TENSOR.ATTN_QKV,
  997. MODEL_TENSOR.ATTN_OUT,
  998. MODEL_TENSOR.ATTN_OUT_NORM,
  999. MODEL_TENSOR.FFN_GATE_INP,
  1000. MODEL_TENSOR.FFN_GATE_EXP,
  1001. MODEL_TENSOR.FFN_DOWN_EXP,
  1002. MODEL_TENSOR.FFN_UP_EXP,
  1003. ],
  1004. MODEL_ARCH.OLMO: [
  1005. MODEL_TENSOR.TOKEN_EMBD,
  1006. MODEL_TENSOR.OUTPUT,
  1007. MODEL_TENSOR.ATTN_Q,
  1008. MODEL_TENSOR.ATTN_K,
  1009. MODEL_TENSOR.ATTN_V,
  1010. MODEL_TENSOR.ATTN_OUT,
  1011. MODEL_TENSOR.FFN_GATE,
  1012. MODEL_TENSOR.FFN_DOWN,
  1013. MODEL_TENSOR.FFN_UP,
  1014. ],
  1015. MODEL_ARCH.OLMOE: [
  1016. MODEL_TENSOR.TOKEN_EMBD,
  1017. MODEL_TENSOR.OUTPUT_NORM,
  1018. MODEL_TENSOR.OUTPUT,
  1019. MODEL_TENSOR.ATTN_OUT,
  1020. MODEL_TENSOR.ATTN_Q,
  1021. MODEL_TENSOR.ATTN_K,
  1022. MODEL_TENSOR.ATTN_V,
  1023. MODEL_TENSOR.ATTN_NORM,
  1024. MODEL_TENSOR.ATTN_Q_NORM,
  1025. MODEL_TENSOR.ATTN_K_NORM,
  1026. MODEL_TENSOR.FFN_NORM,
  1027. MODEL_TENSOR.FFN_GATE_INP,
  1028. MODEL_TENSOR.FFN_GATE_EXP,
  1029. MODEL_TENSOR.FFN_UP_EXP,
  1030. MODEL_TENSOR.FFN_DOWN_EXP,
  1031. ],
  1032. MODEL_ARCH.OPENELM: [
  1033. MODEL_TENSOR.TOKEN_EMBD,
  1034. MODEL_TENSOR.OUTPUT_NORM,
  1035. MODEL_TENSOR.ATTN_NORM,
  1036. MODEL_TENSOR.ATTN_QKV,
  1037. MODEL_TENSOR.ATTN_Q_NORM,
  1038. MODEL_TENSOR.ATTN_K_NORM,
  1039. MODEL_TENSOR.ATTN_OUT,
  1040. MODEL_TENSOR.FFN_NORM,
  1041. MODEL_TENSOR.FFN_GATE,
  1042. MODEL_TENSOR.FFN_DOWN,
  1043. MODEL_TENSOR.FFN_UP,
  1044. ],
  1045. MODEL_ARCH.ARCTIC: [
  1046. MODEL_TENSOR.TOKEN_EMBD,
  1047. MODEL_TENSOR.OUTPUT_NORM,
  1048. MODEL_TENSOR.OUTPUT,
  1049. MODEL_TENSOR.ROPE_FREQS,
  1050. MODEL_TENSOR.ATTN_NORM,
  1051. MODEL_TENSOR.ATTN_Q,
  1052. MODEL_TENSOR.ATTN_K,
  1053. MODEL_TENSOR.ATTN_V,
  1054. MODEL_TENSOR.ATTN_OUT,
  1055. MODEL_TENSOR.ATTN_ROT_EMBD,
  1056. MODEL_TENSOR.FFN_GATE_INP,
  1057. MODEL_TENSOR.FFN_NORM,
  1058. MODEL_TENSOR.FFN_GATE,
  1059. MODEL_TENSOR.FFN_DOWN,
  1060. MODEL_TENSOR.FFN_UP,
  1061. MODEL_TENSOR.FFN_NORM_EXP,
  1062. MODEL_TENSOR.FFN_GATE_EXP,
  1063. MODEL_TENSOR.FFN_DOWN_EXP,
  1064. MODEL_TENSOR.FFN_UP_EXP,
  1065. ],
  1066. MODEL_ARCH.DEEPSEEK2: [
  1067. MODEL_TENSOR.TOKEN_EMBD,
  1068. MODEL_TENSOR.OUTPUT_NORM,
  1069. MODEL_TENSOR.OUTPUT,
  1070. MODEL_TENSOR.ROPE_FREQS,
  1071. MODEL_TENSOR.ATTN_NORM,
  1072. MODEL_TENSOR.ATTN_Q,
  1073. MODEL_TENSOR.ATTN_Q_A,
  1074. MODEL_TENSOR.ATTN_Q_B,
  1075. MODEL_TENSOR.ATTN_KV_A_MQA,
  1076. MODEL_TENSOR.ATTN_KV_B,
  1077. MODEL_TENSOR.ATTN_Q_A_NORM,
  1078. MODEL_TENSOR.ATTN_KV_A_NORM,
  1079. MODEL_TENSOR.ATTN_OUT,
  1080. MODEL_TENSOR.ATTN_ROT_EMBD,
  1081. MODEL_TENSOR.FFN_GATE_INP,
  1082. MODEL_TENSOR.FFN_NORM,
  1083. MODEL_TENSOR.FFN_GATE,
  1084. MODEL_TENSOR.FFN_DOWN,
  1085. MODEL_TENSOR.FFN_UP,
  1086. MODEL_TENSOR.FFN_GATE_EXP,
  1087. MODEL_TENSOR.FFN_DOWN_EXP,
  1088. MODEL_TENSOR.FFN_UP_EXP,
  1089. MODEL_TENSOR.FFN_GATE_SHEXP,
  1090. MODEL_TENSOR.FFN_DOWN_SHEXP,
  1091. MODEL_TENSOR.FFN_UP_SHEXP,
  1092. ],
  1093. MODEL_ARCH.CHATGLM : [
  1094. MODEL_TENSOR.TOKEN_EMBD,
  1095. MODEL_TENSOR.ROPE_FREQS,
  1096. MODEL_TENSOR.OUTPUT_NORM,
  1097. MODEL_TENSOR.OUTPUT,
  1098. MODEL_TENSOR.ATTN_NORM,
  1099. MODEL_TENSOR.ATTN_QKV,
  1100. MODEL_TENSOR.ATTN_OUT,
  1101. MODEL_TENSOR.FFN_NORM,
  1102. MODEL_TENSOR.FFN_DOWN,
  1103. MODEL_TENSOR.FFN_UP,
  1104. ],
  1105. MODEL_ARCH.BITNET: [
  1106. MODEL_TENSOR.ATTN_Q,
  1107. MODEL_TENSOR.ATTN_K,
  1108. MODEL_TENSOR.ATTN_V,
  1109. MODEL_TENSOR.TOKEN_EMBD,
  1110. MODEL_TENSOR.OUTPUT_NORM,
  1111. MODEL_TENSOR.ATTN_NORM,
  1112. MODEL_TENSOR.ATTN_OUT,
  1113. MODEL_TENSOR.FFN_NORM,
  1114. MODEL_TENSOR.FFN_GATE,
  1115. MODEL_TENSOR.FFN_DOWN,
  1116. MODEL_TENSOR.FFN_UP,
  1117. MODEL_TENSOR.ATTN_SUB_NORM,
  1118. MODEL_TENSOR.FFN_SUB_NORM,
  1119. ],
  1120. MODEL_ARCH.T5: [
  1121. MODEL_TENSOR.TOKEN_EMBD,
  1122. MODEL_TENSOR.OUTPUT,
  1123. MODEL_TENSOR.DEC_ATTN_NORM,
  1124. MODEL_TENSOR.DEC_ATTN_Q,
  1125. MODEL_TENSOR.DEC_ATTN_K,
  1126. MODEL_TENSOR.DEC_ATTN_V,
  1127. MODEL_TENSOR.DEC_ATTN_OUT,
  1128. MODEL_TENSOR.DEC_ATTN_REL_B,
  1129. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  1130. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  1131. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  1132. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  1133. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  1134. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  1135. MODEL_TENSOR.DEC_FFN_NORM,
  1136. MODEL_TENSOR.DEC_FFN_GATE,
  1137. MODEL_TENSOR.DEC_FFN_DOWN,
  1138. MODEL_TENSOR.DEC_FFN_UP,
  1139. MODEL_TENSOR.DEC_OUTPUT_NORM,
  1140. MODEL_TENSOR.ENC_ATTN_NORM,
  1141. MODEL_TENSOR.ENC_ATTN_Q,
  1142. MODEL_TENSOR.ENC_ATTN_K,
  1143. MODEL_TENSOR.ENC_ATTN_V,
  1144. MODEL_TENSOR.ENC_ATTN_OUT,
  1145. MODEL_TENSOR.ENC_ATTN_REL_B,
  1146. MODEL_TENSOR.ENC_FFN_NORM,
  1147. MODEL_TENSOR.ENC_FFN_GATE,
  1148. MODEL_TENSOR.ENC_FFN_DOWN,
  1149. MODEL_TENSOR.ENC_FFN_UP,
  1150. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1151. ],
  1152. MODEL_ARCH.T5ENCODER: [
  1153. MODEL_TENSOR.TOKEN_EMBD,
  1154. MODEL_TENSOR.OUTPUT,
  1155. MODEL_TENSOR.ENC_ATTN_NORM,
  1156. MODEL_TENSOR.ENC_ATTN_Q,
  1157. MODEL_TENSOR.ENC_ATTN_K,
  1158. MODEL_TENSOR.ENC_ATTN_V,
  1159. MODEL_TENSOR.ENC_ATTN_OUT,
  1160. MODEL_TENSOR.ENC_ATTN_REL_B,
  1161. MODEL_TENSOR.ENC_FFN_NORM,
  1162. MODEL_TENSOR.ENC_FFN_GATE,
  1163. MODEL_TENSOR.ENC_FFN_DOWN,
  1164. MODEL_TENSOR.ENC_FFN_UP,
  1165. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1166. ],
  1167. MODEL_ARCH.JAIS: [
  1168. MODEL_TENSOR.TOKEN_EMBD,
  1169. MODEL_TENSOR.OUTPUT_NORM,
  1170. MODEL_TENSOR.OUTPUT,
  1171. MODEL_TENSOR.ATTN_NORM,
  1172. MODEL_TENSOR.ATTN_QKV,
  1173. MODEL_TENSOR.ATTN_OUT,
  1174. MODEL_TENSOR.FFN_NORM,
  1175. MODEL_TENSOR.FFN_DOWN,
  1176. MODEL_TENSOR.FFN_GATE,
  1177. MODEL_TENSOR.FFN_UP,
  1178. ],
  1179. MODEL_ARCH.NEMOTRON: [
  1180. MODEL_TENSOR.TOKEN_EMBD,
  1181. MODEL_TENSOR.OUTPUT_NORM,
  1182. MODEL_TENSOR.OUTPUT,
  1183. MODEL_TENSOR.ROPE_FREQS,
  1184. MODEL_TENSOR.ATTN_NORM,
  1185. MODEL_TENSOR.ATTN_Q,
  1186. MODEL_TENSOR.ATTN_K,
  1187. MODEL_TENSOR.ATTN_V,
  1188. MODEL_TENSOR.ATTN_OUT,
  1189. MODEL_TENSOR.ATTN_ROT_EMBD,
  1190. MODEL_TENSOR.FFN_NORM,
  1191. MODEL_TENSOR.FFN_DOWN,
  1192. MODEL_TENSOR.FFN_UP,
  1193. ],
  1194. MODEL_ARCH.EXAONE: [
  1195. MODEL_TENSOR.TOKEN_EMBD,
  1196. MODEL_TENSOR.OUTPUT_NORM,
  1197. MODEL_TENSOR.OUTPUT,
  1198. MODEL_TENSOR.ROPE_FREQS,
  1199. MODEL_TENSOR.ATTN_NORM,
  1200. MODEL_TENSOR.ATTN_Q,
  1201. MODEL_TENSOR.ATTN_K,
  1202. MODEL_TENSOR.ATTN_V,
  1203. MODEL_TENSOR.ATTN_OUT,
  1204. MODEL_TENSOR.ATTN_ROT_EMBD,
  1205. MODEL_TENSOR.FFN_NORM,
  1206. MODEL_TENSOR.FFN_GATE,
  1207. MODEL_TENSOR.FFN_DOWN,
  1208. MODEL_TENSOR.FFN_UP,
  1209. ],
  1210. MODEL_ARCH.GRANITE: [
  1211. MODEL_TENSOR.TOKEN_EMBD,
  1212. MODEL_TENSOR.OUTPUT_NORM,
  1213. MODEL_TENSOR.OUTPUT,
  1214. MODEL_TENSOR.ATTN_NORM,
  1215. MODEL_TENSOR.ATTN_Q,
  1216. MODEL_TENSOR.ATTN_K,
  1217. MODEL_TENSOR.ATTN_V,
  1218. MODEL_TENSOR.ATTN_OUT,
  1219. MODEL_TENSOR.FFN_NORM,
  1220. MODEL_TENSOR.FFN_GATE,
  1221. MODEL_TENSOR.FFN_DOWN,
  1222. MODEL_TENSOR.FFN_UP,
  1223. ],
  1224. MODEL_ARCH.GRANITE_MOE: [
  1225. MODEL_TENSOR.TOKEN_EMBD,
  1226. MODEL_TENSOR.OUTPUT_NORM,
  1227. MODEL_TENSOR.OUTPUT,
  1228. MODEL_TENSOR.ATTN_NORM,
  1229. MODEL_TENSOR.ATTN_Q,
  1230. MODEL_TENSOR.ATTN_K,
  1231. MODEL_TENSOR.ATTN_V,
  1232. MODEL_TENSOR.ATTN_OUT,
  1233. MODEL_TENSOR.FFN_NORM,
  1234. MODEL_TENSOR.FFN_GATE_INP,
  1235. MODEL_TENSOR.FFN_GATE_EXP,
  1236. MODEL_TENSOR.FFN_DOWN_EXP,
  1237. MODEL_TENSOR.FFN_UP_EXP,
  1238. ],
  1239. MODEL_ARCH.CHAMELEON: [
  1240. MODEL_TENSOR.TOKEN_EMBD,
  1241. MODEL_TENSOR.OUTPUT_NORM,
  1242. MODEL_TENSOR.OUTPUT,
  1243. MODEL_TENSOR.ATTN_NORM,
  1244. MODEL_TENSOR.ATTN_Q,
  1245. MODEL_TENSOR.ATTN_Q_NORM,
  1246. MODEL_TENSOR.ATTN_K,
  1247. MODEL_TENSOR.ATTN_K_NORM,
  1248. MODEL_TENSOR.ATTN_V,
  1249. MODEL_TENSOR.ATTN_OUT,
  1250. MODEL_TENSOR.FFN_NORM,
  1251. MODEL_TENSOR.FFN_GATE,
  1252. MODEL_TENSOR.FFN_DOWN,
  1253. MODEL_TENSOR.FFN_UP,
  1254. ],
  1255. # TODO
  1256. }
  1257. # tensors that will not be serialized
  1258. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  1259. MODEL_ARCH.LLAMA: [
  1260. MODEL_TENSOR.ROPE_FREQS,
  1261. MODEL_TENSOR.ATTN_ROT_EMBD,
  1262. ],
  1263. MODEL_ARCH.BAICHUAN: [
  1264. MODEL_TENSOR.ROPE_FREQS,
  1265. MODEL_TENSOR.ATTN_ROT_EMBD,
  1266. ],
  1267. MODEL_ARCH.QWEN: [
  1268. MODEL_TENSOR.ROPE_FREQS,
  1269. MODEL_TENSOR.ATTN_ROT_EMBD,
  1270. ],
  1271. MODEL_ARCH.CODESHELL: [
  1272. MODEL_TENSOR.ROPE_FREQS,
  1273. MODEL_TENSOR.ATTN_ROT_EMBD,
  1274. ],
  1275. MODEL_ARCH.ORION: [
  1276. MODEL_TENSOR.ROPE_FREQS,
  1277. MODEL_TENSOR.ATTN_ROT_EMBD,
  1278. ],
  1279. MODEL_ARCH.STARCODER2: [
  1280. MODEL_TENSOR.ROPE_FREQS,
  1281. MODEL_TENSOR.ATTN_ROT_EMBD,
  1282. ],
  1283. MODEL_ARCH.XVERSE: [
  1284. MODEL_TENSOR.ROPE_FREQS,
  1285. MODEL_TENSOR.ATTN_ROT_EMBD,
  1286. ],
  1287. MODEL_ARCH.DEEPSEEK2: [
  1288. MODEL_TENSOR.ROPE_FREQS,
  1289. MODEL_TENSOR.ATTN_ROT_EMBD,
  1290. ],
  1291. MODEL_ARCH.CHATGLM: [
  1292. MODEL_TENSOR.ROPE_FREQS,
  1293. ],
  1294. MODEL_ARCH.NEMOTRON: [
  1295. MODEL_TENSOR.ROPE_FREQS,
  1296. MODEL_TENSOR.ATTN_ROT_EMBD,
  1297. ],
  1298. }
  1299. #
  1300. # types
  1301. #
  1302. class TokenType(IntEnum):
  1303. NORMAL = 1
  1304. UNKNOWN = 2
  1305. CONTROL = 3
  1306. USER_DEFINED = 4
  1307. UNUSED = 5
  1308. BYTE = 6
  1309. class RopeScalingType(Enum):
  1310. NONE = 'none'
  1311. LINEAR = 'linear'
  1312. YARN = 'yarn'
  1313. class PoolingType(IntEnum):
  1314. NONE = 0
  1315. MEAN = 1
  1316. CLS = 2
  1317. class GGMLQuantizationType(IntEnum):
  1318. F32 = 0
  1319. F16 = 1
  1320. Q4_0 = 2
  1321. Q4_1 = 3
  1322. Q5_0 = 6
  1323. Q5_1 = 7
  1324. Q8_0 = 8
  1325. Q8_1 = 9
  1326. Q2_K = 10
  1327. Q3_K = 11
  1328. Q4_K = 12
  1329. Q5_K = 13
  1330. Q6_K = 14
  1331. Q8_K = 15
  1332. IQ2_XXS = 16
  1333. IQ2_XS = 17
  1334. IQ3_XXS = 18
  1335. IQ1_S = 19
  1336. IQ4_NL = 20
  1337. IQ3_S = 21
  1338. IQ2_S = 22
  1339. IQ4_XS = 23
  1340. I8 = 24
  1341. I16 = 25
  1342. I32 = 26
  1343. I64 = 27
  1344. F64 = 28
  1345. IQ1_M = 29
  1346. BF16 = 30
  1347. Q4_0_4_4 = 31
  1348. Q4_0_4_8 = 32
  1349. Q4_0_8_8 = 33
  1350. TQ1_0 = 34
  1351. TQ2_0 = 35
  1352. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1353. # from llama_ftype in llama.h
  1354. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1355. class LlamaFileType(IntEnum):
  1356. ALL_F32 = 0
  1357. MOSTLY_F16 = 1 # except 1d tensors
  1358. MOSTLY_Q4_0 = 2 # except 1d tensors
  1359. MOSTLY_Q4_1 = 3 # except 1d tensors
  1360. # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1361. # MOSTLY_Q4_2 = 5 # support has been removed
  1362. # MOSTLY_Q4_3 = 6 # support has been removed
  1363. MOSTLY_Q8_0 = 7 # except 1d tensors
  1364. MOSTLY_Q5_0 = 8 # except 1d tensors
  1365. MOSTLY_Q5_1 = 9 # except 1d tensors
  1366. MOSTLY_Q2_K = 10 # except 1d tensors
  1367. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1368. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1369. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1370. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1371. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1372. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1373. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1374. MOSTLY_Q6_K = 18 # except 1d tensors
  1375. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1376. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1377. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1378. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1379. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1380. MOSTLY_IQ1_S = 24 # except 1d tensors
  1381. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1382. MOSTLY_IQ3_S = 26 # except 1d tensors
  1383. MOSTLY_IQ3_M = 27 # except 1d tensors
  1384. MOSTLY_IQ2_S = 28 # except 1d tensors
  1385. MOSTLY_IQ2_M = 29 # except 1d tensors
  1386. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1387. MOSTLY_IQ1_M = 31 # except 1d tensors
  1388. MOSTLY_BF16 = 32 # except 1d tensors
  1389. MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
  1390. MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
  1391. MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
  1392. MOSTLY_TQ1_0 = 36 # except 1d tensors
  1393. MOSTLY_TQ2_0 = 37 # except 1d tensors
  1394. GUESSED = 1024 # not specified in the model file
  1395. class GGUFEndian(IntEnum):
  1396. LITTLE = 0
  1397. BIG = 1
  1398. class GGUFValueType(IntEnum):
  1399. UINT8 = 0
  1400. INT8 = 1
  1401. UINT16 = 2
  1402. INT16 = 3
  1403. UINT32 = 4
  1404. INT32 = 5
  1405. FLOAT32 = 6
  1406. BOOL = 7
  1407. STRING = 8
  1408. ARRAY = 9
  1409. UINT64 = 10
  1410. INT64 = 11
  1411. FLOAT64 = 12
  1412. @staticmethod
  1413. def get_type(val: Any) -> GGUFValueType:
  1414. if isinstance(val, (str, bytes, bytearray)):
  1415. return GGUFValueType.STRING
  1416. elif isinstance(val, list):
  1417. return GGUFValueType.ARRAY
  1418. elif isinstance(val, float):
  1419. return GGUFValueType.FLOAT32
  1420. elif isinstance(val, bool):
  1421. return GGUFValueType.BOOL
  1422. elif isinstance(val, int):
  1423. return GGUFValueType.INT32
  1424. # TODO: need help with 64-bit types in Python
  1425. else:
  1426. raise ValueError(f"Unknown type: {type(val)}")
  1427. # Items here are (block size, type size)
  1428. QK_K = 256
  1429. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1430. GGMLQuantizationType.F32: (1, 4),
  1431. GGMLQuantizationType.F16: (1, 2),
  1432. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1433. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1434. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1435. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1436. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1437. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1438. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1439. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1440. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1441. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1442. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1443. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1444. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1445. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1446. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1447. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1448. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1449. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1450. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1451. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1452. GGMLQuantizationType.I8: (1, 1),
  1453. GGMLQuantizationType.I16: (1, 2),
  1454. GGMLQuantizationType.I32: (1, 4),
  1455. GGMLQuantizationType.I64: (1, 8),
  1456. GGMLQuantizationType.F64: (1, 8),
  1457. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1458. GGMLQuantizationType.BF16: (1, 2),
  1459. GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
  1460. GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
  1461. GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
  1462. GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
  1463. GGMLQuantizationType.TQ2_0: (256, 2 + 64),
  1464. }
  1465. # Aliases for backward compatibility.
  1466. # general
  1467. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1468. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1469. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1470. KEY_GENERAL_NAME = Keys.General.NAME
  1471. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1472. KEY_GENERAL_URL = Keys.General.URL
  1473. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1474. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1475. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1476. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1477. # LLM
  1478. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1479. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1480. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1481. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1482. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1483. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1484. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1485. # attention
  1486. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1487. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1488. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1489. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1490. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1491. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1492. # RoPE
  1493. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1494. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1495. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1496. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1497. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1498. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1499. # SSM
  1500. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1501. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1502. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1503. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1504. KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
  1505. # tokenization
  1506. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1507. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1508. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1509. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1510. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1511. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1512. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1513. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1514. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1515. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1516. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1517. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1518. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1519. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1520. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1521. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1522. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1523. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1524. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
  1525. KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID