ggml.c 616 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. //
  198. // tensor access macros
  199. //
  200. #define GGML_TENSOR_UNARY_OP_LOCALS \
  201. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  202. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  205. #define GGML_TENSOR_BINARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  208. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  209. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  210. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  211. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  212. #if defined(GGML_USE_ACCELERATE)
  213. #include <Accelerate/Accelerate.h>
  214. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  215. #include "ggml-opencl.h"
  216. #endif
  217. #elif defined(GGML_USE_OPENBLAS)
  218. #if defined(GGML_BLAS_USE_MKL)
  219. #include <mkl.h>
  220. #else
  221. #include <cblas.h>
  222. #endif
  223. #elif defined(GGML_USE_CUBLAS)
  224. #include "ggml-cuda.h"
  225. #elif defined(GGML_USE_CLBLAST)
  226. #include "ggml-opencl.h"
  227. #endif
  228. // floating point type used to accumulate sums
  229. typedef double ggml_float;
  230. #undef MIN
  231. #undef MAX
  232. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  233. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  234. //
  235. // global data
  236. //
  237. // precomputed gelu table for f16 (128 KB)
  238. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  239. // precomputed quick gelu table for f16 (128 KB)
  240. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  246. float ggml_table_f32_f16[1 << 16];
  247. // note: do not use these inside ggml.c
  248. // these are meant to be used via the ggml.h API
  249. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  250. return (float) GGML_FP16_TO_FP32(x);
  251. }
  252. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  253. return GGML_FP32_TO_FP16(x);
  254. }
  255. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  256. for (int i = 0; i < n; i++) {
  257. y[i] = GGML_FP16_TO_FP32(x[i]);
  258. }
  259. }
  260. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  261. int i = 0;
  262. #if defined(__F16C__)
  263. for (; i + 7 < n; i += 8) {
  264. __m256 x_vec = _mm256_loadu_ps(x + i);
  265. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  266. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  267. }
  268. for(; i + 3 < n; i += 4) {
  269. __m128 x_vec = _mm_loadu_ps(x + i);
  270. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  271. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  272. }
  273. #endif
  274. for (; i < n; i++) {
  275. y[i] = GGML_FP32_TO_FP16(x[i]);
  276. }
  277. }
  278. //
  279. // timing
  280. //
  281. #if defined(_MSC_VER) || defined(__MINGW32__)
  282. static int64_t timer_freq, timer_start;
  283. void ggml_time_init(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceFrequency(&t);
  286. timer_freq = t.QuadPart;
  287. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  288. // and the uptime is high enough.
  289. // We subtract the program start time to reduce the likelihood of that happening.
  290. QueryPerformanceCounter(&t);
  291. timer_start = t.QuadPart;
  292. }
  293. int64_t ggml_time_ms(void) {
  294. LARGE_INTEGER t;
  295. QueryPerformanceCounter(&t);
  296. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  297. }
  298. int64_t ggml_time_us(void) {
  299. LARGE_INTEGER t;
  300. QueryPerformanceCounter(&t);
  301. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  302. }
  303. #else
  304. void ggml_time_init(void) {}
  305. int64_t ggml_time_ms(void) {
  306. struct timespec ts;
  307. clock_gettime(CLOCK_MONOTONIC, &ts);
  308. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  309. }
  310. int64_t ggml_time_us(void) {
  311. struct timespec ts;
  312. clock_gettime(CLOCK_MONOTONIC, &ts);
  313. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  314. }
  315. #endif
  316. int64_t ggml_cycles(void) {
  317. return clock();
  318. }
  319. int64_t ggml_cycles_per_ms(void) {
  320. return CLOCKS_PER_SEC/1000;
  321. }
  322. #ifdef GGML_PERF
  323. #define ggml_perf_time_ms() ggml_time_ms()
  324. #define ggml_perf_time_us() ggml_time_us()
  325. #define ggml_perf_cycles() ggml_cycles()
  326. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  327. #else
  328. #define ggml_perf_time_ms() 0
  329. #define ggml_perf_time_us() 0
  330. #define ggml_perf_cycles() 0
  331. #define ggml_perf_cycles_per_ms() 0
  332. #endif
  333. //
  334. // cache line
  335. //
  336. #if defined(__cpp_lib_hardware_interference_size)
  337. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  338. #else
  339. #if defined(__POWER9_VECTOR__)
  340. #define CACHE_LINE_SIZE 128
  341. #else
  342. #define CACHE_LINE_SIZE 64
  343. #endif
  344. #endif
  345. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  346. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  347. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  348. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  349. [GGML_TYPE_I8] = {
  350. .type_name = "i8",
  351. .blck_size = 1,
  352. .type_size = sizeof(int8_t),
  353. .is_quantized = false,
  354. },
  355. [GGML_TYPE_I16] = {
  356. .type_name = "i16",
  357. .blck_size = 1,
  358. .type_size = sizeof(int16_t),
  359. .is_quantized = false,
  360. },
  361. [GGML_TYPE_I32] = {
  362. .type_name = "i32",
  363. .blck_size = 1,
  364. .type_size = sizeof(int32_t),
  365. .is_quantized = false,
  366. },
  367. [GGML_TYPE_F32] = {
  368. .type_name = "f32",
  369. .blck_size = 1,
  370. .type_size = sizeof(float),
  371. .is_quantized = false,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  373. .vec_dot_type = GGML_TYPE_F32,
  374. },
  375. [GGML_TYPE_F16] = {
  376. .type_name = "f16",
  377. .blck_size = 1,
  378. .type_size = sizeof(ggml_fp16_t),
  379. .is_quantized = false,
  380. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  381. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  382. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  383. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  384. .vec_dot_type = GGML_TYPE_F16,
  385. },
  386. [GGML_TYPE_Q4_0] = {
  387. .type_name = "q4_0",
  388. .blck_size = QK4_0,
  389. .type_size = sizeof(block_q4_0),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  392. .from_float = quantize_row_q4_0,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  394. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  395. .vec_dot_type = GGML_TYPE_Q8_0,
  396. },
  397. [GGML_TYPE_Q4_1] = {
  398. .type_name = "q4_1",
  399. .blck_size = QK4_1,
  400. .type_size = sizeof(block_q4_1),
  401. .is_quantized = true,
  402. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  403. .from_float = quantize_row_q4_1,
  404. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  405. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  406. .vec_dot_type = GGML_TYPE_Q8_1,
  407. },
  408. [4] = { // GGML_TYPE_Q4_2
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [5] = { // GGML_TYPE_Q4_3
  420. .type_name = "DEPRECATED",
  421. .blck_size = 0,
  422. .type_size = 0,
  423. .is_quantized = false,
  424. .to_float = NULL,
  425. .from_float = NULL,
  426. .from_float_reference = NULL,
  427. .vec_dot = NULL,
  428. .vec_dot_type = GGML_TYPE_COUNT,
  429. },
  430. [GGML_TYPE_Q5_0] = {
  431. .type_name = "q5_0",
  432. .blck_size = QK5_0,
  433. .type_size = sizeof(block_q5_0),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  436. .from_float = quantize_row_q5_0,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  438. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  439. .vec_dot_type = GGML_TYPE_Q8_0,
  440. },
  441. [GGML_TYPE_Q5_1] = {
  442. .type_name = "q5_1",
  443. .blck_size = QK5_1,
  444. .type_size = sizeof(block_q5_1),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  447. .from_float = quantize_row_q5_1,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  449. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  450. .vec_dot_type = GGML_TYPE_Q8_1,
  451. },
  452. [GGML_TYPE_Q8_0] = {
  453. .type_name = "q8_0",
  454. .blck_size = QK8_0,
  455. .type_size = sizeof(block_q8_0),
  456. .is_quantized = true,
  457. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  458. .from_float = quantize_row_q8_0,
  459. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  460. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  461. .vec_dot_type = GGML_TYPE_Q8_0,
  462. },
  463. [GGML_TYPE_Q8_1] = {
  464. .type_name = "q8_1",
  465. .blck_size = QK8_1,
  466. .type_size = sizeof(block_q8_1),
  467. .is_quantized = true,
  468. .from_float = quantize_row_q8_1,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  470. .vec_dot_type = GGML_TYPE_Q8_1,
  471. },
  472. [GGML_TYPE_Q2_K] = {
  473. .type_name = "q2_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q2_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  478. .from_float = quantize_row_q2_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  480. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q3_K] = {
  484. .type_name = "q3_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q3_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  489. .from_float = quantize_row_q3_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  491. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q4_K] = {
  495. .type_name = "q4_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q4_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  500. .from_float = quantize_row_q4_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  502. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q5_K] = {
  506. .type_name = "q5_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q5_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  511. .from_float = quantize_row_q5_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  513. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_Q6_K] = {
  517. .type_name = "q6_K",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_q6_K),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  522. .from_float = quantize_row_q6_K,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  524. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_Q8_K] = {
  528. .type_name = "q8_K",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_q8_K),
  531. .is_quantized = true,
  532. .from_float = quantize_row_q8_K,
  533. }
  534. };
  535. // For internal test use
  536. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  537. GGML_ASSERT(type < GGML_TYPE_COUNT);
  538. return type_traits[type];
  539. }
  540. //
  541. // simd mappings
  542. //
  543. #if defined(__ARM_NEON)
  544. #if !defined(__aarch64__)
  545. // 64-bit compatibility
  546. inline static float vaddvq_f32(float32x4_t v) {
  547. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  548. }
  549. #endif
  550. #endif
  551. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  552. // we then implement the fundamental computation operations below using only these macros
  553. // adding support for new architectures requires to define the corresponding SIMD macros
  554. //
  555. // GGML_F32_STEP / GGML_F16_STEP
  556. // number of elements to process in a single step
  557. //
  558. // GGML_F32_EPR / GGML_F16_EPR
  559. // number of elements to fit in a single register
  560. //
  561. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  562. #define GGML_SIMD
  563. // F32 NEON
  564. #define GGML_F32_STEP 16
  565. #define GGML_F32_EPR 4
  566. #define GGML_F32x4 float32x4_t
  567. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  568. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  569. #define GGML_F32x4_LOAD vld1q_f32
  570. #define GGML_F32x4_STORE vst1q_f32
  571. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  572. #define GGML_F32x4_ADD vaddq_f32
  573. #define GGML_F32x4_MUL vmulq_f32
  574. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  575. #define GGML_F32x4_REDUCE(res, x) \
  576. { \
  577. int offset = GGML_F32_ARR >> 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = vaddq_f32(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = vaddq_f32(x[i], x[offset+i]); \
  584. } \
  585. offset >>= 1; \
  586. for (int i = 0; i < offset; ++i) { \
  587. x[i] = vaddq_f32(x[i], x[offset+i]); \
  588. } \
  589. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  590. }
  591. #define GGML_F32_VEC GGML_F32x4
  592. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  593. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  594. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  595. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  596. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  597. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  598. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  599. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  600. // F16 NEON
  601. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  602. #define GGML_F16_STEP 32
  603. #define GGML_F16_EPR 8
  604. #define GGML_F16x8 float16x8_t
  605. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  606. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  607. #define GGML_F16x8_LOAD vld1q_f16
  608. #define GGML_F16x8_STORE vst1q_f16
  609. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  610. #define GGML_F16x8_ADD vaddq_f16
  611. #define GGML_F16x8_MUL vmulq_f16
  612. #define GGML_F16x8_REDUCE(res, x) \
  613. do { \
  614. int offset = GGML_F16_ARR >> 1; \
  615. for (int i = 0; i < offset; ++i) { \
  616. x[i] = vaddq_f16(x[i], x[offset+i]); \
  617. } \
  618. offset >>= 1; \
  619. for (int i = 0; i < offset; ++i) { \
  620. x[i] = vaddq_f16(x[i], x[offset+i]); \
  621. } \
  622. offset >>= 1; \
  623. for (int i = 0; i < offset; ++i) { \
  624. x[i] = vaddq_f16(x[i], x[offset+i]); \
  625. } \
  626. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  627. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  628. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  629. } while (0)
  630. #define GGML_F16_VEC GGML_F16x8
  631. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  632. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  633. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  634. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  635. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  636. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  637. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  638. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  639. #else
  640. // if FP16 vector arithmetic is not supported, we use FP32 instead
  641. // and take advantage of the vcvt_ functions to convert to/from FP16
  642. #define GGML_F16_STEP 16
  643. #define GGML_F16_EPR 4
  644. #define GGML_F32Cx4 float32x4_t
  645. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  646. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  647. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  648. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  649. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  650. #define GGML_F32Cx4_ADD vaddq_f32
  651. #define GGML_F32Cx4_MUL vmulq_f32
  652. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  653. #define GGML_F16_VEC GGML_F32Cx4
  654. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  655. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  656. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  657. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  658. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  659. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  660. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  661. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  662. #endif
  663. #elif defined(__AVX__)
  664. #define GGML_SIMD
  665. // F32 AVX
  666. #define GGML_F32_STEP 32
  667. #define GGML_F32_EPR 8
  668. #define GGML_F32x8 __m256
  669. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  670. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  671. #define GGML_F32x8_LOAD _mm256_loadu_ps
  672. #define GGML_F32x8_STORE _mm256_storeu_ps
  673. #if defined(__FMA__)
  674. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  675. #else
  676. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  677. #endif
  678. #define GGML_F32x8_ADD _mm256_add_ps
  679. #define GGML_F32x8_MUL _mm256_mul_ps
  680. #define GGML_F32x8_REDUCE(res, x) \
  681. do { \
  682. int offset = GGML_F32_ARR >> 1; \
  683. for (int i = 0; i < offset; ++i) { \
  684. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  685. } \
  686. offset >>= 1; \
  687. for (int i = 0; i < offset; ++i) { \
  688. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  689. } \
  690. offset >>= 1; \
  691. for (int i = 0; i < offset; ++i) { \
  692. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  693. } \
  694. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  695. _mm256_extractf128_ps(x[0], 1)); \
  696. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  697. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  698. } while (0)
  699. // TODO: is this optimal ?
  700. #define GGML_F32_VEC GGML_F32x8
  701. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  702. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  703. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  704. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  705. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  706. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  707. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  708. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  709. // F16 AVX
  710. #define GGML_F16_STEP 32
  711. #define GGML_F16_EPR 8
  712. // F16 arithmetic is not supported by AVX, so we use F32 instead
  713. #define GGML_F32Cx8 __m256
  714. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  715. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  716. #if defined(__F16C__)
  717. // the _mm256_cvt intrinsics require F16C
  718. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  719. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  720. #else
  721. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  722. float tmp[8];
  723. for (int i = 0; i < 8; i++) {
  724. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  725. }
  726. return _mm256_loadu_ps(tmp);
  727. }
  728. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  729. float arr[8];
  730. _mm256_storeu_ps(arr, y);
  731. for (int i = 0; i < 8; i++)
  732. x[i] = GGML_FP32_TO_FP16(arr[i]);
  733. }
  734. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  735. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  736. #endif
  737. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  738. #define GGML_F32Cx8_ADD _mm256_add_ps
  739. #define GGML_F32Cx8_MUL _mm256_mul_ps
  740. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  741. #define GGML_F16_VEC GGML_F32Cx8
  742. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  743. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  744. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  745. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  746. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  747. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  748. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  749. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  750. #elif defined(__POWER9_VECTOR__)
  751. #define GGML_SIMD
  752. // F32 POWER9
  753. #define GGML_F32_STEP 32
  754. #define GGML_F32_EPR 4
  755. #define GGML_F32x4 vector float
  756. #define GGML_F32x4_ZERO 0.0f
  757. #define GGML_F32x4_SET1 vec_splats
  758. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  759. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  760. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  761. #define GGML_F32x4_ADD vec_add
  762. #define GGML_F32x4_MUL vec_mul
  763. #define GGML_F32x4_REDUCE(res, x) \
  764. { \
  765. int offset = GGML_F32_ARR >> 1; \
  766. for (int i = 0; i < offset; ++i) { \
  767. x[i] = vec_add(x[i], x[offset+i]); \
  768. } \
  769. offset >>= 1; \
  770. for (int i = 0; i < offset; ++i) { \
  771. x[i] = vec_add(x[i], x[offset+i]); \
  772. } \
  773. offset >>= 1; \
  774. for (int i = 0; i < offset; ++i) { \
  775. x[i] = vec_add(x[i], x[offset+i]); \
  776. } \
  777. res = vec_extract(x[0], 0) + \
  778. vec_extract(x[0], 1) + \
  779. vec_extract(x[0], 2) + \
  780. vec_extract(x[0], 3); \
  781. }
  782. #define GGML_F32_VEC GGML_F32x4
  783. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  784. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  785. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  786. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  787. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  788. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  789. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  790. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  791. // F16 POWER9
  792. #define GGML_F16_STEP GGML_F32_STEP
  793. #define GGML_F16_EPR GGML_F32_EPR
  794. #define GGML_F16_VEC GGML_F32x4
  795. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  796. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  797. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  799. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  800. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  801. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  802. vec_extract_fp32_from_shortl(vec_xl(0, p))
  803. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  804. #define GGML_F16_VEC_STORE(p, r, i) \
  805. if (i & 0x1) \
  806. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  807. r[i - GGML_ENDIAN_BYTE(0)]), \
  808. 0, p - GGML_F16_EPR)
  809. #elif defined(__wasm_simd128__)
  810. #define GGML_SIMD
  811. // F32 WASM
  812. #define GGML_F32_STEP 16
  813. #define GGML_F32_EPR 4
  814. #define GGML_F32x4 v128_t
  815. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  816. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  817. #define GGML_F32x4_LOAD wasm_v128_load
  818. #define GGML_F32x4_STORE wasm_v128_store
  819. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  820. #define GGML_F32x4_ADD wasm_f32x4_add
  821. #define GGML_F32x4_MUL wasm_f32x4_mul
  822. #define GGML_F32x4_REDUCE(res, x) \
  823. { \
  824. int offset = GGML_F32_ARR >> 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  827. } \
  828. offset >>= 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  831. } \
  832. offset >>= 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  835. } \
  836. res = wasm_f32x4_extract_lane(x[0], 0) + \
  837. wasm_f32x4_extract_lane(x[0], 1) + \
  838. wasm_f32x4_extract_lane(x[0], 2) + \
  839. wasm_f32x4_extract_lane(x[0], 3); \
  840. }
  841. #define GGML_F32_VEC GGML_F32x4
  842. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  843. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  844. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  845. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  846. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  847. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  848. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  849. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  850. // F16 WASM
  851. #define GGML_F16_STEP 16
  852. #define GGML_F16_EPR 4
  853. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  854. float tmp[4];
  855. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  856. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  857. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  858. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  859. return wasm_v128_load(tmp);
  860. }
  861. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  862. float tmp[4];
  863. wasm_v128_store(tmp, x);
  864. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  865. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  866. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  867. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  868. }
  869. #define GGML_F16x4 v128_t
  870. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  871. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  872. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  873. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  874. #define GGML_F16x4_FMA GGML_F32x4_FMA
  875. #define GGML_F16x4_ADD wasm_f32x4_add
  876. #define GGML_F16x4_MUL wasm_f32x4_mul
  877. #define GGML_F16x4_REDUCE(res, x) \
  878. { \
  879. int offset = GGML_F16_ARR >> 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. offset >>= 1; \
  888. for (int i = 0; i < offset; ++i) { \
  889. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  890. } \
  891. res = wasm_f32x4_extract_lane(x[0], 0) + \
  892. wasm_f32x4_extract_lane(x[0], 1) + \
  893. wasm_f32x4_extract_lane(x[0], 2) + \
  894. wasm_f32x4_extract_lane(x[0], 3); \
  895. }
  896. #define GGML_F16_VEC GGML_F16x4
  897. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  898. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  899. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  900. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  901. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  902. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  903. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  904. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  905. #elif defined(__SSE3__)
  906. #define GGML_SIMD
  907. // F32 SSE
  908. #define GGML_F32_STEP 32
  909. #define GGML_F32_EPR 4
  910. #define GGML_F32x4 __m128
  911. #define GGML_F32x4_ZERO _mm_setzero_ps()
  912. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  913. #define GGML_F32x4_LOAD _mm_loadu_ps
  914. #define GGML_F32x4_STORE _mm_storeu_ps
  915. #if defined(__FMA__)
  916. // TODO: Does this work?
  917. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  918. #else
  919. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  920. #endif
  921. #define GGML_F32x4_ADD _mm_add_ps
  922. #define GGML_F32x4_MUL _mm_mul_ps
  923. #define GGML_F32x4_REDUCE(res, x) \
  924. { \
  925. int offset = GGML_F32_ARR >> 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  928. } \
  929. offset >>= 1; \
  930. for (int i = 0; i < offset; ++i) { \
  931. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  932. } \
  933. offset >>= 1; \
  934. for (int i = 0; i < offset; ++i) { \
  935. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  936. } \
  937. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  938. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  939. }
  940. // TODO: is this optimal ?
  941. #define GGML_F32_VEC GGML_F32x4
  942. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  943. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  944. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  945. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  946. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  947. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  948. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  949. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  950. // F16 SSE
  951. #define GGML_F16_STEP 32
  952. #define GGML_F16_EPR 4
  953. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  954. float tmp[4];
  955. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  956. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  957. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  958. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  959. return _mm_loadu_ps(tmp);
  960. }
  961. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  962. float arr[4];
  963. _mm_storeu_ps(arr, y);
  964. x[0] = GGML_FP32_TO_FP16(arr[0]);
  965. x[1] = GGML_FP32_TO_FP16(arr[1]);
  966. x[2] = GGML_FP32_TO_FP16(arr[2]);
  967. x[3] = GGML_FP32_TO_FP16(arr[3]);
  968. }
  969. #define GGML_F32Cx4 __m128
  970. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  971. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  972. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  973. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  974. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  975. #define GGML_F32Cx4_ADD _mm_add_ps
  976. #define GGML_F32Cx4_MUL _mm_mul_ps
  977. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  978. #define GGML_F16_VEC GGML_F32Cx4
  979. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  980. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  981. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  982. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  983. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  984. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  985. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  986. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  987. #endif
  988. // GGML_F32_ARR / GGML_F16_ARR
  989. // number of registers to use per step
  990. #ifdef GGML_SIMD
  991. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  992. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  993. #endif
  994. //
  995. // fundamental operations
  996. //
  997. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  998. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  999. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1000. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1001. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1002. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1003. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1004. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1005. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1006. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1008. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1009. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1010. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1011. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1012. #ifdef GGML_SIMD
  1013. float sumf = 0.0f;
  1014. const int np = (n & ~(GGML_F32_STEP - 1));
  1015. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1016. GGML_F32_VEC ax[GGML_F32_ARR];
  1017. GGML_F32_VEC ay[GGML_F32_ARR];
  1018. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1019. for (int j = 0; j < GGML_F32_ARR; j++) {
  1020. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1021. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1022. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1023. }
  1024. }
  1025. // reduce sum0..sum3 to sum0
  1026. GGML_F32_VEC_REDUCE(sumf, sum);
  1027. // leftovers
  1028. for (int i = np; i < n; ++i) {
  1029. sumf += x[i]*y[i];
  1030. }
  1031. #else
  1032. // scalar
  1033. ggml_float sumf = 0.0;
  1034. for (int i = 0; i < n; ++i) {
  1035. sumf += (ggml_float)(x[i]*y[i]);
  1036. }
  1037. #endif
  1038. *s = sumf;
  1039. }
  1040. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1041. ggml_float sumf = 0.0;
  1042. #if defined(GGML_SIMD)
  1043. const int np = (n & ~(GGML_F16_STEP - 1));
  1044. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1045. GGML_F16_VEC ax[GGML_F16_ARR];
  1046. GGML_F16_VEC ay[GGML_F16_ARR];
  1047. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1048. for (int j = 0; j < GGML_F16_ARR; j++) {
  1049. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1050. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1051. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1052. }
  1053. }
  1054. // reduce sum0..sum3 to sum0
  1055. GGML_F16_VEC_REDUCE(sumf, sum);
  1056. // leftovers
  1057. for (int i = np; i < n; ++i) {
  1058. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1059. }
  1060. #else
  1061. for (int i = 0; i < n; ++i) {
  1062. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1063. }
  1064. #endif
  1065. *s = sumf;
  1066. }
  1067. // compute GGML_VEC_DOT_UNROLL dot products at once
  1068. // xs - x row stride in bytes
  1069. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1070. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1071. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1072. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1073. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1074. }
  1075. #if defined(GGML_SIMD)
  1076. const int np = (n & ~(GGML_F16_STEP - 1));
  1077. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1078. GGML_F16_VEC ax[GGML_F16_ARR];
  1079. GGML_F16_VEC ay[GGML_F16_ARR];
  1080. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1081. for (int j = 0; j < GGML_F16_ARR; j++) {
  1082. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1083. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1084. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1085. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1086. }
  1087. }
  1088. }
  1089. // reduce sum0..sum3 to sum0
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1092. }
  1093. // leftovers
  1094. for (int i = np; i < n; ++i) {
  1095. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1096. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1097. }
  1098. }
  1099. #else
  1100. for (int i = 0; i < n; ++i) {
  1101. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1102. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1103. }
  1104. }
  1105. #endif
  1106. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1107. s[i] = sumf[i];
  1108. }
  1109. }
  1110. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1111. #if defined(GGML_SIMD)
  1112. const int np = (n & ~(GGML_F32_STEP - 1));
  1113. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1114. GGML_F32_VEC ax[GGML_F32_ARR];
  1115. GGML_F32_VEC ay[GGML_F32_ARR];
  1116. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1117. for (int j = 0; j < GGML_F32_ARR; j++) {
  1118. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1119. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1120. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1121. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1122. }
  1123. }
  1124. // leftovers
  1125. for (int i = np; i < n; ++i) {
  1126. y[i] += x[i]*v;
  1127. }
  1128. #else
  1129. // scalar
  1130. for (int i = 0; i < n; ++i) {
  1131. y[i] += x[i]*v;
  1132. }
  1133. #endif
  1134. }
  1135. // xs and vs are byte strides of x and v
  1136. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1137. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1138. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1139. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1140. x[i] = (const float *) ((const char *) xv + i*xs);
  1141. v[i] = (const float *) ((const char *) vv + i*vs);
  1142. }
  1143. #if defined(GGML_SIMD)
  1144. const int np = (n & ~(GGML_F32_STEP - 1));
  1145. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1146. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1147. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1148. }
  1149. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1150. GGML_F32_VEC ay[GGML_F32_ARR];
  1151. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1152. for (int j = 0; j < GGML_F32_ARR; j++) {
  1153. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1156. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1157. }
  1158. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1159. }
  1160. }
  1161. // leftovers
  1162. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1163. for (int i = np; i < n; ++i) {
  1164. y[i] += x[k][i]*v[k][0];
  1165. }
  1166. }
  1167. #else
  1168. // scalar
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = 0; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #endif
  1175. }
  1176. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1177. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1178. #if defined(GGML_USE_ACCELERATE)
  1179. vDSP_vsmul(y, 1, &v, y, 1, n);
  1180. #elif defined(GGML_SIMD)
  1181. const int np = (n & ~(GGML_F32_STEP - 1));
  1182. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1183. GGML_F32_VEC ay[GGML_F32_ARR];
  1184. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1185. for (int j = 0; j < GGML_F32_ARR; j++) {
  1186. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1187. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1188. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1189. }
  1190. }
  1191. // leftovers
  1192. for (int i = np; i < n; ++i) {
  1193. y[i] *= v;
  1194. }
  1195. #else
  1196. // scalar
  1197. for (int i = 0; i < n; ++i) {
  1198. y[i] *= v;
  1199. }
  1200. #endif
  1201. }
  1202. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1203. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1204. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1205. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1206. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1207. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1208. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1209. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1210. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1211. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1212. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1213. static const float GELU_COEF_A = 0.044715f;
  1214. static const float GELU_QUICK_COEF = -1.702f;
  1215. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1216. inline static float ggml_gelu_f32(float x) {
  1217. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1218. }
  1219. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1220. const uint16_t * i16 = (const uint16_t *) x;
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_table_gelu_f16[i16[i]];
  1223. }
  1224. }
  1225. #ifdef GGML_GELU_FP16
  1226. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1227. uint16_t t;
  1228. for (int i = 0; i < n; ++i) {
  1229. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1230. memcpy(&t, &fp16, sizeof(uint16_t));
  1231. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1232. }
  1233. }
  1234. #else
  1235. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1236. for (int i = 0; i < n; ++i) {
  1237. y[i] = ggml_gelu_f32(x[i]);
  1238. }
  1239. }
  1240. #endif
  1241. inline static float ggml_gelu_quick_f32(float x) {
  1242. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1243. }
  1244. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1245. // const uint16_t * i16 = (const uint16_t *) x;
  1246. // for (int i = 0; i < n; ++i) {
  1247. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1248. // }
  1249. //}
  1250. #ifdef GGML_GELU_QUICK_FP16
  1251. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1252. uint16_t t;
  1253. for (int i = 0; i < n; ++i) {
  1254. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1255. memcpy(&t, &fp16, sizeof(uint16_t));
  1256. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1257. }
  1258. }
  1259. #else
  1260. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] = ggml_gelu_quick_f32(x[i]);
  1263. }
  1264. }
  1265. #endif
  1266. // Sigmoid Linear Unit (SiLU) function
  1267. inline static float ggml_silu_f32(float x) {
  1268. return x/(1.0f + expf(-x));
  1269. }
  1270. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1271. // const uint16_t * i16 = (const uint16_t *) x;
  1272. // for (int i = 0; i < n; ++i) {
  1273. // y[i] = ggml_table_silu_f16[i16[i]];
  1274. // }
  1275. //}
  1276. #ifdef GGML_SILU_FP16
  1277. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1278. uint16_t t;
  1279. for (int i = 0; i < n; ++i) {
  1280. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1281. memcpy(&t, &fp16, sizeof(uint16_t));
  1282. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1283. }
  1284. }
  1285. #else
  1286. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1287. for (int i = 0; i < n; ++i) {
  1288. y[i] = ggml_silu_f32(x[i]);
  1289. }
  1290. }
  1291. #endif
  1292. inline static float ggml_silu_backward_f32(float x, float dy) {
  1293. const float s = 1.0f/(1.0f + expf(-x));
  1294. return dy*s*(1.0f + x*(1.0f - s));
  1295. }
  1296. #ifdef GGML_SILU_FP16
  1297. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1298. for (int i = 0; i < n; ++i) {
  1299. // we did not use x[i] to compute forward silu but its f16 equivalent
  1300. // take derivative at f16 of x[i]:
  1301. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1302. float usedx = GGML_FP16_TO_FP32(fp16);
  1303. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1304. }
  1305. }
  1306. #else
  1307. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1308. for (int i = 0; i < n; ++i) {
  1309. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1310. }
  1311. }
  1312. #endif
  1313. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1314. #ifndef GGML_USE_ACCELERATE
  1315. ggml_float sum = 0.0;
  1316. for (int i = 0; i < n; ++i) {
  1317. sum += (ggml_float)x[i];
  1318. }
  1319. *s = sum;
  1320. #else
  1321. vDSP_sve(x, 1, s, n);
  1322. #endif
  1323. }
  1324. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1325. ggml_float sum = 0.0;
  1326. for (int i = 0; i < n; ++i) {
  1327. sum += (ggml_float)x[i];
  1328. }
  1329. *s = sum;
  1330. }
  1331. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1332. float sum = 0.0f;
  1333. for (int i = 0; i < n; ++i) {
  1334. sum += GGML_FP16_TO_FP32(x[i]);
  1335. }
  1336. *s = sum;
  1337. }
  1338. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1339. #ifndef GGML_USE_ACCELERATE
  1340. float max = -INFINITY;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. }
  1344. *s = max;
  1345. #else
  1346. vDSP_maxv(x, 1, s, n);
  1347. #endif
  1348. }
  1349. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1350. ggml_vec_norm_f32(n, s, x);
  1351. *s = 1.f/(*s);
  1352. }
  1353. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1354. float max = -INFINITY;
  1355. int idx = 0;
  1356. for (int i = 0; i < n; ++i) {
  1357. max = MAX(max, x[i]);
  1358. if (max == x[i]) { idx = i; }
  1359. }
  1360. *s = idx;
  1361. }
  1362. //
  1363. // data types
  1364. //
  1365. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1366. "NONE",
  1367. "DUP",
  1368. "ADD",
  1369. "ADD1",
  1370. "ACC",
  1371. "SUB",
  1372. "MUL",
  1373. "DIV",
  1374. "SQR",
  1375. "SQRT",
  1376. "LOG",
  1377. "SUM",
  1378. "SUM_ROWS",
  1379. "MEAN",
  1380. "ARGMAX",
  1381. "REPEAT",
  1382. "REPEAT_BACK",
  1383. "CONCAT",
  1384. "SILU_BACK",
  1385. "NORM",
  1386. "RMS_NORM",
  1387. "RMS_NORM_BACK",
  1388. "GROUP_NORM",
  1389. "MUL_MAT",
  1390. "OUT_PROD",
  1391. "SCALE",
  1392. "SET",
  1393. "CPY",
  1394. "CONT",
  1395. "RESHAPE",
  1396. "VIEW",
  1397. "PERMUTE",
  1398. "TRANSPOSE",
  1399. "GET_ROWS",
  1400. "GET_ROWS_BACK",
  1401. "DIAG",
  1402. "DIAG_MASK_INF",
  1403. "DIAG_MASK_ZERO",
  1404. "SOFT_MAX",
  1405. "SOFT_MAX_BACK",
  1406. "ROPE",
  1407. "ROPE_BACK",
  1408. "ALIBI",
  1409. "CLAMP",
  1410. "CONV_TRANSPOSE_1D",
  1411. "IM2COL",
  1412. "CONV_TRANSPOSE_2D",
  1413. "POOL_1D",
  1414. "POOL_2D",
  1415. "UPSCALE",
  1416. "FLASH_ATTN",
  1417. "FLASH_FF",
  1418. "FLASH_ATTN_BACK",
  1419. "WIN_PART",
  1420. "WIN_UNPART",
  1421. "GET_REL_POS",
  1422. "ADD_REL_POS",
  1423. "UNARY",
  1424. "MAP_UNARY",
  1425. "MAP_BINARY",
  1426. "MAP_CUSTOM1_F32",
  1427. "MAP_CUSTOM2_F32",
  1428. "MAP_CUSTOM3_F32",
  1429. "MAP_CUSTOM1",
  1430. "MAP_CUSTOM2",
  1431. "MAP_CUSTOM3",
  1432. "CROSS_ENTROPY_LOSS",
  1433. "CROSS_ENTROPY_LOSS_BACK",
  1434. };
  1435. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1436. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1437. "none",
  1438. "x",
  1439. "x+y",
  1440. "x+y",
  1441. "view(x,nb,offset)+=y->x",
  1442. "x-y",
  1443. "x*y",
  1444. "x/y",
  1445. "x^2",
  1446. "√x",
  1447. "log(x)",
  1448. "Σx",
  1449. "Σx_k",
  1450. "Σx/n",
  1451. "argmax(x)",
  1452. "repeat(x)",
  1453. "repeat_back(x)",
  1454. "concat(x, y)",
  1455. "silu_back(x)",
  1456. "norm(x)",
  1457. "rms_norm(x)",
  1458. "rms_norm_back(x)",
  1459. "group_norm(x)",
  1460. "X*Y",
  1461. "X*Y",
  1462. "x*v",
  1463. "y-\\>view(x)",
  1464. "x-\\>y",
  1465. "cont(x)",
  1466. "reshape(x)",
  1467. "view(x)",
  1468. "permute(x)",
  1469. "transpose(x)",
  1470. "get_rows(x)",
  1471. "get_rows_back(x)",
  1472. "diag(x)",
  1473. "diag_mask_inf(x)",
  1474. "diag_mask_zero(x)",
  1475. "soft_max(x)",
  1476. "soft_max_back(x)",
  1477. "rope(x)",
  1478. "rope_back(x)",
  1479. "alibi(x)",
  1480. "clamp(x)",
  1481. "conv_transpose_1d(x)",
  1482. "im2col(x)",
  1483. "conv_transpose_2d(x)",
  1484. "pool_1d(x)",
  1485. "pool_2d(x)",
  1486. "upscale(x)",
  1487. "flash_attn(x)",
  1488. "flash_ff(x)",
  1489. "flash_attn_back(x)",
  1490. "win_part(x)",
  1491. "win_unpart(x)",
  1492. "get_rel_pos(x)",
  1493. "add_rel_pos(x)",
  1494. "unary(x)",
  1495. "f(x)",
  1496. "f(x,y)",
  1497. "custom_f32(x)",
  1498. "custom_f32(x,y)",
  1499. "custom_f32(x,y,z)",
  1500. "custom(x)",
  1501. "custom(x,y)",
  1502. "custom(x,y,z)",
  1503. "cross_entropy_loss(x,y)",
  1504. "cross_entropy_loss_back(x,y)",
  1505. };
  1506. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1507. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1508. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1509. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1510. // WARN:
  1511. // Mis-confguration can lead to problem that's hard to reason about:
  1512. // * At best it crash or talks nosense.
  1513. // * At worst it talks slightly difference but hard to perceive.
  1514. //
  1515. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1516. // Take care about compile options (e.g., GGML_USE_xxx).
  1517. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1518. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1519. static void ggml_setup_op_has_task_pass(void) {
  1520. { // INIT
  1521. bool * p = GGML_OP_HAS_INIT;
  1522. p[GGML_OP_ACC ] = true;
  1523. p[GGML_OP_MUL_MAT ] = true;
  1524. p[GGML_OP_OUT_PROD ] = true;
  1525. p[GGML_OP_SET ] = true;
  1526. p[GGML_OP_GET_ROWS_BACK ] = true;
  1527. p[GGML_OP_DIAG_MASK_INF ] = true;
  1528. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1529. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1530. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1531. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1532. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1533. p[GGML_OP_ADD_REL_POS ] = true;
  1534. }
  1535. { // FINALIZE
  1536. bool * p = GGML_OP_HAS_FINALIZE;
  1537. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1538. }
  1539. }
  1540. //
  1541. // ggml context
  1542. //
  1543. struct ggml_context {
  1544. size_t mem_size;
  1545. void * mem_buffer;
  1546. bool mem_buffer_owned;
  1547. bool no_alloc;
  1548. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1549. int n_objects;
  1550. struct ggml_object * objects_begin;
  1551. struct ggml_object * objects_end;
  1552. struct ggml_scratch scratch;
  1553. struct ggml_scratch scratch_save;
  1554. };
  1555. struct ggml_context_container {
  1556. bool used;
  1557. struct ggml_context context;
  1558. };
  1559. //
  1560. // NUMA support
  1561. //
  1562. #define GGML_NUMA_MAX_NODES 8
  1563. #define GGML_NUMA_MAX_CPUS 512
  1564. struct ggml_numa_node {
  1565. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1566. uint32_t n_cpus;
  1567. };
  1568. struct ggml_numa_nodes {
  1569. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1570. uint32_t n_nodes;
  1571. uint32_t total_cpus; // hardware threads on system
  1572. };
  1573. //
  1574. // ggml state
  1575. //
  1576. struct ggml_state {
  1577. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1578. struct ggml_numa_nodes numa;
  1579. };
  1580. // global state
  1581. static struct ggml_state g_state;
  1582. static atomic_int g_state_barrier = 0;
  1583. // barrier via spin lock
  1584. inline static void ggml_critical_section_start(void) {
  1585. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1586. while (processing > 0) {
  1587. // wait for other threads to finish
  1588. atomic_fetch_sub(&g_state_barrier, 1);
  1589. sched_yield(); // TODO: reconsider this
  1590. processing = atomic_fetch_add(&g_state_barrier, 1);
  1591. }
  1592. }
  1593. // TODO: make this somehow automatically executed
  1594. // some sort of "sentry" mechanism
  1595. inline static void ggml_critical_section_end(void) {
  1596. atomic_fetch_sub(&g_state_barrier, 1);
  1597. }
  1598. void ggml_numa_init(void) {
  1599. if (g_state.numa.n_nodes > 0) {
  1600. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1601. return;
  1602. }
  1603. #ifdef __linux__
  1604. struct stat st;
  1605. char path[256];
  1606. int rv;
  1607. // enumerate nodes
  1608. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1609. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1610. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1611. if (stat(path, &st) != 0) { break; }
  1612. ++g_state.numa.n_nodes;
  1613. }
  1614. // enumerate CPUs
  1615. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.total_cpus;
  1620. }
  1621. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1622. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1623. g_state.numa.n_nodes = 0;
  1624. return;
  1625. }
  1626. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1627. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1628. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1629. node->n_cpus = 0;
  1630. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1631. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1632. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1633. if (stat(path, &st) == 0) {
  1634. node->cpus[node->n_cpus++] = c;
  1635. GGML_PRINT_DEBUG(" %u", c);
  1636. }
  1637. }
  1638. GGML_PRINT_DEBUG("\n");
  1639. }
  1640. if (ggml_is_numa()) {
  1641. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1642. if (fptr != NULL) {
  1643. char buf[42];
  1644. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1645. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1646. }
  1647. fclose(fptr);
  1648. }
  1649. }
  1650. #else
  1651. // TODO
  1652. #endif
  1653. }
  1654. bool ggml_is_numa(void) {
  1655. return g_state.numa.n_nodes > 1;
  1656. }
  1657. ////////////////////////////////////////////////////////////////////////////////
  1658. void ggml_print_object(const struct ggml_object * obj) {
  1659. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1660. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1661. }
  1662. void ggml_print_objects(const struct ggml_context * ctx) {
  1663. struct ggml_object * obj = ctx->objects_begin;
  1664. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1665. while (obj != NULL) {
  1666. ggml_print_object(obj);
  1667. obj = obj->next;
  1668. }
  1669. GGML_PRINT("%s: --- end ---\n", __func__);
  1670. }
  1671. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1672. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1673. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1674. }
  1675. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1680. size_t nbytes;
  1681. size_t blck_size = ggml_blck_size(tensor->type);
  1682. if (blck_size == 1) {
  1683. nbytes = ggml_type_size(tensor->type);
  1684. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1685. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1686. }
  1687. }
  1688. else {
  1689. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1690. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1691. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1692. }
  1693. }
  1694. return nbytes;
  1695. }
  1696. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1697. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1698. }
  1699. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1701. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1702. }
  1703. int ggml_blck_size(enum ggml_type type) {
  1704. return type_traits[type].blck_size;
  1705. }
  1706. size_t ggml_type_size(enum ggml_type type) {
  1707. return type_traits[type].type_size;
  1708. }
  1709. float ggml_type_sizef(enum ggml_type type) {
  1710. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1711. }
  1712. const char * ggml_type_name(enum ggml_type type) {
  1713. return type_traits[type].type_name;
  1714. }
  1715. bool ggml_is_quantized(enum ggml_type type) {
  1716. return type_traits[type].is_quantized;
  1717. }
  1718. const char * ggml_op_name(enum ggml_op op) {
  1719. return GGML_OP_NAME[op];
  1720. }
  1721. const char * ggml_op_symbol(enum ggml_op op) {
  1722. return GGML_OP_SYMBOL[op];
  1723. }
  1724. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1725. return ggml_type_size(tensor->type);
  1726. }
  1727. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1729. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1730. }
  1731. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1732. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1733. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1734. }
  1735. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1737. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1738. }
  1739. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1740. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1741. return (t0->ne[0] == t1->ne[0]) &&
  1742. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1743. (t1->ne[3]%t0->ne[3] == 0);
  1744. }
  1745. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1747. return (t0->ne[1] == t1->ne[1]) &&
  1748. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1749. (t1->ne[3]%t0->ne[3] == 0);
  1750. }
  1751. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1752. enum ggml_type wtype = GGML_TYPE_COUNT;
  1753. switch (ftype) {
  1754. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1755. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1756. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1757. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1758. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1759. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1760. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1761. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1762. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1763. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1764. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1765. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1766. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1767. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1768. }
  1769. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1770. return wtype;
  1771. }
  1772. size_t ggml_tensor_overhead(void) {
  1773. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1774. }
  1775. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1776. return tensor->nb[0] > tensor->nb[1];
  1777. }
  1778. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1779. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1780. return
  1781. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1782. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1783. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1784. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1785. }
  1786. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1788. return
  1789. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1792. }
  1793. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1795. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1796. }
  1797. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return
  1800. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1801. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1802. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1803. }
  1804. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1806. return
  1807. (t0->ne[0] == t1->ne[0] ) &&
  1808. (t0->ne[1] == t1->ne[1] ) &&
  1809. (t0->ne[2] == t1->ne[2] ) &&
  1810. (t0->ne[3] == t1->ne[3] );
  1811. }
  1812. // check if t1 can be represented as a repeatition of t0
  1813. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1815. return
  1816. (t1->ne[0]%t0->ne[0] == 0) &&
  1817. (t1->ne[1]%t0->ne[1] == 0) &&
  1818. (t1->ne[2]%t0->ne[2] == 0) &&
  1819. (t1->ne[3]%t0->ne[3] == 0);
  1820. }
  1821. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1824. }
  1825. static inline int ggml_up32(int n) {
  1826. return (n + 31) & ~31;
  1827. }
  1828. //static inline int ggml_up64(int n) {
  1829. // return (n + 63) & ~63;
  1830. //}
  1831. static inline int ggml_up(int n, int m) {
  1832. // assert m is a power of 2
  1833. GGML_ASSERT((m & (m - 1)) == 0);
  1834. return (n + m - 1) & ~(m - 1);
  1835. }
  1836. // assert that pointer is aligned to GGML_MEM_ALIGN
  1837. #define ggml_assert_aligned(ptr) \
  1838. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1839. ////////////////////////////////////////////////////////////////////////////////
  1840. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1841. // make this function thread safe
  1842. ggml_critical_section_start();
  1843. static bool is_first_call = true;
  1844. if (is_first_call) {
  1845. // initialize time system (required on Windows)
  1846. ggml_time_init();
  1847. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1848. {
  1849. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1850. ggml_fp16_t ii;
  1851. for (int i = 0; i < (1 << 16); ++i) {
  1852. uint16_t ui = i;
  1853. memcpy(&ii, &ui, sizeof(ii));
  1854. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1855. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1856. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1857. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1858. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1859. }
  1860. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1861. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1862. }
  1863. // initialize g_state
  1864. {
  1865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1866. g_state = (struct ggml_state) {
  1867. /*.contexts =*/ { { 0 } },
  1868. /*.numa =*/ {
  1869. .n_nodes = 0,
  1870. .total_cpus = 0,
  1871. },
  1872. };
  1873. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1874. g_state.contexts[i].used = false;
  1875. }
  1876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1877. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1878. }
  1879. #if defined(GGML_USE_CUBLAS)
  1880. ggml_init_cublas();
  1881. #elif defined(GGML_USE_CLBLAST)
  1882. ggml_cl_init();
  1883. #endif
  1884. ggml_setup_op_has_task_pass();
  1885. is_first_call = false;
  1886. }
  1887. // find non-used context in g_state
  1888. struct ggml_context * ctx = NULL;
  1889. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1890. if (!g_state.contexts[i].used) {
  1891. g_state.contexts[i].used = true;
  1892. ctx = &g_state.contexts[i].context;
  1893. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1894. break;
  1895. }
  1896. }
  1897. if (ctx == NULL) {
  1898. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1899. ggml_critical_section_end();
  1900. return NULL;
  1901. }
  1902. // allow to call ggml_init with 0 size
  1903. if (params.mem_size == 0) {
  1904. params.mem_size = GGML_MEM_ALIGN;
  1905. }
  1906. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1907. *ctx = (struct ggml_context) {
  1908. /*.mem_size =*/ mem_size,
  1909. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1910. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1911. /*.no_alloc =*/ params.no_alloc,
  1912. /*.no_alloc_save =*/ params.no_alloc,
  1913. /*.n_objects =*/ 0,
  1914. /*.objects_begin =*/ NULL,
  1915. /*.objects_end =*/ NULL,
  1916. /*.scratch =*/ { 0, 0, NULL, },
  1917. /*.scratch_save =*/ { 0, 0, NULL, },
  1918. };
  1919. GGML_ASSERT(ctx->mem_buffer != NULL);
  1920. ggml_assert_aligned(ctx->mem_buffer);
  1921. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1922. ggml_critical_section_end();
  1923. return ctx;
  1924. }
  1925. void ggml_free(struct ggml_context * ctx) {
  1926. // make this function thread safe
  1927. ggml_critical_section_start();
  1928. bool found = false;
  1929. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1930. if (&g_state.contexts[i].context == ctx) {
  1931. g_state.contexts[i].used = false;
  1932. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1933. __func__, i, ggml_used_mem(ctx));
  1934. if (ctx->mem_buffer_owned) {
  1935. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1936. }
  1937. found = true;
  1938. break;
  1939. }
  1940. }
  1941. if (!found) {
  1942. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1943. }
  1944. ggml_critical_section_end();
  1945. }
  1946. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1947. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1948. }
  1949. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1950. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1951. ctx->scratch = scratch;
  1952. return result;
  1953. }
  1954. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1955. return ctx->no_alloc;
  1956. }
  1957. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1958. ctx->no_alloc = no_alloc;
  1959. }
  1960. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1961. return ctx->mem_buffer;
  1962. }
  1963. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1964. return ctx->mem_size;
  1965. }
  1966. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1967. size_t max_size = 0;
  1968. struct ggml_object * obj = ctx->objects_begin;
  1969. while (obj != NULL) {
  1970. if (obj->type == GGML_OBJECT_TENSOR) {
  1971. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1972. const size_t size = ggml_nbytes(tensor);
  1973. if (max_size < size) {
  1974. max_size = size;
  1975. }
  1976. }
  1977. obj = obj->next;
  1978. }
  1979. return max_size;
  1980. }
  1981. // IMPORTANT:
  1982. // when creating "opt" tensors, always save and load the scratch buffer
  1983. // this is an error prone process, but it is necessary to support inplace
  1984. // operators when using scratch buffers
  1985. // TODO: implement a better way
  1986. static void ggml_scratch_save(struct ggml_context * ctx) {
  1987. // this is needed to allow opt tensors to store their data
  1988. // TODO: again, need to find a better way
  1989. ctx->no_alloc_save = ctx->no_alloc;
  1990. ctx->no_alloc = false;
  1991. ctx->scratch_save = ctx->scratch;
  1992. ctx->scratch.data = NULL;
  1993. }
  1994. static void ggml_scratch_load(struct ggml_context * ctx) {
  1995. ctx->no_alloc = ctx->no_alloc_save;
  1996. ctx->scratch = ctx->scratch_save;
  1997. }
  1998. ////////////////////////////////////////////////////////////////////////////////
  1999. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2000. // always insert objects at the end of the context's memory pool
  2001. struct ggml_object * obj_cur = ctx->objects_end;
  2002. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2003. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2004. const size_t cur_end = cur_offs + cur_size;
  2005. // align to GGML_MEM_ALIGN
  2006. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2007. char * const mem_buffer = ctx->mem_buffer;
  2008. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2009. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2010. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2011. __func__, cur_end + size_needed, ctx->mem_size);
  2012. assert(false);
  2013. return NULL;
  2014. }
  2015. *obj_new = (struct ggml_object) {
  2016. .offs = cur_end + GGML_OBJECT_SIZE,
  2017. .size = size_needed,
  2018. .next = NULL,
  2019. .type = type,
  2020. };
  2021. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2022. if (obj_cur != NULL) {
  2023. obj_cur->next = obj_new;
  2024. } else {
  2025. // this is the first object in this context
  2026. ctx->objects_begin = obj_new;
  2027. }
  2028. ctx->objects_end = obj_new;
  2029. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2030. return obj_new;
  2031. }
  2032. static struct ggml_tensor * ggml_new_tensor_impl(
  2033. struct ggml_context * ctx,
  2034. enum ggml_type type,
  2035. int n_dims,
  2036. const int64_t * ne,
  2037. struct ggml_tensor * view_src,
  2038. size_t view_offs) {
  2039. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2040. // find the base tensor and absolute offset
  2041. if (view_src != NULL && view_src->view_src != NULL) {
  2042. view_offs += view_src->view_offs;
  2043. view_src = view_src->view_src;
  2044. }
  2045. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2046. for (int i = 1; i < n_dims; i++) {
  2047. data_size *= ne[i];
  2048. }
  2049. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2050. void * data = view_src != NULL ? view_src->data : NULL;
  2051. if (data != NULL) {
  2052. data = (char *) data + view_offs;
  2053. }
  2054. size_t obj_alloc_size = 0;
  2055. if (view_src == NULL && !ctx->no_alloc) {
  2056. if (ctx->scratch.data != NULL) {
  2057. // allocate tensor data in the scratch buffer
  2058. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2059. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2060. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2061. assert(false);
  2062. return NULL;
  2063. }
  2064. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2065. ctx->scratch.offs += data_size;
  2066. } else {
  2067. // allocate tensor data in the context's memory pool
  2068. obj_alloc_size = data_size;
  2069. }
  2070. }
  2071. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2072. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2073. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2074. *result = (struct ggml_tensor) {
  2075. /*.type =*/ type,
  2076. /*.backend =*/ GGML_BACKEND_CPU,
  2077. /*.buffer =*/ NULL,
  2078. /*.n_dims =*/ n_dims,
  2079. /*.ne =*/ { 1, 1, 1, 1 },
  2080. /*.nb =*/ { 0, 0, 0, 0 },
  2081. /*.op =*/ GGML_OP_NONE,
  2082. /*.op_params =*/ { 0 },
  2083. /*.is_param =*/ false,
  2084. /*.grad =*/ NULL,
  2085. /*.src =*/ { NULL },
  2086. /*.perf_runs =*/ 0,
  2087. /*.perf_cycles =*/ 0,
  2088. /*.perf_time_us =*/ 0,
  2089. /*.view_src =*/ view_src,
  2090. /*.view_offs =*/ view_offs,
  2091. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2092. /*.name =*/ { 0 },
  2093. /*.extra =*/ NULL,
  2094. /*.padding =*/ { 0 },
  2095. };
  2096. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2097. //ggml_assert_aligned(result->data);
  2098. for (int i = 0; i < n_dims; i++) {
  2099. result->ne[i] = ne[i];
  2100. }
  2101. result->nb[0] = ggml_type_size(type);
  2102. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2103. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2104. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2105. }
  2106. ctx->n_objects++;
  2107. return result;
  2108. }
  2109. struct ggml_tensor * ggml_new_tensor(
  2110. struct ggml_context * ctx,
  2111. enum ggml_type type,
  2112. int n_dims,
  2113. const int64_t * ne) {
  2114. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2115. }
  2116. struct ggml_tensor * ggml_new_tensor_1d(
  2117. struct ggml_context * ctx,
  2118. enum ggml_type type,
  2119. int64_t ne0) {
  2120. return ggml_new_tensor(ctx, type, 1, &ne0);
  2121. }
  2122. struct ggml_tensor * ggml_new_tensor_2d(
  2123. struct ggml_context * ctx,
  2124. enum ggml_type type,
  2125. int64_t ne0,
  2126. int64_t ne1) {
  2127. const int64_t ne[2] = { ne0, ne1 };
  2128. return ggml_new_tensor(ctx, type, 2, ne);
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor_3d(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int64_t ne0,
  2134. int64_t ne1,
  2135. int64_t ne2) {
  2136. const int64_t ne[3] = { ne0, ne1, ne2 };
  2137. return ggml_new_tensor(ctx, type, 3, ne);
  2138. }
  2139. struct ggml_tensor * ggml_new_tensor_4d(
  2140. struct ggml_context * ctx,
  2141. enum ggml_type type,
  2142. int64_t ne0,
  2143. int64_t ne1,
  2144. int64_t ne2,
  2145. int64_t ne3) {
  2146. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2147. return ggml_new_tensor(ctx, type, 4, ne);
  2148. }
  2149. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2150. ggml_scratch_save(ctx);
  2151. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2152. ggml_scratch_load(ctx);
  2153. ggml_set_i32(result, value);
  2154. return result;
  2155. }
  2156. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2157. ggml_scratch_save(ctx);
  2158. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2159. ggml_scratch_load(ctx);
  2160. ggml_set_f32(result, value);
  2161. return result;
  2162. }
  2163. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2164. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2165. }
  2166. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2167. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2168. assert(params_size <= GGML_MAX_OP_PARAMS);
  2169. memcpy(tensor->op_params, params, params_size);
  2170. }
  2171. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2172. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2173. return ((const int32_t *)(tensor->op_params))[i];
  2174. }
  2175. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2176. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2177. ((int32_t *)(tensor->op_params))[i] = value;
  2178. }
  2179. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2180. memset(tensor->data, 0, ggml_nbytes(tensor));
  2181. return tensor;
  2182. }
  2183. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2184. const int n = ggml_nrows(tensor);
  2185. const int nc = tensor->ne[0];
  2186. const size_t n1 = tensor->nb[1];
  2187. char * const data = tensor->data;
  2188. switch (tensor->type) {
  2189. case GGML_TYPE_I8:
  2190. {
  2191. assert(tensor->nb[0] == sizeof(int8_t));
  2192. for (int i = 0; i < n; i++) {
  2193. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2194. }
  2195. } break;
  2196. case GGML_TYPE_I16:
  2197. {
  2198. assert(tensor->nb[0] == sizeof(int16_t));
  2199. for (int i = 0; i < n; i++) {
  2200. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2201. }
  2202. } break;
  2203. case GGML_TYPE_I32:
  2204. {
  2205. assert(tensor->nb[0] == sizeof(int32_t));
  2206. for (int i = 0; i < n; i++) {
  2207. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2208. }
  2209. } break;
  2210. case GGML_TYPE_F16:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2215. }
  2216. } break;
  2217. case GGML_TYPE_F32:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(float));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. default:
  2225. {
  2226. GGML_ASSERT(false);
  2227. } break;
  2228. }
  2229. return tensor;
  2230. }
  2231. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2232. const int n = ggml_nrows(tensor);
  2233. const int nc = tensor->ne[0];
  2234. const size_t n1 = tensor->nb[1];
  2235. char * const data = tensor->data;
  2236. switch (tensor->type) {
  2237. case GGML_TYPE_I8:
  2238. {
  2239. assert(tensor->nb[0] == sizeof(int8_t));
  2240. for (int i = 0; i < n; i++) {
  2241. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2242. }
  2243. } break;
  2244. case GGML_TYPE_I16:
  2245. {
  2246. assert(tensor->nb[0] == sizeof(int16_t));
  2247. for (int i = 0; i < n; i++) {
  2248. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2249. }
  2250. } break;
  2251. case GGML_TYPE_I32:
  2252. {
  2253. assert(tensor->nb[0] == sizeof(int32_t));
  2254. for (int i = 0; i < n; i++) {
  2255. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2256. }
  2257. } break;
  2258. case GGML_TYPE_F16:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2263. }
  2264. } break;
  2265. case GGML_TYPE_F32:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(float));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. default:
  2273. {
  2274. GGML_ASSERT(false);
  2275. } break;
  2276. }
  2277. return tensor;
  2278. }
  2279. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2280. const int64_t ne2 = tensor->ne[2];
  2281. const int64_t ne1 = tensor->ne[1];
  2282. const int64_t ne0 = tensor->ne[0];
  2283. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2284. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2285. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2286. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2287. if (i0) {
  2288. * i0 = i0_;
  2289. }
  2290. if (i1) {
  2291. * i1 = i1_;
  2292. }
  2293. if (i2) {
  2294. * i2 = i2_;
  2295. }
  2296. if (i3) {
  2297. * i3 = i3_;
  2298. }
  2299. }
  2300. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2301. if (!ggml_is_contiguous(tensor)) {
  2302. int64_t id[4] = { 0, 0, 0, 0 };
  2303. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2304. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2305. }
  2306. switch (tensor->type) {
  2307. case GGML_TYPE_I8:
  2308. {
  2309. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2310. return ((int8_t *)(tensor->data))[i];
  2311. }
  2312. case GGML_TYPE_I16:
  2313. {
  2314. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2315. return ((int16_t *)(tensor->data))[i];
  2316. }
  2317. case GGML_TYPE_I32:
  2318. {
  2319. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2320. return ((int32_t *)(tensor->data))[i];
  2321. }
  2322. case GGML_TYPE_F16:
  2323. {
  2324. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2325. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2326. }
  2327. case GGML_TYPE_F32:
  2328. {
  2329. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2330. return ((float *)(tensor->data))[i];
  2331. }
  2332. default:
  2333. {
  2334. GGML_ASSERT(false);
  2335. }
  2336. }
  2337. return 0.0f;
  2338. }
  2339. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2340. if (!ggml_is_contiguous(tensor)) {
  2341. int64_t id[4] = { 0, 0, 0, 0 };
  2342. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2343. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2344. return;
  2345. }
  2346. switch (tensor->type) {
  2347. case GGML_TYPE_I8:
  2348. {
  2349. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2350. ((int8_t *)(tensor->data))[i] = value;
  2351. } break;
  2352. case GGML_TYPE_I16:
  2353. {
  2354. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2355. ((int16_t *)(tensor->data))[i] = value;
  2356. } break;
  2357. case GGML_TYPE_I32:
  2358. {
  2359. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2360. ((int32_t *)(tensor->data))[i] = value;
  2361. } break;
  2362. case GGML_TYPE_F16:
  2363. {
  2364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2365. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2370. ((float *)(tensor->data))[i] = value;
  2371. } break;
  2372. default:
  2373. {
  2374. GGML_ASSERT(false);
  2375. } break;
  2376. }
  2377. }
  2378. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2379. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2380. switch (tensor->type) {
  2381. case GGML_TYPE_I8:
  2382. return ((int8_t *) data)[0];
  2383. case GGML_TYPE_I16:
  2384. return ((int16_t *) data)[0];
  2385. case GGML_TYPE_I32:
  2386. return ((int32_t *) data)[0];
  2387. case GGML_TYPE_F16:
  2388. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2389. case GGML_TYPE_F32:
  2390. return ((float *) data)[0];
  2391. default:
  2392. GGML_ASSERT(false);
  2393. }
  2394. return 0.0f;
  2395. }
  2396. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2397. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. ((int8_t *)(data))[0] = value;
  2402. } break;
  2403. case GGML_TYPE_I16:
  2404. {
  2405. ((int16_t *)(data))[0] = value;
  2406. } break;
  2407. case GGML_TYPE_I32:
  2408. {
  2409. ((int32_t *)(data))[0] = value;
  2410. } break;
  2411. case GGML_TYPE_F16:
  2412. {
  2413. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2414. } break;
  2415. case GGML_TYPE_F32:
  2416. {
  2417. ((float *)(data))[0] = value;
  2418. } break;
  2419. default:
  2420. {
  2421. GGML_ASSERT(false);
  2422. } break;
  2423. }
  2424. }
  2425. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2426. if (!ggml_is_contiguous(tensor)) {
  2427. int64_t id[4] = { 0, 0, 0, 0 };
  2428. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2429. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2430. }
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2435. return ((int8_t *)(tensor->data))[i];
  2436. }
  2437. case GGML_TYPE_I16:
  2438. {
  2439. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2440. return ((int16_t *)(tensor->data))[i];
  2441. }
  2442. case GGML_TYPE_I32:
  2443. {
  2444. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2445. return ((int32_t *)(tensor->data))[i];
  2446. }
  2447. case GGML_TYPE_F16:
  2448. {
  2449. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2450. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2451. }
  2452. case GGML_TYPE_F32:
  2453. {
  2454. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2455. return ((float *)(tensor->data))[i];
  2456. }
  2457. default:
  2458. {
  2459. GGML_ASSERT(false);
  2460. }
  2461. }
  2462. return 0.0f;
  2463. }
  2464. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2465. if (!ggml_is_contiguous(tensor)) {
  2466. int64_t id[4] = { 0, 0, 0, 0 };
  2467. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2468. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2469. return;
  2470. }
  2471. switch (tensor->type) {
  2472. case GGML_TYPE_I8:
  2473. {
  2474. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2475. ((int8_t *)(tensor->data))[i] = value;
  2476. } break;
  2477. case GGML_TYPE_I16:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2480. ((int16_t *)(tensor->data))[i] = value;
  2481. } break;
  2482. case GGML_TYPE_I32:
  2483. {
  2484. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2485. ((int32_t *)(tensor->data))[i] = value;
  2486. } break;
  2487. case GGML_TYPE_F16:
  2488. {
  2489. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2490. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2491. } break;
  2492. case GGML_TYPE_F32:
  2493. {
  2494. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2495. ((float *)(tensor->data))[i] = value;
  2496. } break;
  2497. default:
  2498. {
  2499. GGML_ASSERT(false);
  2500. } break;
  2501. }
  2502. }
  2503. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2504. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2505. switch (tensor->type) {
  2506. case GGML_TYPE_I8:
  2507. return ((int8_t *) data)[0];
  2508. case GGML_TYPE_I16:
  2509. return ((int16_t *) data)[0];
  2510. case GGML_TYPE_I32:
  2511. return ((int32_t *) data)[0];
  2512. case GGML_TYPE_F16:
  2513. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2514. case GGML_TYPE_F32:
  2515. return ((float *) data)[0];
  2516. default:
  2517. GGML_ASSERT(false);
  2518. }
  2519. return 0.0f;
  2520. }
  2521. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2522. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. ((int8_t *)(data))[0] = value;
  2527. } break;
  2528. case GGML_TYPE_I16:
  2529. {
  2530. ((int16_t *)(data))[0] = value;
  2531. } break;
  2532. case GGML_TYPE_I32:
  2533. {
  2534. ((int32_t *)(data))[0] = value;
  2535. } break;
  2536. case GGML_TYPE_F16:
  2537. {
  2538. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. ((float *)(data))[0] = value;
  2543. } break;
  2544. default:
  2545. {
  2546. GGML_ASSERT(false);
  2547. } break;
  2548. }
  2549. }
  2550. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2551. return tensor->data;
  2552. }
  2553. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2554. assert(tensor->type == GGML_TYPE_F32);
  2555. return (float *)(tensor->data);
  2556. }
  2557. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2558. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2559. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2560. }
  2561. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2562. return tensor->name;
  2563. }
  2564. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2565. strncpy(tensor->name, name, sizeof(tensor->name));
  2566. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2567. return tensor;
  2568. }
  2569. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2570. va_list args;
  2571. va_start(args, fmt);
  2572. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2573. va_end(args);
  2574. return tensor;
  2575. }
  2576. struct ggml_tensor * ggml_view_tensor(
  2577. struct ggml_context * ctx,
  2578. struct ggml_tensor * src) {
  2579. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2580. ggml_format_name(result, "%s (view)", src->name);
  2581. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2582. result->nb[i] = src->nb[i];
  2583. }
  2584. return result;
  2585. }
  2586. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2587. struct ggml_object * obj = ctx->objects_begin;
  2588. char * const mem_buffer = ctx->mem_buffer;
  2589. while (obj != NULL) {
  2590. if (obj->type == GGML_OBJECT_TENSOR) {
  2591. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2592. }
  2593. obj = obj->next;
  2594. }
  2595. return NULL;
  2596. }
  2597. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2598. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2599. obj = obj->next;
  2600. char * const mem_buffer = ctx->mem_buffer;
  2601. while (obj != NULL) {
  2602. if (obj->type == GGML_OBJECT_TENSOR) {
  2603. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2604. }
  2605. obj = obj->next;
  2606. }
  2607. return NULL;
  2608. }
  2609. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2610. struct ggml_object * obj = ctx->objects_begin;
  2611. char * const mem_buffer = ctx->mem_buffer;
  2612. while (obj != NULL) {
  2613. if (obj->type == GGML_OBJECT_TENSOR) {
  2614. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2615. if (strcmp(cur->name, name) == 0) {
  2616. return cur;
  2617. }
  2618. }
  2619. obj = obj->next;
  2620. }
  2621. return NULL;
  2622. }
  2623. ////////////////////////////////////////////////////////////////////////////////
  2624. // ggml_dup
  2625. static struct ggml_tensor * ggml_dup_impl(
  2626. struct ggml_context * ctx,
  2627. struct ggml_tensor * a,
  2628. bool inplace) {
  2629. bool is_node = false;
  2630. if (!inplace && (a->grad)) {
  2631. is_node = true;
  2632. }
  2633. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2634. result->op = GGML_OP_DUP;
  2635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2636. result->src[0] = a;
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_dup(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a) {
  2642. return ggml_dup_impl(ctx, a, false);
  2643. }
  2644. struct ggml_tensor * ggml_dup_inplace(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a) {
  2647. return ggml_dup_impl(ctx, a, true);
  2648. }
  2649. // ggml_add
  2650. static struct ggml_tensor * ggml_add_impl(
  2651. struct ggml_context * ctx,
  2652. struct ggml_tensor * a,
  2653. struct ggml_tensor * b,
  2654. bool inplace) {
  2655. // TODO: support less-strict constraint
  2656. // GGML_ASSERT(ggml_can_repeat(b, a));
  2657. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2658. bool is_node = false;
  2659. if (!inplace && (a->grad || b->grad)) {
  2660. // TODO: support backward pass for broadcasting
  2661. GGML_ASSERT(ggml_are_same_shape(a, b));
  2662. is_node = true;
  2663. }
  2664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2665. result->op = GGML_OP_ADD;
  2666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2667. result->src[0] = a;
  2668. result->src[1] = b;
  2669. return result;
  2670. }
  2671. struct ggml_tensor * ggml_add(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b) {
  2675. return ggml_add_impl(ctx, a, b, false);
  2676. }
  2677. struct ggml_tensor * ggml_add_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. struct ggml_tensor * b) {
  2681. return ggml_add_impl(ctx, a, b, true);
  2682. }
  2683. // ggml_add_cast
  2684. static struct ggml_tensor * ggml_add_cast_impl(
  2685. struct ggml_context * ctx,
  2686. struct ggml_tensor * a,
  2687. struct ggml_tensor * b,
  2688. enum ggml_type type) {
  2689. // TODO: support less-strict constraint
  2690. // GGML_ASSERT(ggml_can_repeat(b, a));
  2691. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2692. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2693. bool is_node = false;
  2694. if (a->grad || b->grad) {
  2695. // TODO: support backward pass for broadcasting
  2696. GGML_ASSERT(ggml_are_same_shape(a, b));
  2697. is_node = true;
  2698. }
  2699. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2700. result->op = GGML_OP_ADD;
  2701. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2702. result->src[0] = a;
  2703. result->src[1] = b;
  2704. return result;
  2705. }
  2706. struct ggml_tensor * ggml_add_cast(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a,
  2709. struct ggml_tensor * b,
  2710. enum ggml_type type) {
  2711. return ggml_add_cast_impl(ctx, a, b, type);
  2712. }
  2713. // ggml_add1
  2714. static struct ggml_tensor * ggml_add1_impl(
  2715. struct ggml_context * ctx,
  2716. struct ggml_tensor * a,
  2717. struct ggml_tensor * b,
  2718. bool inplace) {
  2719. GGML_ASSERT(ggml_is_scalar(b));
  2720. GGML_ASSERT(ggml_is_padded_1d(a));
  2721. bool is_node = false;
  2722. if (a->grad || b->grad) {
  2723. is_node = true;
  2724. }
  2725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2726. result->op = GGML_OP_ADD1;
  2727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2728. result->src[0] = a;
  2729. result->src[1] = b;
  2730. return result;
  2731. }
  2732. struct ggml_tensor * ggml_add1(
  2733. struct ggml_context * ctx,
  2734. struct ggml_tensor * a,
  2735. struct ggml_tensor * b) {
  2736. return ggml_add1_impl(ctx, a, b, false);
  2737. }
  2738. struct ggml_tensor * ggml_add1_inplace(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b) {
  2742. return ggml_add1_impl(ctx, a, b, true);
  2743. }
  2744. // ggml_acc
  2745. static struct ggml_tensor * ggml_acc_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. size_t nb1,
  2750. size_t nb2,
  2751. size_t nb3,
  2752. size_t offset,
  2753. bool inplace) {
  2754. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2755. GGML_ASSERT(ggml_is_contiguous(a));
  2756. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2757. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2758. bool is_node = false;
  2759. if (!inplace && (a->grad || b->grad)) {
  2760. is_node = true;
  2761. }
  2762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2763. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2764. ggml_set_op_params(result, params, sizeof(params));
  2765. result->op = GGML_OP_ACC;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src[0] = a;
  2768. result->src[1] = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_acc(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b,
  2775. size_t nb1,
  2776. size_t nb2,
  2777. size_t nb3,
  2778. size_t offset) {
  2779. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2780. }
  2781. struct ggml_tensor * ggml_acc_inplace(
  2782. struct ggml_context * ctx,
  2783. struct ggml_tensor * a,
  2784. struct ggml_tensor * b,
  2785. size_t nb1,
  2786. size_t nb2,
  2787. size_t nb3,
  2788. size_t offset) {
  2789. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2790. }
  2791. // ggml_sub
  2792. static struct ggml_tensor * ggml_sub_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. struct ggml_tensor * b,
  2796. bool inplace) {
  2797. GGML_ASSERT(ggml_are_same_shape(a, b));
  2798. bool is_node = false;
  2799. if (!inplace && (a->grad || b->grad)) {
  2800. is_node = true;
  2801. }
  2802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2803. result->op = GGML_OP_SUB;
  2804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2805. result->src[0] = a;
  2806. result->src[1] = b;
  2807. return result;
  2808. }
  2809. struct ggml_tensor * ggml_sub(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. return ggml_sub_impl(ctx, a, b, false);
  2814. }
  2815. struct ggml_tensor * ggml_sub_inplace(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a,
  2818. struct ggml_tensor * b) {
  2819. return ggml_sub_impl(ctx, a, b, true);
  2820. }
  2821. // ggml_mul
  2822. static struct ggml_tensor * ggml_mul_impl(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. bool inplace) {
  2827. // TODO: support less-strict constraint
  2828. // GGML_ASSERT(ggml_can_repeat(b, a));
  2829. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2830. bool is_node = false;
  2831. if (!inplace && (a->grad || b->grad)) {
  2832. // TODO: support backward pass for broadcasting
  2833. GGML_ASSERT(ggml_are_same_shape(a, b));
  2834. is_node = true;
  2835. }
  2836. if (inplace) {
  2837. GGML_ASSERT(!is_node);
  2838. }
  2839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2840. result->op = GGML_OP_MUL;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src[0] = a;
  2843. result->src[1] = b;
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_mul(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_mul_impl(ctx, a, b, false);
  2851. }
  2852. struct ggml_tensor * ggml_mul_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_mul_impl(ctx, a, b, true);
  2857. }
  2858. // ggml_div
  2859. static struct ggml_tensor * ggml_div_impl(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. struct ggml_tensor * b,
  2863. bool inplace) {
  2864. GGML_ASSERT(ggml_are_same_shape(a, b));
  2865. bool is_node = false;
  2866. if (!inplace && (a->grad || b->grad)) {
  2867. is_node = true;
  2868. }
  2869. if (inplace) {
  2870. GGML_ASSERT(!is_node);
  2871. }
  2872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2873. result->op = GGML_OP_DIV;
  2874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2875. result->src[0] = a;
  2876. result->src[1] = b;
  2877. return result;
  2878. }
  2879. struct ggml_tensor * ggml_div(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. struct ggml_tensor * b) {
  2883. return ggml_div_impl(ctx, a, b, false);
  2884. }
  2885. struct ggml_tensor * ggml_div_inplace(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. struct ggml_tensor * b) {
  2889. return ggml_div_impl(ctx, a, b, true);
  2890. }
  2891. // ggml_sqr
  2892. static struct ggml_tensor * ggml_sqr_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. bool inplace) {
  2896. bool is_node = false;
  2897. if (!inplace && (a->grad)) {
  2898. is_node = true;
  2899. }
  2900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2901. result->op = GGML_OP_SQR;
  2902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2903. result->src[0] = a;
  2904. return result;
  2905. }
  2906. struct ggml_tensor * ggml_sqr(
  2907. struct ggml_context * ctx,
  2908. struct ggml_tensor * a) {
  2909. return ggml_sqr_impl(ctx, a, false);
  2910. }
  2911. struct ggml_tensor * ggml_sqr_inplace(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a) {
  2914. return ggml_sqr_impl(ctx, a, true);
  2915. }
  2916. // ggml_sqrt
  2917. static struct ggml_tensor * ggml_sqrt_impl(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a,
  2920. bool inplace) {
  2921. bool is_node = false;
  2922. if (!inplace && (a->grad)) {
  2923. is_node = true;
  2924. }
  2925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2926. result->op = GGML_OP_SQRT;
  2927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2928. result->src[0] = a;
  2929. return result;
  2930. }
  2931. struct ggml_tensor * ggml_sqrt(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a) {
  2934. return ggml_sqrt_impl(ctx, a, false);
  2935. }
  2936. struct ggml_tensor * ggml_sqrt_inplace(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_sqrt_impl(ctx, a, true);
  2940. }
  2941. // ggml_log
  2942. static struct ggml_tensor * ggml_log_impl(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. bool inplace) {
  2946. bool is_node = false;
  2947. if (!inplace && (a->grad)) {
  2948. is_node = true;
  2949. }
  2950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2951. result->op = GGML_OP_LOG;
  2952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2953. result->src[0] = a;
  2954. return result;
  2955. }
  2956. struct ggml_tensor * ggml_log(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a) {
  2959. return ggml_log_impl(ctx, a, false);
  2960. }
  2961. struct ggml_tensor * ggml_log_inplace(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a) {
  2964. return ggml_log_impl(ctx, a, true);
  2965. }
  2966. // ggml_sum
  2967. struct ggml_tensor * ggml_sum(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. bool is_node = false;
  2971. if (a->grad) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2975. result->op = GGML_OP_SUM;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src[0] = a;
  2978. return result;
  2979. }
  2980. // ggml_sum_rows
  2981. struct ggml_tensor * ggml_sum_rows(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a) {
  2984. bool is_node = false;
  2985. if (a->grad) {
  2986. is_node = true;
  2987. }
  2988. int64_t ne[4] = {1,1,1,1};
  2989. for (int i=1; i<a->n_dims; ++i) {
  2990. ne[i] = a->ne[i];
  2991. }
  2992. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2993. result->op = GGML_OP_SUM_ROWS;
  2994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2995. result->src[0] = a;
  2996. return result;
  2997. }
  2998. // ggml_mean
  2999. struct ggml_tensor * ggml_mean(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a) {
  3002. bool is_node = false;
  3003. if (a->grad) {
  3004. GGML_ASSERT(false); // TODO: implement
  3005. is_node = true;
  3006. }
  3007. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3008. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3009. result->op = GGML_OP_MEAN;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. return result;
  3013. }
  3014. // ggml_argmax
  3015. struct ggml_tensor * ggml_argmax(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. GGML_ASSERT(ggml_is_matrix(a));
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false);
  3022. is_node = true;
  3023. }
  3024. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3026. result->op = GGML_OP_ARGMAX;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_repeat
  3032. struct ggml_tensor * ggml_repeat(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. struct ggml_tensor * b) {
  3036. GGML_ASSERT(ggml_can_repeat(a, b));
  3037. bool is_node = false;
  3038. if (a->grad) {
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3042. result->op = GGML_OP_REPEAT;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat_back
  3048. struct ggml_tensor * ggml_repeat_back(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(b, a));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. if (ggml_are_same_shape(a, b) && !is_node) {
  3058. return a;
  3059. }
  3060. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3061. result->op = GGML_OP_REPEAT_BACK;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src[0] = a;
  3064. return result;
  3065. }
  3066. // ggml_concat
  3067. struct ggml_tensor * ggml_concat(
  3068. struct ggml_context* ctx,
  3069. struct ggml_tensor* a,
  3070. struct ggml_tensor* b) {
  3071. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3072. bool is_node = false;
  3073. if (a->grad || b->grad) {
  3074. is_node = true;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3077. result->op = GGML_OP_CONCAT;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. result->src[1] = b;
  3081. return result;
  3082. }
  3083. // ggml_abs
  3084. struct ggml_tensor * ggml_abs(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3088. }
  3089. struct ggml_tensor * ggml_abs_inplace(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3093. }
  3094. // ggml_sgn
  3095. struct ggml_tensor * ggml_sgn(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3099. }
  3100. struct ggml_tensor * ggml_sgn_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3104. }
  3105. // ggml_neg
  3106. struct ggml_tensor * ggml_neg(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3110. }
  3111. struct ggml_tensor * ggml_neg_inplace(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3115. }
  3116. // ggml_step
  3117. struct ggml_tensor * ggml_step(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3121. }
  3122. struct ggml_tensor * ggml_step_inplace(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3126. }
  3127. // ggml_tanh
  3128. struct ggml_tensor * ggml_tanh(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3132. }
  3133. struct ggml_tensor * ggml_tanh_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3137. }
  3138. // ggml_elu
  3139. struct ggml_tensor * ggml_elu(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3143. }
  3144. struct ggml_tensor * ggml_elu_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3148. }
  3149. // ggml_relu
  3150. struct ggml_tensor * ggml_relu(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3154. }
  3155. struct ggml_tensor * ggml_relu_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3159. }
  3160. // ggml_leaky
  3161. struct ggml_tensor * ggml_leaky(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3165. }
  3166. // ggml_gelu
  3167. struct ggml_tensor * ggml_gelu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3171. }
  3172. struct ggml_tensor * ggml_gelu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3176. }
  3177. // ggml_gelu_quick
  3178. struct ggml_tensor * ggml_gelu_quick(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3182. }
  3183. struct ggml_tensor * ggml_gelu_quick_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3187. }
  3188. // ggml_silu
  3189. struct ggml_tensor * ggml_silu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3193. }
  3194. struct ggml_tensor * ggml_silu_inplace(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3198. }
  3199. // ggml_silu_back
  3200. struct ggml_tensor * ggml_silu_back(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. bool is_node = false;
  3205. if (a->grad || b->grad) {
  3206. // TODO: implement backward
  3207. is_node = true;
  3208. }
  3209. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3210. result->op = GGML_OP_SILU_BACK;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. result->src[1] = b;
  3214. return result;
  3215. }
  3216. // ggml_norm
  3217. static struct ggml_tensor * ggml_norm_impl(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. float eps,
  3221. bool inplace) {
  3222. bool is_node = false;
  3223. if (!inplace && (a->grad)) {
  3224. GGML_ASSERT(false); // TODO: implement backward
  3225. is_node = true;
  3226. }
  3227. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3228. ggml_set_op_params(result, &eps, sizeof(eps));
  3229. result->op = GGML_OP_NORM;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_norm(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. float eps) {
  3238. return ggml_norm_impl(ctx, a, eps, false);
  3239. }
  3240. struct ggml_tensor * ggml_norm_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. float eps) {
  3244. return ggml_norm_impl(ctx, a, eps, true);
  3245. }
  3246. // ggml_rms_norm
  3247. static struct ggml_tensor * ggml_rms_norm_impl(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. float eps,
  3251. bool inplace) {
  3252. bool is_node = false;
  3253. if (!inplace && (a->grad)) {
  3254. is_node = true;
  3255. }
  3256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3257. ggml_set_op_params(result, &eps, sizeof(eps));
  3258. result->op = GGML_OP_RMS_NORM;
  3259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3260. result->src[0] = a;
  3261. return result;
  3262. }
  3263. struct ggml_tensor * ggml_rms_norm(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. float eps) {
  3267. return ggml_rms_norm_impl(ctx, a, eps, false);
  3268. }
  3269. struct ggml_tensor * ggml_rms_norm_inplace(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a,
  3272. float eps) {
  3273. return ggml_rms_norm_impl(ctx, a, eps, true);
  3274. }
  3275. // ggml_rms_norm_back
  3276. struct ggml_tensor * ggml_rms_norm_back(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. struct ggml_tensor * b,
  3280. float eps) {
  3281. bool is_node = false;
  3282. if (a->grad) {
  3283. // TODO: implement backward
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3287. ggml_set_op_params(result, &eps, sizeof(eps));
  3288. result->op = GGML_OP_RMS_NORM_BACK;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src[0] = a;
  3291. result->src[1] = b;
  3292. return result;
  3293. }
  3294. // ggml_group_norm
  3295. static struct ggml_tensor * ggml_group_norm_impl(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. int n_groups,
  3299. bool inplace) {
  3300. bool is_node = false;
  3301. if (!inplace && (a->grad)) {
  3302. GGML_ASSERT(false); // TODO: implement backward
  3303. is_node = true;
  3304. }
  3305. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3306. result->op = GGML_OP_GROUP_NORM;
  3307. result->op_params[0] = n_groups;
  3308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3309. result->src[0] = a;
  3310. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3311. return result;
  3312. }
  3313. struct ggml_tensor * ggml_group_norm(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. int n_groups) {
  3317. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3318. }
  3319. struct ggml_tensor * ggml_group_norm_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. int n_groups) {
  3323. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3324. }
  3325. // ggml_mul_mat
  3326. struct ggml_tensor * ggml_mul_mat(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. struct ggml_tensor * b) {
  3330. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3331. GGML_ASSERT(!ggml_is_transposed(a));
  3332. bool is_node = false;
  3333. if (a->grad || b->grad) {
  3334. is_node = true;
  3335. }
  3336. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3338. result->op = GGML_OP_MUL_MAT;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. // ggml_out_prod
  3345. struct ggml_tensor * ggml_out_prod(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b) {
  3349. GGML_ASSERT(ggml_can_out_prod(a, b));
  3350. GGML_ASSERT(!ggml_is_transposed(a));
  3351. bool is_node = false;
  3352. if (a->grad || b->grad) {
  3353. is_node = true;
  3354. }
  3355. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3356. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3358. result->op = GGML_OP_OUT_PROD;
  3359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3360. result->src[0] = a;
  3361. result->src[1] = b;
  3362. return result;
  3363. }
  3364. // ggml_scale
  3365. static struct ggml_tensor * ggml_scale_impl(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. struct ggml_tensor * b,
  3369. bool inplace) {
  3370. GGML_ASSERT(ggml_is_scalar(b));
  3371. GGML_ASSERT(ggml_is_padded_1d(a));
  3372. bool is_node = false;
  3373. if (a->grad || b->grad) {
  3374. is_node = true;
  3375. }
  3376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3377. result->op = GGML_OP_SCALE;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. result->src[1] = b;
  3381. return result;
  3382. }
  3383. struct ggml_tensor * ggml_scale(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b) {
  3387. return ggml_scale_impl(ctx, a, b, false);
  3388. }
  3389. struct ggml_tensor * ggml_scale_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a,
  3392. struct ggml_tensor * b) {
  3393. return ggml_scale_impl(ctx, a, b, true);
  3394. }
  3395. // ggml_set
  3396. static struct ggml_tensor * ggml_set_impl(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a,
  3399. struct ggml_tensor * b,
  3400. size_t nb1,
  3401. size_t nb2,
  3402. size_t nb3,
  3403. size_t offset,
  3404. bool inplace) {
  3405. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3406. bool is_node = false;
  3407. if (a->grad || b->grad) {
  3408. is_node = true;
  3409. }
  3410. // make a view of the destination
  3411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3412. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3413. ggml_set_op_params(result, params, sizeof(params));
  3414. result->op = GGML_OP_SET;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src[0] = a;
  3417. result->src[1] = b;
  3418. return result;
  3419. }
  3420. struct ggml_tensor * ggml_set(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. struct ggml_tensor * b,
  3424. size_t nb1,
  3425. size_t nb2,
  3426. size_t nb3,
  3427. size_t offset) {
  3428. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3429. }
  3430. struct ggml_tensor * ggml_set_inplace(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b,
  3434. size_t nb1,
  3435. size_t nb2,
  3436. size_t nb3,
  3437. size_t offset) {
  3438. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3439. }
  3440. struct ggml_tensor * ggml_set_1d(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b,
  3444. size_t offset) {
  3445. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3446. }
  3447. struct ggml_tensor * ggml_set_1d_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. struct ggml_tensor * b,
  3451. size_t offset) {
  3452. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3453. }
  3454. struct ggml_tensor * ggml_set_2d(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b,
  3458. size_t nb1,
  3459. size_t offset) {
  3460. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3461. }
  3462. struct ggml_tensor * ggml_set_2d_inplace(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b,
  3466. size_t nb1,
  3467. size_t offset) {
  3468. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3469. }
  3470. // ggml_cpy
  3471. static struct ggml_tensor * ggml_cpy_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. struct ggml_tensor * b,
  3475. bool inplace) {
  3476. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3477. bool is_node = false;
  3478. if (!inplace && (a->grad || b->grad)) {
  3479. is_node = true;
  3480. }
  3481. // make a view of the destination
  3482. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3483. if (strlen(b->name) > 0) {
  3484. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3485. } else {
  3486. ggml_format_name(result, "%s (copy)", a->name);
  3487. }
  3488. result->op = GGML_OP_CPY;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src[0] = a;
  3491. result->src[1] = b;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_cpy(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b) {
  3498. return ggml_cpy_impl(ctx, a, b, false);
  3499. }
  3500. struct ggml_tensor * ggml_cpy_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b) {
  3504. return ggml_cpy_impl(ctx, a, b, true);
  3505. }
  3506. // ggml_cont
  3507. static struct ggml_tensor * ggml_cont_impl(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. bool inplace) {
  3511. bool is_node = false;
  3512. if (!inplace && a->grad) {
  3513. is_node = true;
  3514. }
  3515. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3516. ggml_format_name(result, "%s (cont)", a->name);
  3517. result->op = GGML_OP_CONT;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src[0] = a;
  3520. return result;
  3521. }
  3522. struct ggml_tensor * ggml_cont(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a) {
  3525. return ggml_cont_impl(ctx, a, false);
  3526. }
  3527. struct ggml_tensor * ggml_cont_inplace(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a) {
  3530. return ggml_cont_impl(ctx, a, true);
  3531. }
  3532. // make contiguous, with new shape
  3533. GGML_API struct ggml_tensor * ggml_cont_1d(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. int64_t ne0) {
  3537. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3538. }
  3539. GGML_API struct ggml_tensor * ggml_cont_2d(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. int64_t ne0,
  3543. int64_t ne1) {
  3544. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3545. }
  3546. GGML_API struct ggml_tensor * ggml_cont_3d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. int64_t ne0,
  3550. int64_t ne1,
  3551. int64_t ne2) {
  3552. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3553. }
  3554. struct ggml_tensor * ggml_cont_4d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0,
  3558. int64_t ne1,
  3559. int64_t ne2,
  3560. int64_t ne3) {
  3561. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3562. bool is_node = false;
  3563. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3564. ggml_format_name(result, "%s (cont)", a->name);
  3565. result->op = GGML_OP_CONT;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src[0] = a;
  3568. return result;
  3569. }
  3570. // ggml_reshape
  3571. struct ggml_tensor * ggml_reshape(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. struct ggml_tensor * b) {
  3575. GGML_ASSERT(ggml_is_contiguous(a));
  3576. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3577. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3578. bool is_node = false;
  3579. if (a->grad) {
  3580. is_node = true;
  3581. }
  3582. if (b->grad) {
  3583. // gradient propagation is not supported
  3584. //GGML_ASSERT(false);
  3585. }
  3586. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3587. ggml_format_name(result, "%s (reshaped)", a->name);
  3588. result->op = GGML_OP_RESHAPE;
  3589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3590. result->src[0] = a;
  3591. return result;
  3592. }
  3593. struct ggml_tensor * ggml_reshape_1d(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int64_t ne0) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. is_node = true;
  3602. }
  3603. const int64_t ne[1] = { ne0 };
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3605. ggml_format_name(result, "%s (reshaped)", a->name);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_reshape_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1) {
  3616. GGML_ASSERT(ggml_is_contiguous(a));
  3617. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3618. bool is_node = false;
  3619. if (a->grad) {
  3620. is_node = true;
  3621. }
  3622. const int64_t ne[2] = { ne0, ne1 };
  3623. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3624. ggml_format_name(result, "%s (reshaped)", a->name);
  3625. result->op = GGML_OP_RESHAPE;
  3626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3627. result->src[0] = a;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_reshape_3d(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int64_t ne0,
  3634. int64_t ne1,
  3635. int64_t ne2) {
  3636. GGML_ASSERT(ggml_is_contiguous(a));
  3637. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. const int64_t ne[3] = { ne0, ne1, ne2 };
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3644. ggml_format_name(result, "%s (reshaped)", a->name);
  3645. result->op = GGML_OP_RESHAPE;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. struct ggml_tensor * ggml_reshape_4d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. GGML_ASSERT(ggml_is_contiguous(a));
  3658. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3659. bool is_node = false;
  3660. if (a->grad) {
  3661. is_node = true;
  3662. }
  3663. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3664. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3665. ggml_format_name(result, "%s (reshaped)", a->name);
  3666. result->op = GGML_OP_RESHAPE;
  3667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3668. result->src[0] = a;
  3669. return result;
  3670. }
  3671. static struct ggml_tensor * ggml_view_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. int n_dims,
  3675. const int64_t * ne,
  3676. size_t offset) {
  3677. bool is_node = false;
  3678. if (a->grad) {
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3682. ggml_format_name(result, "%s (view)", a->name);
  3683. ggml_set_op_params(result, &offset, sizeof(offset));
  3684. result->op = GGML_OP_VIEW;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. // ggml_view_1d
  3690. struct ggml_tensor * ggml_view_1d(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. int64_t ne0,
  3694. size_t offset) {
  3695. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3696. return result;
  3697. }
  3698. // ggml_view_2d
  3699. struct ggml_tensor * ggml_view_2d(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. int64_t ne0,
  3703. int64_t ne1,
  3704. size_t nb1,
  3705. size_t offset) {
  3706. const int64_t ne[2] = { ne0, ne1 };
  3707. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3708. result->nb[1] = nb1;
  3709. result->nb[2] = result->nb[1]*ne1;
  3710. result->nb[3] = result->nb[2];
  3711. return result;
  3712. }
  3713. // ggml_view_3d
  3714. struct ggml_tensor * ggml_view_3d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. size_t nb1,
  3721. size_t nb2,
  3722. size_t offset) {
  3723. const int64_t ne[3] = { ne0, ne1, ne2 };
  3724. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3725. result->nb[1] = nb1;
  3726. result->nb[2] = nb2;
  3727. result->nb[3] = result->nb[2]*ne2;
  3728. return result;
  3729. }
  3730. // ggml_view_4d
  3731. struct ggml_tensor * ggml_view_4d(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. int64_t ne0,
  3735. int64_t ne1,
  3736. int64_t ne2,
  3737. int64_t ne3,
  3738. size_t nb1,
  3739. size_t nb2,
  3740. size_t nb3,
  3741. size_t offset) {
  3742. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3743. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3744. result->nb[1] = nb1;
  3745. result->nb[2] = nb2;
  3746. result->nb[3] = nb3;
  3747. return result;
  3748. }
  3749. // ggml_permute
  3750. struct ggml_tensor * ggml_permute(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. int axis0,
  3754. int axis1,
  3755. int axis2,
  3756. int axis3) {
  3757. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3758. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3759. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3760. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3761. GGML_ASSERT(axis0 != axis1);
  3762. GGML_ASSERT(axis0 != axis2);
  3763. GGML_ASSERT(axis0 != axis3);
  3764. GGML_ASSERT(axis1 != axis2);
  3765. GGML_ASSERT(axis1 != axis3);
  3766. GGML_ASSERT(axis2 != axis3);
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3772. ggml_format_name(result, "%s (permuted)", a->name);
  3773. int ne[GGML_MAX_DIMS];
  3774. int nb[GGML_MAX_DIMS];
  3775. ne[axis0] = a->ne[0];
  3776. ne[axis1] = a->ne[1];
  3777. ne[axis2] = a->ne[2];
  3778. ne[axis3] = a->ne[3];
  3779. nb[axis0] = a->nb[0];
  3780. nb[axis1] = a->nb[1];
  3781. nb[axis2] = a->nb[2];
  3782. nb[axis3] = a->nb[3];
  3783. result->ne[0] = ne[0];
  3784. result->ne[1] = ne[1];
  3785. result->ne[2] = ne[2];
  3786. result->ne[3] = ne[3];
  3787. result->nb[0] = nb[0];
  3788. result->nb[1] = nb[1];
  3789. result->nb[2] = nb[2];
  3790. result->nb[3] = nb[3];
  3791. result->op = GGML_OP_PERMUTE;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3795. ggml_set_op_params(result, params, sizeof(params));
  3796. return result;
  3797. }
  3798. // ggml_transpose
  3799. struct ggml_tensor * ggml_transpose(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. bool is_node = false;
  3803. if (a->grad) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3807. ggml_format_name(result, "%s (transposed)", a->name);
  3808. result->ne[0] = a->ne[1];
  3809. result->ne[1] = a->ne[0];
  3810. result->nb[0] = a->nb[1];
  3811. result->nb[1] = a->nb[0];
  3812. result->op = GGML_OP_TRANSPOSE;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src[0] = a;
  3815. return result;
  3816. }
  3817. // ggml_get_rows
  3818. struct ggml_tensor * ggml_get_rows(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3823. bool is_node = false;
  3824. if (a->grad || b->grad) {
  3825. is_node = true;
  3826. }
  3827. // TODO: implement non F32 return
  3828. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3829. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3830. result->op = GGML_OP_GET_ROWS;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. result->src[1] = b;
  3834. return result;
  3835. }
  3836. // ggml_get_rows_back
  3837. struct ggml_tensor * ggml_get_rows_back(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. struct ggml_tensor * c) {
  3842. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3843. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3844. bool is_node = false;
  3845. if (a->grad || b->grad) {
  3846. is_node = true;
  3847. }
  3848. // TODO: implement non F32 return
  3849. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3850. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3851. result->op = GGML_OP_GET_ROWS_BACK;
  3852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3853. result->src[0] = a;
  3854. result->src[1] = b;
  3855. return result;
  3856. }
  3857. // ggml_diag
  3858. struct ggml_tensor * ggml_diag(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. GGML_ASSERT(a->ne[1] == 1);
  3862. bool is_node = false;
  3863. if (a->grad) {
  3864. is_node = true;
  3865. }
  3866. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3867. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3868. result->op = GGML_OP_DIAG;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src[0] = a;
  3871. return result;
  3872. }
  3873. // ggml_diag_mask_inf
  3874. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. int n_past,
  3878. bool inplace) {
  3879. bool is_node = false;
  3880. if (a->grad) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. int32_t params[] = { n_past };
  3885. ggml_set_op_params(result, params, sizeof(params));
  3886. result->op = GGML_OP_DIAG_MASK_INF;
  3887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3888. result->src[0] = a;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_diag_mask_inf(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. int n_past) {
  3895. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3896. }
  3897. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. int n_past) {
  3901. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3902. }
  3903. // ggml_diag_mask_zero
  3904. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. int n_past,
  3908. bool inplace) {
  3909. bool is_node = false;
  3910. if (a->grad) {
  3911. is_node = true;
  3912. }
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. int32_t params[] = { n_past };
  3915. ggml_set_op_params(result, params, sizeof(params));
  3916. result->op = GGML_OP_DIAG_MASK_ZERO;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_diag_mask_zero(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. int n_past) {
  3925. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3926. }
  3927. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. int n_past) {
  3931. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3932. }
  3933. // ggml_soft_max
  3934. static struct ggml_tensor * ggml_soft_max_impl(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * mask,
  3938. float scale,
  3939. bool inplace) {
  3940. GGML_ASSERT(ggml_is_contiguous(a));
  3941. if (mask) {
  3942. GGML_ASSERT(ggml_is_contiguous(mask));
  3943. GGML_ASSERT(mask->ne[2] == 1);
  3944. GGML_ASSERT(mask->ne[3] == 1);
  3945. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  3946. }
  3947. bool is_node = false;
  3948. if (a->grad) {
  3949. is_node = true;
  3950. }
  3951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3952. float params[] = { scale };
  3953. ggml_set_op_params(result, params, sizeof(params));
  3954. result->op = GGML_OP_SOFT_MAX;
  3955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3956. result->src[0] = a;
  3957. result->src[1] = mask;
  3958. return result;
  3959. }
  3960. struct ggml_tensor * ggml_soft_max(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a) {
  3963. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  3964. }
  3965. struct ggml_tensor * ggml_soft_max_inplace(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a) {
  3968. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  3969. }
  3970. struct ggml_tensor * ggml_soft_max_ext(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * mask,
  3974. float scale) {
  3975. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  3976. }
  3977. // ggml_soft_max_back
  3978. static struct ggml_tensor * ggml_soft_max_back_impl(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. struct ggml_tensor * b,
  3982. bool inplace) {
  3983. bool is_node = false;
  3984. if (a->grad || b->grad) {
  3985. is_node = true; // TODO : implement backward pass
  3986. }
  3987. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3988. result->op = GGML_OP_SOFT_MAX_BACK;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. result->src[1] = b;
  3992. return result;
  3993. }
  3994. struct ggml_tensor * ggml_soft_max_back(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. struct ggml_tensor * b) {
  3998. return ggml_soft_max_back_impl(ctx, a, b, false);
  3999. }
  4000. struct ggml_tensor * ggml_soft_max_back_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * b) {
  4004. return ggml_soft_max_back_impl(ctx, a, b, true);
  4005. }
  4006. // ggml_rope
  4007. static struct ggml_tensor * ggml_rope_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b,
  4011. int n_dims,
  4012. int mode,
  4013. int n_ctx,
  4014. int n_orig_ctx,
  4015. float freq_base,
  4016. float freq_scale,
  4017. float ext_factor,
  4018. float attn_factor,
  4019. float beta_fast,
  4020. float beta_slow,
  4021. float xpos_base,
  4022. bool xpos_down,
  4023. bool inplace) {
  4024. GGML_ASSERT(ggml_is_vector(b));
  4025. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4026. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4027. bool is_node = false;
  4028. if (a->grad) {
  4029. is_node = true;
  4030. }
  4031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4032. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4033. memcpy(params + 5, &freq_base, sizeof(float));
  4034. memcpy(params + 6, &freq_scale, sizeof(float));
  4035. memcpy(params + 7, &ext_factor, sizeof(float));
  4036. memcpy(params + 8, &attn_factor, sizeof(float));
  4037. memcpy(params + 9, &beta_fast, sizeof(float));
  4038. memcpy(params + 10, &beta_slow, sizeof(float));
  4039. memcpy(params + 11, &xpos_base, sizeof(float));
  4040. memcpy(params + 12, &xpos_down, sizeof(bool));
  4041. ggml_set_op_params(result, params, sizeof(params));
  4042. result->op = GGML_OP_ROPE;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src[0] = a;
  4045. result->src[1] = b;
  4046. return result;
  4047. }
  4048. struct ggml_tensor * ggml_rope(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * b,
  4052. int n_dims,
  4053. int mode,
  4054. int n_ctx) {
  4055. return ggml_rope_impl(
  4056. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4057. );
  4058. }
  4059. struct ggml_tensor * ggml_rope_inplace(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a,
  4062. struct ggml_tensor * b,
  4063. int n_dims,
  4064. int mode,
  4065. int n_ctx) {
  4066. return ggml_rope_impl(
  4067. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4068. );
  4069. }
  4070. struct ggml_tensor * ggml_rope_custom(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b,
  4074. int n_dims,
  4075. int mode,
  4076. int n_ctx,
  4077. int n_orig_ctx,
  4078. float freq_base,
  4079. float freq_scale,
  4080. float ext_factor,
  4081. float attn_factor,
  4082. float beta_fast,
  4083. float beta_slow) {
  4084. return ggml_rope_impl(
  4085. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4086. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4087. );
  4088. }
  4089. struct ggml_tensor * ggml_rope_custom_inplace(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. struct ggml_tensor * b,
  4093. int n_dims,
  4094. int mode,
  4095. int n_ctx,
  4096. int n_orig_ctx,
  4097. float freq_base,
  4098. float freq_scale,
  4099. float ext_factor,
  4100. float attn_factor,
  4101. float beta_fast,
  4102. float beta_slow) {
  4103. return ggml_rope_impl(
  4104. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4105. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4106. );
  4107. }
  4108. struct ggml_tensor * ggml_rope_xpos_inplace(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b,
  4112. int n_dims,
  4113. float base,
  4114. bool down) {
  4115. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4116. }
  4117. // ggml_rope_back
  4118. struct ggml_tensor * ggml_rope_back(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. struct ggml_tensor * b,
  4122. int n_dims,
  4123. int mode,
  4124. int n_ctx,
  4125. int n_orig_ctx,
  4126. float freq_base,
  4127. float freq_scale,
  4128. float ext_factor,
  4129. float attn_factor,
  4130. float beta_fast,
  4131. float beta_slow,
  4132. float xpos_base,
  4133. bool xpos_down) {
  4134. GGML_ASSERT(ggml_is_vector(b));
  4135. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4136. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4137. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4138. bool is_node = false;
  4139. if (a->grad) {
  4140. is_node = false; // TODO: implement backward
  4141. }
  4142. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4143. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4144. memcpy(params + 5, &freq_base, sizeof(float));
  4145. memcpy(params + 6, &freq_scale, sizeof(float));
  4146. memcpy(params + 7, &ext_factor, sizeof(float));
  4147. memcpy(params + 8, &attn_factor, sizeof(float));
  4148. memcpy(params + 9, &beta_fast, sizeof(float));
  4149. memcpy(params + 10, &beta_slow, sizeof(float));
  4150. memcpy(params + 11, &xpos_base, sizeof(float));
  4151. memcpy(params + 12, &xpos_down, sizeof(bool));
  4152. ggml_set_op_params(result, params, sizeof(params));
  4153. result->op = GGML_OP_ROPE_BACK;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src[0] = a;
  4156. result->src[1] = b;
  4157. return result;
  4158. }
  4159. // ggml_alibi
  4160. struct ggml_tensor * ggml_alibi(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. int n_past,
  4164. int n_head,
  4165. float bias_max) {
  4166. GGML_ASSERT(n_past >= 0);
  4167. bool is_node = false;
  4168. if (a->grad) {
  4169. GGML_ASSERT(false); // TODO: implement backward
  4170. is_node = true;
  4171. }
  4172. // TODO: when implement backward, fix this:
  4173. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4174. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4175. int32_t op_params[3] = { n_past, n_head };
  4176. memcpy(op_params + 2, &bias_max, sizeof(float));
  4177. ggml_set_op_params(result, op_params, sizeof(op_params));
  4178. result->op = GGML_OP_ALIBI;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src[0] = a;
  4181. return result;
  4182. }
  4183. // ggml_clamp
  4184. struct ggml_tensor * ggml_clamp(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. float min,
  4188. float max) {
  4189. bool is_node = false;
  4190. if (a->grad) {
  4191. GGML_ASSERT(false); // TODO: implement backward
  4192. is_node = true;
  4193. }
  4194. // TODO: when implement backward, fix this:
  4195. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4196. float params[] = { min, max };
  4197. ggml_set_op_params(result, params, sizeof(params));
  4198. result->op = GGML_OP_CLAMP;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src[0] = a;
  4201. return result;
  4202. }
  4203. // ggml_conv_1d
  4204. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4205. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4206. }
  4207. GGML_API struct ggml_tensor * ggml_conv_1d(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a,
  4210. struct ggml_tensor * b,
  4211. int s0,
  4212. int p0,
  4213. int d0) {
  4214. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4215. struct ggml_tensor * result =
  4216. ggml_mul_mat(ctx,
  4217. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4218. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4219. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4220. return result;
  4221. }
  4222. // ggml_conv_1d_ph
  4223. struct ggml_tensor* ggml_conv_1d_ph(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. int s,
  4228. int d) {
  4229. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4230. }
  4231. // ggml_conv_transpose_1d
  4232. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4233. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4234. }
  4235. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a,
  4238. struct ggml_tensor * b,
  4239. int s0,
  4240. int p0,
  4241. int d0) {
  4242. GGML_ASSERT(ggml_is_matrix(b));
  4243. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4244. GGML_ASSERT(a->ne[3] == 1);
  4245. GGML_ASSERT(p0 == 0);
  4246. GGML_ASSERT(d0 == 1);
  4247. bool is_node = false;
  4248. if (a->grad || b->grad) {
  4249. GGML_ASSERT(false); // TODO: implement backward
  4250. is_node = true;
  4251. }
  4252. const int64_t ne[4] = {
  4253. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4254. a->ne[1], b->ne[2], 1,
  4255. };
  4256. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4257. int32_t params[] = { s0, p0, d0 };
  4258. ggml_set_op_params(result, params, sizeof(params));
  4259. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. result->src[1] = b;
  4263. return result;
  4264. }
  4265. // ggml_conv_2d
  4266. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4267. // a: [OC,IC, KH, KW]
  4268. // b: [N, IC, IH, IW]
  4269. // result: [N, OH, OW, IC*KH*KW]
  4270. struct ggml_tensor * ggml_im2col(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b,
  4274. int s0,
  4275. int s1,
  4276. int p0,
  4277. int p1,
  4278. int d0,
  4279. int d1,
  4280. bool is_2D) {
  4281. if(is_2D) {
  4282. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4283. } else {
  4284. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4285. }
  4286. bool is_node = false;
  4287. if (a->grad || b->grad) {
  4288. GGML_ASSERT(false); // TODO: implement backward
  4289. is_node = true;
  4290. }
  4291. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4292. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4293. const int64_t ne[4] = {
  4294. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4295. OW,
  4296. is_2D ? OH : b->ne[2],
  4297. is_2D ? b->ne[3] : 1,
  4298. };
  4299. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4300. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4301. ggml_set_op_params(result, params, sizeof(params));
  4302. result->op = GGML_OP_IM2COL;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src[0] = a;
  4305. result->src[1] = b;
  4306. return result;
  4307. }
  4308. // a: [OC,IC, KH, KW]
  4309. // b: [N, IC, IH, IW]
  4310. // result: [N, OC, OH, OW]
  4311. struct ggml_tensor * ggml_conv_2d(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b,
  4315. int s0,
  4316. int s1,
  4317. int p0,
  4318. int p1,
  4319. int d0,
  4320. int d1) {
  4321. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4322. struct ggml_tensor * result =
  4323. ggml_mul_mat(ctx,
  4324. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4325. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4326. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4327. return result;
  4328. }
  4329. // ggml_conv_2d_sk_p0
  4330. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4335. }
  4336. // ggml_conv_2d_s1_ph
  4337. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b) {
  4341. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4342. }
  4343. // ggml_conv_transpose_2d_p0
  4344. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4345. return (ins - 1) * s - 2 * p + ks;
  4346. }
  4347. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. struct ggml_tensor * b,
  4351. int stride) {
  4352. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4353. bool is_node = false;
  4354. if (a->grad || b->grad) {
  4355. GGML_ASSERT(false); // TODO: implement backward
  4356. is_node = true;
  4357. }
  4358. const int64_t ne[4] = {
  4359. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4360. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4361. a->ne[2], b->ne[3],
  4362. };
  4363. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4364. ggml_set_op_params_i32(result, 0, stride);
  4365. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. result->src[1] = b;
  4369. return result;
  4370. }
  4371. // ggml_pool_*
  4372. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4373. return (ins + 2 * p - ks) / s + 1;
  4374. }
  4375. // ggml_pool_1d
  4376. struct ggml_tensor * ggml_pool_1d(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. enum ggml_op_pool op,
  4380. int k0,
  4381. int s0,
  4382. int p0) {
  4383. bool is_node = false;
  4384. if (a->grad) {
  4385. GGML_ASSERT(false); // TODO: implement backward
  4386. is_node = true;
  4387. }
  4388. const int64_t ne[3] = {
  4389. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4390. a->ne[1],
  4391. };
  4392. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4393. int32_t params[] = { op, k0, s0, p0 };
  4394. ggml_set_op_params(result, params, sizeof(params));
  4395. result->op = GGML_OP_POOL_1D;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. return result;
  4399. }
  4400. // ggml_pool_2d
  4401. struct ggml_tensor * ggml_pool_2d(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. enum ggml_op_pool op,
  4405. int k0,
  4406. int k1,
  4407. int s0,
  4408. int s1,
  4409. float p0,
  4410. float p1) {
  4411. bool is_node = false;
  4412. if (a->grad) {
  4413. GGML_ASSERT(false); // TODO: implement backward
  4414. is_node = true;
  4415. }
  4416. const int64_t ne[3] = {
  4417. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4418. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4419. a->ne[2],
  4420. };
  4421. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4422. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4423. ggml_set_op_params(result, params, sizeof(params));
  4424. result->op = GGML_OP_POOL_2D;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. // ggml_upscale
  4430. static struct ggml_tensor * ggml_upscale_impl(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int scale_factor) {
  4434. bool is_node = false;
  4435. if (a->grad) {
  4436. GGML_ASSERT(false); // TODO: implement backward
  4437. is_node = true;
  4438. }
  4439. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4440. a->ne[0] * scale_factor,
  4441. a->ne[1] * scale_factor,
  4442. a->ne[2], a->ne[3]);
  4443. result->op = GGML_OP_UPSCALE;
  4444. result->op_params[0] = scale_factor;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. result->src[1] = NULL;
  4448. return result;
  4449. }
  4450. struct ggml_tensor * ggml_upscale(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. int scale_factor) {
  4454. return ggml_upscale_impl(ctx, a, scale_factor);
  4455. }
  4456. // ggml_flash_attn
  4457. struct ggml_tensor * ggml_flash_attn(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * q,
  4460. struct ggml_tensor * k,
  4461. struct ggml_tensor * v,
  4462. bool masked) {
  4463. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4464. // TODO: check if vT can be multiplied by (k*qT)
  4465. bool is_node = false;
  4466. if (q->grad || k->grad || v->grad) {
  4467. is_node = true;
  4468. }
  4469. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4470. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4471. int32_t t = masked ? 1 : 0;
  4472. ggml_set_op_params(result, &t, sizeof(t));
  4473. result->op = GGML_OP_FLASH_ATTN;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src[0] = q;
  4476. result->src[1] = k;
  4477. result->src[2] = v;
  4478. return result;
  4479. }
  4480. // ggml_flash_ff
  4481. struct ggml_tensor * ggml_flash_ff(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b0,
  4485. struct ggml_tensor * b1,
  4486. struct ggml_tensor * c0,
  4487. struct ggml_tensor * c1) {
  4488. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4489. // TODO: more checks
  4490. bool is_node = false;
  4491. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4492. is_node = true;
  4493. }
  4494. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4496. result->op = GGML_OP_FLASH_FF;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. result->src[1] = b0;
  4500. result->src[2] = b1;
  4501. result->src[3] = c0;
  4502. result->src[4] = c1;
  4503. return result;
  4504. }
  4505. // ggml_flash_attn_back
  4506. struct ggml_tensor * ggml_flash_attn_back(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * q,
  4509. struct ggml_tensor * k,
  4510. struct ggml_tensor * v,
  4511. struct ggml_tensor * d,
  4512. bool masked) {
  4513. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4514. // TODO: check if vT can be multiplied by (k*qT)
  4515. // d shape [D,N,ne2,ne3]
  4516. // q shape [D,N,ne2,ne3]
  4517. // k shape [D,M,kvne2,ne3]
  4518. // v shape [M,D,kvne2,ne3]
  4519. const int64_t D = q->ne[0];
  4520. const int64_t N = q->ne[1];
  4521. const int64_t M = k->ne[1];
  4522. const int64_t ne2 = q->ne[2];
  4523. const int64_t ne3 = q->ne[3];
  4524. const int64_t kvne2 = k->ne[2];
  4525. GGML_ASSERT(k->ne[0] == D);
  4526. GGML_ASSERT(v->ne[0] == M);
  4527. GGML_ASSERT(v->ne[1] == D);
  4528. GGML_ASSERT(d->ne[0] == D);
  4529. GGML_ASSERT(d->ne[1] == N);
  4530. GGML_ASSERT(k->ne[2] == kvne2);
  4531. GGML_ASSERT(k->ne[3] == ne3);
  4532. GGML_ASSERT(v->ne[2] == kvne2);
  4533. GGML_ASSERT(v->ne[3] == ne3);
  4534. GGML_ASSERT(d->ne[2] == ne2);
  4535. GGML_ASSERT(d->ne[3] == ne3);
  4536. GGML_ASSERT(ne2 % kvne2 == 0);
  4537. bool is_node = false;
  4538. if (q->grad || k->grad || v->grad) {
  4539. // when using this operation (in backwards pass) these grads are set.
  4540. // we don't want to create (big) grad of our result, so is_node is false.
  4541. is_node = false;
  4542. }
  4543. // store gradients of q, k and v as continuous tensors concatenated in result.
  4544. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4545. const int64_t elem_q = ggml_nelements(q);
  4546. const int64_t elem_k = ggml_nelements(k);
  4547. const int64_t elem_v = ggml_nelements(v);
  4548. enum ggml_type result_type = GGML_TYPE_F32;
  4549. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4550. const size_t tsize = ggml_type_size(result_type);
  4551. const size_t offs_q = 0;
  4552. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4553. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4554. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4555. const size_t nelements = (end + tsize - 1)/tsize;
  4556. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4557. int32_t masked_i = masked ? 1 : 0;
  4558. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4559. result->op = GGML_OP_FLASH_ATTN_BACK;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = q;
  4562. result->src[1] = k;
  4563. result->src[2] = v;
  4564. result->src[3] = d;
  4565. return result;
  4566. }
  4567. // ggml_win_part
  4568. struct ggml_tensor * ggml_win_part(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. int w) {
  4572. GGML_ASSERT(a->ne[3] == 1);
  4573. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4574. bool is_node = false;
  4575. if (a->grad) {
  4576. GGML_ASSERT(false); // TODO: implement backward
  4577. is_node = true;
  4578. }
  4579. // padding
  4580. const int px = (w - a->ne[1]%w)%w;
  4581. const int py = (w - a->ne[2]%w)%w;
  4582. const int npx = (px + a->ne[1])/w;
  4583. const int npy = (py + a->ne[2])/w;
  4584. const int np = npx*npy;
  4585. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4587. int32_t params[] = { npx, npy, w };
  4588. ggml_set_op_params(result, params, sizeof(params));
  4589. result->op = GGML_OP_WIN_PART;
  4590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4591. result->src[0] = a;
  4592. return result;
  4593. }
  4594. // ggml_win_unpart
  4595. struct ggml_tensor * ggml_win_unpart(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. int w0,
  4599. int h0,
  4600. int w) {
  4601. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4602. bool is_node = false;
  4603. if (a->grad) {
  4604. GGML_ASSERT(false); // TODO: implement backward
  4605. is_node = true;
  4606. }
  4607. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4608. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4609. int32_t params[] = { w };
  4610. ggml_set_op_params(result, params, sizeof(params));
  4611. result->op = GGML_OP_WIN_UNPART;
  4612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4613. result->src[0] = a;
  4614. return result;
  4615. }
  4616. // ggml_get_rel_pos
  4617. struct ggml_tensor * ggml_get_rel_pos(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. int qh,
  4621. int kh) {
  4622. GGML_ASSERT(qh == kh);
  4623. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4624. bool is_node = false;
  4625. if (a->grad) {
  4626. GGML_ASSERT(false); // TODO: implement backward
  4627. is_node = true;
  4628. }
  4629. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4630. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4631. result->op = GGML_OP_GET_REL_POS;
  4632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4633. result->src[0] = a;
  4634. result->src[1] = NULL;
  4635. return result;
  4636. }
  4637. // ggml_add_rel_pos
  4638. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * pw,
  4642. struct ggml_tensor * ph,
  4643. bool inplace) {
  4644. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4645. GGML_ASSERT(ggml_is_contiguous(a));
  4646. GGML_ASSERT(ggml_is_contiguous(pw));
  4647. GGML_ASSERT(ggml_is_contiguous(ph));
  4648. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4649. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4650. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4651. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4652. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4653. bool is_node = false;
  4654. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4655. is_node = true;
  4656. }
  4657. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4658. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4659. result->op = GGML_OP_ADD_REL_POS;
  4660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4661. result->src[0] = a;
  4662. result->src[1] = pw;
  4663. result->src[2] = ph;
  4664. return result;
  4665. }
  4666. struct ggml_tensor * ggml_add_rel_pos(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. struct ggml_tensor * pw,
  4670. struct ggml_tensor * ph) {
  4671. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4672. }
  4673. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. struct ggml_tensor * pw,
  4677. struct ggml_tensor * ph) {
  4678. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4679. }
  4680. // gmml_unary
  4681. static struct ggml_tensor * ggml_unary_impl(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. enum ggml_unary_op op,
  4685. bool inplace) {
  4686. bool is_node = false;
  4687. if (!inplace && (a->grad)) {
  4688. is_node = true;
  4689. }
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4692. result->op = GGML_OP_UNARY;
  4693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4694. result->src[0] = a;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_unary(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. enum ggml_unary_op op) {
  4701. return ggml_unary_impl(ctx, a, op, false);
  4702. }
  4703. struct ggml_tensor * ggml_unary_inplace(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. enum ggml_unary_op op) {
  4707. return ggml_unary_impl(ctx, a, op, true);
  4708. }
  4709. // ggml_map_unary
  4710. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. const ggml_unary_op_f32_t fun,
  4714. bool inplace) {
  4715. bool is_node = false;
  4716. if (!inplace && a->grad) {
  4717. is_node = true;
  4718. }
  4719. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4720. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4721. result->op = GGML_OP_MAP_UNARY;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src[0] = a;
  4724. return result;
  4725. }
  4726. struct ggml_tensor * ggml_map_unary_f32(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. const ggml_unary_op_f32_t fun) {
  4730. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4731. }
  4732. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. const ggml_unary_op_f32_t fun) {
  4736. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4737. }
  4738. // ggml_map_binary
  4739. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a,
  4742. struct ggml_tensor * b,
  4743. const ggml_binary_op_f32_t fun,
  4744. bool inplace) {
  4745. GGML_ASSERT(ggml_are_same_shape(a, b));
  4746. bool is_node = false;
  4747. if (!inplace && (a->grad || b->grad)) {
  4748. is_node = true;
  4749. }
  4750. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4751. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4752. result->op = GGML_OP_MAP_BINARY;
  4753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4754. result->src[0] = a;
  4755. result->src[1] = b;
  4756. return result;
  4757. }
  4758. struct ggml_tensor * ggml_map_binary_f32(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a,
  4761. struct ggml_tensor * b,
  4762. const ggml_binary_op_f32_t fun) {
  4763. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4764. }
  4765. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. struct ggml_tensor * b,
  4769. const ggml_binary_op_f32_t fun) {
  4770. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4771. }
  4772. // ggml_map_custom1_f32
  4773. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. const ggml_custom1_op_f32_t fun,
  4777. bool inplace) {
  4778. bool is_node = false;
  4779. if (!inplace && a->grad) {
  4780. is_node = true;
  4781. }
  4782. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4783. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4784. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. return result;
  4788. }
  4789. struct ggml_tensor * ggml_map_custom1_f32(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. const ggml_custom1_op_f32_t fun) {
  4793. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4794. }
  4795. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. const ggml_custom1_op_f32_t fun) {
  4799. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4800. }
  4801. // ggml_map_custom2_f32
  4802. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a,
  4805. struct ggml_tensor * b,
  4806. const ggml_custom2_op_f32_t fun,
  4807. bool inplace) {
  4808. bool is_node = false;
  4809. if (!inplace && (a->grad || b->grad)) {
  4810. is_node = true;
  4811. }
  4812. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4813. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4814. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4816. result->src[0] = a;
  4817. result->src[1] = b;
  4818. return result;
  4819. }
  4820. struct ggml_tensor * ggml_map_custom2_f32(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. struct ggml_tensor * b,
  4824. const ggml_custom2_op_f32_t fun) {
  4825. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4826. }
  4827. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. struct ggml_tensor * b,
  4831. const ggml_custom2_op_f32_t fun) {
  4832. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4833. }
  4834. // ggml_map_custom3_f32
  4835. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. struct ggml_tensor * b,
  4839. struct ggml_tensor * c,
  4840. const ggml_custom3_op_f32_t fun,
  4841. bool inplace) {
  4842. bool is_node = false;
  4843. if (!inplace && (a->grad || b->grad || c->grad)) {
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4847. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4848. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. result->src[1] = b;
  4852. result->src[2] = c;
  4853. return result;
  4854. }
  4855. struct ggml_tensor * ggml_map_custom3_f32(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b,
  4859. struct ggml_tensor * c,
  4860. const ggml_custom3_op_f32_t fun) {
  4861. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4862. }
  4863. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. struct ggml_tensor * c,
  4868. const ggml_custom3_op_f32_t fun) {
  4869. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4870. }
  4871. // ggml_map_custom1
  4872. struct ggml_map_custom1_op_params {
  4873. ggml_custom1_op_t fun;
  4874. int n_tasks;
  4875. void * userdata;
  4876. };
  4877. static struct ggml_tensor * ggml_map_custom1_impl(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. const ggml_custom1_op_t fun,
  4881. int n_tasks,
  4882. void * userdata,
  4883. bool inplace) {
  4884. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4885. bool is_node = false;
  4886. if (!inplace && a->grad) {
  4887. is_node = true;
  4888. }
  4889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4890. struct ggml_map_custom1_op_params params = {
  4891. /*.fun =*/ fun,
  4892. /*.n_tasks =*/ n_tasks,
  4893. /*.userdata =*/ userdata
  4894. };
  4895. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4896. result->op = GGML_OP_MAP_CUSTOM1;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. return result;
  4900. }
  4901. struct ggml_tensor * ggml_map_custom1(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. const ggml_custom1_op_t fun,
  4905. int n_tasks,
  4906. void * userdata) {
  4907. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4908. }
  4909. struct ggml_tensor * ggml_map_custom1_inplace(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. const ggml_custom1_op_t fun,
  4913. int n_tasks,
  4914. void * userdata) {
  4915. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4916. }
  4917. // ggml_map_custom2
  4918. struct ggml_map_custom2_op_params {
  4919. ggml_custom2_op_t fun;
  4920. int n_tasks;
  4921. void * userdata;
  4922. };
  4923. static struct ggml_tensor * ggml_map_custom2_impl(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. struct ggml_tensor * b,
  4927. const ggml_custom2_op_t fun,
  4928. int n_tasks,
  4929. void * userdata,
  4930. bool inplace) {
  4931. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4932. bool is_node = false;
  4933. if (!inplace && (a->grad || b->grad)) {
  4934. is_node = true;
  4935. }
  4936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4937. struct ggml_map_custom2_op_params params = {
  4938. /*.fun =*/ fun,
  4939. /*.n_tasks =*/ n_tasks,
  4940. /*.userdata =*/ userdata
  4941. };
  4942. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4943. result->op = GGML_OP_MAP_CUSTOM2;
  4944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4945. result->src[0] = a;
  4946. result->src[1] = b;
  4947. return result;
  4948. }
  4949. struct ggml_tensor * ggml_map_custom2(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a,
  4952. struct ggml_tensor * b,
  4953. const ggml_custom2_op_t fun,
  4954. int n_tasks,
  4955. void * userdata) {
  4956. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4957. }
  4958. struct ggml_tensor * ggml_map_custom2_inplace(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b,
  4962. const ggml_custom2_op_t fun,
  4963. int n_tasks,
  4964. void * userdata) {
  4965. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  4966. }
  4967. // ggml_map_custom3
  4968. struct ggml_map_custom3_op_params {
  4969. ggml_custom3_op_t fun;
  4970. int n_tasks;
  4971. void * userdata;
  4972. };
  4973. static struct ggml_tensor * ggml_map_custom3_impl(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * b,
  4977. struct ggml_tensor * c,
  4978. const ggml_custom3_op_t fun,
  4979. int n_tasks,
  4980. void * userdata,
  4981. bool inplace) {
  4982. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4983. bool is_node = false;
  4984. if (!inplace && (a->grad || b->grad || c->grad)) {
  4985. is_node = true;
  4986. }
  4987. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4988. struct ggml_map_custom3_op_params params = {
  4989. /*.fun =*/ fun,
  4990. /*.n_tasks =*/ n_tasks,
  4991. /*.userdata =*/ userdata
  4992. };
  4993. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4994. result->op = GGML_OP_MAP_CUSTOM3;
  4995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4996. result->src[0] = a;
  4997. result->src[1] = b;
  4998. result->src[2] = c;
  4999. return result;
  5000. }
  5001. struct ggml_tensor * ggml_map_custom3(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. struct ggml_tensor * c,
  5006. const ggml_custom3_op_t fun,
  5007. int n_tasks,
  5008. void * userdata) {
  5009. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5010. }
  5011. struct ggml_tensor * ggml_map_custom3_inplace(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. struct ggml_tensor * b,
  5015. struct ggml_tensor * c,
  5016. const ggml_custom3_op_t fun,
  5017. int n_tasks,
  5018. void * userdata) {
  5019. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5020. }
  5021. // ggml_cross_entropy_loss
  5022. struct ggml_tensor * ggml_cross_entropy_loss(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. struct ggml_tensor * b) {
  5026. GGML_ASSERT(ggml_are_same_shape(a, b));
  5027. bool is_node = false;
  5028. if (a->grad || b->grad) {
  5029. is_node = true;
  5030. }
  5031. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5032. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. result->src[1] = b;
  5036. return result;
  5037. }
  5038. // ggml_cross_entropy_loss_back
  5039. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. struct ggml_tensor * b,
  5043. struct ggml_tensor * c) {
  5044. GGML_ASSERT(ggml_are_same_shape(a, b));
  5045. GGML_ASSERT(ggml_is_scalar(c));
  5046. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5047. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5048. result->grad = NULL;
  5049. result->src[0] = a;
  5050. result->src[1] = b;
  5051. result->src[2] = c;
  5052. return result;
  5053. }
  5054. ////////////////////////////////////////////////////////////////////////////////
  5055. void ggml_set_param(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * tensor) {
  5058. tensor->is_param = true;
  5059. GGML_ASSERT(tensor->grad == NULL);
  5060. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5061. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5062. }
  5063. // ggml_compute_forward_dup
  5064. static void ggml_compute_forward_dup_same_cont(
  5065. const struct ggml_compute_params * params,
  5066. const struct ggml_tensor * src0,
  5067. struct ggml_tensor * dst) {
  5068. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5069. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5070. GGML_ASSERT(src0->type == dst->type);
  5071. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5072. return;
  5073. }
  5074. const size_t nb00 = src0->nb[0];
  5075. const size_t nb0 = dst->nb[0];
  5076. const int ith = params->ith; // thread index
  5077. const int nth = params->nth; // number of threads
  5078. // parallelize by elements
  5079. const int ne = ggml_nelements(dst);
  5080. const int dr = (ne + nth - 1) / nth;
  5081. const int ie0 = dr * ith;
  5082. const int ie1 = MIN(ie0 + dr, ne);
  5083. if (ie0 < ie1) {
  5084. memcpy(
  5085. ((char *) dst->data + ie0*nb0),
  5086. ((char *) src0->data + ie0*nb00),
  5087. (ie1 - ie0) * ggml_type_size(src0->type));
  5088. }
  5089. }
  5090. static void ggml_compute_forward_dup_f16(
  5091. const struct ggml_compute_params * params,
  5092. const struct ggml_tensor * src0,
  5093. struct ggml_tensor * dst) {
  5094. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5096. return;
  5097. }
  5098. GGML_TENSOR_UNARY_OP_LOCALS
  5099. const int ith = params->ith; // thread index
  5100. const int nth = params->nth; // number of threads
  5101. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5102. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5103. return;
  5104. }
  5105. // parallelize by rows
  5106. const int nr = ne01;
  5107. // number of rows per thread
  5108. const int dr = (nr + nth - 1) / nth;
  5109. // row range for this thread
  5110. const int ir0 = dr * ith;
  5111. const int ir1 = MIN(ir0 + dr, nr);
  5112. if (src0->type == dst->type &&
  5113. ne00 == ne0 &&
  5114. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5115. // copy by rows
  5116. const size_t rs = ne00*nb00;
  5117. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5118. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5119. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5120. memcpy(
  5121. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5122. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5123. rs);
  5124. }
  5125. }
  5126. }
  5127. return;
  5128. }
  5129. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5130. if (ggml_is_contiguous(dst)) {
  5131. if (nb00 == sizeof(ggml_fp16_t)) {
  5132. if (dst->type == GGML_TYPE_F16) {
  5133. size_t id = 0;
  5134. const size_t rs = ne00 * nb00;
  5135. char * dst_ptr = (char *) dst->data;
  5136. for (int i03 = 0; i03 < ne03; i03++) {
  5137. for (int i02 = 0; i02 < ne02; i02++) {
  5138. id += rs * ir0;
  5139. for (int i01 = ir0; i01 < ir1; i01++) {
  5140. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5141. memcpy(dst_ptr + id, src0_ptr, rs);
  5142. id += rs;
  5143. }
  5144. id += rs * (ne01 - ir1);
  5145. }
  5146. }
  5147. } else if (dst->type == GGML_TYPE_F32) {
  5148. size_t id = 0;
  5149. float * dst_ptr = (float *) dst->data;
  5150. for (int i03 = 0; i03 < ne03; i03++) {
  5151. for (int i02 = 0; i02 < ne02; i02++) {
  5152. id += ne00 * ir0;
  5153. for (int i01 = ir0; i01 < ir1; i01++) {
  5154. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5155. for (int i00 = 0; i00 < ne00; i00++) {
  5156. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5157. id++;
  5158. }
  5159. }
  5160. id += ne00 * (ne01 - ir1);
  5161. }
  5162. }
  5163. } else if (type_traits[dst->type].from_float) {
  5164. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5165. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5166. size_t id = 0;
  5167. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5168. char * dst_ptr = (char *) dst->data;
  5169. for (int i03 = 0; i03 < ne03; i03++) {
  5170. for (int i02 = 0; i02 < ne02; i02++) {
  5171. id += rs * ir0;
  5172. for (int i01 = ir0; i01 < ir1; i01++) {
  5173. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5174. for (int i00 = 0; i00 < ne00; i00++) {
  5175. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5176. }
  5177. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5178. id += rs;
  5179. }
  5180. id += rs * (ne01 - ir1);
  5181. }
  5182. }
  5183. } else {
  5184. GGML_ASSERT(false); // TODO: implement
  5185. }
  5186. } else {
  5187. //printf("%s: this is not optimal - fix me\n", __func__);
  5188. if (dst->type == GGML_TYPE_F32) {
  5189. size_t id = 0;
  5190. float * dst_ptr = (float *) dst->data;
  5191. for (int i03 = 0; i03 < ne03; i03++) {
  5192. for (int i02 = 0; i02 < ne02; i02++) {
  5193. id += ne00 * ir0;
  5194. for (int i01 = ir0; i01 < ir1; i01++) {
  5195. for (int i00 = 0; i00 < ne00; i00++) {
  5196. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5197. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5198. id++;
  5199. }
  5200. }
  5201. id += ne00 * (ne01 - ir1);
  5202. }
  5203. }
  5204. } else if (dst->type == GGML_TYPE_F16) {
  5205. size_t id = 0;
  5206. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5207. for (int i03 = 0; i03 < ne03; i03++) {
  5208. for (int i02 = 0; i02 < ne02; i02++) {
  5209. id += ne00 * ir0;
  5210. for (int i01 = ir0; i01 < ir1; i01++) {
  5211. for (int i00 = 0; i00 < ne00; i00++) {
  5212. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5213. dst_ptr[id] = *src0_ptr;
  5214. id++;
  5215. }
  5216. }
  5217. id += ne00 * (ne01 - ir1);
  5218. }
  5219. }
  5220. } else {
  5221. GGML_ASSERT(false); // TODO: implement
  5222. }
  5223. }
  5224. return;
  5225. }
  5226. // dst counters
  5227. int64_t i10 = 0;
  5228. int64_t i11 = 0;
  5229. int64_t i12 = 0;
  5230. int64_t i13 = 0;
  5231. if (dst->type == GGML_TYPE_F16) {
  5232. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5233. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5234. i10 += ne00 * ir0;
  5235. while (i10 >= ne0) {
  5236. i10 -= ne0;
  5237. if (++i11 == ne1) {
  5238. i11 = 0;
  5239. if (++i12 == ne2) {
  5240. i12 = 0;
  5241. if (++i13 == ne3) {
  5242. i13 = 0;
  5243. }
  5244. }
  5245. }
  5246. }
  5247. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5248. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5249. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5250. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5251. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5252. if (++i10 == ne00) {
  5253. i10 = 0;
  5254. if (++i11 == ne01) {
  5255. i11 = 0;
  5256. if (++i12 == ne02) {
  5257. i12 = 0;
  5258. if (++i13 == ne03) {
  5259. i13 = 0;
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. }
  5266. i10 += ne00 * (ne01 - ir1);
  5267. while (i10 >= ne0) {
  5268. i10 -= ne0;
  5269. if (++i11 == ne1) {
  5270. i11 = 0;
  5271. if (++i12 == ne2) {
  5272. i12 = 0;
  5273. if (++i13 == ne3) {
  5274. i13 = 0;
  5275. }
  5276. }
  5277. }
  5278. }
  5279. }
  5280. }
  5281. } else if (dst->type == GGML_TYPE_F32) {
  5282. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5283. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5284. i10 += ne00 * ir0;
  5285. while (i10 >= ne0) {
  5286. i10 -= ne0;
  5287. if (++i11 == ne1) {
  5288. i11 = 0;
  5289. if (++i12 == ne2) {
  5290. i12 = 0;
  5291. if (++i13 == ne3) {
  5292. i13 = 0;
  5293. }
  5294. }
  5295. }
  5296. }
  5297. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5298. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5299. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5300. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5301. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5302. if (++i10 == ne0) {
  5303. i10 = 0;
  5304. if (++i11 == ne1) {
  5305. i11 = 0;
  5306. if (++i12 == ne2) {
  5307. i12 = 0;
  5308. if (++i13 == ne3) {
  5309. i13 = 0;
  5310. }
  5311. }
  5312. }
  5313. }
  5314. }
  5315. }
  5316. i10 += ne00 * (ne01 - ir1);
  5317. while (i10 >= ne0) {
  5318. i10 -= ne0;
  5319. if (++i11 == ne1) {
  5320. i11 = 0;
  5321. if (++i12 == ne2) {
  5322. i12 = 0;
  5323. if (++i13 == ne3) {
  5324. i13 = 0;
  5325. }
  5326. }
  5327. }
  5328. }
  5329. }
  5330. }
  5331. } else {
  5332. GGML_ASSERT(false); // TODO: implement
  5333. }
  5334. }
  5335. static void ggml_compute_forward_dup_f32(
  5336. const struct ggml_compute_params * params,
  5337. const struct ggml_tensor * src0,
  5338. struct ggml_tensor * dst) {
  5339. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5341. return;
  5342. }
  5343. GGML_TENSOR_UNARY_OP_LOCALS
  5344. const int ith = params->ith; // thread index
  5345. const int nth = params->nth; // number of threads
  5346. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5347. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5348. return;
  5349. }
  5350. // parallelize by rows
  5351. const int nr = ne01;
  5352. // number of rows per thread
  5353. const int dr = (nr + nth - 1) / nth;
  5354. // row range for this thread
  5355. const int ir0 = dr * ith;
  5356. const int ir1 = MIN(ir0 + dr, nr);
  5357. if (src0->type == dst->type &&
  5358. ne00 == ne0 &&
  5359. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5360. // copy by rows
  5361. const size_t rs = ne00*nb00;
  5362. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5363. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5364. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5365. memcpy(
  5366. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5367. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5368. rs);
  5369. }
  5370. }
  5371. }
  5372. return;
  5373. }
  5374. if (ggml_is_contiguous(dst)) {
  5375. // TODO: simplify
  5376. if (nb00 == sizeof(float)) {
  5377. if (dst->type == GGML_TYPE_F32) {
  5378. size_t id = 0;
  5379. const size_t rs = ne00 * nb00;
  5380. char * dst_ptr = (char *) dst->data;
  5381. for (int i03 = 0; i03 < ne03; i03++) {
  5382. for (int i02 = 0; i02 < ne02; i02++) {
  5383. id += rs * ir0;
  5384. for (int i01 = ir0; i01 < ir1; i01++) {
  5385. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5386. memcpy(dst_ptr + id, src0_ptr, rs);
  5387. id += rs;
  5388. }
  5389. id += rs * (ne01 - ir1);
  5390. }
  5391. }
  5392. } else if (type_traits[dst->type].from_float) {
  5393. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5394. size_t id = 0;
  5395. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5396. char * dst_ptr = (char *) dst->data;
  5397. for (int i03 = 0; i03 < ne03; i03++) {
  5398. for (int i02 = 0; i02 < ne02; i02++) {
  5399. id += rs * ir0;
  5400. for (int i01 = ir0; i01 < ir1; i01++) {
  5401. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5402. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5403. id += rs;
  5404. }
  5405. id += rs * (ne01 - ir1);
  5406. }
  5407. }
  5408. } else {
  5409. GGML_ASSERT(false); // TODO: implement
  5410. }
  5411. } else {
  5412. //printf("%s: this is not optimal - fix me\n", __func__);
  5413. if (dst->type == GGML_TYPE_F32) {
  5414. size_t id = 0;
  5415. float * dst_ptr = (float *) dst->data;
  5416. for (int i03 = 0; i03 < ne03; i03++) {
  5417. for (int i02 = 0; i02 < ne02; i02++) {
  5418. id += ne00 * ir0;
  5419. for (int i01 = ir0; i01 < ir1; i01++) {
  5420. for (int i00 = 0; i00 < ne00; i00++) {
  5421. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5422. dst_ptr[id] = *src0_ptr;
  5423. id++;
  5424. }
  5425. }
  5426. id += ne00 * (ne01 - ir1);
  5427. }
  5428. }
  5429. } else if (dst->type == GGML_TYPE_F16) {
  5430. size_t id = 0;
  5431. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5432. for (int i03 = 0; i03 < ne03; i03++) {
  5433. for (int i02 = 0; i02 < ne02; i02++) {
  5434. id += ne00 * ir0;
  5435. for (int i01 = ir0; i01 < ir1; i01++) {
  5436. for (int i00 = 0; i00 < ne00; i00++) {
  5437. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5438. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5439. id++;
  5440. }
  5441. }
  5442. id += ne00 * (ne01 - ir1);
  5443. }
  5444. }
  5445. } else {
  5446. GGML_ASSERT(false); // TODO: implement
  5447. }
  5448. }
  5449. return;
  5450. }
  5451. // dst counters
  5452. int64_t i10 = 0;
  5453. int64_t i11 = 0;
  5454. int64_t i12 = 0;
  5455. int64_t i13 = 0;
  5456. if (dst->type == GGML_TYPE_F32) {
  5457. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5458. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5459. i10 += ne00 * ir0;
  5460. while (i10 >= ne0) {
  5461. i10 -= ne0;
  5462. if (++i11 == ne1) {
  5463. i11 = 0;
  5464. if (++i12 == ne2) {
  5465. i12 = 0;
  5466. if (++i13 == ne3) {
  5467. i13 = 0;
  5468. }
  5469. }
  5470. }
  5471. }
  5472. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5473. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5474. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5475. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5476. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5477. if (++i10 == ne0) {
  5478. i10 = 0;
  5479. if (++i11 == ne1) {
  5480. i11 = 0;
  5481. if (++i12 == ne2) {
  5482. i12 = 0;
  5483. if (++i13 == ne3) {
  5484. i13 = 0;
  5485. }
  5486. }
  5487. }
  5488. }
  5489. }
  5490. }
  5491. i10 += ne00 * (ne01 - ir1);
  5492. while (i10 >= ne0) {
  5493. i10 -= ne0;
  5494. if (++i11 == ne1) {
  5495. i11 = 0;
  5496. if (++i12 == ne2) {
  5497. i12 = 0;
  5498. if (++i13 == ne3) {
  5499. i13 = 0;
  5500. }
  5501. }
  5502. }
  5503. }
  5504. }
  5505. }
  5506. } else if (dst->type == GGML_TYPE_F16) {
  5507. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5508. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5509. i10 += ne00 * ir0;
  5510. while (i10 >= ne0) {
  5511. i10 -= ne0;
  5512. if (++i11 == ne1) {
  5513. i11 = 0;
  5514. if (++i12 == ne2) {
  5515. i12 = 0;
  5516. if (++i13 == ne3) {
  5517. i13 = 0;
  5518. }
  5519. }
  5520. }
  5521. }
  5522. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5523. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5524. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5525. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5526. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5527. if (++i10 == ne0) {
  5528. i10 = 0;
  5529. if (++i11 == ne1) {
  5530. i11 = 0;
  5531. if (++i12 == ne2) {
  5532. i12 = 0;
  5533. if (++i13 == ne3) {
  5534. i13 = 0;
  5535. }
  5536. }
  5537. }
  5538. }
  5539. }
  5540. }
  5541. i10 += ne00 * (ne01 - ir1);
  5542. while (i10 >= ne0) {
  5543. i10 -= ne0;
  5544. if (++i11 == ne1) {
  5545. i11 = 0;
  5546. if (++i12 == ne2) {
  5547. i12 = 0;
  5548. if (++i13 == ne3) {
  5549. i13 = 0;
  5550. }
  5551. }
  5552. }
  5553. }
  5554. }
  5555. }
  5556. } else {
  5557. GGML_ASSERT(false); // TODO: implement
  5558. }
  5559. }
  5560. static void ggml_compute_forward_dup(
  5561. const struct ggml_compute_params * params,
  5562. const struct ggml_tensor * src0,
  5563. struct ggml_tensor * dst) {
  5564. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5565. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5566. return;
  5567. }
  5568. switch (src0->type) {
  5569. case GGML_TYPE_F16:
  5570. {
  5571. ggml_compute_forward_dup_f16(params, src0, dst);
  5572. } break;
  5573. case GGML_TYPE_F32:
  5574. {
  5575. ggml_compute_forward_dup_f32(params, src0, dst);
  5576. } break;
  5577. default:
  5578. {
  5579. GGML_ASSERT(false);
  5580. } break;
  5581. }
  5582. }
  5583. // ggml_compute_forward_add
  5584. static void ggml_compute_forward_add_f32(
  5585. const struct ggml_compute_params * params,
  5586. const struct ggml_tensor * src0,
  5587. const struct ggml_tensor * src1,
  5588. struct ggml_tensor * dst) {
  5589. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5591. return;
  5592. }
  5593. const int ith = params->ith;
  5594. const int nth = params->nth;
  5595. const int nr = ggml_nrows(src0);
  5596. GGML_TENSOR_BINARY_OP_LOCALS
  5597. GGML_ASSERT( nb0 == sizeof(float));
  5598. GGML_ASSERT(nb00 == sizeof(float));
  5599. // rows per thread
  5600. const int dr = (nr + nth - 1)/nth;
  5601. // row range for this thread
  5602. const int ir0 = dr*ith;
  5603. const int ir1 = MIN(ir0 + dr, nr);
  5604. if (nb10 == sizeof(float)) {
  5605. for (int ir = ir0; ir < ir1; ++ir) {
  5606. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5607. const int64_t i03 = ir/(ne02*ne01);
  5608. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5609. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5610. const int64_t i13 = i03 % ne13;
  5611. const int64_t i12 = i02 % ne12;
  5612. const int64_t i11 = i01 % ne11;
  5613. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5614. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5615. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5616. #ifdef GGML_USE_ACCELERATE
  5617. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5618. #else
  5619. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5620. #endif
  5621. }
  5622. } else {
  5623. // src1 is not contiguous
  5624. for (int ir = ir0; ir < ir1; ++ir) {
  5625. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5626. const int64_t i03 = ir/(ne02*ne01);
  5627. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5628. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5629. const int64_t i13 = i03 % ne13;
  5630. const int64_t i12 = i02 % ne12;
  5631. const int64_t i11 = i01 % ne11;
  5632. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5633. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5634. for (int i0 = 0; i0 < ne0; i0++) {
  5635. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5636. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5637. }
  5638. }
  5639. }
  5640. }
  5641. static void ggml_compute_forward_add_f16_f32(
  5642. const struct ggml_compute_params * params,
  5643. const struct ggml_tensor * src0,
  5644. const struct ggml_tensor * src1,
  5645. struct ggml_tensor * dst) {
  5646. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5648. return;
  5649. }
  5650. const int ith = params->ith;
  5651. const int nth = params->nth;
  5652. const int nr = ggml_nrows(src0);
  5653. GGML_TENSOR_BINARY_OP_LOCALS
  5654. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5655. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5656. if (dst->type == GGML_TYPE_F32) {
  5657. GGML_ASSERT( nb0 == sizeof(float));
  5658. }
  5659. else {
  5660. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5661. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5662. }
  5663. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5664. // rows per thread
  5665. const int dr = (nr + nth - 1)/nth;
  5666. // row range for this thread
  5667. const int ir0 = dr*ith;
  5668. const int ir1 = MIN(ir0 + dr, nr);
  5669. if (nb10 == sizeof(float)) {
  5670. if (dst->type == GGML_TYPE_F16) {
  5671. for (int ir = ir0; ir < ir1; ++ir) {
  5672. // src0, src1 and dst are same shape => same indices
  5673. const int i3 = ir/(ne2*ne1);
  5674. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5675. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5676. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5677. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5678. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5679. for (int i = 0; i < ne0; i++) {
  5680. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5681. }
  5682. }
  5683. } else {
  5684. for (int ir = ir0; ir < ir1; ++ir) {
  5685. // src0, src1 and dst are same shape => same indices
  5686. const int i3 = ir/(ne2*ne1);
  5687. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5688. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5689. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5690. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5691. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5692. for (int i = 0; i < ne0; i++) {
  5693. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5694. }
  5695. }
  5696. }
  5697. }
  5698. else {
  5699. // src1 is not contiguous
  5700. GGML_ASSERT(false);
  5701. }
  5702. }
  5703. static void ggml_compute_forward_add_f16_f16(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. const int ith = params->ith;
  5713. const int nth = params->nth;
  5714. const int nr = ggml_nrows(src0);
  5715. GGML_TENSOR_BINARY_OP_LOCALS
  5716. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5717. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5718. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5719. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5720. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5721. // rows per thread
  5722. const int dr = (nr + nth - 1)/nth;
  5723. // row range for this thread
  5724. const int ir0 = dr*ith;
  5725. const int ir1 = MIN(ir0 + dr, nr);
  5726. if (nb10 == sizeof(ggml_fp16_t)) {
  5727. for (int ir = ir0; ir < ir1; ++ir) {
  5728. // src0, src1 and dst are same shape => same indices
  5729. const int i3 = ir/(ne2*ne1);
  5730. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5731. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5732. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5733. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5734. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5735. for (int i = 0; i < ne0; i++) {
  5736. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5737. }
  5738. }
  5739. }
  5740. else {
  5741. // src1 is not contiguous
  5742. GGML_ASSERT(false);
  5743. }
  5744. }
  5745. static void ggml_compute_forward_add_q_f32(
  5746. const struct ggml_compute_params * params,
  5747. const struct ggml_tensor * src0,
  5748. const struct ggml_tensor * src1,
  5749. struct ggml_tensor * dst) {
  5750. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5752. return;
  5753. }
  5754. const int nr = ggml_nrows(src0);
  5755. GGML_TENSOR_BINARY_OP_LOCALS
  5756. const int ith = params->ith;
  5757. const int nth = params->nth;
  5758. const enum ggml_type type = src0->type;
  5759. const enum ggml_type dtype = dst->type;
  5760. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5761. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5762. // we don't support permuted src0 or src1
  5763. GGML_ASSERT(nb00 == ggml_type_size(type));
  5764. GGML_ASSERT(nb10 == sizeof(float));
  5765. // dst cannot be transposed or permuted
  5766. GGML_ASSERT(nb0 <= nb1);
  5767. GGML_ASSERT(nb1 <= nb2);
  5768. GGML_ASSERT(nb2 <= nb3);
  5769. GGML_ASSERT(ggml_is_quantized(src0->type));
  5770. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5771. // rows per thread
  5772. const int dr = (nr + nth - 1)/nth;
  5773. // row range for this thread
  5774. const int ir0 = dr*ith;
  5775. const int ir1 = MIN(ir0 + dr, nr);
  5776. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5777. for (int ir = ir0; ir < ir1; ++ir) {
  5778. // src0 indices
  5779. const int i03 = ir/(ne02*ne01);
  5780. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5781. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5782. // src1 and dst are same shape as src0 => same indices
  5783. const int i13 = i03;
  5784. const int i12 = i02;
  5785. const int i11 = i01;
  5786. const int i3 = i03;
  5787. const int i2 = i02;
  5788. const int i1 = i01;
  5789. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5790. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5791. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5792. assert(ne00 % 32 == 0);
  5793. // unquantize row from src0 to temp buffer
  5794. dequantize_row_q(src0_row, wdata, ne00);
  5795. // add src1
  5796. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5797. // quantize row to dst
  5798. if (quantize_row_q != NULL) {
  5799. quantize_row_q(wdata, dst_row, ne00);
  5800. } else {
  5801. memcpy(dst_row, wdata, ne0*nb0);
  5802. }
  5803. }
  5804. }
  5805. static void ggml_compute_forward_add(
  5806. const struct ggml_compute_params * params,
  5807. const struct ggml_tensor * src0,
  5808. const struct ggml_tensor * src1,
  5809. struct ggml_tensor * dst) {
  5810. switch (src0->type) {
  5811. case GGML_TYPE_F32:
  5812. {
  5813. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5814. } break;
  5815. case GGML_TYPE_F16:
  5816. {
  5817. if (src1->type == GGML_TYPE_F16) {
  5818. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5819. }
  5820. else if (src1->type == GGML_TYPE_F32) {
  5821. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5822. }
  5823. else {
  5824. GGML_ASSERT(false);
  5825. }
  5826. } break;
  5827. case GGML_TYPE_Q4_0:
  5828. case GGML_TYPE_Q4_1:
  5829. case GGML_TYPE_Q5_0:
  5830. case GGML_TYPE_Q5_1:
  5831. case GGML_TYPE_Q8_0:
  5832. case GGML_TYPE_Q2_K:
  5833. case GGML_TYPE_Q3_K:
  5834. case GGML_TYPE_Q4_K:
  5835. case GGML_TYPE_Q5_K:
  5836. case GGML_TYPE_Q6_K:
  5837. {
  5838. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5839. } break;
  5840. default:
  5841. {
  5842. GGML_ASSERT(false);
  5843. } break;
  5844. }
  5845. }
  5846. // ggml_compute_forward_add1
  5847. static void ggml_compute_forward_add1_f32(
  5848. const struct ggml_compute_params * params,
  5849. const struct ggml_tensor * src0,
  5850. const struct ggml_tensor * src1,
  5851. struct ggml_tensor * dst) {
  5852. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5853. GGML_ASSERT(ggml_is_scalar(src1));
  5854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5855. return;
  5856. }
  5857. const int ith = params->ith;
  5858. const int nth = params->nth;
  5859. const int nr = ggml_nrows(src0);
  5860. GGML_TENSOR_UNARY_OP_LOCALS
  5861. GGML_ASSERT( nb0 == sizeof(float));
  5862. GGML_ASSERT(nb00 == sizeof(float));
  5863. // rows per thread
  5864. const int dr = (nr + nth - 1)/nth;
  5865. // row range for this thread
  5866. const int ir0 = dr*ith;
  5867. const int ir1 = MIN(ir0 + dr, nr);
  5868. for (int ir = ir0; ir < ir1; ++ir) {
  5869. // src0 and dst are same shape => same indices
  5870. const int i3 = ir/(ne2*ne1);
  5871. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5872. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5873. #ifdef GGML_USE_ACCELERATE
  5874. UNUSED(ggml_vec_add1_f32);
  5875. vDSP_vadd(
  5876. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5877. (float *) ((char *) src1->data), 0,
  5878. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5879. ne0);
  5880. #else
  5881. ggml_vec_add1_f32(ne0,
  5882. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5883. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5884. *(float *) src1->data);
  5885. #endif
  5886. }
  5887. }
  5888. static void ggml_compute_forward_add1_f16_f32(
  5889. const struct ggml_compute_params * params,
  5890. const struct ggml_tensor * src0,
  5891. const struct ggml_tensor * src1,
  5892. struct ggml_tensor * dst) {
  5893. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5894. GGML_ASSERT(ggml_is_scalar(src1));
  5895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5896. return;
  5897. }
  5898. // scalar to add
  5899. const float v = *(float *) src1->data;
  5900. const int ith = params->ith;
  5901. const int nth = params->nth;
  5902. const int nr = ggml_nrows(src0);
  5903. GGML_TENSOR_UNARY_OP_LOCALS
  5904. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5905. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5906. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5907. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5908. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5909. // rows per thread
  5910. const int dr = (nr + nth - 1)/nth;
  5911. // row range for this thread
  5912. const int ir0 = dr*ith;
  5913. const int ir1 = MIN(ir0 + dr, nr);
  5914. for (int ir = ir0; ir < ir1; ++ir) {
  5915. // src0 and dst are same shape => same indices
  5916. const int i3 = ir/(ne2*ne1);
  5917. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5918. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5919. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5920. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5921. for (int i = 0; i < ne0; i++) {
  5922. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5923. }
  5924. }
  5925. }
  5926. static void ggml_compute_forward_add1_f16_f16(
  5927. const struct ggml_compute_params * params,
  5928. const struct ggml_tensor * src0,
  5929. const struct ggml_tensor * src1,
  5930. struct ggml_tensor * dst) {
  5931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5932. GGML_ASSERT(ggml_is_scalar(src1));
  5933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5934. return;
  5935. }
  5936. // scalar to add
  5937. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5938. const int ith = params->ith;
  5939. const int nth = params->nth;
  5940. const int nr = ggml_nrows(src0);
  5941. GGML_TENSOR_UNARY_OP_LOCALS
  5942. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5943. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5944. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5945. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5946. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5947. // rows per thread
  5948. const int dr = (nr + nth - 1)/nth;
  5949. // row range for this thread
  5950. const int ir0 = dr*ith;
  5951. const int ir1 = MIN(ir0 + dr, nr);
  5952. for (int ir = ir0; ir < ir1; ++ir) {
  5953. // src0 and dst are same shape => same indices
  5954. const int i3 = ir/(ne2*ne1);
  5955. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5956. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5957. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5958. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5959. for (int i = 0; i < ne0; i++) {
  5960. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5961. }
  5962. }
  5963. }
  5964. static void ggml_compute_forward_add1_q_f32(
  5965. const struct ggml_compute_params * params,
  5966. const struct ggml_tensor * src0,
  5967. const struct ggml_tensor * src1,
  5968. struct ggml_tensor * dst) {
  5969. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5970. GGML_ASSERT(ggml_is_scalar(src1));
  5971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5972. return;
  5973. }
  5974. // scalar to add
  5975. const float v = *(float *) src1->data;
  5976. const int ith = params->ith;
  5977. const int nth = params->nth;
  5978. const int nr = ggml_nrows(src0);
  5979. GGML_TENSOR_UNARY_OP_LOCALS
  5980. const enum ggml_type type = src0->type;
  5981. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5982. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  5983. // we don't support permuted src0
  5984. GGML_ASSERT(nb00 == ggml_type_size(type));
  5985. // dst cannot be transposed or permuted
  5986. GGML_ASSERT(nb0 <= nb1);
  5987. GGML_ASSERT(nb1 <= nb2);
  5988. GGML_ASSERT(nb2 <= nb3);
  5989. GGML_ASSERT(ggml_is_quantized(src0->type));
  5990. GGML_ASSERT(dst->type == src0->type);
  5991. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5992. // rows per thread
  5993. const int dr = (nr + nth - 1)/nth;
  5994. // row range for this thread
  5995. const int ir0 = dr*ith;
  5996. const int ir1 = MIN(ir0 + dr, nr);
  5997. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  5998. for (int ir = ir0; ir < ir1; ++ir) {
  5999. // src0 and dst are same shape => same indices
  6000. const int i3 = ir/(ne2*ne1);
  6001. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6002. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6003. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6004. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6005. assert(ne0 % 32 == 0);
  6006. // unquantize row from src0 to temp buffer
  6007. dequantize_row_q(src0_row, wdata, ne0);
  6008. // add src1
  6009. ggml_vec_acc1_f32(ne0, wdata, v);
  6010. // quantize row to dst
  6011. quantize_row_q(wdata, dst_row, ne0);
  6012. }
  6013. }
  6014. static void ggml_compute_forward_add1(
  6015. const struct ggml_compute_params * params,
  6016. const struct ggml_tensor * src0,
  6017. const struct ggml_tensor * src1,
  6018. struct ggml_tensor * dst) {
  6019. switch (src0->type) {
  6020. case GGML_TYPE_F32:
  6021. {
  6022. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6023. } break;
  6024. case GGML_TYPE_F16:
  6025. {
  6026. if (src1->type == GGML_TYPE_F16) {
  6027. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6028. }
  6029. else if (src1->type == GGML_TYPE_F32) {
  6030. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6031. }
  6032. else {
  6033. GGML_ASSERT(false);
  6034. }
  6035. } break;
  6036. case GGML_TYPE_Q4_0:
  6037. case GGML_TYPE_Q4_1:
  6038. case GGML_TYPE_Q5_0:
  6039. case GGML_TYPE_Q5_1:
  6040. case GGML_TYPE_Q8_0:
  6041. case GGML_TYPE_Q8_1:
  6042. case GGML_TYPE_Q2_K:
  6043. case GGML_TYPE_Q3_K:
  6044. case GGML_TYPE_Q4_K:
  6045. case GGML_TYPE_Q5_K:
  6046. case GGML_TYPE_Q6_K:
  6047. {
  6048. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6049. } break;
  6050. default:
  6051. {
  6052. GGML_ASSERT(false);
  6053. } break;
  6054. }
  6055. }
  6056. // ggml_compute_forward_acc
  6057. static void ggml_compute_forward_acc_f32(
  6058. const struct ggml_compute_params * params,
  6059. const struct ggml_tensor * src0,
  6060. const struct ggml_tensor * src1,
  6061. struct ggml_tensor * dst) {
  6062. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6063. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6064. // view src0 and dst with these strides and data offset inbytes during acc
  6065. // nb0 is implicitely element_size because src0 and dst are contiguous
  6066. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6067. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6068. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6069. size_t offset = ((int32_t *) dst->op_params)[3];
  6070. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6071. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6072. // memcpy needs to be synchronized across threads to avoid race conditions.
  6073. // => do it in INIT phase
  6074. memcpy(
  6075. ((char *) dst->data),
  6076. ((char *) src0->data),
  6077. ggml_nbytes(dst));
  6078. }
  6079. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6080. return;
  6081. }
  6082. const int ith = params->ith;
  6083. const int nth = params->nth;
  6084. const int nr = ggml_nrows(src1);
  6085. const int nc = src1->ne[0];
  6086. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6087. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6088. // src0 and dst as viewed during acc
  6089. const size_t nb0 = ggml_element_size(src0);
  6090. const size_t nb00 = nb0;
  6091. const size_t nb01 = nb1;
  6092. const size_t nb02 = nb2;
  6093. const size_t nb03 = nb3;
  6094. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6095. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6096. GGML_ASSERT(nb10 == sizeof(float));
  6097. // rows per thread
  6098. const int dr = (nr + nth - 1)/nth;
  6099. // row range for this thread
  6100. const int ir0 = dr*ith;
  6101. const int ir1 = MIN(ir0 + dr, nr);
  6102. for (int ir = ir0; ir < ir1; ++ir) {
  6103. // src0 and dst are viewed with shape of src1 and offset
  6104. // => same indices
  6105. const int i3 = ir/(ne12*ne11);
  6106. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6107. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6108. #ifdef GGML_USE_ACCELERATE
  6109. vDSP_vadd(
  6110. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6111. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6112. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6113. #else
  6114. ggml_vec_add_f32(nc,
  6115. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6116. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6117. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6118. #endif
  6119. }
  6120. }
  6121. static void ggml_compute_forward_acc(
  6122. const struct ggml_compute_params * params,
  6123. const struct ggml_tensor * src0,
  6124. const struct ggml_tensor * src1,
  6125. struct ggml_tensor * dst) {
  6126. switch (src0->type) {
  6127. case GGML_TYPE_F32:
  6128. {
  6129. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6130. } break;
  6131. case GGML_TYPE_F16:
  6132. case GGML_TYPE_Q4_0:
  6133. case GGML_TYPE_Q4_1:
  6134. case GGML_TYPE_Q5_0:
  6135. case GGML_TYPE_Q5_1:
  6136. case GGML_TYPE_Q8_0:
  6137. case GGML_TYPE_Q8_1:
  6138. case GGML_TYPE_Q2_K:
  6139. case GGML_TYPE_Q3_K:
  6140. case GGML_TYPE_Q4_K:
  6141. case GGML_TYPE_Q5_K:
  6142. case GGML_TYPE_Q6_K:
  6143. default:
  6144. {
  6145. GGML_ASSERT(false);
  6146. } break;
  6147. }
  6148. }
  6149. // ggml_compute_forward_sub
  6150. static void ggml_compute_forward_sub_f32(
  6151. const struct ggml_compute_params * params,
  6152. const struct ggml_tensor * src0,
  6153. const struct ggml_tensor * src1,
  6154. struct ggml_tensor * dst) {
  6155. assert(params->ith == 0);
  6156. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6158. return;
  6159. }
  6160. const int nr = ggml_nrows(src0);
  6161. GGML_TENSOR_BINARY_OP_LOCALS
  6162. GGML_ASSERT( nb0 == sizeof(float));
  6163. GGML_ASSERT(nb00 == sizeof(float));
  6164. if (nb10 == sizeof(float)) {
  6165. for (int ir = 0; ir < nr; ++ir) {
  6166. // src0, src1 and dst are same shape => same indices
  6167. const int i3 = ir/(ne2*ne1);
  6168. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6169. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6170. #ifdef GGML_USE_ACCELERATE
  6171. vDSP_vsub(
  6172. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6173. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6174. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6175. ne0);
  6176. #else
  6177. ggml_vec_sub_f32(ne0,
  6178. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6179. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6180. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6181. #endif
  6182. // }
  6183. // }
  6184. }
  6185. } else {
  6186. // src1 is not contiguous
  6187. for (int ir = 0; ir < nr; ++ir) {
  6188. // src0, src1 and dst are same shape => same indices
  6189. const int i3 = ir/(ne2*ne1);
  6190. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6191. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6192. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6193. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6194. for (int i0 = 0; i0 < ne0; i0++) {
  6195. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6196. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6197. }
  6198. }
  6199. }
  6200. }
  6201. static void ggml_compute_forward_sub(
  6202. const struct ggml_compute_params * params,
  6203. const struct ggml_tensor * src0,
  6204. const struct ggml_tensor * src1,
  6205. struct ggml_tensor * dst) {
  6206. switch (src0->type) {
  6207. case GGML_TYPE_F32:
  6208. {
  6209. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6210. } break;
  6211. default:
  6212. {
  6213. GGML_ASSERT(false);
  6214. } break;
  6215. }
  6216. }
  6217. // ggml_compute_forward_mul
  6218. static void ggml_compute_forward_mul_f32(
  6219. const struct ggml_compute_params * params,
  6220. const struct ggml_tensor * src0,
  6221. const struct ggml_tensor * src1,
  6222. struct ggml_tensor * dst) {
  6223. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6225. return;
  6226. }
  6227. const int ith = params->ith;
  6228. const int nth = params->nth;
  6229. #ifdef GGML_USE_CLBLAST
  6230. if (src1->backend == GGML_BACKEND_GPU) {
  6231. if (ith == 0) {
  6232. ggml_cl_mul(src0, src1, dst);
  6233. }
  6234. return;
  6235. }
  6236. #endif
  6237. const int64_t nr = ggml_nrows(src0);
  6238. GGML_TENSOR_BINARY_OP_LOCALS
  6239. GGML_ASSERT( nb0 == sizeof(float));
  6240. GGML_ASSERT(nb00 == sizeof(float));
  6241. GGML_ASSERT(ne00 == ne10);
  6242. if (nb10 == sizeof(float)) {
  6243. for (int64_t ir = ith; ir < nr; ir += nth) {
  6244. // src0 and dst are same shape => same indices
  6245. const int64_t i03 = ir/(ne02*ne01);
  6246. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6247. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6248. const int64_t i13 = i03 % ne13;
  6249. const int64_t i12 = i02 % ne12;
  6250. const int64_t i11 = i01 % ne11;
  6251. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6252. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6253. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6254. #ifdef GGML_USE_ACCELERATE
  6255. UNUSED(ggml_vec_mul_f32);
  6256. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6257. #else
  6258. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6259. #endif
  6260. // }
  6261. // }
  6262. }
  6263. } else {
  6264. // src1 is not contiguous
  6265. for (int64_t ir = ith; ir < nr; ir += nth) {
  6266. // src0 and dst are same shape => same indices
  6267. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6268. const int64_t i03 = ir/(ne02*ne01);
  6269. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6270. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6271. const int64_t i13 = i03 % ne13;
  6272. const int64_t i12 = i02 % ne12;
  6273. const int64_t i11 = i01 % ne11;
  6274. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6275. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6276. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6277. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6278. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6279. }
  6280. }
  6281. }
  6282. }
  6283. static void ggml_compute_forward_mul(
  6284. const struct ggml_compute_params * params,
  6285. const struct ggml_tensor * src0,
  6286. const struct ggml_tensor * src1,
  6287. struct ggml_tensor * dst) {
  6288. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6289. switch (src0->type) {
  6290. case GGML_TYPE_F32:
  6291. {
  6292. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6293. } break;
  6294. default:
  6295. {
  6296. GGML_ASSERT(false);
  6297. } break;
  6298. }
  6299. }
  6300. // ggml_compute_forward_div
  6301. static void ggml_compute_forward_div_f32(
  6302. const struct ggml_compute_params * params,
  6303. const struct ggml_tensor * src0,
  6304. const struct ggml_tensor * src1,
  6305. struct ggml_tensor * dst) {
  6306. assert(params->ith == 0);
  6307. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6309. return;
  6310. }
  6311. const int nr = ggml_nrows(src0);
  6312. GGML_TENSOR_BINARY_OP_LOCALS
  6313. GGML_ASSERT( nb0 == sizeof(float));
  6314. GGML_ASSERT(nb00 == sizeof(float));
  6315. if (nb10 == sizeof(float)) {
  6316. for (int ir = 0; ir < nr; ++ir) {
  6317. // src0, src1 and dst are same shape => same indices
  6318. const int i3 = ir/(ne2*ne1);
  6319. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6320. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6321. #ifdef GGML_USE_ACCELERATE
  6322. UNUSED(ggml_vec_div_f32);
  6323. vDSP_vdiv(
  6324. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6325. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6326. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6327. ne0);
  6328. #else
  6329. ggml_vec_div_f32(ne0,
  6330. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6331. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6332. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6333. #endif
  6334. // }
  6335. // }
  6336. }
  6337. } else {
  6338. // src1 is not contiguous
  6339. for (int ir = 0; ir < nr; ++ir) {
  6340. // src0, src1 and dst are same shape => same indices
  6341. const int i3 = ir/(ne2*ne1);
  6342. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6343. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6344. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6345. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6346. for (int i0 = 0; i0 < ne0; i0++) {
  6347. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6348. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6349. }
  6350. }
  6351. }
  6352. }
  6353. static void ggml_compute_forward_div(
  6354. const struct ggml_compute_params * params,
  6355. const struct ggml_tensor * src0,
  6356. const struct ggml_tensor * src1,
  6357. struct ggml_tensor * dst) {
  6358. switch (src0->type) {
  6359. case GGML_TYPE_F32:
  6360. {
  6361. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6362. } break;
  6363. default:
  6364. {
  6365. GGML_ASSERT(false);
  6366. } break;
  6367. }
  6368. }
  6369. // ggml_compute_forward_sqr
  6370. static void ggml_compute_forward_sqr_f32(
  6371. const struct ggml_compute_params * params,
  6372. const struct ggml_tensor * src0,
  6373. struct ggml_tensor * dst) {
  6374. assert(params->ith == 0);
  6375. assert(ggml_are_same_shape(src0, dst));
  6376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6377. return;
  6378. }
  6379. const int n = ggml_nrows(src0);
  6380. const int nc = src0->ne[0];
  6381. assert( dst->nb[0] == sizeof(float));
  6382. assert(src0->nb[0] == sizeof(float));
  6383. for (int i = 0; i < n; i++) {
  6384. ggml_vec_sqr_f32(nc,
  6385. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6386. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6387. }
  6388. }
  6389. static void ggml_compute_forward_sqr(
  6390. const struct ggml_compute_params * params,
  6391. const struct ggml_tensor * src0,
  6392. struct ggml_tensor * dst) {
  6393. switch (src0->type) {
  6394. case GGML_TYPE_F32:
  6395. {
  6396. ggml_compute_forward_sqr_f32(params, src0, dst);
  6397. } break;
  6398. default:
  6399. {
  6400. GGML_ASSERT(false);
  6401. } break;
  6402. }
  6403. }
  6404. // ggml_compute_forward_sqrt
  6405. static void ggml_compute_forward_sqrt_f32(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. struct ggml_tensor * dst) {
  6409. assert(params->ith == 0);
  6410. assert(ggml_are_same_shape(src0, dst));
  6411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6412. return;
  6413. }
  6414. const int n = ggml_nrows(src0);
  6415. const int nc = src0->ne[0];
  6416. assert( dst->nb[0] == sizeof(float));
  6417. assert(src0->nb[0] == sizeof(float));
  6418. for (int i = 0; i < n; i++) {
  6419. ggml_vec_sqrt_f32(nc,
  6420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6422. }
  6423. }
  6424. static void ggml_compute_forward_sqrt(
  6425. const struct ggml_compute_params * params,
  6426. const struct ggml_tensor * src0,
  6427. struct ggml_tensor * dst) {
  6428. switch (src0->type) {
  6429. case GGML_TYPE_F32:
  6430. {
  6431. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6432. } break;
  6433. default:
  6434. {
  6435. GGML_ASSERT(false);
  6436. } break;
  6437. }
  6438. }
  6439. // ggml_compute_forward_log
  6440. static void ggml_compute_forward_log_f32(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. struct ggml_tensor * dst) {
  6444. GGML_ASSERT(params->ith == 0);
  6445. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6447. return;
  6448. }
  6449. const int n = ggml_nrows(src0);
  6450. const int nc = src0->ne[0];
  6451. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6452. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6453. for (int i = 0; i < n; i++) {
  6454. ggml_vec_log_f32(nc,
  6455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6457. }
  6458. }
  6459. static void ggml_compute_forward_log(
  6460. const struct ggml_compute_params * params,
  6461. const struct ggml_tensor * src0,
  6462. struct ggml_tensor * dst) {
  6463. switch (src0->type) {
  6464. case GGML_TYPE_F32:
  6465. {
  6466. ggml_compute_forward_log_f32(params, src0, dst);
  6467. } break;
  6468. default:
  6469. {
  6470. GGML_ASSERT(false);
  6471. } break;
  6472. }
  6473. }
  6474. // ggml_compute_forward_sum
  6475. static void ggml_compute_forward_sum_f32(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. struct ggml_tensor * dst) {
  6479. assert(params->ith == 0);
  6480. assert(ggml_is_scalar(dst));
  6481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6482. return;
  6483. }
  6484. assert(ggml_is_scalar(dst));
  6485. assert(src0->nb[0] == sizeof(float));
  6486. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6487. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6488. ggml_float sum = 0;
  6489. ggml_float row_sum = 0;
  6490. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6491. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6492. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6493. ggml_vec_sum_f32_ggf(ne00,
  6494. &row_sum,
  6495. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6496. sum += row_sum;
  6497. }
  6498. }
  6499. }
  6500. ((float *) dst->data)[0] = sum;
  6501. }
  6502. static void ggml_compute_forward_sum_f16(
  6503. const struct ggml_compute_params * params,
  6504. const struct ggml_tensor * src0,
  6505. struct ggml_tensor * dst) {
  6506. assert(params->ith == 0);
  6507. assert(ggml_is_scalar(dst));
  6508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6509. return;
  6510. }
  6511. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6512. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6513. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6514. float sum = 0;
  6515. float row_sum = 0;
  6516. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6517. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6518. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6519. ggml_vec_sum_f16_ggf(ne00,
  6520. &row_sum,
  6521. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6522. sum += row_sum;
  6523. }
  6524. }
  6525. }
  6526. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6527. }
  6528. static void ggml_compute_forward_sum(
  6529. const struct ggml_compute_params * params,
  6530. const struct ggml_tensor * src0,
  6531. struct ggml_tensor * dst) {
  6532. switch (src0->type) {
  6533. case GGML_TYPE_F32:
  6534. {
  6535. ggml_compute_forward_sum_f32(params, src0, dst);
  6536. } break;
  6537. case GGML_TYPE_F16:
  6538. {
  6539. ggml_compute_forward_sum_f16(params, src0, dst);
  6540. } break;
  6541. default:
  6542. {
  6543. GGML_ASSERT(false);
  6544. } break;
  6545. }
  6546. }
  6547. // ggml_compute_forward_sum_rows
  6548. static void ggml_compute_forward_sum_rows_f32(
  6549. const struct ggml_compute_params * params,
  6550. const struct ggml_tensor * src0,
  6551. struct ggml_tensor * dst) {
  6552. GGML_ASSERT(params->ith == 0);
  6553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6554. return;
  6555. }
  6556. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6557. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6558. GGML_TENSOR_UNARY_OP_LOCALS
  6559. GGML_ASSERT(ne0 == 1);
  6560. GGML_ASSERT(ne1 == ne01);
  6561. GGML_ASSERT(ne2 == ne02);
  6562. GGML_ASSERT(ne3 == ne03);
  6563. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6564. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6565. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6566. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6567. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6568. float row_sum = 0;
  6569. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6570. dst_row[0] = row_sum;
  6571. }
  6572. }
  6573. }
  6574. }
  6575. static void ggml_compute_forward_sum_rows(
  6576. const struct ggml_compute_params * params,
  6577. const struct ggml_tensor * src0,
  6578. struct ggml_tensor * dst) {
  6579. switch (src0->type) {
  6580. case GGML_TYPE_F32:
  6581. {
  6582. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6583. } break;
  6584. default:
  6585. {
  6586. GGML_ASSERT(false);
  6587. } break;
  6588. }
  6589. }
  6590. // ggml_compute_forward_mean
  6591. static void ggml_compute_forward_mean_f32(
  6592. const struct ggml_compute_params * params,
  6593. const struct ggml_tensor * src0,
  6594. struct ggml_tensor * dst) {
  6595. assert(params->ith == 0);
  6596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. assert(src0->nb[0] == sizeof(float));
  6600. GGML_TENSOR_UNARY_OP_LOCALS
  6601. assert(ne0 == 1);
  6602. assert(ne1 == ne01);
  6603. assert(ne2 == ne02);
  6604. assert(ne3 == ne03);
  6605. UNUSED(ne0);
  6606. UNUSED(ne1);
  6607. UNUSED(ne2);
  6608. UNUSED(ne3);
  6609. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6610. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6611. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6612. ggml_vec_sum_f32(ne00,
  6613. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6614. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6615. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6616. }
  6617. }
  6618. }
  6619. }
  6620. static void ggml_compute_forward_mean(
  6621. const struct ggml_compute_params * params,
  6622. const struct ggml_tensor * src0,
  6623. struct ggml_tensor * dst) {
  6624. switch (src0->type) {
  6625. case GGML_TYPE_F32:
  6626. {
  6627. ggml_compute_forward_mean_f32(params, src0, dst);
  6628. } break;
  6629. default:
  6630. {
  6631. GGML_ASSERT(false);
  6632. } break;
  6633. }
  6634. }
  6635. // ggml_compute_forward_argmax
  6636. static void ggml_compute_forward_argmax_f32(
  6637. const struct ggml_compute_params * params,
  6638. const struct ggml_tensor * src0,
  6639. struct ggml_tensor * dst) {
  6640. assert(params->ith == 0);
  6641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6642. return;
  6643. }
  6644. assert(src0->nb[0] == sizeof(float));
  6645. assert(dst->nb[0] == sizeof(float));
  6646. const int64_t ne00 = src0->ne[0];
  6647. const int64_t ne01 = src0->ne[1];
  6648. const size_t nb01 = src0->nb[1];
  6649. const size_t nb0 = dst->nb[0];
  6650. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6651. float * src = (float *) ((char *) src0->data + i1*nb01);
  6652. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6653. int v = 0;
  6654. ggml_vec_argmax_f32(ne00, &v, src);
  6655. dst_[0] = v;
  6656. }
  6657. }
  6658. static void ggml_compute_forward_argmax(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. struct ggml_tensor * dst) {
  6662. switch (src0->type) {
  6663. case GGML_TYPE_F32:
  6664. {
  6665. ggml_compute_forward_argmax_f32(params, src0, dst);
  6666. } break;
  6667. default:
  6668. {
  6669. GGML_ASSERT(false);
  6670. } break;
  6671. }
  6672. }
  6673. // ggml_compute_forward_repeat
  6674. static void ggml_compute_forward_repeat_f32(
  6675. const struct ggml_compute_params * params,
  6676. const struct ggml_tensor * src0,
  6677. struct ggml_tensor * dst) {
  6678. GGML_ASSERT(params->ith == 0);
  6679. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6681. return;
  6682. }
  6683. GGML_TENSOR_UNARY_OP_LOCALS
  6684. // guaranteed to be an integer due to the check in ggml_can_repeat
  6685. const int nr0 = (int)(ne0/ne00);
  6686. const int nr1 = (int)(ne1/ne01);
  6687. const int nr2 = (int)(ne2/ne02);
  6688. const int nr3 = (int)(ne3/ne03);
  6689. // TODO: support for transposed / permuted tensors
  6690. GGML_ASSERT(nb0 == sizeof(float));
  6691. GGML_ASSERT(nb00 == sizeof(float));
  6692. // TODO: maybe this is not optimal?
  6693. for (int i3 = 0; i3 < nr3; i3++) {
  6694. for (int k3 = 0; k3 < ne03; k3++) {
  6695. for (int i2 = 0; i2 < nr2; i2++) {
  6696. for (int k2 = 0; k2 < ne02; k2++) {
  6697. for (int i1 = 0; i1 < nr1; i1++) {
  6698. for (int k1 = 0; k1 < ne01; k1++) {
  6699. for (int i0 = 0; i0 < nr0; i0++) {
  6700. ggml_vec_cpy_f32(ne00,
  6701. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6702. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6703. }
  6704. }
  6705. }
  6706. }
  6707. }
  6708. }
  6709. }
  6710. }
  6711. static void ggml_compute_forward_repeat_f16(
  6712. const struct ggml_compute_params * params,
  6713. const struct ggml_tensor * src0,
  6714. struct ggml_tensor * dst) {
  6715. GGML_ASSERT(params->ith == 0);
  6716. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6718. return;
  6719. }
  6720. GGML_TENSOR_UNARY_OP_LOCALS;
  6721. // guaranteed to be an integer due to the check in ggml_can_repeat
  6722. const int nr0 = (int)(ne0/ne00);
  6723. const int nr1 = (int)(ne1/ne01);
  6724. const int nr2 = (int)(ne2/ne02);
  6725. const int nr3 = (int)(ne3/ne03);
  6726. // TODO: support for transposed / permuted tensors
  6727. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6728. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6729. // TODO: maybe this is not optimal?
  6730. for (int i3 = 0; i3 < nr3; i3++) {
  6731. for (int k3 = 0; k3 < ne03; k3++) {
  6732. for (int i2 = 0; i2 < nr2; i2++) {
  6733. for (int k2 = 0; k2 < ne02; k2++) {
  6734. for (int i1 = 0; i1 < nr1; i1++) {
  6735. for (int k1 = 0; k1 < ne01; k1++) {
  6736. for (int i0 = 0; i0 < nr0; i0++) {
  6737. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6738. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6739. // ggml_vec_cpy_f16(ne00, y, x)
  6740. for (int i = 0; i < ne00; ++i) {
  6741. y[i] = x[i];
  6742. }
  6743. }
  6744. }
  6745. }
  6746. }
  6747. }
  6748. }
  6749. }
  6750. }
  6751. static void ggml_compute_forward_repeat(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0,
  6754. struct ggml_tensor * dst) {
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F16:
  6757. {
  6758. ggml_compute_forward_repeat_f16(params, src0, dst);
  6759. } break;
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_repeat_f32(params, src0, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_repeat_back
  6771. static void ggml_compute_forward_repeat_back_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. struct ggml_tensor * dst) {
  6775. GGML_ASSERT(params->ith == 0);
  6776. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. GGML_TENSOR_UNARY_OP_LOCALS
  6781. // guaranteed to be an integer due to the check in ggml_can_repeat
  6782. const int nr0 = (int)(ne00/ne0);
  6783. const int nr1 = (int)(ne01/ne1);
  6784. const int nr2 = (int)(ne02/ne2);
  6785. const int nr3 = (int)(ne03/ne3);
  6786. // TODO: support for transposed / permuted tensors
  6787. GGML_ASSERT(nb0 == sizeof(float));
  6788. GGML_ASSERT(nb00 == sizeof(float));
  6789. if (ggml_is_contiguous(dst)) {
  6790. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6791. } else {
  6792. for (int k3 = 0; k3 < ne3; k3++) {
  6793. for (int k2 = 0; k2 < ne2; k2++) {
  6794. for (int k1 = 0; k1 < ne1; k1++) {
  6795. ggml_vec_set_f32(ne0,
  6796. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6797. 0);
  6798. }
  6799. }
  6800. }
  6801. }
  6802. // TODO: maybe this is not optimal?
  6803. for (int i3 = 0; i3 < nr3; i3++) {
  6804. for (int k3 = 0; k3 < ne3; k3++) {
  6805. for (int i2 = 0; i2 < nr2; i2++) {
  6806. for (int k2 = 0; k2 < ne2; k2++) {
  6807. for (int i1 = 0; i1 < nr1; i1++) {
  6808. for (int k1 = 0; k1 < ne1; k1++) {
  6809. for (int i0 = 0; i0 < nr0; i0++) {
  6810. ggml_vec_acc_f32(ne0,
  6811. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6812. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6813. }
  6814. }
  6815. }
  6816. }
  6817. }
  6818. }
  6819. }
  6820. }
  6821. static void ggml_compute_forward_repeat_back(
  6822. const struct ggml_compute_params * params,
  6823. const struct ggml_tensor * src0,
  6824. struct ggml_tensor * dst) {
  6825. switch (src0->type) {
  6826. case GGML_TYPE_F32:
  6827. {
  6828. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6829. } break;
  6830. default:
  6831. {
  6832. GGML_ASSERT(false);
  6833. } break;
  6834. }
  6835. }
  6836. // ggml_compute_forward_concat
  6837. static void ggml_compute_forward_concat_f32(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. const struct ggml_tensor * src1,
  6841. struct ggml_tensor * dst) {
  6842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6843. return;
  6844. }
  6845. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6846. const int ith = params->ith;
  6847. GGML_TENSOR_BINARY_OP_LOCALS
  6848. // TODO: support for transposed / permuted tensors
  6849. GGML_ASSERT(nb0 == sizeof(float));
  6850. GGML_ASSERT(nb00 == sizeof(float));
  6851. GGML_ASSERT(nb10 == sizeof(float));
  6852. for (int i3 = 0; i3 < ne3; i3++) {
  6853. for (int i2 = ith; i2 < ne2; i2++) {
  6854. if (i2 < ne02) { // src0
  6855. for (int i1 = 0; i1 < ne1; i1++) {
  6856. for (int i0 = 0; i0 < ne0; i0++) {
  6857. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6858. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6859. *y = *x;
  6860. }
  6861. }
  6862. } // src1
  6863. else {
  6864. for (int i1 = 0; i1 < ne1; i1++) {
  6865. for (int i0 = 0; i0 < ne0; i0++) {
  6866. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6867. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6868. *y = *x;
  6869. }
  6870. }
  6871. }
  6872. }
  6873. }
  6874. }
  6875. static void ggml_compute_forward_concat(
  6876. const struct ggml_compute_params* params,
  6877. const struct ggml_tensor* src0,
  6878. const struct ggml_tensor* src1,
  6879. struct ggml_tensor* dst) {
  6880. switch (src0->type) {
  6881. case GGML_TYPE_F32:
  6882. {
  6883. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6884. } break;
  6885. default:
  6886. {
  6887. GGML_ASSERT(false);
  6888. } break;
  6889. }
  6890. }
  6891. // ggml_compute_forward_abs
  6892. static void ggml_compute_forward_abs_f32(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. struct ggml_tensor * dst) {
  6896. assert(params->ith == 0);
  6897. assert(ggml_are_same_shape(src0, dst));
  6898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6899. return;
  6900. }
  6901. const int n = ggml_nrows(src0);
  6902. const int nc = src0->ne[0];
  6903. assert(dst->nb[0] == sizeof(float));
  6904. assert(src0->nb[0] == sizeof(float));
  6905. for (int i = 0; i < n; i++) {
  6906. ggml_vec_abs_f32(nc,
  6907. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6908. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6909. }
  6910. }
  6911. static void ggml_compute_forward_abs(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * src0,
  6914. struct ggml_tensor * dst) {
  6915. switch (src0->type) {
  6916. case GGML_TYPE_F32:
  6917. {
  6918. ggml_compute_forward_abs_f32(params, src0, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_sgn
  6927. static void ggml_compute_forward_sgn_f32(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. struct ggml_tensor * dst) {
  6931. assert(params->ith == 0);
  6932. assert(ggml_are_same_shape(src0, dst));
  6933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6934. return;
  6935. }
  6936. const int n = ggml_nrows(src0);
  6937. const int nc = src0->ne[0];
  6938. assert(dst->nb[0] == sizeof(float));
  6939. assert(src0->nb[0] == sizeof(float));
  6940. for (int i = 0; i < n; i++) {
  6941. ggml_vec_sgn_f32(nc,
  6942. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6943. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6944. }
  6945. }
  6946. static void ggml_compute_forward_sgn(
  6947. const struct ggml_compute_params * params,
  6948. const struct ggml_tensor * src0,
  6949. struct ggml_tensor * dst) {
  6950. switch (src0->type) {
  6951. case GGML_TYPE_F32:
  6952. {
  6953. ggml_compute_forward_sgn_f32(params, src0, dst);
  6954. } break;
  6955. default:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_neg
  6962. static void ggml_compute_forward_neg_f32(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. struct ggml_tensor * dst) {
  6966. assert(params->ith == 0);
  6967. assert(ggml_are_same_shape(src0, dst));
  6968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6969. return;
  6970. }
  6971. const int n = ggml_nrows(src0);
  6972. const int nc = src0->ne[0];
  6973. assert(dst->nb[0] == sizeof(float));
  6974. assert(src0->nb[0] == sizeof(float));
  6975. for (int i = 0; i < n; i++) {
  6976. ggml_vec_neg_f32(nc,
  6977. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6978. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6979. }
  6980. }
  6981. static void ggml_compute_forward_neg(
  6982. const struct ggml_compute_params * params,
  6983. const struct ggml_tensor * src0,
  6984. struct ggml_tensor * dst) {
  6985. switch (src0->type) {
  6986. case GGML_TYPE_F32:
  6987. {
  6988. ggml_compute_forward_neg_f32(params, src0, dst);
  6989. } break;
  6990. default:
  6991. {
  6992. GGML_ASSERT(false);
  6993. } break;
  6994. }
  6995. }
  6996. // ggml_compute_forward_step
  6997. static void ggml_compute_forward_step_f32(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. struct ggml_tensor * dst) {
  7001. assert(params->ith == 0);
  7002. assert(ggml_are_same_shape(src0, dst));
  7003. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7004. return;
  7005. }
  7006. const int n = ggml_nrows(src0);
  7007. const int nc = src0->ne[0];
  7008. assert(dst->nb[0] == sizeof(float));
  7009. assert(src0->nb[0] == sizeof(float));
  7010. for (int i = 0; i < n; i++) {
  7011. ggml_vec_step_f32(nc,
  7012. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7013. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7014. }
  7015. }
  7016. static void ggml_compute_forward_step(
  7017. const struct ggml_compute_params * params,
  7018. const struct ggml_tensor * src0,
  7019. struct ggml_tensor * dst) {
  7020. switch (src0->type) {
  7021. case GGML_TYPE_F32:
  7022. {
  7023. ggml_compute_forward_step_f32(params, src0, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_tanh
  7032. static void ggml_compute_forward_tanh_f32(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. assert(params->ith == 0);
  7037. assert(ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7039. return;
  7040. }
  7041. const int n = ggml_nrows(src0);
  7042. const int nc = src0->ne[0];
  7043. assert(dst->nb[0] == sizeof(float));
  7044. assert(src0->nb[0] == sizeof(float));
  7045. for (int i = 0; i < n; i++) {
  7046. ggml_vec_tanh_f32(nc,
  7047. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7048. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7049. }
  7050. }
  7051. static void ggml_compute_forward_tanh(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. struct ggml_tensor * dst) {
  7055. switch (src0->type) {
  7056. case GGML_TYPE_F32:
  7057. {
  7058. ggml_compute_forward_tanh_f32(params, src0, dst);
  7059. } break;
  7060. default:
  7061. {
  7062. GGML_ASSERT(false);
  7063. } break;
  7064. }
  7065. }
  7066. // ggml_compute_forward_elu
  7067. static void ggml_compute_forward_elu_f32(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. assert(params->ith == 0);
  7072. assert(ggml_are_same_shape(src0, dst));
  7073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7074. return;
  7075. }
  7076. const int n = ggml_nrows(src0);
  7077. const int nc = src0->ne[0];
  7078. assert(dst->nb[0] == sizeof(float));
  7079. assert(src0->nb[0] == sizeof(float));
  7080. for (int i = 0; i < n; i++) {
  7081. ggml_vec_elu_f32(nc,
  7082. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7083. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7084. }
  7085. }
  7086. static void ggml_compute_forward_elu(
  7087. const struct ggml_compute_params * params,
  7088. const struct ggml_tensor * src0,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_elu_f32(params, src0, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_relu
  7102. static void ggml_compute_forward_relu_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. assert(params->ith == 0);
  7107. assert(ggml_are_same_shape(src0, dst));
  7108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7109. return;
  7110. }
  7111. const int n = ggml_nrows(src0);
  7112. const int nc = src0->ne[0];
  7113. assert(dst->nb[0] == sizeof(float));
  7114. assert(src0->nb[0] == sizeof(float));
  7115. for (int i = 0; i < n; i++) {
  7116. ggml_vec_relu_f32(nc,
  7117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7118. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7119. }
  7120. }
  7121. static void ggml_compute_forward_relu(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. switch (src0->type) {
  7126. case GGML_TYPE_F32:
  7127. {
  7128. ggml_compute_forward_relu_f32(params, src0, dst);
  7129. } break;
  7130. default:
  7131. {
  7132. GGML_ASSERT(false);
  7133. } break;
  7134. }
  7135. }
  7136. // ggml_compute_forward_gelu
  7137. static void ggml_compute_forward_gelu_f32(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. struct ggml_tensor * dst) {
  7141. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7142. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7143. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7145. return;
  7146. }
  7147. const int ith = params->ith;
  7148. const int nth = params->nth;
  7149. const int nc = src0->ne[0];
  7150. const int nr = ggml_nrows(src0);
  7151. // rows per thread
  7152. const int dr = (nr + nth - 1)/nth;
  7153. // row range for this thread
  7154. const int ir0 = dr*ith;
  7155. const int ir1 = MIN(ir0 + dr, nr);
  7156. for (int i1 = ir0; i1 < ir1; i1++) {
  7157. ggml_vec_gelu_f32(nc,
  7158. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7159. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7160. #ifndef NDEBUG
  7161. for (int k = 0; k < nc; k++) {
  7162. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7163. UNUSED(x);
  7164. assert(!isnan(x));
  7165. assert(!isinf(x));
  7166. }
  7167. #endif
  7168. }
  7169. }
  7170. static void ggml_compute_forward_gelu(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0,
  7173. struct ggml_tensor * dst) {
  7174. switch (src0->type) {
  7175. case GGML_TYPE_F32:
  7176. {
  7177. ggml_compute_forward_gelu_f32(params, src0, dst);
  7178. } break;
  7179. default:
  7180. {
  7181. GGML_ASSERT(false);
  7182. } break;
  7183. }
  7184. }
  7185. // ggml_compute_forward_gelu_quick
  7186. static void ggml_compute_forward_gelu_quick_f32(
  7187. const struct ggml_compute_params * params,
  7188. const struct ggml_tensor * src0,
  7189. struct ggml_tensor * dst) {
  7190. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7191. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7192. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7194. return;
  7195. }
  7196. const int ith = params->ith;
  7197. const int nth = params->nth;
  7198. const int nc = src0->ne[0];
  7199. const int nr = ggml_nrows(src0);
  7200. // rows per thread
  7201. const int dr = (nr + nth - 1)/nth;
  7202. // row range for this thread
  7203. const int ir0 = dr*ith;
  7204. const int ir1 = MIN(ir0 + dr, nr);
  7205. for (int i1 = ir0; i1 < ir1; i1++) {
  7206. ggml_vec_gelu_quick_f32(nc,
  7207. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7208. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7209. #ifndef NDEBUG
  7210. for (int k = 0; k < nc; k++) {
  7211. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7212. UNUSED(x);
  7213. assert(!isnan(x));
  7214. assert(!isinf(x));
  7215. }
  7216. #endif
  7217. }
  7218. }
  7219. static void ggml_compute_forward_gelu_quick(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0,
  7222. struct ggml_tensor * dst) {
  7223. switch (src0->type) {
  7224. case GGML_TYPE_F32:
  7225. {
  7226. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7227. } break;
  7228. default:
  7229. {
  7230. GGML_ASSERT(false);
  7231. } break;
  7232. }
  7233. }
  7234. // ggml_compute_forward_silu
  7235. static void ggml_compute_forward_silu_f32(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. struct ggml_tensor * dst) {
  7239. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7240. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7241. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7243. return;
  7244. }
  7245. const int ith = params->ith;
  7246. const int nth = params->nth;
  7247. const int nc = src0->ne[0];
  7248. const int nr = ggml_nrows(src0);
  7249. // rows per thread
  7250. const int dr = (nr + nth - 1)/nth;
  7251. // row range for this thread
  7252. const int ir0 = dr*ith;
  7253. const int ir1 = MIN(ir0 + dr, nr);
  7254. for (int i1 = ir0; i1 < ir1; i1++) {
  7255. ggml_vec_silu_f32(nc,
  7256. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7257. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7258. #ifndef NDEBUG
  7259. for (int k = 0; k < nc; k++) {
  7260. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7261. UNUSED(x);
  7262. assert(!isnan(x));
  7263. assert(!isinf(x));
  7264. }
  7265. #endif
  7266. }
  7267. }
  7268. static void ggml_compute_forward_silu(
  7269. const struct ggml_compute_params * params,
  7270. const struct ggml_tensor * src0,
  7271. struct ggml_tensor * dst) {
  7272. switch (src0->type) {
  7273. case GGML_TYPE_F32:
  7274. {
  7275. ggml_compute_forward_silu_f32(params, src0, dst);
  7276. } break;
  7277. default:
  7278. {
  7279. GGML_ASSERT(false);
  7280. } break;
  7281. }
  7282. }
  7283. // ggml_compute_forward_leaky
  7284. static void ggml_compute_forward_leaky_f32(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. struct ggml_tensor * dst) {
  7288. assert(params->ith == 0);
  7289. assert(ggml_are_same_shape(src0, dst));
  7290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7291. return;
  7292. }
  7293. const int n = ggml_nrows(src0);
  7294. const int nc = src0->ne[0];
  7295. assert(dst->nb[0] == sizeof(float));
  7296. assert(src0->nb[0] == sizeof(float));
  7297. for (int i = 0; i < n; i++) {
  7298. ggml_vec_leaky_f32(nc,
  7299. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7300. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7301. }
  7302. }
  7303. static void ggml_compute_forward_leaky(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. switch (src0->type) {
  7308. case GGML_TYPE_F32:
  7309. {
  7310. ggml_compute_forward_leaky_f32(params, src0, dst);
  7311. } break;
  7312. default:
  7313. {
  7314. GGML_ASSERT(false);
  7315. } break;
  7316. }
  7317. }
  7318. // ggml_compute_forward_silu_back
  7319. static void ggml_compute_forward_silu_back_f32(
  7320. const struct ggml_compute_params * params,
  7321. const struct ggml_tensor * src0,
  7322. const struct ggml_tensor * grad,
  7323. struct ggml_tensor * dst) {
  7324. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7325. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7326. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7328. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7330. return;
  7331. }
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. const int nc = src0->ne[0];
  7335. const int nr = ggml_nrows(src0);
  7336. // rows per thread
  7337. const int dr = (nr + nth - 1)/nth;
  7338. // row range for this thread
  7339. const int ir0 = dr*ith;
  7340. const int ir1 = MIN(ir0 + dr, nr);
  7341. for (int i1 = ir0; i1 < ir1; i1++) {
  7342. ggml_vec_silu_backward_f32(nc,
  7343. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7345. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7346. #ifndef NDEBUG
  7347. for (int k = 0; k < nc; k++) {
  7348. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7349. UNUSED(x);
  7350. assert(!isnan(x));
  7351. assert(!isinf(x));
  7352. }
  7353. #endif
  7354. }
  7355. }
  7356. static void ggml_compute_forward_silu_back(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. const struct ggml_tensor * grad,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_norm
  7373. static void ggml_compute_forward_norm_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. struct ggml_tensor * dst) {
  7377. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7379. return;
  7380. }
  7381. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7382. const int ith = params->ith;
  7383. const int nth = params->nth;
  7384. GGML_TENSOR_UNARY_OP_LOCALS
  7385. float eps;
  7386. memcpy(&eps, dst->op_params, sizeof(float));
  7387. // TODO: optimize
  7388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7390. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7391. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7392. ggml_float sum = 0.0;
  7393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7394. sum += (ggml_float)x[i00];
  7395. }
  7396. float mean = sum/ne00;
  7397. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7398. ggml_float sum2 = 0.0;
  7399. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7400. float v = x[i00] - mean;
  7401. y[i00] = v;
  7402. sum2 += (ggml_float)(v*v);
  7403. }
  7404. float variance = sum2/ne00;
  7405. const float scale = 1.0f/sqrtf(variance + eps);
  7406. ggml_vec_scale_f32(ne00, y, scale);
  7407. }
  7408. }
  7409. }
  7410. }
  7411. static void ggml_compute_forward_norm(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. struct ggml_tensor * dst) {
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. ggml_compute_forward_norm_f32(params, src0, dst);
  7419. } break;
  7420. default:
  7421. {
  7422. GGML_ASSERT(false);
  7423. } break;
  7424. }
  7425. }
  7426. // ggml_compute_forward_group_rms_norm
  7427. static void ggml_compute_forward_rms_norm_f32(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. struct ggml_tensor * dst) {
  7431. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7433. return;
  7434. }
  7435. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7436. const int ith = params->ith;
  7437. const int nth = params->nth;
  7438. GGML_TENSOR_UNARY_OP_LOCALS
  7439. float eps;
  7440. memcpy(&eps, dst->op_params, sizeof(float));
  7441. // TODO: optimize
  7442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7444. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7445. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7446. ggml_float sum = 0.0;
  7447. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7448. sum += (ggml_float)(x[i00] * x[i00]);
  7449. }
  7450. const float mean = sum/ne00;
  7451. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7452. memcpy(y, x, ne00 * sizeof(float));
  7453. // for (int i00 = 0; i00 < ne00; i00++) {
  7454. // y[i00] = x[i00];
  7455. // }
  7456. const float scale = 1.0f/sqrtf(mean + eps);
  7457. ggml_vec_scale_f32(ne00, y, scale);
  7458. }
  7459. }
  7460. }
  7461. }
  7462. static void ggml_compute_forward_rms_norm(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. {
  7469. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. static void ggml_compute_forward_rms_norm_back_f32(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * src0,
  7480. const struct ggml_tensor * src1,
  7481. struct ggml_tensor * dst) {
  7482. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7487. const int ith = params->ith;
  7488. const int nth = params->nth;
  7489. GGML_TENSOR_BINARY_OP_LOCALS
  7490. float eps;
  7491. memcpy(&eps, dst->op_params, sizeof(float));
  7492. // TODO: optimize
  7493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7495. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7496. // src1 is same shape as src0 => same indices
  7497. const int64_t i11 = i01;
  7498. const int64_t i12 = i02;
  7499. const int64_t i13 = i03;
  7500. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7501. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7502. ggml_float sum_xx = 0.0;
  7503. ggml_float sum_xdz = 0.0;
  7504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7505. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7506. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7507. }
  7508. //const float mean = (float)(sum_xx)/ne00;
  7509. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7510. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7511. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7512. // we could cache rms from forward pass to improve performance.
  7513. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7514. //const float rms = sqrtf(mean_eps);
  7515. const float rrms = 1.0f / sqrtf(mean_eps);
  7516. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7517. {
  7518. // z = rms_norm(x)
  7519. //
  7520. // rms_norm(src0) =
  7521. // scale(
  7522. // src0,
  7523. // div(
  7524. // 1,
  7525. // sqrt(
  7526. // add(
  7527. // scale(
  7528. // sum(
  7529. // sqr(
  7530. // src0)),
  7531. // (1.0/N)),
  7532. // eps))));
  7533. // postorder:
  7534. // ## op args grad
  7535. // 00 param src0 grad[#00]
  7536. // 01 const 1
  7537. // 02 sqr (#00) grad[#02]
  7538. // 03 sum (#02) grad[#03]
  7539. // 04 const 1/N
  7540. // 05 scale (#03, #04) grad[#05]
  7541. // 06 const eps
  7542. // 07 add (#05, #06) grad[#07]
  7543. // 08 sqrt (#07) grad[#08]
  7544. // 09 div (#01,#08) grad[#09]
  7545. // 10 scale (#00,#09) grad[#10]
  7546. //
  7547. // backward pass, given grad[#10]
  7548. // #10: scale
  7549. // grad[#00] += scale(grad[#10],#09)
  7550. // grad[#09] += sum(mul(grad[#10],#00))
  7551. // #09: div
  7552. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7553. // #08: sqrt
  7554. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7555. // #07: add
  7556. // grad[#05] += grad[#07]
  7557. // #05: scale
  7558. // grad[#03] += scale(grad[#05],#04)
  7559. // #03: sum
  7560. // grad[#02] += repeat(grad[#03], #02)
  7561. // #02:
  7562. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7563. //
  7564. // substitute and simplify:
  7565. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7566. // grad[#02] = repeat(grad[#03], #02)
  7567. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7568. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7569. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7570. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7571. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7572. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7573. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7574. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7575. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7576. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7577. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7578. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7579. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7580. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7581. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7582. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7583. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7584. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7585. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7586. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7587. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7588. // a = b*c + d*e
  7589. // a = b*c*f/f + d*e*f/f
  7590. // a = (b*c*f + d*e*f)*(1/f)
  7591. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7592. // a = (b + d*e/c)*c
  7593. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7594. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7595. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7596. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7597. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7598. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7599. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7600. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7601. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7602. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7603. }
  7604. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7605. // post-order:
  7606. // dx := x
  7607. // dx := scale(dx,-mean_xdz/mean_eps)
  7608. // dx := add(dx, dz)
  7609. // dx := scale(dx, rrms)
  7610. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7611. ggml_vec_cpy_f32 (ne00, dx, x);
  7612. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7613. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7614. ggml_vec_acc_f32 (ne00, dx, dz);
  7615. ggml_vec_scale_f32(ne00, dx, rrms);
  7616. }
  7617. }
  7618. }
  7619. }
  7620. static void ggml_compute_forward_rms_norm_back(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. const struct ggml_tensor * src1,
  7624. struct ggml_tensor * dst) {
  7625. switch (src0->type) {
  7626. case GGML_TYPE_F32:
  7627. {
  7628. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7629. } break;
  7630. default:
  7631. {
  7632. GGML_ASSERT(false);
  7633. } break;
  7634. }
  7635. }
  7636. // ggml_compute_forward_group_norm
  7637. static void ggml_compute_forward_group_norm_f32(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. struct ggml_tensor * dst) {
  7641. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7646. const int ith = params->ith;
  7647. const int nth = params->nth;
  7648. GGML_TENSOR_UNARY_OP_LOCALS
  7649. const float eps = 1e-6f; // TODO: make this a parameter
  7650. // TODO: optimize
  7651. int n_channels = src0->ne[2];
  7652. int n_groups = dst->op_params[0];
  7653. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7654. for (int i = ith; i < n_groups; i+=nth) {
  7655. int start = i * n_channels_per_group;
  7656. int end = start + n_channels_per_group;
  7657. if (end > n_channels) {
  7658. end = n_channels;
  7659. }
  7660. int step = end - start;
  7661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7662. ggml_float sum = 0.0;
  7663. for (int64_t i02 = start; i02 < end; i02++) {
  7664. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7665. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7667. sum += (ggml_float)x[i00];
  7668. }
  7669. }
  7670. }
  7671. float mean = sum / (ne00 * ne01 * step);
  7672. ggml_float sum2 = 0.0;
  7673. for (int64_t i02 = start; i02 < end; i02++) {
  7674. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7675. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7676. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7677. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7678. float v = x[i00] - mean;
  7679. y[i00] = v;
  7680. sum2 += (ggml_float)(v * v);
  7681. }
  7682. }
  7683. }
  7684. float variance = sum2 / (ne00 * ne01 * step);
  7685. const float scale = 1.0f / sqrtf(variance + eps);
  7686. for (int64_t i02 = start; i02 < end; i02++) {
  7687. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7688. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7689. ggml_vec_scale_f32(ne00, y, scale);
  7690. }
  7691. }
  7692. }
  7693. }
  7694. }
  7695. static void ggml_compute_forward_group_norm(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. struct ggml_tensor * dst) {
  7699. switch (src0->type) {
  7700. case GGML_TYPE_F32:
  7701. {
  7702. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7703. } break;
  7704. default:
  7705. {
  7706. GGML_ASSERT(false);
  7707. } break;
  7708. }
  7709. }
  7710. // ggml_compute_forward_mul_mat
  7711. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7712. // helper function to determine if it is better to use BLAS or not
  7713. // for large matrices, BLAS is faster
  7714. static bool ggml_compute_forward_mul_mat_use_blas(
  7715. const struct ggml_tensor * src0,
  7716. const struct ggml_tensor * src1,
  7717. struct ggml_tensor * dst) {
  7718. //const int64_t ne00 = src0->ne[0];
  7719. //const int64_t ne01 = src0->ne[1];
  7720. const int64_t ne10 = src1->ne[0];
  7721. const int64_t ne0 = dst->ne[0];
  7722. const int64_t ne1 = dst->ne[1];
  7723. // TODO: find the optimal values for these
  7724. if (ggml_is_contiguous(src0) &&
  7725. ggml_is_contiguous(src1) &&
  7726. //src0->type == GGML_TYPE_F32 &&
  7727. src1->type == GGML_TYPE_F32 &&
  7728. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7729. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7730. return true;
  7731. }
  7732. return false;
  7733. }
  7734. #endif
  7735. static void ggml_compute_forward_mul_mat(
  7736. const struct ggml_compute_params * params,
  7737. const struct ggml_tensor * src0,
  7738. const struct ggml_tensor * src1,
  7739. struct ggml_tensor * dst) {
  7740. int64_t t0 = ggml_perf_time_us();
  7741. UNUSED(t0);
  7742. GGML_TENSOR_BINARY_OP_LOCALS
  7743. const int ith = params->ith;
  7744. const int nth = params->nth;
  7745. const enum ggml_type type = src0->type;
  7746. const bool src1_cont = ggml_is_contiguous(src1);
  7747. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7748. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7749. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7750. GGML_ASSERT(ne0 == ne01);
  7751. GGML_ASSERT(ne1 == ne11);
  7752. GGML_ASSERT(ne2 == ne12);
  7753. GGML_ASSERT(ne3 == ne13);
  7754. // we don't support permuted src0 or src1
  7755. GGML_ASSERT(nb00 == ggml_type_size(type));
  7756. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7757. // dst cannot be transposed or permuted
  7758. GGML_ASSERT(nb0 == sizeof(float));
  7759. GGML_ASSERT(nb0 <= nb1);
  7760. GGML_ASSERT(nb1 <= nb2);
  7761. GGML_ASSERT(nb2 <= nb3);
  7762. // broadcast factors
  7763. const int64_t r2 = ne12/ne02;
  7764. const int64_t r3 = ne13/ne03;
  7765. // nb01 >= nb00 - src0 is not transposed
  7766. // compute by src0 rows
  7767. #if defined(GGML_USE_CLBLAST)
  7768. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7769. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7770. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7771. }
  7772. return;
  7773. }
  7774. #endif
  7775. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7776. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7777. if (params->ith != 0) {
  7778. return;
  7779. }
  7780. if (params->type == GGML_TASK_INIT) {
  7781. return;
  7782. }
  7783. if (params->type == GGML_TASK_FINALIZE) {
  7784. return;
  7785. }
  7786. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7787. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7788. // broadcast src0 into src1 across 2nd,3rd dimension
  7789. const int64_t i03 = i13/r3;
  7790. const int64_t i02 = i12/r2;
  7791. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7792. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7793. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7794. if (type != GGML_TYPE_F32) {
  7795. float * const wdata = params->wdata;
  7796. ggml_to_float_t const to_float = type_traits[type].to_float;
  7797. size_t id = 0;
  7798. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7799. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7800. id += ne00;
  7801. }
  7802. assert(id*sizeof(float) <= params->wsize);
  7803. x = wdata;
  7804. }
  7805. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7806. ne11, ne01, ne10,
  7807. 1.0f, y, ne10,
  7808. x, ne00,
  7809. 0.0f, d, ne01);
  7810. }
  7811. }
  7812. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7813. return;
  7814. }
  7815. #endif
  7816. if (params->type == GGML_TASK_INIT) {
  7817. if (src1->type != vec_dot_type) {
  7818. char * wdata = params->wdata;
  7819. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7820. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7821. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7822. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7823. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7824. wdata += row_size;
  7825. }
  7826. }
  7827. }
  7828. }
  7829. return;
  7830. }
  7831. if (params->type == GGML_TASK_FINALIZE) {
  7832. return;
  7833. }
  7834. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7835. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7836. const int64_t nr0 = ne01; // src0 rows
  7837. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7838. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7839. // distribute the thread work across the inner or outer loop based on which one is larger
  7840. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7841. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7842. const int64_t ith0 = ith % nth0;
  7843. const int64_t ith1 = ith / nth0;
  7844. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7845. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7846. const int64_t ir010 = dr0*ith0;
  7847. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7848. const int64_t ir110 = dr1*ith1;
  7849. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7850. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7851. // threads with no work simply yield (not sure if it helps)
  7852. if (ir010 >= ir011 || ir110 >= ir111) {
  7853. sched_yield();
  7854. return;
  7855. }
  7856. assert(ne12 % ne02 == 0);
  7857. assert(ne13 % ne03 == 0);
  7858. // block-tiling attempt
  7859. const int64_t blck_0 = 16;
  7860. const int64_t blck_1 = 16;
  7861. // attempt to reduce false-sharing (does not seem to make a difference)
  7862. float tmp[16];
  7863. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7864. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7865. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7866. const int64_t i13 = (ir1/(ne12*ne11));
  7867. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7868. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7869. // broadcast src0 into src1
  7870. const int64_t i03 = i13/r3;
  7871. const int64_t i02 = i12/r2;
  7872. const int64_t i1 = i11;
  7873. const int64_t i2 = i12;
  7874. const int64_t i3 = i13;
  7875. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7876. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7877. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7878. // the original src1 data pointer, so we should index using the indices directly
  7879. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7880. const char * src1_col = (const char *) wdata +
  7881. (src1_cont || src1->type != vec_dot_type
  7882. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7883. : (i11*nb11 + i12*nb12 + i13*nb13));
  7884. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7885. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7886. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7887. //}
  7888. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7889. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7890. }
  7891. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7892. }
  7893. }
  7894. }
  7895. }
  7896. // ggml_compute_forward_out_prod
  7897. static void ggml_compute_forward_out_prod_f32(
  7898. const struct ggml_compute_params * params,
  7899. const struct ggml_tensor * src0,
  7900. const struct ggml_tensor * src1,
  7901. struct ggml_tensor * dst) {
  7902. // int64_t t0 = ggml_perf_time_us();
  7903. // UNUSED(t0);
  7904. GGML_TENSOR_BINARY_OP_LOCALS
  7905. const int ith = params->ith;
  7906. const int nth = params->nth;
  7907. GGML_ASSERT(ne0 == ne00);
  7908. GGML_ASSERT(ne1 == ne10);
  7909. GGML_ASSERT(ne2 == ne02);
  7910. GGML_ASSERT(ne02 == ne12);
  7911. GGML_ASSERT(ne3 == ne13);
  7912. GGML_ASSERT(ne03 == ne13);
  7913. // we don't support permuted src0 or src1
  7914. GGML_ASSERT(nb00 == sizeof(float));
  7915. // dst cannot be transposed or permuted
  7916. GGML_ASSERT(nb0 == sizeof(float));
  7917. // GGML_ASSERT(nb0 <= nb1);
  7918. // GGML_ASSERT(nb1 <= nb2);
  7919. // GGML_ASSERT(nb2 <= nb3);
  7920. // nb01 >= nb00 - src0 is not transposed
  7921. // compute by src0 rows
  7922. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7923. // TODO: #if defined(GGML_USE_CLBLAST)
  7924. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7925. bool use_blas = ggml_is_matrix(src0) &&
  7926. ggml_is_matrix(src1) &&
  7927. ggml_is_contiguous(src0) &&
  7928. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  7929. #endif
  7930. if (params->type == GGML_TASK_INIT) {
  7931. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  7932. if (use_blas) {
  7933. return;
  7934. }
  7935. #endif
  7936. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7937. return;
  7938. }
  7939. if (params->type == GGML_TASK_FINALIZE) {
  7940. return;
  7941. }
  7942. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7943. if (use_blas) {
  7944. if (params->ith != 0) { // All threads other than the first do no work.
  7945. return;
  7946. }
  7947. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  7948. // src0: (k,n)
  7949. // src1: (k,m)
  7950. // dst: (m,n)
  7951. //
  7952. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  7953. // Also expressed as (major,minor)
  7954. // a: (m,k): so src1 transposed
  7955. // b: (k,n): so src0
  7956. // c: (m,n)
  7957. //
  7958. // However, if ggml_is_transposed(src1) is true, then
  7959. // src1->data already contains a transposed version, so sgemm mustn't
  7960. // transpose it further.
  7961. int n = src0->ne[0];
  7962. int k = src0->ne[1];
  7963. int m = src1->ne[0];
  7964. int transposeA, lda;
  7965. if (!ggml_is_transposed(src1)) {
  7966. transposeA = CblasTrans;
  7967. lda = m;
  7968. } else {
  7969. transposeA = CblasNoTrans;
  7970. lda = k;
  7971. }
  7972. float * a = (float *) ((char *) src1->data);
  7973. float * b = (float *) ((char *) src0->data);
  7974. float * c = (float *) ((char *) dst->data);
  7975. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  7976. return;
  7977. }
  7978. #endif
  7979. // dst[:,:,:,:] = 0
  7980. // for i2,i3:
  7981. // for i1:
  7982. // for i01:
  7983. // for i0:
  7984. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7985. // parallelize by last three dimensions
  7986. // total rows in dst
  7987. const int64_t nr = ne1*ne2*ne3;
  7988. // rows per thread
  7989. const int64_t dr = (nr + nth - 1)/nth;
  7990. // row range for this thread
  7991. const int64_t ir0 = dr*ith;
  7992. const int64_t ir1 = MIN(ir0 + dr, nr);
  7993. // block-tiling attempt
  7994. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7995. const int64_t blck_1 = 16;
  7996. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7997. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7998. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7999. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8000. for (int64_t ir = bir; ir < bir1; ++ir) {
  8001. // dst indices
  8002. const int64_t i3 = ir/(ne2*ne1);
  8003. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8004. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8005. const int64_t i02 = i2;
  8006. const int64_t i03 = i3;
  8007. //const int64_t i10 = i1;
  8008. const int64_t i12 = i2;
  8009. const int64_t i13 = i3;
  8010. #if GGML_VEC_MAD_UNROLL > 2
  8011. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8012. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8013. const int64_t i11 = i01;
  8014. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8015. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8016. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8017. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8018. }
  8019. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8020. const int64_t i11 = i01;
  8021. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8022. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8023. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8024. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8025. }
  8026. #else
  8027. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8028. const int64_t i11 = i01;
  8029. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8030. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8031. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8032. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8033. }
  8034. #endif
  8035. }
  8036. }
  8037. }
  8038. //int64_t t1 = ggml_perf_time_us();
  8039. //static int64_t acc = 0;
  8040. //acc += t1 - t0;
  8041. //if (t1 - t0 > 10) {
  8042. // printf("\n");
  8043. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8044. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8045. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8046. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8047. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8048. //}
  8049. }
  8050. static void ggml_compute_forward_out_prod_q_f32(
  8051. const struct ggml_compute_params * params,
  8052. const struct ggml_tensor * src0,
  8053. const struct ggml_tensor * src1,
  8054. struct ggml_tensor * dst) {
  8055. // int64_t t0 = ggml_perf_time_us();
  8056. // UNUSED(t0);
  8057. GGML_TENSOR_BINARY_OP_LOCALS;
  8058. const int ith = params->ith;
  8059. const int nth = params->nth;
  8060. const enum ggml_type type = src0->type;
  8061. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8062. GGML_ASSERT(ne02 == ne12);
  8063. GGML_ASSERT(ne03 == ne13);
  8064. GGML_ASSERT(ne2 == ne12);
  8065. GGML_ASSERT(ne3 == ne13);
  8066. // we don't support permuted src0 dim0
  8067. GGML_ASSERT(nb00 == ggml_type_size(type));
  8068. // dst dim0 cannot be transposed or permuted
  8069. GGML_ASSERT(nb0 == sizeof(float));
  8070. // GGML_ASSERT(nb0 <= nb1);
  8071. // GGML_ASSERT(nb1 <= nb2);
  8072. // GGML_ASSERT(nb2 <= nb3);
  8073. GGML_ASSERT(ne0 == ne00);
  8074. GGML_ASSERT(ne1 == ne10);
  8075. GGML_ASSERT(ne2 == ne02);
  8076. GGML_ASSERT(ne3 == ne03);
  8077. // nb01 >= nb00 - src0 is not transposed
  8078. // compute by src0 rows
  8079. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8080. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8081. if (params->type == GGML_TASK_INIT) {
  8082. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8083. return;
  8084. }
  8085. if (params->type == GGML_TASK_FINALIZE) {
  8086. return;
  8087. }
  8088. // parallelize by last three dimensions
  8089. // total rows in dst
  8090. const int64_t nr = ne1*ne2*ne3;
  8091. // rows per thread
  8092. const int64_t dr = (nr + nth - 1)/nth;
  8093. // row range for this thread
  8094. const int64_t ir0 = dr*ith;
  8095. const int64_t ir1 = MIN(ir0 + dr, nr);
  8096. // dst[:,:,:,:] = 0
  8097. // for i2,i3:
  8098. // for i1:
  8099. // for i01:
  8100. // for i0:
  8101. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8102. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8103. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8104. // dst indices
  8105. const int64_t i3 = ir/(ne2*ne1);
  8106. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8107. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8108. const int64_t i02 = i2;
  8109. const int64_t i03 = i3;
  8110. //const int64_t i10 = i1;
  8111. const int64_t i12 = i2;
  8112. const int64_t i13 = i3;
  8113. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8114. const int64_t i11 = i01;
  8115. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8116. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8117. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8118. dequantize_row_q(s0, wdata, ne0);
  8119. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8120. }
  8121. }
  8122. //int64_t t1 = ggml_perf_time_us();
  8123. //static int64_t acc = 0;
  8124. //acc += t1 - t0;
  8125. //if (t1 - t0 > 10) {
  8126. // printf("\n");
  8127. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8128. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8129. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8130. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8131. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8132. //}
  8133. }
  8134. static void ggml_compute_forward_out_prod(
  8135. const struct ggml_compute_params * params,
  8136. const struct ggml_tensor * src0,
  8137. const struct ggml_tensor * src1,
  8138. struct ggml_tensor * dst) {
  8139. switch (src0->type) {
  8140. case GGML_TYPE_Q4_0:
  8141. case GGML_TYPE_Q4_1:
  8142. case GGML_TYPE_Q5_0:
  8143. case GGML_TYPE_Q5_1:
  8144. case GGML_TYPE_Q8_0:
  8145. case GGML_TYPE_Q2_K:
  8146. case GGML_TYPE_Q3_K:
  8147. case GGML_TYPE_Q4_K:
  8148. case GGML_TYPE_Q5_K:
  8149. case GGML_TYPE_Q6_K:
  8150. {
  8151. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8152. } break;
  8153. case GGML_TYPE_F16:
  8154. {
  8155. GGML_ASSERT(false); // todo
  8156. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8157. } break;
  8158. case GGML_TYPE_F32:
  8159. {
  8160. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8161. } break;
  8162. default:
  8163. {
  8164. GGML_ASSERT(false);
  8165. } break;
  8166. }
  8167. }
  8168. // ggml_compute_forward_scale
  8169. static void ggml_compute_forward_scale_f32(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. const struct ggml_tensor * src1,
  8173. struct ggml_tensor * dst) {
  8174. GGML_ASSERT(ggml_is_contiguous(src0));
  8175. GGML_ASSERT(ggml_is_contiguous(dst));
  8176. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8177. GGML_ASSERT(ggml_is_scalar(src1));
  8178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8179. return;
  8180. }
  8181. // scale factor
  8182. const float v = *(float *) src1->data;
  8183. const int ith = params->ith;
  8184. const int nth = params->nth;
  8185. const int nc = src0->ne[0];
  8186. const int nr = ggml_nrows(src0);
  8187. // rows per thread
  8188. const int dr = (nr + nth - 1)/nth;
  8189. // row range for this thread
  8190. const int ir0 = dr*ith;
  8191. const int ir1 = MIN(ir0 + dr, nr);
  8192. const size_t nb01 = src0->nb[1];
  8193. const size_t nb1 = dst->nb[1];
  8194. for (int i1 = ir0; i1 < ir1; i1++) {
  8195. if (dst->data != src0->data) {
  8196. // src0 is same shape as dst => same indices
  8197. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8198. }
  8199. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8200. }
  8201. }
  8202. static void ggml_compute_forward_scale(
  8203. const struct ggml_compute_params * params,
  8204. const struct ggml_tensor * src0,
  8205. const struct ggml_tensor * src1,
  8206. struct ggml_tensor * dst) {
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_set
  8219. static void ggml_compute_forward_set_f32(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. const struct ggml_tensor * src1,
  8223. struct ggml_tensor * dst) {
  8224. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8225. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8226. // view src0 and dst with these strides and data offset inbytes during set
  8227. // nb0 is implicitely element_size because src0 and dst are contiguous
  8228. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8229. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8230. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8231. size_t offset = ((int32_t *) dst->op_params)[3];
  8232. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8233. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8234. // memcpy needs to be synchronized across threads to avoid race conditions.
  8235. // => do it in INIT phase
  8236. memcpy(
  8237. ((char *) dst->data),
  8238. ((char *) src0->data),
  8239. ggml_nbytes(dst));
  8240. }
  8241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8242. return;
  8243. }
  8244. const int ith = params->ith;
  8245. const int nth = params->nth;
  8246. const int nr = ggml_nrows(src1);
  8247. const int nc = src1->ne[0];
  8248. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8249. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8250. // src0 and dst as viewed during set
  8251. const size_t nb0 = ggml_element_size(src0);
  8252. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8253. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8254. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8255. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8256. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8257. GGML_ASSERT(nb10 == sizeof(float));
  8258. // rows per thread
  8259. const int dr = (nr + nth - 1)/nth;
  8260. // row range for this thread
  8261. const int ir0 = dr*ith;
  8262. const int ir1 = MIN(ir0 + dr, nr);
  8263. for (int ir = ir0; ir < ir1; ++ir) {
  8264. // src0 and dst are viewed with shape of src1 and offset
  8265. // => same indices
  8266. const int i3 = ir/(ne12*ne11);
  8267. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8268. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8269. ggml_vec_cpy_f32(nc,
  8270. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8271. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8272. }
  8273. }
  8274. static void ggml_compute_forward_set(
  8275. const struct ggml_compute_params * params,
  8276. const struct ggml_tensor * src0,
  8277. const struct ggml_tensor * src1,
  8278. struct ggml_tensor * dst) {
  8279. switch (src0->type) {
  8280. case GGML_TYPE_F32:
  8281. {
  8282. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8283. } break;
  8284. case GGML_TYPE_F16:
  8285. case GGML_TYPE_Q4_0:
  8286. case GGML_TYPE_Q4_1:
  8287. case GGML_TYPE_Q5_0:
  8288. case GGML_TYPE_Q5_1:
  8289. case GGML_TYPE_Q8_0:
  8290. case GGML_TYPE_Q8_1:
  8291. case GGML_TYPE_Q2_K:
  8292. case GGML_TYPE_Q3_K:
  8293. case GGML_TYPE_Q4_K:
  8294. case GGML_TYPE_Q5_K:
  8295. case GGML_TYPE_Q6_K:
  8296. default:
  8297. {
  8298. GGML_ASSERT(false);
  8299. } break;
  8300. }
  8301. }
  8302. // ggml_compute_forward_cpy
  8303. static void ggml_compute_forward_cpy(
  8304. const struct ggml_compute_params * params,
  8305. const struct ggml_tensor * src0,
  8306. struct ggml_tensor * dst) {
  8307. ggml_compute_forward_dup(params, src0, dst);
  8308. }
  8309. // ggml_compute_forward_cont
  8310. static void ggml_compute_forward_cont(
  8311. const struct ggml_compute_params * params,
  8312. const struct ggml_tensor * src0,
  8313. struct ggml_tensor * dst) {
  8314. ggml_compute_forward_dup(params, src0, dst);
  8315. }
  8316. // ggml_compute_forward_reshape
  8317. static void ggml_compute_forward_reshape(
  8318. const struct ggml_compute_params * params,
  8319. const struct ggml_tensor * src0,
  8320. struct ggml_tensor * dst) {
  8321. // NOP
  8322. UNUSED(params);
  8323. UNUSED(src0);
  8324. UNUSED(dst);
  8325. }
  8326. // ggml_compute_forward_view
  8327. static void ggml_compute_forward_view(
  8328. const struct ggml_compute_params * params,
  8329. const struct ggml_tensor * src0) {
  8330. // NOP
  8331. UNUSED(params);
  8332. UNUSED(src0);
  8333. }
  8334. // ggml_compute_forward_permute
  8335. static void ggml_compute_forward_permute(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0) {
  8338. // NOP
  8339. UNUSED(params);
  8340. UNUSED(src0);
  8341. }
  8342. // ggml_compute_forward_transpose
  8343. static void ggml_compute_forward_transpose(
  8344. const struct ggml_compute_params * params,
  8345. const struct ggml_tensor * src0) {
  8346. // NOP
  8347. UNUSED(params);
  8348. UNUSED(src0);
  8349. }
  8350. // ggml_compute_forward_get_rows
  8351. static void ggml_compute_forward_get_rows_q(
  8352. const struct ggml_compute_params * params,
  8353. const struct ggml_tensor * src0,
  8354. const struct ggml_tensor * src1,
  8355. struct ggml_tensor * dst) {
  8356. assert(params->ith == 0);
  8357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8358. return;
  8359. }
  8360. const int nc = src0->ne[0];
  8361. const int nr = ggml_nelements(src1);
  8362. const enum ggml_type type = src0->type;
  8363. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8364. assert( dst->ne[0] == nc);
  8365. assert( dst->ne[1] == nr);
  8366. assert(src0->nb[0] == ggml_type_size(type));
  8367. for (int i = 0; i < nr; ++i) {
  8368. const int r = ((int32_t *) src1->data)[i];
  8369. dequantize_row_q(
  8370. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8371. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8372. }
  8373. }
  8374. static void ggml_compute_forward_get_rows_f16(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. const struct ggml_tensor * src1,
  8378. struct ggml_tensor * dst) {
  8379. assert(params->ith == 0);
  8380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8381. return;
  8382. }
  8383. const int nc = src0->ne[0];
  8384. const int nr = ggml_nelements(src1);
  8385. assert( dst->ne[0] == nc);
  8386. assert( dst->ne[1] == nr);
  8387. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8388. for (int i = 0; i < nr; ++i) {
  8389. const int r = ((int32_t *) src1->data)[i];
  8390. for (int j = 0; j < nc; ++j) {
  8391. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8392. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8393. }
  8394. }
  8395. }
  8396. static void ggml_compute_forward_get_rows_f32(
  8397. const struct ggml_compute_params * params,
  8398. const struct ggml_tensor * src0,
  8399. const struct ggml_tensor * src1,
  8400. struct ggml_tensor * dst) {
  8401. assert(params->ith == 0);
  8402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8403. return;
  8404. }
  8405. const int nc = src0->ne[0];
  8406. const int nr = ggml_nelements(src1);
  8407. assert( dst->ne[0] == nc);
  8408. assert( dst->ne[1] == nr);
  8409. assert(src0->nb[0] == sizeof(float));
  8410. for (int i = 0; i < nr; ++i) {
  8411. const int r = ((int32_t *) src1->data)[i];
  8412. ggml_vec_cpy_f32(nc,
  8413. (float *) ((char *) dst->data + i*dst->nb[1]),
  8414. (float *) ((char *) src0->data + r*src0->nb[1]));
  8415. }
  8416. }
  8417. static void ggml_compute_forward_get_rows(
  8418. const struct ggml_compute_params * params,
  8419. const struct ggml_tensor * src0,
  8420. const struct ggml_tensor * src1,
  8421. struct ggml_tensor * dst) {
  8422. switch (src0->type) {
  8423. case GGML_TYPE_Q4_0:
  8424. case GGML_TYPE_Q4_1:
  8425. case GGML_TYPE_Q5_0:
  8426. case GGML_TYPE_Q5_1:
  8427. case GGML_TYPE_Q8_0:
  8428. case GGML_TYPE_Q8_1:
  8429. case GGML_TYPE_Q2_K:
  8430. case GGML_TYPE_Q3_K:
  8431. case GGML_TYPE_Q4_K:
  8432. case GGML_TYPE_Q5_K:
  8433. case GGML_TYPE_Q6_K:
  8434. {
  8435. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8436. } break;
  8437. case GGML_TYPE_F16:
  8438. {
  8439. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8440. } break;
  8441. case GGML_TYPE_F32:
  8442. {
  8443. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8444. } break;
  8445. default:
  8446. {
  8447. GGML_ASSERT(false);
  8448. } break;
  8449. }
  8450. //static bool first = true;
  8451. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8452. //if (first) {
  8453. // first = false;
  8454. //} else {
  8455. // for (int k = 0; k < dst->ne[1]; ++k) {
  8456. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8457. // for (int i = 0; i < 16; ++i) {
  8458. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8459. // }
  8460. // printf("\n");
  8461. // }
  8462. // printf("\n");
  8463. // }
  8464. // printf("\n");
  8465. // exit(0);
  8466. //}
  8467. }
  8468. // ggml_compute_forward_get_rows_back
  8469. static void ggml_compute_forward_get_rows_back_f32_f16(
  8470. const struct ggml_compute_params * params,
  8471. const struct ggml_tensor * src0,
  8472. const struct ggml_tensor * src1,
  8473. struct ggml_tensor * dst) {
  8474. GGML_ASSERT(params->ith == 0);
  8475. GGML_ASSERT(ggml_is_contiguous(dst));
  8476. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8477. if (params->type == GGML_TASK_INIT) {
  8478. memset(dst->data, 0, ggml_nbytes(dst));
  8479. }
  8480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8481. return;
  8482. }
  8483. const int nc = src0->ne[0];
  8484. const int nr = ggml_nelements(src1);
  8485. GGML_ASSERT( dst->ne[0] == nc);
  8486. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8487. for (int i = 0; i < nr; ++i) {
  8488. const int r = ((int32_t *) src1->data)[i];
  8489. for (int j = 0; j < nc; ++j) {
  8490. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8491. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8492. }
  8493. }
  8494. }
  8495. static void ggml_compute_forward_get_rows_back_f32(
  8496. const struct ggml_compute_params * params,
  8497. const struct ggml_tensor * src0,
  8498. const struct ggml_tensor * src1,
  8499. struct ggml_tensor * dst) {
  8500. GGML_ASSERT(params->ith == 0);
  8501. GGML_ASSERT(ggml_is_contiguous(dst));
  8502. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8503. if (params->type == GGML_TASK_INIT) {
  8504. memset(dst->data, 0, ggml_nbytes(dst));
  8505. }
  8506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8507. return;
  8508. }
  8509. const int nc = src0->ne[0];
  8510. const int nr = ggml_nelements(src1);
  8511. GGML_ASSERT( dst->ne[0] == nc);
  8512. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8513. for (int i = 0; i < nr; ++i) {
  8514. const int r = ((int32_t *) src1->data)[i];
  8515. ggml_vec_add_f32(nc,
  8516. (float *) ((char *) dst->data + r*dst->nb[1]),
  8517. (float *) ((char *) dst->data + r*dst->nb[1]),
  8518. (float *) ((char *) src0->data + i*src0->nb[1]));
  8519. }
  8520. }
  8521. static void ggml_compute_forward_get_rows_back(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. const struct ggml_tensor * src1,
  8525. struct ggml_tensor * dst) {
  8526. switch (src0->type) {
  8527. case GGML_TYPE_F16:
  8528. {
  8529. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8530. } break;
  8531. case GGML_TYPE_F32:
  8532. {
  8533. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8534. } break;
  8535. default:
  8536. {
  8537. GGML_ASSERT(false);
  8538. } break;
  8539. }
  8540. //static bool first = true;
  8541. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8542. //if (first) {
  8543. // first = false;
  8544. //} else {
  8545. // for (int k = 0; k < dst->ne[1]; ++k) {
  8546. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8547. // for (int i = 0; i < 16; ++i) {
  8548. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8549. // }
  8550. // printf("\n");
  8551. // }
  8552. // printf("\n");
  8553. // }
  8554. // printf("\n");
  8555. // exit(0);
  8556. //}
  8557. }
  8558. // ggml_compute_forward_diag
  8559. static void ggml_compute_forward_diag_f32(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. struct ggml_tensor * dst) {
  8563. GGML_ASSERT(params->ith == 0);
  8564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8565. return;
  8566. }
  8567. // TODO: handle transposed/permuted matrices
  8568. GGML_TENSOR_UNARY_OP_LOCALS
  8569. GGML_ASSERT(ne00 == ne0);
  8570. GGML_ASSERT(ne00 == ne1);
  8571. GGML_ASSERT(ne01 == 1);
  8572. GGML_ASSERT(ne02 == ne2);
  8573. GGML_ASSERT(ne03 == ne3);
  8574. GGML_ASSERT(nb00 == sizeof(float));
  8575. GGML_ASSERT(nb0 == sizeof(float));
  8576. for (int i3 = 0; i3 < ne3; i3++) {
  8577. for (int i2 = 0; i2 < ne2; i2++) {
  8578. for (int i1 = 0; i1 < ne1; i1++) {
  8579. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8580. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8581. for (int i0 = 0; i0 < i1; i0++) {
  8582. d[i0] = 0;
  8583. }
  8584. d[i1] = s[i1];
  8585. for (int i0 = i1+1; i0 < ne0; i0++) {
  8586. d[i0] = 0;
  8587. }
  8588. }
  8589. }
  8590. }
  8591. }
  8592. static void ggml_compute_forward_diag(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. struct ggml_tensor * dst) {
  8596. switch (src0->type) {
  8597. case GGML_TYPE_F32:
  8598. {
  8599. ggml_compute_forward_diag_f32(params, src0, dst);
  8600. } break;
  8601. default:
  8602. {
  8603. GGML_ASSERT(false);
  8604. } break;
  8605. }
  8606. }
  8607. // ggml_compute_forward_diag_mask_inf
  8608. static void ggml_compute_forward_diag_mask_f32(
  8609. const struct ggml_compute_params * params,
  8610. const struct ggml_tensor * src0,
  8611. struct ggml_tensor * dst,
  8612. const float value) {
  8613. const int ith = params->ith;
  8614. const int nth = params->nth;
  8615. const int n_past = ((int32_t *) dst->op_params)[0];
  8616. const bool inplace = src0->data == dst->data;
  8617. GGML_ASSERT(n_past >= 0);
  8618. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8619. // memcpy needs to be synchronized across threads to avoid race conditions.
  8620. // => do it in INIT phase
  8621. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8622. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8623. memcpy(
  8624. ((char *) dst->data),
  8625. ((char *) src0->data),
  8626. ggml_nbytes(dst));
  8627. }
  8628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8629. return;
  8630. }
  8631. // TODO: handle transposed/permuted matrices
  8632. const int n = ggml_nrows(src0);
  8633. const int nc = src0->ne[0];
  8634. const int nr = src0->ne[1];
  8635. const int nz = n/nr;
  8636. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8637. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8638. for (int k = 0; k < nz; k++) {
  8639. for (int j = ith; j < nr; j += nth) {
  8640. for (int i = n_past; i < nc; i++) {
  8641. if (i > n_past + j) {
  8642. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8643. }
  8644. }
  8645. }
  8646. }
  8647. }
  8648. static void ggml_compute_forward_diag_mask_inf(
  8649. const struct ggml_compute_params * params,
  8650. const struct ggml_tensor * src0,
  8651. struct ggml_tensor * dst) {
  8652. switch (src0->type) {
  8653. case GGML_TYPE_F32:
  8654. {
  8655. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8656. } break;
  8657. default:
  8658. {
  8659. GGML_ASSERT(false);
  8660. } break;
  8661. }
  8662. }
  8663. static void ggml_compute_forward_diag_mask_zero(
  8664. const struct ggml_compute_params * params,
  8665. const struct ggml_tensor * src0,
  8666. struct ggml_tensor * dst) {
  8667. switch (src0->type) {
  8668. case GGML_TYPE_F32:
  8669. {
  8670. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8671. } break;
  8672. default:
  8673. {
  8674. GGML_ASSERT(false);
  8675. } break;
  8676. }
  8677. }
  8678. // ggml_compute_forward_soft_max
  8679. static void ggml_compute_forward_soft_max_f32(
  8680. const struct ggml_compute_params * params,
  8681. const struct ggml_tensor * src0,
  8682. const struct ggml_tensor * src1,
  8683. struct ggml_tensor * dst) {
  8684. assert(ggml_is_contiguous(dst));
  8685. assert(ggml_are_same_shape(src0, dst));
  8686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8687. return;
  8688. }
  8689. float scale = 1.0f;
  8690. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8691. // TODO: handle transposed/permuted matrices
  8692. const int ith = params->ith;
  8693. const int nth = params->nth;
  8694. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8695. const int nc = src0->ne[0];
  8696. const int nr = ggml_nrows(src0);
  8697. // rows per thread
  8698. const int dr = (nr + nth - 1)/nth;
  8699. // row range for this thread
  8700. const int ir0 = dr*ith;
  8701. const int ir1 = MIN(ir0 + dr, nr);
  8702. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  8703. for (int i1 = ir0; i1 < ir1; i1++) {
  8704. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8705. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8706. // broadcast the mask across rows
  8707. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  8708. ggml_vec_cpy_f32 (nc, wp, sp);
  8709. ggml_vec_scale_f32(nc, wp, scale);
  8710. if (mp) {
  8711. ggml_vec_acc_f32(nc, wp, mp);
  8712. }
  8713. #ifndef NDEBUG
  8714. for (int i = 0; i < nc; ++i) {
  8715. //printf("p[%d] = %f\n", i, p[i]);
  8716. assert(!isnan(wp[i]));
  8717. }
  8718. #endif
  8719. float max = -INFINITY;
  8720. ggml_vec_max_f32(nc, &max, wp);
  8721. ggml_float sum = 0.0;
  8722. uint16_t scvt;
  8723. for (int i = 0; i < nc; i++) {
  8724. if (wp[i] == -INFINITY) {
  8725. dp[i] = 0.0f;
  8726. } else {
  8727. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  8728. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  8729. memcpy(&scvt, &s, sizeof(scvt));
  8730. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8731. sum += (ggml_float)val;
  8732. dp[i] = val;
  8733. }
  8734. }
  8735. assert(sum > 0.0);
  8736. sum = 1.0/sum;
  8737. ggml_vec_scale_f32(nc, dp, sum);
  8738. #ifndef NDEBUG
  8739. for (int i = 0; i < nc; ++i) {
  8740. assert(!isnan(dp[i]));
  8741. assert(!isinf(dp[i]));
  8742. }
  8743. #endif
  8744. }
  8745. }
  8746. static void ggml_compute_forward_soft_max(
  8747. const struct ggml_compute_params * params,
  8748. const struct ggml_tensor * src0,
  8749. const struct ggml_tensor * src1,
  8750. struct ggml_tensor * dst) {
  8751. switch (src0->type) {
  8752. case GGML_TYPE_F32:
  8753. {
  8754. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  8755. } break;
  8756. default:
  8757. {
  8758. GGML_ASSERT(false);
  8759. } break;
  8760. }
  8761. }
  8762. // ggml_compute_forward_soft_max_back
  8763. static void ggml_compute_forward_soft_max_back_f32(
  8764. const struct ggml_compute_params * params,
  8765. const struct ggml_tensor * src0,
  8766. const struct ggml_tensor * src1,
  8767. struct ggml_tensor * dst) {
  8768. GGML_ASSERT(ggml_is_contiguous(src0));
  8769. GGML_ASSERT(ggml_is_contiguous(src1));
  8770. GGML_ASSERT(ggml_is_contiguous(dst));
  8771. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8772. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8774. return;
  8775. }
  8776. // TODO: handle transposed/permuted matrices
  8777. const int ith = params->ith;
  8778. const int nth = params->nth;
  8779. const int nc = src0->ne[0];
  8780. const int nr = ggml_nrows(src0);
  8781. // rows per thread
  8782. const int dr = (nr + nth - 1)/nth;
  8783. // row range for this thread
  8784. const int ir0 = dr*ith;
  8785. const int ir1 = MIN(ir0 + dr, nr);
  8786. for (int i1 = ir0; i1 < ir1; i1++) {
  8787. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8788. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8789. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8790. #ifndef NDEBUG
  8791. for (int i = 0; i < nc; ++i) {
  8792. //printf("p[%d] = %f\n", i, p[i]);
  8793. assert(!isnan(dy[i]));
  8794. assert(!isnan(y[i]));
  8795. }
  8796. #endif
  8797. // Jii = yi - yi*yi
  8798. // Jij = -yi*yj
  8799. // J = diag(y)-y.T*y
  8800. // dx = J * dy
  8801. // dxk = sum_i(Jki * dyi)
  8802. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8803. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8804. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8805. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8806. // dxk = -yk * dot(y, dy) + yk*dyk
  8807. // dxk = yk * (- dot(y, dy) + dyk)
  8808. // dxk = yk * (dyk - dot(y, dy))
  8809. //
  8810. // post-order:
  8811. // dot_y_dy := dot(y, dy)
  8812. // dx := dy
  8813. // dx := dx - dot_y_dy
  8814. // dx := dx * y
  8815. // linear runtime, no additional memory
  8816. float dot_y_dy = 0;
  8817. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8818. ggml_vec_cpy_f32 (nc, dx, dy);
  8819. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8820. ggml_vec_mul_f32 (nc, dx, dx, y);
  8821. #ifndef NDEBUG
  8822. for (int i = 0; i < nc; ++i) {
  8823. assert(!isnan(dx[i]));
  8824. assert(!isinf(dx[i]));
  8825. }
  8826. #endif
  8827. }
  8828. }
  8829. static void ggml_compute_forward_soft_max_back(
  8830. const struct ggml_compute_params * params,
  8831. const struct ggml_tensor * src0,
  8832. const struct ggml_tensor * src1,
  8833. struct ggml_tensor * dst) {
  8834. switch (src0->type) {
  8835. case GGML_TYPE_F32:
  8836. {
  8837. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8838. } break;
  8839. default:
  8840. {
  8841. GGML_ASSERT(false);
  8842. } break;
  8843. }
  8844. }
  8845. // ggml_compute_forward_alibi
  8846. static void ggml_compute_forward_alibi_f32(
  8847. const struct ggml_compute_params * params,
  8848. const struct ggml_tensor * src0,
  8849. struct ggml_tensor * dst) {
  8850. assert(params->ith == 0);
  8851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8852. return;
  8853. }
  8854. //const int n_past = ((int32_t *) dst->op_params)[0];
  8855. const int n_head = ((int32_t *) dst->op_params)[1];
  8856. float max_bias;
  8857. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8858. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8859. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8860. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8861. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8862. const int64_t n = ggml_nrows(src0);
  8863. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8864. const size_t nb0 = src0->nb[0];
  8865. const size_t nb1 = src0->nb[1];
  8866. const size_t nb2 = src0->nb[2];
  8867. //const int nb3 = src0->nb[3];
  8868. GGML_ASSERT(nb0 == sizeof(float));
  8869. GGML_ASSERT(n_head == ne2);
  8870. // add alibi to src0 (KQ_scaled)
  8871. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8872. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8873. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8874. for (int64_t i = 0; i < ne0; i++) {
  8875. for (int64_t j = 0; j < ne1; j++) {
  8876. for (int64_t k = 0; k < ne2_ne3; k++) {
  8877. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8878. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8879. // TODO: k*nb2 or k*nb3
  8880. float m_k;
  8881. if (k < n_heads_log2_floor) {
  8882. m_k = powf(m0, k + 1);
  8883. } else {
  8884. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8885. }
  8886. pdst[0] = i * m_k + src[0];
  8887. }
  8888. }
  8889. }
  8890. }
  8891. static void ggml_compute_forward_alibi_f16(
  8892. const struct ggml_compute_params * params,
  8893. const struct ggml_tensor * src0,
  8894. struct ggml_tensor * dst) {
  8895. assert(params->ith == 0);
  8896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8897. return;
  8898. }
  8899. //const int n_past = ((int32_t *) dst->op_params)[0];
  8900. const int n_head = ((int32_t *) dst->op_params)[1];
  8901. float max_bias;
  8902. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8903. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8904. const int ne1 = src0->ne[1]; // seq_len_without_past
  8905. const int ne2 = src0->ne[2]; // n_head -> this is k
  8906. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8907. const int n = ggml_nrows(src0);
  8908. const int ne2_ne3 = n/ne1; // ne2*ne3
  8909. const int nb0 = src0->nb[0];
  8910. const int nb1 = src0->nb[1];
  8911. const int nb2 = src0->nb[2];
  8912. //const int nb3 = src0->nb[3];
  8913. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8914. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8915. GGML_ASSERT(n_head == ne2);
  8916. // add alibi to src0 (KQ_scaled)
  8917. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8918. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8919. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8920. for (int i = 0; i < ne0; i++) {
  8921. for (int j = 0; j < ne1; j++) {
  8922. for (int k = 0; k < ne2_ne3; k++) {
  8923. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8924. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8925. // TODO: k*nb2 or k*nb3
  8926. float m_k;
  8927. if (k < n_heads_log2_floor) {
  8928. m_k = powf(m0, k + 1);
  8929. } else {
  8930. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8931. }
  8932. // we return F32
  8933. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8934. }
  8935. }
  8936. }
  8937. }
  8938. static void ggml_compute_forward_alibi(
  8939. const struct ggml_compute_params * params,
  8940. const struct ggml_tensor * src0,
  8941. struct ggml_tensor * dst) {
  8942. switch (src0->type) {
  8943. case GGML_TYPE_F16:
  8944. {
  8945. ggml_compute_forward_alibi_f16(params, src0, dst);
  8946. } break;
  8947. case GGML_TYPE_F32:
  8948. {
  8949. ggml_compute_forward_alibi_f32(params, src0, dst);
  8950. } break;
  8951. case GGML_TYPE_Q4_0:
  8952. case GGML_TYPE_Q4_1:
  8953. case GGML_TYPE_Q5_0:
  8954. case GGML_TYPE_Q5_1:
  8955. case GGML_TYPE_Q8_0:
  8956. case GGML_TYPE_Q8_1:
  8957. case GGML_TYPE_Q2_K:
  8958. case GGML_TYPE_Q3_K:
  8959. case GGML_TYPE_Q4_K:
  8960. case GGML_TYPE_Q5_K:
  8961. case GGML_TYPE_Q6_K:
  8962. case GGML_TYPE_Q8_K:
  8963. case GGML_TYPE_I8:
  8964. case GGML_TYPE_I16:
  8965. case GGML_TYPE_I32:
  8966. case GGML_TYPE_COUNT:
  8967. {
  8968. GGML_ASSERT(false);
  8969. } break;
  8970. }
  8971. }
  8972. // ggml_compute_forward_clamp
  8973. static void ggml_compute_forward_clamp_f32(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. struct ggml_tensor * dst) {
  8977. assert(params->ith == 0);
  8978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8979. return;
  8980. }
  8981. float min;
  8982. float max;
  8983. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8984. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8985. const int ith = params->ith;
  8986. const int nth = params->nth;
  8987. const int n = ggml_nrows(src0);
  8988. const int nc = src0->ne[0];
  8989. const size_t nb00 = src0->nb[0];
  8990. const size_t nb01 = src0->nb[1];
  8991. const size_t nb0 = dst->nb[0];
  8992. const size_t nb1 = dst->nb[1];
  8993. GGML_ASSERT( nb0 == sizeof(float));
  8994. GGML_ASSERT(nb00 == sizeof(float));
  8995. for (int j = ith; j < n; j += nth) {
  8996. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8997. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8998. for (int i = 0; i < nc; i++) {
  8999. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9000. }
  9001. }
  9002. }
  9003. static void ggml_compute_forward_clamp(
  9004. const struct ggml_compute_params * params,
  9005. const struct ggml_tensor * src0,
  9006. struct ggml_tensor * dst) {
  9007. switch (src0->type) {
  9008. case GGML_TYPE_F32:
  9009. {
  9010. ggml_compute_forward_clamp_f32(params, src0, dst);
  9011. } break;
  9012. case GGML_TYPE_F16:
  9013. case GGML_TYPE_Q4_0:
  9014. case GGML_TYPE_Q4_1:
  9015. case GGML_TYPE_Q5_0:
  9016. case GGML_TYPE_Q5_1:
  9017. case GGML_TYPE_Q8_0:
  9018. case GGML_TYPE_Q8_1:
  9019. case GGML_TYPE_Q2_K:
  9020. case GGML_TYPE_Q3_K:
  9021. case GGML_TYPE_Q4_K:
  9022. case GGML_TYPE_Q5_K:
  9023. case GGML_TYPE_Q6_K:
  9024. case GGML_TYPE_Q8_K:
  9025. case GGML_TYPE_I8:
  9026. case GGML_TYPE_I16:
  9027. case GGML_TYPE_I32:
  9028. case GGML_TYPE_COUNT:
  9029. {
  9030. GGML_ASSERT(false);
  9031. } break;
  9032. }
  9033. }
  9034. // ggml_compute_forward_rope
  9035. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9036. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9037. return 1 - MIN(1, MAX(0, y));
  9038. }
  9039. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9040. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9041. static void rope_yarn(
  9042. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9043. float * cos_theta, float * sin_theta
  9044. ) {
  9045. // Get n-d rotational scaling corrected for extrapolation
  9046. float theta_interp = freq_scale * theta_extrap;
  9047. float theta = theta_interp;
  9048. if (ext_factor != 0.0f) {
  9049. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9050. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9051. // Get n-d magnitude scaling corrected for interpolation
  9052. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9053. }
  9054. *cos_theta = cosf(theta) * mscale;
  9055. *sin_theta = sinf(theta) * mscale;
  9056. }
  9057. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9058. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9059. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9060. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9061. }
  9062. void ggml_rope_yarn_corr_dims(
  9063. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9064. ) {
  9065. // start and end correction dims
  9066. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9067. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9068. }
  9069. static void ggml_compute_forward_rope_f32(
  9070. const struct ggml_compute_params * params,
  9071. const struct ggml_tensor * src0,
  9072. const struct ggml_tensor * src1,
  9073. struct ggml_tensor * dst,
  9074. const bool forward) {
  9075. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9076. return;
  9077. }
  9078. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9079. // these two only relevant for xPos RoPE:
  9080. float xpos_base;
  9081. bool xpos_down;
  9082. //const int n_past = ((int32_t *) dst->op_params)[0];
  9083. const int n_dims = ((int32_t *) dst->op_params)[1];
  9084. const int mode = ((int32_t *) dst->op_params)[2];
  9085. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9086. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9087. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9088. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9089. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9090. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9091. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9092. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9093. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9094. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9095. GGML_TENSOR_UNARY_OP_LOCALS
  9096. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9097. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9098. GGML_ASSERT(nb00 == sizeof(float));
  9099. const int ith = params->ith;
  9100. const int nth = params->nth;
  9101. const int nr = ggml_nrows(dst);
  9102. GGML_ASSERT(n_dims <= ne0);
  9103. GGML_ASSERT(n_dims % 2 == 0);
  9104. // rows per thread
  9105. const int dr = (nr + nth - 1)/nth;
  9106. // row range for this thread
  9107. const int ir0 = dr*ith;
  9108. const int ir1 = MIN(ir0 + dr, nr);
  9109. // row index used to determine which thread to use
  9110. int ir = 0;
  9111. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9112. const float inv_ndims = -1.f/n_dims;
  9113. float corr_dims[2];
  9114. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9115. const bool is_neox = mode & 2;
  9116. const bool is_glm = mode & 4;
  9117. // backward process uses inverse rotation by cos and sin.
  9118. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9119. // this essentially just switches the sign of sin.
  9120. const float sin_sign = forward ? 1.0f : -1.0f;
  9121. const int32_t * pos = (const int32_t *) src1->data;
  9122. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9123. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9124. const int64_t p = pos[i2];
  9125. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9126. if (ir++ < ir0) continue;
  9127. if (ir > ir1) break;
  9128. float theta_base = (float)p;
  9129. if (is_glm) {
  9130. theta_base = MIN(p, n_ctx - 2);
  9131. float block_theta = MAX(p - (n_ctx - 2), 0);
  9132. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9133. const float cos_theta = cosf(theta_base);
  9134. const float sin_theta = sinf(theta_base) * sin_sign;
  9135. const float cos_block_theta = cosf(block_theta);
  9136. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9137. theta_base *= theta_scale;
  9138. block_theta *= theta_scale;
  9139. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9140. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9141. const float x0 = src[0];
  9142. const float x1 = src[n_dims/2];
  9143. const float x2 = src[n_dims];
  9144. const float x3 = src[n_dims/2*3];
  9145. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9146. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9147. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9148. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9149. }
  9150. } else if (!is_neox) {
  9151. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9152. float cos_theta, sin_theta;
  9153. rope_yarn(
  9154. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9155. );
  9156. sin_theta *= sin_sign;
  9157. // zeta scaling for xPos only:
  9158. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9159. if (xpos_down) zeta = 1.0f / zeta;
  9160. theta_base *= theta_scale;
  9161. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9162. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9163. const float x0 = src[0];
  9164. const float x1 = src[1];
  9165. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9166. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9167. }
  9168. } else {
  9169. // TODO: this might be wrong for ne0 != n_dims - need double check
  9170. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9171. theta_base *= freq_scale;
  9172. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9173. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9174. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9175. float cur_rot = inv_ndims * ic - ib;
  9176. float cos_theta, sin_theta;
  9177. rope_yarn(
  9178. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9179. &cos_theta, &sin_theta
  9180. );
  9181. sin_theta *= sin_sign;
  9182. theta_base *= theta_scale;
  9183. const int64_t i0 = ib*n_dims + ic/2;
  9184. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9185. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9186. const float x0 = src[0];
  9187. const float x1 = src[n_dims/2];
  9188. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9189. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9190. }
  9191. }
  9192. }
  9193. }
  9194. }
  9195. }
  9196. }
  9197. static void ggml_compute_forward_rope_f16(
  9198. const struct ggml_compute_params * params,
  9199. const struct ggml_tensor * src0,
  9200. const struct ggml_tensor * src1,
  9201. struct ggml_tensor * dst,
  9202. const bool forward) {
  9203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9204. return;
  9205. }
  9206. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9207. //const int n_past = ((int32_t *) dst->op_params)[0];
  9208. const int n_dims = ((int32_t *) dst->op_params)[1];
  9209. const int mode = ((int32_t *) dst->op_params)[2];
  9210. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9211. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9212. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9213. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9214. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9215. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9216. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9217. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9218. GGML_TENSOR_UNARY_OP_LOCALS
  9219. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9220. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9221. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9222. const int ith = params->ith;
  9223. const int nth = params->nth;
  9224. const int nr = ggml_nrows(dst);
  9225. GGML_ASSERT(n_dims <= ne0);
  9226. GGML_ASSERT(n_dims % 2 == 0);
  9227. // rows per thread
  9228. const int dr = (nr + nth - 1)/nth;
  9229. // row range for this thread
  9230. const int ir0 = dr*ith;
  9231. const int ir1 = MIN(ir0 + dr, nr);
  9232. // row index used to determine which thread to use
  9233. int ir = 0;
  9234. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9235. const float inv_ndims = -1.f/n_dims;
  9236. float corr_dims[2];
  9237. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9238. const bool is_neox = mode & 2;
  9239. const bool is_glm = mode & 4;
  9240. // backward process uses inverse rotation by cos and sin.
  9241. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9242. // this essentially just switches the sign of sin.
  9243. const float sin_sign = forward ? 1.0f : -1.0f;
  9244. const int32_t * pos = (const int32_t *) src1->data;
  9245. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9246. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9247. const int64_t p = pos[i2];
  9248. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9249. if (ir++ < ir0) continue;
  9250. if (ir > ir1) break;
  9251. float theta_base = (float)p;
  9252. if (is_glm) {
  9253. theta_base = MIN(p, n_ctx - 2);
  9254. float block_theta = MAX(p - (n_ctx - 2), 0);
  9255. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9256. const float cos_theta = cosf(theta_base);
  9257. const float sin_theta = sinf(theta_base) * sin_sign;
  9258. const float cos_block_theta = cosf(block_theta);
  9259. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9260. theta_base *= theta_scale;
  9261. block_theta *= theta_scale;
  9262. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9263. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9264. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9265. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9266. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9267. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9268. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9269. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9270. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9271. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9272. }
  9273. } else if (!is_neox) {
  9274. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9275. float cos_theta, sin_theta;
  9276. rope_yarn(
  9277. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9278. );
  9279. sin_theta *= sin_sign;
  9280. theta_base *= theta_scale;
  9281. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9282. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9283. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9284. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9285. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9286. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9287. }
  9288. } else {
  9289. // TODO: this might be wrong for ne0 != n_dims - need double check
  9290. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9291. theta_base *= freq_scale;
  9292. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9293. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9294. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9295. float cur_rot = inv_ndims * ic - ib;
  9296. float cos_theta, sin_theta;
  9297. rope_yarn(
  9298. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9299. &cos_theta, &sin_theta
  9300. );
  9301. sin_theta *= sin_sign;
  9302. theta_base *= theta_scale;
  9303. const int64_t i0 = ib*n_dims + ic/2;
  9304. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9305. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9306. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9307. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9308. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9309. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9310. }
  9311. }
  9312. }
  9313. }
  9314. }
  9315. }
  9316. }
  9317. static void ggml_compute_forward_rope(
  9318. const struct ggml_compute_params * params,
  9319. const struct ggml_tensor * src0,
  9320. const struct ggml_tensor * src1,
  9321. struct ggml_tensor * dst) {
  9322. switch (src0->type) {
  9323. case GGML_TYPE_F16:
  9324. {
  9325. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9326. } break;
  9327. case GGML_TYPE_F32:
  9328. {
  9329. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9330. } break;
  9331. default:
  9332. {
  9333. GGML_ASSERT(false);
  9334. } break;
  9335. }
  9336. }
  9337. // ggml_compute_forward_rope_back
  9338. static void ggml_compute_forward_rope_back(
  9339. const struct ggml_compute_params * params,
  9340. const struct ggml_tensor * src0,
  9341. const struct ggml_tensor * src1,
  9342. struct ggml_tensor * dst) {
  9343. switch (src0->type) {
  9344. case GGML_TYPE_F16:
  9345. {
  9346. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9347. } break;
  9348. case GGML_TYPE_F32:
  9349. {
  9350. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9351. } break;
  9352. default:
  9353. {
  9354. GGML_ASSERT(false);
  9355. } break;
  9356. }
  9357. }
  9358. // ggml_compute_forward_conv_transpose_1d
  9359. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9360. const struct ggml_compute_params * params,
  9361. const struct ggml_tensor * src0,
  9362. const struct ggml_tensor * src1,
  9363. struct ggml_tensor * dst) {
  9364. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9365. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9366. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9367. int64_t t0 = ggml_perf_time_us();
  9368. UNUSED(t0);
  9369. GGML_TENSOR_BINARY_OP_LOCALS
  9370. const int ith = params->ith;
  9371. const int nth = params->nth;
  9372. const int nk = ne00*ne01*ne02;
  9373. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9374. GGML_ASSERT(nb10 == sizeof(float));
  9375. if (params->type == GGML_TASK_INIT) {
  9376. memset(params->wdata, 0, params->wsize);
  9377. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9378. {
  9379. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9380. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9381. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9382. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9383. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9384. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9385. dst_data[i00*ne02 + i02] = src[i00];
  9386. }
  9387. }
  9388. }
  9389. }
  9390. // permute source data (src1) from (L x Cin) to (Cin x L)
  9391. {
  9392. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9393. ggml_fp16_t * dst_data = wdata;
  9394. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9395. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9396. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9397. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9398. }
  9399. }
  9400. }
  9401. // need to zero dst since we are accumulating into it
  9402. memset(dst->data, 0, ggml_nbytes(dst));
  9403. return;
  9404. }
  9405. if (params->type == GGML_TASK_FINALIZE) {
  9406. return;
  9407. }
  9408. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9409. // total rows in dst
  9410. const int nr = ne1;
  9411. // rows per thread
  9412. const int dr = (nr + nth - 1)/nth;
  9413. // row range for this thread
  9414. const int ir0 = dr*ith;
  9415. const int ir1 = MIN(ir0 + dr, nr);
  9416. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9417. ggml_fp16_t * const wdata_src = wdata + nk;
  9418. for (int i1 = ir0; i1 < ir1; i1++) {
  9419. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9420. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9421. for (int i10 = 0; i10 < ne10; i10++) {
  9422. const int i1n = i10*ne11;
  9423. for (int i00 = 0; i00 < ne00; i00++) {
  9424. float v = 0;
  9425. ggml_vec_dot_f16(ne02, &v,
  9426. (ggml_fp16_t *) wdata_src + i1n,
  9427. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9428. dst_data[i10*s0 + i00] += v;
  9429. }
  9430. }
  9431. }
  9432. }
  9433. static void ggml_compute_forward_conv_transpose_1d_f32(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * src0,
  9436. const struct ggml_tensor * src1,
  9437. struct ggml_tensor * dst) {
  9438. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9439. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9440. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9441. int64_t t0 = ggml_perf_time_us();
  9442. UNUSED(t0);
  9443. GGML_TENSOR_BINARY_OP_LOCALS
  9444. const int ith = params->ith;
  9445. const int nth = params->nth;
  9446. const int nk = ne00*ne01*ne02;
  9447. GGML_ASSERT(nb00 == sizeof(float));
  9448. GGML_ASSERT(nb10 == sizeof(float));
  9449. if (params->type == GGML_TASK_INIT) {
  9450. memset(params->wdata, 0, params->wsize);
  9451. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9452. {
  9453. float * const wdata = (float *) params->wdata + 0;
  9454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9455. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9456. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9457. float * dst_data = wdata + i01*ne00*ne02;
  9458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9459. dst_data[i00*ne02 + i02] = src[i00];
  9460. }
  9461. }
  9462. }
  9463. }
  9464. // prepare source data (src1)
  9465. {
  9466. float * const wdata = (float *) params->wdata + nk;
  9467. float * dst_data = wdata;
  9468. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9469. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9470. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9471. dst_data[i10*ne11 + i11] = src[i10];
  9472. }
  9473. }
  9474. }
  9475. // need to zero dst since we are accumulating into it
  9476. memset(dst->data, 0, ggml_nbytes(dst));
  9477. return;
  9478. }
  9479. if (params->type == GGML_TASK_FINALIZE) {
  9480. return;
  9481. }
  9482. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9483. // total rows in dst
  9484. const int nr = ne1;
  9485. // rows per thread
  9486. const int dr = (nr + nth - 1)/nth;
  9487. // row range for this thread
  9488. const int ir0 = dr*ith;
  9489. const int ir1 = MIN(ir0 + dr, nr);
  9490. float * const wdata = (float *) params->wdata + 0;
  9491. float * const wdata_src = wdata + nk;
  9492. for (int i1 = ir0; i1 < ir1; i1++) {
  9493. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9494. float * wdata_kernel = wdata + i1*ne02*ne00;
  9495. for (int i10 = 0; i10 < ne10; i10++) {
  9496. const int i1n = i10*ne11;
  9497. for (int i00 = 0; i00 < ne00; i00++) {
  9498. float v = 0;
  9499. ggml_vec_dot_f32(ne02, &v,
  9500. wdata_src + i1n,
  9501. wdata_kernel + i00*ne02);
  9502. dst_data[i10*s0 + i00] += v;
  9503. }
  9504. }
  9505. }
  9506. }
  9507. static void ggml_compute_forward_conv_transpose_1d(
  9508. const struct ggml_compute_params * params,
  9509. const struct ggml_tensor * src0,
  9510. const struct ggml_tensor * src1,
  9511. struct ggml_tensor * dst) {
  9512. switch (src0->type) {
  9513. case GGML_TYPE_F16:
  9514. {
  9515. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9516. } break;
  9517. case GGML_TYPE_F32:
  9518. {
  9519. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9520. } break;
  9521. default:
  9522. {
  9523. GGML_ASSERT(false);
  9524. } break;
  9525. }
  9526. }
  9527. // src0: kernel [OC, IC, KH, KW]
  9528. // src1: image [N, IC, IH, IW]
  9529. // dst: result [N, OH, OW, IC*KH*KW]
  9530. static void ggml_compute_forward_im2col_f16(
  9531. const struct ggml_compute_params * params,
  9532. const struct ggml_tensor * src0,
  9533. const struct ggml_tensor * src1,
  9534. struct ggml_tensor * dst) {
  9535. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9536. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9537. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9538. int64_t t0 = ggml_perf_time_us();
  9539. UNUSED(t0);
  9540. GGML_TENSOR_BINARY_OP_LOCALS;
  9541. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9542. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9543. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9544. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9545. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9546. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9547. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9548. const int ith = params->ith;
  9549. const int nth = params->nth;
  9550. const int64_t N = is_2D ? ne13 : ne12;
  9551. const int64_t IC = is_2D ? ne12 : ne11;
  9552. const int64_t IH = is_2D ? ne11 : 1;
  9553. const int64_t IW = ne10;
  9554. const int64_t KH = is_2D ? ne01 : 1;
  9555. const int64_t KW = ne00;
  9556. const int64_t OH = is_2D ? ne2 : 1;
  9557. const int64_t OW = ne1;
  9558. int ofs0 = is_2D ? nb13 : nb12;
  9559. int ofs1 = is_2D ? nb12 : nb11;
  9560. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9561. GGML_ASSERT(nb10 == sizeof(float));
  9562. if (params->type == GGML_TASK_INIT) {
  9563. return;
  9564. }
  9565. if (params->type == GGML_TASK_FINALIZE) {
  9566. return;
  9567. }
  9568. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9569. {
  9570. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9571. for (int64_t in = 0; in < N; in++) {
  9572. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9573. for (int64_t iow = 0; iow < OW; iow++) {
  9574. for (int64_t iic = ith; iic < IC; iic += nth) {
  9575. // micro kernel
  9576. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9577. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9578. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9579. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9580. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9581. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9582. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9583. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9584. } else {
  9585. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9586. }
  9587. }
  9588. }
  9589. }
  9590. }
  9591. }
  9592. }
  9593. }
  9594. }
  9595. static void ggml_compute_forward_im2col(
  9596. const struct ggml_compute_params * params,
  9597. const struct ggml_tensor * src0,
  9598. const struct ggml_tensor * src1,
  9599. struct ggml_tensor * dst) {
  9600. switch (src0->type) {
  9601. case GGML_TYPE_F16:
  9602. {
  9603. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9604. } break;
  9605. case GGML_TYPE_F32:
  9606. {
  9607. GGML_ASSERT(false);
  9608. } break;
  9609. default:
  9610. {
  9611. GGML_ASSERT(false);
  9612. } break;
  9613. }
  9614. }
  9615. // ggml_compute_forward_conv_transpose_2d
  9616. static void ggml_compute_forward_conv_transpose_2d(
  9617. const struct ggml_compute_params * params,
  9618. const struct ggml_tensor * src0,
  9619. const struct ggml_tensor * src1,
  9620. struct ggml_tensor * dst) {
  9621. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9622. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9623. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9624. int64_t t0 = ggml_perf_time_us();
  9625. UNUSED(t0);
  9626. GGML_TENSOR_BINARY_OP_LOCALS
  9627. const int ith = params->ith;
  9628. const int nth = params->nth;
  9629. const int nk = ne00*ne01*ne02*ne03;
  9630. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9631. GGML_ASSERT(nb10 == sizeof(float));
  9632. if (params->type == GGML_TASK_INIT) {
  9633. memset(params->wdata, 0, params->wsize);
  9634. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9635. {
  9636. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9637. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9638. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9639. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9640. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9641. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9642. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9643. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9644. }
  9645. }
  9646. }
  9647. }
  9648. }
  9649. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9650. {
  9651. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9652. for (int i12 = 0; i12 < ne12; i12++) {
  9653. for (int i11 = 0; i11 < ne11; i11++) {
  9654. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9655. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9656. for (int i10 = 0; i10 < ne10; i10++) {
  9657. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9658. }
  9659. }
  9660. }
  9661. }
  9662. memset(dst->data, 0, ggml_nbytes(dst));
  9663. return;
  9664. }
  9665. if (params->type == GGML_TASK_FINALIZE) {
  9666. return;
  9667. }
  9668. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9669. // total patches in dst
  9670. const int np = ne2;
  9671. // patches per thread
  9672. const int dp = (np + nth - 1)/nth;
  9673. // patch range for this thread
  9674. const int ip0 = dp*ith;
  9675. const int ip1 = MIN(ip0 + dp, np);
  9676. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9677. ggml_fp16_t * const wdata_src = wdata + nk;
  9678. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9679. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9680. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9681. for (int i11 = 0; i11 < ne11; i11++) {
  9682. for (int i10 = 0; i10 < ne10; i10++) {
  9683. const int i1n = i11*ne10*ne12 + i10*ne12;
  9684. for (int i01 = 0; i01 < ne01; i01++) {
  9685. for (int i00 = 0; i00 < ne00; i00++) {
  9686. float v = 0;
  9687. ggml_vec_dot_f16(ne03, &v,
  9688. wdata_src + i1n,
  9689. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9690. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9691. }
  9692. }
  9693. }
  9694. }
  9695. }
  9696. }
  9697. // ggml_compute_forward_pool_1d_sk_p0
  9698. static void ggml_compute_forward_pool_1d_sk_p0(
  9699. const struct ggml_compute_params * params,
  9700. const enum ggml_op_pool op,
  9701. const struct ggml_tensor * src,
  9702. const int k,
  9703. struct ggml_tensor * dst) {
  9704. assert(src->type == GGML_TYPE_F32);
  9705. assert(params->ith == 0);
  9706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9707. return;
  9708. }
  9709. const char * cdata = (const char *)src->data;
  9710. const char * const data_end = cdata + ggml_nbytes(src);
  9711. float * drow = (float *)dst->data;
  9712. const int64_t rs = dst->ne[0];
  9713. while (cdata < data_end) {
  9714. const float * const srow = (const float *)cdata;
  9715. int j = 0;
  9716. for (int64_t i = 0; i < rs; ++i) {
  9717. switch (op) {
  9718. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9719. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9720. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9721. }
  9722. for (int ki = 0; ki < k; ++ki) {
  9723. switch (op) {
  9724. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9725. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9726. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9727. }
  9728. ++j;
  9729. }
  9730. switch (op) {
  9731. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9732. case GGML_OP_POOL_MAX: break;
  9733. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9734. }
  9735. }
  9736. cdata += src->nb[1];
  9737. drow += rs;
  9738. }
  9739. }
  9740. // ggml_compute_forward_pool_1d
  9741. static void ggml_compute_forward_pool_1d(
  9742. const struct ggml_compute_params * params,
  9743. const struct ggml_tensor * src0,
  9744. struct ggml_tensor * dst) {
  9745. const int32_t * opts = (const int32_t *)dst->op_params;
  9746. enum ggml_op_pool op = opts[0];
  9747. const int k0 = opts[1];
  9748. const int s0 = opts[2];
  9749. const int p0 = opts[3];
  9750. GGML_ASSERT(p0 == 0); // padding not supported
  9751. GGML_ASSERT(k0 == s0); // only s = k supported
  9752. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9753. }
  9754. // ggml_compute_forward_pool_2d
  9755. static void ggml_compute_forward_pool_2d(
  9756. const struct ggml_compute_params * params,
  9757. const struct ggml_tensor * src,
  9758. struct ggml_tensor * dst) {
  9759. assert(src->type == GGML_TYPE_F32);
  9760. assert(params->ith == 0);
  9761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9762. return;
  9763. }
  9764. const int32_t * opts = (const int32_t *)dst->op_params;
  9765. enum ggml_op_pool op = opts[0];
  9766. const int k0 = opts[1];
  9767. const int k1 = opts[2];
  9768. const int s0 = opts[3];
  9769. const int s1 = opts[4];
  9770. const int p0 = opts[5];
  9771. const int p1 = opts[6];
  9772. const char * cdata = (const char*)src->data;
  9773. const char * const data_end = cdata + ggml_nbytes(src);
  9774. const int64_t px = dst->ne[0];
  9775. const int64_t py = dst->ne[1];
  9776. const int64_t pa = px * py;
  9777. float * dplane = (float *)dst->data;
  9778. const int ka = k0 * k1;
  9779. const int offset0 = -p0;
  9780. const int offset1 = -p1;
  9781. while (cdata < data_end) {
  9782. for (int oy = 0; oy < py; ++oy) {
  9783. float * const drow = dplane + oy * px;
  9784. for (int ox = 0; ox < px; ++ox) {
  9785. float * const out = drow + ox;
  9786. switch (op) {
  9787. case GGML_OP_POOL_AVG: *out = 0; break;
  9788. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9789. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9790. }
  9791. const int ix = offset0 + ox * s0;
  9792. const int iy = offset1 + oy * s1;
  9793. for (int ky = 0; ky < k1; ++ky) {
  9794. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9795. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9796. for (int kx = 0; kx < k0; ++kx) {
  9797. int j = ix + kx;
  9798. if (j < 0 || j >= src->ne[0]) continue;
  9799. switch (op) {
  9800. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9801. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9802. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9803. }
  9804. }
  9805. }
  9806. switch (op) {
  9807. case GGML_OP_POOL_AVG: *out /= ka; break;
  9808. case GGML_OP_POOL_MAX: break;
  9809. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9810. }
  9811. }
  9812. }
  9813. cdata += src->nb[2];
  9814. dplane += pa;
  9815. }
  9816. }
  9817. // ggml_compute_forward_upscale
  9818. static void ggml_compute_forward_upscale_f32(
  9819. const struct ggml_compute_params * params,
  9820. const struct ggml_tensor * src0,
  9821. struct ggml_tensor * dst) {
  9822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9823. return;
  9824. }
  9825. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9826. const int ith = params->ith;
  9827. GGML_TENSOR_UNARY_OP_LOCALS
  9828. const int scale_factor = dst->op_params[0];
  9829. // TODO: optimize
  9830. for (int i03 = 0; i03 < ne03; i03++) {
  9831. for (int i02 = ith; i02 < ne02; i02++) {
  9832. for (int m = 0; m < dst->ne[1]; m++) {
  9833. int i01 = m / scale_factor;
  9834. for (int n = 0; n < dst->ne[0]; n++) {
  9835. int i00 = n / scale_factor;
  9836. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  9837. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  9838. *y = *x;
  9839. }
  9840. }
  9841. }
  9842. }
  9843. }
  9844. static void ggml_compute_forward_upscale(
  9845. const struct ggml_compute_params * params,
  9846. const struct ggml_tensor * src0,
  9847. struct ggml_tensor * dst) {
  9848. switch (src0->type) {
  9849. case GGML_TYPE_F32:
  9850. {
  9851. ggml_compute_forward_upscale_f32(params, src0, dst);
  9852. } break;
  9853. default:
  9854. {
  9855. GGML_ASSERT(false);
  9856. } break;
  9857. }
  9858. }
  9859. // ggml_compute_forward_flash_attn
  9860. static void ggml_compute_forward_flash_attn_f32(
  9861. const struct ggml_compute_params * params,
  9862. const struct ggml_tensor * q,
  9863. const struct ggml_tensor * k,
  9864. const struct ggml_tensor * v,
  9865. const bool masked,
  9866. struct ggml_tensor * dst) {
  9867. int64_t t0 = ggml_perf_time_us();
  9868. UNUSED(t0);
  9869. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  9870. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  9871. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  9872. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  9873. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  9874. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  9875. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9876. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  9877. const int ith = params->ith;
  9878. const int nth = params->nth;
  9879. const int64_t D = neq0;
  9880. const int64_t N = neq1;
  9881. const int64_t P = nek1 - N;
  9882. const int64_t M = P + N;
  9883. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9884. GGML_ASSERT(ne0 == D);
  9885. GGML_ASSERT(ne1 == N);
  9886. GGML_ASSERT(P >= 0);
  9887. GGML_ASSERT(nbq0 == sizeof(float));
  9888. GGML_ASSERT(nbk0 == sizeof(float));
  9889. GGML_ASSERT(nbv0 == sizeof(float));
  9890. GGML_ASSERT(neq0 == D);
  9891. GGML_ASSERT(nek0 == D);
  9892. GGML_ASSERT(nev1 == D);
  9893. GGML_ASSERT(neq1 == N);
  9894. GGML_ASSERT(nek1 == N + P);
  9895. GGML_ASSERT(nev1 == D);
  9896. // dst cannot be transposed or permuted
  9897. GGML_ASSERT(nb0 == sizeof(float));
  9898. GGML_ASSERT(nb0 <= nb1);
  9899. GGML_ASSERT(nb1 <= nb2);
  9900. GGML_ASSERT(nb2 <= nb3);
  9901. if (params->type == GGML_TASK_INIT) {
  9902. return;
  9903. }
  9904. if (params->type == GGML_TASK_FINALIZE) {
  9905. return;
  9906. }
  9907. // parallelize by q rows using ggml_vec_dot_f32
  9908. // total rows in q
  9909. const int nr = neq1*neq2*neq3;
  9910. // rows per thread
  9911. const int dr = (nr + nth - 1)/nth;
  9912. // row range for this thread
  9913. const int ir0 = dr*ith;
  9914. const int ir1 = MIN(ir0 + dr, nr);
  9915. const float scale = 1.0f/sqrtf(D);
  9916. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9917. for (int ir = ir0; ir < ir1; ++ir) {
  9918. // q indices
  9919. const int iq3 = ir/(neq2*neq1);
  9920. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9921. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9922. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9923. for (int i = M; i < Mup; ++i) {
  9924. S[i] = -INFINITY;
  9925. }
  9926. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  9927. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9928. // k indices
  9929. const int ik3 = iq3;
  9930. const int ik2 = iq2 % nek2;
  9931. const int ik1 = ic;
  9932. // S indices
  9933. const int i1 = ik1;
  9934. ggml_vec_dot_f32(neq0,
  9935. S + i1,
  9936. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9937. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9938. }
  9939. // scale
  9940. ggml_vec_scale_f32(masked_begin, S, scale);
  9941. for (int64_t i = masked_begin; i < M; i++) {
  9942. S[i] = -INFINITY;
  9943. }
  9944. // softmax
  9945. // exclude known -INF S[..] values from max and loop
  9946. // dont forget to set their SW values to zero
  9947. {
  9948. float max = -INFINITY;
  9949. ggml_vec_max_f32(masked_begin, &max, S);
  9950. ggml_float sum = 0.0;
  9951. {
  9952. #ifdef GGML_SOFT_MAX_ACCELERATE
  9953. max = -max;
  9954. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9955. vvexpf(S, S, &Mup);
  9956. ggml_vec_sum_f32(Mup, &sum, S);
  9957. #else
  9958. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  9959. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9960. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9961. if (i >= masked_begin) {
  9962. break;
  9963. }
  9964. float * SS = S + i;
  9965. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9966. if (i + j >= masked_begin) {
  9967. break;
  9968. } else if (SS[j] == -INFINITY) {
  9969. SS[j] = 0.0f;
  9970. } else {
  9971. #ifndef GGML_FLASH_ATTN_EXP_FP16
  9972. const float val = expf(SS[j] - max);
  9973. #else
  9974. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9975. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9976. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  9977. #endif
  9978. sump[j] += (ggml_float)val;
  9979. SS[j] = val;
  9980. }
  9981. }
  9982. }
  9983. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9984. sum += sump[i];
  9985. }
  9986. #endif
  9987. }
  9988. assert(sum > 0.0);
  9989. sum = 1.0/sum;
  9990. ggml_vec_scale_f32(masked_begin, S, sum);
  9991. #ifndef NDEBUG
  9992. for (int i = 0; i < masked_begin; ++i) {
  9993. assert(!isnan(S[i]));
  9994. assert(!isinf(S[i]));
  9995. }
  9996. #endif
  9997. }
  9998. for (int64_t ic = 0; ic < nev1; ++ic) {
  9999. // dst indices
  10000. const int i1 = iq1;
  10001. const int i2 = iq2;
  10002. const int i3 = iq3;
  10003. // v indices
  10004. const int iv2 = iq2 % nev2;
  10005. const int iv3 = iq3;
  10006. ggml_vec_dot_f32(masked_begin,
  10007. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10008. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10009. S);
  10010. }
  10011. }
  10012. }
  10013. static void ggml_compute_forward_flash_attn_f16(
  10014. const struct ggml_compute_params * params,
  10015. const struct ggml_tensor * q,
  10016. const struct ggml_tensor * k,
  10017. const struct ggml_tensor * v,
  10018. const bool masked,
  10019. struct ggml_tensor * dst) {
  10020. int64_t t0 = ggml_perf_time_us();
  10021. UNUSED(t0);
  10022. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10023. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10024. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10025. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10026. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10027. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10028. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10029. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10030. const int ith = params->ith;
  10031. const int nth = params->nth;
  10032. const int64_t D = neq0;
  10033. const int64_t N = neq1;
  10034. const int64_t P = nek1 - N;
  10035. const int64_t M = P + N;
  10036. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10037. GGML_ASSERT(ne0 == D);
  10038. GGML_ASSERT(ne1 == N);
  10039. GGML_ASSERT(P >= 0);
  10040. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10041. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10042. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10043. GGML_ASSERT(neq0 == D);
  10044. GGML_ASSERT(nek0 == D);
  10045. GGML_ASSERT(nev1 == D);
  10046. GGML_ASSERT(neq1 == N);
  10047. GGML_ASSERT(nek1 == N + P);
  10048. GGML_ASSERT(nev1 == D);
  10049. // dst cannot be transposed or permuted
  10050. GGML_ASSERT(nb0 == sizeof(float));
  10051. GGML_ASSERT(nb0 <= nb1);
  10052. GGML_ASSERT(nb1 <= nb2);
  10053. GGML_ASSERT(nb2 <= nb3);
  10054. if (params->type == GGML_TASK_INIT) {
  10055. return;
  10056. }
  10057. if (params->type == GGML_TASK_FINALIZE) {
  10058. return;
  10059. }
  10060. // parallelize by q rows using ggml_vec_dot_f32
  10061. // total rows in q
  10062. const int nr = neq1*neq2*neq3;
  10063. // rows per thread
  10064. const int dr = (nr + nth - 1)/nth;
  10065. // row range for this thread
  10066. const int ir0 = dr*ith;
  10067. const int ir1 = MIN(ir0 + dr, nr);
  10068. const float scale = 1.0f/sqrtf(D);
  10069. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10070. for (int ir = ir0; ir < ir1; ++ir) {
  10071. // q indices
  10072. const int iq3 = ir/(neq2*neq1);
  10073. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10074. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10075. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10076. for (int i = M; i < Mup; ++i) {
  10077. S[i] = -INFINITY;
  10078. }
  10079. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10080. for (int64_t ic = 0; ic < nek1; ++ic) {
  10081. // k indices
  10082. const int ik3 = iq3;
  10083. const int ik2 = iq2 % nek2;
  10084. const int ik1 = ic;
  10085. // S indices
  10086. const int i1 = ik1;
  10087. ggml_vec_dot_f16(neq0,
  10088. S + i1,
  10089. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10090. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10091. }
  10092. } else {
  10093. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10094. // k indices
  10095. const int ik3 = iq3;
  10096. const int ik2 = iq2 % nek2;
  10097. const int ik1 = ic;
  10098. // S indices
  10099. const int i1 = ik1;
  10100. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10101. S + i1,
  10102. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10103. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10104. }
  10105. }
  10106. // scale
  10107. ggml_vec_scale_f32(nek1, S, scale);
  10108. if (masked) {
  10109. for (int64_t i = P; i < M; i++) {
  10110. if (i > P + iq1) {
  10111. S[i] = -INFINITY;
  10112. }
  10113. }
  10114. }
  10115. // softmax
  10116. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10117. // dont forget to set their S values to zero
  10118. {
  10119. float max = -INFINITY;
  10120. ggml_vec_max_f32(M, &max, S);
  10121. ggml_float sum = 0.0;
  10122. {
  10123. #ifdef GGML_SOFT_MAX_ACCELERATE
  10124. max = -max;
  10125. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10126. vvexpf(S, S, &Mup);
  10127. ggml_vec_sum_f32(Mup, &sum, S);
  10128. #else
  10129. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10130. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10131. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10132. float * SS = S + i;
  10133. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10134. if (SS[j] == -INFINITY) {
  10135. SS[j] = 0.0f;
  10136. } else {
  10137. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10138. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10139. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10140. sump[j] += (ggml_float)val;
  10141. SS[j] = val;
  10142. }
  10143. }
  10144. }
  10145. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10146. sum += sump[i];
  10147. }
  10148. #endif
  10149. }
  10150. assert(sum > 0.0);
  10151. sum = 1.0/sum;
  10152. ggml_vec_scale_f32(M, S, sum);
  10153. #ifndef NDEBUG
  10154. for (int i = 0; i < M; ++i) {
  10155. assert(!isnan(S[i]));
  10156. assert(!isinf(S[i]));
  10157. }
  10158. #endif
  10159. }
  10160. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10161. for (int64_t i = 0; i < M; i++) {
  10162. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10163. }
  10164. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10165. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10166. for (int64_t ic = 0; ic < nev1; ++ic) {
  10167. // dst indices
  10168. const int i1 = iq1;
  10169. const int i2 = iq2;
  10170. const int i3 = iq3;
  10171. // v indices
  10172. const int iv2 = iq2 % nev2;
  10173. const int iv3 = iq3;
  10174. ggml_vec_dot_f16(nev0,
  10175. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10176. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10177. S16);
  10178. }
  10179. } else {
  10180. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10181. // dst indices
  10182. const int i1 = iq1;
  10183. const int i2 = iq2;
  10184. const int i3 = iq3;
  10185. // v indices
  10186. const int iv2 = iq2 % nev2;
  10187. const int iv3 = iq3;
  10188. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10189. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10190. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10191. S16);
  10192. }
  10193. }
  10194. }
  10195. }
  10196. static void ggml_compute_forward_flash_attn(
  10197. const struct ggml_compute_params * params,
  10198. const struct ggml_tensor * q,
  10199. const struct ggml_tensor * k,
  10200. const struct ggml_tensor * v,
  10201. const bool masked,
  10202. struct ggml_tensor * dst) {
  10203. switch (q->type) {
  10204. case GGML_TYPE_F16:
  10205. {
  10206. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10207. } break;
  10208. case GGML_TYPE_F32:
  10209. {
  10210. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10211. } break;
  10212. default:
  10213. {
  10214. GGML_ASSERT(false);
  10215. } break;
  10216. }
  10217. }
  10218. // ggml_compute_forward_flash_ff
  10219. static void ggml_compute_forward_flash_ff_f16(
  10220. const struct ggml_compute_params * params,
  10221. const struct ggml_tensor * a, // F16
  10222. const struct ggml_tensor * b0, // F16 fc_w
  10223. const struct ggml_tensor * b1, // F32 fc_b
  10224. const struct ggml_tensor * c0, // F16 proj_w
  10225. const struct ggml_tensor * c1, // F32 proj_b
  10226. struct ggml_tensor * dst) {
  10227. int64_t t0 = ggml_perf_time_us();
  10228. UNUSED(t0);
  10229. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10230. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10231. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10232. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10233. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10234. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10235. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10236. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10237. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10238. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10239. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10240. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10241. const int ith = params->ith;
  10242. const int nth = params->nth;
  10243. const int64_t D = nea0;
  10244. //const int64_t N = nea1;
  10245. const int64_t M = neb01;
  10246. GGML_ASSERT(ne0 == nea0);
  10247. GGML_ASSERT(ne1 == nea1);
  10248. GGML_ASSERT(ne2 == nea2);
  10249. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10250. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10251. GGML_ASSERT(nbb10 == sizeof(float));
  10252. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10253. GGML_ASSERT(nbc10 == sizeof(float));
  10254. GGML_ASSERT(neb00 == D);
  10255. GGML_ASSERT(neb01 == M);
  10256. GGML_ASSERT(neb10 == M);
  10257. GGML_ASSERT(neb11 == 1);
  10258. GGML_ASSERT(nec00 == M);
  10259. GGML_ASSERT(nec01 == D);
  10260. GGML_ASSERT(nec10 == D);
  10261. GGML_ASSERT(nec11 == 1);
  10262. // dst cannot be transposed or permuted
  10263. GGML_ASSERT(nb0 == sizeof(float));
  10264. GGML_ASSERT(nb0 <= nb1);
  10265. GGML_ASSERT(nb1 <= nb2);
  10266. GGML_ASSERT(nb2 <= nb3);
  10267. if (params->type == GGML_TASK_INIT) {
  10268. return;
  10269. }
  10270. if (params->type == GGML_TASK_FINALIZE) {
  10271. return;
  10272. }
  10273. // parallelize by a rows using ggml_vec_dot_f32
  10274. // total rows in a
  10275. const int nr = nea1*nea2*nea3;
  10276. // rows per thread
  10277. const int dr = (nr + nth - 1)/nth;
  10278. // row range for this thread
  10279. const int ir0 = dr*ith;
  10280. const int ir1 = MIN(ir0 + dr, nr);
  10281. for (int ir = ir0; ir < ir1; ++ir) {
  10282. // a indices
  10283. const int ia3 = ir/(nea2*nea1);
  10284. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10285. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10286. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10287. for (int64_t ic = 0; ic < neb01; ++ic) {
  10288. // b0 indices
  10289. const int ib03 = ia3;
  10290. const int ib02 = ia2;
  10291. const int ib01 = ic;
  10292. // S indices
  10293. const int i1 = ib01;
  10294. ggml_vec_dot_f16(nea0,
  10295. S + i1,
  10296. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10297. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10298. }
  10299. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10300. //ggml_vec_gelu_f32(neb01, S, S);
  10301. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10302. for (int64_t i = 0; i < M; i++) {
  10303. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10304. }
  10305. ggml_vec_gelu_f16(neb01, S16, S16);
  10306. {
  10307. // dst indices
  10308. const int i1 = ia1;
  10309. const int i2 = ia2;
  10310. const int i3 = ia3;
  10311. for (int64_t ic = 0; ic < nec01; ++ic) {
  10312. ggml_vec_dot_f16(neb01,
  10313. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10314. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10315. S16);
  10316. }
  10317. ggml_vec_add_f32(nec01,
  10318. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10319. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10320. (float *) c1->data);
  10321. }
  10322. }
  10323. }
  10324. static void ggml_compute_forward_flash_ff(
  10325. const struct ggml_compute_params * params,
  10326. const struct ggml_tensor * a,
  10327. const struct ggml_tensor * b0,
  10328. const struct ggml_tensor * b1,
  10329. const struct ggml_tensor * c0,
  10330. const struct ggml_tensor * c1,
  10331. struct ggml_tensor * dst) {
  10332. switch (b0->type) {
  10333. case GGML_TYPE_F16:
  10334. {
  10335. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10336. } break;
  10337. case GGML_TYPE_F32:
  10338. {
  10339. GGML_ASSERT(false); // TODO
  10340. } break;
  10341. default:
  10342. {
  10343. GGML_ASSERT(false);
  10344. } break;
  10345. }
  10346. }
  10347. // ggml_compute_forward_flash_attn_back
  10348. static void ggml_compute_forward_flash_attn_back_f32(
  10349. const struct ggml_compute_params * params,
  10350. const struct ggml_tensor * q,
  10351. const struct ggml_tensor * k,
  10352. const struct ggml_tensor * v,
  10353. const struct ggml_tensor * d,
  10354. const bool masked,
  10355. struct ggml_tensor * dst) {
  10356. int64_t t0 = ggml_perf_time_us();
  10357. UNUSED(t0);
  10358. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10359. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10360. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10361. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10362. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10363. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10364. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10365. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10366. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10367. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10368. const int ith = params->ith;
  10369. const int nth = params->nth;
  10370. const int64_t D = neq0;
  10371. const int64_t N = neq1;
  10372. const int64_t P = nek1 - N;
  10373. const int64_t M = P + N;
  10374. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10375. const int mxDM = MAX(D, Mup);
  10376. // GGML_ASSERT(ne0 == D);
  10377. // GGML_ASSERT(ne1 == N);
  10378. GGML_ASSERT(P >= 0);
  10379. GGML_ASSERT(nbq0 == sizeof(float));
  10380. GGML_ASSERT(nbk0 == sizeof(float));
  10381. GGML_ASSERT(nbv0 == sizeof(float));
  10382. GGML_ASSERT(neq0 == D);
  10383. GGML_ASSERT(nek0 == D);
  10384. GGML_ASSERT(nev1 == D);
  10385. GGML_ASSERT(ned0 == D);
  10386. GGML_ASSERT(neq1 == N);
  10387. GGML_ASSERT(nek1 == N + P);
  10388. GGML_ASSERT(nev1 == D);
  10389. GGML_ASSERT(ned1 == N);
  10390. // dst cannot be transposed or permuted
  10391. GGML_ASSERT(nb0 == sizeof(float));
  10392. GGML_ASSERT(nb0 <= nb1);
  10393. GGML_ASSERT(nb1 <= nb2);
  10394. GGML_ASSERT(nb2 <= nb3);
  10395. if (params->type == GGML_TASK_INIT) {
  10396. if (ith == 0) {
  10397. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10398. }
  10399. return;
  10400. }
  10401. if (params->type == GGML_TASK_FINALIZE) {
  10402. return;
  10403. }
  10404. const int64_t elem_q = ggml_nelements(q);
  10405. const int64_t elem_k = ggml_nelements(k);
  10406. enum ggml_type result_type = dst->type;
  10407. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10408. const size_t tsize = ggml_type_size(result_type);
  10409. const size_t offs_q = 0;
  10410. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10411. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10412. void * grad_q = (char *) dst->data;
  10413. void * grad_k = (char *) dst->data + offs_k;
  10414. void * grad_v = (char *) dst->data + offs_v;
  10415. const size_t nbgq1 = nb0*neq0;
  10416. const size_t nbgq2 = nb0*neq0*neq1;
  10417. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10418. const size_t nbgk1 = nb0*nek0;
  10419. const size_t nbgk2 = nb0*nek0*nek1;
  10420. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10421. const size_t nbgv1 = nb0*nev0;
  10422. const size_t nbgv2 = nb0*nev0*nev1;
  10423. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10424. // parallelize by k rows using ggml_vec_dot_f32
  10425. // total rows in k
  10426. const int nr = nek2*nek3;
  10427. // rows per thread
  10428. const int dr = (nr + nth - 1)/nth;
  10429. // row range for this thread
  10430. const int ir0 = dr*ith;
  10431. const int ir1 = MIN(ir0 + dr, nr);
  10432. const float scale = 1.0f/sqrtf(D);
  10433. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10434. // how often k2 (and v2) is repeated in q2
  10435. int nrep = neq2/nek2;
  10436. for (int ir = ir0; ir < ir1; ++ir) {
  10437. // q indices
  10438. const int ik3 = ir/(nek2);
  10439. const int ik2 = ir - ik3*nek2;
  10440. const int iq3 = ik3;
  10441. const int id3 = ik3;
  10442. const int iv3 = ik3;
  10443. const int iv2 = ik2;
  10444. for (int irep = 0; irep < nrep; ++irep) {
  10445. const int iq2 = ik2 + irep*nek2;
  10446. const int id2 = iq2;
  10447. // (ik2 + irep*nek2) % nek2 == ik2
  10448. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10449. const int id1 = iq1;
  10450. // not sure about CACHE_LINE_SIZE_F32..
  10451. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10452. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10453. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10454. for (int i = M; i < Mup; ++i) {
  10455. S[i] = -INFINITY;
  10456. }
  10457. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10458. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10459. // k indices
  10460. const int ik1 = ic;
  10461. // S indices
  10462. const int i1 = ik1;
  10463. ggml_vec_dot_f32(neq0,
  10464. S + i1,
  10465. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10466. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10467. }
  10468. // scale
  10469. ggml_vec_scale_f32(masked_begin, S, scale);
  10470. for (int64_t i = masked_begin; i < M; i++) {
  10471. S[i] = -INFINITY;
  10472. }
  10473. // softmax
  10474. // exclude known -INF S[..] values from max and loop
  10475. // dont forget to set their SM values to zero
  10476. {
  10477. float max = -INFINITY;
  10478. ggml_vec_max_f32(masked_begin, &max, S);
  10479. ggml_float sum = 0.0;
  10480. {
  10481. #ifdef GGML_SOFT_MAX_ACCELERATE
  10482. max = -max;
  10483. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10484. vvexpf(SM, SM, &Mup);
  10485. ggml_vec_sum_f32(Mup, &sum, SM);
  10486. #else
  10487. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10488. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10489. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10490. if (i >= masked_begin) {
  10491. break;
  10492. }
  10493. float * SR = S + i;
  10494. float * SW = SM + i;
  10495. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10496. if (i + j >= masked_begin) {
  10497. break;
  10498. } else if (SR[j] == -INFINITY) {
  10499. SW[j] = 0.0f;
  10500. } else {
  10501. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10502. const float val = expf(SR[j] - max);
  10503. #else
  10504. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10505. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10506. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10507. #endif
  10508. sump[j] += (ggml_float)val;
  10509. SW[j] = val;
  10510. }
  10511. }
  10512. }
  10513. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10514. sum += sump[i];
  10515. }
  10516. #endif
  10517. }
  10518. assert(sum > 0.0);
  10519. sum = 1.0/sum;
  10520. ggml_vec_scale_f32(masked_begin, SM, sum);
  10521. }
  10522. // step-by-step explanation
  10523. {
  10524. // forward-process shape grads from backward process
  10525. // parallel_for ik2,ik3:
  10526. // for irep:
  10527. // iq2 = ik2 + irep*nek2
  10528. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10529. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10530. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10531. // for iq1:
  10532. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10533. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10534. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10535. // S0 = -Inf [D,1,1,1]
  10536. // ~S1[i] = dot(kcur[:D,i], qcur)
  10537. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10538. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10539. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10540. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10541. // ~S5[i] = dot(vcur[:,i], S4)
  10542. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10543. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10544. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10545. // dst backward-/ grad[dst] = d
  10546. //
  10547. // output gradients with their dependencies:
  10548. //
  10549. // grad[kcur] = grad[S1].T @ qcur
  10550. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10551. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10552. // grad[S4] = grad[S5] @ vcur
  10553. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10554. // grad[qcur] = grad[S1] @ kcur
  10555. // grad[vcur] = grad[S5].T @ S4
  10556. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10557. //
  10558. // in post-order:
  10559. //
  10560. // S1 = qcur @ kcur.T
  10561. // S2 = S1 * scale
  10562. // S3 = diag_mask_inf(S2, P)
  10563. // S4 = softmax(S3)
  10564. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10565. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10566. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10567. // grad[qcur] = grad[S1] @ kcur
  10568. // grad[kcur] = grad[S1].T @ qcur
  10569. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10570. //
  10571. // using less variables (SM=S4):
  10572. //
  10573. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10574. // SM = softmax(S)
  10575. // S = d[:D,iq1,iq2,iq3] @ vcur
  10576. // dot_SM_gradSM = dot(SM, S)
  10577. // S = SM * (S - dot(SM, S))
  10578. // S = diag_mask_zero(S, P) * scale
  10579. //
  10580. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10581. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10582. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10583. }
  10584. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10585. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10586. // for ic:
  10587. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10588. // exclude known future zero S[..] values from operation
  10589. ggml_vec_set_f32(masked_begin, S, 0);
  10590. for (int64_t ic = 0; ic < D; ++ic) {
  10591. ggml_vec_mad_f32(masked_begin,
  10592. S,
  10593. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10594. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10595. }
  10596. // S = SM * (S - dot(SM, S))
  10597. float dot_SM_gradSM = 0;
  10598. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10599. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10600. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10601. // S = diag_mask_zero(S, P) * scale
  10602. // already done by above ggml_vec_set_f32
  10603. // exclude known zero S[..] values from operation
  10604. ggml_vec_scale_f32(masked_begin, S, scale);
  10605. // S shape [M,1]
  10606. // SM shape [M,1]
  10607. // kcur shape [D,M]
  10608. // qcur shape [D,1]
  10609. // vcur shape [M,D]
  10610. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10611. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10612. // for ic:
  10613. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10614. // exclude known zero S[..] values from loop
  10615. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10616. ggml_vec_mad_f32(D,
  10617. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10618. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10619. S[ic]);
  10620. }
  10621. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10622. // for ic:
  10623. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10624. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10625. // exclude known zero S[..] values from loop
  10626. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10627. ggml_vec_mad_f32(D,
  10628. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10629. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10630. S[ic]);
  10631. }
  10632. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10633. // for ic:
  10634. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10635. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10636. // exclude known zero SM[..] values from mad
  10637. for (int64_t ic = 0; ic < D; ++ic) {
  10638. ggml_vec_mad_f32(masked_begin,
  10639. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10640. SM,
  10641. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10642. }
  10643. }
  10644. }
  10645. }
  10646. }
  10647. static void ggml_compute_forward_flash_attn_back(
  10648. const struct ggml_compute_params * params,
  10649. const struct ggml_tensor * q,
  10650. const struct ggml_tensor * k,
  10651. const struct ggml_tensor * v,
  10652. const struct ggml_tensor * d,
  10653. const bool masked,
  10654. struct ggml_tensor * dst) {
  10655. switch (q->type) {
  10656. case GGML_TYPE_F32:
  10657. {
  10658. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10659. } break;
  10660. default:
  10661. {
  10662. GGML_ASSERT(false);
  10663. } break;
  10664. }
  10665. }
  10666. // ggml_compute_forward_win_part
  10667. static void ggml_compute_forward_win_part_f32(
  10668. const struct ggml_compute_params * params,
  10669. const struct ggml_tensor * src0,
  10670. struct ggml_tensor * dst) {
  10671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10672. return;
  10673. }
  10674. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10675. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10676. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10677. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10678. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10679. assert(ne00 == ne0);
  10680. assert(ne3 == nep0*nep1);
  10681. // TODO: optimize / multi-thread
  10682. for (int py = 0; py < nep1; ++py) {
  10683. for (int px = 0; px < nep0; ++px) {
  10684. const int64_t i3 = py*nep0 + px;
  10685. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10686. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10687. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10688. const int64_t i02 = py*w + i2;
  10689. const int64_t i01 = px*w + i1;
  10690. const int64_t i00 = i0;
  10691. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10692. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10693. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10694. ((float *) dst->data)[i] = 0.0f;
  10695. } else {
  10696. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10697. }
  10698. }
  10699. }
  10700. }
  10701. }
  10702. }
  10703. }
  10704. static void ggml_compute_forward_win_part(
  10705. const struct ggml_compute_params * params,
  10706. const struct ggml_tensor * src0,
  10707. struct ggml_tensor * dst) {
  10708. switch (src0->type) {
  10709. case GGML_TYPE_F32:
  10710. {
  10711. ggml_compute_forward_win_part_f32(params, src0, dst);
  10712. } break;
  10713. default:
  10714. {
  10715. GGML_ASSERT(false);
  10716. } break;
  10717. }
  10718. }
  10719. // ggml_compute_forward_win_unpart
  10720. static void ggml_compute_forward_win_unpart_f32(
  10721. const struct ggml_compute_params * params,
  10722. const struct ggml_tensor * src0,
  10723. struct ggml_tensor * dst) {
  10724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10725. return;
  10726. }
  10727. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10728. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10729. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  10730. // padding
  10731. const int px = (w - ne1%w)%w;
  10732. //const int py = (w - ne2%w)%w;
  10733. const int npx = (px + ne1)/w;
  10734. //const int npy = (py + ne2)/w;
  10735. assert(ne0 == ne00);
  10736. // TODO: optimize / multi-thread
  10737. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10738. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10739. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10740. const int ip2 = i2/w;
  10741. const int ip1 = i1/w;
  10742. const int64_t i02 = i2%w;
  10743. const int64_t i01 = i1%w;
  10744. const int64_t i00 = i0;
  10745. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  10746. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  10747. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  10748. }
  10749. }
  10750. }
  10751. }
  10752. static void ggml_compute_forward_win_unpart(
  10753. const struct ggml_compute_params * params,
  10754. const struct ggml_tensor * src0,
  10755. struct ggml_tensor * dst) {
  10756. switch (src0->type) {
  10757. case GGML_TYPE_F32:
  10758. {
  10759. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  10760. } break;
  10761. default:
  10762. {
  10763. GGML_ASSERT(false);
  10764. } break;
  10765. }
  10766. }
  10767. //gmml_compute_forward_unary
  10768. static void ggml_compute_forward_unary(
  10769. const struct ggml_compute_params * params,
  10770. const struct ggml_tensor * src0,
  10771. struct ggml_tensor * dst) {
  10772. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  10773. switch (op) {
  10774. case GGML_UNARY_OP_ABS:
  10775. {
  10776. ggml_compute_forward_abs(params, src0, dst);
  10777. } break;
  10778. case GGML_UNARY_OP_SGN:
  10779. {
  10780. ggml_compute_forward_sgn(params, src0, dst);
  10781. } break;
  10782. case GGML_UNARY_OP_NEG:
  10783. {
  10784. ggml_compute_forward_neg(params, src0, dst);
  10785. } break;
  10786. case GGML_UNARY_OP_STEP:
  10787. {
  10788. ggml_compute_forward_step(params, src0, dst);
  10789. } break;
  10790. case GGML_UNARY_OP_TANH:
  10791. {
  10792. ggml_compute_forward_tanh(params, src0, dst);
  10793. } break;
  10794. case GGML_UNARY_OP_ELU:
  10795. {
  10796. ggml_compute_forward_elu(params, src0, dst);
  10797. } break;
  10798. case GGML_UNARY_OP_RELU:
  10799. {
  10800. ggml_compute_forward_relu(params, src0, dst);
  10801. } break;
  10802. case GGML_UNARY_OP_GELU:
  10803. {
  10804. ggml_compute_forward_gelu(params, src0, dst);
  10805. } break;
  10806. case GGML_UNARY_OP_GELU_QUICK:
  10807. {
  10808. ggml_compute_forward_gelu_quick(params, src0, dst);
  10809. } break;
  10810. case GGML_UNARY_OP_SILU:
  10811. {
  10812. ggml_compute_forward_silu(params, src0, dst);
  10813. } break;
  10814. case GGML_UNARY_OP_LEAKY:
  10815. {
  10816. ggml_compute_forward_leaky(params, src0, dst);
  10817. } break;
  10818. default:
  10819. {
  10820. GGML_ASSERT(false);
  10821. } break;
  10822. }
  10823. }
  10824. // ggml_compute_forward_get_rel_pos
  10825. static void ggml_compute_forward_get_rel_pos_f16(
  10826. const struct ggml_compute_params * params,
  10827. const struct ggml_tensor * src0,
  10828. struct ggml_tensor * dst) {
  10829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10830. return;
  10831. }
  10832. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  10833. GGML_TENSOR_UNARY_OP_LOCALS
  10834. const int64_t w = ne1;
  10835. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  10836. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  10837. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10838. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10839. const int64_t pos = (w - i1 - 1) + i2;
  10840. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10841. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  10842. }
  10843. }
  10844. }
  10845. }
  10846. static void ggml_compute_forward_get_rel_pos(
  10847. const struct ggml_compute_params * params,
  10848. const struct ggml_tensor * src0,
  10849. struct ggml_tensor * dst) {
  10850. switch (src0->type) {
  10851. case GGML_TYPE_F16:
  10852. {
  10853. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  10854. } break;
  10855. default:
  10856. {
  10857. GGML_ASSERT(false);
  10858. } break;
  10859. }
  10860. }
  10861. // ggml_compute_forward_add_rel_pos
  10862. static void ggml_compute_forward_add_rel_pos_f32(
  10863. const struct ggml_compute_params * params,
  10864. const struct ggml_tensor * src0,
  10865. const struct ggml_tensor * src1,
  10866. const struct ggml_tensor * src2,
  10867. struct ggml_tensor * dst) {
  10868. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  10869. if (!inplace && params->type == GGML_TASK_INIT) {
  10870. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  10871. return;
  10872. }
  10873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10874. return;
  10875. }
  10876. int64_t t0 = ggml_perf_time_us();
  10877. UNUSED(t0);
  10878. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  10879. float * src1_data = (float *) src1->data;
  10880. float * src2_data = (float *) src2->data;
  10881. float * dst_data = (float *) dst->data;
  10882. const int64_t ne10 = src1->ne[0];
  10883. const int64_t ne11 = src1->ne[1];
  10884. const int64_t ne12 = src1->ne[2];
  10885. const int64_t ne13 = src1->ne[3];
  10886. const int ith = params->ith;
  10887. const int nth = params->nth;
  10888. // total patches in dst
  10889. const int np = ne13;
  10890. // patches per thread
  10891. const int dp = (np + nth - 1)/nth;
  10892. // patch range for this thread
  10893. const int ip0 = dp*ith;
  10894. const int ip1 = MIN(ip0 + dp, np);
  10895. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  10896. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10897. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10898. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  10899. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  10900. const int64_t jp0 = jp1 + i10;
  10901. const float src1_e = src1_data[jp0];
  10902. const float src2_e = src2_data[jp0];
  10903. const int64_t jdh = jp0 * ne10;
  10904. const int64_t jdw = jdh - (ne10 - 1) * i10;
  10905. for (int64_t j = 0; j < ne10; ++j) {
  10906. dst_data[jdh + j ] += src2_e;
  10907. dst_data[jdw + j*ne10] += src1_e;
  10908. }
  10909. }
  10910. }
  10911. }
  10912. }
  10913. }
  10914. static void ggml_compute_forward_add_rel_pos(
  10915. const struct ggml_compute_params * params,
  10916. const struct ggml_tensor * src0,
  10917. const struct ggml_tensor * src1,
  10918. const struct ggml_tensor * src2,
  10919. struct ggml_tensor * dst) {
  10920. switch (src0->type) {
  10921. case GGML_TYPE_F32:
  10922. {
  10923. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  10924. } break;
  10925. default:
  10926. {
  10927. GGML_ASSERT(false);
  10928. } break;
  10929. }
  10930. }
  10931. // ggml_compute_forward_map_unary
  10932. static void ggml_compute_forward_map_unary_f32(
  10933. const struct ggml_compute_params * params,
  10934. const struct ggml_tensor * src0,
  10935. struct ggml_tensor * dst,
  10936. const ggml_unary_op_f32_t fun) {
  10937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10939. return;
  10940. }
  10941. const int n = ggml_nrows(src0);
  10942. const int nc = src0->ne[0];
  10943. assert( dst->nb[0] == sizeof(float));
  10944. assert(src0->nb[0] == sizeof(float));
  10945. for (int i = 0; i < n; i++) {
  10946. fun(nc,
  10947. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10948. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10949. }
  10950. }
  10951. static void ggml_compute_forward_map_unary(
  10952. const struct ggml_compute_params * params,
  10953. const struct ggml_tensor * src0,
  10954. struct ggml_tensor * dst,
  10955. const ggml_unary_op_f32_t fun) {
  10956. switch (src0->type) {
  10957. case GGML_TYPE_F32:
  10958. {
  10959. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10960. } break;
  10961. default:
  10962. {
  10963. GGML_ASSERT(false);
  10964. } break;
  10965. }
  10966. }
  10967. // ggml_compute_forward_map_binary
  10968. static void ggml_compute_forward_map_binary_f32(
  10969. const struct ggml_compute_params * params,
  10970. const struct ggml_tensor * src0,
  10971. const struct ggml_tensor * src1,
  10972. struct ggml_tensor * dst,
  10973. const ggml_binary_op_f32_t fun) {
  10974. assert(params->ith == 0);
  10975. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10976. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10977. return;
  10978. }
  10979. const int n = ggml_nrows(src0);
  10980. const int nc = src0->ne[0];
  10981. assert( dst->nb[0] == sizeof(float));
  10982. assert(src0->nb[0] == sizeof(float));
  10983. assert(src1->nb[0] == sizeof(float));
  10984. for (int i = 0; i < n; i++) {
  10985. fun(nc,
  10986. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10987. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10988. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10989. }
  10990. }
  10991. static void ggml_compute_forward_map_binary(
  10992. const struct ggml_compute_params * params,
  10993. const struct ggml_tensor * src0,
  10994. const struct ggml_tensor * src1,
  10995. struct ggml_tensor * dst,
  10996. const ggml_binary_op_f32_t fun) {
  10997. switch (src0->type) {
  10998. case GGML_TYPE_F32:
  10999. {
  11000. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11001. } break;
  11002. default:
  11003. {
  11004. GGML_ASSERT(false);
  11005. } break;
  11006. }
  11007. }
  11008. // ggml_compute_forward_map_custom1
  11009. static void ggml_compute_forward_map_custom1_f32(
  11010. const struct ggml_compute_params * params,
  11011. const struct ggml_tensor * a,
  11012. struct ggml_tensor * dst,
  11013. const ggml_custom1_op_f32_t fun) {
  11014. assert(params->ith == 0);
  11015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11016. return;
  11017. }
  11018. fun(dst, a);
  11019. }
  11020. // ggml_compute_forward_map_custom2
  11021. static void ggml_compute_forward_map_custom2_f32(
  11022. const struct ggml_compute_params * params,
  11023. const struct ggml_tensor * a,
  11024. const struct ggml_tensor * b,
  11025. struct ggml_tensor * dst,
  11026. const ggml_custom2_op_f32_t fun) {
  11027. assert(params->ith == 0);
  11028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11029. return;
  11030. }
  11031. fun(dst, a, b);
  11032. }
  11033. // ggml_compute_forward_map_custom3
  11034. static void ggml_compute_forward_map_custom3_f32(
  11035. const struct ggml_compute_params * params,
  11036. const struct ggml_tensor * a,
  11037. const struct ggml_tensor * b,
  11038. const struct ggml_tensor * c,
  11039. struct ggml_tensor * dst,
  11040. const ggml_custom3_op_f32_t fun) {
  11041. assert(params->ith == 0);
  11042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11043. return;
  11044. }
  11045. fun(dst, a, b, c);
  11046. }
  11047. // ggml_compute_forward_map_custom1
  11048. static void ggml_compute_forward_map_custom1(
  11049. const struct ggml_compute_params * params,
  11050. const struct ggml_tensor * a,
  11051. struct ggml_tensor * dst) {
  11052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11053. return;
  11054. }
  11055. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11056. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11057. }
  11058. // ggml_compute_forward_map_custom2
  11059. static void ggml_compute_forward_map_custom2(
  11060. const struct ggml_compute_params * params,
  11061. const struct ggml_tensor * a,
  11062. const struct ggml_tensor * b,
  11063. struct ggml_tensor * dst) {
  11064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11065. return;
  11066. }
  11067. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11068. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11069. }
  11070. // ggml_compute_forward_map_custom3
  11071. static void ggml_compute_forward_map_custom3(
  11072. const struct ggml_compute_params * params,
  11073. const struct ggml_tensor * a,
  11074. const struct ggml_tensor * b,
  11075. const struct ggml_tensor * c,
  11076. struct ggml_tensor * dst) {
  11077. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11078. return;
  11079. }
  11080. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11081. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11082. }
  11083. // ggml_compute_forward_cross_entropy_loss
  11084. static void ggml_compute_forward_cross_entropy_loss_f32(
  11085. const struct ggml_compute_params * params,
  11086. const struct ggml_tensor * src0,
  11087. const struct ggml_tensor * src1,
  11088. struct ggml_tensor * dst) {
  11089. GGML_ASSERT(ggml_is_contiguous(src0));
  11090. GGML_ASSERT(ggml_is_contiguous(src1));
  11091. GGML_ASSERT(ggml_is_scalar(dst));
  11092. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11093. const int ith = params->ith;
  11094. const int nth = params->nth;
  11095. float * sums = (float *) params->wdata;
  11096. // TODO: handle transposed/permuted matrices
  11097. const int nc = src0->ne[0];
  11098. const int nr = ggml_nrows(src0);
  11099. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11100. if (params->type == GGML_TASK_INIT) {
  11101. if (ith == 0) {
  11102. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11103. }
  11104. return;
  11105. }
  11106. if (params->type == GGML_TASK_FINALIZE) {
  11107. if (ith == 0) {
  11108. float * dp = (float *) dst->data;
  11109. ggml_vec_sum_f32(nth, dp, sums);
  11110. dp[0] *= -1.0f / (float) nr;
  11111. }
  11112. return;
  11113. }
  11114. const double eps = 1e-9;
  11115. // rows per thread
  11116. const int dr = (nr + nth - 1)/nth;
  11117. // row range for this thread
  11118. const int ir0 = dr*ith;
  11119. const int ir1 = MIN(ir0 + dr, nr);
  11120. for (int i1 = ir0; i1 < ir1; i1++) {
  11121. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11122. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11123. float * st = ((float *) params->wdata) + nth + ith*nc;
  11124. #ifndef NDEBUG
  11125. for (int i = 0; i < nc; ++i) {
  11126. //printf("p[%d] = %f\n", i, p[i]);
  11127. assert(!isnan(s0[i]));
  11128. assert(!isnan(s1[i]));
  11129. }
  11130. #endif
  11131. // soft_max
  11132. ggml_float sum = 0.0;
  11133. {
  11134. float max = -INFINITY;
  11135. ggml_vec_max_f32(nc, &max, s0);
  11136. uint16_t scvt; UNUSED(scvt);
  11137. for (int i = 0; i < nc; i++) {
  11138. if (s0[i] == -INFINITY) {
  11139. st[i] = 0.0f;
  11140. } else {
  11141. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11142. const float s = s0[i] - max;
  11143. const float val = expf(s);
  11144. #else
  11145. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11146. memcpy(&scvt, &s, sizeof(scvt));
  11147. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11148. #endif
  11149. sum += (ggml_float)val;
  11150. st[i] = val;
  11151. }
  11152. }
  11153. assert(sum > 0.0);
  11154. // sum = 1.0/sum;
  11155. }
  11156. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11157. sum = (1.0 - eps) / sum;
  11158. ggml_vec_scale_f32(nc, st, sum);
  11159. ggml_vec_add1_f32(nc, st, st, eps);
  11160. ggml_vec_log_f32(nc, st, st);
  11161. ggml_vec_mul_f32(nc, st, st, s1);
  11162. float st_sum = 0;
  11163. ggml_vec_sum_f32(nc, &st_sum, st);
  11164. sums[ith] += st_sum;
  11165. #ifndef NDEBUG
  11166. for (int i = 0; i < nc; ++i) {
  11167. assert(!isnan(st[i]));
  11168. assert(!isinf(st[i]));
  11169. }
  11170. #endif
  11171. }
  11172. }
  11173. static void ggml_compute_forward_cross_entropy_loss(
  11174. const struct ggml_compute_params * params,
  11175. const struct ggml_tensor * src0,
  11176. const struct ggml_tensor * src1,
  11177. struct ggml_tensor * dst) {
  11178. switch (src0->type) {
  11179. case GGML_TYPE_F32:
  11180. {
  11181. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11182. } break;
  11183. default:
  11184. {
  11185. GGML_ASSERT(false);
  11186. } break;
  11187. }
  11188. }
  11189. // ggml_compute_forward_cross_entropy_loss_back
  11190. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11191. const struct ggml_compute_params * params,
  11192. const struct ggml_tensor * src0,
  11193. const struct ggml_tensor * src1,
  11194. const struct ggml_tensor * opt0,
  11195. struct ggml_tensor * dst) {
  11196. GGML_ASSERT(ggml_is_contiguous(dst));
  11197. GGML_ASSERT(ggml_is_contiguous(src0));
  11198. GGML_ASSERT(ggml_is_contiguous(src1));
  11199. GGML_ASSERT(ggml_is_contiguous(opt0));
  11200. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11201. const int64_t ith = params->ith;
  11202. const int64_t nth = params->nth;
  11203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11204. return;
  11205. }
  11206. const double eps = 1e-9;
  11207. // TODO: handle transposed/permuted matrices
  11208. const int64_t nc = src0->ne[0];
  11209. const int64_t nr = ggml_nrows(src0);
  11210. // rows per thread
  11211. const int64_t dr = (nr + nth - 1)/nth;
  11212. // row range for this thread
  11213. const int64_t ir0 = dr*ith;
  11214. const int64_t ir1 = MIN(ir0 + dr, nr);
  11215. float * d = (float *) opt0->data;
  11216. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11217. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11218. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11219. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11220. #ifndef NDEBUG
  11221. for (int i = 0; i < nc; ++i) {
  11222. //printf("p[%d] = %f\n", i, p[i]);
  11223. assert(!isnan(s0[i]));
  11224. assert(!isnan(s1[i]));
  11225. }
  11226. #endif
  11227. // soft_max
  11228. ggml_float sum = 0.0;
  11229. {
  11230. float max = -INFINITY;
  11231. ggml_vec_max_f32(nc, &max, s0);
  11232. uint16_t scvt; UNUSED(scvt);
  11233. for (int i = 0; i < nc; i++) {
  11234. if (s0[i] == -INFINITY) {
  11235. ds0[i] = 0.0f;
  11236. } else {
  11237. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11238. const float s = s0[i] - max;
  11239. const float val = expf(s);
  11240. #else
  11241. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11242. memcpy(&scvt, &s, sizeof(scvt));
  11243. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11244. #endif
  11245. sum += (ggml_float)val;
  11246. ds0[i] = val;
  11247. }
  11248. }
  11249. assert(sum > 0.0);
  11250. sum = (1.0 - eps)/sum;
  11251. }
  11252. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11253. ggml_vec_scale_f32(nc, ds0, sum);
  11254. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11255. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11256. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11257. #ifndef NDEBUG
  11258. for (int i = 0; i < nc; ++i) {
  11259. assert(!isnan(ds0[i]));
  11260. assert(!isinf(ds0[i]));
  11261. }
  11262. #endif
  11263. }
  11264. }
  11265. static void ggml_compute_forward_cross_entropy_loss_back(
  11266. const struct ggml_compute_params * params,
  11267. const struct ggml_tensor * src0,
  11268. const struct ggml_tensor * src1,
  11269. const struct ggml_tensor * opt0,
  11270. struct ggml_tensor * dst) {
  11271. switch (src0->type) {
  11272. case GGML_TYPE_F32:
  11273. {
  11274. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11275. } break;
  11276. default:
  11277. {
  11278. GGML_ASSERT(false);
  11279. } break;
  11280. }
  11281. }
  11282. /////////////////////////////////
  11283. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11284. GGML_ASSERT(params);
  11285. if (tensor->op == GGML_OP_NONE) {
  11286. return;
  11287. }
  11288. #ifdef GGML_USE_CUBLAS
  11289. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11290. if (skip_cpu) {
  11291. return;
  11292. }
  11293. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11294. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11295. #endif // GGML_USE_CUBLAS
  11296. switch (tensor->op) {
  11297. case GGML_OP_DUP:
  11298. {
  11299. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11300. } break;
  11301. case GGML_OP_ADD:
  11302. {
  11303. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11304. } break;
  11305. case GGML_OP_ADD1:
  11306. {
  11307. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11308. } break;
  11309. case GGML_OP_ACC:
  11310. {
  11311. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11312. } break;
  11313. case GGML_OP_SUB:
  11314. {
  11315. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11316. } break;
  11317. case GGML_OP_MUL:
  11318. {
  11319. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11320. } break;
  11321. case GGML_OP_DIV:
  11322. {
  11323. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11324. } break;
  11325. case GGML_OP_SQR:
  11326. {
  11327. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11328. } break;
  11329. case GGML_OP_SQRT:
  11330. {
  11331. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11332. } break;
  11333. case GGML_OP_LOG:
  11334. {
  11335. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11336. } break;
  11337. case GGML_OP_SUM:
  11338. {
  11339. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11340. } break;
  11341. case GGML_OP_SUM_ROWS:
  11342. {
  11343. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11344. } break;
  11345. case GGML_OP_MEAN:
  11346. {
  11347. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11348. } break;
  11349. case GGML_OP_ARGMAX:
  11350. {
  11351. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11352. } break;
  11353. case GGML_OP_REPEAT:
  11354. {
  11355. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11356. } break;
  11357. case GGML_OP_REPEAT_BACK:
  11358. {
  11359. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11360. } break;
  11361. case GGML_OP_CONCAT:
  11362. {
  11363. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11364. } break;
  11365. case GGML_OP_SILU_BACK:
  11366. {
  11367. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11368. } break;
  11369. case GGML_OP_NORM:
  11370. {
  11371. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11372. } break;
  11373. case GGML_OP_RMS_NORM:
  11374. {
  11375. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11376. } break;
  11377. case GGML_OP_RMS_NORM_BACK:
  11378. {
  11379. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11380. } break;
  11381. case GGML_OP_GROUP_NORM:
  11382. {
  11383. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11384. } break;
  11385. case GGML_OP_MUL_MAT:
  11386. {
  11387. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11388. } break;
  11389. case GGML_OP_OUT_PROD:
  11390. {
  11391. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11392. } break;
  11393. case GGML_OP_SCALE:
  11394. {
  11395. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11396. } break;
  11397. case GGML_OP_SET:
  11398. {
  11399. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11400. } break;
  11401. case GGML_OP_CPY:
  11402. {
  11403. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11404. } break;
  11405. case GGML_OP_CONT:
  11406. {
  11407. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11408. } break;
  11409. case GGML_OP_RESHAPE:
  11410. {
  11411. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11412. } break;
  11413. case GGML_OP_VIEW:
  11414. {
  11415. ggml_compute_forward_view(params, tensor->src[0]);
  11416. } break;
  11417. case GGML_OP_PERMUTE:
  11418. {
  11419. ggml_compute_forward_permute(params, tensor->src[0]);
  11420. } break;
  11421. case GGML_OP_TRANSPOSE:
  11422. {
  11423. ggml_compute_forward_transpose(params, tensor->src[0]);
  11424. } break;
  11425. case GGML_OP_GET_ROWS:
  11426. {
  11427. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11428. } break;
  11429. case GGML_OP_GET_ROWS_BACK:
  11430. {
  11431. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11432. } break;
  11433. case GGML_OP_DIAG:
  11434. {
  11435. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11436. } break;
  11437. case GGML_OP_DIAG_MASK_INF:
  11438. {
  11439. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11440. } break;
  11441. case GGML_OP_DIAG_MASK_ZERO:
  11442. {
  11443. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11444. } break;
  11445. case GGML_OP_SOFT_MAX:
  11446. {
  11447. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11448. } break;
  11449. case GGML_OP_SOFT_MAX_BACK:
  11450. {
  11451. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11452. } break;
  11453. case GGML_OP_ROPE:
  11454. {
  11455. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11456. } break;
  11457. case GGML_OP_ROPE_BACK:
  11458. {
  11459. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11460. } break;
  11461. case GGML_OP_ALIBI:
  11462. {
  11463. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11464. } break;
  11465. case GGML_OP_CLAMP:
  11466. {
  11467. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11468. } break;
  11469. case GGML_OP_CONV_TRANSPOSE_1D:
  11470. {
  11471. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11472. } break;
  11473. case GGML_OP_IM2COL:
  11474. {
  11475. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11476. } break;
  11477. case GGML_OP_CONV_TRANSPOSE_2D:
  11478. {
  11479. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11480. } break;
  11481. case GGML_OP_POOL_1D:
  11482. {
  11483. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11484. } break;
  11485. case GGML_OP_POOL_2D:
  11486. {
  11487. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11488. } break;
  11489. case GGML_OP_UPSCALE:
  11490. {
  11491. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11492. } break;
  11493. case GGML_OP_FLASH_ATTN:
  11494. {
  11495. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11496. GGML_ASSERT(t == 0 || t == 1);
  11497. const bool masked = t != 0;
  11498. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11499. } break;
  11500. case GGML_OP_FLASH_FF:
  11501. {
  11502. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11503. } break;
  11504. case GGML_OP_FLASH_ATTN_BACK:
  11505. {
  11506. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11507. GGML_ASSERT(t == 0 || t == 1);
  11508. bool masked = t != 0;
  11509. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11510. } break;
  11511. case GGML_OP_WIN_PART:
  11512. {
  11513. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11514. } break;
  11515. case GGML_OP_WIN_UNPART:
  11516. {
  11517. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11518. } break;
  11519. case GGML_OP_UNARY:
  11520. {
  11521. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11522. } break;
  11523. case GGML_OP_GET_REL_POS:
  11524. {
  11525. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11526. } break;
  11527. case GGML_OP_ADD_REL_POS:
  11528. {
  11529. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11530. } break;
  11531. case GGML_OP_MAP_UNARY:
  11532. {
  11533. ggml_unary_op_f32_t fun;
  11534. memcpy(&fun, tensor->op_params, sizeof(fun));
  11535. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11536. }
  11537. break;
  11538. case GGML_OP_MAP_BINARY:
  11539. {
  11540. ggml_binary_op_f32_t fun;
  11541. memcpy(&fun, tensor->op_params, sizeof(fun));
  11542. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11543. }
  11544. break;
  11545. case GGML_OP_MAP_CUSTOM1_F32:
  11546. {
  11547. ggml_custom1_op_f32_t fun;
  11548. memcpy(&fun, tensor->op_params, sizeof(fun));
  11549. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11550. }
  11551. break;
  11552. case GGML_OP_MAP_CUSTOM2_F32:
  11553. {
  11554. ggml_custom2_op_f32_t fun;
  11555. memcpy(&fun, tensor->op_params, sizeof(fun));
  11556. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11557. }
  11558. break;
  11559. case GGML_OP_MAP_CUSTOM3_F32:
  11560. {
  11561. ggml_custom3_op_f32_t fun;
  11562. memcpy(&fun, tensor->op_params, sizeof(fun));
  11563. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11564. }
  11565. break;
  11566. case GGML_OP_MAP_CUSTOM1:
  11567. {
  11568. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11569. }
  11570. break;
  11571. case GGML_OP_MAP_CUSTOM2:
  11572. {
  11573. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11574. }
  11575. break;
  11576. case GGML_OP_MAP_CUSTOM3:
  11577. {
  11578. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11579. }
  11580. break;
  11581. case GGML_OP_CROSS_ENTROPY_LOSS:
  11582. {
  11583. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11584. }
  11585. break;
  11586. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11587. {
  11588. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11589. }
  11590. break;
  11591. case GGML_OP_NONE:
  11592. {
  11593. // nop
  11594. } break;
  11595. case GGML_OP_COUNT:
  11596. {
  11597. GGML_ASSERT(false);
  11598. } break;
  11599. }
  11600. }
  11601. ////////////////////////////////////////////////////////////////////////////////
  11602. static size_t ggml_hash_size(size_t min_sz) {
  11603. // next primes after powers of two
  11604. static const size_t primes[] = {
  11605. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11606. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11607. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11608. 16777259, 33554467, 67108879, 134217757, 268435459,
  11609. 536870923, 1073741827, 2147483659
  11610. };
  11611. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11612. // find the smallest prime that is larger or equal to min_sz
  11613. size_t l = 0;
  11614. size_t r = n_primes;
  11615. while (l < r) {
  11616. size_t m = (l + r)/2;
  11617. if (primes[m] < min_sz) {
  11618. l = m + 1;
  11619. } else {
  11620. r = m;
  11621. }
  11622. }
  11623. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11624. return sz;
  11625. }
  11626. static size_t ggml_hash(const void * p) {
  11627. return (size_t)p;
  11628. }
  11629. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11630. size_t h = ggml_hash(key) % hash_set.size;
  11631. // linear probing
  11632. size_t i = h;
  11633. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11634. i = (i + 1) % hash_set.size;
  11635. if (i == h) {
  11636. // visited all hash table entries -> not found
  11637. return GGML_HASHTABLE_FULL;
  11638. }
  11639. }
  11640. return i;
  11641. }
  11642. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11643. size_t i = ggml_hash_find(hash_set, key);
  11644. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11645. }
  11646. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11647. size_t i = ggml_hash_find(hash_set, key);
  11648. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11649. if (hash_set.keys[i] == key) {
  11650. return GGML_HASHTABLE_ALREADY_EXISTS;
  11651. }
  11652. // insert
  11653. GGML_ASSERT(hash_set.keys[i] == NULL);
  11654. hash_set.keys[i] = key;
  11655. return i;
  11656. }
  11657. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11658. size_t i = ggml_hash_find(hash_set, key);
  11659. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11660. hash_set.keys[i] = key;
  11661. return i;
  11662. }
  11663. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11664. size = ggml_hash_size(size);
  11665. struct ggml_hash_set result;
  11666. result.size = size;
  11667. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11668. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11669. return result;
  11670. }
  11671. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11672. free(hash_set.keys);
  11673. }
  11674. struct hash_map {
  11675. struct ggml_hash_set set;
  11676. struct ggml_tensor ** vals;
  11677. };
  11678. static struct hash_map * ggml_new_hash_map(size_t size) {
  11679. struct hash_map * result = malloc(sizeof(struct hash_map));
  11680. result->set = ggml_hash_set_new(size);
  11681. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11682. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11683. return result;
  11684. }
  11685. static void ggml_hash_map_free(struct hash_map * map) {
  11686. ggml_hash_set_free(map->set);
  11687. free(map->vals);
  11688. free(map);
  11689. }
  11690. // gradient checkpointing
  11691. static struct ggml_tensor * ggml_recompute_graph_node(
  11692. struct ggml_context * ctx,
  11693. struct ggml_cgraph * graph,
  11694. struct hash_map * replacements,
  11695. struct ggml_tensor * node) {
  11696. if (node == NULL) {
  11697. return NULL;
  11698. }
  11699. if (node->is_param) {
  11700. return node;
  11701. }
  11702. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11703. return node;
  11704. }
  11705. int count_children = 0;
  11706. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11707. if (node->src[k]) {
  11708. ++count_children;
  11709. }
  11710. }
  11711. if (count_children == 0) {
  11712. return node;
  11713. }
  11714. size_t i = ggml_hash_find(replacements->set, node);
  11715. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  11716. if (replacements->set.keys[i] == node) {
  11717. return replacements->vals[i];
  11718. }
  11719. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  11720. // insert clone into replacements
  11721. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  11722. replacements->set.keys[i] = node;
  11723. replacements->vals[i] = clone;
  11724. clone->op = node->op;
  11725. clone->grad = node->grad;
  11726. clone->is_param = node->is_param;
  11727. clone->extra = node->extra;
  11728. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  11729. clone->nb[k] = node->nb[k];
  11730. }
  11731. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11732. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  11733. }
  11734. if (node->view_src != NULL) {
  11735. clone->data = (node->view_src->data == NULL)
  11736. ? NULL // view_src not yet allocated
  11737. : (char *) node->view_src->data // view_src already allocated
  11738. + node->view_offs;
  11739. clone->view_src = node->view_src;
  11740. clone->view_offs = node->view_offs;
  11741. }
  11742. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  11743. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  11744. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  11745. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  11746. return clone;
  11747. }
  11748. void ggml_build_backward_gradient_checkpointing(
  11749. struct ggml_context * ctx,
  11750. struct ggml_cgraph * gf,
  11751. struct ggml_cgraph * gb,
  11752. struct ggml_cgraph * gb_tmp,
  11753. struct ggml_tensor * * checkpoints,
  11754. int n_checkpoints) {
  11755. ggml_graph_cpy(gf, gb_tmp);
  11756. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  11757. if (n_checkpoints <= 0) {
  11758. ggml_graph_cpy(gb_tmp, gb);
  11759. return;
  11760. }
  11761. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  11762. // insert checkpoints in replacements
  11763. for (int i = 0; i < n_checkpoints; ++i) {
  11764. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  11765. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  11766. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  11767. replacements->set.keys[k] = checkpoints[i];
  11768. replacements->vals[k] = checkpoints[i];
  11769. }
  11770. ggml_graph_cpy(gf, gb);
  11771. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  11772. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  11773. // by recomputing them from checkpoints
  11774. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  11775. struct ggml_tensor * node = gb_tmp->nodes[i];
  11776. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11777. // insert new tensors recomputing src, reusing already made replacements,
  11778. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  11779. // recurse for input tensors,
  11780. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  11781. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  11782. }
  11783. // insert rewritten backward node with replacements made into resulting backward graph gb
  11784. ggml_build_forward_expand(gb, node);
  11785. }
  11786. ggml_hash_map_free(replacements);
  11787. }
  11788. // functions to change gradients considering the case that input a might be initial gradient with zero value
  11789. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11790. if (ggml_hash_contains(zero_table, a)) {
  11791. return b;
  11792. } else {
  11793. return ggml_add_impl(ctx, a, b, false);
  11794. }
  11795. }
  11796. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  11797. if (ggml_hash_contains(zero_table, a)) {
  11798. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  11799. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  11800. } else {
  11801. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  11802. }
  11803. }
  11804. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11805. if (ggml_hash_contains(zero_table, a)) {
  11806. return ggml_repeat(ctx, b, a);
  11807. } else {
  11808. return ggml_add1_impl(ctx, a, b, false);
  11809. }
  11810. }
  11811. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11812. if (ggml_hash_contains(zero_table, a)) {
  11813. return ggml_neg(ctx, b);
  11814. } else {
  11815. return ggml_sub_impl(ctx, a, b, false);
  11816. }
  11817. }
  11818. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  11819. struct ggml_tensor * src0 = tensor->src[0];
  11820. struct ggml_tensor * src1 = tensor->src[1];
  11821. switch (tensor->op) {
  11822. case GGML_OP_DUP:
  11823. {
  11824. if (src0->grad) {
  11825. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11826. }
  11827. } break;
  11828. case GGML_OP_ADD:
  11829. {
  11830. if (src0->grad) {
  11831. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11832. }
  11833. if (src1->grad) {
  11834. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11835. }
  11836. } break;
  11837. case GGML_OP_ADD1:
  11838. {
  11839. if (src0->grad) {
  11840. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11841. }
  11842. if (src1->grad) {
  11843. src1->grad = ggml_add_or_set(ctx,
  11844. src1->grad,
  11845. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11846. zero_table);
  11847. }
  11848. } break;
  11849. case GGML_OP_ACC:
  11850. {
  11851. if (src0->grad) {
  11852. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11853. }
  11854. if (src1->grad) {
  11855. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  11856. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  11857. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  11858. const size_t offset = ((int32_t *) tensor->op_params)[3];
  11859. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11860. tensor->grad,
  11861. src1->grad->ne[0],
  11862. src1->grad->ne[1],
  11863. src1->grad->ne[2],
  11864. src1->grad->ne[3],
  11865. nb1, nb2, nb3, offset);
  11866. src1->grad =
  11867. ggml_add_or_set(ctx,
  11868. src1->grad,
  11869. ggml_reshape(ctx,
  11870. ggml_cont(ctx, tensor_grad_view),
  11871. src1->grad),
  11872. zero_table);
  11873. }
  11874. } break;
  11875. case GGML_OP_SUB:
  11876. {
  11877. if (src0->grad) {
  11878. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11879. }
  11880. if (src1->grad) {
  11881. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11882. }
  11883. } break;
  11884. case GGML_OP_MUL:
  11885. {
  11886. if (src0->grad) {
  11887. src0->grad =
  11888. ggml_add_or_set(ctx,
  11889. src0->grad,
  11890. ggml_mul(ctx, src1, tensor->grad),
  11891. zero_table);
  11892. }
  11893. if (src1->grad) {
  11894. src1->grad =
  11895. ggml_add_or_set(ctx,
  11896. src1->grad,
  11897. ggml_mul(ctx, src0, tensor->grad),
  11898. zero_table);
  11899. }
  11900. } break;
  11901. case GGML_OP_DIV:
  11902. {
  11903. if (src0->grad) {
  11904. src0->grad =
  11905. ggml_add_or_set(ctx,
  11906. src0->grad,
  11907. ggml_div(ctx, tensor->grad, src1),
  11908. zero_table);
  11909. }
  11910. if (src1->grad) {
  11911. src1->grad =
  11912. ggml_sub_or_set(ctx,
  11913. src1->grad,
  11914. ggml_mul(ctx,
  11915. tensor->grad,
  11916. ggml_div(ctx, tensor, src1)),
  11917. zero_table);
  11918. }
  11919. } break;
  11920. case GGML_OP_SQR:
  11921. {
  11922. if (src0->grad) {
  11923. src0->grad =
  11924. ggml_add_or_set(ctx,
  11925. src0->grad,
  11926. ggml_scale(ctx,
  11927. ggml_mul(ctx, src0, tensor->grad),
  11928. ggml_new_f32(ctx, 2.0f)),
  11929. zero_table);
  11930. }
  11931. } break;
  11932. case GGML_OP_SQRT:
  11933. {
  11934. if (src0->grad) {
  11935. src0->grad =
  11936. ggml_add_or_set(ctx,
  11937. src0->grad,
  11938. ggml_scale(ctx,
  11939. ggml_div(ctx,
  11940. tensor->grad,
  11941. tensor),
  11942. ggml_new_f32(ctx, 0.5f)),
  11943. zero_table);
  11944. }
  11945. } break;
  11946. case GGML_OP_LOG:
  11947. {
  11948. if (src0->grad) {
  11949. src0->grad =
  11950. ggml_add_or_set(ctx,
  11951. src0->grad,
  11952. ggml_div(ctx,
  11953. tensor->grad,
  11954. src0),
  11955. zero_table);
  11956. }
  11957. } break;
  11958. case GGML_OP_SUM:
  11959. {
  11960. if (src0->grad) {
  11961. src0->grad =
  11962. ggml_add1_or_set(ctx,
  11963. src0->grad,
  11964. tensor->grad,
  11965. zero_table);
  11966. }
  11967. } break;
  11968. case GGML_OP_SUM_ROWS:
  11969. {
  11970. if (src0->grad) {
  11971. src0->grad =
  11972. ggml_add_or_set(ctx,
  11973. src0->grad,
  11974. ggml_repeat(ctx,
  11975. tensor->grad,
  11976. src0->grad),
  11977. zero_table);
  11978. }
  11979. } break;
  11980. case GGML_OP_MEAN:
  11981. case GGML_OP_ARGMAX:
  11982. {
  11983. GGML_ASSERT(false); // TODO: implement
  11984. } break;
  11985. case GGML_OP_REPEAT:
  11986. {
  11987. // necessary for llama
  11988. if (src0->grad) {
  11989. src0->grad = ggml_add_or_set(ctx,
  11990. src0->grad,
  11991. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  11992. zero_table);
  11993. }
  11994. } break;
  11995. case GGML_OP_REPEAT_BACK:
  11996. {
  11997. if (src0->grad) {
  11998. // TODO: test this
  11999. src0->grad = ggml_add_or_set(ctx,
  12000. src0->grad,
  12001. ggml_repeat(ctx, tensor->grad, src0->grad),
  12002. zero_table);
  12003. }
  12004. } break;
  12005. case GGML_OP_CONCAT:
  12006. {
  12007. GGML_ASSERT(false); // TODO: implement
  12008. } break;
  12009. case GGML_OP_SILU_BACK:
  12010. {
  12011. GGML_ASSERT(false); // TODO: not implemented
  12012. } break;
  12013. case GGML_OP_NORM:
  12014. {
  12015. GGML_ASSERT(false); // TODO: not implemented
  12016. } break;
  12017. case GGML_OP_RMS_NORM:
  12018. {
  12019. // necessary for llama
  12020. if (src0->grad) {
  12021. float eps;
  12022. memcpy(&eps, tensor->op_params, sizeof(float));
  12023. src0->grad = ggml_add_or_set(ctx,
  12024. src0->grad,
  12025. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12026. zero_table);
  12027. }
  12028. } break;
  12029. case GGML_OP_RMS_NORM_BACK:
  12030. {
  12031. GGML_ASSERT(false); // TODO: not implemented
  12032. } break;
  12033. case GGML_OP_GROUP_NORM:
  12034. {
  12035. GGML_ASSERT(false); // TODO: not implemented
  12036. } break;
  12037. case GGML_OP_MUL_MAT:
  12038. {
  12039. // https://cs231n.github.io/optimization-2/#staged
  12040. // # forward pass
  12041. // s0 = np.random.randn(5, 10)
  12042. // s1 = np.random.randn(10, 3)
  12043. // t = s0.dot(s1)
  12044. // # now suppose we had the gradient on t from above in the circuit
  12045. // dt = np.random.randn(*t.shape) # same shape as t
  12046. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12047. // ds1 = t.T.dot(dt)
  12048. // tensor.shape [m,p,qq,rr]
  12049. // src0.shape [n,m,q1,r1]
  12050. // src1.shape [n,p,qq,rr]
  12051. // necessary for llama
  12052. if (src0->grad) {
  12053. struct ggml_tensor * s1_tg =
  12054. ggml_out_prod(ctx, // [n,m,qq,rr]
  12055. src1, // [n,p,qq,rr]
  12056. tensor->grad); // [m,p,qq,rr]
  12057. const int64_t qq = s1_tg->ne[2];
  12058. const int64_t rr = s1_tg->ne[3];
  12059. const int64_t q1 = src0->ne[2];
  12060. const int64_t r1 = src0->ne[3];
  12061. const bool ne2_broadcasted = qq > q1;
  12062. const bool ne3_broadcasted = rr > r1;
  12063. if (ne2_broadcasted || ne3_broadcasted) {
  12064. // sum broadcast repetitions of s1_tg into shape of src0
  12065. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12066. }
  12067. src0->grad =
  12068. ggml_add_or_set(ctx,
  12069. src0->grad, // [n,m,q1,r1]
  12070. s1_tg, // [n,m,q1,r1]
  12071. zero_table);
  12072. }
  12073. if (src1->grad) {
  12074. src1->grad =
  12075. ggml_add_or_set(ctx,
  12076. src1->grad, // [n,p,qq,rr]
  12077. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12078. // ggml_cont(ctx, // [m,n,q1,r1]
  12079. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12080. // tensor->grad), // [m,p,qq,rr]
  12081. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12082. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12083. // // and then use ggml_out_prod
  12084. ggml_out_prod(ctx, // [n,p,qq,rr]
  12085. src0, // [n,m,q1,r1]
  12086. ggml_transpose(ctx, // [p,m,qq,rr]
  12087. tensor->grad)), // [m,p,qq,rr]
  12088. zero_table);
  12089. }
  12090. } break;
  12091. case GGML_OP_OUT_PROD:
  12092. {
  12093. GGML_ASSERT(false); // TODO: not implemented
  12094. } break;
  12095. case GGML_OP_SCALE:
  12096. {
  12097. // necessary for llama
  12098. if (src0->grad) {
  12099. src0->grad =
  12100. ggml_add_or_set(ctx,
  12101. src0->grad,
  12102. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12103. zero_table);
  12104. }
  12105. if (src1->grad) {
  12106. src1->grad =
  12107. ggml_add_or_set(ctx,
  12108. src1->grad,
  12109. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12110. zero_table);
  12111. }
  12112. } break;
  12113. case GGML_OP_SET:
  12114. {
  12115. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12116. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12117. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12118. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12119. struct ggml_tensor * tensor_grad_view = NULL;
  12120. if (src0->grad || src1->grad) {
  12121. GGML_ASSERT(src0->type == tensor->type);
  12122. GGML_ASSERT(tensor->grad->type == tensor->type);
  12123. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12124. tensor_grad_view = ggml_view_4d(ctx,
  12125. tensor->grad,
  12126. src1->grad->ne[0],
  12127. src1->grad->ne[1],
  12128. src1->grad->ne[2],
  12129. src1->grad->ne[3],
  12130. nb1, nb2, nb3, offset);
  12131. }
  12132. if (src0->grad) {
  12133. src0->grad = ggml_add_or_set(ctx,
  12134. src0->grad,
  12135. ggml_acc_impl(ctx,
  12136. tensor->grad,
  12137. ggml_neg(ctx, tensor_grad_view),
  12138. nb1, nb2, nb3, offset, false),
  12139. zero_table);
  12140. }
  12141. if (src1->grad) {
  12142. src1->grad =
  12143. ggml_add_or_set(ctx,
  12144. src1->grad,
  12145. ggml_reshape(ctx,
  12146. ggml_cont(ctx, tensor_grad_view),
  12147. src1->grad),
  12148. zero_table);
  12149. }
  12150. } break;
  12151. case GGML_OP_CPY:
  12152. {
  12153. // necessary for llama
  12154. // cpy overwrites value of src1 by src0 and returns view(src1)
  12155. // the overwriting is mathematically equivalent to:
  12156. // tensor = src0 * 1 + src1 * 0
  12157. if (src0->grad) {
  12158. // dsrc0 = dtensor * 1
  12159. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12160. }
  12161. if (src1->grad) {
  12162. // dsrc1 = dtensor * 0 -> noop
  12163. }
  12164. } break;
  12165. case GGML_OP_CONT:
  12166. {
  12167. // same as cpy
  12168. if (src0->grad) {
  12169. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12170. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12171. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12172. }
  12173. } break;
  12174. case GGML_OP_RESHAPE:
  12175. {
  12176. // necessary for llama
  12177. if (src0->grad) {
  12178. src0->grad =
  12179. ggml_add_or_set(ctx, src0->grad,
  12180. ggml_reshape(ctx,
  12181. ggml_is_contiguous(tensor->grad)
  12182. ? tensor->grad
  12183. : ggml_cont(ctx, tensor->grad),
  12184. src0->grad),
  12185. zero_table);
  12186. }
  12187. } break;
  12188. case GGML_OP_VIEW:
  12189. {
  12190. // necessary for llama
  12191. if (src0->grad) {
  12192. size_t offset;
  12193. memcpy(&offset, tensor->op_params, sizeof(offset));
  12194. size_t nb1 = tensor->nb[1];
  12195. size_t nb2 = tensor->nb[2];
  12196. size_t nb3 = tensor->nb[3];
  12197. if (src0->type != src0->grad->type) {
  12198. // gradient is typically F32, but src0 could be other type
  12199. size_t ng = ggml_element_size(src0->grad);
  12200. size_t n0 = ggml_element_size(src0);
  12201. GGML_ASSERT(offset % n0 == 0);
  12202. GGML_ASSERT(nb1 % n0 == 0);
  12203. GGML_ASSERT(nb2 % n0 == 0);
  12204. GGML_ASSERT(nb3 % n0 == 0);
  12205. offset = (offset / n0) * ng;
  12206. nb1 = (nb1 / n0) * ng;
  12207. nb2 = (nb2 / n0) * ng;
  12208. nb3 = (nb3 / n0) * ng;
  12209. }
  12210. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12211. }
  12212. } break;
  12213. case GGML_OP_PERMUTE:
  12214. {
  12215. // necessary for llama
  12216. if (src0->grad) {
  12217. int32_t * axes = (int32_t *) tensor->op_params;
  12218. int axis0 = axes[0] & 0x3;
  12219. int axis1 = axes[1] & 0x3;
  12220. int axis2 = axes[2] & 0x3;
  12221. int axis3 = axes[3] & 0x3;
  12222. int axes_backward[4] = {0,0,0,0};
  12223. axes_backward[axis0] = 0;
  12224. axes_backward[axis1] = 1;
  12225. axes_backward[axis2] = 2;
  12226. axes_backward[axis3] = 3;
  12227. src0->grad =
  12228. ggml_add_or_set(ctx, src0->grad,
  12229. ggml_permute(ctx,
  12230. tensor->grad,
  12231. axes_backward[0],
  12232. axes_backward[1],
  12233. axes_backward[2],
  12234. axes_backward[3]),
  12235. zero_table);
  12236. }
  12237. } break;
  12238. case GGML_OP_TRANSPOSE:
  12239. {
  12240. // necessary for llama
  12241. if (src0->grad) {
  12242. src0->grad =
  12243. ggml_add_or_set(ctx, src0->grad,
  12244. ggml_transpose(ctx, tensor->grad),
  12245. zero_table);
  12246. }
  12247. } break;
  12248. case GGML_OP_GET_ROWS:
  12249. {
  12250. // necessary for llama (only for tokenizer)
  12251. if (src0->grad) {
  12252. src0->grad =
  12253. ggml_add_or_set(ctx, src0->grad,
  12254. // last ggml_get_rows_back argument src0->grad is only
  12255. // necessary to setup correct output shape
  12256. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12257. zero_table);
  12258. }
  12259. if (src1->grad) {
  12260. // noop
  12261. }
  12262. } break;
  12263. case GGML_OP_GET_ROWS_BACK:
  12264. {
  12265. GGML_ASSERT(false); // TODO: not implemented
  12266. } break;
  12267. case GGML_OP_DIAG:
  12268. {
  12269. GGML_ASSERT(false); // TODO: not implemented
  12270. } break;
  12271. case GGML_OP_DIAG_MASK_INF:
  12272. {
  12273. // necessary for llama
  12274. if (src0->grad) {
  12275. const int n_past = ((int32_t *) tensor->op_params)[0];
  12276. src0->grad =
  12277. ggml_add_or_set(ctx, src0->grad,
  12278. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12279. zero_table);
  12280. }
  12281. } break;
  12282. case GGML_OP_DIAG_MASK_ZERO:
  12283. {
  12284. // necessary for llama
  12285. if (src0->grad) {
  12286. const int n_past = ((int32_t *) tensor->op_params)[0];
  12287. src0->grad =
  12288. ggml_add_or_set(ctx, src0->grad,
  12289. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12290. zero_table);
  12291. }
  12292. } break;
  12293. case GGML_OP_SOFT_MAX:
  12294. {
  12295. // necessary for llama
  12296. if (src0->grad) {
  12297. src0->grad =
  12298. ggml_add_or_set(ctx, src0->grad,
  12299. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12300. zero_table);
  12301. }
  12302. } break;
  12303. case GGML_OP_SOFT_MAX_BACK:
  12304. {
  12305. GGML_ASSERT(false); // TODO: not implemented
  12306. } break;
  12307. case GGML_OP_ROPE:
  12308. {
  12309. // necessary for llama
  12310. if (src0->grad) {
  12311. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12312. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12313. const int mode = ((int32_t *) tensor->op_params)[2];
  12314. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12315. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12316. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12317. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12318. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12319. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12320. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12321. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12322. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12323. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12324. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12325. src0->grad = ggml_add_or_set(ctx,
  12326. src0->grad,
  12327. ggml_rope_back(ctx,
  12328. tensor->grad,
  12329. src1,
  12330. n_dims,
  12331. mode,
  12332. n_ctx,
  12333. n_orig_ctx,
  12334. freq_base,
  12335. freq_scale,
  12336. ext_factor,
  12337. attn_factor,
  12338. beta_fast,
  12339. beta_slow,
  12340. xpos_base,
  12341. xpos_down),
  12342. zero_table);
  12343. }
  12344. } break;
  12345. case GGML_OP_ROPE_BACK:
  12346. {
  12347. if (src0->grad) {
  12348. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12349. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12350. const int mode = ((int32_t *) tensor->op_params)[2];
  12351. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12352. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12353. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12354. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12355. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12356. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12357. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12358. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12359. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12360. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12361. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12362. src0->grad = ggml_add_or_set(ctx,
  12363. src0->grad,
  12364. ggml_rope_impl(ctx,
  12365. tensor->grad,
  12366. src1,
  12367. n_dims,
  12368. mode,
  12369. n_ctx,
  12370. n_orig_ctx,
  12371. freq_base,
  12372. freq_scale,
  12373. ext_factor,
  12374. attn_factor,
  12375. beta_fast,
  12376. beta_slow,
  12377. xpos_base,
  12378. xpos_down,
  12379. false),
  12380. zero_table);
  12381. }
  12382. } break;
  12383. case GGML_OP_ALIBI:
  12384. {
  12385. GGML_ASSERT(false); // TODO: not implemented
  12386. } break;
  12387. case GGML_OP_CLAMP:
  12388. {
  12389. GGML_ASSERT(false); // TODO: not implemented
  12390. } break;
  12391. case GGML_OP_CONV_TRANSPOSE_1D:
  12392. {
  12393. GGML_ASSERT(false); // TODO: not implemented
  12394. } break;
  12395. case GGML_OP_IM2COL:
  12396. {
  12397. GGML_ASSERT(false); // TODO: not implemented
  12398. } break;
  12399. case GGML_OP_CONV_TRANSPOSE_2D:
  12400. {
  12401. GGML_ASSERT(false); // TODO: not implemented
  12402. } break;
  12403. case GGML_OP_POOL_1D:
  12404. {
  12405. GGML_ASSERT(false); // TODO: not implemented
  12406. } break;
  12407. case GGML_OP_POOL_2D:
  12408. {
  12409. GGML_ASSERT(false); // TODO: not implemented
  12410. } break;
  12411. case GGML_OP_UPSCALE:
  12412. {
  12413. GGML_ASSERT(false); // TODO: not implemented
  12414. } break;
  12415. case GGML_OP_FLASH_ATTN:
  12416. {
  12417. struct ggml_tensor * flash_grad = NULL;
  12418. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12419. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12420. GGML_ASSERT(t == 0 || t == 1);
  12421. bool masked = t != 0;
  12422. flash_grad =
  12423. ggml_flash_attn_back(ctx,
  12424. src0,
  12425. src1,
  12426. tensor->src[2],
  12427. tensor->grad,
  12428. masked);
  12429. }
  12430. struct ggml_tensor * src2 = tensor->src[2];
  12431. const int64_t elem_q = ggml_nelements(src0);
  12432. const int64_t elem_k = ggml_nelements(src1);
  12433. const int64_t elem_v = ggml_nelements(src2);
  12434. enum ggml_type result_type = flash_grad->type;
  12435. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12436. const size_t tsize = ggml_type_size(result_type);
  12437. const size_t offs_q = 0;
  12438. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12439. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12440. if (src0->grad) {
  12441. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12442. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12443. src0->grad = ggml_add_or_set(ctx,
  12444. src0->grad,
  12445. grad_q,
  12446. zero_table);
  12447. }
  12448. if (src1->grad) {
  12449. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12450. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12451. src1->grad = ggml_add_or_set(ctx,
  12452. src1->grad,
  12453. grad_k,
  12454. zero_table);
  12455. }
  12456. if (src2->grad) {
  12457. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12458. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12459. src2->grad = ggml_add_or_set(ctx,
  12460. src2->grad,
  12461. grad_v,
  12462. zero_table);
  12463. }
  12464. } break;
  12465. case GGML_OP_FLASH_FF:
  12466. {
  12467. GGML_ASSERT(false); // not supported
  12468. } break;
  12469. case GGML_OP_FLASH_ATTN_BACK:
  12470. {
  12471. GGML_ASSERT(false); // not supported
  12472. } break;
  12473. case GGML_OP_WIN_PART:
  12474. case GGML_OP_WIN_UNPART:
  12475. case GGML_OP_UNARY:
  12476. {
  12477. switch (ggml_get_unary_op(tensor)) {
  12478. case GGML_UNARY_OP_ABS:
  12479. {
  12480. if (src0->grad) {
  12481. src0->grad =
  12482. ggml_add_or_set(ctx,
  12483. src0->grad,
  12484. ggml_mul(ctx,
  12485. ggml_sgn(ctx, src0),
  12486. tensor->grad),
  12487. zero_table);
  12488. }
  12489. } break;
  12490. case GGML_UNARY_OP_SGN:
  12491. {
  12492. if (src0->grad) {
  12493. // noop
  12494. }
  12495. } break;
  12496. case GGML_UNARY_OP_NEG:
  12497. {
  12498. if (src0->grad) {
  12499. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12500. }
  12501. } break;
  12502. case GGML_UNARY_OP_STEP:
  12503. {
  12504. if (src0->grad) {
  12505. // noop
  12506. }
  12507. } break;
  12508. case GGML_UNARY_OP_TANH:
  12509. {
  12510. GGML_ASSERT(false); // TODO: not implemented
  12511. } break;
  12512. case GGML_UNARY_OP_ELU:
  12513. {
  12514. GGML_ASSERT(false); // TODO: not implemented
  12515. } break;
  12516. case GGML_UNARY_OP_RELU:
  12517. {
  12518. if (src0->grad) {
  12519. src0->grad = ggml_add_or_set(ctx,
  12520. src0->grad,
  12521. ggml_mul(ctx,
  12522. ggml_step(ctx, src0),
  12523. tensor->grad),
  12524. zero_table);
  12525. }
  12526. } break;
  12527. case GGML_UNARY_OP_GELU:
  12528. {
  12529. GGML_ASSERT(false); // TODO: not implemented
  12530. } break;
  12531. case GGML_UNARY_OP_GELU_QUICK:
  12532. {
  12533. GGML_ASSERT(false); // TODO: not implemented
  12534. } break;
  12535. case GGML_UNARY_OP_SILU:
  12536. {
  12537. // necessary for llama
  12538. if (src0->grad) {
  12539. src0->grad = ggml_add_or_set(ctx,
  12540. src0->grad,
  12541. ggml_silu_back(ctx, src0, tensor->grad),
  12542. zero_table);
  12543. }
  12544. } break;
  12545. default:
  12546. GGML_ASSERT(false);
  12547. }
  12548. } break;
  12549. case GGML_OP_GET_REL_POS:
  12550. case GGML_OP_ADD_REL_POS:
  12551. case GGML_OP_MAP_UNARY:
  12552. case GGML_OP_MAP_BINARY:
  12553. case GGML_OP_MAP_CUSTOM1_F32:
  12554. case GGML_OP_MAP_CUSTOM2_F32:
  12555. case GGML_OP_MAP_CUSTOM3_F32:
  12556. case GGML_OP_MAP_CUSTOM1:
  12557. case GGML_OP_MAP_CUSTOM2:
  12558. case GGML_OP_MAP_CUSTOM3:
  12559. {
  12560. GGML_ASSERT(false); // not supported
  12561. } break;
  12562. case GGML_OP_CROSS_ENTROPY_LOSS:
  12563. {
  12564. if (src0->grad) {
  12565. src0->grad = ggml_add_or_set(ctx,
  12566. src0->grad,
  12567. ggml_cross_entropy_loss_back(ctx,
  12568. src0,
  12569. src1,
  12570. tensor->grad),
  12571. zero_table);
  12572. }
  12573. } break;
  12574. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12575. {
  12576. GGML_ASSERT(false); // not supported
  12577. } break;
  12578. case GGML_OP_NONE:
  12579. {
  12580. // nop
  12581. } break;
  12582. case GGML_OP_COUNT:
  12583. {
  12584. GGML_ASSERT(false);
  12585. } break;
  12586. }
  12587. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12588. if (tensor->src[i] && tensor->src[i]->grad) {
  12589. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12590. }
  12591. }
  12592. }
  12593. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12594. if (node->grad == NULL) {
  12595. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12596. // it can also happen during forward pass, if the user performs computations with constants
  12597. if (node->op != GGML_OP_NONE) {
  12598. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12599. }
  12600. }
  12601. // check if already visited
  12602. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12603. return;
  12604. }
  12605. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12606. const int k =
  12607. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12608. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12609. /* unknown order, just fall back to using i*/ i;
  12610. if (node->src[k]) {
  12611. ggml_visit_parents(cgraph, node->src[k]);
  12612. }
  12613. }
  12614. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12615. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12616. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12617. if (strlen(node->name) == 0) {
  12618. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12619. }
  12620. cgraph->leafs[cgraph->n_leafs] = node;
  12621. cgraph->n_leafs++;
  12622. } else {
  12623. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12624. if (strlen(node->name) == 0) {
  12625. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12626. }
  12627. cgraph->nodes[cgraph->n_nodes] = node;
  12628. if (cgraph->grads) {
  12629. cgraph->grads[cgraph->n_nodes] = node->grad;
  12630. }
  12631. cgraph->n_nodes++;
  12632. }
  12633. }
  12634. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12635. if (!expand) {
  12636. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12637. ggml_graph_clear(cgraph);
  12638. }
  12639. const int n0 = cgraph->n_nodes;
  12640. UNUSED(n0);
  12641. ggml_visit_parents(cgraph, tensor);
  12642. const int n_new = cgraph->n_nodes - n0;
  12643. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12644. if (n_new > 0) {
  12645. // the last added node should always be starting point
  12646. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12647. }
  12648. }
  12649. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12650. ggml_build_forward_impl(cgraph, tensor, true);
  12651. }
  12652. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12653. GGML_ASSERT(gf->n_nodes > 0);
  12654. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12655. if (keep) {
  12656. for (int i = 0; i < gf->n_nodes; i++) {
  12657. struct ggml_tensor * node = gf->nodes[i];
  12658. if (node->grad) {
  12659. node->grad = ggml_dup_tensor(ctx, node);
  12660. gf->grads[i] = node->grad;
  12661. }
  12662. }
  12663. }
  12664. // remember original gradients which start with zero values
  12665. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12666. for (int i = 0; i < gf->n_nodes; i++) {
  12667. if (gf->grads[i]) {
  12668. ggml_hash_insert(zero_table, gf->grads[i]);
  12669. }
  12670. }
  12671. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12672. struct ggml_tensor * node = gf->nodes[i];
  12673. // inplace operations to add gradients are not created by ggml_compute_backward
  12674. // use allocator to automatically make inplace operations
  12675. if (node->grad) {
  12676. ggml_compute_backward(ctx, node, zero_table);
  12677. }
  12678. }
  12679. for (int i = 0; i < gf->n_nodes; i++) {
  12680. struct ggml_tensor * node = gf->nodes[i];
  12681. if (node->is_param) {
  12682. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12683. ggml_build_forward_expand(gb, node->grad);
  12684. }
  12685. }
  12686. ggml_hash_set_free(zero_table);
  12687. }
  12688. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  12689. size_t nbytes = sizeof(struct ggml_cgraph);
  12690. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  12691. if (grads) {
  12692. nbytes += size * sizeof(struct ggml_tensor *); // grads
  12693. }
  12694. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  12695. return nbytes;
  12696. }
  12697. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  12698. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  12699. }
  12700. size_t ggml_graph_overhead(void) {
  12701. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  12702. }
  12703. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  12704. const size_t obj_size = ggml_graph_nbytes(size, grads);
  12705. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12706. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12707. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  12708. size_t hash_size = ggml_hash_size(size * 2);
  12709. struct ggml_tensor ** nodes_ptr = data_start;
  12710. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  12711. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  12712. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  12713. // check that we allocated the correct amount of memory
  12714. assert(obj_size == (size_t) (
  12715. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  12716. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  12717. *cgraph = (struct ggml_cgraph) {
  12718. /*.size =*/ size,
  12719. /*.n_nodes =*/ 0,
  12720. /*.n_leafs =*/ 0,
  12721. /*.nodes =*/ nodes_ptr,
  12722. /*.grads =*/ grads_ptr,
  12723. /*.leafs =*/ leafs_ptr,
  12724. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  12725. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  12726. /*.perf_runs =*/ 0,
  12727. /*.perf_cycles =*/ 0,
  12728. /*.perf_time_us =*/ 0,
  12729. };
  12730. return cgraph;
  12731. }
  12732. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  12733. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  12734. }
  12735. struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
  12736. const size_t obj_size = sizeof(struct ggml_cgraph);
  12737. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12738. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12739. *cgraph = (struct ggml_cgraph) {
  12740. /*.size =*/ 0,
  12741. /*.n_nodes =*/ i1 - i0,
  12742. /*.n_leafs =*/ 0,
  12743. /*.nodes =*/ cgraph0->nodes + i0,
  12744. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  12745. /*.leafs =*/ NULL,
  12746. /*.hash_table =*/ { 0, NULL },
  12747. /*.order =*/ cgraph0->order,
  12748. /*.perf_runs =*/ 0,
  12749. /*.perf_cycles =*/ 0,
  12750. /*.perf_time_us =*/ 0,
  12751. };
  12752. return cgraph;
  12753. }
  12754. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  12755. GGML_ASSERT(dst->size >= src->n_leafs);
  12756. GGML_ASSERT(dst->size >= src->n_nodes);
  12757. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  12758. dst->n_leafs = src->n_leafs;
  12759. dst->n_nodes = src->n_nodes;
  12760. dst->order = src->order;
  12761. for (int i = 0; i < src->n_leafs; ++i) {
  12762. dst->leafs[i] = src->leafs[i];
  12763. }
  12764. for (int i = 0; i < src->n_nodes; ++i) {
  12765. dst->nodes[i] = src->nodes[i];
  12766. }
  12767. if (src->grads) {
  12768. GGML_ASSERT(dst->grads != NULL);
  12769. for (int i = 0; i < src->n_nodes; ++i) {
  12770. dst->grads[i] = src->grads[i];
  12771. }
  12772. }
  12773. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  12774. if (src->visited_hash_table.keys[i]) {
  12775. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  12776. }
  12777. }
  12778. }
  12779. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12780. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  12781. ggml_graph_cpy(cgraph, result);
  12782. return result;
  12783. }
  12784. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12785. GGML_ASSERT(cgraph->grads != NULL);
  12786. for (int i = 0; i < cgraph->n_nodes; i++) {
  12787. struct ggml_tensor * grad = cgraph->grads[i];
  12788. if (grad) {
  12789. ggml_set_zero(grad);
  12790. }
  12791. }
  12792. }
  12793. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  12794. cgraph->n_leafs = 0;
  12795. cgraph->n_nodes = 0;
  12796. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  12797. }
  12798. //
  12799. // thread data
  12800. //
  12801. // synchronization is done via busy loops
  12802. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12803. //
  12804. #ifdef __APPLE__
  12805. //#include <os/lock.h>
  12806. //
  12807. //typedef os_unfair_lock ggml_lock_t;
  12808. //
  12809. //#define ggml_lock_init(x) UNUSED(x)
  12810. //#define ggml_lock_destroy(x) UNUSED(x)
  12811. //#define ggml_lock_lock os_unfair_lock_lock
  12812. //#define ggml_lock_unlock os_unfair_lock_unlock
  12813. //
  12814. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12815. typedef int ggml_lock_t;
  12816. #define ggml_lock_init(x) UNUSED(x)
  12817. #define ggml_lock_destroy(x) UNUSED(x)
  12818. #define ggml_lock_lock(x) UNUSED(x)
  12819. #define ggml_lock_unlock(x) UNUSED(x)
  12820. #define GGML_LOCK_INITIALIZER 0
  12821. typedef pthread_t ggml_thread_t;
  12822. #define ggml_thread_create pthread_create
  12823. #define ggml_thread_join pthread_join
  12824. #else
  12825. //typedef pthread_spinlock_t ggml_lock_t;
  12826. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12827. //#define ggml_lock_destroy pthread_spin_destroy
  12828. //#define ggml_lock_lock pthread_spin_lock
  12829. //#define ggml_lock_unlock pthread_spin_unlock
  12830. typedef int ggml_lock_t;
  12831. #define ggml_lock_init(x) UNUSED(x)
  12832. #define ggml_lock_destroy(x) UNUSED(x)
  12833. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12834. #define ggml_lock_lock(x) _mm_pause()
  12835. #else
  12836. #define ggml_lock_lock(x) UNUSED(x)
  12837. #endif
  12838. #define ggml_lock_unlock(x) UNUSED(x)
  12839. #define GGML_LOCK_INITIALIZER 0
  12840. typedef pthread_t ggml_thread_t;
  12841. #define ggml_thread_create pthread_create
  12842. #define ggml_thread_join pthread_join
  12843. #endif
  12844. // Android's libc implementation "bionic" does not support setting affinity
  12845. #if defined(__linux__) && !defined(__BIONIC__)
  12846. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  12847. if (!ggml_is_numa()) {
  12848. return;
  12849. }
  12850. // run thread on node_num thread_n / (threads per node)
  12851. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  12852. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  12853. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12854. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12855. CPU_ZERO_S(setsize, cpus);
  12856. for (size_t i = 0; i < node->n_cpus; ++i) {
  12857. CPU_SET_S(node->cpus[i], setsize, cpus);
  12858. }
  12859. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12860. if (rv) {
  12861. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12862. strerror(rv));
  12863. }
  12864. CPU_FREE(cpus);
  12865. }
  12866. static void clear_numa_thread_affinity(void) {
  12867. if (!ggml_is_numa()) {
  12868. return;
  12869. }
  12870. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12871. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12872. CPU_ZERO_S(setsize, cpus);
  12873. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  12874. CPU_SET_S(i, setsize, cpus);
  12875. }
  12876. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12877. if (rv) {
  12878. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12879. strerror(rv));
  12880. }
  12881. CPU_FREE(cpus);
  12882. }
  12883. #else
  12884. // TODO: Windows etc.
  12885. // (the linux implementation may also work on BSD, someone should test)
  12886. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  12887. static void clear_numa_thread_affinity(void) {}
  12888. #endif
  12889. struct ggml_compute_state_shared {
  12890. const struct ggml_cgraph * cgraph;
  12891. const struct ggml_cplan * cplan;
  12892. int64_t perf_node_start_cycles;
  12893. int64_t perf_node_start_time_us;
  12894. const int n_threads;
  12895. // synchronization primitives
  12896. atomic_int n_active; // num active threads
  12897. atomic_int node_n; // active graph node
  12898. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  12899. void * abort_callback_data;
  12900. };
  12901. struct ggml_compute_state {
  12902. ggml_thread_t thrd;
  12903. int ith;
  12904. struct ggml_compute_state_shared * shared;
  12905. };
  12906. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  12907. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  12908. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  12909. node->perf_runs++;
  12910. node->perf_cycles += cycles_cur;
  12911. node->perf_time_us += time_us_cur;
  12912. }
  12913. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  12914. int n_tasks = 0;
  12915. switch (node->op) {
  12916. case GGML_OP_CPY:
  12917. case GGML_OP_DUP:
  12918. case GGML_OP_ADD:
  12919. case GGML_OP_ADD1:
  12920. case GGML_OP_ACC:
  12921. {
  12922. n_tasks = n_threads;
  12923. } break;
  12924. case GGML_OP_SUB:
  12925. case GGML_OP_DIV:
  12926. case GGML_OP_SQR:
  12927. case GGML_OP_SQRT:
  12928. case GGML_OP_LOG:
  12929. case GGML_OP_SUM:
  12930. case GGML_OP_SUM_ROWS:
  12931. case GGML_OP_MEAN:
  12932. case GGML_OP_ARGMAX:
  12933. case GGML_OP_REPEAT:
  12934. case GGML_OP_REPEAT_BACK:
  12935. {
  12936. n_tasks = 1;
  12937. } break;
  12938. case GGML_OP_UNARY:
  12939. switch (ggml_get_unary_op(node)) {
  12940. case GGML_UNARY_OP_ABS:
  12941. case GGML_UNARY_OP_SGN:
  12942. case GGML_UNARY_OP_NEG:
  12943. case GGML_UNARY_OP_STEP:
  12944. case GGML_UNARY_OP_TANH:
  12945. case GGML_UNARY_OP_ELU:
  12946. case GGML_UNARY_OP_RELU:
  12947. case GGML_UNARY_OP_LEAKY:
  12948. {
  12949. n_tasks = 1;
  12950. } break;
  12951. case GGML_UNARY_OP_GELU:
  12952. case GGML_UNARY_OP_GELU_QUICK:
  12953. case GGML_UNARY_OP_SILU:
  12954. {
  12955. n_tasks = n_threads;
  12956. } break;
  12957. }
  12958. break;
  12959. case GGML_OP_SILU_BACK:
  12960. case GGML_OP_MUL:
  12961. case GGML_OP_NORM:
  12962. case GGML_OP_RMS_NORM:
  12963. case GGML_OP_RMS_NORM_BACK:
  12964. case GGML_OP_GROUP_NORM:
  12965. case GGML_OP_CONCAT:
  12966. {
  12967. n_tasks = n_threads;
  12968. } break;
  12969. case GGML_OP_MUL_MAT:
  12970. {
  12971. n_tasks = n_threads;
  12972. // TODO: use different scheduling for different matrix sizes
  12973. //const int nr0 = ggml_nrows(node->src[0]);
  12974. //const int nr1 = ggml_nrows(node->src[1]);
  12975. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12976. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  12977. #if defined(GGML_USE_CUBLAS)
  12978. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  12979. n_tasks = 1; // TODO: this actually is doing nothing
  12980. // the threads are still spinning
  12981. }
  12982. #elif defined(GGML_USE_CLBLAST)
  12983. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  12984. n_tasks = 1; // TODO: this actually is doing nothing
  12985. // the threads are still spinning
  12986. }
  12987. #endif
  12988. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12989. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  12990. n_tasks = 1; // TODO: this actually is doing nothing
  12991. // the threads are still spinning
  12992. }
  12993. #endif
  12994. } break;
  12995. case GGML_OP_OUT_PROD:
  12996. {
  12997. n_tasks = n_threads;
  12998. } break;
  12999. case GGML_OP_SCALE:
  13000. case GGML_OP_SET:
  13001. case GGML_OP_CONT:
  13002. case GGML_OP_RESHAPE:
  13003. case GGML_OP_VIEW:
  13004. case GGML_OP_PERMUTE:
  13005. case GGML_OP_TRANSPOSE:
  13006. case GGML_OP_GET_ROWS:
  13007. case GGML_OP_GET_ROWS_BACK:
  13008. case GGML_OP_DIAG:
  13009. {
  13010. n_tasks = 1;
  13011. } break;
  13012. case GGML_OP_DIAG_MASK_ZERO:
  13013. case GGML_OP_DIAG_MASK_INF:
  13014. case GGML_OP_SOFT_MAX:
  13015. case GGML_OP_SOFT_MAX_BACK:
  13016. case GGML_OP_ROPE:
  13017. case GGML_OP_ROPE_BACK:
  13018. case GGML_OP_ADD_REL_POS:
  13019. {
  13020. n_tasks = n_threads;
  13021. } break;
  13022. case GGML_OP_ALIBI:
  13023. {
  13024. n_tasks = 1; //TODO
  13025. } break;
  13026. case GGML_OP_CLAMP:
  13027. {
  13028. n_tasks = 1; //TODO
  13029. } break;
  13030. case GGML_OP_CONV_TRANSPOSE_1D:
  13031. {
  13032. n_tasks = n_threads;
  13033. } break;
  13034. case GGML_OP_IM2COL:
  13035. {
  13036. n_tasks = n_threads;
  13037. } break;
  13038. case GGML_OP_CONV_TRANSPOSE_2D:
  13039. {
  13040. n_tasks = n_threads;
  13041. } break;
  13042. case GGML_OP_POOL_1D:
  13043. case GGML_OP_POOL_2D:
  13044. {
  13045. n_tasks = 1;
  13046. } break;
  13047. case GGML_OP_UPSCALE:
  13048. {
  13049. n_tasks = n_threads;
  13050. } break;
  13051. case GGML_OP_FLASH_ATTN:
  13052. {
  13053. n_tasks = n_threads;
  13054. } break;
  13055. case GGML_OP_FLASH_FF:
  13056. {
  13057. n_tasks = n_threads;
  13058. } break;
  13059. case GGML_OP_FLASH_ATTN_BACK:
  13060. {
  13061. n_tasks = n_threads;
  13062. } break;
  13063. case GGML_OP_WIN_PART:
  13064. case GGML_OP_WIN_UNPART:
  13065. case GGML_OP_GET_REL_POS:
  13066. case GGML_OP_MAP_UNARY:
  13067. case GGML_OP_MAP_BINARY:
  13068. case GGML_OP_MAP_CUSTOM1_F32:
  13069. case GGML_OP_MAP_CUSTOM2_F32:
  13070. case GGML_OP_MAP_CUSTOM3_F32:
  13071. {
  13072. n_tasks = 1;
  13073. } break;
  13074. case GGML_OP_MAP_CUSTOM1:
  13075. {
  13076. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13077. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13078. n_tasks = n_threads;
  13079. } else {
  13080. n_tasks = MIN(p->n_tasks, n_threads);
  13081. }
  13082. } break;
  13083. case GGML_OP_MAP_CUSTOM2:
  13084. {
  13085. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13086. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13087. n_tasks = n_threads;
  13088. } else {
  13089. n_tasks = MIN(p->n_tasks, n_threads);
  13090. }
  13091. } break;
  13092. case GGML_OP_MAP_CUSTOM3:
  13093. {
  13094. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13095. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13096. n_tasks = n_threads;
  13097. } else {
  13098. n_tasks = MIN(p->n_tasks, n_threads);
  13099. }
  13100. } break;
  13101. case GGML_OP_CROSS_ENTROPY_LOSS:
  13102. {
  13103. n_tasks = n_threads;
  13104. } break;
  13105. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13106. {
  13107. n_tasks = n_threads;
  13108. } break;
  13109. case GGML_OP_NONE:
  13110. {
  13111. n_tasks = 1;
  13112. } break;
  13113. default:
  13114. {
  13115. fprintf(stderr, "%s: op not implemented: ", __func__);
  13116. if (node->op < GGML_OP_COUNT) {
  13117. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13118. } else {
  13119. fprintf(stderr, "%d\n", node->op);
  13120. }
  13121. GGML_ASSERT(false);
  13122. } break;
  13123. }
  13124. assert(n_tasks > 0);
  13125. return n_tasks;
  13126. }
  13127. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13128. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13129. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13130. const struct ggml_cplan * cplan = state->shared->cplan;
  13131. const int n_threads = state->shared->n_threads;
  13132. set_numa_thread_affinity(state->ith, n_threads);
  13133. int node_n = -1;
  13134. while (true) {
  13135. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13136. state->shared->node_n += 1;
  13137. return (thread_ret_t) GGML_EXIT_ABORTED;
  13138. }
  13139. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13140. // all other threads are finished and spinning
  13141. // do finalize and init here so we don't have synchronize again
  13142. struct ggml_compute_params params = {
  13143. /*.type =*/ GGML_TASK_FINALIZE,
  13144. /*.ith =*/ 0,
  13145. /*.nth =*/ 0,
  13146. /*.wsize =*/ cplan->work_size,
  13147. /*.wdata =*/ cplan->work_data,
  13148. };
  13149. if (node_n != -1) {
  13150. /* FINALIZE */
  13151. struct ggml_tensor * node = cgraph->nodes[node_n];
  13152. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13153. params.nth = ggml_get_n_tasks(node, n_threads);
  13154. ggml_compute_forward(&params, node);
  13155. }
  13156. ggml_graph_compute_perf_stats_node(node, state->shared);
  13157. }
  13158. // distribute new work or execute it direct if 1T
  13159. while (++node_n < cgraph->n_nodes) {
  13160. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13161. struct ggml_tensor * node = cgraph->nodes[node_n];
  13162. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13163. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13164. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13165. params.nth = n_tasks;
  13166. /* INIT */
  13167. if (GGML_OP_HAS_INIT[node->op]) {
  13168. params.type = GGML_TASK_INIT;
  13169. ggml_compute_forward(&params, node);
  13170. }
  13171. if (n_tasks == 1) {
  13172. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13173. // they do something more efficient than spinning (?)
  13174. params.type = GGML_TASK_COMPUTE;
  13175. ggml_compute_forward(&params, node);
  13176. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13177. params.type = GGML_TASK_FINALIZE;
  13178. ggml_compute_forward(&params, node);
  13179. }
  13180. ggml_graph_compute_perf_stats_node(node, state->shared);
  13181. } else {
  13182. break;
  13183. }
  13184. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13185. break;
  13186. }
  13187. }
  13188. atomic_store(&state->shared->n_active, n_threads);
  13189. atomic_store(&state->shared->node_n, node_n);
  13190. } else {
  13191. // wait for other threads to finish
  13192. const int last = node_n;
  13193. while (true) {
  13194. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13195. // depending on the workload and the operating system.
  13196. // since it is not clear what is the best approach, it should potentially become user-configurable
  13197. // ref: https://github.com/ggerganov/ggml/issues/291
  13198. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13199. sched_yield();
  13200. #endif
  13201. node_n = atomic_load(&state->shared->node_n);
  13202. if (node_n != last) break;
  13203. };
  13204. }
  13205. // check if we should stop
  13206. if (node_n >= cgraph->n_nodes) break;
  13207. /* COMPUTE */
  13208. struct ggml_tensor * node = cgraph->nodes[node_n];
  13209. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13210. struct ggml_compute_params params = {
  13211. /*.type =*/ GGML_TASK_COMPUTE,
  13212. /*.ith =*/ state->ith,
  13213. /*.nth =*/ n_tasks,
  13214. /*.wsize =*/ cplan->work_size,
  13215. /*.wdata =*/ cplan->work_data,
  13216. };
  13217. if (state->ith < n_tasks) {
  13218. ggml_compute_forward(&params, node);
  13219. }
  13220. }
  13221. return GGML_EXIT_SUCCESS;
  13222. }
  13223. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13224. if (n_threads <= 0) {
  13225. n_threads = GGML_DEFAULT_N_THREADS;
  13226. }
  13227. size_t work_size = 0;
  13228. struct ggml_cplan cplan;
  13229. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13230. // thread scheduling for the different operations + work buffer size estimation
  13231. for (int i = 0; i < cgraph->n_nodes; i++) {
  13232. int n_tasks = 1;
  13233. struct ggml_tensor * node = cgraph->nodes[i];
  13234. size_t cur = 0;
  13235. switch (node->op) {
  13236. case GGML_OP_CPY:
  13237. case GGML_OP_DUP:
  13238. {
  13239. n_tasks = n_threads;
  13240. if (ggml_is_quantized(node->type)) {
  13241. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13242. }
  13243. } break;
  13244. case GGML_OP_ADD:
  13245. case GGML_OP_ADD1:
  13246. {
  13247. n_tasks = n_threads;
  13248. if (ggml_is_quantized(node->src[0]->type)) {
  13249. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13250. }
  13251. } break;
  13252. case GGML_OP_ACC:
  13253. {
  13254. n_tasks = n_threads;
  13255. if (ggml_is_quantized(node->src[0]->type)) {
  13256. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13257. }
  13258. } break;
  13259. case GGML_OP_MUL_MAT:
  13260. {
  13261. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13262. #if defined(GGML_USE_CLBLAST)
  13263. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13264. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13265. } else
  13266. #endif
  13267. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13268. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13269. if (node->src[0]->type != GGML_TYPE_F32) {
  13270. // here we need memory just for single 2D matrix from src0
  13271. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13272. }
  13273. } else
  13274. #endif
  13275. if (node->src[1]->type != vec_dot_type) {
  13276. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13277. }
  13278. } break;
  13279. case GGML_OP_OUT_PROD:
  13280. {
  13281. n_tasks = n_threads;
  13282. if (ggml_is_quantized(node->src[0]->type)) {
  13283. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13284. }
  13285. } break;
  13286. case GGML_OP_SOFT_MAX:
  13287. {
  13288. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13289. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13290. } break;
  13291. case GGML_OP_CONV_TRANSPOSE_1D:
  13292. {
  13293. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13294. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13295. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13296. const int64_t ne00 = node->src[0]->ne[0]; // K
  13297. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13298. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13299. const int64_t ne10 = node->src[1]->ne[0]; // L
  13300. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13301. if (node->src[0]->type == GGML_TYPE_F16 &&
  13302. node->src[1]->type == GGML_TYPE_F32) {
  13303. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13304. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13305. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13306. node->src[1]->type == GGML_TYPE_F32) {
  13307. cur += sizeof(float)*ne00*ne01*ne02;
  13308. cur += sizeof(float)*ne10*ne11;
  13309. } else {
  13310. GGML_ASSERT(false);
  13311. }
  13312. } break;
  13313. case GGML_OP_IM2COL:
  13314. {
  13315. n_tasks = n_threads;
  13316. } break;
  13317. case GGML_OP_CONV_TRANSPOSE_2D:
  13318. {
  13319. const int64_t ne00 = node->src[0]->ne[0]; // W
  13320. const int64_t ne01 = node->src[0]->ne[1]; // H
  13321. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13322. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13323. const int64_t ne10 = node->src[1]->ne[0]; // W
  13324. const int64_t ne11 = node->src[1]->ne[1]; // H
  13325. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13326. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13327. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13328. } break;
  13329. case GGML_OP_FLASH_ATTN:
  13330. {
  13331. n_tasks = n_threads;
  13332. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13333. if (node->src[1]->type == GGML_TYPE_F32) {
  13334. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13335. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13336. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13337. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13338. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13339. }
  13340. } break;
  13341. case GGML_OP_FLASH_FF:
  13342. {
  13343. n_tasks = n_threads;
  13344. if (node->src[1]->type == GGML_TYPE_F32) {
  13345. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13346. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13347. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13348. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13349. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13350. }
  13351. } break;
  13352. case GGML_OP_FLASH_ATTN_BACK:
  13353. {
  13354. n_tasks = n_threads;
  13355. const int64_t D = node->src[0]->ne[0];
  13356. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13357. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13358. if (node->src[1]->type == GGML_TYPE_F32) {
  13359. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13360. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13361. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13362. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13363. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13364. }
  13365. } break;
  13366. case GGML_OP_CROSS_ENTROPY_LOSS:
  13367. {
  13368. n_tasks = n_threads;
  13369. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13370. } break;
  13371. case GGML_OP_COUNT:
  13372. {
  13373. GGML_ASSERT(false);
  13374. } break;
  13375. default:
  13376. break;
  13377. }
  13378. work_size = MAX(work_size, cur);
  13379. }
  13380. if (work_size > 0) {
  13381. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13382. }
  13383. cplan.n_threads = n_threads;
  13384. cplan.work_size = work_size;
  13385. cplan.work_data = NULL;
  13386. return cplan;
  13387. }
  13388. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13389. {
  13390. GGML_ASSERT(cplan);
  13391. GGML_ASSERT(cplan->n_threads > 0);
  13392. if (cplan->work_size > 0) {
  13393. GGML_ASSERT(cplan->work_data);
  13394. }
  13395. }
  13396. const int n_threads = cplan->n_threads;
  13397. struct ggml_compute_state_shared state_shared = {
  13398. /*.cgraph =*/ cgraph,
  13399. /*.cgraph_plan =*/ cplan,
  13400. /*.perf_node_start_cycles =*/ 0,
  13401. /*.perf_node_start_time_us =*/ 0,
  13402. /*.n_threads =*/ n_threads,
  13403. /*.n_active =*/ n_threads,
  13404. /*.node_n =*/ -1,
  13405. /*.abort_callback =*/ NULL,
  13406. /*.abort_callback_data =*/ NULL,
  13407. };
  13408. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13409. // create thread pool
  13410. if (n_threads > 1) {
  13411. for (int j = 1; j < n_threads; ++j) {
  13412. workers[j] = (struct ggml_compute_state) {
  13413. .thrd = 0,
  13414. .ith = j,
  13415. .shared = &state_shared,
  13416. };
  13417. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13418. GGML_ASSERT(rc == 0);
  13419. UNUSED(rc);
  13420. }
  13421. }
  13422. workers[0].ith = 0;
  13423. workers[0].shared = &state_shared;
  13424. const int64_t perf_start_cycles = ggml_perf_cycles();
  13425. const int64_t perf_start_time_us = ggml_perf_time_us();
  13426. // this is a work thread too
  13427. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13428. // don't leave affinity set on the main thread
  13429. clear_numa_thread_affinity();
  13430. // join or kill thread pool
  13431. if (n_threads > 1) {
  13432. for (int j = 1; j < n_threads; j++) {
  13433. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13434. GGML_ASSERT(rc == 0);
  13435. }
  13436. }
  13437. // performance stats (graph)
  13438. {
  13439. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13440. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13441. cgraph->perf_runs++;
  13442. cgraph->perf_cycles += perf_cycles_cur;
  13443. cgraph->perf_time_us += perf_time_us_cur;
  13444. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13445. __func__, cgraph->perf_runs,
  13446. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13447. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13448. (double) perf_time_us_cur / 1000.0,
  13449. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13450. }
  13451. return compute_status;
  13452. }
  13453. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13454. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13455. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13456. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13457. ggml_graph_compute(cgraph, &cplan);
  13458. }
  13459. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13460. for (int i = 0; i < cgraph->n_leafs; i++) {
  13461. struct ggml_tensor * leaf = cgraph->leafs[i];
  13462. if (strcmp(leaf->name, name) == 0) {
  13463. return leaf;
  13464. }
  13465. }
  13466. for (int i = 0; i < cgraph->n_nodes; i++) {
  13467. struct ggml_tensor * node = cgraph->nodes[i];
  13468. if (strcmp(node->name, name) == 0) {
  13469. return node;
  13470. }
  13471. }
  13472. return NULL;
  13473. }
  13474. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13475. const int64_t * ne = tensor->ne;
  13476. const size_t * nb = tensor->nb;
  13477. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13478. ggml_type_name(tensor->type),
  13479. ggml_op_name (tensor->op),
  13480. tensor->n_dims,
  13481. ne[0], ne[1], ne[2], ne[3],
  13482. nb[0], nb[1], nb[2], nb[3],
  13483. tensor->data,
  13484. tensor->name);
  13485. }
  13486. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13487. const int64_t * ne = tensor->ne;
  13488. const size_t * nb = tensor->nb;
  13489. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13490. arg,
  13491. ggml_type_name(tensor->type),
  13492. ggml_op_name (tensor->op),
  13493. tensor->n_dims,
  13494. ne[0], ne[1], ne[2], ne[3],
  13495. nb[0], nb[1], nb[2], nb[3],
  13496. tensor->data,
  13497. tensor->name);
  13498. }
  13499. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13500. uint64_t size_eval = 0;
  13501. // compute size of intermediate results
  13502. // TODO: does not take into account scratch buffers !!!!
  13503. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13504. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13505. }
  13506. // print
  13507. {
  13508. FILE * fout = stdout;
  13509. fprintf(fout, "\n");
  13510. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13511. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13512. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13513. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13514. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13515. // header
  13516. fprintf(fout, "\n");
  13517. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13518. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13519. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13520. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13521. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13522. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13523. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13524. }
  13525. // header
  13526. fprintf(fout, "\n");
  13527. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13528. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13529. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13530. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13531. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13532. if (cgraph->nodes[i]->src[j]) {
  13533. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13534. }
  13535. }
  13536. fprintf(fout, "\n");
  13537. }
  13538. fprintf(fout, "\n");
  13539. }
  13540. // write binary data
  13541. {
  13542. FILE * fout = fopen(fname, "wb");
  13543. if (!fout) {
  13544. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13545. return;
  13546. }
  13547. // header
  13548. {
  13549. const uint32_t magic = GGML_FILE_MAGIC;
  13550. const uint32_t version = GGML_FILE_VERSION;
  13551. const uint32_t n_leafs = cgraph->n_leafs;
  13552. const uint32_t n_nodes = cgraph->n_nodes;
  13553. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13554. fwrite(&version, sizeof(uint32_t), 1, fout);
  13555. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13556. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13557. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13558. }
  13559. // leafs
  13560. {
  13561. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13562. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13563. const uint32_t type = tensor->type;
  13564. const uint32_t op = tensor->op;
  13565. const uint32_t n_dims = tensor->n_dims;
  13566. fwrite(&type, sizeof(uint32_t), 1, fout);
  13567. fwrite(&op, sizeof(uint32_t), 1, fout);
  13568. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13569. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13570. const uint64_t ne = tensor->ne[j];
  13571. const uint64_t nb = tensor->nb[j];
  13572. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13573. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13574. }
  13575. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13576. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13577. // dump the data
  13578. // TODO: pad this to 32 byte boundary
  13579. {
  13580. const size_t size = ggml_nbytes(tensor);
  13581. fwrite(tensor->data, sizeof(char), size, fout);
  13582. }
  13583. }
  13584. }
  13585. // nodes
  13586. {
  13587. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13588. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13589. const uint32_t type = tensor->type;
  13590. const uint32_t op = tensor->op;
  13591. const uint32_t n_dims = tensor->n_dims;
  13592. fwrite(&type, sizeof(uint32_t), 1, fout);
  13593. fwrite(&op, sizeof(uint32_t), 1, fout);
  13594. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13595. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13596. const uint64_t ne = tensor->ne[j];
  13597. const uint64_t nb = tensor->nb[j];
  13598. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13599. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13600. }
  13601. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13602. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13603. // output the op arguments
  13604. {
  13605. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13606. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13607. args[j] = tensor->src[j];
  13608. }
  13609. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13610. if (args[j]) {
  13611. int32_t idx = -1;
  13612. // check if leaf
  13613. {
  13614. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13615. if (args[j] == cgraph->leafs[k]) {
  13616. idx = k;
  13617. break;
  13618. }
  13619. }
  13620. }
  13621. // check if node
  13622. if (idx == -1) {
  13623. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13624. if (args[j] == cgraph->nodes[k]) {
  13625. idx = cgraph->n_leafs + k;
  13626. break;
  13627. }
  13628. }
  13629. }
  13630. if (idx == -1) {
  13631. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13632. fclose(fout);
  13633. return;
  13634. }
  13635. fwrite(&idx, sizeof(int32_t), 1, fout);
  13636. } else {
  13637. const int32_t nul = -1;
  13638. fwrite(&nul, sizeof(int32_t), 1, fout);
  13639. }
  13640. }
  13641. }
  13642. }
  13643. }
  13644. fclose(fout);
  13645. }
  13646. }
  13647. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13648. assert(*ctx_data == NULL);
  13649. assert(*ctx_eval == NULL);
  13650. struct ggml_cgraph * result = NULL;
  13651. struct ggml_tensor * data = NULL;
  13652. // read file into data
  13653. {
  13654. FILE * fin = fopen(fname, "rb");
  13655. if (!fin) {
  13656. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13657. return result;
  13658. }
  13659. size_t fsize = 0;
  13660. fseek(fin, 0, SEEK_END);
  13661. fsize = ftell(fin);
  13662. fseek(fin, 0, SEEK_SET);
  13663. // create the data context
  13664. {
  13665. const size_t overhead = 1*ggml_tensor_overhead();
  13666. struct ggml_init_params params = {
  13667. .mem_size = fsize + overhead,
  13668. .mem_buffer = NULL,
  13669. .no_alloc = false,
  13670. };
  13671. *ctx_data = ggml_init(params);
  13672. if (!*ctx_data) {
  13673. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13674. fclose(fin);
  13675. return result;
  13676. }
  13677. }
  13678. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13679. {
  13680. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13681. if (ret != fsize) {
  13682. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13683. fclose(fin);
  13684. return result;
  13685. }
  13686. }
  13687. fclose(fin);
  13688. }
  13689. // populate result
  13690. {
  13691. char * ptr = (char *) data->data;
  13692. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13693. if (magic != GGML_FILE_MAGIC) {
  13694. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13695. return result;
  13696. }
  13697. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13698. if (version != GGML_FILE_VERSION) {
  13699. fprintf(stderr, "%s: invalid version number\n", __func__);
  13700. return result;
  13701. }
  13702. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13703. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13704. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13705. const int graph_size = MAX(n_leafs, n_nodes);
  13706. // create the data context
  13707. {
  13708. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  13709. struct ggml_init_params params = {
  13710. .mem_size = size_eval + overhead,
  13711. .mem_buffer = NULL,
  13712. .no_alloc = true,
  13713. };
  13714. *ctx_eval = ggml_init(params);
  13715. if (!*ctx_eval) {
  13716. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13717. return result;
  13718. }
  13719. }
  13720. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  13721. result->n_leafs = n_leafs;
  13722. result->n_nodes = n_nodes;
  13723. // leafs
  13724. {
  13725. uint32_t type;
  13726. uint32_t op;
  13727. uint32_t n_dims;
  13728. for (uint32_t i = 0; i < n_leafs; ++i) {
  13729. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13730. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13731. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13732. int64_t ne[GGML_MAX_DIMS];
  13733. size_t nb[GGML_MAX_DIMS];
  13734. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13735. uint64_t ne_cur;
  13736. uint64_t nb_cur;
  13737. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13738. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13739. ne[j] = ne_cur;
  13740. nb[j] = nb_cur;
  13741. }
  13742. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13743. tensor->op = (enum ggml_op) op;
  13744. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13745. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13746. tensor->data = (void *) ptr;
  13747. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13748. tensor->nb[j] = nb[j];
  13749. }
  13750. result->leafs[i] = tensor;
  13751. ptr += ggml_nbytes(tensor);
  13752. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13753. }
  13754. }
  13755. ggml_set_no_alloc(*ctx_eval, false);
  13756. // nodes
  13757. {
  13758. uint32_t type;
  13759. uint32_t op;
  13760. uint32_t n_dims;
  13761. for (uint32_t i = 0; i < n_nodes; ++i) {
  13762. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13763. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13764. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13765. enum ggml_op eop = (enum ggml_op) op;
  13766. int64_t ne[GGML_MAX_DIMS];
  13767. size_t nb[GGML_MAX_DIMS];
  13768. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13769. uint64_t ne_cur;
  13770. uint64_t nb_cur;
  13771. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13772. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13773. ne[j] = ne_cur;
  13774. nb[j] = nb_cur;
  13775. }
  13776. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13777. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13778. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13779. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13780. // parse args
  13781. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13782. const int32_t arg_idx = ptr_arg_idx[j];
  13783. if (arg_idx == -1) {
  13784. continue;
  13785. }
  13786. if (arg_idx < result->n_leafs) {
  13787. args[j] = result->leafs[arg_idx];
  13788. } else {
  13789. args[j] = result->nodes[arg_idx - result->n_leafs];
  13790. }
  13791. }
  13792. // create the tensor
  13793. // "view" operations are handled differently
  13794. // TODO: handle inplace ops - currently a copy is always made
  13795. struct ggml_tensor * tensor = NULL;
  13796. switch (eop) {
  13797. // TODO: implement other view ops
  13798. case GGML_OP_RESHAPE:
  13799. {
  13800. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13801. } break;
  13802. case GGML_OP_VIEW:
  13803. {
  13804. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13805. size_t offs;
  13806. memcpy(&offs, ptr_op_params, sizeof(offs));
  13807. tensor->data = ((char *) tensor->data) + offs;
  13808. } break;
  13809. case GGML_OP_TRANSPOSE:
  13810. {
  13811. tensor = ggml_transpose(*ctx_eval, args[0]);
  13812. } break;
  13813. case GGML_OP_PERMUTE:
  13814. {
  13815. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13816. } break;
  13817. default:
  13818. {
  13819. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13820. tensor->op = eop;
  13821. } break;
  13822. }
  13823. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13824. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  13825. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13826. tensor->nb[j] = nb[j];
  13827. }
  13828. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13829. tensor->src[j] = args[j];
  13830. }
  13831. result->nodes[i] = tensor;
  13832. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13833. }
  13834. }
  13835. }
  13836. return result;
  13837. }
  13838. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13839. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13840. GGML_PRINT("=== GRAPH ===\n");
  13841. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13842. for (int i = 0; i < cgraph->n_nodes; i++) {
  13843. struct ggml_tensor * node = cgraph->nodes[i];
  13844. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13845. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13846. i,
  13847. node->ne[0], node->ne[1], node->ne[2],
  13848. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13849. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13850. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13851. (double) node->perf_time_us / 1000.0,
  13852. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13853. }
  13854. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13855. for (int i = 0; i < cgraph->n_leafs; i++) {
  13856. struct ggml_tensor * node = cgraph->leafs[i];
  13857. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  13858. i,
  13859. node->ne[0], node->ne[1],
  13860. ggml_op_name(node->op),
  13861. ggml_get_name(node));
  13862. }
  13863. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13864. if (perf_total_per_op_us[i] == 0) {
  13865. continue;
  13866. }
  13867. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  13868. }
  13869. GGML_PRINT("========================================\n");
  13870. }
  13871. // check if node is part of the graph
  13872. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13873. if (cgraph == NULL) {
  13874. return true;
  13875. }
  13876. for (int i = 0; i < cgraph->n_nodes; i++) {
  13877. if (cgraph->nodes[i] == node) {
  13878. return true;
  13879. }
  13880. }
  13881. return false;
  13882. }
  13883. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13884. for (int i = 0; i < cgraph->n_nodes; i++) {
  13885. struct ggml_tensor * parent = cgraph->nodes[i];
  13886. if (parent->grad == node) {
  13887. return parent;
  13888. }
  13889. }
  13890. return NULL;
  13891. }
  13892. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13893. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  13894. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  13895. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  13896. gparent0 ? (void *) gparent0 : (void *) parent,
  13897. gparent0 ? "g" : "x",
  13898. gparent ? (void *) gparent : (void *) node,
  13899. gparent ? "g" : "x",
  13900. gparent ? "empty" : "vee",
  13901. gparent ? "dashed" : "solid",
  13902. label);
  13903. }
  13904. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13905. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  13906. (void *) parent, "x",
  13907. (void *) node, "x",
  13908. label);
  13909. }
  13910. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13911. char color[16];
  13912. FILE * fp = fopen(filename, "w");
  13913. GGML_ASSERT(fp);
  13914. fprintf(fp, "digraph G {\n");
  13915. fprintf(fp, " newrank = true;\n");
  13916. fprintf(fp, " rankdir = LR;\n");
  13917. for (int i = 0; i < gb->n_nodes; i++) {
  13918. struct ggml_tensor * node = gb->nodes[i];
  13919. if (ggml_graph_get_parent(gb, node) != NULL) {
  13920. continue;
  13921. }
  13922. if (node->is_param) {
  13923. snprintf(color, sizeof(color), "yellow");
  13924. } else if (node->grad) {
  13925. if (ggml_graph_find(gf, node)) {
  13926. snprintf(color, sizeof(color), "green");
  13927. } else {
  13928. snprintf(color, sizeof(color), "lightblue");
  13929. }
  13930. } else {
  13931. snprintf(color, sizeof(color), "white");
  13932. }
  13933. fprintf(fp, " \"%p\" [ "
  13934. "style = filled; fillcolor = %s; shape = record; "
  13935. "label=\"",
  13936. (void *) node, color);
  13937. if (strlen(node->name) > 0) {
  13938. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13939. } else {
  13940. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13941. }
  13942. if (node->n_dims == 2) {
  13943. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  13944. } else {
  13945. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  13946. }
  13947. if (node->grad) {
  13948. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  13949. } else {
  13950. fprintf(fp, "\"; ]\n");
  13951. }
  13952. }
  13953. for (int i = 0; i < gb->n_leafs; i++) {
  13954. struct ggml_tensor * node = gb->leafs[i];
  13955. snprintf(color, sizeof(color), "pink");
  13956. fprintf(fp, " \"%p\" [ "
  13957. "style = filled; fillcolor = %s; shape = record; "
  13958. "label=\"<x>",
  13959. (void *) node, color);
  13960. if (strlen(node->name) > 0) {
  13961. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13962. } else {
  13963. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13964. }
  13965. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13966. if (ggml_nelements(node) < 5) {
  13967. fprintf(fp, " | (");
  13968. for (int j = 0; j < ggml_nelements(node); j++) {
  13969. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13970. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  13971. }
  13972. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  13973. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  13974. }
  13975. else {
  13976. fprintf(fp, "#");
  13977. }
  13978. if (j < ggml_nelements(node) - 1) {
  13979. fprintf(fp, ", ");
  13980. }
  13981. }
  13982. fprintf(fp, ")");
  13983. }
  13984. fprintf(fp, "\"; ]\n");
  13985. }
  13986. for (int i = 0; i < gb->n_nodes; i++) {
  13987. struct ggml_tensor * node = gb->nodes[i];
  13988. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13989. if (node->src[j]) {
  13990. char label[16];
  13991. snprintf(label, sizeof(label), "src %d", j);
  13992. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  13993. }
  13994. }
  13995. }
  13996. for (int i = 0; i < gb->n_leafs; i++) {
  13997. struct ggml_tensor * node = gb->leafs[i];
  13998. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13999. if (node->src[j]) {
  14000. char label[16];
  14001. snprintf(label, sizeof(label), "src %d", j);
  14002. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14003. }
  14004. }
  14005. }
  14006. fprintf(fp, "}\n");
  14007. fclose(fp);
  14008. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14009. }
  14010. ////////////////////////////////////////////////////////////////////////////////
  14011. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14012. int i = 0;
  14013. for (int p = 0; p < np; ++p) {
  14014. const int64_t ne = ggml_nelements(ps[p]) ;
  14015. // TODO: add function to set tensor from array
  14016. for (int64_t j = 0; j < ne; ++j) {
  14017. ggml_set_f32_1d(ps[p], j, x[i++]);
  14018. }
  14019. }
  14020. }
  14021. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14022. int i = 0;
  14023. for (int p = 0; p < np; ++p) {
  14024. const int64_t ne = ggml_nelements(ps[p]) ;
  14025. // TODO: add function to get all elements at once
  14026. for (int64_t j = 0; j < ne; ++j) {
  14027. x[i++] = ggml_get_f32_1d(ps[p], j);
  14028. }
  14029. }
  14030. }
  14031. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14032. int64_t i = 0;
  14033. for (int p = 0; p < np; ++p) {
  14034. const int64_t ne = ggml_nelements(ps[p]) ;
  14035. // TODO: add function to get all elements at once
  14036. for (int64_t j = 0; j < ne; ++j) {
  14037. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14038. }
  14039. }
  14040. }
  14041. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14042. int64_t i = 0;
  14043. for (int p = 0; p < np; ++p) {
  14044. const int64_t ne = ggml_nelements(ps[p]) ;
  14045. // TODO: add function to get all elements at once
  14046. for (int64_t j = 0; j < ne; ++j) {
  14047. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14048. }
  14049. }
  14050. }
  14051. //
  14052. // ADAM
  14053. //
  14054. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14055. //
  14056. static enum ggml_opt_result ggml_opt_adam(
  14057. struct ggml_context * ctx,
  14058. struct ggml_opt_context * opt,
  14059. struct ggml_opt_params params,
  14060. struct ggml_tensor * f,
  14061. struct ggml_cgraph * gf,
  14062. struct ggml_cgraph * gb,
  14063. ggml_opt_callback callback,
  14064. void * callback_data) {
  14065. GGML_ASSERT(ggml_is_scalar(f));
  14066. // these will store the parameters we want to optimize
  14067. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14068. int np = 0;
  14069. int64_t nx = 0;
  14070. for (int i = 0; i < gf->n_nodes; ++i) {
  14071. if (gf->nodes[i]->is_param) {
  14072. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14073. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14074. ps[np++] = gf->nodes[i];
  14075. nx += ggml_nelements(gf->nodes[i]);
  14076. }
  14077. }
  14078. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14079. int iter = opt->iter;
  14080. ggml_opt_init(opt->ctx, opt, params, nx);
  14081. opt->iter = iter;
  14082. }
  14083. // constants
  14084. float sched = params.adam.sched;
  14085. const float alpha = params.adam.alpha;
  14086. const float decay = params.adam.decay * alpha;
  14087. const float beta1 = params.adam.beta1;
  14088. const float beta2 = params.adam.beta2;
  14089. const float eps = params.adam.eps;
  14090. const float gclip = params.adam.gclip;
  14091. const int decay_min_ndim = params.adam.decay_min_ndim;
  14092. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14093. const float accum_norm = 1.0f / (float) n_accum;
  14094. float * g = opt->adam.g->data; // gradients
  14095. float * m = opt->adam.m->data; // first moment
  14096. float * v = opt->adam.v->data; // second moment
  14097. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14098. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14099. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14100. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14101. bool cancel = false;
  14102. // compute the function value
  14103. float fx = 0;
  14104. ggml_set_zero(opt->adam.g);
  14105. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14106. if (callback) {
  14107. callback(callback_data, accum_step, &sched, &cancel);
  14108. if (cancel) {
  14109. return GGML_OPT_CANCEL;
  14110. }
  14111. }
  14112. // ggml_graph_reset (gf);
  14113. ggml_set_f32 (f->grad, 1.0f);
  14114. ggml_graph_compute(gb, &cplan);
  14115. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14116. fx += ggml_get_f32_1d(f, 0);
  14117. }
  14118. fx *= accum_norm;
  14119. opt->adam.fx_prev = fx;
  14120. opt->adam.fx_best = opt->adam.fx_prev;
  14121. if (pf) {
  14122. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14123. }
  14124. opt->loss_before = opt->adam.fx_prev;
  14125. opt->loss_after = opt->adam.fx_prev;
  14126. // initialize
  14127. if (opt->just_initialized) {
  14128. opt->adam.n_no_improvement = 0;
  14129. opt->just_initialized = false;
  14130. }
  14131. float * fx_best = &opt->adam.fx_best;
  14132. float * fx_prev = &opt->adam.fx_prev;
  14133. int * n_no_improvement = &opt->adam.n_no_improvement;
  14134. int iter0 = opt->iter;
  14135. // run the optimizer
  14136. for (int t = 0; t < params.adam.n_iter; ++t) {
  14137. opt->iter = iter0 + t + 1;
  14138. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14139. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14140. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14141. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14142. for (int i = 0; i < np; ++i) {
  14143. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14144. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14145. }
  14146. const int64_t t_start_wall = ggml_time_us();
  14147. const int64_t t_start_cpu = ggml_cycles();
  14148. UNUSED(t_start_wall);
  14149. UNUSED(t_start_cpu);
  14150. {
  14151. float gnorm = 1.0f;
  14152. if (gclip > 0.0f) {
  14153. // gradient clipping
  14154. ggml_float sum = 0.0;
  14155. for (int64_t i = 0; i < nx; ++i) {
  14156. sum += (ggml_float)(g[i]*g[i]);
  14157. }
  14158. ggml_float norm = sqrt(sum);
  14159. if (norm > (ggml_float) gclip) {
  14160. gnorm = (float) ((ggml_float) gclip / norm);
  14161. }
  14162. }
  14163. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14164. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14165. int64_t i = 0;
  14166. for (int p = 0; p < np; ++p) {
  14167. const int64_t ne = ggml_nelements(ps[p]);
  14168. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14169. for (int64_t j = 0; j < ne; ++j) {
  14170. float x = ggml_get_f32_1d(ps[p], j);
  14171. float g_ = g[i]*gnorm;
  14172. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14173. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14174. float mh = m[i]*beta1h;
  14175. float vh = v[i]*beta2h;
  14176. vh = sqrtf(vh) + eps;
  14177. x = x*(1.0f - p_decay) - mh/vh;
  14178. ggml_set_f32_1d(ps[p], j, x);
  14179. ++i;
  14180. }
  14181. }
  14182. }
  14183. fx = 0;
  14184. ggml_set_zero(opt->adam.g);
  14185. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14186. if (callback) {
  14187. callback(callback_data, accum_step, &sched, &cancel);
  14188. if (cancel) {
  14189. return GGML_OPT_CANCEL;;
  14190. }
  14191. }
  14192. // ggml_graph_reset (gf);
  14193. ggml_set_f32 (f->grad, 1.0f);
  14194. ggml_graph_compute(gb, &cplan);
  14195. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14196. fx += ggml_get_f32_1d(f, 0);
  14197. }
  14198. fx *= accum_norm;
  14199. opt->loss_after = fx;
  14200. // check convergence
  14201. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14202. GGML_PRINT_DEBUG("converged\n");
  14203. return GGML_OPT_OK;
  14204. }
  14205. // delta-based convergence test
  14206. if (pf != NULL) {
  14207. // need at least params.past iterations to start checking for convergence
  14208. if (params.past <= iter0 + t) {
  14209. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14210. if (fabsf(rate) < params.delta) {
  14211. return GGML_OPT_OK;
  14212. }
  14213. }
  14214. pf[(iter0 + t)%params.past] = fx;
  14215. }
  14216. // check for improvement
  14217. if (params.max_no_improvement > 0) {
  14218. if (fx_best[0] > fx) {
  14219. fx_best[0] = fx;
  14220. n_no_improvement[0] = 0;
  14221. } else {
  14222. ++n_no_improvement[0];
  14223. if (n_no_improvement[0] >= params.max_no_improvement) {
  14224. return GGML_OPT_OK;
  14225. }
  14226. }
  14227. }
  14228. fx_prev[0] = fx;
  14229. {
  14230. const int64_t t_end_cpu = ggml_cycles();
  14231. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14232. UNUSED(t_end_cpu);
  14233. const int64_t t_end_wall = ggml_time_us();
  14234. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14235. UNUSED(t_end_wall);
  14236. }
  14237. }
  14238. return GGML_OPT_DID_NOT_CONVERGE;
  14239. }
  14240. //
  14241. // L-BFGS
  14242. //
  14243. // the L-BFGS implementation below is based on the following implementation:
  14244. //
  14245. // https://github.com/chokkan/liblbfgs
  14246. //
  14247. struct ggml_lbfgs_iteration_data {
  14248. float alpha;
  14249. float ys;
  14250. float * s;
  14251. float * y;
  14252. };
  14253. static enum ggml_opt_result linesearch_backtracking(
  14254. const struct ggml_opt_params * params,
  14255. int nx,
  14256. float * x,
  14257. float * fx,
  14258. float * g,
  14259. float * d,
  14260. float * step,
  14261. const float * xp,
  14262. struct ggml_tensor * f,
  14263. struct ggml_cgraph * gb,
  14264. struct ggml_cplan * cplan,
  14265. const int np,
  14266. struct ggml_tensor * ps[],
  14267. bool * cancel,
  14268. ggml_opt_callback callback,
  14269. void * callback_data) {
  14270. int count = 0;
  14271. float width = 0.0f;
  14272. float dg = 0.0f;
  14273. float finit = 0.0f;
  14274. float dginit = 0.0f;
  14275. float dgtest = 0.0f;
  14276. const float dec = 0.5f;
  14277. const float inc = 2.1f;
  14278. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14279. const float accum_norm = 1.0f / (float) n_accum;
  14280. if (*step <= 0.f) {
  14281. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14282. }
  14283. // compute the initial gradient in the search direction
  14284. ggml_vec_dot_f32(nx, &dginit, g, d);
  14285. // make sure that d points to a descent direction
  14286. if (0 < dginit) {
  14287. return GGML_LINESEARCH_FAIL;
  14288. }
  14289. // initialize local variables
  14290. finit = *fx;
  14291. dgtest = params->lbfgs.ftol*dginit;
  14292. while (true) {
  14293. ggml_vec_cpy_f32(nx, x, xp);
  14294. ggml_vec_mad_f32(nx, x, d, *step);
  14295. // evaluate the function and gradient values
  14296. {
  14297. ggml_opt_set_params(np, ps, x);
  14298. *fx = 0;
  14299. memset(g, 0, sizeof(float)*nx);
  14300. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14301. if (callback) {
  14302. // LBFG-S does not support learning rate -> ignore learning schedule
  14303. float sched = 0;
  14304. callback(callback_data, accum_step, &sched, cancel);
  14305. if (*cancel) {
  14306. return GGML_OPT_CANCEL;
  14307. }
  14308. }
  14309. // ggml_graph_reset (gf);
  14310. ggml_set_f32 (f->grad, 1.0f);
  14311. ggml_graph_compute(gb, cplan);
  14312. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14313. *fx += ggml_get_f32_1d(f, 0);
  14314. }
  14315. *fx *= accum_norm;
  14316. }
  14317. ++count;
  14318. if (*fx > finit + (*step)*dgtest) {
  14319. width = dec;
  14320. } else {
  14321. // Armijo condition is satisfied
  14322. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14323. return count;
  14324. }
  14325. ggml_vec_dot_f32(nx, &dg, g, d);
  14326. // check the Wolfe condition
  14327. if (dg < params->lbfgs.wolfe * dginit) {
  14328. width = inc;
  14329. } else {
  14330. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14331. // regular Wolfe conditions
  14332. return count;
  14333. }
  14334. if(dg > -params->lbfgs.wolfe*dginit) {
  14335. width = dec;
  14336. } else {
  14337. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14338. return count;
  14339. }
  14340. }
  14341. }
  14342. if (*step < params->lbfgs.min_step) {
  14343. return GGML_LINESEARCH_MINIMUM_STEP;
  14344. }
  14345. if (*step > params->lbfgs.max_step) {
  14346. return GGML_LINESEARCH_MAXIMUM_STEP;
  14347. }
  14348. if (params->lbfgs.max_linesearch <= count) {
  14349. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14350. }
  14351. (*step) *= width;
  14352. }
  14353. GGML_UNREACHABLE();
  14354. }
  14355. static enum ggml_opt_result ggml_opt_lbfgs(
  14356. struct ggml_context * ctx,
  14357. struct ggml_opt_context * opt,
  14358. struct ggml_opt_params params,
  14359. struct ggml_tensor * f,
  14360. struct ggml_cgraph * gf,
  14361. struct ggml_cgraph * gb,
  14362. ggml_opt_callback callback,
  14363. void * callback_data) {
  14364. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14365. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14366. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14367. return GGML_OPT_INVALID_WOLFE;
  14368. }
  14369. }
  14370. const int m = params.lbfgs.m;
  14371. // these will store the parameters we want to optimize
  14372. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14373. int np = 0;
  14374. int nx = 0;
  14375. for (int i = 0; i < gf->n_nodes; ++i) {
  14376. if (gf->nodes[i]->is_param) {
  14377. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14378. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14379. ps[np++] = gf->nodes[i];
  14380. nx += ggml_nelements(gf->nodes[i]);
  14381. }
  14382. }
  14383. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14384. int iter = opt->iter;
  14385. ggml_opt_init(ctx, opt, params, nx);
  14386. opt->iter = iter;
  14387. }
  14388. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14389. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14390. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14391. float * x = opt->lbfgs.x->data; // current parameters
  14392. float * xp = opt->lbfgs.xp->data; // previous parameters
  14393. float * g = opt->lbfgs.g->data; // current gradient
  14394. float * gp = opt->lbfgs.gp->data; // previous gradient
  14395. float * d = opt->lbfgs.d->data; // search direction
  14396. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14397. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14398. const float accum_norm = 1.0f / (float) n_accum;
  14399. float fx = 0.0f; // cost function value
  14400. float xnorm = 0.0f; // ||x||
  14401. float gnorm = 0.0f; // ||g||
  14402. // initialize x from the graph nodes
  14403. ggml_opt_get_params(np, ps, x);
  14404. // the L-BFGS memory
  14405. float * lm_alpha = opt->lbfgs.lmal->data;
  14406. float * lm_ys = opt->lbfgs.lmys->data;
  14407. float * lm_s = opt->lbfgs.lms->data;
  14408. float * lm_y = opt->lbfgs.lmy->data;
  14409. bool cancel = false;
  14410. // evaluate the function value and its gradient
  14411. {
  14412. ggml_opt_set_params(np, ps, x);
  14413. fx = 0;
  14414. memset(g, 0, sizeof(float)*nx);
  14415. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14416. if (callback) {
  14417. // LBFG-S does not support learning rate -> ignore learning schedule
  14418. float sched = 0;
  14419. callback(callback_data, accum_step, &sched, &cancel);
  14420. if (cancel) {
  14421. return GGML_OPT_CANCEL;
  14422. }
  14423. }
  14424. // ggml_graph_reset (gf);
  14425. ggml_set_f32 (f->grad, 1.0f);
  14426. ggml_graph_compute(gb, &cplan);
  14427. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14428. fx += ggml_get_f32_1d(f, 0);
  14429. }
  14430. fx *= accum_norm;
  14431. opt->loss_before = fx;
  14432. opt->loss_after = fx;
  14433. }
  14434. // search direction = -gradient
  14435. ggml_vec_neg_f32(nx, d, g);
  14436. // ||x||, ||g||
  14437. ggml_vec_norm_f32(nx, &xnorm, x);
  14438. ggml_vec_norm_f32(nx, &gnorm, g);
  14439. if (xnorm < 1.0f) {
  14440. xnorm = 1.0f;
  14441. }
  14442. // already optimized
  14443. if (gnorm/xnorm <= params.lbfgs.eps) {
  14444. return GGML_OPT_OK;
  14445. }
  14446. if (opt->just_initialized) {
  14447. if (pf) {
  14448. pf[0] = fx;
  14449. }
  14450. opt->lbfgs.fx_best = fx;
  14451. // initial step
  14452. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14453. opt->lbfgs.j = 0;
  14454. opt->lbfgs.k = 1;
  14455. opt->lbfgs.end = 0;
  14456. opt->lbfgs.n_no_improvement = 0;
  14457. opt->just_initialized = false;
  14458. }
  14459. float * fx_best = &opt->lbfgs.fx_best;
  14460. float * step = &opt->lbfgs.step;
  14461. int * j = &opt->lbfgs.j;
  14462. int * k = &opt->lbfgs.k;
  14463. int * end = &opt->lbfgs.end;
  14464. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14465. int ls = 0;
  14466. int bound = 0;
  14467. float ys = 0.0f;
  14468. float yy = 0.0f;
  14469. float beta = 0.0f;
  14470. int it = 0;
  14471. while (true) {
  14472. // store the current position and gradient vectors
  14473. ggml_vec_cpy_f32(nx, xp, x);
  14474. ggml_vec_cpy_f32(nx, gp, g);
  14475. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14476. // to determine if the optimization should be cancelled
  14477. // this is a simple change, but not doing this atm, since I don't have a nice
  14478. // way to test and don't want to break something with so many changes lined up
  14479. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14480. if (cancel) {
  14481. return GGML_OPT_CANCEL;
  14482. }
  14483. if (ls < 0) {
  14484. // linesearch failed - go back to the previous point and return
  14485. ggml_vec_cpy_f32(nx, x, xp);
  14486. ggml_vec_cpy_f32(nx, g, gp);
  14487. return ls;
  14488. }
  14489. opt->loss_after = fx;
  14490. ggml_vec_norm_f32(nx, &xnorm, x);
  14491. ggml_vec_norm_f32(nx, &gnorm, g);
  14492. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14493. if (xnorm < 1.0f) {
  14494. xnorm = 1.0f;
  14495. }
  14496. if (gnorm/xnorm <= params.lbfgs.eps) {
  14497. // converged
  14498. return GGML_OPT_OK;
  14499. }
  14500. // delta-based convergence test
  14501. if (pf != NULL) {
  14502. // need at least params.past iterations to start checking for convergence
  14503. if (params.past <= k[0]) {
  14504. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14505. if (fabsf(rate) < params.delta) {
  14506. return GGML_OPT_OK;
  14507. }
  14508. }
  14509. pf[k[0]%params.past] = fx;
  14510. }
  14511. // check for improvement
  14512. if (params.max_no_improvement > 0) {
  14513. if (fx < fx_best[0]) {
  14514. fx_best[0] = fx;
  14515. n_no_improvement[0] = 0;
  14516. } else {
  14517. n_no_improvement[0]++;
  14518. if (n_no_improvement[0] >= params.max_no_improvement) {
  14519. return GGML_OPT_OK;
  14520. }
  14521. }
  14522. }
  14523. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14524. // reached the maximum number of iterations
  14525. return GGML_OPT_DID_NOT_CONVERGE;
  14526. }
  14527. // update vectors s and y:
  14528. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14529. // y_{k+1} = g_{k+1} - g_{k}.
  14530. //
  14531. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14532. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14533. // compute scalars ys and yy:
  14534. // ys = y^t \cdot s -> 1 / \rho.
  14535. // yy = y^t \cdot y.
  14536. //
  14537. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14538. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14539. lm_ys[end[0]] = ys;
  14540. // find new search direction
  14541. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14542. bound = (m <= k[0]) ? m : k[0];
  14543. k[0]++;
  14544. it++;
  14545. end[0] = (end[0] + 1)%m;
  14546. // initialize search direction with -g
  14547. ggml_vec_neg_f32(nx, d, g);
  14548. j[0] = end[0];
  14549. for (int i = 0; i < bound; ++i) {
  14550. j[0] = (j[0] + m - 1) % m;
  14551. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14552. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14553. lm_alpha[j[0]] /= lm_ys[j[0]];
  14554. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14555. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14556. }
  14557. ggml_vec_scale_f32(nx, d, ys/yy);
  14558. for (int i = 0; i < bound; ++i) {
  14559. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14560. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14561. beta /= lm_ys[j[0]];
  14562. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14563. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14564. j[0] = (j[0] + 1)%m;
  14565. }
  14566. step[0] = 1.0;
  14567. }
  14568. GGML_UNREACHABLE();
  14569. }
  14570. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14571. struct ggml_opt_params result;
  14572. switch (type) {
  14573. case GGML_OPT_ADAM:
  14574. {
  14575. result = (struct ggml_opt_params) {
  14576. .type = GGML_OPT_ADAM,
  14577. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14578. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14579. .past = 0,
  14580. .delta = 1e-5f,
  14581. .max_no_improvement = 100,
  14582. .print_forward_graph = true,
  14583. .print_backward_graph = true,
  14584. .n_gradient_accumulation = 1,
  14585. .adam = {
  14586. .n_iter = 10000,
  14587. .sched = 1.000f,
  14588. .decay = 0.0f,
  14589. .decay_min_ndim = 2,
  14590. .alpha = 0.001f,
  14591. .beta1 = 0.9f,
  14592. .beta2 = 0.999f,
  14593. .eps = 1e-8f,
  14594. .eps_f = 1e-5f,
  14595. .eps_g = 1e-3f,
  14596. .gclip = 0.0f,
  14597. },
  14598. };
  14599. } break;
  14600. case GGML_OPT_LBFGS:
  14601. {
  14602. result = (struct ggml_opt_params) {
  14603. .type = GGML_OPT_LBFGS,
  14604. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14605. .n_threads = 1,
  14606. .past = 0,
  14607. .delta = 1e-5f,
  14608. .max_no_improvement = 0,
  14609. .print_forward_graph = true,
  14610. .print_backward_graph = true,
  14611. .n_gradient_accumulation = 1,
  14612. .lbfgs = {
  14613. .m = 6,
  14614. .n_iter = 100,
  14615. .max_linesearch = 20,
  14616. .eps = 1e-5f,
  14617. .ftol = 1e-4f,
  14618. .wolfe = 0.9f,
  14619. .min_step = 1e-20f,
  14620. .max_step = 1e+20f,
  14621. .linesearch = GGML_LINESEARCH_DEFAULT,
  14622. },
  14623. };
  14624. } break;
  14625. }
  14626. return result;
  14627. }
  14628. GGML_API void ggml_opt_init(
  14629. struct ggml_context * ctx,
  14630. struct ggml_opt_context * opt,
  14631. struct ggml_opt_params params,
  14632. int64_t nx) {
  14633. opt->ctx = ctx;
  14634. opt->params = params;
  14635. opt->iter = 0;
  14636. opt->nx = nx;
  14637. opt->just_initialized = true;
  14638. if (opt->ctx == NULL) {
  14639. struct ggml_init_params ctx_opt_params;
  14640. if (opt->params.type == GGML_OPT_ADAM) {
  14641. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14642. if (opt->params.past > 0) {
  14643. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14644. }
  14645. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14646. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14647. if (opt->params.past > 0) {
  14648. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14649. }
  14650. }
  14651. ctx_opt_params.mem_buffer = NULL;
  14652. ctx_opt_params.no_alloc = false;
  14653. opt->ctx = ggml_init(ctx_opt_params);
  14654. }
  14655. switch (opt->params.type) {
  14656. case GGML_OPT_ADAM:
  14657. {
  14658. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14659. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14660. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14661. opt->adam.pf = params.past > 0
  14662. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14663. : NULL;
  14664. ggml_set_zero(opt->adam.m);
  14665. ggml_set_zero(opt->adam.v);
  14666. if (opt->adam.pf) {
  14667. ggml_set_zero(opt->adam.pf);
  14668. }
  14669. } break;
  14670. case GGML_OPT_LBFGS:
  14671. {
  14672. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14673. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14674. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14675. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14676. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14677. opt->lbfgs.pf = params.past > 0
  14678. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14679. : NULL;
  14680. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14681. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14682. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14683. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14684. ggml_set_zero(opt->lbfgs.x);
  14685. ggml_set_zero(opt->lbfgs.xp);
  14686. ggml_set_zero(opt->lbfgs.g);
  14687. ggml_set_zero(opt->lbfgs.gp);
  14688. ggml_set_zero(opt->lbfgs.d);
  14689. if (opt->lbfgs.pf) {
  14690. ggml_set_zero(opt->lbfgs.pf);
  14691. }
  14692. ggml_set_zero(opt->lbfgs.lmal);
  14693. ggml_set_zero(opt->lbfgs.lmys);
  14694. ggml_set_zero(opt->lbfgs.lms);
  14695. ggml_set_zero(opt->lbfgs.lmy);
  14696. } break;
  14697. }
  14698. }
  14699. enum ggml_opt_result ggml_opt(
  14700. struct ggml_context * ctx,
  14701. struct ggml_opt_params params,
  14702. struct ggml_tensor * f) {
  14703. bool free_ctx = false;
  14704. if (ctx == NULL) {
  14705. struct ggml_init_params params_ctx = {
  14706. .mem_size = 16*1024*1024,
  14707. .mem_buffer = NULL,
  14708. .no_alloc = false,
  14709. };
  14710. ctx = ggml_init(params_ctx);
  14711. if (ctx == NULL) {
  14712. return GGML_OPT_NO_CONTEXT;
  14713. }
  14714. free_ctx = true;
  14715. }
  14716. enum ggml_opt_result result = GGML_OPT_OK;
  14717. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14718. ggml_opt_init(ctx, opt, params, 0);
  14719. result = ggml_opt_resume(ctx, opt, f);
  14720. if (free_ctx) {
  14721. ggml_free(ctx);
  14722. }
  14723. return result;
  14724. }
  14725. enum ggml_opt_result ggml_opt_resume(
  14726. struct ggml_context * ctx,
  14727. struct ggml_opt_context * opt,
  14728. struct ggml_tensor * f) {
  14729. // build forward + backward compute graphs
  14730. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  14731. ggml_build_forward_expand(gf, f);
  14732. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  14733. ggml_build_backward_expand(ctx, gf, gb, true);
  14734. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  14735. }
  14736. enum ggml_opt_result ggml_opt_resume_g(
  14737. struct ggml_context * ctx,
  14738. struct ggml_opt_context * opt,
  14739. struct ggml_tensor * f,
  14740. struct ggml_cgraph * gf,
  14741. struct ggml_cgraph * gb,
  14742. ggml_opt_callback callback,
  14743. void * callback_data) {
  14744. // build forward + backward compute graphs
  14745. enum ggml_opt_result result = GGML_OPT_OK;
  14746. switch (opt->params.type) {
  14747. case GGML_OPT_ADAM:
  14748. {
  14749. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14750. } break;
  14751. case GGML_OPT_LBFGS:
  14752. {
  14753. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14754. } break;
  14755. }
  14756. if (opt->params.print_forward_graph) {
  14757. ggml_graph_print (gf);
  14758. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14759. }
  14760. if (opt->params.print_backward_graph) {
  14761. ggml_graph_print (gb);
  14762. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14763. }
  14764. return result;
  14765. }
  14766. ////////////////////////////////////////////////////////////////////////////////
  14767. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14768. assert(k % QK4_0 == 0);
  14769. const int nb = k / QK4_0;
  14770. for (int b = 0; b < n; b += k) {
  14771. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14772. quantize_row_q4_0_reference(src + b, y, k);
  14773. for (int i = 0; i < nb; i++) {
  14774. for (int j = 0; j < QK4_0; j += 2) {
  14775. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14776. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14777. hist[vi0]++;
  14778. hist[vi1]++;
  14779. }
  14780. }
  14781. }
  14782. return (n/QK4_0*sizeof(block_q4_0));
  14783. }
  14784. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14785. assert(k % QK4_1 == 0);
  14786. const int nb = k / QK4_1;
  14787. for (int b = 0; b < n; b += k) {
  14788. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14789. quantize_row_q4_1_reference(src + b, y, k);
  14790. for (int i = 0; i < nb; i++) {
  14791. for (int j = 0; j < QK4_1; j += 2) {
  14792. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14793. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14794. hist[vi0]++;
  14795. hist[vi1]++;
  14796. }
  14797. }
  14798. }
  14799. return (n/QK4_1*sizeof(block_q4_1));
  14800. }
  14801. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14802. assert(k % QK5_0 == 0);
  14803. const int nb = k / QK5_0;
  14804. for (int b = 0; b < n; b += k) {
  14805. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14806. quantize_row_q5_0_reference(src + b, y, k);
  14807. for (int i = 0; i < nb; i++) {
  14808. uint32_t qh;
  14809. memcpy(&qh, &y[i].qh, sizeof(qh));
  14810. for (int j = 0; j < QK5_0; j += 2) {
  14811. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14812. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14813. // cast to 16 bins
  14814. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14815. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14816. hist[vi0]++;
  14817. hist[vi1]++;
  14818. }
  14819. }
  14820. }
  14821. return (n/QK5_0*sizeof(block_q5_0));
  14822. }
  14823. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14824. assert(k % QK5_1 == 0);
  14825. const int nb = k / QK5_1;
  14826. for (int b = 0; b < n; b += k) {
  14827. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14828. quantize_row_q5_1_reference(src + b, y, k);
  14829. for (int i = 0; i < nb; i++) {
  14830. uint32_t qh;
  14831. memcpy(&qh, &y[i].qh, sizeof(qh));
  14832. for (int j = 0; j < QK5_1; j += 2) {
  14833. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14834. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14835. // cast to 16 bins
  14836. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14837. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14838. hist[vi0]++;
  14839. hist[vi1]++;
  14840. }
  14841. }
  14842. }
  14843. return (n/QK5_1*sizeof(block_q5_1));
  14844. }
  14845. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14846. assert(k % QK8_0 == 0);
  14847. const int nb = k / QK8_0;
  14848. for (int b = 0; b < n; b += k) {
  14849. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14850. quantize_row_q8_0_reference(src + b, y, k);
  14851. for (int i = 0; i < nb; i++) {
  14852. for (int j = 0; j < QK8_0; ++j) {
  14853. const int8_t vi = y[i].qs[j];
  14854. hist[vi/16 + 8]++;
  14855. }
  14856. }
  14857. }
  14858. return (n/QK8_0*sizeof(block_q8_0));
  14859. }
  14860. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14861. size_t result = 0;
  14862. switch (type) {
  14863. case GGML_TYPE_Q4_0:
  14864. {
  14865. GGML_ASSERT(start % QK4_0 == 0);
  14866. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14867. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14868. } break;
  14869. case GGML_TYPE_Q4_1:
  14870. {
  14871. GGML_ASSERT(start % QK4_1 == 0);
  14872. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14873. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14874. } break;
  14875. case GGML_TYPE_Q5_0:
  14876. {
  14877. GGML_ASSERT(start % QK5_0 == 0);
  14878. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14879. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14880. } break;
  14881. case GGML_TYPE_Q5_1:
  14882. {
  14883. GGML_ASSERT(start % QK5_1 == 0);
  14884. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14885. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14886. } break;
  14887. case GGML_TYPE_Q8_0:
  14888. {
  14889. GGML_ASSERT(start % QK8_0 == 0);
  14890. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14891. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14892. } break;
  14893. case GGML_TYPE_Q2_K:
  14894. {
  14895. GGML_ASSERT(start % QK_K == 0);
  14896. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14897. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14898. } break;
  14899. case GGML_TYPE_Q3_K:
  14900. {
  14901. GGML_ASSERT(start % QK_K == 0);
  14902. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14903. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14904. } break;
  14905. case GGML_TYPE_Q4_K:
  14906. {
  14907. GGML_ASSERT(start % QK_K == 0);
  14908. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14909. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14910. } break;
  14911. case GGML_TYPE_Q5_K:
  14912. {
  14913. GGML_ASSERT(start % QK_K == 0);
  14914. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14915. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14916. } break;
  14917. case GGML_TYPE_Q6_K:
  14918. {
  14919. GGML_ASSERT(start % QK_K == 0);
  14920. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14921. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14922. } break;
  14923. case GGML_TYPE_F16:
  14924. {
  14925. int elemsize = sizeof(ggml_fp16_t);
  14926. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14927. result = n * elemsize;
  14928. } break;
  14929. case GGML_TYPE_F32:
  14930. {
  14931. int elemsize = sizeof(float);
  14932. result = n * elemsize;
  14933. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14934. } break;
  14935. default:
  14936. assert(false);
  14937. }
  14938. return result;
  14939. }
  14940. ////////////////////////////////////////////////////////////////////////////////
  14941. struct gguf_str {
  14942. uint64_t n; // GGUFv2
  14943. char * data;
  14944. };
  14945. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  14946. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  14947. [GGUF_TYPE_INT8] = sizeof(int8_t),
  14948. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  14949. [GGUF_TYPE_INT16] = sizeof(int16_t),
  14950. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  14951. [GGUF_TYPE_INT32] = sizeof(int32_t),
  14952. [GGUF_TYPE_FLOAT32] = sizeof(float),
  14953. [GGUF_TYPE_BOOL] = sizeof(bool),
  14954. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  14955. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  14956. [GGUF_TYPE_INT64] = sizeof(int64_t),
  14957. [GGUF_TYPE_FLOAT64] = sizeof(double),
  14958. [GGUF_TYPE_ARRAY] = 0, // undefined
  14959. };
  14960. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14961. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  14962. [GGUF_TYPE_UINT8] = "u8",
  14963. [GGUF_TYPE_INT8] = "i8",
  14964. [GGUF_TYPE_UINT16] = "u16",
  14965. [GGUF_TYPE_INT16] = "i16",
  14966. [GGUF_TYPE_UINT32] = "u32",
  14967. [GGUF_TYPE_INT32] = "i32",
  14968. [GGUF_TYPE_FLOAT32] = "f32",
  14969. [GGUF_TYPE_BOOL] = "bool",
  14970. [GGUF_TYPE_STRING] = "str",
  14971. [GGUF_TYPE_ARRAY] = "arr",
  14972. [GGUF_TYPE_UINT64] = "u64",
  14973. [GGUF_TYPE_INT64] = "i64",
  14974. [GGUF_TYPE_FLOAT64] = "f64",
  14975. };
  14976. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14977. union gguf_value {
  14978. uint8_t uint8;
  14979. int8_t int8;
  14980. uint16_t uint16;
  14981. int16_t int16;
  14982. uint32_t uint32;
  14983. int32_t int32;
  14984. float float32;
  14985. uint64_t uint64;
  14986. int64_t int64;
  14987. double float64;
  14988. bool bool_;
  14989. struct gguf_str str;
  14990. struct {
  14991. enum gguf_type type;
  14992. uint64_t n; // GGUFv2
  14993. void * data;
  14994. } arr;
  14995. };
  14996. struct gguf_kv {
  14997. struct gguf_str key;
  14998. enum gguf_type type;
  14999. union gguf_value value;
  15000. };
  15001. struct gguf_header {
  15002. char magic[4];
  15003. uint32_t version;
  15004. uint64_t n_tensors; // GGUFv2
  15005. uint64_t n_kv; // GGUFv2
  15006. };
  15007. struct gguf_tensor_info {
  15008. struct gguf_str name;
  15009. uint32_t n_dims;
  15010. uint64_t ne[GGML_MAX_DIMS];
  15011. enum ggml_type type;
  15012. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15013. // for writing API
  15014. const void * data;
  15015. size_t size;
  15016. };
  15017. struct gguf_context {
  15018. struct gguf_header header;
  15019. struct gguf_kv * kv;
  15020. struct gguf_tensor_info * infos;
  15021. size_t alignment;
  15022. size_t offset; // offset of `data` from beginning of file
  15023. size_t size; // size of `data` in bytes
  15024. //uint8_t * padding;
  15025. void * data;
  15026. };
  15027. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15028. const size_t n = fread(dst, 1, size, file);
  15029. *offset += n;
  15030. return n == size;
  15031. }
  15032. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15033. p->n = 0;
  15034. p->data = NULL;
  15035. bool ok = true;
  15036. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15037. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15038. return ok;
  15039. }
  15040. struct gguf_context * gguf_init_empty(void) {
  15041. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15042. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15043. ctx->header.version = GGUF_VERSION;
  15044. ctx->header.n_tensors = 0;
  15045. ctx->header.n_kv = 0;
  15046. ctx->kv = NULL;
  15047. ctx->infos = NULL;
  15048. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15049. ctx->offset = 0;
  15050. ctx->size = 0;
  15051. ctx->data = NULL;
  15052. return ctx;
  15053. }
  15054. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15055. FILE * file = fopen(fname, "rb");
  15056. if (!file) {
  15057. return NULL;
  15058. }
  15059. // offset from start of file
  15060. size_t offset = 0;
  15061. char magic[4];
  15062. // check the magic before making allocations
  15063. {
  15064. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15065. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15066. if (magic[i] != GGUF_MAGIC[i]) {
  15067. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15068. fclose(file);
  15069. return NULL;
  15070. }
  15071. }
  15072. }
  15073. bool ok = true;
  15074. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15075. // read the header
  15076. {
  15077. strncpy(ctx->header.magic, magic, 4);
  15078. ctx->kv = NULL;
  15079. ctx->infos = NULL;
  15080. ctx->data = NULL;
  15081. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15082. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15083. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15084. if (ctx->header.version == 1) {
  15085. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15086. fclose(file);
  15087. gguf_free(ctx);
  15088. return NULL;
  15089. }
  15090. if (!ok) {
  15091. fprintf(stderr, "%s: failed to read header\n", __func__);
  15092. fclose(file);
  15093. gguf_free(ctx);
  15094. return NULL;
  15095. }
  15096. }
  15097. // read the kv pairs
  15098. {
  15099. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15100. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15101. struct gguf_kv * kv = &ctx->kv[i];
  15102. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15103. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15104. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15105. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15106. switch (kv->type) {
  15107. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15108. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15109. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15110. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15111. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15112. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15113. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15114. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15115. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15116. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15117. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15118. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15119. case GGUF_TYPE_ARRAY:
  15120. {
  15121. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15122. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15123. switch (kv->value.arr.type) {
  15124. case GGUF_TYPE_UINT8:
  15125. case GGUF_TYPE_INT8:
  15126. case GGUF_TYPE_UINT16:
  15127. case GGUF_TYPE_INT16:
  15128. case GGUF_TYPE_UINT32:
  15129. case GGUF_TYPE_INT32:
  15130. case GGUF_TYPE_FLOAT32:
  15131. case GGUF_TYPE_UINT64:
  15132. case GGUF_TYPE_INT64:
  15133. case GGUF_TYPE_FLOAT64:
  15134. case GGUF_TYPE_BOOL:
  15135. {
  15136. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15137. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15138. } break;
  15139. case GGUF_TYPE_STRING:
  15140. {
  15141. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15142. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15143. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15144. }
  15145. } break;
  15146. case GGUF_TYPE_ARRAY:
  15147. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15148. }
  15149. } break;
  15150. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15151. }
  15152. if (!ok) {
  15153. break;
  15154. }
  15155. }
  15156. if (!ok) {
  15157. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15158. fclose(file);
  15159. gguf_free(ctx);
  15160. return NULL;
  15161. }
  15162. }
  15163. // read the tensor infos
  15164. {
  15165. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15166. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15167. struct gguf_tensor_info * info = &ctx->infos[i];
  15168. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15169. info->ne[j] = 1;
  15170. }
  15171. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15172. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15173. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15174. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15175. }
  15176. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15177. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15178. if (!ok) {
  15179. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15180. fclose(file);
  15181. gguf_free(ctx);
  15182. return NULL;
  15183. }
  15184. }
  15185. }
  15186. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15187. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15188. if (alignment_idx != -1) {
  15189. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15190. }
  15191. // we require the data section to be aligned, so take into account any padding
  15192. {
  15193. const size_t offset_pad = offset % ctx->alignment;
  15194. if (offset_pad != 0) {
  15195. offset += ctx->alignment - offset_pad;
  15196. fseek(file, offset, SEEK_SET);
  15197. }
  15198. }
  15199. // store the current file offset - this is where the data section starts
  15200. ctx->offset = offset;
  15201. // compute the total size of the data section, taking into account the alignment
  15202. {
  15203. ctx->size = 0;
  15204. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15205. struct gguf_tensor_info * info = &ctx->infos[i];
  15206. const int64_t ne =
  15207. (int64_t) info->ne[0] *
  15208. (int64_t) info->ne[1] *
  15209. (int64_t) info->ne[2] *
  15210. (int64_t) info->ne[3];
  15211. if (ne % ggml_blck_size(info->type) != 0) {
  15212. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15213. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15214. fclose(file);
  15215. gguf_free(ctx);
  15216. return NULL;
  15217. }
  15218. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15219. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15220. }
  15221. }
  15222. // load the tensor data only if requested
  15223. if (params.ctx != NULL) {
  15224. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15225. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15226. // the ggml_tensor structs to the appropriate locations in the binary blob
  15227. // compute the exact size needed for the new ggml_context
  15228. const size_t mem_size =
  15229. params.no_alloc ?
  15230. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15231. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15232. struct ggml_init_params pdata = {
  15233. .mem_size = mem_size,
  15234. .mem_buffer = NULL,
  15235. .no_alloc = params.no_alloc,
  15236. };
  15237. *params.ctx = ggml_init(pdata);
  15238. struct ggml_context * ctx_data = *params.ctx;
  15239. struct ggml_tensor * data = NULL;
  15240. if (!params.no_alloc) {
  15241. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15242. ok = ok && data != NULL;
  15243. // read the binary blob with the tensor data
  15244. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15245. if (!ok) {
  15246. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15247. fclose(file);
  15248. ggml_free(ctx_data);
  15249. gguf_free(ctx);
  15250. return NULL;
  15251. }
  15252. ctx->data = data->data;
  15253. }
  15254. ggml_set_no_alloc(ctx_data, true);
  15255. // create the tensors
  15256. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15257. const int64_t ne[GGML_MAX_DIMS] = {
  15258. ctx->infos[i].ne[0],
  15259. ctx->infos[i].ne[1],
  15260. ctx->infos[i].ne[2],
  15261. ctx->infos[i].ne[3],
  15262. };
  15263. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15264. ok = ok && cur != NULL;
  15265. ggml_set_name(cur, ctx->infos[i].name.data);
  15266. if (!ok) {
  15267. break;
  15268. }
  15269. // point the data member to the appropriate location in the binary blob using the tensor infos
  15270. if (!params.no_alloc) {
  15271. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15272. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15273. }
  15274. }
  15275. if (!ok) {
  15276. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15277. fclose(file);
  15278. ggml_free(ctx_data);
  15279. gguf_free(ctx);
  15280. return NULL;
  15281. }
  15282. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15283. }
  15284. fclose(file);
  15285. return ctx;
  15286. }
  15287. void gguf_free(struct gguf_context * ctx) {
  15288. if (ctx == NULL) {
  15289. return;
  15290. }
  15291. if (ctx->kv) {
  15292. // free string memory - not great..
  15293. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15294. struct gguf_kv * kv = &ctx->kv[i];
  15295. if (kv->key.data) {
  15296. free(kv->key.data);
  15297. }
  15298. if (kv->type == GGUF_TYPE_STRING) {
  15299. if (kv->value.str.data) {
  15300. free(kv->value.str.data);
  15301. }
  15302. }
  15303. if (kv->type == GGUF_TYPE_ARRAY) {
  15304. if (kv->value.arr.data) {
  15305. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15306. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15307. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15308. if (str->data) {
  15309. free(str->data);
  15310. }
  15311. }
  15312. }
  15313. free(kv->value.arr.data);
  15314. }
  15315. }
  15316. }
  15317. free(ctx->kv);
  15318. }
  15319. if (ctx->infos) {
  15320. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15321. struct gguf_tensor_info * info = &ctx->infos[i];
  15322. if (info->name.data) {
  15323. free(info->name.data);
  15324. }
  15325. }
  15326. free(ctx->infos);
  15327. }
  15328. GGML_ALIGNED_FREE(ctx);
  15329. }
  15330. const char * gguf_type_name(enum gguf_type type) {
  15331. return GGUF_TYPE_NAME[type];
  15332. }
  15333. int gguf_get_version(const struct gguf_context * ctx) {
  15334. return ctx->header.version;
  15335. }
  15336. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15337. return ctx->alignment;
  15338. }
  15339. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15340. return ctx->offset;
  15341. }
  15342. void * gguf_get_data(const struct gguf_context * ctx) {
  15343. return ctx->data;
  15344. }
  15345. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15346. return ctx->header.n_kv;
  15347. }
  15348. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15349. // return -1 if key not found
  15350. int keyfound = -1;
  15351. const int n_kv = gguf_get_n_kv(ctx);
  15352. for (int i = 0; i < n_kv; ++i) {
  15353. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15354. keyfound = i;
  15355. break;
  15356. }
  15357. }
  15358. return keyfound;
  15359. }
  15360. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15361. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15362. return ctx->kv[key_id].key.data;
  15363. }
  15364. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15365. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15366. return ctx->kv[key_id].type;
  15367. }
  15368. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15369. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15370. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15371. return ctx->kv[key_id].value.arr.type;
  15372. }
  15373. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15374. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15375. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15376. return ctx->kv[key_id].value.arr.data;
  15377. }
  15378. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15379. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15380. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15381. struct gguf_kv * kv = &ctx->kv[key_id];
  15382. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15383. return str->data;
  15384. }
  15385. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15386. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15387. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15388. return ctx->kv[key_id].value.arr.n;
  15389. }
  15390. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15391. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15392. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15393. return ctx->kv[key_id].value.uint8;
  15394. }
  15395. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15396. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15397. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15398. return ctx->kv[key_id].value.int8;
  15399. }
  15400. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15401. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15402. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15403. return ctx->kv[key_id].value.uint16;
  15404. }
  15405. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15406. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15407. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15408. return ctx->kv[key_id].value.int16;
  15409. }
  15410. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15411. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15412. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15413. return ctx->kv[key_id].value.uint32;
  15414. }
  15415. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15416. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15417. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15418. return ctx->kv[key_id].value.int32;
  15419. }
  15420. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15421. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15422. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15423. return ctx->kv[key_id].value.float32;
  15424. }
  15425. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15426. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15427. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15428. return ctx->kv[key_id].value.uint64;
  15429. }
  15430. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15431. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15432. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15433. return ctx->kv[key_id].value.int64;
  15434. }
  15435. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15436. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15437. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15438. return ctx->kv[key_id].value.float64;
  15439. }
  15440. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15441. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15442. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15443. return ctx->kv[key_id].value.bool_;
  15444. }
  15445. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15446. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15447. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15448. return ctx->kv[key_id].value.str.data;
  15449. }
  15450. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15451. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15452. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15453. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15454. return &ctx->kv[key_id].value;
  15455. }
  15456. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15457. return ctx->header.n_tensors;
  15458. }
  15459. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15460. // return -1 if tensor not found
  15461. int tensorfound = -1;
  15462. const int n_tensors = gguf_get_n_tensors(ctx);
  15463. for (int i = 0; i < n_tensors; ++i) {
  15464. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15465. tensorfound = i;
  15466. break;
  15467. }
  15468. }
  15469. return tensorfound;
  15470. }
  15471. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15472. return ctx->infos[i].offset;
  15473. }
  15474. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15475. return ctx->infos[i].name.data;
  15476. }
  15477. // returns the index
  15478. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15479. const int idx = gguf_find_key(ctx, key);
  15480. if (idx >= 0) {
  15481. return idx;
  15482. }
  15483. const int n_kv = gguf_get_n_kv(ctx);
  15484. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15485. ctx->kv[n_kv].key.n = strlen(key);
  15486. ctx->kv[n_kv].key.data = strdup(key);
  15487. ctx->header.n_kv++;
  15488. return n_kv;
  15489. }
  15490. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15491. const int idx = gguf_get_or_add_key(ctx, key);
  15492. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15493. ctx->kv[idx].value.uint8 = val;
  15494. }
  15495. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15496. const int idx = gguf_get_or_add_key(ctx, key);
  15497. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15498. ctx->kv[idx].value.int8 = val;
  15499. }
  15500. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15501. const int idx = gguf_get_or_add_key(ctx, key);
  15502. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15503. ctx->kv[idx].value.uint16 = val;
  15504. }
  15505. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15506. const int idx = gguf_get_or_add_key(ctx, key);
  15507. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15508. ctx->kv[idx].value.int16 = val;
  15509. }
  15510. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15511. const int idx = gguf_get_or_add_key(ctx, key);
  15512. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15513. ctx->kv[idx].value.uint32 = val;
  15514. }
  15515. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15516. const int idx = gguf_get_or_add_key(ctx, key);
  15517. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15518. ctx->kv[idx].value.int32 = val;
  15519. }
  15520. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15521. const int idx = gguf_get_or_add_key(ctx, key);
  15522. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15523. ctx->kv[idx].value.float32 = val;
  15524. }
  15525. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15526. const int idx = gguf_get_or_add_key(ctx, key);
  15527. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15528. ctx->kv[idx].value.uint64 = val;
  15529. }
  15530. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15531. const int idx = gguf_get_or_add_key(ctx, key);
  15532. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15533. ctx->kv[idx].value.int64 = val;
  15534. }
  15535. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15536. const int idx = gguf_get_or_add_key(ctx, key);
  15537. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15538. ctx->kv[idx].value.float64 = val;
  15539. }
  15540. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15541. const int idx = gguf_get_or_add_key(ctx, key);
  15542. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15543. ctx->kv[idx].value.bool_ = val;
  15544. }
  15545. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15546. const int idx = gguf_get_or_add_key(ctx, key);
  15547. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15548. ctx->kv[idx].value.str.n = strlen(val);
  15549. ctx->kv[idx].value.str.data = strdup(val);
  15550. }
  15551. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15552. const int idx = gguf_get_or_add_key(ctx, key);
  15553. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15554. ctx->kv[idx].value.arr.type = type;
  15555. ctx->kv[idx].value.arr.n = n;
  15556. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15557. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15558. }
  15559. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15560. const int idx = gguf_get_or_add_key(ctx, key);
  15561. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15562. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15563. ctx->kv[idx].value.arr.n = n;
  15564. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15565. for (int i = 0; i < n; i++) {
  15566. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15567. str->n = strlen(data[i]);
  15568. str->data = strdup(data[i]);
  15569. }
  15570. }
  15571. // set or add KV pairs from another context
  15572. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15573. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15574. switch (src->kv[i].type) {
  15575. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15576. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15577. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15578. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15579. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15580. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15581. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15582. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15583. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15584. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15585. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15586. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15587. case GGUF_TYPE_ARRAY:
  15588. {
  15589. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15590. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15591. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15592. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15593. }
  15594. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15595. free(data);
  15596. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15597. GGML_ASSERT(false && "nested arrays not supported");
  15598. } else {
  15599. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15600. }
  15601. } break;
  15602. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15603. }
  15604. }
  15605. }
  15606. void gguf_add_tensor(
  15607. struct gguf_context * ctx,
  15608. const struct ggml_tensor * tensor) {
  15609. const int idx = ctx->header.n_tensors;
  15610. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15611. ctx->infos[idx].name.n = strlen(tensor->name);
  15612. ctx->infos[idx].name.data = strdup(tensor->name);
  15613. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15614. ctx->infos[idx].ne[i] = 1;
  15615. }
  15616. ctx->infos[idx].n_dims = tensor->n_dims;
  15617. for (int i = 0; i < tensor->n_dims; i++) {
  15618. ctx->infos[idx].ne[i] = tensor->ne[i];
  15619. }
  15620. ctx->infos[idx].type = tensor->type;
  15621. ctx->infos[idx].offset = 0;
  15622. ctx->infos[idx].data = tensor->data;
  15623. ctx->infos[idx].size = ggml_nbytes(tensor);
  15624. if (ctx->header.n_tensors > 0) {
  15625. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15626. }
  15627. ctx->header.n_tensors++;
  15628. }
  15629. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15630. const int idx = gguf_find_tensor(ctx, name);
  15631. if (idx < 0) {
  15632. GGML_ASSERT(false && "tensor not found");
  15633. }
  15634. ctx->infos[idx].type = type;
  15635. }
  15636. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15637. const int idx = gguf_find_tensor(ctx, name);
  15638. if (idx < 0) {
  15639. GGML_ASSERT(false && "tensor not found");
  15640. }
  15641. ctx->infos[idx].data = data;
  15642. ctx->infos[idx].size = size;
  15643. // update offsets
  15644. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15645. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15646. }
  15647. }
  15648. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15649. // fwrite(&val->n, sizeof(val->n), 1, file);
  15650. // fwrite(val->data, sizeof(char), val->n, file);
  15651. //}
  15652. //
  15653. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15654. // fwrite(val, sizeof(char), size, file);
  15655. //}
  15656. struct gguf_buf {
  15657. void * data;
  15658. size_t size;
  15659. size_t offset;
  15660. };
  15661. static struct gguf_buf gguf_buf_init(size_t size) {
  15662. struct gguf_buf buf = {
  15663. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15664. /*buf.size =*/ size,
  15665. /*buf.offset =*/ 0,
  15666. };
  15667. return buf;
  15668. }
  15669. static void gguf_buf_free(struct gguf_buf buf) {
  15670. if (buf.data) {
  15671. free(buf.data);
  15672. }
  15673. }
  15674. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15675. if (buf->offset + size > buf->size) {
  15676. buf->size = 1.5*(buf->offset + size);
  15677. if (buf->data) {
  15678. buf->data = realloc(buf->data, buf->size);
  15679. }
  15680. }
  15681. }
  15682. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15683. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15684. if (buf->data) {
  15685. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15686. }
  15687. buf->offset += sizeof(val->n);
  15688. if (buf->data) {
  15689. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15690. }
  15691. buf->offset += val->n;
  15692. }
  15693. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15694. gguf_buf_grow(buf, el_size);
  15695. if (buf->data) {
  15696. memcpy((char *) buf->data + buf->offset, val, el_size);
  15697. }
  15698. buf->offset += el_size;
  15699. }
  15700. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15701. // write header
  15702. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15703. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15704. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15705. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15706. // write key-value pairs
  15707. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15708. struct gguf_kv * kv = &ctx->kv[i];
  15709. gguf_bwrite_str(buf, &kv->key);
  15710. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15711. switch (kv->type) {
  15712. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15713. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15714. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15715. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15716. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15717. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15718. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15719. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  15720. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  15721. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  15722. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15723. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15724. case GGUF_TYPE_ARRAY:
  15725. {
  15726. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15727. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15728. switch (kv->value.arr.type) {
  15729. case GGUF_TYPE_UINT8:
  15730. case GGUF_TYPE_INT8:
  15731. case GGUF_TYPE_UINT16:
  15732. case GGUF_TYPE_INT16:
  15733. case GGUF_TYPE_UINT32:
  15734. case GGUF_TYPE_INT32:
  15735. case GGUF_TYPE_FLOAT32:
  15736. case GGUF_TYPE_UINT64:
  15737. case GGUF_TYPE_INT64:
  15738. case GGUF_TYPE_FLOAT64:
  15739. case GGUF_TYPE_BOOL:
  15740. {
  15741. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15742. } break;
  15743. case GGUF_TYPE_STRING:
  15744. {
  15745. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15746. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15747. }
  15748. } break;
  15749. case GGUF_TYPE_ARRAY:
  15750. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15751. }
  15752. } break;
  15753. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15754. }
  15755. }
  15756. // write tensor infos
  15757. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15758. struct gguf_tensor_info * info = &ctx->infos[i];
  15759. gguf_bwrite_str(buf, &info->name);
  15760. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15761. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15762. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15763. }
  15764. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15765. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15766. }
  15767. // we require the data section to be aligned, so take into account any padding
  15768. {
  15769. const size_t offset = buf->offset;
  15770. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15771. if (offset_pad != offset) {
  15772. uint8_t pad = 0;
  15773. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15774. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15775. }
  15776. }
  15777. }
  15778. if (only_meta) {
  15779. return;
  15780. }
  15781. size_t offset = 0;
  15782. // write tensor data
  15783. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15784. struct gguf_tensor_info * info = &ctx->infos[i];
  15785. const size_t size = info->size;
  15786. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  15787. gguf_bwrite_el(buf, info->data, size);
  15788. if (size_pad != size) {
  15789. uint8_t pad = 0;
  15790. for (size_t j = 0; j < size_pad - size; ++j) {
  15791. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15792. }
  15793. }
  15794. GGML_ASSERT(offset == info->offset);
  15795. offset += size_pad;
  15796. }
  15797. }
  15798. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  15799. FILE * file = fopen(fname, "wb");
  15800. if (!file) {
  15801. GGML_ASSERT(false && "failed to open file for writing");
  15802. }
  15803. struct gguf_buf buf = gguf_buf_init(16*1024);
  15804. gguf_write_to_buf(ctx, &buf, only_meta);
  15805. fwrite(buf.data, 1, buf.offset, file);
  15806. gguf_buf_free(buf);
  15807. fclose(file);
  15808. }
  15809. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  15810. // no allocs - only compute size
  15811. struct gguf_buf buf = gguf_buf_init(0);
  15812. gguf_write_to_buf(ctx, &buf, true);
  15813. return buf.offset;
  15814. }
  15815. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  15816. struct gguf_buf buf = gguf_buf_init(16*1024);
  15817. gguf_write_to_buf(ctx, &buf, true);
  15818. memcpy(data, buf.data, buf.offset);
  15819. gguf_buf_free(buf);
  15820. }
  15821. ////////////////////////////////////////////////////////////////////////////////
  15822. int ggml_cpu_has_avx(void) {
  15823. #if defined(__AVX__)
  15824. return 1;
  15825. #else
  15826. return 0;
  15827. #endif
  15828. }
  15829. int ggml_cpu_has_avx2(void) {
  15830. #if defined(__AVX2__)
  15831. return 1;
  15832. #else
  15833. return 0;
  15834. #endif
  15835. }
  15836. int ggml_cpu_has_avx512(void) {
  15837. #if defined(__AVX512F__)
  15838. return 1;
  15839. #else
  15840. return 0;
  15841. #endif
  15842. }
  15843. int ggml_cpu_has_avx512_vbmi(void) {
  15844. #if defined(__AVX512VBMI__)
  15845. return 1;
  15846. #else
  15847. return 0;
  15848. #endif
  15849. }
  15850. int ggml_cpu_has_avx512_vnni(void) {
  15851. #if defined(__AVX512VNNI__)
  15852. return 1;
  15853. #else
  15854. return 0;
  15855. #endif
  15856. }
  15857. int ggml_cpu_has_fma(void) {
  15858. #if defined(__FMA__)
  15859. return 1;
  15860. #else
  15861. return 0;
  15862. #endif
  15863. }
  15864. int ggml_cpu_has_neon(void) {
  15865. #if defined(__ARM_NEON)
  15866. return 1;
  15867. #else
  15868. return 0;
  15869. #endif
  15870. }
  15871. int ggml_cpu_has_arm_fma(void) {
  15872. #if defined(__ARM_FEATURE_FMA)
  15873. return 1;
  15874. #else
  15875. return 0;
  15876. #endif
  15877. }
  15878. int ggml_cpu_has_metal(void) {
  15879. #if defined(GGML_USE_METAL)
  15880. return 1;
  15881. #else
  15882. return 0;
  15883. #endif
  15884. }
  15885. int ggml_cpu_has_f16c(void) {
  15886. #if defined(__F16C__)
  15887. return 1;
  15888. #else
  15889. return 0;
  15890. #endif
  15891. }
  15892. int ggml_cpu_has_fp16_va(void) {
  15893. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15894. return 1;
  15895. #else
  15896. return 0;
  15897. #endif
  15898. }
  15899. int ggml_cpu_has_wasm_simd(void) {
  15900. #if defined(__wasm_simd128__)
  15901. return 1;
  15902. #else
  15903. return 0;
  15904. #endif
  15905. }
  15906. int ggml_cpu_has_blas(void) {
  15907. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15908. return 1;
  15909. #else
  15910. return 0;
  15911. #endif
  15912. }
  15913. int ggml_cpu_has_cublas(void) {
  15914. #if defined(GGML_USE_CUBLAS)
  15915. return 1;
  15916. #else
  15917. return 0;
  15918. #endif
  15919. }
  15920. int ggml_cpu_has_clblast(void) {
  15921. #if defined(GGML_USE_CLBLAST)
  15922. return 1;
  15923. #else
  15924. return 0;
  15925. #endif
  15926. }
  15927. int ggml_cpu_has_gpublas(void) {
  15928. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15929. }
  15930. int ggml_cpu_has_sse3(void) {
  15931. #if defined(__SSE3__)
  15932. return 1;
  15933. #else
  15934. return 0;
  15935. #endif
  15936. }
  15937. int ggml_cpu_has_ssse3(void) {
  15938. #if defined(__SSSE3__)
  15939. return 1;
  15940. #else
  15941. return 0;
  15942. #endif
  15943. }
  15944. int ggml_cpu_has_vsx(void) {
  15945. #if defined(__POWER9_VECTOR__)
  15946. return 1;
  15947. #else
  15948. return 0;
  15949. #endif
  15950. }
  15951. ////////////////////////////////////////////////////////////////////////////////