llama-bench.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. // utils
  23. static uint64_t get_time_ns() {
  24. using clock = std::chrono::high_resolution_clock;
  25. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  26. }
  27. template<class T>
  28. static std::string join(const std::vector<T> & values, const std::string & delim) {
  29. std::ostringstream str;
  30. for (size_t i = 0; i < values.size(); i++) {
  31. str << values[i];
  32. if (i < values.size() - 1) {
  33. str << delim;
  34. }
  35. }
  36. return str.str();
  37. }
  38. template<class T>
  39. static std::vector<T> split(const std::string & str, char delim) {
  40. std::vector<T> values;
  41. std::istringstream str_stream(str);
  42. std::string token;
  43. while (std::getline(str_stream, token, delim)) {
  44. T value;
  45. std::istringstream token_stream(token);
  46. token_stream >> value;
  47. values.push_back(value);
  48. }
  49. return values;
  50. }
  51. template<typename T>
  52. static T avg(const std::vector<T> & v) {
  53. if (v.empty()) {
  54. return 0;
  55. }
  56. T sum = std::accumulate(v.begin(), v.end(), T(0));
  57. return sum / (T)v.size();
  58. }
  59. template<typename T>
  60. static T stdev(const std::vector<T> & v) {
  61. if (v.size() <= 1) {
  62. return 0;
  63. }
  64. T mean = avg(v);
  65. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  66. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  67. return stdev;
  68. }
  69. static std::string get_cpu_info() {
  70. std::string id;
  71. #ifdef __linux__
  72. FILE * f = fopen("/proc/cpuinfo", "r");
  73. if (f) {
  74. char buf[1024];
  75. while (fgets(buf, sizeof(buf), f)) {
  76. if (strncmp(buf, "model name", 10) == 0) {
  77. char * p = strchr(buf, ':');
  78. if (p) {
  79. p++;
  80. while (std::isspace(*p)) {
  81. p++;
  82. }
  83. while (std::isspace(p[strlen(p) - 1])) {
  84. p[strlen(p) - 1] = '\0';
  85. }
  86. id = p;
  87. break;
  88. }
  89. }
  90. }
  91. }
  92. #endif
  93. // TODO: other platforms
  94. return id;
  95. }
  96. static std::string get_gpu_info() {
  97. std::string id;
  98. #ifdef GGML_USE_CUBLAS
  99. int count = ggml_cuda_get_device_count();
  100. for (int i = 0; i < count; i++) {
  101. char buf[128];
  102. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  103. id += buf;
  104. if (i < count - 1) {
  105. id += "/";
  106. }
  107. }
  108. #endif
  109. // TODO: other backends
  110. return id;
  111. }
  112. // command line params
  113. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  114. struct cmd_params {
  115. std::vector<std::string> model;
  116. std::vector<int> n_prompt;
  117. std::vector<int> n_gen;
  118. std::vector<int> n_batch;
  119. std::vector<bool> f32_kv;
  120. std::vector<int> n_threads;
  121. std::vector<int> n_gpu_layers;
  122. std::vector<int> main_gpu;
  123. std::vector<bool> mul_mat_q;
  124. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  125. int reps;
  126. bool verbose;
  127. output_formats output_format;
  128. };
  129. static const cmd_params cmd_params_defaults = {
  130. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  131. /* n_prompt */ {512},
  132. /* n_gen */ {128},
  133. /* n_batch */ {512},
  134. /* f32_kv */ {false},
  135. /* n_threads */ {get_num_physical_cores()},
  136. /* n_gpu_layers */ {99},
  137. /* main_gpu */ {0},
  138. /* mul_mat_q */ {true},
  139. /* tensor_split */ {{}},
  140. /* reps */ 5,
  141. /* verbose */ false,
  142. /* output_format */ MARKDOWN
  143. };
  144. static void print_usage(int /* argc */, char ** argv) {
  145. printf("usage: %s [options]\n", argv[0]);
  146. printf("\n");
  147. printf("options:\n");
  148. printf(" -h, --help\n");
  149. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  150. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  151. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  152. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  153. printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
  154. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  155. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  156. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  157. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  158. printf(" -ts, --tensor_split <ts0/ts1/..> \n");
  159. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  160. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  161. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  162. printf("\n");
  163. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  164. }
  165. static cmd_params parse_cmd_params(int argc, char ** argv) {
  166. cmd_params params;
  167. std::string arg;
  168. bool invalid_param = false;
  169. const std::string arg_prefix = "--";
  170. const char split_delim = ',';
  171. params.verbose = cmd_params_defaults.verbose;
  172. params.output_format = cmd_params_defaults.output_format;
  173. params.reps = cmd_params_defaults.reps;
  174. for (int i = 1; i < argc; i++) {
  175. arg = argv[i];
  176. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  177. std::replace(arg.begin(), arg.end(), '_', '-');
  178. }
  179. if (arg == "-h" || arg == "--help") {
  180. print_usage(argc, argv);
  181. exit(0);
  182. } else if (arg == "-m" || arg == "--model") {
  183. if (++i >= argc) {
  184. invalid_param = true;
  185. break;
  186. }
  187. auto p = split<std::string>(argv[i], split_delim);
  188. params.model.insert(params.model.end(), p.begin(), p.end());
  189. } else if (arg == "-p" || arg == "--n-prompt") {
  190. if (++i >= argc) {
  191. invalid_param = true;
  192. break;
  193. }
  194. auto p = split<int>(argv[i], split_delim);
  195. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  196. } else if (arg == "-n" || arg == "--n-gen") {
  197. if (++i >= argc) {
  198. invalid_param = true;
  199. break;
  200. }
  201. auto p = split<int>(argv[i], split_delim);
  202. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  203. } else if (arg == "-b" || arg == "--batch-size") {
  204. if (++i >= argc) {
  205. invalid_param = true;
  206. break;
  207. }
  208. auto p = split<int>(argv[i], split_delim);
  209. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  210. } else if (arg == "--memory-f32") {
  211. if (++i >= argc) {
  212. invalid_param = true;
  213. break;
  214. }
  215. auto p = split<int>(argv[i], split_delim);
  216. params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
  217. } else if (arg == "-t" || arg == "--threads") {
  218. if (++i >= argc) {
  219. invalid_param = true;
  220. break;
  221. }
  222. auto p = split<int>(argv[i], split_delim);
  223. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  224. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  225. if (++i >= argc) {
  226. invalid_param = true;
  227. break;
  228. }
  229. auto p = split<int>(argv[i], split_delim);
  230. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  231. } else if (arg == "-mg" || arg == "--main-gpu") {
  232. if (++i >= argc) {
  233. invalid_param = true;
  234. break;
  235. }
  236. params.main_gpu = split<int>(argv[i], split_delim);
  237. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  238. if (++i >= argc) {
  239. invalid_param = true;
  240. break;
  241. }
  242. auto p = split<bool>(argv[i], split_delim);
  243. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  244. } else if (arg == "-ts" || arg == "--tensor-split") {
  245. if (++i >= argc) {
  246. invalid_param = true;
  247. break;
  248. }
  249. for (auto ts : split<std::string>(argv[i], split_delim)) {
  250. // split string by ; and /
  251. const std::regex regex{R"([;/]+)"};
  252. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  253. std::vector<std::string> split_arg{it, {}};
  254. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  255. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  256. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  257. if (i < split_arg.size()) {
  258. tensor_split[i] = std::stof(split_arg[i]);
  259. } else {
  260. tensor_split[i] = 0.0f;
  261. }
  262. }
  263. params.tensor_split.push_back(tensor_split);
  264. }
  265. } else if (arg == "-r" || arg == "--repetitions") {
  266. if (++i >= argc) {
  267. invalid_param = true;
  268. break;
  269. }
  270. params.reps = std::stoi(argv[i]);
  271. } else if (arg == "-o" || arg == "--output") {
  272. if (++i >= argc) {
  273. invalid_param = true;
  274. break;
  275. }
  276. if (argv[i] == std::string("csv")) {
  277. params.output_format = CSV;
  278. } else if (argv[i] == std::string("json")) {
  279. params.output_format = JSON;
  280. } else if (argv[i] == std::string("md")) {
  281. params.output_format = MARKDOWN;
  282. } else if (argv[i] == std::string("sql")) {
  283. params.output_format = SQL;
  284. } else {
  285. invalid_param = true;
  286. break;
  287. }
  288. } else if (arg == "-v" || arg == "--verbose") {
  289. params.verbose = true;
  290. } else {
  291. invalid_param = true;
  292. break;
  293. }
  294. }
  295. if (invalid_param) {
  296. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  297. print_usage(argc, argv);
  298. exit(1);
  299. }
  300. // set defaults
  301. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  302. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  303. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  304. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  305. if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
  306. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  307. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  308. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  309. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  310. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  311. return params;
  312. }
  313. struct cmd_params_instance {
  314. std::string model;
  315. int n_prompt;
  316. int n_gen;
  317. int n_batch;
  318. bool f32_kv;
  319. int n_threads;
  320. int n_gpu_layers;
  321. int main_gpu;
  322. bool mul_mat_q;
  323. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  324. llama_model_params to_llama_mparams() const {
  325. llama_model_params mparams = llama_model_default_params();
  326. mparams.n_gpu_layers = n_gpu_layers;
  327. mparams.main_gpu = main_gpu;
  328. mparams.tensor_split = tensor_split.data();
  329. return mparams;
  330. }
  331. bool equal_mparams(const cmd_params_instance & other) const {
  332. return model == other.model &&
  333. n_gpu_layers == other.n_gpu_layers &&
  334. main_gpu == other.main_gpu &&
  335. tensor_split == other.tensor_split;
  336. }
  337. llama_context_params to_llama_cparams() const {
  338. llama_context_params cparams = llama_context_default_params();
  339. cparams.n_ctx = n_prompt + n_gen;
  340. cparams.n_batch = n_batch;
  341. cparams.f16_kv = !f32_kv;
  342. cparams.mul_mat_q = mul_mat_q;
  343. return cparams;
  344. }
  345. };
  346. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  347. std::vector<cmd_params_instance> instances;
  348. for (const auto & m : params.model)
  349. for (const auto & nl : params.n_gpu_layers)
  350. for (const auto & mg : params.main_gpu)
  351. for (const auto & ts : params.tensor_split)
  352. for (const auto & nb : params.n_batch)
  353. for (const auto & fk : params.f32_kv)
  354. for (const auto & mmq : params.mul_mat_q)
  355. for (const auto & nt : params.n_threads) {
  356. cmd_params_instance instance = {
  357. /* .model = */ m,
  358. /* .n_prompt = */ n_prompt,
  359. /* .n_gen = */ n_gen,
  360. /* .n_batch = */ nb,
  361. /* .f32_kv = */ fk,
  362. /* .n_threads = */ nt,
  363. /* .n_gpu_layers = */ nl,
  364. /* .main_gpu = */ mg,
  365. /* .mul_mat_q = */ mmq,
  366. /* .tensor_split = */ ts,
  367. };
  368. instances.push_back(instance);
  369. }
  370. return instances;
  371. }
  372. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  373. std::vector<cmd_params_instance> instances;
  374. #if 1
  375. // this ordering minimizes the number of times that each model needs to be reloaded
  376. for (const auto & m : params.model)
  377. for (const auto & nl : params.n_gpu_layers)
  378. for (const auto & mg : params.main_gpu)
  379. for (const auto & ts : params.tensor_split)
  380. for (const auto & nb : params.n_batch)
  381. for (const auto & fk : params.f32_kv)
  382. for (const auto & mmq : params.mul_mat_q)
  383. for (const auto & nt : params.n_threads) {
  384. for (const auto & n_prompt : params.n_prompt) {
  385. if (n_prompt == 0) {
  386. continue;
  387. }
  388. cmd_params_instance instance = {
  389. /* .model = */ m,
  390. /* .n_prompt = */ n_prompt,
  391. /* .n_gen = */ 0,
  392. /* .n_batch = */ nb,
  393. /* .f32_kv = */ fk,
  394. /* .n_threads = */ nt,
  395. /* .n_gpu_layers = */ nl,
  396. /* .main_gpu = */ mg,
  397. /* .mul_mat_q = */ mmq,
  398. /* .tensor_split = */ ts,
  399. };
  400. instances.push_back(instance);
  401. }
  402. for (const auto & n_gen : params.n_gen) {
  403. if (n_gen == 0) {
  404. continue;
  405. }
  406. cmd_params_instance instance = {
  407. /* .model = */ m,
  408. /* .n_prompt = */ 0,
  409. /* .n_gen = */ n_gen,
  410. /* .n_batch = */ nb,
  411. /* .f32_kv = */ fk,
  412. /* .n_threads = */ nt,
  413. /* .n_gpu_layers = */ nl,
  414. /* .main_gpu = */ mg,
  415. /* .mul_mat_q = */ mmq,
  416. /* .tensor_split = */ ts,
  417. };
  418. instances.push_back(instance);
  419. }
  420. }
  421. #else
  422. // this ordering separates the prompt and generation tests
  423. for (const auto & n_prompt : params.n_prompt) {
  424. if (n_prompt == 0) {
  425. continue;
  426. }
  427. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  428. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  429. }
  430. for (const auto & n_gen : params.n_gen) {
  431. if (n_gen == 0) {
  432. continue;
  433. }
  434. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  435. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  436. }
  437. #endif
  438. return instances;
  439. }
  440. struct test {
  441. static const std::string build_commit;
  442. static const int build_number;
  443. static const bool cuda;
  444. static const bool opencl;
  445. static const bool metal;
  446. static const bool gpu_blas;
  447. static const bool blas;
  448. static const std::string cpu_info;
  449. static const std::string gpu_info;
  450. std::string model_filename;
  451. std::string model_type;
  452. uint64_t model_size;
  453. uint64_t model_n_params;
  454. int n_batch;
  455. int n_threads;
  456. bool f32_kv;
  457. int n_gpu_layers;
  458. int main_gpu;
  459. bool mul_mat_q;
  460. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  461. int n_prompt;
  462. int n_gen;
  463. std::string test_time;
  464. std::vector<uint64_t> samples_ns;
  465. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  466. model_filename = inst.model;
  467. char buf[128];
  468. llama_model_desc(lmodel, buf, sizeof(buf));
  469. model_type = buf;
  470. model_size = llama_model_size(lmodel);
  471. model_n_params = llama_model_n_params(lmodel);
  472. n_batch = inst.n_batch;
  473. n_threads = inst.n_threads;
  474. f32_kv = inst.f32_kv;
  475. n_gpu_layers = inst.n_gpu_layers;
  476. main_gpu = inst.main_gpu;
  477. mul_mat_q = inst.mul_mat_q;
  478. tensor_split = inst.tensor_split;
  479. n_prompt = inst.n_prompt;
  480. n_gen = inst.n_gen;
  481. // RFC 3339 date-time format
  482. time_t t = time(NULL);
  483. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  484. test_time = buf;
  485. (void) ctx;
  486. }
  487. uint64_t avg_ns() const {
  488. return ::avg(samples_ns);
  489. }
  490. uint64_t stdev_ns() const {
  491. return ::stdev(samples_ns);
  492. }
  493. std::vector<double> get_ts() const {
  494. int n_tokens = n_prompt + n_gen;
  495. std::vector<double> ts;
  496. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  497. return ts;
  498. }
  499. double avg_ts() const {
  500. return ::avg(get_ts());
  501. }
  502. double stdev_ts() const {
  503. return ::stdev(get_ts());
  504. }
  505. static std::string get_backend() {
  506. if (cuda) {
  507. return GGML_CUDA_NAME;
  508. }
  509. if (opencl) {
  510. return "OpenCL";
  511. }
  512. if (metal) {
  513. return "Metal";
  514. }
  515. if (gpu_blas) {
  516. return "GPU BLAS";
  517. }
  518. if (blas) {
  519. return "BLAS";
  520. }
  521. return "CPU";
  522. }
  523. static const std::vector<std::string> & get_fields() {
  524. static const std::vector<std::string> fields = {
  525. "build_commit", "build_number",
  526. "cuda", "opencl", "metal", "gpu_blas", "blas",
  527. "cpu_info", "gpu_info",
  528. "model_filename", "model_type", "model_size", "model_n_params",
  529. "n_batch", "n_threads", "f16_kv",
  530. "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
  531. "n_prompt", "n_gen", "test_time",
  532. "avg_ns", "stddev_ns",
  533. "avg_ts", "stddev_ts"
  534. };
  535. return fields;
  536. }
  537. enum field_type {STRING, BOOL, INT, FLOAT};
  538. static field_type get_field_type(const std::string & field) {
  539. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  540. field == "model_size" || field == "model_n_params" ||
  541. field == "n_gpu_layers" || field == "main_gpu" ||
  542. field == "n_prompt" || field == "n_gen" ||
  543. field == "avg_ns" || field == "stddev_ns") {
  544. return INT;
  545. }
  546. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  547. field == "f16_kv" || field == "mul_mat_q") {
  548. return BOOL;
  549. }
  550. if (field == "avg_ts" || field == "stddev_ts") {
  551. return FLOAT;
  552. }
  553. return STRING;
  554. }
  555. std::vector<std::string> get_values() const {
  556. std::string tensor_split_str;
  557. int max_nonzero = 0;
  558. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  559. if (tensor_split[i] > 0) {
  560. max_nonzero = i;
  561. }
  562. }
  563. for (int i = 0; i <= max_nonzero; i++) {
  564. char buf[32];
  565. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  566. tensor_split_str += buf;
  567. if (i < max_nonzero) {
  568. tensor_split_str += "/";
  569. }
  570. }
  571. std::vector<std::string> values = {
  572. build_commit, std::to_string(build_number),
  573. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  574. cpu_info, gpu_info,
  575. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  576. std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
  577. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
  578. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  579. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  580. std::to_string(avg_ts()), std::to_string(stdev_ts())
  581. };
  582. return values;
  583. }
  584. std::map<std::string, std::string> get_map() const {
  585. std::map<std::string, std::string> map;
  586. auto fields = get_fields();
  587. auto values = get_values();
  588. std::transform(fields.begin(), fields.end(), values.begin(),
  589. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  590. return map;
  591. }
  592. };
  593. const std::string test::build_commit = LLAMA_COMMIT;
  594. const int test::build_number = LLAMA_BUILD_NUMBER;
  595. const bool test::cuda = !!ggml_cpu_has_cublas();
  596. const bool test::opencl = !!ggml_cpu_has_clblast();
  597. const bool test::metal = !!ggml_cpu_has_metal();
  598. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  599. const bool test::blas = !!ggml_cpu_has_blas();
  600. const std::string test::cpu_info = get_cpu_info();
  601. const std::string test::gpu_info = get_gpu_info();
  602. struct printer {
  603. virtual ~printer() {}
  604. FILE * fout;
  605. virtual void print_header(const cmd_params & params) { (void) params; }
  606. virtual void print_test(const test & t) = 0;
  607. virtual void print_footer() { }
  608. };
  609. struct csv_printer : public printer {
  610. static std::string escape_csv(const std::string & field) {
  611. std::string escaped = "\"";
  612. for (auto c : field) {
  613. if (c == '"') {
  614. escaped += "\"";
  615. }
  616. escaped += c;
  617. }
  618. escaped += "\"";
  619. return escaped;
  620. }
  621. void print_header(const cmd_params & params) override {
  622. std::vector<std::string> fields = test::get_fields();
  623. fprintf(fout, "%s\n", join(fields, ",").c_str());
  624. (void) params;
  625. }
  626. void print_test(const test & t) override {
  627. std::vector<std::string> values = t.get_values();
  628. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  629. fprintf(fout, "%s\n", join(values, ",").c_str());
  630. }
  631. };
  632. struct json_printer : public printer {
  633. bool first = true;
  634. static std::string escape_json(const std::string & value) {
  635. std::string escaped;
  636. for (auto c : value) {
  637. if (c == '"') {
  638. escaped += "\\\"";
  639. } else if (c == '\\') {
  640. escaped += "\\\\";
  641. } else if (c <= 0x1f) {
  642. char buf[8];
  643. snprintf(buf, sizeof(buf), "\\u%04x", c);
  644. escaped += buf;
  645. } else {
  646. escaped += c;
  647. }
  648. }
  649. return escaped;
  650. }
  651. static std::string format_value(const std::string & field, const std::string & value) {
  652. switch (test::get_field_type(field)) {
  653. case test::STRING:
  654. return "\"" + escape_json(value) + "\"";
  655. case test::BOOL:
  656. return value == "0" ? "false" : "true";
  657. default:
  658. return value;
  659. }
  660. }
  661. void print_header(const cmd_params & params) override {
  662. fprintf(fout, "[\n");
  663. (void) params;
  664. }
  665. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  666. assert(fields.size() == values.size());
  667. for (size_t i = 0; i < fields.size(); i++) {
  668. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  669. }
  670. }
  671. void print_test(const test & t) override {
  672. if (first) {
  673. first = false;
  674. } else {
  675. fprintf(fout, ",\n");
  676. }
  677. fprintf(fout, " {\n");
  678. print_fields(test::get_fields(), t.get_values());
  679. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  680. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  681. fprintf(fout, " }");
  682. fflush(fout);
  683. }
  684. void print_footer() override {
  685. fprintf(fout, "\n]\n");
  686. }
  687. };
  688. struct markdown_printer : public printer {
  689. std::vector<std::string> fields;
  690. static int get_field_width(const std::string & field) {
  691. if (field == "model") {
  692. return -30;
  693. }
  694. if (field == "t/s") {
  695. return 16;
  696. }
  697. if (field == "size" || field == "params") {
  698. return 10;
  699. }
  700. if (field == "n_gpu_layers") {
  701. return 3;
  702. }
  703. int width = std::max((int)field.length(), 10);
  704. if (test::get_field_type(field) == test::STRING) {
  705. return -width;
  706. }
  707. return width;
  708. }
  709. static std::string get_field_display_name(const std::string & field) {
  710. if (field == "n_gpu_layers") {
  711. return "ngl";
  712. }
  713. if (field == "n_threads") {
  714. return "threads";
  715. }
  716. if (field == "mul_mat_q") {
  717. return "mmq";
  718. }
  719. if (field == "tensor_split") {
  720. return "ts";
  721. }
  722. return field;
  723. }
  724. void print_header(const cmd_params & params) override {
  725. // select fields to print
  726. fields.push_back("model");
  727. fields.push_back("size");
  728. fields.push_back("params");
  729. fields.push_back("backend");
  730. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  731. if (!is_cpu_backend) {
  732. fields.push_back("n_gpu_layers");
  733. }
  734. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  735. fields.push_back("n_threads");
  736. }
  737. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  738. fields.push_back("n_batch");
  739. }
  740. if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
  741. fields.push_back("f16_kv");
  742. }
  743. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  744. fields.push_back("main_gpu");
  745. }
  746. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  747. fields.push_back("mul_mat_q");
  748. }
  749. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  750. fields.push_back("tensor_split");
  751. }
  752. fields.push_back("test");
  753. fields.push_back("t/s");
  754. fprintf(fout, "|");
  755. for (const auto & field : fields) {
  756. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  757. }
  758. fprintf(fout, "\n");
  759. fprintf(fout, "|");
  760. for (const auto & field : fields) {
  761. int width = get_field_width(field);
  762. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  763. }
  764. fprintf(fout, "\n");
  765. }
  766. void print_test(const test & t) override {
  767. std::map<std::string, std::string> vmap = t.get_map();
  768. fprintf(fout, "|");
  769. for (const auto & field : fields) {
  770. std::string value;
  771. char buf[128];
  772. if (field == "model") {
  773. value = t.model_type;
  774. } else if (field == "size") {
  775. if (t.model_size < 1024*1024*1024) {
  776. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  777. } else {
  778. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  779. }
  780. value = buf;
  781. } else if (field == "params") {
  782. if (t.model_n_params < 1000*1000*1000) {
  783. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  784. } else {
  785. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  786. }
  787. value = buf;
  788. } else if (field == "backend") {
  789. value = test::get_backend();
  790. } else if (field == "test") {
  791. if (t.n_prompt > 0 && t.n_gen == 0) {
  792. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  793. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  794. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  795. } else {
  796. assert(false);
  797. exit(1);
  798. }
  799. value = buf;
  800. } else if (field == "t/s") {
  801. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  802. value = buf;
  803. } else if (vmap.find(field) != vmap.end()) {
  804. value = vmap.at(field);
  805. } else {
  806. assert(false);
  807. exit(1);
  808. }
  809. int width = get_field_width(field);
  810. if (field == "t/s") {
  811. // HACK: the utf-8 character is 2 bytes
  812. width += 1;
  813. }
  814. fprintf(fout, " %*s |", width, value.c_str());
  815. }
  816. fprintf(fout, "\n");
  817. }
  818. void print_footer() override {
  819. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  820. }
  821. };
  822. struct sql_printer : public printer {
  823. static std::string get_sql_field_type(const std::string & field) {
  824. switch (test::get_field_type(field)) {
  825. case test::STRING:
  826. return "TEXT";
  827. case test::BOOL:
  828. case test::INT:
  829. return "INTEGER";
  830. case test::FLOAT:
  831. return "REAL";
  832. default:
  833. assert(false);
  834. exit(1);
  835. }
  836. }
  837. void print_header(const cmd_params & params) override {
  838. std::vector<std::string> fields = test::get_fields();
  839. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  840. for (size_t i = 0; i < fields.size(); i++) {
  841. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  842. }
  843. fprintf(fout, ");\n");
  844. fprintf(fout, "\n");
  845. (void) params;
  846. }
  847. void print_test(const test & t) override {
  848. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  849. fprintf(fout, "VALUES (");
  850. std::vector<std::string> values = t.get_values();
  851. for (size_t i = 0; i < values.size(); i++) {
  852. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  853. }
  854. fprintf(fout, ");\n");
  855. }
  856. };
  857. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  858. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  859. int n_processed = 0;
  860. llama_set_n_threads(ctx, n_threads, n_threads);
  861. while (n_processed < n_prompt) {
  862. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  863. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  864. n_processed += n_tokens;
  865. }
  866. }
  867. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  868. llama_token token = llama_token_bos(llama_get_model(ctx));
  869. llama_set_n_threads(ctx, n_threads, n_threads);
  870. for (int i = 0; i < n_gen; i++) {
  871. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  872. }
  873. }
  874. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  875. (void) level;
  876. (void) text;
  877. (void) user_data;
  878. }
  879. int main(int argc, char ** argv) {
  880. // try to set locale for unicode characters in markdown
  881. setlocale(LC_CTYPE, ".UTF-8");
  882. #if !defined(NDEBUG)
  883. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  884. #endif
  885. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  886. fprintf(stderr, "warning: debug build, performance may be affected\n");
  887. #endif
  888. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  889. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  890. #endif
  891. cmd_params params = parse_cmd_params(argc, argv);
  892. // initialize llama.cpp
  893. if (!params.verbose) {
  894. llama_log_set(llama_null_log_callback, NULL);
  895. }
  896. bool numa = false;
  897. llama_backend_init(numa);
  898. // initialize printer
  899. std::unique_ptr<printer> p;
  900. switch (params.output_format) {
  901. case CSV:
  902. p.reset(new csv_printer());
  903. break;
  904. case JSON:
  905. p.reset(new json_printer());
  906. break;
  907. case MARKDOWN:
  908. p.reset(new markdown_printer());
  909. break;
  910. case SQL:
  911. p.reset(new sql_printer());
  912. break;
  913. default:
  914. assert(false);
  915. exit(1);
  916. }
  917. p->fout = stdout;
  918. p->print_header(params);
  919. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  920. llama_model * lmodel = nullptr;
  921. const cmd_params_instance * prev_inst = nullptr;
  922. for (const auto & inst : params_instances) {
  923. // keep the same model between tests when possible
  924. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  925. if (lmodel) {
  926. llama_free_model(lmodel);
  927. }
  928. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  929. if (lmodel == NULL) {
  930. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  931. return 1;
  932. }
  933. prev_inst = &inst;
  934. }
  935. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  936. if (ctx == NULL) {
  937. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  938. llama_free_model(lmodel);
  939. return 1;
  940. }
  941. test t(inst, lmodel, ctx);
  942. llama_kv_cache_clear(ctx);
  943. // warmup run
  944. if (t.n_prompt > 0) {
  945. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  946. }
  947. if (t.n_gen > 0) {
  948. test_gen(ctx, 1, 0, t.n_threads);
  949. }
  950. for (int i = 0; i < params.reps; i++) {
  951. llama_kv_cache_clear(ctx);
  952. uint64_t t_start = get_time_ns();
  953. if (t.n_prompt > 0) {
  954. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  955. }
  956. if (t.n_gen > 0) {
  957. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  958. }
  959. uint64_t t_ns = get_time_ns() - t_start;
  960. t.samples_ns.push_back(t_ns);
  961. }
  962. p->print_test(t);
  963. llama_print_timings(ctx);
  964. llama_free(ctx);
  965. }
  966. llama_free_model(lmodel);
  967. p->print_footer();
  968. llama_backend_free();
  969. return 0;
  970. }