ggml.c 697 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  289. for (int64_t i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  294. int64_t i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  778. // we then implement the fundamental computation operations below using only these macros
  779. // adding support for new architectures requires to define the corresponding SIMD macros
  780. //
  781. // GGML_F32_STEP / GGML_F16_STEP
  782. // number of elements to process in a single step
  783. //
  784. // GGML_F32_EPR / GGML_F16_EPR
  785. // number of elements to fit in a single register
  786. //
  787. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  788. #define GGML_SIMD
  789. // F32 NEON
  790. #define GGML_F32_STEP 16
  791. #define GGML_F32_EPR 4
  792. #define GGML_F32x4 float32x4_t
  793. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  794. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  795. #define GGML_F32x4_LOAD vld1q_f32
  796. #define GGML_F32x4_STORE vst1q_f32
  797. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  798. #define GGML_F32x4_ADD vaddq_f32
  799. #define GGML_F32x4_MUL vmulq_f32
  800. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  801. #define GGML_F32x4_REDUCE(res, x) \
  802. { \
  803. int offset = GGML_F32_ARR >> 1; \
  804. for (int i = 0; i < offset; ++i) { \
  805. x[i] = vaddq_f32(x[i], x[offset+i]); \
  806. } \
  807. offset >>= 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = vaddq_f32(x[i], x[offset+i]); \
  810. } \
  811. offset >>= 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  816. }
  817. #define GGML_F32_VEC GGML_F32x4
  818. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  819. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  820. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  821. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  822. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  823. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  824. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  825. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  826. // F16 NEON
  827. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  828. #define GGML_F16_STEP 32
  829. #define GGML_F16_EPR 8
  830. #define GGML_F16x8 float16x8_t
  831. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  832. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  833. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  834. #define GGML_F16x8_STORE vst1q_f16
  835. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  836. #define GGML_F16x8_ADD vaddq_f16
  837. #define GGML_F16x8_MUL vmulq_f16
  838. #define GGML_F16x8_REDUCE(res, x) \
  839. do { \
  840. int offset = GGML_F16_ARR >> 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = vaddq_f16(x[i], x[offset+i]); \
  843. } \
  844. offset >>= 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = vaddq_f16(x[i], x[offset+i]); \
  847. } \
  848. offset >>= 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  853. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  854. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  855. } while (0)
  856. #define GGML_F16_VEC GGML_F16x8
  857. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  858. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  859. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  860. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  861. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  862. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  863. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  864. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  865. #else
  866. // if FP16 vector arithmetic is not supported, we use FP32 instead
  867. // and take advantage of the vcvt_ functions to convert to/from FP16
  868. #define GGML_F16_STEP 16
  869. #define GGML_F16_EPR 4
  870. #define GGML_F32Cx4 float32x4_t
  871. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  872. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  873. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  874. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  875. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  876. #define GGML_F32Cx4_ADD vaddq_f32
  877. #define GGML_F32Cx4_MUL vmulq_f32
  878. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  879. #define GGML_F16_VEC GGML_F32Cx4
  880. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  881. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  882. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  883. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  884. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  885. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  886. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  887. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  888. #endif
  889. #elif defined(__AVX512F__)
  890. #define GGML_SIMD
  891. // F32 AVX512
  892. #define GGML_F32_STEP 64
  893. #define GGML_F32_EPR 16
  894. #define GGML_F32x16 __m512
  895. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  896. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  897. #define GGML_F32x16_LOAD _mm512_loadu_ps
  898. #define GGML_F32x16_STORE _mm512_storeu_ps
  899. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  900. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  901. #define GGML_F32x16_ADD _mm512_add_ps
  902. #define GGML_F32x16_MUL _mm512_mul_ps
  903. #define GGML_F32x16_REDUCE(res, x) \
  904. do { \
  905. int offset = GGML_F32_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. res = _mm512_reduce_add_ps(x[0]); \
  918. } while (0)
  919. // TODO: is this optimal ?
  920. #define GGML_F32_VEC GGML_F32x16
  921. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  922. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  923. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  924. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  925. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  926. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  927. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  928. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  929. // F16 AVX512
  930. // F16 AVX
  931. #define GGML_F16_STEP 64
  932. #define GGML_F16_EPR 16
  933. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  934. #define GGML_F32Cx16 __m512
  935. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  936. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  937. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  938. // so F16C guard isn't required
  939. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  940. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  941. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  942. #define GGML_F32Cx16_ADD _mm512_add_ps
  943. #define GGML_F32Cx16_MUL _mm512_mul_ps
  944. #define GGML_F32Cx16_REDUCE(res, x) \
  945. do { \
  946. int offset = GGML_F32_ARR >> 1; \
  947. for (int i = 0; i < offset; ++i) { \
  948. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  949. } \
  950. offset >>= 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  953. } \
  954. offset >>= 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. res = _mm512_reduce_add_ps(x[0]); \
  959. } while (0)
  960. #define GGML_F16_VEC GGML_F32Cx16
  961. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  962. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  963. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  964. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  965. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  966. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  967. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  968. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  969. #elif defined(__AVX__)
  970. #define GGML_SIMD
  971. // F32 AVX
  972. #define GGML_F32_STEP 32
  973. #define GGML_F32_EPR 8
  974. #define GGML_F32x8 __m256
  975. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  976. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  977. #define GGML_F32x8_LOAD _mm256_loadu_ps
  978. #define GGML_F32x8_STORE _mm256_storeu_ps
  979. #if defined(__FMA__)
  980. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  981. #else
  982. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  983. #endif
  984. #define GGML_F32x8_ADD _mm256_add_ps
  985. #define GGML_F32x8_MUL _mm256_mul_ps
  986. #define GGML_F32x8_REDUCE(res, x) \
  987. do { \
  988. int offset = GGML_F32_ARR >> 1; \
  989. for (int i = 0; i < offset; ++i) { \
  990. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  991. } \
  992. offset >>= 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  995. } \
  996. offset >>= 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1001. _mm256_extractf128_ps(x[0], 1)); \
  1002. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1003. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1004. } while (0)
  1005. // TODO: is this optimal ?
  1006. #define GGML_F32_VEC GGML_F32x8
  1007. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1008. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1009. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1010. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1011. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1012. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1013. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1014. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1015. // F16 AVX
  1016. #define GGML_F16_STEP 32
  1017. #define GGML_F16_EPR 8
  1018. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1019. #define GGML_F32Cx8 __m256
  1020. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1021. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1022. #if defined(__F16C__)
  1023. // the _mm256_cvt intrinsics require F16C
  1024. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1025. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1026. #else
  1027. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1028. float tmp[8];
  1029. for (int i = 0; i < 8; i++) {
  1030. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1031. }
  1032. return _mm256_loadu_ps(tmp);
  1033. }
  1034. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1035. float arr[8];
  1036. _mm256_storeu_ps(arr, y);
  1037. for (int i = 0; i < 8; i++)
  1038. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1039. }
  1040. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1041. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1042. #endif
  1043. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1044. #define GGML_F32Cx8_ADD _mm256_add_ps
  1045. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1046. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1047. #define GGML_F16_VEC GGML_F32Cx8
  1048. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1049. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1050. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1051. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1052. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1053. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1054. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1055. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1056. #elif defined(__POWER9_VECTOR__)
  1057. #define GGML_SIMD
  1058. // F32 POWER9
  1059. #define GGML_F32_STEP 32
  1060. #define GGML_F32_EPR 4
  1061. #define GGML_F32x4 vector float
  1062. #define GGML_F32x4_ZERO 0.0f
  1063. #define GGML_F32x4_SET1 vec_splats
  1064. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1065. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1066. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1067. #define GGML_F32x4_ADD vec_add
  1068. #define GGML_F32x4_MUL vec_mul
  1069. #define GGML_F32x4_REDUCE(res, x) \
  1070. { \
  1071. int offset = GGML_F32_ARR >> 1; \
  1072. for (int i = 0; i < offset; ++i) { \
  1073. x[i] = vec_add(x[i], x[offset+i]); \
  1074. } \
  1075. offset >>= 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = vec_add(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. res = vec_extract(x[0], 0) + \
  1084. vec_extract(x[0], 1) + \
  1085. vec_extract(x[0], 2) + \
  1086. vec_extract(x[0], 3); \
  1087. }
  1088. #define GGML_F32_VEC GGML_F32x4
  1089. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1090. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1091. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1092. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1093. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1094. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1095. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1096. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1097. // F16 POWER9
  1098. #define GGML_F16_STEP GGML_F32_STEP
  1099. #define GGML_F16_EPR GGML_F32_EPR
  1100. #define GGML_F16_VEC GGML_F32x4
  1101. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1106. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1107. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1108. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1109. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1110. #define GGML_F16_VEC_STORE(p, r, i) \
  1111. if (i & 0x1) \
  1112. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1113. r[i - GGML_ENDIAN_BYTE(0)]), \
  1114. 0, p - GGML_F16_EPR)
  1115. #elif defined(__wasm_simd128__)
  1116. #define GGML_SIMD
  1117. // F32 WASM
  1118. #define GGML_F32_STEP 16
  1119. #define GGML_F32_EPR 4
  1120. #define GGML_F32x4 v128_t
  1121. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1122. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1123. #define GGML_F32x4_LOAD wasm_v128_load
  1124. #define GGML_F32x4_STORE wasm_v128_store
  1125. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1126. #define GGML_F32x4_ADD wasm_f32x4_add
  1127. #define GGML_F32x4_MUL wasm_f32x4_mul
  1128. #define GGML_F32x4_REDUCE(res, x) \
  1129. { \
  1130. int offset = GGML_F32_ARR >> 1; \
  1131. for (int i = 0; i < offset; ++i) { \
  1132. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1133. } \
  1134. offset >>= 1; \
  1135. for (int i = 0; i < offset; ++i) { \
  1136. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1137. } \
  1138. offset >>= 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1143. wasm_f32x4_extract_lane(x[0], 1) + \
  1144. wasm_f32x4_extract_lane(x[0], 2) + \
  1145. wasm_f32x4_extract_lane(x[0], 3); \
  1146. }
  1147. #define GGML_F32_VEC GGML_F32x4
  1148. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1149. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1150. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1151. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1152. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1153. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1154. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1155. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1156. // F16 WASM
  1157. #define GGML_F16_STEP 16
  1158. #define GGML_F16_EPR 4
  1159. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1160. float tmp[4];
  1161. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1162. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1163. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1164. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1165. return wasm_v128_load(tmp);
  1166. }
  1167. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1168. float tmp[4];
  1169. wasm_v128_store(tmp, x);
  1170. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1171. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1172. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1173. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1174. }
  1175. #define GGML_F16x4 v128_t
  1176. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1177. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1178. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1179. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1180. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1181. #define GGML_F16x4_ADD wasm_f32x4_add
  1182. #define GGML_F16x4_MUL wasm_f32x4_mul
  1183. #define GGML_F16x4_REDUCE(res, x) \
  1184. { \
  1185. int offset = GGML_F16_ARR >> 1; \
  1186. for (int i = 0; i < offset; ++i) { \
  1187. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1188. } \
  1189. offset >>= 1; \
  1190. for (int i = 0; i < offset; ++i) { \
  1191. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1192. } \
  1193. offset >>= 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1198. wasm_f32x4_extract_lane(x[0], 1) + \
  1199. wasm_f32x4_extract_lane(x[0], 2) + \
  1200. wasm_f32x4_extract_lane(x[0], 3); \
  1201. }
  1202. #define GGML_F16_VEC GGML_F16x4
  1203. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1204. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1205. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1206. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1207. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1208. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1209. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1210. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1211. #elif defined(__SSE3__)
  1212. #define GGML_SIMD
  1213. // F32 SSE
  1214. #define GGML_F32_STEP 32
  1215. #define GGML_F32_EPR 4
  1216. #define GGML_F32x4 __m128
  1217. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1218. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1219. #define GGML_F32x4_LOAD _mm_loadu_ps
  1220. #define GGML_F32x4_STORE _mm_storeu_ps
  1221. #if defined(__FMA__)
  1222. // TODO: Does this work?
  1223. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1224. #else
  1225. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1226. #endif
  1227. #define GGML_F32x4_ADD _mm_add_ps
  1228. #define GGML_F32x4_MUL _mm_mul_ps
  1229. #define GGML_F32x4_REDUCE(res, x) \
  1230. { \
  1231. int offset = GGML_F32_ARR >> 1; \
  1232. for (int i = 0; i < offset; ++i) { \
  1233. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1234. } \
  1235. offset >>= 1; \
  1236. for (int i = 0; i < offset; ++i) { \
  1237. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1238. } \
  1239. offset >>= 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1244. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1245. }
  1246. // TODO: is this optimal ?
  1247. #define GGML_F32_VEC GGML_F32x4
  1248. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1249. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1250. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1251. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1252. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1253. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1254. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1255. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1256. // F16 SSE
  1257. #define GGML_F16_STEP 32
  1258. #define GGML_F16_EPR 4
  1259. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1260. float tmp[4];
  1261. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1262. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1263. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1264. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1265. return _mm_loadu_ps(tmp);
  1266. }
  1267. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1268. float arr[4];
  1269. _mm_storeu_ps(arr, y);
  1270. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1271. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1272. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1273. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1274. }
  1275. #define GGML_F32Cx4 __m128
  1276. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1277. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1278. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1279. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1280. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1281. #define GGML_F32Cx4_ADD _mm_add_ps
  1282. #define GGML_F32Cx4_MUL _mm_mul_ps
  1283. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1284. #define GGML_F16_VEC GGML_F32Cx4
  1285. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1286. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1287. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1288. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1289. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1290. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1291. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1292. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1293. #endif
  1294. // GGML_F32_ARR / GGML_F16_ARR
  1295. // number of registers to use per step
  1296. #ifdef GGML_SIMD
  1297. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1298. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1299. #endif
  1300. //
  1301. // fundamental operations
  1302. //
  1303. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1304. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1305. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1306. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1307. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1308. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1309. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1310. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1311. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1312. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1314. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1315. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1316. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1317. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1318. assert(nrc == 1);
  1319. UNUSED(nrc);
  1320. UNUSED(bx);
  1321. UNUSED(by);
  1322. UNUSED(bs);
  1323. #ifdef GGML_SIMD
  1324. float sumf = 0.0f;
  1325. const int np = (n & ~(GGML_F32_STEP - 1));
  1326. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1327. GGML_F32_VEC ax[GGML_F32_ARR];
  1328. GGML_F32_VEC ay[GGML_F32_ARR];
  1329. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1330. for (int j = 0; j < GGML_F32_ARR; j++) {
  1331. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1332. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1333. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1334. }
  1335. }
  1336. // reduce sum0..sum3 to sum0
  1337. GGML_F32_VEC_REDUCE(sumf, sum);
  1338. // leftovers
  1339. for (int i = np; i < n; ++i) {
  1340. sumf += x[i]*y[i];
  1341. }
  1342. #else
  1343. // scalar
  1344. ggml_float sumf = 0.0;
  1345. for (int i = 0; i < n; ++i) {
  1346. sumf += (ggml_float)(x[i]*y[i]);
  1347. }
  1348. #endif
  1349. *s = sumf;
  1350. }
  1351. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1352. assert(nrc == 1);
  1353. UNUSED(nrc);
  1354. UNUSED(bx);
  1355. UNUSED(by);
  1356. UNUSED(bs);
  1357. ggml_float sumf = 0.0;
  1358. #if defined(GGML_SIMD)
  1359. const int np = (n & ~(GGML_F16_STEP - 1));
  1360. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1361. GGML_F16_VEC ax[GGML_F16_ARR];
  1362. GGML_F16_VEC ay[GGML_F16_ARR];
  1363. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1364. for (int j = 0; j < GGML_F16_ARR; j++) {
  1365. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1366. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1367. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1368. }
  1369. }
  1370. // reduce sum0..sum3 to sum0
  1371. GGML_F16_VEC_REDUCE(sumf, sum);
  1372. // leftovers
  1373. for (int i = np; i < n; ++i) {
  1374. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1375. }
  1376. #else
  1377. for (int i = 0; i < n; ++i) {
  1378. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1379. }
  1380. #endif
  1381. *s = sumf;
  1382. }
  1383. // compute GGML_VEC_DOT_UNROLL dot products at once
  1384. // xs - x row stride in bytes
  1385. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1386. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1387. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1388. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1389. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1390. }
  1391. #if defined(GGML_SIMD)
  1392. const int np = (n & ~(GGML_F16_STEP - 1));
  1393. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1394. GGML_F16_VEC ax[GGML_F16_ARR];
  1395. GGML_F16_VEC ay[GGML_F16_ARR];
  1396. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1397. for (int j = 0; j < GGML_F16_ARR; j++) {
  1398. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1399. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1400. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1401. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1402. }
  1403. }
  1404. }
  1405. // reduce sum0..sum3 to sum0
  1406. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1407. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1408. }
  1409. // leftovers
  1410. for (int i = np; i < n; ++i) {
  1411. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1412. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1413. }
  1414. }
  1415. #else
  1416. for (int i = 0; i < n; ++i) {
  1417. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1418. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1419. }
  1420. }
  1421. #endif
  1422. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1423. s[i] = sumf[i];
  1424. }
  1425. }
  1426. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1427. #if defined(GGML_SIMD)
  1428. const int np = (n & ~(GGML_F32_STEP - 1));
  1429. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1430. GGML_F32_VEC ax[GGML_F32_ARR];
  1431. GGML_F32_VEC ay[GGML_F32_ARR];
  1432. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1433. for (int j = 0; j < GGML_F32_ARR; j++) {
  1434. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1435. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1436. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1437. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1438. }
  1439. }
  1440. // leftovers
  1441. for (int i = np; i < n; ++i) {
  1442. y[i] += x[i]*v;
  1443. }
  1444. #else
  1445. // scalar
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] += x[i]*v;
  1448. }
  1449. #endif
  1450. }
  1451. // xs and vs are byte strides of x and v
  1452. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1453. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1454. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1455. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1456. x[i] = (const float *) ((const char *) xv + i*xs);
  1457. v[i] = (const float *) ((const char *) vv + i*vs);
  1458. }
  1459. #if defined(GGML_SIMD)
  1460. const int np = (n & ~(GGML_F32_STEP - 1));
  1461. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1462. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1463. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1464. }
  1465. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1466. GGML_F32_VEC ay[GGML_F32_ARR];
  1467. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1468. for (int j = 0; j < GGML_F32_ARR; j++) {
  1469. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1472. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1473. }
  1474. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1475. }
  1476. }
  1477. // leftovers
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. for (int i = np; i < n; ++i) {
  1480. y[i] += x[k][i]*v[k][0];
  1481. }
  1482. }
  1483. #else
  1484. // scalar
  1485. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1486. for (int i = 0; i < n; ++i) {
  1487. y[i] += x[k][i]*v[k][0];
  1488. }
  1489. }
  1490. #endif
  1491. }
  1492. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1493. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1494. #if defined(GGML_USE_ACCELERATE)
  1495. vDSP_vsmul(y, 1, &v, y, 1, n);
  1496. #elif defined(GGML_SIMD)
  1497. const int np = (n & ~(GGML_F32_STEP - 1));
  1498. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1499. GGML_F32_VEC ay[GGML_F32_ARR];
  1500. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1501. for (int j = 0; j < GGML_F32_ARR; j++) {
  1502. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1503. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1504. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1505. }
  1506. }
  1507. // leftovers
  1508. for (int i = np; i < n; ++i) {
  1509. y[i] *= v;
  1510. }
  1511. #else
  1512. // scalar
  1513. for (int i = 0; i < n; ++i) {
  1514. y[i] *= v;
  1515. }
  1516. #endif
  1517. }
  1518. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1519. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1520. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1521. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1522. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1523. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1524. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1525. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1526. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1527. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1528. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1529. // TODO: optimize performance
  1530. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1531. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1532. static const float GELU_COEF_A = 0.044715f;
  1533. static const float GELU_QUICK_COEF = -1.702f;
  1534. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1535. inline static float ggml_gelu_f32(float x) {
  1536. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1537. }
  1538. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1539. const uint16_t * i16 = (const uint16_t *) x;
  1540. for (int i = 0; i < n; ++i) {
  1541. y[i] = ggml_table_gelu_f16[i16[i]];
  1542. }
  1543. }
  1544. #ifdef GGML_GELU_FP16
  1545. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1546. uint16_t t;
  1547. for (int i = 0; i < n; ++i) {
  1548. if (x[i] <= -10.0f) {
  1549. y[i] = 0.0f;
  1550. } else if (x[i] >= 10.0f) {
  1551. y[i] = x[i];
  1552. } else {
  1553. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1554. memcpy(&t, &fp16, sizeof(uint16_t));
  1555. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1556. }
  1557. }
  1558. }
  1559. #else
  1560. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1561. for (int i = 0; i < n; ++i) {
  1562. y[i] = ggml_gelu_f32(x[i]);
  1563. }
  1564. }
  1565. #endif
  1566. inline static float ggml_gelu_quick_f32(float x) {
  1567. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1568. }
  1569. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1570. // const uint16_t * i16 = (const uint16_t *) x;
  1571. // for (int i = 0; i < n; ++i) {
  1572. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1573. // }
  1574. //}
  1575. #ifdef GGML_GELU_QUICK_FP16
  1576. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1577. uint16_t t;
  1578. for (int i = 0; i < n; ++i) {
  1579. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1580. memcpy(&t, &fp16, sizeof(uint16_t));
  1581. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1582. }
  1583. }
  1584. #else
  1585. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1586. for (int i = 0; i < n; ++i) {
  1587. y[i] = ggml_gelu_quick_f32(x[i]);
  1588. }
  1589. }
  1590. #endif
  1591. // Sigmoid Linear Unit (SiLU) function
  1592. inline static float ggml_silu_f32(float x) {
  1593. return x/(1.0f + expf(-x));
  1594. }
  1595. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1596. // const uint16_t * i16 = (const uint16_t *) x;
  1597. // for (int i = 0; i < n; ++i) {
  1598. // y[i] = ggml_table_silu_f16[i16[i]];
  1599. // }
  1600. //}
  1601. #ifdef GGML_SILU_FP16
  1602. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1603. uint16_t t;
  1604. for (int i = 0; i < n; ++i) {
  1605. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1606. memcpy(&t, &fp16, sizeof(uint16_t));
  1607. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1608. }
  1609. }
  1610. #else
  1611. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1612. for (int i = 0; i < n; ++i) {
  1613. y[i] = ggml_silu_f32(x[i]);
  1614. }
  1615. }
  1616. #endif
  1617. inline static float ggml_silu_backward_f32(float x, float dy) {
  1618. const float s = 1.0f/(1.0f + expf(-x));
  1619. return dy*s*(1.0f + x*(1.0f - s));
  1620. }
  1621. #ifdef GGML_SILU_FP16
  1622. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1623. for (int i = 0; i < n; ++i) {
  1624. // we did not use x[i] to compute forward silu but its f16 equivalent
  1625. // take derivative at f16 of x[i]:
  1626. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1627. float usedx = GGML_FP16_TO_FP32(fp16);
  1628. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1629. }
  1630. }
  1631. #else
  1632. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1633. for (int i = 0; i < n; ++i) {
  1634. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1635. }
  1636. }
  1637. #endif
  1638. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1639. #ifndef GGML_USE_ACCELERATE
  1640. ggml_float sum = 0.0;
  1641. for (int i = 0; i < n; ++i) {
  1642. sum += (ggml_float)x[i];
  1643. }
  1644. *s = sum;
  1645. #else
  1646. vDSP_sve(x, 1, s, n);
  1647. #endif
  1648. }
  1649. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1650. ggml_float sum = 0.0;
  1651. for (int i = 0; i < n; ++i) {
  1652. sum += (ggml_float)x[i];
  1653. }
  1654. *s = sum;
  1655. }
  1656. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1657. float sum = 0.0f;
  1658. for (int i = 0; i < n; ++i) {
  1659. sum += GGML_FP16_TO_FP32(x[i]);
  1660. }
  1661. *s = sum;
  1662. }
  1663. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1664. #ifndef GGML_USE_ACCELERATE
  1665. float max = -INFINITY;
  1666. for (int i = 0; i < n; ++i) {
  1667. max = MAX(max, x[i]);
  1668. }
  1669. *s = max;
  1670. #else
  1671. vDSP_maxv(x, 1, s, n);
  1672. #endif
  1673. }
  1674. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1675. ggml_vec_norm_f32(n, s, x);
  1676. *s = 1.f/(*s);
  1677. }
  1678. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1679. float max = -INFINITY;
  1680. int idx = 0;
  1681. for (int i = 0; i < n; ++i) {
  1682. max = MAX(max, x[i]);
  1683. if (max == x[i]) { idx = i; }
  1684. }
  1685. *s = idx;
  1686. }
  1687. //
  1688. // data types
  1689. //
  1690. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1691. "NONE",
  1692. "DUP",
  1693. "ADD",
  1694. "ADD1",
  1695. "ACC",
  1696. "SUB",
  1697. "MUL",
  1698. "DIV",
  1699. "SQR",
  1700. "SQRT",
  1701. "LOG",
  1702. "SUM",
  1703. "SUM_ROWS",
  1704. "MEAN",
  1705. "ARGMAX",
  1706. "REPEAT",
  1707. "REPEAT_BACK",
  1708. "CONCAT",
  1709. "SILU_BACK",
  1710. "NORM",
  1711. "RMS_NORM",
  1712. "RMS_NORM_BACK",
  1713. "GROUP_NORM",
  1714. "MUL_MAT",
  1715. "MUL_MAT_ID",
  1716. "OUT_PROD",
  1717. "SCALE",
  1718. "SET",
  1719. "CPY",
  1720. "CONT",
  1721. "RESHAPE",
  1722. "VIEW",
  1723. "PERMUTE",
  1724. "TRANSPOSE",
  1725. "GET_ROWS",
  1726. "GET_ROWS_BACK",
  1727. "DIAG",
  1728. "DIAG_MASK_INF",
  1729. "DIAG_MASK_ZERO",
  1730. "SOFT_MAX",
  1731. "SOFT_MAX_BACK",
  1732. "ROPE",
  1733. "ROPE_BACK",
  1734. "ALIBI",
  1735. "CLAMP",
  1736. "CONV_TRANSPOSE_1D",
  1737. "IM2COL",
  1738. "CONV_TRANSPOSE_2D",
  1739. "POOL_1D",
  1740. "POOL_2D",
  1741. "UPSCALE",
  1742. "PAD",
  1743. "ARANGE",
  1744. "TIMESTEP_EMBEDDING",
  1745. "ARGSORT",
  1746. "LEAKY_RELU",
  1747. "FLASH_ATTN",
  1748. "FLASH_FF",
  1749. "FLASH_ATTN_BACK",
  1750. "SSM_CONV",
  1751. "SSM_SCAN",
  1752. "WIN_PART",
  1753. "WIN_UNPART",
  1754. "GET_REL_POS",
  1755. "ADD_REL_POS",
  1756. "UNARY",
  1757. "MAP_UNARY",
  1758. "MAP_BINARY",
  1759. "MAP_CUSTOM1_F32",
  1760. "MAP_CUSTOM2_F32",
  1761. "MAP_CUSTOM3_F32",
  1762. "MAP_CUSTOM1",
  1763. "MAP_CUSTOM2",
  1764. "MAP_CUSTOM3",
  1765. "CROSS_ENTROPY_LOSS",
  1766. "CROSS_ENTROPY_LOSS_BACK",
  1767. };
  1768. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1769. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1770. "none",
  1771. "x",
  1772. "x+y",
  1773. "x+y",
  1774. "view(x,nb,offset)+=y->x",
  1775. "x-y",
  1776. "x*y",
  1777. "x/y",
  1778. "x^2",
  1779. "√x",
  1780. "log(x)",
  1781. "Σx",
  1782. "Σx_k",
  1783. "Σx/n",
  1784. "argmax(x)",
  1785. "repeat(x)",
  1786. "repeat_back(x)",
  1787. "concat(x, y)",
  1788. "silu_back(x)",
  1789. "norm(x)",
  1790. "rms_norm(x)",
  1791. "rms_norm_back(x)",
  1792. "group_norm(x)",
  1793. "X*Y",
  1794. "X[i]*Y",
  1795. "X*Y",
  1796. "x*v",
  1797. "y-\\>view(x)",
  1798. "x-\\>y",
  1799. "cont(x)",
  1800. "reshape(x)",
  1801. "view(x)",
  1802. "permute(x)",
  1803. "transpose(x)",
  1804. "get_rows(x)",
  1805. "get_rows_back(x)",
  1806. "diag(x)",
  1807. "diag_mask_inf(x)",
  1808. "diag_mask_zero(x)",
  1809. "soft_max(x)",
  1810. "soft_max_back(x)",
  1811. "rope(x)",
  1812. "rope_back(x)",
  1813. "alibi(x)",
  1814. "clamp(x)",
  1815. "conv_transpose_1d(x)",
  1816. "im2col(x)",
  1817. "conv_transpose_2d(x)",
  1818. "pool_1d(x)",
  1819. "pool_2d(x)",
  1820. "upscale(x)",
  1821. "pad(x)",
  1822. "arange(start, stop, step)",
  1823. "timestep_embedding(timesteps, dim, max_period)",
  1824. "argsort(x)",
  1825. "leaky_relu(x)",
  1826. "flash_attn(x)",
  1827. "flash_ff(x)",
  1828. "flash_attn_back(x)",
  1829. "ssm_conv(x)",
  1830. "ssm_scan(x)",
  1831. "win_part(x)",
  1832. "win_unpart(x)",
  1833. "get_rel_pos(x)",
  1834. "add_rel_pos(x)",
  1835. "unary(x)",
  1836. "f(x)",
  1837. "f(x,y)",
  1838. "custom_f32(x)",
  1839. "custom_f32(x,y)",
  1840. "custom_f32(x,y,z)",
  1841. "custom(x)",
  1842. "custom(x,y)",
  1843. "custom(x,y,z)",
  1844. "cross_entropy_loss(x,y)",
  1845. "cross_entropy_loss_back(x,y)",
  1846. };
  1847. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1848. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1849. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1850. "ABS",
  1851. "SGN",
  1852. "NEG",
  1853. "STEP",
  1854. "TANH",
  1855. "ELU",
  1856. "RELU",
  1857. "GELU",
  1858. "GELU_QUICK",
  1859. "SILU",
  1860. "HARDSWISH",
  1861. "HARDSIGMOID",
  1862. };
  1863. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1864. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1865. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1866. // WARN:
  1867. // Mis-configuration can lead to problem that's hard to reason about:
  1868. // * At best it crash or talks nosense.
  1869. // * At worst it talks slightly difference but hard to perceive.
  1870. //
  1871. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1872. // Take care about compile options (e.g., GGML_USE_xxx).
  1873. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1874. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1875. static void ggml_setup_op_has_task_pass(void) {
  1876. { // INIT
  1877. bool * p = GGML_OP_HAS_INIT;
  1878. p[GGML_OP_ACC ] = true;
  1879. p[GGML_OP_MUL_MAT ] = true;
  1880. p[GGML_OP_MUL_MAT_ID ] = true;
  1881. p[GGML_OP_OUT_PROD ] = true;
  1882. p[GGML_OP_SET ] = true;
  1883. p[GGML_OP_GET_ROWS_BACK ] = true;
  1884. p[GGML_OP_DIAG_MASK_INF ] = true;
  1885. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1886. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1887. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1888. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1889. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1890. p[GGML_OP_ADD_REL_POS ] = true;
  1891. }
  1892. { // FINALIZE
  1893. bool * p = GGML_OP_HAS_FINALIZE;
  1894. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1895. }
  1896. }
  1897. //
  1898. // ggml context
  1899. //
  1900. struct ggml_context {
  1901. size_t mem_size;
  1902. void * mem_buffer;
  1903. bool mem_buffer_owned;
  1904. bool no_alloc;
  1905. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1906. int n_objects;
  1907. struct ggml_object * objects_begin;
  1908. struct ggml_object * objects_end;
  1909. struct ggml_scratch scratch;
  1910. struct ggml_scratch scratch_save;
  1911. };
  1912. struct ggml_context_container {
  1913. bool used;
  1914. struct ggml_context context;
  1915. };
  1916. //
  1917. // NUMA support
  1918. //
  1919. #define GGML_NUMA_MAX_NODES 8
  1920. #define GGML_NUMA_MAX_CPUS 512
  1921. struct ggml_numa_node {
  1922. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1923. uint32_t n_cpus;
  1924. };
  1925. struct ggml_numa_nodes {
  1926. enum ggml_numa_strategy numa_strategy;
  1927. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1928. uint32_t n_nodes;
  1929. uint32_t total_cpus; // hardware threads on system
  1930. uint32_t current_node; // node on which main process is execting
  1931. #if defined(__gnu_linux__)
  1932. cpu_set_t cpuset; // cpuset from numactl
  1933. #else
  1934. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1935. #endif
  1936. };
  1937. //
  1938. // ggml state
  1939. //
  1940. struct ggml_state {
  1941. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1942. struct ggml_numa_nodes numa;
  1943. };
  1944. // global state
  1945. static struct ggml_state g_state;
  1946. static atomic_int g_state_barrier = 0;
  1947. // barrier via spin lock
  1948. inline static void ggml_critical_section_start(void) {
  1949. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1950. while (processing > 0) {
  1951. // wait for other threads to finish
  1952. atomic_fetch_sub(&g_state_barrier, 1);
  1953. sched_yield(); // TODO: reconsider this
  1954. processing = atomic_fetch_add(&g_state_barrier, 1);
  1955. }
  1956. }
  1957. // TODO: make this somehow automatically executed
  1958. // some sort of "sentry" mechanism
  1959. inline static void ggml_critical_section_end(void) {
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. }
  1962. #if defined(__gnu_linux__)
  1963. static cpu_set_t ggml_get_numa_affinity(void) {
  1964. cpu_set_t cpuset;
  1965. pthread_t thread;
  1966. thread = pthread_self();
  1967. CPU_ZERO(&cpuset);
  1968. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1969. return cpuset;
  1970. }
  1971. #else
  1972. static uint32_t ggml_get_numa_affinity(void) {
  1973. return 0; // no NUMA support
  1974. }
  1975. #endif
  1976. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1977. if (g_state.numa.n_nodes > 0) {
  1978. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1979. return;
  1980. }
  1981. #if defined(__gnu_linux__)
  1982. struct stat st;
  1983. char path[256];
  1984. int rv;
  1985. // set numa scheme
  1986. g_state.numa.numa_strategy = numa_flag;
  1987. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1988. g_state.numa.cpuset = ggml_get_numa_affinity();
  1989. // enumerate nodes
  1990. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1991. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1992. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1993. if (stat(path, &st) != 0) { break; }
  1994. ++g_state.numa.n_nodes;
  1995. }
  1996. // enumerate CPUs
  1997. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1998. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1999. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2000. if (stat(path, &st) != 0) { break; }
  2001. ++g_state.numa.total_cpus;
  2002. }
  2003. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2004. // figure out which node we're on
  2005. uint current_cpu;
  2006. int getcpu_ret = 0;
  2007. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2008. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2009. #else
  2010. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2011. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2012. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2013. # endif
  2014. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2015. #endif
  2016. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2017. g_state.numa.n_nodes = 0;
  2018. return;
  2019. }
  2020. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2021. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2022. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2023. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2024. node->n_cpus = 0;
  2025. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2026. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2027. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2028. if (stat(path, &st) == 0) {
  2029. node->cpus[node->n_cpus++] = c;
  2030. GGML_PRINT_DEBUG(" %u", c);
  2031. }
  2032. }
  2033. GGML_PRINT_DEBUG("\n");
  2034. }
  2035. if (ggml_is_numa()) {
  2036. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2037. if (fptr != NULL) {
  2038. char buf[42];
  2039. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2040. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2041. }
  2042. fclose(fptr);
  2043. }
  2044. }
  2045. #else
  2046. GGML_UNUSED(numa_flag);
  2047. // TODO
  2048. #endif
  2049. }
  2050. bool ggml_is_numa(void) {
  2051. return g_state.numa.n_nodes > 1;
  2052. }
  2053. ////////////////////////////////////////////////////////////////////////////////
  2054. void ggml_print_object(const struct ggml_object * obj) {
  2055. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2056. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2057. }
  2058. void ggml_print_objects(const struct ggml_context * ctx) {
  2059. struct ggml_object * obj = ctx->objects_begin;
  2060. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2061. while (obj != NULL) {
  2062. ggml_print_object(obj);
  2063. obj = obj->next;
  2064. }
  2065. GGML_PRINT("%s: --- end ---\n", __func__);
  2066. }
  2067. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2068. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2069. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2070. }
  2071. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2074. }
  2075. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2076. size_t nbytes;
  2077. size_t blck_size = ggml_blck_size(tensor->type);
  2078. if (blck_size == 1) {
  2079. nbytes = ggml_type_size(tensor->type);
  2080. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2081. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2082. }
  2083. }
  2084. else {
  2085. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2086. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2087. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2088. }
  2089. }
  2090. return nbytes;
  2091. }
  2092. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2093. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2094. }
  2095. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2096. return type_traits[type].blck_size;
  2097. }
  2098. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2099. return type_traits[type].type_size;
  2100. }
  2101. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2102. assert(ne % ggml_blck_size(type) == 0);
  2103. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2104. }
  2105. double ggml_type_sizef(enum ggml_type type) {
  2106. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2107. }
  2108. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2109. return type_traits[type].type_name;
  2110. }
  2111. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2112. return type_traits[type].is_quantized;
  2113. }
  2114. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2115. return GGML_OP_NAME[op];
  2116. }
  2117. const char * ggml_op_symbol(enum ggml_op op) {
  2118. return GGML_OP_SYMBOL[op];
  2119. }
  2120. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2121. return GGML_UNARY_OP_NAME[op];
  2122. }
  2123. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2124. if (t->op == GGML_OP_UNARY) {
  2125. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2126. return ggml_unary_op_name(uop);
  2127. }
  2128. else {
  2129. return ggml_op_name(t->op);
  2130. }
  2131. }
  2132. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2133. return ggml_type_size(tensor->type);
  2134. }
  2135. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2136. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2137. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2138. }
  2139. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2140. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2141. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2142. }
  2143. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2148. return tensor->ne[3] == 1;
  2149. }
  2150. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2151. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2152. if (tensor->ne[i] > 1) {
  2153. return i + 1;
  2154. }
  2155. }
  2156. return 1;
  2157. }
  2158. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2159. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2160. return (t0->ne[0] == t1->ne[0]) &&
  2161. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2162. (t1->ne[3]%t0->ne[3] == 0);
  2163. }
  2164. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2165. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2166. return (t0->ne[1] == t1->ne[1]) &&
  2167. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2168. (t1->ne[3]%t0->ne[3] == 0);
  2169. }
  2170. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2171. enum ggml_type wtype = GGML_TYPE_COUNT;
  2172. switch (ftype) {
  2173. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2174. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2175. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2176. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2177. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2178. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2179. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2180. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2181. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2182. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2183. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2184. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2185. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2186. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2187. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2188. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2189. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2190. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2191. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2192. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2194. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2195. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2196. }
  2197. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2198. return wtype;
  2199. }
  2200. size_t ggml_tensor_overhead(void) {
  2201. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2202. }
  2203. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2204. return tensor->nb[0] > tensor->nb[1];
  2205. }
  2206. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2207. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2208. return
  2209. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2210. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2211. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2212. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2213. }
  2214. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2219. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2220. }
  2221. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2222. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2223. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2224. }
  2225. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2226. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2227. return
  2228. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2229. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2230. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2231. }
  2232. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2233. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2234. if (tensor->ne[i] == 0) {
  2235. // empty if any dimension has no elements
  2236. return true;
  2237. }
  2238. }
  2239. return false;
  2240. }
  2241. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2242. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2243. return
  2244. (t0->ne[0] == t1->ne[0] ) &&
  2245. (t0->ne[1] == t1->ne[1] ) &&
  2246. (t0->ne[2] == t1->ne[2] ) &&
  2247. (t0->ne[3] == t1->ne[3] );
  2248. }
  2249. // check if t1 can be represented as a repeatition of t0
  2250. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2251. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2252. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2253. (t1->ne[0]%t0->ne[0] == 0) &&
  2254. (t1->ne[1]%t0->ne[1] == 0) &&
  2255. (t1->ne[2]%t0->ne[2] == 0) &&
  2256. (t1->ne[3]%t0->ne[3] == 0);
  2257. }
  2258. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2261. }
  2262. static inline int ggml_up32(int n) {
  2263. return (n + 31) & ~31;
  2264. }
  2265. //static inline int ggml_up64(int n) {
  2266. // return (n + 63) & ~63;
  2267. //}
  2268. static inline int ggml_up(int n, int m) {
  2269. // assert m is a power of 2
  2270. GGML_ASSERT((m & (m - 1)) == 0);
  2271. return (n + m - 1) & ~(m - 1);
  2272. }
  2273. // assert that pointer is aligned to GGML_MEM_ALIGN
  2274. #define ggml_assert_aligned(ptr) \
  2275. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2276. ////////////////////////////////////////////////////////////////////////////////
  2277. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2278. // make this function thread safe
  2279. ggml_critical_section_start();
  2280. static bool is_first_call = true;
  2281. if (is_first_call) {
  2282. // initialize time system (required on Windows)
  2283. ggml_time_init();
  2284. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2285. {
  2286. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2287. ggml_fp16_t ii;
  2288. for (int i = 0; i < (1 << 16); ++i) {
  2289. uint16_t ui = i;
  2290. memcpy(&ii, &ui, sizeof(ii));
  2291. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2292. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2293. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2294. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2295. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2296. }
  2297. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2298. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2299. }
  2300. // initialize g_state
  2301. {
  2302. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2303. g_state = (struct ggml_state) {
  2304. /*.contexts =*/ { { 0 } },
  2305. /*.numa =*/ {
  2306. .n_nodes = 0,
  2307. .total_cpus = 0,
  2308. },
  2309. };
  2310. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2311. g_state.contexts[i].used = false;
  2312. }
  2313. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2314. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2315. }
  2316. #if defined(GGML_USE_CLBLAST)
  2317. ggml_cl_init();
  2318. #endif
  2319. ggml_setup_op_has_task_pass();
  2320. is_first_call = false;
  2321. }
  2322. // find non-used context in g_state
  2323. struct ggml_context * ctx = NULL;
  2324. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2325. if (!g_state.contexts[i].used) {
  2326. g_state.contexts[i].used = true;
  2327. ctx = &g_state.contexts[i].context;
  2328. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2329. break;
  2330. }
  2331. }
  2332. if (ctx == NULL) {
  2333. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2334. ggml_critical_section_end();
  2335. return NULL;
  2336. }
  2337. // allow to call ggml_init with 0 size
  2338. if (params.mem_size == 0) {
  2339. params.mem_size = GGML_MEM_ALIGN;
  2340. }
  2341. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2342. *ctx = (struct ggml_context) {
  2343. /*.mem_size =*/ mem_size,
  2344. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2345. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2346. /*.no_alloc =*/ params.no_alloc,
  2347. /*.no_alloc_save =*/ params.no_alloc,
  2348. /*.n_objects =*/ 0,
  2349. /*.objects_begin =*/ NULL,
  2350. /*.objects_end =*/ NULL,
  2351. /*.scratch =*/ { 0, 0, NULL, },
  2352. /*.scratch_save =*/ { 0, 0, NULL, },
  2353. };
  2354. GGML_ASSERT(ctx->mem_buffer != NULL);
  2355. ggml_assert_aligned(ctx->mem_buffer);
  2356. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2357. ggml_critical_section_end();
  2358. return ctx;
  2359. }
  2360. void ggml_free(struct ggml_context * ctx) {
  2361. if (ctx == NULL) {
  2362. return;
  2363. }
  2364. // make this function thread safe
  2365. ggml_critical_section_start();
  2366. bool found = false;
  2367. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2368. if (&g_state.contexts[i].context == ctx) {
  2369. g_state.contexts[i].used = false;
  2370. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2371. __func__, i, ggml_used_mem(ctx));
  2372. if (ctx->mem_buffer_owned) {
  2373. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2374. }
  2375. found = true;
  2376. break;
  2377. }
  2378. }
  2379. if (!found) {
  2380. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2381. }
  2382. ggml_critical_section_end();
  2383. }
  2384. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2385. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2386. }
  2387. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2388. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2389. ctx->scratch = scratch;
  2390. return result;
  2391. }
  2392. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2393. return ctx->no_alloc;
  2394. }
  2395. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2396. ctx->no_alloc = no_alloc;
  2397. }
  2398. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2399. return ctx->mem_buffer;
  2400. }
  2401. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2402. return ctx->mem_size;
  2403. }
  2404. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2405. size_t max_size = 0;
  2406. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2407. size_t bytes = ggml_nbytes(tensor);
  2408. max_size = MAX(max_size, bytes);
  2409. }
  2410. return max_size;
  2411. }
  2412. // IMPORTANT:
  2413. // when creating "opt" tensors, always save and load the scratch buffer
  2414. // this is an error prone process, but it is necessary to support inplace
  2415. // operators when using scratch buffers
  2416. // TODO: implement a better way
  2417. static void ggml_scratch_save(struct ggml_context * ctx) {
  2418. // this is needed to allow opt tensors to store their data
  2419. // TODO: again, need to find a better way
  2420. ctx->no_alloc_save = ctx->no_alloc;
  2421. ctx->no_alloc = false;
  2422. ctx->scratch_save = ctx->scratch;
  2423. ctx->scratch.data = NULL;
  2424. }
  2425. static void ggml_scratch_load(struct ggml_context * ctx) {
  2426. ctx->no_alloc = ctx->no_alloc_save;
  2427. ctx->scratch = ctx->scratch_save;
  2428. }
  2429. ////////////////////////////////////////////////////////////////////////////////
  2430. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2431. // always insert objects at the end of the context's memory pool
  2432. struct ggml_object * obj_cur = ctx->objects_end;
  2433. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2434. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2435. const size_t cur_end = cur_offs + cur_size;
  2436. // align to GGML_MEM_ALIGN
  2437. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2438. char * const mem_buffer = ctx->mem_buffer;
  2439. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2440. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2441. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2442. __func__, cur_end + size_needed, ctx->mem_size);
  2443. assert(false);
  2444. return NULL;
  2445. }
  2446. *obj_new = (struct ggml_object) {
  2447. .offs = cur_end + GGML_OBJECT_SIZE,
  2448. .size = size_needed,
  2449. .next = NULL,
  2450. .type = type,
  2451. };
  2452. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2453. if (obj_cur != NULL) {
  2454. obj_cur->next = obj_new;
  2455. } else {
  2456. // this is the first object in this context
  2457. ctx->objects_begin = obj_new;
  2458. }
  2459. ctx->objects_end = obj_new;
  2460. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2461. return obj_new;
  2462. }
  2463. static struct ggml_tensor * ggml_new_tensor_impl(
  2464. struct ggml_context * ctx,
  2465. enum ggml_type type,
  2466. int n_dims,
  2467. const int64_t * ne,
  2468. struct ggml_tensor * view_src,
  2469. size_t view_offs) {
  2470. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2471. // find the base tensor and absolute offset
  2472. if (view_src != NULL && view_src->view_src != NULL) {
  2473. view_offs += view_src->view_offs;
  2474. view_src = view_src->view_src;
  2475. }
  2476. size_t data_size = ggml_row_size(type, ne[0]);
  2477. for (int i = 1; i < n_dims; i++) {
  2478. data_size *= ne[i];
  2479. }
  2480. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2481. void * data = view_src != NULL ? view_src->data : NULL;
  2482. if (data != NULL) {
  2483. data = (char *) data + view_offs;
  2484. }
  2485. size_t obj_alloc_size = 0;
  2486. if (view_src == NULL && !ctx->no_alloc) {
  2487. if (ctx->scratch.data != NULL) {
  2488. // allocate tensor data in the scratch buffer
  2489. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2490. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2491. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2492. assert(false);
  2493. return NULL;
  2494. }
  2495. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2496. ctx->scratch.offs += data_size;
  2497. } else {
  2498. // allocate tensor data in the context's memory pool
  2499. obj_alloc_size = data_size;
  2500. }
  2501. }
  2502. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2503. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2504. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2505. *result = (struct ggml_tensor) {
  2506. /*.type =*/ type,
  2507. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2508. /*.buffer =*/ NULL,
  2509. /*.ne =*/ { 1, 1, 1, 1 },
  2510. /*.nb =*/ { 0, 0, 0, 0 },
  2511. /*.op =*/ GGML_OP_NONE,
  2512. /*.op_params =*/ { 0 },
  2513. /*.flags =*/ 0,
  2514. /*.grad =*/ NULL,
  2515. /*.src =*/ { NULL },
  2516. /*.perf_runs =*/ 0,
  2517. /*.perf_cycles =*/ 0,
  2518. /*.perf_time_us =*/ 0,
  2519. /*.view_src =*/ view_src,
  2520. /*.view_offs =*/ view_offs,
  2521. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2522. /*.name =*/ { 0 },
  2523. /*.extra =*/ NULL,
  2524. /*.padding =*/ { 0 },
  2525. };
  2526. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2527. //ggml_assert_aligned(result->data);
  2528. for (int i = 0; i < n_dims; i++) {
  2529. result->ne[i] = ne[i];
  2530. }
  2531. result->nb[0] = ggml_type_size(type);
  2532. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2533. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2534. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2535. }
  2536. ctx->n_objects++;
  2537. return result;
  2538. }
  2539. struct ggml_tensor * ggml_new_tensor(
  2540. struct ggml_context * ctx,
  2541. enum ggml_type type,
  2542. int n_dims,
  2543. const int64_t * ne) {
  2544. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2545. }
  2546. struct ggml_tensor * ggml_new_tensor_1d(
  2547. struct ggml_context * ctx,
  2548. enum ggml_type type,
  2549. int64_t ne0) {
  2550. return ggml_new_tensor(ctx, type, 1, &ne0);
  2551. }
  2552. struct ggml_tensor * ggml_new_tensor_2d(
  2553. struct ggml_context * ctx,
  2554. enum ggml_type type,
  2555. int64_t ne0,
  2556. int64_t ne1) {
  2557. const int64_t ne[2] = { ne0, ne1 };
  2558. return ggml_new_tensor(ctx, type, 2, ne);
  2559. }
  2560. struct ggml_tensor * ggml_new_tensor_3d(
  2561. struct ggml_context * ctx,
  2562. enum ggml_type type,
  2563. int64_t ne0,
  2564. int64_t ne1,
  2565. int64_t ne2) {
  2566. const int64_t ne[3] = { ne0, ne1, ne2 };
  2567. return ggml_new_tensor(ctx, type, 3, ne);
  2568. }
  2569. struct ggml_tensor * ggml_new_tensor_4d(
  2570. struct ggml_context * ctx,
  2571. enum ggml_type type,
  2572. int64_t ne0,
  2573. int64_t ne1,
  2574. int64_t ne2,
  2575. int64_t ne3) {
  2576. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2577. return ggml_new_tensor(ctx, type, 4, ne);
  2578. }
  2579. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2580. ggml_scratch_save(ctx);
  2581. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2582. ggml_scratch_load(ctx);
  2583. ggml_set_i32(result, value);
  2584. return result;
  2585. }
  2586. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2587. ggml_scratch_save(ctx);
  2588. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2589. ggml_scratch_load(ctx);
  2590. ggml_set_f32(result, value);
  2591. return result;
  2592. }
  2593. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2594. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2595. }
  2596. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2597. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2598. assert(params_size <= GGML_MAX_OP_PARAMS);
  2599. memcpy(tensor->op_params, params, params_size);
  2600. }
  2601. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2602. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2603. return ((const int32_t *)(tensor->op_params))[i];
  2604. }
  2605. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2606. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2607. return ((const float *)(tensor->op_params))[i];
  2608. }
  2609. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2611. ((int32_t *)(tensor->op_params))[i] = value;
  2612. }
  2613. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2615. ((float *)(tensor->op_params))[i] = value;
  2616. }
  2617. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2618. memset(tensor->data, 0, ggml_nbytes(tensor));
  2619. return tensor;
  2620. }
  2621. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2622. const int n = ggml_nrows(tensor);
  2623. const int nc = tensor->ne[0];
  2624. const size_t n1 = tensor->nb[1];
  2625. char * const data = tensor->data;
  2626. switch (tensor->type) {
  2627. case GGML_TYPE_I8:
  2628. {
  2629. assert(tensor->nb[0] == sizeof(int8_t));
  2630. for (int i = 0; i < n; i++) {
  2631. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2632. }
  2633. } break;
  2634. case GGML_TYPE_I16:
  2635. {
  2636. assert(tensor->nb[0] == sizeof(int16_t));
  2637. for (int i = 0; i < n; i++) {
  2638. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2639. }
  2640. } break;
  2641. case GGML_TYPE_I32:
  2642. {
  2643. assert(tensor->nb[0] == sizeof(int32_t));
  2644. for (int i = 0; i < n; i++) {
  2645. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2646. }
  2647. } break;
  2648. case GGML_TYPE_F16:
  2649. {
  2650. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2651. for (int i = 0; i < n; i++) {
  2652. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2653. }
  2654. } break;
  2655. case GGML_TYPE_F32:
  2656. {
  2657. assert(tensor->nb[0] == sizeof(float));
  2658. for (int i = 0; i < n; i++) {
  2659. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2660. }
  2661. } break;
  2662. default:
  2663. {
  2664. GGML_ASSERT(false);
  2665. } break;
  2666. }
  2667. return tensor;
  2668. }
  2669. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2670. const int n = ggml_nrows(tensor);
  2671. const int nc = tensor->ne[0];
  2672. const size_t n1 = tensor->nb[1];
  2673. char * const data = tensor->data;
  2674. switch (tensor->type) {
  2675. case GGML_TYPE_I8:
  2676. {
  2677. assert(tensor->nb[0] == sizeof(int8_t));
  2678. for (int i = 0; i < n; i++) {
  2679. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2680. }
  2681. } break;
  2682. case GGML_TYPE_I16:
  2683. {
  2684. assert(tensor->nb[0] == sizeof(int16_t));
  2685. for (int i = 0; i < n; i++) {
  2686. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2687. }
  2688. } break;
  2689. case GGML_TYPE_I32:
  2690. {
  2691. assert(tensor->nb[0] == sizeof(int32_t));
  2692. for (int i = 0; i < n; i++) {
  2693. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2694. }
  2695. } break;
  2696. case GGML_TYPE_F16:
  2697. {
  2698. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2699. for (int i = 0; i < n; i++) {
  2700. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2701. }
  2702. } break;
  2703. case GGML_TYPE_F32:
  2704. {
  2705. assert(tensor->nb[0] == sizeof(float));
  2706. for (int i = 0; i < n; i++) {
  2707. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2708. }
  2709. } break;
  2710. default:
  2711. {
  2712. GGML_ASSERT(false);
  2713. } break;
  2714. }
  2715. return tensor;
  2716. }
  2717. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2718. const int64_t ne2 = tensor->ne[2];
  2719. const int64_t ne1 = tensor->ne[1];
  2720. const int64_t ne0 = tensor->ne[0];
  2721. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2722. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2723. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2724. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2725. if (i0) {
  2726. * i0 = i0_;
  2727. }
  2728. if (i1) {
  2729. * i1 = i1_;
  2730. }
  2731. if (i2) {
  2732. * i2 = i2_;
  2733. }
  2734. if (i3) {
  2735. * i3 = i3_;
  2736. }
  2737. }
  2738. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2739. if (!ggml_is_contiguous(tensor)) {
  2740. int64_t id[4] = { 0, 0, 0, 0 };
  2741. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2742. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2743. }
  2744. switch (tensor->type) {
  2745. case GGML_TYPE_I8:
  2746. {
  2747. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2748. return ((int8_t *)(tensor->data))[i];
  2749. }
  2750. case GGML_TYPE_I16:
  2751. {
  2752. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2753. return ((int16_t *)(tensor->data))[i];
  2754. }
  2755. case GGML_TYPE_I32:
  2756. {
  2757. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2758. return ((int32_t *)(tensor->data))[i];
  2759. }
  2760. case GGML_TYPE_F16:
  2761. {
  2762. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2763. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2764. }
  2765. case GGML_TYPE_F32:
  2766. {
  2767. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2768. return ((float *)(tensor->data))[i];
  2769. }
  2770. default:
  2771. {
  2772. GGML_ASSERT(false);
  2773. }
  2774. }
  2775. return 0.0f;
  2776. }
  2777. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2778. if (!ggml_is_contiguous(tensor)) {
  2779. int64_t id[4] = { 0, 0, 0, 0 };
  2780. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2781. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2782. return;
  2783. }
  2784. switch (tensor->type) {
  2785. case GGML_TYPE_I8:
  2786. {
  2787. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2788. ((int8_t *)(tensor->data))[i] = value;
  2789. } break;
  2790. case GGML_TYPE_I16:
  2791. {
  2792. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2793. ((int16_t *)(tensor->data))[i] = value;
  2794. } break;
  2795. case GGML_TYPE_I32:
  2796. {
  2797. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2798. ((int32_t *)(tensor->data))[i] = value;
  2799. } break;
  2800. case GGML_TYPE_F16:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2803. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2804. } break;
  2805. case GGML_TYPE_F32:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2808. ((float *)(tensor->data))[i] = value;
  2809. } break;
  2810. default:
  2811. {
  2812. GGML_ASSERT(false);
  2813. } break;
  2814. }
  2815. }
  2816. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2817. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2818. switch (tensor->type) {
  2819. case GGML_TYPE_I8:
  2820. return ((int8_t *) data)[0];
  2821. case GGML_TYPE_I16:
  2822. return ((int16_t *) data)[0];
  2823. case GGML_TYPE_I32:
  2824. return ((int32_t *) data)[0];
  2825. case GGML_TYPE_F16:
  2826. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2827. case GGML_TYPE_F32:
  2828. return ((float *) data)[0];
  2829. default:
  2830. GGML_ASSERT(false);
  2831. }
  2832. return 0.0f;
  2833. }
  2834. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2835. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2836. switch (tensor->type) {
  2837. case GGML_TYPE_I8:
  2838. {
  2839. ((int8_t *)(data))[0] = value;
  2840. } break;
  2841. case GGML_TYPE_I16:
  2842. {
  2843. ((int16_t *)(data))[0] = value;
  2844. } break;
  2845. case GGML_TYPE_I32:
  2846. {
  2847. ((int32_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_F16:
  2850. {
  2851. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2852. } break;
  2853. case GGML_TYPE_F32:
  2854. {
  2855. ((float *)(data))[0] = value;
  2856. } break;
  2857. default:
  2858. {
  2859. GGML_ASSERT(false);
  2860. } break;
  2861. }
  2862. }
  2863. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2864. if (!ggml_is_contiguous(tensor)) {
  2865. int64_t id[4] = { 0, 0, 0, 0 };
  2866. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2867. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2868. }
  2869. switch (tensor->type) {
  2870. case GGML_TYPE_I8:
  2871. {
  2872. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2873. return ((int8_t *)(tensor->data))[i];
  2874. }
  2875. case GGML_TYPE_I16:
  2876. {
  2877. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2878. return ((int16_t *)(tensor->data))[i];
  2879. }
  2880. case GGML_TYPE_I32:
  2881. {
  2882. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2883. return ((int32_t *)(tensor->data))[i];
  2884. }
  2885. case GGML_TYPE_F16:
  2886. {
  2887. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2888. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2889. }
  2890. case GGML_TYPE_F32:
  2891. {
  2892. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2893. return ((float *)(tensor->data))[i];
  2894. }
  2895. default:
  2896. {
  2897. GGML_ASSERT(false);
  2898. }
  2899. }
  2900. return 0.0f;
  2901. }
  2902. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2903. if (!ggml_is_contiguous(tensor)) {
  2904. int64_t id[4] = { 0, 0, 0, 0 };
  2905. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2906. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2907. return;
  2908. }
  2909. switch (tensor->type) {
  2910. case GGML_TYPE_I8:
  2911. {
  2912. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2913. ((int8_t *)(tensor->data))[i] = value;
  2914. } break;
  2915. case GGML_TYPE_I16:
  2916. {
  2917. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2918. ((int16_t *)(tensor->data))[i] = value;
  2919. } break;
  2920. case GGML_TYPE_I32:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2923. ((int32_t *)(tensor->data))[i] = value;
  2924. } break;
  2925. case GGML_TYPE_F16:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2928. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2929. } break;
  2930. case GGML_TYPE_F32:
  2931. {
  2932. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2933. ((float *)(tensor->data))[i] = value;
  2934. } break;
  2935. default:
  2936. {
  2937. GGML_ASSERT(false);
  2938. } break;
  2939. }
  2940. }
  2941. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2942. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2943. switch (tensor->type) {
  2944. case GGML_TYPE_I8:
  2945. return ((int8_t *) data)[0];
  2946. case GGML_TYPE_I16:
  2947. return ((int16_t *) data)[0];
  2948. case GGML_TYPE_I32:
  2949. return ((int32_t *) data)[0];
  2950. case GGML_TYPE_F16:
  2951. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2952. case GGML_TYPE_F32:
  2953. return ((float *) data)[0];
  2954. default:
  2955. GGML_ASSERT(false);
  2956. }
  2957. return 0.0f;
  2958. }
  2959. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2960. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2961. switch (tensor->type) {
  2962. case GGML_TYPE_I8:
  2963. {
  2964. ((int8_t *)(data))[0] = value;
  2965. } break;
  2966. case GGML_TYPE_I16:
  2967. {
  2968. ((int16_t *)(data))[0] = value;
  2969. } break;
  2970. case GGML_TYPE_I32:
  2971. {
  2972. ((int32_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_F16:
  2975. {
  2976. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2977. } break;
  2978. case GGML_TYPE_F32:
  2979. {
  2980. ((float *)(data))[0] = value;
  2981. } break;
  2982. default:
  2983. {
  2984. GGML_ASSERT(false);
  2985. } break;
  2986. }
  2987. }
  2988. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2989. return tensor->data;
  2990. }
  2991. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2992. assert(tensor->type == GGML_TYPE_F32);
  2993. return (float *)(tensor->data);
  2994. }
  2995. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2996. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2997. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2998. }
  2999. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3000. return tensor->name;
  3001. }
  3002. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3003. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3004. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3005. return tensor;
  3006. }
  3007. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3008. va_list args;
  3009. va_start(args, fmt);
  3010. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3011. va_end(args);
  3012. return tensor;
  3013. }
  3014. struct ggml_tensor * ggml_view_tensor(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * src) {
  3017. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3018. ggml_format_name(result, "%s (view)", src->name);
  3019. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3020. result->nb[i] = src->nb[i];
  3021. }
  3022. return result;
  3023. }
  3024. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3025. struct ggml_object * obj = ctx->objects_begin;
  3026. char * const mem_buffer = ctx->mem_buffer;
  3027. while (obj != NULL) {
  3028. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3029. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3030. }
  3031. obj = obj->next;
  3032. }
  3033. return NULL;
  3034. }
  3035. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3036. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3037. obj = obj->next;
  3038. char * const mem_buffer = ctx->mem_buffer;
  3039. while (obj != NULL) {
  3040. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3041. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3042. }
  3043. obj = obj->next;
  3044. }
  3045. return NULL;
  3046. }
  3047. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3048. struct ggml_object * obj = ctx->objects_begin;
  3049. char * const mem_buffer = ctx->mem_buffer;
  3050. while (obj != NULL) {
  3051. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3052. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3053. if (strcmp(cur->name, name) == 0) {
  3054. return cur;
  3055. }
  3056. }
  3057. obj = obj->next;
  3058. }
  3059. return NULL;
  3060. }
  3061. ////////////////////////////////////////////////////////////////////////////////
  3062. // ggml_dup
  3063. static struct ggml_tensor * ggml_dup_impl(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a,
  3066. bool inplace) {
  3067. bool is_node = false;
  3068. if (!inplace && (a->grad)) {
  3069. is_node = true;
  3070. }
  3071. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3072. result->op = GGML_OP_DUP;
  3073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3074. result->src[0] = a;
  3075. return result;
  3076. }
  3077. struct ggml_tensor * ggml_dup(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a) {
  3080. return ggml_dup_impl(ctx, a, false);
  3081. }
  3082. struct ggml_tensor * ggml_dup_inplace(
  3083. struct ggml_context * ctx,
  3084. struct ggml_tensor * a) {
  3085. return ggml_dup_impl(ctx, a, true);
  3086. }
  3087. // ggml_add
  3088. static struct ggml_tensor * ggml_add_impl(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a,
  3091. struct ggml_tensor * b,
  3092. bool inplace) {
  3093. GGML_ASSERT(ggml_can_repeat(b, a));
  3094. bool is_node = false;
  3095. if (!inplace && (a->grad || b->grad)) {
  3096. // TODO: support backward pass for broadcasting
  3097. GGML_ASSERT(ggml_are_same_shape(a, b));
  3098. is_node = true;
  3099. }
  3100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3101. result->op = GGML_OP_ADD;
  3102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3103. result->src[0] = a;
  3104. result->src[1] = b;
  3105. return result;
  3106. }
  3107. struct ggml_tensor * ggml_add(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a,
  3110. struct ggml_tensor * b) {
  3111. return ggml_add_impl(ctx, a, b, false);
  3112. }
  3113. struct ggml_tensor * ggml_add_inplace(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a,
  3116. struct ggml_tensor * b) {
  3117. return ggml_add_impl(ctx, a, b, true);
  3118. }
  3119. // ggml_add_cast
  3120. static struct ggml_tensor * ggml_add_cast_impl(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a,
  3123. struct ggml_tensor * b,
  3124. enum ggml_type type) {
  3125. // TODO: support less-strict constraint
  3126. // GGML_ASSERT(ggml_can_repeat(b, a));
  3127. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3128. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3129. bool is_node = false;
  3130. if (a->grad || b->grad) {
  3131. // TODO: support backward pass for broadcasting
  3132. GGML_ASSERT(ggml_are_same_shape(a, b));
  3133. is_node = true;
  3134. }
  3135. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3136. result->op = GGML_OP_ADD;
  3137. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3138. result->src[0] = a;
  3139. result->src[1] = b;
  3140. return result;
  3141. }
  3142. struct ggml_tensor * ggml_add_cast(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b,
  3146. enum ggml_type type) {
  3147. return ggml_add_cast_impl(ctx, a, b, type);
  3148. }
  3149. // ggml_add1
  3150. static struct ggml_tensor * ggml_add1_impl(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b,
  3154. bool inplace) {
  3155. GGML_ASSERT(ggml_is_scalar(b));
  3156. GGML_ASSERT(ggml_is_padded_1d(a));
  3157. bool is_node = false;
  3158. if (a->grad || b->grad) {
  3159. is_node = true;
  3160. }
  3161. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3162. result->op = GGML_OP_ADD1;
  3163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3164. result->src[0] = a;
  3165. result->src[1] = b;
  3166. return result;
  3167. }
  3168. struct ggml_tensor * ggml_add1(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a,
  3171. struct ggml_tensor * b) {
  3172. return ggml_add1_impl(ctx, a, b, false);
  3173. }
  3174. struct ggml_tensor * ggml_add1_inplace(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a,
  3177. struct ggml_tensor * b) {
  3178. return ggml_add1_impl(ctx, a, b, true);
  3179. }
  3180. // ggml_acc
  3181. static struct ggml_tensor * ggml_acc_impl(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a,
  3184. struct ggml_tensor * b,
  3185. size_t nb1,
  3186. size_t nb2,
  3187. size_t nb3,
  3188. size_t offset,
  3189. bool inplace) {
  3190. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3191. GGML_ASSERT(ggml_is_contiguous(a));
  3192. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3193. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3194. bool is_node = false;
  3195. if (!inplace && (a->grad || b->grad)) {
  3196. is_node = true;
  3197. }
  3198. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3199. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3200. ggml_set_op_params(result, params, sizeof(params));
  3201. result->op = GGML_OP_ACC;
  3202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3203. result->src[0] = a;
  3204. result->src[1] = b;
  3205. return result;
  3206. }
  3207. struct ggml_tensor * ggml_acc(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b,
  3211. size_t nb1,
  3212. size_t nb2,
  3213. size_t nb3,
  3214. size_t offset) {
  3215. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3216. }
  3217. struct ggml_tensor * ggml_acc_inplace(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. struct ggml_tensor * b,
  3221. size_t nb1,
  3222. size_t nb2,
  3223. size_t nb3,
  3224. size_t offset) {
  3225. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3226. }
  3227. // ggml_sub
  3228. static struct ggml_tensor * ggml_sub_impl(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a,
  3231. struct ggml_tensor * b,
  3232. bool inplace) {
  3233. GGML_ASSERT(ggml_are_same_shape(a, b));
  3234. bool is_node = false;
  3235. if (!inplace && (a->grad || b->grad)) {
  3236. is_node = true;
  3237. }
  3238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3239. result->op = GGML_OP_SUB;
  3240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3241. result->src[0] = a;
  3242. result->src[1] = b;
  3243. return result;
  3244. }
  3245. struct ggml_tensor * ggml_sub(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a,
  3248. struct ggml_tensor * b) {
  3249. return ggml_sub_impl(ctx, a, b, false);
  3250. }
  3251. struct ggml_tensor * ggml_sub_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a,
  3254. struct ggml_tensor * b) {
  3255. return ggml_sub_impl(ctx, a, b, true);
  3256. }
  3257. // ggml_mul
  3258. static struct ggml_tensor * ggml_mul_impl(
  3259. struct ggml_context * ctx,
  3260. struct ggml_tensor * a,
  3261. struct ggml_tensor * b,
  3262. bool inplace) {
  3263. GGML_ASSERT(ggml_can_repeat(b, a));
  3264. bool is_node = false;
  3265. if (!inplace && (a->grad || b->grad)) {
  3266. // TODO: support backward pass for broadcasting
  3267. GGML_ASSERT(ggml_are_same_shape(a, b));
  3268. is_node = true;
  3269. }
  3270. if (inplace) {
  3271. GGML_ASSERT(!is_node);
  3272. }
  3273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3274. result->op = GGML_OP_MUL;
  3275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3276. result->src[0] = a;
  3277. result->src[1] = b;
  3278. return result;
  3279. }
  3280. struct ggml_tensor * ggml_mul(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. struct ggml_tensor * b) {
  3284. return ggml_mul_impl(ctx, a, b, false);
  3285. }
  3286. struct ggml_tensor * ggml_mul_inplace(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. struct ggml_tensor * b) {
  3290. return ggml_mul_impl(ctx, a, b, true);
  3291. }
  3292. // ggml_div
  3293. static struct ggml_tensor * ggml_div_impl(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. struct ggml_tensor * b,
  3297. bool inplace) {
  3298. GGML_ASSERT(ggml_can_repeat(b, a));
  3299. bool is_node = false;
  3300. if (!inplace && (a->grad || b->grad)) {
  3301. is_node = true;
  3302. }
  3303. if (inplace) {
  3304. GGML_ASSERT(!is_node);
  3305. }
  3306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3307. result->op = GGML_OP_DIV;
  3308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3309. result->src[0] = a;
  3310. result->src[1] = b;
  3311. return result;
  3312. }
  3313. struct ggml_tensor * ggml_div(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b) {
  3317. return ggml_div_impl(ctx, a, b, false);
  3318. }
  3319. struct ggml_tensor * ggml_div_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. struct ggml_tensor * b) {
  3323. return ggml_div_impl(ctx, a, b, true);
  3324. }
  3325. // ggml_sqr
  3326. static struct ggml_tensor * ggml_sqr_impl(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. bool inplace) {
  3330. bool is_node = false;
  3331. if (!inplace && (a->grad)) {
  3332. is_node = true;
  3333. }
  3334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3335. result->op = GGML_OP_SQR;
  3336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3337. result->src[0] = a;
  3338. return result;
  3339. }
  3340. struct ggml_tensor * ggml_sqr(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_sqr_impl(ctx, a, false);
  3344. }
  3345. struct ggml_tensor * ggml_sqr_inplace(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a) {
  3348. return ggml_sqr_impl(ctx, a, true);
  3349. }
  3350. // ggml_sqrt
  3351. static struct ggml_tensor * ggml_sqrt_impl(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. bool inplace) {
  3355. bool is_node = false;
  3356. if (!inplace && (a->grad)) {
  3357. is_node = true;
  3358. }
  3359. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3360. result->op = GGML_OP_SQRT;
  3361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3362. result->src[0] = a;
  3363. return result;
  3364. }
  3365. struct ggml_tensor * ggml_sqrt(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a) {
  3368. return ggml_sqrt_impl(ctx, a, false);
  3369. }
  3370. struct ggml_tensor * ggml_sqrt_inplace(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a) {
  3373. return ggml_sqrt_impl(ctx, a, true);
  3374. }
  3375. // ggml_log
  3376. static struct ggml_tensor * ggml_log_impl(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a,
  3379. bool inplace) {
  3380. bool is_node = false;
  3381. if (!inplace && (a->grad)) {
  3382. is_node = true;
  3383. }
  3384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3385. result->op = GGML_OP_LOG;
  3386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3387. result->src[0] = a;
  3388. return result;
  3389. }
  3390. struct ggml_tensor * ggml_log(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a) {
  3393. return ggml_log_impl(ctx, a, false);
  3394. }
  3395. struct ggml_tensor * ggml_log_inplace(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_log_impl(ctx, a, true);
  3399. }
  3400. // ggml_sum
  3401. struct ggml_tensor * ggml_sum(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a) {
  3404. bool is_node = false;
  3405. if (a->grad) {
  3406. is_node = true;
  3407. }
  3408. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3409. result->op = GGML_OP_SUM;
  3410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3411. result->src[0] = a;
  3412. return result;
  3413. }
  3414. // ggml_sum_rows
  3415. struct ggml_tensor * ggml_sum_rows(
  3416. struct ggml_context * ctx,
  3417. struct ggml_tensor * a) {
  3418. bool is_node = false;
  3419. if (a->grad) {
  3420. is_node = true;
  3421. }
  3422. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3423. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3424. ne[i] = a->ne[i];
  3425. }
  3426. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3427. result->op = GGML_OP_SUM_ROWS;
  3428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3429. result->src[0] = a;
  3430. return result;
  3431. }
  3432. // ggml_mean
  3433. struct ggml_tensor * ggml_mean(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a) {
  3436. bool is_node = false;
  3437. if (a->grad) {
  3438. GGML_ASSERT(false); // TODO: implement
  3439. is_node = true;
  3440. }
  3441. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3442. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3443. result->op = GGML_OP_MEAN;
  3444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3445. result->src[0] = a;
  3446. return result;
  3447. }
  3448. // ggml_argmax
  3449. struct ggml_tensor * ggml_argmax(
  3450. struct ggml_context * ctx,
  3451. struct ggml_tensor * a) {
  3452. GGML_ASSERT(ggml_is_matrix(a));
  3453. bool is_node = false;
  3454. if (a->grad) {
  3455. GGML_ASSERT(false);
  3456. is_node = true;
  3457. }
  3458. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3459. result->op = GGML_OP_ARGMAX;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src[0] = a;
  3462. return result;
  3463. }
  3464. // ggml_repeat
  3465. struct ggml_tensor * ggml_repeat(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b) {
  3469. GGML_ASSERT(ggml_can_repeat(a, b));
  3470. bool is_node = false;
  3471. if (a->grad) {
  3472. is_node = true;
  3473. }
  3474. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3475. result->op = GGML_OP_REPEAT;
  3476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3477. result->src[0] = a;
  3478. return result;
  3479. }
  3480. // ggml_repeat_back
  3481. struct ggml_tensor * ggml_repeat_back(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a,
  3484. struct ggml_tensor * b) {
  3485. GGML_ASSERT(ggml_can_repeat(b, a));
  3486. bool is_node = false;
  3487. if (a->grad) {
  3488. is_node = true;
  3489. }
  3490. if (ggml_are_same_shape(a, b) && !is_node) {
  3491. return a;
  3492. }
  3493. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3494. result->op = GGML_OP_REPEAT_BACK;
  3495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3496. result->src[0] = a;
  3497. return result;
  3498. }
  3499. // ggml_concat
  3500. struct ggml_tensor * ggml_concat(
  3501. struct ggml_context* ctx,
  3502. struct ggml_tensor* a,
  3503. struct ggml_tensor* b) {
  3504. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3505. bool is_node = false;
  3506. if (a->grad || b->grad) {
  3507. is_node = true;
  3508. }
  3509. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3510. result->op = GGML_OP_CONCAT;
  3511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3512. result->src[0] = a;
  3513. result->src[1] = b;
  3514. return result;
  3515. }
  3516. // ggml_abs
  3517. struct ggml_tensor * ggml_abs(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a) {
  3520. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3521. }
  3522. struct ggml_tensor * ggml_abs_inplace(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a) {
  3525. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3526. }
  3527. // ggml_sgn
  3528. struct ggml_tensor * ggml_sgn(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a) {
  3531. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3532. }
  3533. struct ggml_tensor * ggml_sgn_inplace(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a) {
  3536. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3537. }
  3538. // ggml_neg
  3539. struct ggml_tensor * ggml_neg(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a) {
  3542. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3543. }
  3544. struct ggml_tensor * ggml_neg_inplace(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a) {
  3547. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3548. }
  3549. // ggml_step
  3550. struct ggml_tensor * ggml_step(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a) {
  3553. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3554. }
  3555. struct ggml_tensor * ggml_step_inplace(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a) {
  3558. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3559. }
  3560. // ggml_tanh
  3561. struct ggml_tensor * ggml_tanh(
  3562. struct ggml_context * ctx,
  3563. struct ggml_tensor * a) {
  3564. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3565. }
  3566. struct ggml_tensor * ggml_tanh_inplace(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a) {
  3569. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3570. }
  3571. // ggml_elu
  3572. struct ggml_tensor * ggml_elu(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a) {
  3575. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3576. }
  3577. struct ggml_tensor * ggml_elu_inplace(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a) {
  3580. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3581. }
  3582. // ggml_relu
  3583. struct ggml_tensor * ggml_relu(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a) {
  3586. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3587. }
  3588. struct ggml_tensor * ggml_relu_inplace(
  3589. struct ggml_context * ctx,
  3590. struct ggml_tensor * a) {
  3591. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3592. }
  3593. // ggml_leaky_relu
  3594. struct ggml_tensor * ggml_leaky_relu(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3597. bool is_node = false;
  3598. if (!inplace && (a->grad)) {
  3599. is_node = true;
  3600. }
  3601. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3602. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3603. result->op = GGML_OP_LEAKY_RELU;
  3604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3605. result->src[0] = a;
  3606. return result;
  3607. }
  3608. // ggml_gelu
  3609. struct ggml_tensor * ggml_gelu(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3613. }
  3614. struct ggml_tensor * ggml_gelu_inplace(
  3615. struct ggml_context * ctx,
  3616. struct ggml_tensor * a) {
  3617. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3618. }
  3619. // ggml_gelu_quick
  3620. struct ggml_tensor * ggml_gelu_quick(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a) {
  3623. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3624. }
  3625. struct ggml_tensor * ggml_gelu_quick_inplace(
  3626. struct ggml_context * ctx,
  3627. struct ggml_tensor * a) {
  3628. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3629. }
  3630. // ggml_silu
  3631. struct ggml_tensor * ggml_silu(
  3632. struct ggml_context * ctx,
  3633. struct ggml_tensor * a) {
  3634. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3635. }
  3636. struct ggml_tensor * ggml_silu_inplace(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3640. }
  3641. // ggml_silu_back
  3642. struct ggml_tensor * ggml_silu_back(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a,
  3645. struct ggml_tensor * b) {
  3646. bool is_node = false;
  3647. if (a->grad || b->grad) {
  3648. // TODO: implement backward
  3649. is_node = true;
  3650. }
  3651. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3652. result->op = GGML_OP_SILU_BACK;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src[0] = a;
  3655. result->src[1] = b;
  3656. return result;
  3657. }
  3658. // ggml hardswish
  3659. struct ggml_tensor * ggml_hardswish(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a) {
  3662. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3663. }
  3664. // ggml hardsigmoid
  3665. struct ggml_tensor * ggml_hardsigmoid(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a) {
  3668. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3669. }
  3670. // ggml_norm
  3671. static struct ggml_tensor * ggml_norm_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. float eps,
  3675. bool inplace) {
  3676. bool is_node = false;
  3677. if (!inplace && (a->grad)) {
  3678. GGML_ASSERT(false); // TODO: implement backward
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3682. ggml_set_op_params(result, &eps, sizeof(eps));
  3683. result->op = GGML_OP_NORM;
  3684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3685. result->src[0] = a;
  3686. return result;
  3687. }
  3688. struct ggml_tensor * ggml_norm(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a,
  3691. float eps) {
  3692. return ggml_norm_impl(ctx, a, eps, false);
  3693. }
  3694. struct ggml_tensor * ggml_norm_inplace(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. float eps) {
  3698. return ggml_norm_impl(ctx, a, eps, true);
  3699. }
  3700. // ggml_rms_norm
  3701. static struct ggml_tensor * ggml_rms_norm_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. float eps,
  3705. bool inplace) {
  3706. bool is_node = false;
  3707. if (!inplace && (a->grad)) {
  3708. is_node = true;
  3709. }
  3710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3711. ggml_set_op_params(result, &eps, sizeof(eps));
  3712. result->op = GGML_OP_RMS_NORM;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src[0] = a;
  3715. return result;
  3716. }
  3717. struct ggml_tensor * ggml_rms_norm(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. float eps) {
  3721. return ggml_rms_norm_impl(ctx, a, eps, false);
  3722. }
  3723. struct ggml_tensor * ggml_rms_norm_inplace(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a,
  3726. float eps) {
  3727. return ggml_rms_norm_impl(ctx, a, eps, true);
  3728. }
  3729. // ggml_rms_norm_back
  3730. struct ggml_tensor * ggml_rms_norm_back(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. struct ggml_tensor * b,
  3734. float eps) {
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. // TODO: implement backward
  3738. is_node = true;
  3739. }
  3740. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3741. ggml_set_op_params(result, &eps, sizeof(eps));
  3742. result->op = GGML_OP_RMS_NORM_BACK;
  3743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3744. result->src[0] = a;
  3745. result->src[1] = b;
  3746. return result;
  3747. }
  3748. // ggml_group_norm
  3749. static struct ggml_tensor * ggml_group_norm_impl(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a,
  3752. int n_groups,
  3753. bool inplace) {
  3754. bool is_node = false;
  3755. if (!inplace && (a->grad)) {
  3756. GGML_ASSERT(false); // TODO: implement backward
  3757. is_node = true;
  3758. }
  3759. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3760. result->op_params[0] = n_groups;
  3761. result->op = GGML_OP_GROUP_NORM;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src[0] = a;
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_group_norm(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. int n_groups) {
  3770. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3771. }
  3772. struct ggml_tensor * ggml_group_norm_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. int n_groups) {
  3776. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3777. }
  3778. // ggml_mul_mat
  3779. struct ggml_tensor * ggml_mul_mat(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b) {
  3783. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3784. GGML_ASSERT(!ggml_is_transposed(a));
  3785. bool is_node = false;
  3786. if (a->grad || b->grad) {
  3787. is_node = true;
  3788. }
  3789. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3790. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3791. result->op = GGML_OP_MUL_MAT;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. result->src[1] = b;
  3795. return result;
  3796. }
  3797. void ggml_mul_mat_set_prec(
  3798. struct ggml_tensor * a,
  3799. enum ggml_prec prec) {
  3800. const int32_t prec_i32 = (int32_t) prec;
  3801. ggml_set_op_params_i32(a, 0, prec_i32);
  3802. }
  3803. // ggml_mul_mat_id
  3804. /*
  3805. c = ggml_mul_mat_id(ctx, as, b, ids);
  3806. as -> [cols, rows, n_expert]
  3807. ids -> [n_experts_used, n_tokens] (i32)
  3808. b -> [cols, n_expert_used, n_tokens]
  3809. c -> [cols, n_expert_used, n_tokens]
  3810. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  3811. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  3812. */
  3813. struct ggml_tensor * ggml_mul_mat_id(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * as,
  3816. struct ggml_tensor * b,
  3817. struct ggml_tensor * ids) {
  3818. GGML_ASSERT(!ggml_is_transposed(as));
  3819. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3820. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  3821. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  3822. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3823. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  3824. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3825. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  3826. bool is_node = false;
  3827. if (as->grad || b->grad) {
  3828. is_node = true;
  3829. }
  3830. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  3831. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3832. result->op = GGML_OP_MUL_MAT_ID;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = as;
  3835. result->src[1] = b;
  3836. result->src[2] = ids;
  3837. return result;
  3838. }
  3839. // ggml_out_prod
  3840. struct ggml_tensor * ggml_out_prod(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. struct ggml_tensor * b) {
  3844. GGML_ASSERT(ggml_can_out_prod(a, b));
  3845. GGML_ASSERT(!ggml_is_transposed(a));
  3846. bool is_node = false;
  3847. if (a->grad || b->grad) {
  3848. is_node = true;
  3849. }
  3850. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3851. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3852. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3853. result->op = GGML_OP_OUT_PROD;
  3854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3855. result->src[0] = a;
  3856. result->src[1] = b;
  3857. return result;
  3858. }
  3859. // ggml_scale
  3860. static struct ggml_tensor * ggml_scale_impl(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. float s,
  3864. bool inplace) {
  3865. GGML_ASSERT(ggml_is_padded_1d(a));
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3871. ggml_set_op_params(result, &s, sizeof(s));
  3872. result->op = GGML_OP_SCALE;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src[0] = a;
  3875. return result;
  3876. }
  3877. struct ggml_tensor * ggml_scale(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a,
  3880. float s) {
  3881. return ggml_scale_impl(ctx, a, s, false);
  3882. }
  3883. struct ggml_tensor * ggml_scale_inplace(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. float s) {
  3887. return ggml_scale_impl(ctx, a, s, true);
  3888. }
  3889. // ggml_set
  3890. static struct ggml_tensor * ggml_set_impl(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b,
  3894. size_t nb1,
  3895. size_t nb2,
  3896. size_t nb3,
  3897. size_t offset,
  3898. bool inplace) {
  3899. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3900. bool is_node = false;
  3901. if (a->grad || b->grad) {
  3902. is_node = true;
  3903. }
  3904. // make a view of the destination
  3905. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3906. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3907. ggml_set_op_params(result, params, sizeof(params));
  3908. result->op = GGML_OP_SET;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. result->src[1] = b;
  3912. return result;
  3913. }
  3914. struct ggml_tensor * ggml_set(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b,
  3918. size_t nb1,
  3919. size_t nb2,
  3920. size_t nb3,
  3921. size_t offset) {
  3922. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3923. }
  3924. struct ggml_tensor * ggml_set_inplace(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. size_t nb1,
  3929. size_t nb2,
  3930. size_t nb3,
  3931. size_t offset) {
  3932. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3933. }
  3934. struct ggml_tensor * ggml_set_1d(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b,
  3938. size_t offset) {
  3939. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3940. }
  3941. struct ggml_tensor * ggml_set_1d_inplace(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b,
  3945. size_t offset) {
  3946. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3947. }
  3948. struct ggml_tensor * ggml_set_2d(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. struct ggml_tensor * b,
  3952. size_t nb1,
  3953. size_t offset) {
  3954. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3955. }
  3956. struct ggml_tensor * ggml_set_2d_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b,
  3960. size_t nb1,
  3961. size_t offset) {
  3962. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3963. }
  3964. // ggml_cpy
  3965. static struct ggml_tensor * ggml_cpy_impl(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. struct ggml_tensor * b) {
  3969. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3970. bool is_node = false;
  3971. if (a->grad || b->grad) {
  3972. // inplace is false and either one have a grad
  3973. is_node = true;
  3974. }
  3975. // make a view of the destination
  3976. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3977. if (strlen(b->name) > 0) {
  3978. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3979. } else {
  3980. ggml_format_name(result, "%s (copy)", a->name);
  3981. }
  3982. result->op = GGML_OP_CPY;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. result->src[1] = b;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_cpy(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b) {
  3992. return ggml_cpy_impl(ctx, a, b);
  3993. }
  3994. struct ggml_tensor * ggml_cast(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. enum ggml_type type) {
  3998. bool is_node = false;
  3999. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4000. ggml_format_name(result, "%s (copy)", a->name);
  4001. result->op = GGML_OP_CPY;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src[0] = a;
  4004. result->src[1] = result;
  4005. return result;
  4006. }
  4007. // ggml_cont
  4008. static struct ggml_tensor * ggml_cont_impl(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. bool is_node = false;
  4012. if (a->grad) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4016. ggml_format_name(result, "%s (cont)", a->name);
  4017. result->op = GGML_OP_CONT;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src[0] = a;
  4020. return result;
  4021. }
  4022. struct ggml_tensor * ggml_cont(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a) {
  4025. return ggml_cont_impl(ctx, a);
  4026. }
  4027. // make contiguous, with new shape
  4028. GGML_API struct ggml_tensor * ggml_cont_1d(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. int64_t ne0) {
  4032. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4033. }
  4034. GGML_API struct ggml_tensor * ggml_cont_2d(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. int64_t ne0,
  4038. int64_t ne1) {
  4039. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4040. }
  4041. GGML_API struct ggml_tensor * ggml_cont_3d(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. int64_t ne0,
  4045. int64_t ne1,
  4046. int64_t ne2) {
  4047. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4048. }
  4049. struct ggml_tensor * ggml_cont_4d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. int64_t ne2,
  4055. int64_t ne3) {
  4056. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4057. bool is_node = false;
  4058. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4059. ggml_format_name(result, "%s (cont)", a->name);
  4060. result->op = GGML_OP_CONT;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src[0] = a;
  4063. return result;
  4064. }
  4065. // ggml_reshape
  4066. struct ggml_tensor * ggml_reshape(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. GGML_ASSERT(ggml_is_contiguous(a));
  4071. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4072. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4073. bool is_node = false;
  4074. if (a->grad) {
  4075. is_node = true;
  4076. }
  4077. if (b->grad) {
  4078. // gradient propagation is not supported
  4079. //GGML_ASSERT(false);
  4080. }
  4081. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4082. ggml_format_name(result, "%s (reshaped)", a->name);
  4083. result->op = GGML_OP_RESHAPE;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. return result;
  4087. }
  4088. struct ggml_tensor * ggml_reshape_1d(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. int64_t ne0) {
  4092. GGML_ASSERT(ggml_is_contiguous(a));
  4093. GGML_ASSERT(ggml_nelements(a) == ne0);
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. is_node = true;
  4097. }
  4098. const int64_t ne[1] = { ne0 };
  4099. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4100. ggml_format_name(result, "%s (reshaped)", a->name);
  4101. result->op = GGML_OP_RESHAPE;
  4102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4103. result->src[0] = a;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_reshape_2d(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a,
  4109. int64_t ne0,
  4110. int64_t ne1) {
  4111. GGML_ASSERT(ggml_is_contiguous(a));
  4112. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. const int64_t ne[2] = { ne0, ne1 };
  4118. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4119. ggml_format_name(result, "%s (reshaped)", a->name);
  4120. result->op = GGML_OP_RESHAPE;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_reshape_3d(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. int64_t ne0,
  4129. int64_t ne1,
  4130. int64_t ne2) {
  4131. GGML_ASSERT(ggml_is_contiguous(a));
  4132. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4133. bool is_node = false;
  4134. if (a->grad) {
  4135. is_node = true;
  4136. }
  4137. const int64_t ne[3] = { ne0, ne1, ne2 };
  4138. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4139. ggml_format_name(result, "%s (reshaped)", a->name);
  4140. result->op = GGML_OP_RESHAPE;
  4141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4142. result->src[0] = a;
  4143. return result;
  4144. }
  4145. struct ggml_tensor * ggml_reshape_4d(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. int64_t ne0,
  4149. int64_t ne1,
  4150. int64_t ne2,
  4151. int64_t ne3) {
  4152. GGML_ASSERT(ggml_is_contiguous(a));
  4153. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4154. bool is_node = false;
  4155. if (a->grad) {
  4156. is_node = true;
  4157. }
  4158. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4159. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4160. ggml_format_name(result, "%s (reshaped)", a->name);
  4161. result->op = GGML_OP_RESHAPE;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src[0] = a;
  4164. return result;
  4165. }
  4166. static struct ggml_tensor * ggml_view_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. int n_dims,
  4170. const int64_t * ne,
  4171. size_t offset) {
  4172. bool is_node = false;
  4173. if (a->grad) {
  4174. is_node = true;
  4175. }
  4176. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4177. ggml_format_name(result, "%s (view)", a->name);
  4178. ggml_set_op_params(result, &offset, sizeof(offset));
  4179. result->op = GGML_OP_VIEW;
  4180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4181. result->src[0] = a;
  4182. return result;
  4183. }
  4184. // ggml_view_1d
  4185. struct ggml_tensor * ggml_view_1d(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. int64_t ne0,
  4189. size_t offset) {
  4190. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4191. return result;
  4192. }
  4193. // ggml_view_2d
  4194. struct ggml_tensor * ggml_view_2d(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. int64_t ne0,
  4198. int64_t ne1,
  4199. size_t nb1,
  4200. size_t offset) {
  4201. const int64_t ne[2] = { ne0, ne1 };
  4202. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4203. result->nb[1] = nb1;
  4204. result->nb[2] = result->nb[1]*ne1;
  4205. result->nb[3] = result->nb[2];
  4206. return result;
  4207. }
  4208. // ggml_view_3d
  4209. struct ggml_tensor * ggml_view_3d(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. int64_t ne0,
  4213. int64_t ne1,
  4214. int64_t ne2,
  4215. size_t nb1,
  4216. size_t nb2,
  4217. size_t offset) {
  4218. const int64_t ne[3] = { ne0, ne1, ne2 };
  4219. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4220. result->nb[1] = nb1;
  4221. result->nb[2] = nb2;
  4222. result->nb[3] = result->nb[2]*ne2;
  4223. return result;
  4224. }
  4225. // ggml_view_4d
  4226. struct ggml_tensor * ggml_view_4d(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. int64_t ne0,
  4230. int64_t ne1,
  4231. int64_t ne2,
  4232. int64_t ne3,
  4233. size_t nb1,
  4234. size_t nb2,
  4235. size_t nb3,
  4236. size_t offset) {
  4237. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4238. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4239. result->nb[1] = nb1;
  4240. result->nb[2] = nb2;
  4241. result->nb[3] = nb3;
  4242. return result;
  4243. }
  4244. // ggml_permute
  4245. struct ggml_tensor * ggml_permute(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int axis0,
  4249. int axis1,
  4250. int axis2,
  4251. int axis3) {
  4252. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4253. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4254. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4255. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4256. GGML_ASSERT(axis0 != axis1);
  4257. GGML_ASSERT(axis0 != axis2);
  4258. GGML_ASSERT(axis0 != axis3);
  4259. GGML_ASSERT(axis1 != axis2);
  4260. GGML_ASSERT(axis1 != axis3);
  4261. GGML_ASSERT(axis2 != axis3);
  4262. bool is_node = false;
  4263. if (a->grad) {
  4264. is_node = true;
  4265. }
  4266. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4267. ggml_format_name(result, "%s (permuted)", a->name);
  4268. int ne[GGML_MAX_DIMS];
  4269. int nb[GGML_MAX_DIMS];
  4270. ne[axis0] = a->ne[0];
  4271. ne[axis1] = a->ne[1];
  4272. ne[axis2] = a->ne[2];
  4273. ne[axis3] = a->ne[3];
  4274. nb[axis0] = a->nb[0];
  4275. nb[axis1] = a->nb[1];
  4276. nb[axis2] = a->nb[2];
  4277. nb[axis3] = a->nb[3];
  4278. result->ne[0] = ne[0];
  4279. result->ne[1] = ne[1];
  4280. result->ne[2] = ne[2];
  4281. result->ne[3] = ne[3];
  4282. result->nb[0] = nb[0];
  4283. result->nb[1] = nb[1];
  4284. result->nb[2] = nb[2];
  4285. result->nb[3] = nb[3];
  4286. result->op = GGML_OP_PERMUTE;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src[0] = a;
  4289. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4290. ggml_set_op_params(result, params, sizeof(params));
  4291. return result;
  4292. }
  4293. // ggml_transpose
  4294. struct ggml_tensor * ggml_transpose(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a) {
  4297. bool is_node = false;
  4298. if (a->grad) {
  4299. is_node = true;
  4300. }
  4301. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4302. ggml_format_name(result, "%s (transposed)", a->name);
  4303. result->ne[0] = a->ne[1];
  4304. result->ne[1] = a->ne[0];
  4305. result->nb[0] = a->nb[1];
  4306. result->nb[1] = a->nb[0];
  4307. result->op = GGML_OP_TRANSPOSE;
  4308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4309. result->src[0] = a;
  4310. return result;
  4311. }
  4312. // ggml_get_rows
  4313. struct ggml_tensor * ggml_get_rows(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. struct ggml_tensor * b) {
  4317. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4318. GGML_ASSERT(b->ne[3] == 1);
  4319. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4320. bool is_node = false;
  4321. if (a->grad || b->grad) {
  4322. is_node = true;
  4323. }
  4324. // TODO: implement non F32 return
  4325. enum ggml_type type = GGML_TYPE_F32;
  4326. if (a->type == GGML_TYPE_I32) {
  4327. type = a->type;
  4328. }
  4329. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4330. result->op = GGML_OP_GET_ROWS;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src[0] = a;
  4333. result->src[1] = b;
  4334. return result;
  4335. }
  4336. // ggml_get_rows_back
  4337. struct ggml_tensor * ggml_get_rows_back(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. struct ggml_tensor * c) {
  4342. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4343. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. is_node = true;
  4347. }
  4348. // TODO: implement non F32 return
  4349. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4350. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4351. result->op = GGML_OP_GET_ROWS_BACK;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. // ggml_diag
  4358. struct ggml_tensor * ggml_diag(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. GGML_ASSERT(a->ne[1] == 1);
  4362. bool is_node = false;
  4363. if (a->grad) {
  4364. is_node = true;
  4365. }
  4366. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4367. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4368. result->op = GGML_OP_DIAG;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. return result;
  4372. }
  4373. // ggml_diag_mask_inf
  4374. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. int n_past,
  4378. bool inplace) {
  4379. bool is_node = false;
  4380. if (a->grad) {
  4381. is_node = true;
  4382. }
  4383. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4384. int32_t params[] = { n_past };
  4385. ggml_set_op_params(result, params, sizeof(params));
  4386. result->op = GGML_OP_DIAG_MASK_INF;
  4387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4388. result->src[0] = a;
  4389. return result;
  4390. }
  4391. struct ggml_tensor * ggml_diag_mask_inf(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. int n_past) {
  4395. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4396. }
  4397. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. int n_past) {
  4401. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4402. }
  4403. // ggml_diag_mask_zero
  4404. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. int n_past,
  4408. bool inplace) {
  4409. bool is_node = false;
  4410. if (a->grad) {
  4411. is_node = true;
  4412. }
  4413. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4414. int32_t params[] = { n_past };
  4415. ggml_set_op_params(result, params, sizeof(params));
  4416. result->op = GGML_OP_DIAG_MASK_ZERO;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src[0] = a;
  4419. return result;
  4420. }
  4421. struct ggml_tensor * ggml_diag_mask_zero(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. int n_past) {
  4425. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4426. }
  4427. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. int n_past) {
  4431. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4432. }
  4433. // ggml_soft_max
  4434. static struct ggml_tensor * ggml_soft_max_impl(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. struct ggml_tensor * mask,
  4438. struct ggml_tensor * pos,
  4439. float scale,
  4440. float max_bias,
  4441. bool inplace) {
  4442. GGML_ASSERT(ggml_is_contiguous(a));
  4443. if (mask) {
  4444. GGML_ASSERT(ggml_is_contiguous(mask));
  4445. GGML_ASSERT(ggml_is_matrix(mask));
  4446. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4447. }
  4448. if (pos) {
  4449. GGML_ASSERT(ggml_is_vector(pos));
  4450. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4451. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4452. }
  4453. if (max_bias > 0.0f) {
  4454. GGML_ASSERT(pos);
  4455. }
  4456. bool is_node = false;
  4457. if (a->grad) {
  4458. is_node = true;
  4459. }
  4460. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4461. float params[] = { scale, max_bias };
  4462. ggml_set_op_params(result, params, sizeof(params));
  4463. result->op = GGML_OP_SOFT_MAX;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. result->src[1] = mask;
  4467. result->src[2] = pos;
  4468. return result;
  4469. }
  4470. struct ggml_tensor * ggml_soft_max(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a) {
  4473. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4474. }
  4475. struct ggml_tensor * ggml_soft_max_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a) {
  4478. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4479. }
  4480. struct ggml_tensor * ggml_soft_max_ext(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. struct ggml_tensor * mask,
  4484. struct ggml_tensor * pos,
  4485. float scale,
  4486. float max_bias) {
  4487. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4488. }
  4489. // ggml_soft_max_back
  4490. static struct ggml_tensor * ggml_soft_max_back_impl(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b,
  4494. bool inplace) {
  4495. bool is_node = false;
  4496. if (a->grad || b->grad) {
  4497. is_node = true; // TODO : implement backward pass
  4498. }
  4499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4500. result->op = GGML_OP_SOFT_MAX_BACK;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = a;
  4503. result->src[1] = b;
  4504. return result;
  4505. }
  4506. struct ggml_tensor * ggml_soft_max_back(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. struct ggml_tensor * b) {
  4510. return ggml_soft_max_back_impl(ctx, a, b, false);
  4511. }
  4512. struct ggml_tensor * ggml_soft_max_back_inplace(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b) {
  4516. return ggml_soft_max_back_impl(ctx, a, b, true);
  4517. }
  4518. // ggml_rope
  4519. static struct ggml_tensor * ggml_rope_impl(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. int n_dims,
  4524. int mode,
  4525. int n_ctx,
  4526. int n_orig_ctx,
  4527. float freq_base,
  4528. float freq_scale,
  4529. float ext_factor,
  4530. float attn_factor,
  4531. float beta_fast,
  4532. float beta_slow,
  4533. float xpos_base,
  4534. bool xpos_down,
  4535. bool inplace) {
  4536. GGML_ASSERT(ggml_is_vector(b));
  4537. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4538. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4539. bool is_node = false;
  4540. if (a->grad) {
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4544. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4545. memcpy(params + 5, &freq_base, sizeof(float));
  4546. memcpy(params + 6, &freq_scale, sizeof(float));
  4547. memcpy(params + 7, &ext_factor, sizeof(float));
  4548. memcpy(params + 8, &attn_factor, sizeof(float));
  4549. memcpy(params + 9, &beta_fast, sizeof(float));
  4550. memcpy(params + 10, &beta_slow, sizeof(float));
  4551. memcpy(params + 11, &xpos_base, sizeof(float));
  4552. memcpy(params + 12, &xpos_down, sizeof(bool));
  4553. ggml_set_op_params(result, params, sizeof(params));
  4554. result->op = GGML_OP_ROPE;
  4555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4556. result->src[0] = a;
  4557. result->src[1] = b;
  4558. return result;
  4559. }
  4560. struct ggml_tensor * ggml_rope(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. struct ggml_tensor * b,
  4564. int n_dims,
  4565. int mode,
  4566. int n_ctx) {
  4567. return ggml_rope_impl(
  4568. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4569. );
  4570. }
  4571. struct ggml_tensor * ggml_rope_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b,
  4575. int n_dims,
  4576. int mode,
  4577. int n_ctx) {
  4578. return ggml_rope_impl(
  4579. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4580. );
  4581. }
  4582. struct ggml_tensor * ggml_rope_custom(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. struct ggml_tensor * b,
  4586. int n_dims,
  4587. int mode,
  4588. int n_ctx,
  4589. int n_orig_ctx,
  4590. float freq_base,
  4591. float freq_scale,
  4592. float ext_factor,
  4593. float attn_factor,
  4594. float beta_fast,
  4595. float beta_slow) {
  4596. return ggml_rope_impl(
  4597. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4598. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4599. );
  4600. }
  4601. struct ggml_tensor * ggml_rope_custom_inplace(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. int n_dims,
  4606. int mode,
  4607. int n_ctx,
  4608. int n_orig_ctx,
  4609. float freq_base,
  4610. float freq_scale,
  4611. float ext_factor,
  4612. float attn_factor,
  4613. float beta_fast,
  4614. float beta_slow) {
  4615. return ggml_rope_impl(
  4616. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4617. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4618. );
  4619. }
  4620. struct ggml_tensor * ggml_rope_xpos_inplace(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b,
  4624. int n_dims,
  4625. float base,
  4626. bool down) {
  4627. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4628. }
  4629. // ggml_rope_back
  4630. struct ggml_tensor * ggml_rope_back(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a,
  4633. struct ggml_tensor * b,
  4634. int n_dims,
  4635. int mode,
  4636. int n_ctx,
  4637. int n_orig_ctx,
  4638. float freq_base,
  4639. float freq_scale,
  4640. float ext_factor,
  4641. float attn_factor,
  4642. float beta_fast,
  4643. float beta_slow,
  4644. float xpos_base,
  4645. bool xpos_down) {
  4646. GGML_ASSERT(ggml_is_vector(b));
  4647. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4648. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4649. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. is_node = false; // TODO: implement backward
  4653. }
  4654. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4655. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4656. memcpy(params + 5, &freq_base, sizeof(float));
  4657. memcpy(params + 6, &freq_scale, sizeof(float));
  4658. memcpy(params + 7, &ext_factor, sizeof(float));
  4659. memcpy(params + 8, &attn_factor, sizeof(float));
  4660. memcpy(params + 9, &beta_fast, sizeof(float));
  4661. memcpy(params + 10, &beta_slow, sizeof(float));
  4662. memcpy(params + 11, &xpos_base, sizeof(float));
  4663. memcpy(params + 12, &xpos_down, sizeof(bool));
  4664. ggml_set_op_params(result, params, sizeof(params));
  4665. result->op = GGML_OP_ROPE_BACK;
  4666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4667. result->src[0] = a;
  4668. result->src[1] = b;
  4669. return result;
  4670. }
  4671. // ggml_alibi
  4672. struct ggml_tensor * ggml_alibi(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. int n_past,
  4676. int n_head,
  4677. float bias_max) {
  4678. GGML_ASSERT(n_past >= 0);
  4679. bool is_node = false;
  4680. if (a->grad) {
  4681. GGML_ASSERT(false); // TODO: implement backward
  4682. is_node = true;
  4683. }
  4684. // TODO: when implement backward, fix this:
  4685. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4686. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4687. int32_t op_params[3] = { n_past, n_head };
  4688. memcpy(op_params + 2, &bias_max, sizeof(float));
  4689. ggml_set_op_params(result, op_params, sizeof(op_params));
  4690. result->op = GGML_OP_ALIBI;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src[0] = a;
  4693. return result;
  4694. }
  4695. // ggml_clamp
  4696. struct ggml_tensor * ggml_clamp(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. float min,
  4700. float max) {
  4701. bool is_node = false;
  4702. if (a->grad) {
  4703. GGML_ASSERT(false); // TODO: implement backward
  4704. is_node = true;
  4705. }
  4706. // TODO: when implement backward, fix this:
  4707. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4708. float params[] = { min, max };
  4709. ggml_set_op_params(result, params, sizeof(params));
  4710. result->op = GGML_OP_CLAMP;
  4711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4712. result->src[0] = a;
  4713. return result;
  4714. }
  4715. // ggml_conv_1d
  4716. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4717. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4718. }
  4719. GGML_API struct ggml_tensor * ggml_conv_1d(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. struct ggml_tensor * b,
  4723. int s0,
  4724. int p0,
  4725. int d0) {
  4726. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4727. struct ggml_tensor * result =
  4728. ggml_mul_mat(ctx,
  4729. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4730. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4731. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4732. return result;
  4733. }
  4734. // ggml_conv_1d_ph
  4735. struct ggml_tensor* ggml_conv_1d_ph(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. struct ggml_tensor * b,
  4739. int s,
  4740. int d) {
  4741. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4742. }
  4743. // ggml_conv_transpose_1d
  4744. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4745. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4746. }
  4747. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * b,
  4751. int s0,
  4752. int p0,
  4753. int d0) {
  4754. GGML_ASSERT(ggml_is_matrix(b));
  4755. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4756. GGML_ASSERT(a->ne[3] == 1);
  4757. GGML_ASSERT(p0 == 0);
  4758. GGML_ASSERT(d0 == 1);
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. GGML_ASSERT(false); // TODO: implement backward
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[4] = {
  4765. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4766. a->ne[1], b->ne[2], 1,
  4767. };
  4768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4769. int32_t params[] = { s0, p0, d0 };
  4770. ggml_set_op_params(result, params, sizeof(params));
  4771. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. result->src[1] = b;
  4775. return result;
  4776. }
  4777. // ggml_conv_depthwise
  4778. struct ggml_tensor * ggml_conv_depthwise_2d(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * b,
  4782. int s0,
  4783. int s1,
  4784. int p0,
  4785. int p1,
  4786. int d0,
  4787. int d1) {
  4788. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4789. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4790. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4791. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4792. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4793. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4794. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4795. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4796. return result;
  4797. }
  4798. // ggml_conv_2d
  4799. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4800. // a: [OC,IC, KH, KW]
  4801. // b: [N, IC, IH, IW]
  4802. // result: [N, OH, OW, IC*KH*KW]
  4803. struct ggml_tensor * ggml_im2col(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. struct ggml_tensor * b,
  4807. int s0,
  4808. int s1,
  4809. int p0,
  4810. int p1,
  4811. int d0,
  4812. int d1,
  4813. bool is_2D,
  4814. enum ggml_type dst_type) {
  4815. if(is_2D) {
  4816. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4817. } else {
  4818. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4819. }
  4820. bool is_node = false;
  4821. if (a->grad || b->grad) {
  4822. GGML_ASSERT(false); // TODO: implement backward
  4823. is_node = true;
  4824. }
  4825. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4826. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4827. const int64_t ne[4] = {
  4828. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4829. OW,
  4830. is_2D ? OH : b->ne[2],
  4831. is_2D ? b->ne[3] : 1,
  4832. };
  4833. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4834. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4835. ggml_set_op_params(result, params, sizeof(params));
  4836. result->op = GGML_OP_IM2COL;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src[0] = a;
  4839. result->src[1] = b;
  4840. return result;
  4841. }
  4842. // a: [OC,IC, KH, KW]
  4843. // b: [N, IC, IH, IW]
  4844. // result: [N, OC, OH, OW]
  4845. struct ggml_tensor * ggml_conv_2d(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * b,
  4849. int s0,
  4850. int s1,
  4851. int p0,
  4852. int p1,
  4853. int d0,
  4854. int d1) {
  4855. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4856. struct ggml_tensor * result =
  4857. ggml_mul_mat(ctx,
  4858. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4859. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4860. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4861. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4862. return result;
  4863. }
  4864. // ggml_conv_2d_sk_p0
  4865. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b) {
  4869. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4870. }
  4871. // ggml_conv_2d_s1_ph
  4872. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. struct ggml_tensor * b) {
  4876. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4877. }
  4878. // ggml_conv_transpose_2d_p0
  4879. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4880. return (ins - 1) * s - 2 * p + ks;
  4881. }
  4882. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b,
  4886. int stride) {
  4887. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4888. bool is_node = false;
  4889. if (a->grad || b->grad) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. const int64_t ne[4] = {
  4894. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4895. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4896. a->ne[2], b->ne[3],
  4897. };
  4898. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4899. ggml_set_op_params_i32(result, 0, stride);
  4900. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. result->src[1] = b;
  4904. return result;
  4905. }
  4906. // ggml_pool_*
  4907. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4908. return (ins + 2 * p - ks) / s + 1;
  4909. }
  4910. // ggml_pool_1d
  4911. struct ggml_tensor * ggml_pool_1d(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. enum ggml_op_pool op,
  4915. int k0,
  4916. int s0,
  4917. int p0) {
  4918. bool is_node = false;
  4919. if (a->grad) {
  4920. GGML_ASSERT(false); // TODO: implement backward
  4921. is_node = true;
  4922. }
  4923. const int64_t ne[4] = {
  4924. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4925. a->ne[1],
  4926. a->ne[2],
  4927. a->ne[3],
  4928. };
  4929. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4930. int32_t params[] = { op, k0, s0, p0 };
  4931. ggml_set_op_params(result, params, sizeof(params));
  4932. result->op = GGML_OP_POOL_1D;
  4933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4934. result->src[0] = a;
  4935. return result;
  4936. }
  4937. // ggml_pool_2d
  4938. struct ggml_tensor * ggml_pool_2d(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. enum ggml_op_pool op,
  4942. int k0,
  4943. int k1,
  4944. int s0,
  4945. int s1,
  4946. float p0,
  4947. float p1) {
  4948. bool is_node = false;
  4949. if (a->grad) {
  4950. GGML_ASSERT(false); // TODO: implement backward
  4951. is_node = true;
  4952. }
  4953. struct ggml_tensor * result;
  4954. const int64_t ne[3] = {
  4955. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4956. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4957. a->ne[2],
  4958. };
  4959. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4960. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4961. ggml_set_op_params(result, params, sizeof(params));
  4962. result->op = GGML_OP_POOL_2D;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_upscale
  4968. static struct ggml_tensor * ggml_upscale_impl(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. int scale_factor) {
  4972. bool is_node = false;
  4973. if (a->grad) {
  4974. GGML_ASSERT(false); // TODO: implement backward
  4975. is_node = true;
  4976. }
  4977. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4978. a->ne[0] * scale_factor,
  4979. a->ne[1] * scale_factor,
  4980. a->ne[2], a->ne[3]);
  4981. result->op = GGML_OP_UPSCALE;
  4982. result->op_params[0] = scale_factor;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. return result;
  4986. }
  4987. struct ggml_tensor * ggml_pad(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. int p0, int p1, int p2, int p3) {
  4991. bool is_node = false;
  4992. if (a->grad) {
  4993. GGML_ASSERT(false); // TODO: implement backward
  4994. is_node = true;
  4995. }
  4996. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4997. a->ne[0] + p0,
  4998. a->ne[1] + p1,
  4999. a->ne[2] + p2,
  5000. a->ne[3] + p3);
  5001. result->op = GGML_OP_PAD;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. return result;
  5005. }
  5006. struct ggml_tensor * ggml_upscale(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. int scale_factor) {
  5010. return ggml_upscale_impl(ctx, a, scale_factor);
  5011. }
  5012. struct ggml_tensor * ggml_arange(
  5013. struct ggml_context * ctx,
  5014. float start,
  5015. float stop,
  5016. float step) {
  5017. GGML_ASSERT(stop > start);
  5018. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5019. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5020. result->op = GGML_OP_ARANGE;
  5021. ggml_set_op_params_f32(result, 0, start);
  5022. ggml_set_op_params_f32(result, 1, stop);
  5023. ggml_set_op_params_f32(result, 2, step);
  5024. return result;
  5025. }
  5026. struct ggml_tensor * ggml_timestep_embedding(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * timesteps,
  5029. int dim,
  5030. int max_period) {
  5031. bool is_node = false;
  5032. if (timesteps->grad) {
  5033. GGML_ASSERT(false); // TODO: implement backward
  5034. is_node = true;
  5035. }
  5036. int actual_dim = dim;
  5037. if (dim % 2 != 0) {
  5038. actual_dim = dim + 1;
  5039. }
  5040. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5041. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5042. ggml_set_op_params_i32(result, 0, dim);
  5043. ggml_set_op_params_i32(result, 1, max_period);
  5044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5045. result->src[0] = timesteps;
  5046. return result;
  5047. }
  5048. // ggml_argsort
  5049. struct ggml_tensor * ggml_argsort(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. enum ggml_sort_order order) {
  5053. bool is_node = false;
  5054. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5055. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5056. result->op = GGML_OP_ARGSORT;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. return result;
  5060. }
  5061. // ggml_top_k
  5062. struct ggml_tensor * ggml_top_k(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int k) {
  5066. GGML_ASSERT(a->ne[0] >= k);
  5067. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5068. result = ggml_view_4d(ctx, result,
  5069. k, result->ne[1], result->ne[2], result->ne[3],
  5070. result->nb[1], result->nb[2], result->nb[3],
  5071. 0);
  5072. return result;
  5073. }
  5074. // ggml_flash_attn
  5075. struct ggml_tensor * ggml_flash_attn(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * q,
  5078. struct ggml_tensor * k,
  5079. struct ggml_tensor * v,
  5080. bool masked) {
  5081. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5082. // TODO: check if vT can be multiplied by (k*qT)
  5083. bool is_node = false;
  5084. if (q->grad || k->grad || v->grad) {
  5085. is_node = true;
  5086. }
  5087. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5088. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5089. int32_t t = masked ? 1 : 0;
  5090. ggml_set_op_params(result, &t, sizeof(t));
  5091. result->op = GGML_OP_FLASH_ATTN;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src[0] = q;
  5094. result->src[1] = k;
  5095. result->src[2] = v;
  5096. return result;
  5097. }
  5098. // ggml_flash_ff
  5099. struct ggml_tensor * ggml_flash_ff(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b0,
  5103. struct ggml_tensor * b1,
  5104. struct ggml_tensor * c0,
  5105. struct ggml_tensor * c1) {
  5106. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5107. // TODO: more checks
  5108. bool is_node = false;
  5109. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5110. is_node = true;
  5111. }
  5112. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5113. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5114. result->op = GGML_OP_FLASH_FF;
  5115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5116. result->src[0] = a;
  5117. result->src[1] = b0;
  5118. result->src[2] = b1;
  5119. result->src[3] = c0;
  5120. result->src[4] = c1;
  5121. return result;
  5122. }
  5123. // ggml_flash_attn_back
  5124. struct ggml_tensor * ggml_flash_attn_back(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * q,
  5127. struct ggml_tensor * k,
  5128. struct ggml_tensor * v,
  5129. struct ggml_tensor * d,
  5130. bool masked) {
  5131. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5132. // TODO: check if vT can be multiplied by (k*qT)
  5133. // d shape [D,N,ne2,ne3]
  5134. // q shape [D,N,ne2,ne3]
  5135. // k shape [D,M,kvne2,ne3]
  5136. // v shape [M,D,kvne2,ne3]
  5137. const int64_t D = q->ne[0];
  5138. const int64_t N = q->ne[1];
  5139. const int64_t M = k->ne[1];
  5140. const int64_t ne2 = q->ne[2];
  5141. const int64_t ne3 = q->ne[3];
  5142. const int64_t kvne2 = k->ne[2];
  5143. GGML_ASSERT(k->ne[0] == D);
  5144. GGML_ASSERT(v->ne[0] == M);
  5145. GGML_ASSERT(v->ne[1] == D);
  5146. GGML_ASSERT(d->ne[0] == D);
  5147. GGML_ASSERT(d->ne[1] == N);
  5148. GGML_ASSERT(k->ne[2] == kvne2);
  5149. GGML_ASSERT(k->ne[3] == ne3);
  5150. GGML_ASSERT(v->ne[2] == kvne2);
  5151. GGML_ASSERT(v->ne[3] == ne3);
  5152. GGML_ASSERT(d->ne[2] == ne2);
  5153. GGML_ASSERT(d->ne[3] == ne3);
  5154. GGML_ASSERT(ne2 % kvne2 == 0);
  5155. bool is_node = false;
  5156. if (q->grad || k->grad || v->grad) {
  5157. // when using this operation (in backwards pass) these grads are set.
  5158. // we don't want to create (big) grad of our result, so is_node is false.
  5159. is_node = false;
  5160. }
  5161. // store gradients of q, k and v as continuous tensors concatenated in result.
  5162. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5163. const int64_t elem_q = ggml_nelements(q);
  5164. const int64_t elem_k = ggml_nelements(k);
  5165. const int64_t elem_v = ggml_nelements(v);
  5166. enum ggml_type result_type = GGML_TYPE_F32;
  5167. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5168. const size_t tsize = ggml_type_size(result_type);
  5169. const size_t offs_q = 0;
  5170. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5171. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5172. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5173. const size_t nelements = (end + tsize - 1)/tsize;
  5174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5175. int32_t masked_i = masked ? 1 : 0;
  5176. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5177. result->op = GGML_OP_FLASH_ATTN_BACK;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src[0] = q;
  5180. result->src[1] = k;
  5181. result->src[2] = v;
  5182. result->src[3] = d;
  5183. return result;
  5184. }
  5185. // ggml_ssm_conv
  5186. struct ggml_tensor * ggml_ssm_conv(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * s,
  5189. struct ggml_tensor * x,
  5190. struct ggml_tensor * c,
  5191. struct ggml_tensor * sq) {
  5192. GGML_ASSERT(ggml_is_3d(s));
  5193. GGML_ASSERT(ggml_is_matrix(x));
  5194. GGML_ASSERT(ggml_is_matrix(c));
  5195. GGML_ASSERT(ggml_is_matrix(sq));
  5196. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5197. const int64_t d_conv = c->ne[0];
  5198. const int64_t d_inner = c->ne[1];
  5199. const int64_t n_tokens = x->ne[1];
  5200. const int64_t n_kv = s->ne[2];
  5201. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5202. GGML_ASSERT( s->ne[1] == d_inner);
  5203. GGML_ASSERT( x->ne[0] == d_inner);
  5204. GGML_ASSERT(sq->ne[0] == n_kv);
  5205. GGML_ASSERT(sq->ne[1] == n_tokens);
  5206. bool is_node = false;
  5207. if (s->grad || x->grad || c->grad || sq->grad) {
  5208. GGML_ASSERT(false); // TODO: implement
  5209. is_node = true;
  5210. }
  5211. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5212. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5213. result->op = GGML_OP_SSM_CONV;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src[0] = s;
  5216. result->src[1] = x;
  5217. result->src[2] = c;
  5218. result->src[3] = sq;
  5219. return result;
  5220. }
  5221. // ggml_ssm_scan
  5222. struct ggml_tensor * ggml_ssm_scan(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * s,
  5225. struct ggml_tensor * x,
  5226. struct ggml_tensor * dt,
  5227. struct ggml_tensor * A,
  5228. struct ggml_tensor * B,
  5229. struct ggml_tensor * C,
  5230. struct ggml_tensor * sq) {
  5231. GGML_ASSERT(ggml_is_contiguous(s));
  5232. GGML_ASSERT(ggml_is_contiguous(x));
  5233. GGML_ASSERT(ggml_is_contiguous(dt));
  5234. GGML_ASSERT(ggml_is_contiguous(A));
  5235. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5236. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5237. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5238. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5239. {
  5240. const int64_t d_state = s->ne[0];
  5241. const int64_t d_inner = s->ne[1];
  5242. const int64_t n_tokens = x->ne[1];
  5243. GGML_ASSERT(x->ne[0] == d_inner);
  5244. GGML_ASSERT(A->ne[0] == d_state);
  5245. GGML_ASSERT(A->ne[1] == d_inner);
  5246. GGML_ASSERT(B->ne[0] == d_state);
  5247. GGML_ASSERT(B->ne[1] == n_tokens);
  5248. GGML_ASSERT(C->ne[0] == d_state);
  5249. GGML_ASSERT(C->ne[1] == n_tokens);
  5250. }
  5251. bool is_node = false;
  5252. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5253. GGML_ASSERT(false); // TODO: implement
  5254. is_node = true;
  5255. }
  5256. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5257. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5258. result->op = GGML_OP_SSM_SCAN;
  5259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5260. result->src[0] = s;
  5261. result->src[1] = x;
  5262. result->src[2] = dt;
  5263. result->src[3] = A;
  5264. result->src[4] = B;
  5265. result->src[5] = C;
  5266. result->src[6] = sq;
  5267. return result;
  5268. }
  5269. // ggml_win_part
  5270. struct ggml_tensor * ggml_win_part(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. int w) {
  5274. GGML_ASSERT(a->ne[3] == 1);
  5275. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5276. bool is_node = false;
  5277. if (a->grad) {
  5278. GGML_ASSERT(false); // TODO: implement backward
  5279. is_node = true;
  5280. }
  5281. // padding
  5282. const int px = (w - a->ne[1]%w)%w;
  5283. const int py = (w - a->ne[2]%w)%w;
  5284. const int npx = (px + a->ne[1])/w;
  5285. const int npy = (py + a->ne[2])/w;
  5286. const int np = npx*npy;
  5287. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5288. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5289. int32_t params[] = { npx, npy, w };
  5290. ggml_set_op_params(result, params, sizeof(params));
  5291. result->op = GGML_OP_WIN_PART;
  5292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5293. result->src[0] = a;
  5294. return result;
  5295. }
  5296. // ggml_win_unpart
  5297. struct ggml_tensor * ggml_win_unpart(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int w0,
  5301. int h0,
  5302. int w) {
  5303. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5304. bool is_node = false;
  5305. if (a->grad) {
  5306. GGML_ASSERT(false); // TODO: implement backward
  5307. is_node = true;
  5308. }
  5309. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5310. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5311. int32_t params[] = { w };
  5312. ggml_set_op_params(result, params, sizeof(params));
  5313. result->op = GGML_OP_WIN_UNPART;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src[0] = a;
  5316. return result;
  5317. }
  5318. // ggml_get_rel_pos
  5319. struct ggml_tensor * ggml_get_rel_pos(
  5320. struct ggml_context * ctx,
  5321. struct ggml_tensor * a,
  5322. int qh,
  5323. int kh) {
  5324. GGML_ASSERT(qh == kh);
  5325. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. GGML_ASSERT(false); // TODO: implement backward
  5329. is_node = true;
  5330. }
  5331. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5332. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5333. result->op = GGML_OP_GET_REL_POS;
  5334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5335. result->src[0] = a;
  5336. return result;
  5337. }
  5338. // ggml_add_rel_pos
  5339. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * pw,
  5343. struct ggml_tensor * ph,
  5344. bool inplace) {
  5345. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5346. GGML_ASSERT(ggml_is_contiguous(a));
  5347. GGML_ASSERT(ggml_is_contiguous(pw));
  5348. GGML_ASSERT(ggml_is_contiguous(ph));
  5349. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5350. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5351. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5352. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5353. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5354. bool is_node = false;
  5355. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5356. is_node = true;
  5357. }
  5358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5359. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5360. result->op = GGML_OP_ADD_REL_POS;
  5361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5362. result->src[0] = a;
  5363. result->src[1] = pw;
  5364. result->src[2] = ph;
  5365. return result;
  5366. }
  5367. struct ggml_tensor * ggml_add_rel_pos(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a,
  5370. struct ggml_tensor * pw,
  5371. struct ggml_tensor * ph) {
  5372. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5373. }
  5374. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. struct ggml_tensor * pw,
  5378. struct ggml_tensor * ph) {
  5379. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5380. }
  5381. // gmml_unary
  5382. static struct ggml_tensor * ggml_unary_impl(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. enum ggml_unary_op op,
  5386. bool inplace) {
  5387. bool is_node = false;
  5388. if (!inplace && (a->grad)) {
  5389. is_node = true;
  5390. }
  5391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5392. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5393. result->op = GGML_OP_UNARY;
  5394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5395. result->src[0] = a;
  5396. return result;
  5397. }
  5398. struct ggml_tensor * ggml_unary(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. enum ggml_unary_op op) {
  5402. return ggml_unary_impl(ctx, a, op, false);
  5403. }
  5404. struct ggml_tensor * ggml_unary_inplace(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. enum ggml_unary_op op) {
  5408. return ggml_unary_impl(ctx, a, op, true);
  5409. }
  5410. // ggml_map_unary
  5411. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. const ggml_unary_op_f32_t fun,
  5415. bool inplace) {
  5416. bool is_node = false;
  5417. if (!inplace && a->grad) {
  5418. is_node = true;
  5419. }
  5420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5421. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5422. result->op = GGML_OP_MAP_UNARY;
  5423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5424. result->src[0] = a;
  5425. return result;
  5426. }
  5427. struct ggml_tensor * ggml_map_unary_f32(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. const ggml_unary_op_f32_t fun) {
  5431. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5432. }
  5433. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. const ggml_unary_op_f32_t fun) {
  5437. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5438. }
  5439. // ggml_map_binary
  5440. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. struct ggml_tensor * b,
  5444. const ggml_binary_op_f32_t fun,
  5445. bool inplace) {
  5446. GGML_ASSERT(ggml_are_same_shape(a, b));
  5447. bool is_node = false;
  5448. if (!inplace && (a->grad || b->grad)) {
  5449. is_node = true;
  5450. }
  5451. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5452. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5453. result->op = GGML_OP_MAP_BINARY;
  5454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5455. result->src[0] = a;
  5456. result->src[1] = b;
  5457. return result;
  5458. }
  5459. struct ggml_tensor * ggml_map_binary_f32(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. struct ggml_tensor * b,
  5463. const ggml_binary_op_f32_t fun) {
  5464. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5465. }
  5466. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * a,
  5469. struct ggml_tensor * b,
  5470. const ggml_binary_op_f32_t fun) {
  5471. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5472. }
  5473. // ggml_map_custom1_f32
  5474. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5475. struct ggml_context * ctx,
  5476. struct ggml_tensor * a,
  5477. const ggml_custom1_op_f32_t fun,
  5478. bool inplace) {
  5479. bool is_node = false;
  5480. if (!inplace && a->grad) {
  5481. is_node = true;
  5482. }
  5483. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5484. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5485. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5487. result->src[0] = a;
  5488. return result;
  5489. }
  5490. struct ggml_tensor * ggml_map_custom1_f32(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. const ggml_custom1_op_f32_t fun) {
  5494. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5495. }
  5496. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. const ggml_custom1_op_f32_t fun) {
  5500. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5501. }
  5502. // ggml_map_custom2_f32
  5503. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. struct ggml_tensor * b,
  5507. const ggml_custom2_op_f32_t fun,
  5508. bool inplace) {
  5509. bool is_node = false;
  5510. if (!inplace && (a->grad || b->grad)) {
  5511. is_node = true;
  5512. }
  5513. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5514. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5515. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5517. result->src[0] = a;
  5518. result->src[1] = b;
  5519. return result;
  5520. }
  5521. struct ggml_tensor * ggml_map_custom2_f32(
  5522. struct ggml_context * ctx,
  5523. struct ggml_tensor * a,
  5524. struct ggml_tensor * b,
  5525. const ggml_custom2_op_f32_t fun) {
  5526. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5527. }
  5528. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a,
  5531. struct ggml_tensor * b,
  5532. const ggml_custom2_op_f32_t fun) {
  5533. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5534. }
  5535. // ggml_map_custom3_f32
  5536. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. struct ggml_tensor * c,
  5541. const ggml_custom3_op_f32_t fun,
  5542. bool inplace) {
  5543. bool is_node = false;
  5544. if (!inplace && (a->grad || b->grad || c->grad)) {
  5545. is_node = true;
  5546. }
  5547. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5548. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5549. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5551. result->src[0] = a;
  5552. result->src[1] = b;
  5553. result->src[2] = c;
  5554. return result;
  5555. }
  5556. struct ggml_tensor * ggml_map_custom3_f32(
  5557. struct ggml_context * ctx,
  5558. struct ggml_tensor * a,
  5559. struct ggml_tensor * b,
  5560. struct ggml_tensor * c,
  5561. const ggml_custom3_op_f32_t fun) {
  5562. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5563. }
  5564. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. struct ggml_tensor * c,
  5569. const ggml_custom3_op_f32_t fun) {
  5570. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5571. }
  5572. // ggml_map_custom1
  5573. struct ggml_map_custom1_op_params {
  5574. ggml_custom1_op_t fun;
  5575. int n_tasks;
  5576. void * userdata;
  5577. };
  5578. static struct ggml_tensor * ggml_map_custom1_impl(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. const ggml_custom1_op_t fun,
  5582. int n_tasks,
  5583. void * userdata,
  5584. bool inplace) {
  5585. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5586. bool is_node = false;
  5587. if (!inplace && a->grad) {
  5588. is_node = true;
  5589. }
  5590. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5591. struct ggml_map_custom1_op_params params = {
  5592. /*.fun =*/ fun,
  5593. /*.n_tasks =*/ n_tasks,
  5594. /*.userdata =*/ userdata
  5595. };
  5596. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5597. result->op = GGML_OP_MAP_CUSTOM1;
  5598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5599. result->src[0] = a;
  5600. return result;
  5601. }
  5602. struct ggml_tensor * ggml_map_custom1(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. const ggml_custom1_op_t fun,
  5606. int n_tasks,
  5607. void * userdata) {
  5608. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5609. }
  5610. struct ggml_tensor * ggml_map_custom1_inplace(
  5611. struct ggml_context * ctx,
  5612. struct ggml_tensor * a,
  5613. const ggml_custom1_op_t fun,
  5614. int n_tasks,
  5615. void * userdata) {
  5616. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5617. }
  5618. // ggml_map_custom2
  5619. struct ggml_map_custom2_op_params {
  5620. ggml_custom2_op_t fun;
  5621. int n_tasks;
  5622. void * userdata;
  5623. };
  5624. static struct ggml_tensor * ggml_map_custom2_impl(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. struct ggml_tensor * b,
  5628. const ggml_custom2_op_t fun,
  5629. int n_tasks,
  5630. void * userdata,
  5631. bool inplace) {
  5632. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5633. bool is_node = false;
  5634. if (!inplace && (a->grad || b->grad)) {
  5635. is_node = true;
  5636. }
  5637. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5638. struct ggml_map_custom2_op_params params = {
  5639. /*.fun =*/ fun,
  5640. /*.n_tasks =*/ n_tasks,
  5641. /*.userdata =*/ userdata
  5642. };
  5643. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5644. result->op = GGML_OP_MAP_CUSTOM2;
  5645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5646. result->src[0] = a;
  5647. result->src[1] = b;
  5648. return result;
  5649. }
  5650. struct ggml_tensor * ggml_map_custom2(
  5651. struct ggml_context * ctx,
  5652. struct ggml_tensor * a,
  5653. struct ggml_tensor * b,
  5654. const ggml_custom2_op_t fun,
  5655. int n_tasks,
  5656. void * userdata) {
  5657. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5658. }
  5659. struct ggml_tensor * ggml_map_custom2_inplace(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. struct ggml_tensor * b,
  5663. const ggml_custom2_op_t fun,
  5664. int n_tasks,
  5665. void * userdata) {
  5666. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5667. }
  5668. // ggml_map_custom3
  5669. struct ggml_map_custom3_op_params {
  5670. ggml_custom3_op_t fun;
  5671. int n_tasks;
  5672. void * userdata;
  5673. };
  5674. static struct ggml_tensor * ggml_map_custom3_impl(
  5675. struct ggml_context * ctx,
  5676. struct ggml_tensor * a,
  5677. struct ggml_tensor * b,
  5678. struct ggml_tensor * c,
  5679. const ggml_custom3_op_t fun,
  5680. int n_tasks,
  5681. void * userdata,
  5682. bool inplace) {
  5683. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5684. bool is_node = false;
  5685. if (!inplace && (a->grad || b->grad || c->grad)) {
  5686. is_node = true;
  5687. }
  5688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5689. struct ggml_map_custom3_op_params params = {
  5690. /*.fun =*/ fun,
  5691. /*.n_tasks =*/ n_tasks,
  5692. /*.userdata =*/ userdata
  5693. };
  5694. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5695. result->op = GGML_OP_MAP_CUSTOM3;
  5696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5697. result->src[0] = a;
  5698. result->src[1] = b;
  5699. result->src[2] = c;
  5700. return result;
  5701. }
  5702. struct ggml_tensor * ggml_map_custom3(
  5703. struct ggml_context * ctx,
  5704. struct ggml_tensor * a,
  5705. struct ggml_tensor * b,
  5706. struct ggml_tensor * c,
  5707. const ggml_custom3_op_t fun,
  5708. int n_tasks,
  5709. void * userdata) {
  5710. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5711. }
  5712. struct ggml_tensor * ggml_map_custom3_inplace(
  5713. struct ggml_context * ctx,
  5714. struct ggml_tensor * a,
  5715. struct ggml_tensor * b,
  5716. struct ggml_tensor * c,
  5717. const ggml_custom3_op_t fun,
  5718. int n_tasks,
  5719. void * userdata) {
  5720. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5721. }
  5722. // ggml_cross_entropy_loss
  5723. struct ggml_tensor * ggml_cross_entropy_loss(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. struct ggml_tensor * b) {
  5727. GGML_ASSERT(ggml_are_same_shape(a, b));
  5728. bool is_node = false;
  5729. if (a->grad || b->grad) {
  5730. is_node = true;
  5731. }
  5732. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5733. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src[0] = a;
  5736. result->src[1] = b;
  5737. return result;
  5738. }
  5739. // ggml_cross_entropy_loss_back
  5740. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. struct ggml_tensor * b,
  5744. struct ggml_tensor * c) {
  5745. GGML_ASSERT(ggml_are_same_shape(a, b));
  5746. GGML_ASSERT(ggml_is_scalar(c));
  5747. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5748. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5749. result->grad = NULL;
  5750. result->src[0] = a;
  5751. result->src[1] = b;
  5752. result->src[2] = c;
  5753. return result;
  5754. }
  5755. ////////////////////////////////////////////////////////////////////////////////
  5756. void ggml_set_param(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * tensor) {
  5759. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5760. GGML_ASSERT(tensor->grad == NULL);
  5761. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5762. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5763. }
  5764. // ggml_compute_forward_dup
  5765. static void ggml_compute_forward_dup_same_cont(
  5766. const struct ggml_compute_params * params,
  5767. struct ggml_tensor * dst) {
  5768. const struct ggml_tensor * src0 = dst->src[0];
  5769. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5770. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5771. GGML_ASSERT(src0->type == dst->type);
  5772. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5773. return;
  5774. }
  5775. const size_t nb00 = src0->nb[0];
  5776. const size_t nb0 = dst->nb[0];
  5777. const int ith = params->ith; // thread index
  5778. const int nth = params->nth; // number of threads
  5779. // parallelize by elements
  5780. const int ne = ggml_nelements(dst);
  5781. const int dr = (ne + nth - 1) / nth;
  5782. const int ie0 = dr * ith;
  5783. const int ie1 = MIN(ie0 + dr, ne);
  5784. if (ie0 < ie1) {
  5785. memcpy(
  5786. ((char *) dst->data + ie0*nb0),
  5787. ((char *) src0->data + ie0*nb00),
  5788. (ie1 - ie0) * ggml_type_size(src0->type));
  5789. }
  5790. }
  5791. static void ggml_compute_forward_dup_f16(
  5792. const struct ggml_compute_params * params,
  5793. struct ggml_tensor * dst) {
  5794. const struct ggml_tensor * src0 = dst->src[0];
  5795. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5797. return;
  5798. }
  5799. GGML_TENSOR_UNARY_OP_LOCALS
  5800. const int ith = params->ith; // thread index
  5801. const int nth = params->nth; // number of threads
  5802. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5803. ggml_compute_forward_dup_same_cont(params, dst);
  5804. return;
  5805. }
  5806. // parallelize by rows
  5807. const int nr = ne01;
  5808. // number of rows per thread
  5809. const int dr = (nr + nth - 1) / nth;
  5810. // row range for this thread
  5811. const int ir0 = dr * ith;
  5812. const int ir1 = MIN(ir0 + dr, nr);
  5813. if (src0->type == dst->type &&
  5814. ne00 == ne0 &&
  5815. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5816. // copy by rows
  5817. const size_t rs = ne00*nb00;
  5818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5820. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5821. memcpy(
  5822. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5823. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5824. rs);
  5825. }
  5826. }
  5827. }
  5828. return;
  5829. }
  5830. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5831. if (ggml_is_contiguous(dst)) {
  5832. if (nb00 == sizeof(ggml_fp16_t)) {
  5833. if (dst->type == GGML_TYPE_F16) {
  5834. size_t id = 0;
  5835. const size_t rs = ne00 * nb00;
  5836. char * dst_ptr = (char *) dst->data;
  5837. for (int i03 = 0; i03 < ne03; i03++) {
  5838. for (int i02 = 0; i02 < ne02; i02++) {
  5839. id += rs * ir0;
  5840. for (int i01 = ir0; i01 < ir1; i01++) {
  5841. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5842. memcpy(dst_ptr + id, src0_ptr, rs);
  5843. id += rs;
  5844. }
  5845. id += rs * (ne01 - ir1);
  5846. }
  5847. }
  5848. } else if (dst->type == GGML_TYPE_F32) {
  5849. size_t id = 0;
  5850. float * dst_ptr = (float *) dst->data;
  5851. for (int i03 = 0; i03 < ne03; i03++) {
  5852. for (int i02 = 0; i02 < ne02; i02++) {
  5853. id += ne00 * ir0;
  5854. for (int i01 = ir0; i01 < ir1; i01++) {
  5855. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5856. for (int i00 = 0; i00 < ne00; i00++) {
  5857. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5858. id++;
  5859. }
  5860. }
  5861. id += ne00 * (ne01 - ir1);
  5862. }
  5863. }
  5864. } else if (type_traits[dst->type].from_float) {
  5865. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5866. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5867. size_t id = 0;
  5868. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5869. char * dst_ptr = (char *) dst->data;
  5870. for (int i03 = 0; i03 < ne03; i03++) {
  5871. for (int i02 = 0; i02 < ne02; i02++) {
  5872. id += rs * ir0;
  5873. for (int i01 = ir0; i01 < ir1; i01++) {
  5874. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5875. for (int i00 = 0; i00 < ne00; i00++) {
  5876. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5877. }
  5878. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5879. id += rs;
  5880. }
  5881. id += rs * (ne01 - ir1);
  5882. }
  5883. }
  5884. } else {
  5885. GGML_ASSERT(false); // TODO: implement
  5886. }
  5887. } else {
  5888. //printf("%s: this is not optimal - fix me\n", __func__);
  5889. if (dst->type == GGML_TYPE_F32) {
  5890. size_t id = 0;
  5891. float * dst_ptr = (float *) dst->data;
  5892. for (int i03 = 0; i03 < ne03; i03++) {
  5893. for (int i02 = 0; i02 < ne02; i02++) {
  5894. id += ne00 * ir0;
  5895. for (int i01 = ir0; i01 < ir1; i01++) {
  5896. for (int i00 = 0; i00 < ne00; i00++) {
  5897. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5898. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5899. id++;
  5900. }
  5901. }
  5902. id += ne00 * (ne01 - ir1);
  5903. }
  5904. }
  5905. } else if (dst->type == GGML_TYPE_F16) {
  5906. size_t id = 0;
  5907. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5908. for (int i03 = 0; i03 < ne03; i03++) {
  5909. for (int i02 = 0; i02 < ne02; i02++) {
  5910. id += ne00 * ir0;
  5911. for (int i01 = ir0; i01 < ir1; i01++) {
  5912. for (int i00 = 0; i00 < ne00; i00++) {
  5913. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5914. dst_ptr[id] = *src0_ptr;
  5915. id++;
  5916. }
  5917. }
  5918. id += ne00 * (ne01 - ir1);
  5919. }
  5920. }
  5921. } else {
  5922. GGML_ASSERT(false); // TODO: implement
  5923. }
  5924. }
  5925. return;
  5926. }
  5927. // dst counters
  5928. int64_t i10 = 0;
  5929. int64_t i11 = 0;
  5930. int64_t i12 = 0;
  5931. int64_t i13 = 0;
  5932. if (dst->type == GGML_TYPE_F16) {
  5933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5935. i10 += ne00 * ir0;
  5936. while (i10 >= ne0) {
  5937. i10 -= ne0;
  5938. if (++i11 == ne1) {
  5939. i11 = 0;
  5940. if (++i12 == ne2) {
  5941. i12 = 0;
  5942. if (++i13 == ne3) {
  5943. i13 = 0;
  5944. }
  5945. }
  5946. }
  5947. }
  5948. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5949. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5950. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5951. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5952. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5953. if (++i10 == ne00) {
  5954. i10 = 0;
  5955. if (++i11 == ne01) {
  5956. i11 = 0;
  5957. if (++i12 == ne02) {
  5958. i12 = 0;
  5959. if (++i13 == ne03) {
  5960. i13 = 0;
  5961. }
  5962. }
  5963. }
  5964. }
  5965. }
  5966. }
  5967. i10 += ne00 * (ne01 - ir1);
  5968. while (i10 >= ne0) {
  5969. i10 -= ne0;
  5970. if (++i11 == ne1) {
  5971. i11 = 0;
  5972. if (++i12 == ne2) {
  5973. i12 = 0;
  5974. if (++i13 == ne3) {
  5975. i13 = 0;
  5976. }
  5977. }
  5978. }
  5979. }
  5980. }
  5981. }
  5982. } else if (dst->type == GGML_TYPE_F32) {
  5983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5985. i10 += ne00 * ir0;
  5986. while (i10 >= ne0) {
  5987. i10 -= ne0;
  5988. if (++i11 == ne1) {
  5989. i11 = 0;
  5990. if (++i12 == ne2) {
  5991. i12 = 0;
  5992. if (++i13 == ne3) {
  5993. i13 = 0;
  5994. }
  5995. }
  5996. }
  5997. }
  5998. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6000. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6001. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6002. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6003. if (++i10 == ne0) {
  6004. i10 = 0;
  6005. if (++i11 == ne1) {
  6006. i11 = 0;
  6007. if (++i12 == ne2) {
  6008. i12 = 0;
  6009. if (++i13 == ne3) {
  6010. i13 = 0;
  6011. }
  6012. }
  6013. }
  6014. }
  6015. }
  6016. }
  6017. i10 += ne00 * (ne01 - ir1);
  6018. while (i10 >= ne0) {
  6019. i10 -= ne0;
  6020. if (++i11 == ne1) {
  6021. i11 = 0;
  6022. if (++i12 == ne2) {
  6023. i12 = 0;
  6024. if (++i13 == ne3) {
  6025. i13 = 0;
  6026. }
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. } else {
  6033. GGML_ASSERT(false); // TODO: implement
  6034. }
  6035. }
  6036. static void ggml_compute_forward_dup_f32(
  6037. const struct ggml_compute_params * params,
  6038. struct ggml_tensor * dst) {
  6039. const struct ggml_tensor * src0 = dst->src[0];
  6040. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6041. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6042. return;
  6043. }
  6044. GGML_TENSOR_UNARY_OP_LOCALS
  6045. const int ith = params->ith; // thread index
  6046. const int nth = params->nth; // number of threads
  6047. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6048. ggml_compute_forward_dup_same_cont(params, dst);
  6049. return;
  6050. }
  6051. // parallelize by rows
  6052. const int nr = ne01;
  6053. // number of rows per thread
  6054. const int dr = (nr + nth - 1) / nth;
  6055. // row range for this thread
  6056. const int ir0 = dr * ith;
  6057. const int ir1 = MIN(ir0 + dr, nr);
  6058. if (src0->type == dst->type &&
  6059. ne00 == ne0 &&
  6060. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6061. // copy by rows
  6062. const size_t rs = ne00*nb00;
  6063. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6065. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6066. memcpy(
  6067. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6068. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6069. rs);
  6070. }
  6071. }
  6072. }
  6073. return;
  6074. }
  6075. if (ggml_is_contiguous(dst)) {
  6076. // TODO: simplify
  6077. if (nb00 == sizeof(float)) {
  6078. if (dst->type == GGML_TYPE_F32) {
  6079. size_t id = 0;
  6080. const size_t rs = ne00 * nb00;
  6081. char * dst_ptr = (char *) dst->data;
  6082. for (int i03 = 0; i03 < ne03; i03++) {
  6083. for (int i02 = 0; i02 < ne02; i02++) {
  6084. id += rs * ir0;
  6085. for (int i01 = ir0; i01 < ir1; i01++) {
  6086. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6087. memcpy(dst_ptr + id, src0_ptr, rs);
  6088. id += rs;
  6089. }
  6090. id += rs * (ne01 - ir1);
  6091. }
  6092. }
  6093. } else if (type_traits[dst->type].from_float) {
  6094. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6095. size_t id = 0;
  6096. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6097. char * dst_ptr = (char *) dst->data;
  6098. for (int i03 = 0; i03 < ne03; i03++) {
  6099. for (int i02 = 0; i02 < ne02; i02++) {
  6100. id += rs * ir0;
  6101. for (int i01 = ir0; i01 < ir1; i01++) {
  6102. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6103. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6104. id += rs;
  6105. }
  6106. id += rs * (ne01 - ir1);
  6107. }
  6108. }
  6109. } else {
  6110. GGML_ASSERT(false); // TODO: implement
  6111. }
  6112. } else {
  6113. //printf("%s: this is not optimal - fix me\n", __func__);
  6114. if (dst->type == GGML_TYPE_F32) {
  6115. size_t id = 0;
  6116. float * dst_ptr = (float *) dst->data;
  6117. for (int i03 = 0; i03 < ne03; i03++) {
  6118. for (int i02 = 0; i02 < ne02; i02++) {
  6119. id += ne00 * ir0;
  6120. for (int i01 = ir0; i01 < ir1; i01++) {
  6121. for (int i00 = 0; i00 < ne00; i00++) {
  6122. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6123. dst_ptr[id] = *src0_ptr;
  6124. id++;
  6125. }
  6126. }
  6127. id += ne00 * (ne01 - ir1);
  6128. }
  6129. }
  6130. } else if (dst->type == GGML_TYPE_F16) {
  6131. size_t id = 0;
  6132. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6133. for (int i03 = 0; i03 < ne03; i03++) {
  6134. for (int i02 = 0; i02 < ne02; i02++) {
  6135. id += ne00 * ir0;
  6136. for (int i01 = ir0; i01 < ir1; i01++) {
  6137. for (int i00 = 0; i00 < ne00; i00++) {
  6138. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6139. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6140. id++;
  6141. }
  6142. }
  6143. id += ne00 * (ne01 - ir1);
  6144. }
  6145. }
  6146. } else {
  6147. GGML_ASSERT(false); // TODO: implement
  6148. }
  6149. }
  6150. return;
  6151. }
  6152. // dst counters
  6153. int64_t i10 = 0;
  6154. int64_t i11 = 0;
  6155. int64_t i12 = 0;
  6156. int64_t i13 = 0;
  6157. if (dst->type == GGML_TYPE_F32) {
  6158. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6159. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6160. i10 += ne00 * ir0;
  6161. while (i10 >= ne0) {
  6162. i10 -= ne0;
  6163. if (++i11 == ne1) {
  6164. i11 = 0;
  6165. if (++i12 == ne2) {
  6166. i12 = 0;
  6167. if (++i13 == ne3) {
  6168. i13 = 0;
  6169. }
  6170. }
  6171. }
  6172. }
  6173. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6174. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6175. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6176. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6177. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6178. if (++i10 == ne0) {
  6179. i10 = 0;
  6180. if (++i11 == ne1) {
  6181. i11 = 0;
  6182. if (++i12 == ne2) {
  6183. i12 = 0;
  6184. if (++i13 == ne3) {
  6185. i13 = 0;
  6186. }
  6187. }
  6188. }
  6189. }
  6190. }
  6191. }
  6192. i10 += ne00 * (ne01 - ir1);
  6193. while (i10 >= ne0) {
  6194. i10 -= ne0;
  6195. if (++i11 == ne1) {
  6196. i11 = 0;
  6197. if (++i12 == ne2) {
  6198. i12 = 0;
  6199. if (++i13 == ne3) {
  6200. i13 = 0;
  6201. }
  6202. }
  6203. }
  6204. }
  6205. }
  6206. }
  6207. } else if (dst->type == GGML_TYPE_F16) {
  6208. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6210. i10 += ne00 * ir0;
  6211. while (i10 >= ne0) {
  6212. i10 -= ne0;
  6213. if (++i11 == ne1) {
  6214. i11 = 0;
  6215. if (++i12 == ne2) {
  6216. i12 = 0;
  6217. if (++i13 == ne3) {
  6218. i13 = 0;
  6219. }
  6220. }
  6221. }
  6222. }
  6223. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6224. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6225. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6226. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6227. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6228. if (++i10 == ne0) {
  6229. i10 = 0;
  6230. if (++i11 == ne1) {
  6231. i11 = 0;
  6232. if (++i12 == ne2) {
  6233. i12 = 0;
  6234. if (++i13 == ne3) {
  6235. i13 = 0;
  6236. }
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. i10 += ne00 * (ne01 - ir1);
  6243. while (i10 >= ne0) {
  6244. i10 -= ne0;
  6245. if (++i11 == ne1) {
  6246. i11 = 0;
  6247. if (++i12 == ne2) {
  6248. i12 = 0;
  6249. if (++i13 == ne3) {
  6250. i13 = 0;
  6251. }
  6252. }
  6253. }
  6254. }
  6255. }
  6256. }
  6257. } else {
  6258. GGML_ASSERT(false); // TODO: implement
  6259. }
  6260. }
  6261. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6262. static void ggml_compute_forward_dup_bytes(
  6263. const struct ggml_compute_params * params,
  6264. struct ggml_tensor * dst) {
  6265. const struct ggml_tensor * src0 = dst->src[0];
  6266. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6267. GGML_ASSERT(src0->type == dst->type);
  6268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6269. return;
  6270. }
  6271. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6272. ggml_compute_forward_dup_same_cont(params, dst);
  6273. return;
  6274. }
  6275. GGML_TENSOR_UNARY_OP_LOCALS;
  6276. const size_t type_size = ggml_type_size(src0->type);
  6277. const int ith = params->ith; // thread index
  6278. const int nth = params->nth; // number of threads
  6279. // parallelize by rows
  6280. const int nr = ne01;
  6281. // number of rows per thread
  6282. const int dr = (nr + nth - 1) / nth;
  6283. // row range for this thread
  6284. const int ir0 = dr * ith;
  6285. const int ir1 = MIN(ir0 + dr, nr);
  6286. if (src0->type == dst->type &&
  6287. ne00 == ne0 &&
  6288. nb00 == type_size && nb0 == type_size) {
  6289. // copy by rows
  6290. const size_t rs = ne00 * type_size;
  6291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6293. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6294. memcpy(
  6295. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6296. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6297. rs);
  6298. }
  6299. }
  6300. }
  6301. return;
  6302. }
  6303. if (ggml_is_contiguous(dst)) {
  6304. size_t id = 0;
  6305. char * dst_ptr = (char *) dst->data;
  6306. const size_t rs = ne00 * type_size;
  6307. if (nb00 == type_size) {
  6308. // src0 is contigous on first dimension, copy by rows
  6309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6311. id += rs * ir0;
  6312. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6313. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6314. memcpy(dst_ptr + id, src0_ptr, rs);
  6315. id += rs;
  6316. }
  6317. id += rs * (ne01 - ir1);
  6318. }
  6319. }
  6320. } else {
  6321. //printf("%s: this is not optimal - fix me\n", __func__);
  6322. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6323. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6324. id += rs * ir0;
  6325. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6327. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6328. memcpy(dst_ptr + id, src0_ptr, type_size);
  6329. id += type_size;
  6330. }
  6331. }
  6332. id += rs * (ne01 - ir1);
  6333. }
  6334. }
  6335. }
  6336. return;
  6337. }
  6338. // dst counters
  6339. int64_t i10 = 0;
  6340. int64_t i11 = 0;
  6341. int64_t i12 = 0;
  6342. int64_t i13 = 0;
  6343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6345. i10 += ne00 * ir0;
  6346. while (i10 >= ne0) {
  6347. i10 -= ne0;
  6348. if (++i11 == ne1) {
  6349. i11 = 0;
  6350. if (++i12 == ne2) {
  6351. i12 = 0;
  6352. if (++i13 == ne3) {
  6353. i13 = 0;
  6354. }
  6355. }
  6356. }
  6357. }
  6358. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6360. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6361. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6362. memcpy(dst_ptr, src0_ptr, type_size);
  6363. if (++i10 == ne0) {
  6364. i10 = 0;
  6365. if (++i11 == ne1) {
  6366. i11 = 0;
  6367. if (++i12 == ne2) {
  6368. i12 = 0;
  6369. if (++i13 == ne3) {
  6370. i13 = 0;
  6371. }
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. i10 += ne00 * (ne01 - ir1);
  6378. while (i10 >= ne0) {
  6379. i10 -= ne0;
  6380. if (++i11 == ne1) {
  6381. i11 = 0;
  6382. if (++i12 == ne2) {
  6383. i12 = 0;
  6384. if (++i13 == ne3) {
  6385. i13 = 0;
  6386. }
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. }
  6393. static void ggml_compute_forward_dup(
  6394. const struct ggml_compute_params * params,
  6395. struct ggml_tensor * dst) {
  6396. const struct ggml_tensor * src0 = dst->src[0];
  6397. if (src0->type == dst->type) {
  6398. ggml_compute_forward_dup_bytes(params, dst);
  6399. return;
  6400. }
  6401. switch (src0->type) {
  6402. case GGML_TYPE_F16:
  6403. {
  6404. ggml_compute_forward_dup_f16(params, dst);
  6405. } break;
  6406. case GGML_TYPE_F32:
  6407. {
  6408. ggml_compute_forward_dup_f32(params, dst);
  6409. } break;
  6410. default:
  6411. {
  6412. GGML_ASSERT(false);
  6413. } break;
  6414. }
  6415. }
  6416. // ggml_compute_forward_add
  6417. static void ggml_compute_forward_add_f32(
  6418. const struct ggml_compute_params * params,
  6419. struct ggml_tensor * dst) {
  6420. const struct ggml_tensor * src0 = dst->src[0];
  6421. const struct ggml_tensor * src1 = dst->src[1];
  6422. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6423. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6424. return;
  6425. }
  6426. const int ith = params->ith;
  6427. const int nth = params->nth;
  6428. #ifdef GGML_USE_CLBLAST
  6429. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6430. // TODO: OpenCL kernel support full broadcast
  6431. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6432. if (ith == 0) {
  6433. ggml_cl_add(src0, src1, dst);
  6434. }
  6435. return;
  6436. }
  6437. #endif
  6438. const int nr = ggml_nrows(src0);
  6439. GGML_TENSOR_BINARY_OP_LOCALS
  6440. GGML_ASSERT( nb0 == sizeof(float));
  6441. GGML_ASSERT(nb00 == sizeof(float));
  6442. // rows per thread
  6443. const int dr = (nr + nth - 1)/nth;
  6444. // row range for this thread
  6445. const int ir0 = dr*ith;
  6446. const int ir1 = MIN(ir0 + dr, nr);
  6447. if (nb10 == sizeof(float)) {
  6448. for (int ir = ir0; ir < ir1; ++ir) {
  6449. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6450. const int64_t i03 = ir/(ne02*ne01);
  6451. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6452. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6453. const int64_t i13 = i03 % ne13;
  6454. const int64_t i12 = i02 % ne12;
  6455. const int64_t i11 = i01 % ne11;
  6456. const int64_t nr0 = ne00 / ne10;
  6457. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6458. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6459. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6460. for (int64_t r = 0; r < nr0; ++r) {
  6461. #ifdef GGML_USE_ACCELERATE
  6462. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6463. #else
  6464. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6465. #endif
  6466. }
  6467. }
  6468. } else {
  6469. // src1 is not contiguous
  6470. for (int ir = ir0; ir < ir1; ++ir) {
  6471. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6472. const int64_t i03 = ir/(ne02*ne01);
  6473. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6474. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6475. const int64_t i13 = i03 % ne13;
  6476. const int64_t i12 = i02 % ne12;
  6477. const int64_t i11 = i01 % ne11;
  6478. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6479. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6480. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6481. const int64_t i10 = i0 % ne10;
  6482. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6483. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6484. }
  6485. }
  6486. }
  6487. }
  6488. static void ggml_compute_forward_add_f16_f32(
  6489. const struct ggml_compute_params * params,
  6490. struct ggml_tensor * dst) {
  6491. const struct ggml_tensor * src0 = dst->src[0];
  6492. const struct ggml_tensor * src1 = dst->src[1];
  6493. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6495. return;
  6496. }
  6497. const int ith = params->ith;
  6498. const int nth = params->nth;
  6499. const int nr = ggml_nrows(src0);
  6500. GGML_TENSOR_BINARY_OP_LOCALS
  6501. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6502. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6503. if (dst->type == GGML_TYPE_F32) {
  6504. GGML_ASSERT( nb0 == sizeof(float));
  6505. }
  6506. else {
  6507. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6508. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6509. }
  6510. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6511. // rows per thread
  6512. const int dr = (nr + nth - 1)/nth;
  6513. // row range for this thread
  6514. const int ir0 = dr*ith;
  6515. const int ir1 = MIN(ir0 + dr, nr);
  6516. if (nb10 == sizeof(float)) {
  6517. if (dst->type == GGML_TYPE_F16) {
  6518. for (int ir = ir0; ir < ir1; ++ir) {
  6519. // src0, src1 and dst are same shape => same indices
  6520. const int i3 = ir/(ne2*ne1);
  6521. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6522. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6523. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6524. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6525. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6526. for (int i = 0; i < ne0; i++) {
  6527. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6528. }
  6529. }
  6530. } else {
  6531. for (int ir = ir0; ir < ir1; ++ir) {
  6532. // src0, src1 and dst are same shape => same indices
  6533. const int i3 = ir/(ne2*ne1);
  6534. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6535. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6536. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6537. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6538. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6539. for (int i = 0; i < ne0; i++) {
  6540. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6541. }
  6542. }
  6543. }
  6544. }
  6545. else {
  6546. // src1 is not contiguous
  6547. GGML_ASSERT(false);
  6548. }
  6549. }
  6550. static void ggml_compute_forward_add_f16_f16(
  6551. const struct ggml_compute_params * params,
  6552. struct ggml_tensor * dst) {
  6553. const struct ggml_tensor * src0 = dst->src[0];
  6554. const struct ggml_tensor * src1 = dst->src[1];
  6555. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6557. return;
  6558. }
  6559. const int ith = params->ith;
  6560. const int nth = params->nth;
  6561. const int nr = ggml_nrows(src0);
  6562. GGML_TENSOR_BINARY_OP_LOCALS
  6563. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6564. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6565. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6566. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6567. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6568. // rows per thread
  6569. const int dr = (nr + nth - 1)/nth;
  6570. // row range for this thread
  6571. const int ir0 = dr*ith;
  6572. const int ir1 = MIN(ir0 + dr, nr);
  6573. if (nb10 == sizeof(ggml_fp16_t)) {
  6574. for (int ir = ir0; ir < ir1; ++ir) {
  6575. // src0, src1 and dst are same shape => same indices
  6576. const int i3 = ir/(ne2*ne1);
  6577. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6578. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6579. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6580. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6581. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6582. for (int i = 0; i < ne0; i++) {
  6583. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6584. }
  6585. }
  6586. }
  6587. else {
  6588. // src1 is not contiguous
  6589. GGML_ASSERT(false);
  6590. }
  6591. }
  6592. static void ggml_compute_forward_add_q_f32(
  6593. const struct ggml_compute_params * params,
  6594. struct ggml_tensor * dst) {
  6595. const struct ggml_tensor * src0 = dst->src[0];
  6596. const struct ggml_tensor * src1 = dst->src[1];
  6597. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6598. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6599. return;
  6600. }
  6601. const int nr = ggml_nrows(src0);
  6602. GGML_TENSOR_BINARY_OP_LOCALS
  6603. const int ith = params->ith;
  6604. const int nth = params->nth;
  6605. const enum ggml_type type = src0->type;
  6606. const enum ggml_type dtype = dst->type;
  6607. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6608. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6609. // we don't support permuted src0 or src1
  6610. GGML_ASSERT(nb00 == ggml_type_size(type));
  6611. GGML_ASSERT(nb10 == sizeof(float));
  6612. // dst cannot be transposed or permuted
  6613. GGML_ASSERT(nb0 <= nb1);
  6614. GGML_ASSERT(nb1 <= nb2);
  6615. GGML_ASSERT(nb2 <= nb3);
  6616. GGML_ASSERT(ggml_is_quantized(src0->type));
  6617. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6618. // rows per thread
  6619. const int dr = (nr + nth - 1)/nth;
  6620. // row range for this thread
  6621. const int ir0 = dr*ith;
  6622. const int ir1 = MIN(ir0 + dr, nr);
  6623. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6624. for (int ir = ir0; ir < ir1; ++ir) {
  6625. // src0 indices
  6626. const int i03 = ir/(ne02*ne01);
  6627. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6628. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6629. // src1 and dst are same shape as src0 => same indices
  6630. const int i13 = i03;
  6631. const int i12 = i02;
  6632. const int i11 = i01;
  6633. const int i3 = i03;
  6634. const int i2 = i02;
  6635. const int i1 = i01;
  6636. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6637. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6638. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6639. assert(ne00 % 32 == 0);
  6640. // unquantize row from src0 to temp buffer
  6641. dequantize_row_q(src0_row, wdata, ne00);
  6642. // add src1
  6643. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6644. // quantize row to dst
  6645. if (quantize_row_q != NULL) {
  6646. quantize_row_q(wdata, dst_row, ne00);
  6647. } else {
  6648. memcpy(dst_row, wdata, ne0*nb0);
  6649. }
  6650. }
  6651. }
  6652. static void ggml_compute_forward_add(
  6653. const struct ggml_compute_params * params,
  6654. struct ggml_tensor * dst) {
  6655. const struct ggml_tensor * src0 = dst->src[0];
  6656. const struct ggml_tensor * src1 = dst->src[1];
  6657. switch (src0->type) {
  6658. case GGML_TYPE_F32:
  6659. {
  6660. if (src1->type == GGML_TYPE_F32) {
  6661. ggml_compute_forward_add_f32(params, dst);
  6662. }
  6663. else {
  6664. GGML_ASSERT(false);
  6665. }
  6666. } break;
  6667. case GGML_TYPE_F16:
  6668. {
  6669. if (src1->type == GGML_TYPE_F16) {
  6670. ggml_compute_forward_add_f16_f16(params, dst);
  6671. }
  6672. else if (src1->type == GGML_TYPE_F32) {
  6673. ggml_compute_forward_add_f16_f32(params, dst);
  6674. }
  6675. else {
  6676. GGML_ASSERT(false);
  6677. }
  6678. } break;
  6679. case GGML_TYPE_Q4_0:
  6680. case GGML_TYPE_Q4_1:
  6681. case GGML_TYPE_Q5_0:
  6682. case GGML_TYPE_Q5_1:
  6683. case GGML_TYPE_Q8_0:
  6684. case GGML_TYPE_Q2_K:
  6685. case GGML_TYPE_Q3_K:
  6686. case GGML_TYPE_Q4_K:
  6687. case GGML_TYPE_Q5_K:
  6688. case GGML_TYPE_Q6_K:
  6689. case GGML_TYPE_IQ2_XXS:
  6690. case GGML_TYPE_IQ2_XS:
  6691. case GGML_TYPE_IQ3_XXS:
  6692. case GGML_TYPE_IQ1_S:
  6693. case GGML_TYPE_IQ1_M:
  6694. case GGML_TYPE_IQ4_NL:
  6695. case GGML_TYPE_IQ4_XS:
  6696. case GGML_TYPE_IQ3_S:
  6697. case GGML_TYPE_IQ2_S:
  6698. {
  6699. ggml_compute_forward_add_q_f32(params, dst);
  6700. } break;
  6701. default:
  6702. {
  6703. GGML_ASSERT(false);
  6704. } break;
  6705. }
  6706. }
  6707. // ggml_compute_forward_add1
  6708. static void ggml_compute_forward_add1_f32(
  6709. const struct ggml_compute_params * params,
  6710. struct ggml_tensor * dst) {
  6711. const struct ggml_tensor * src0 = dst->src[0];
  6712. const struct ggml_tensor * src1 = dst->src[1];
  6713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6714. GGML_ASSERT(ggml_is_scalar(src1));
  6715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6716. return;
  6717. }
  6718. const int ith = params->ith;
  6719. const int nth = params->nth;
  6720. const int nr = ggml_nrows(src0);
  6721. GGML_TENSOR_UNARY_OP_LOCALS
  6722. GGML_ASSERT( nb0 == sizeof(float));
  6723. GGML_ASSERT(nb00 == sizeof(float));
  6724. // rows per thread
  6725. const int dr = (nr + nth - 1)/nth;
  6726. // row range for this thread
  6727. const int ir0 = dr*ith;
  6728. const int ir1 = MIN(ir0 + dr, nr);
  6729. for (int ir = ir0; ir < ir1; ++ir) {
  6730. // src0 and dst are same shape => same indices
  6731. const int i3 = ir/(ne2*ne1);
  6732. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6733. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6734. #ifdef GGML_USE_ACCELERATE
  6735. UNUSED(ggml_vec_add1_f32);
  6736. vDSP_vadd(
  6737. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6738. (float *) ((char *) src1->data), 0,
  6739. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6740. ne0);
  6741. #else
  6742. ggml_vec_add1_f32(ne0,
  6743. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6744. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6745. *(float *) src1->data);
  6746. #endif
  6747. }
  6748. }
  6749. static void ggml_compute_forward_add1_f16_f32(
  6750. const struct ggml_compute_params * params,
  6751. struct ggml_tensor * dst) {
  6752. const struct ggml_tensor * src0 = dst->src[0];
  6753. const struct ggml_tensor * src1 = dst->src[1];
  6754. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6755. GGML_ASSERT(ggml_is_scalar(src1));
  6756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6757. return;
  6758. }
  6759. // scalar to add
  6760. const float v = *(float *) src1->data;
  6761. const int ith = params->ith;
  6762. const int nth = params->nth;
  6763. const int nr = ggml_nrows(src0);
  6764. GGML_TENSOR_UNARY_OP_LOCALS
  6765. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6766. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6767. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6768. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6769. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6770. // rows per thread
  6771. const int dr = (nr + nth - 1)/nth;
  6772. // row range for this thread
  6773. const int ir0 = dr*ith;
  6774. const int ir1 = MIN(ir0 + dr, nr);
  6775. for (int ir = ir0; ir < ir1; ++ir) {
  6776. // src0 and dst are same shape => same indices
  6777. const int i3 = ir/(ne2*ne1);
  6778. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6779. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6780. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6781. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6782. for (int i = 0; i < ne0; i++) {
  6783. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6784. }
  6785. }
  6786. }
  6787. static void ggml_compute_forward_add1_f16_f16(
  6788. const struct ggml_compute_params * params,
  6789. struct ggml_tensor * dst) {
  6790. const struct ggml_tensor * src0 = dst->src[0];
  6791. const struct ggml_tensor * src1 = dst->src[1];
  6792. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6793. GGML_ASSERT(ggml_is_scalar(src1));
  6794. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6795. return;
  6796. }
  6797. // scalar to add
  6798. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6799. const int ith = params->ith;
  6800. const int nth = params->nth;
  6801. const int nr = ggml_nrows(src0);
  6802. GGML_TENSOR_UNARY_OP_LOCALS
  6803. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6804. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6805. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6806. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6807. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6808. // rows per thread
  6809. const int dr = (nr + nth - 1)/nth;
  6810. // row range for this thread
  6811. const int ir0 = dr*ith;
  6812. const int ir1 = MIN(ir0 + dr, nr);
  6813. for (int ir = ir0; ir < ir1; ++ir) {
  6814. // src0 and dst are same shape => same indices
  6815. const int i3 = ir/(ne2*ne1);
  6816. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6817. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6818. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6819. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6820. for (int i = 0; i < ne0; i++) {
  6821. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6822. }
  6823. }
  6824. }
  6825. static void ggml_compute_forward_add1_q_f32(
  6826. const struct ggml_compute_params * params,
  6827. struct ggml_tensor * dst) {
  6828. const struct ggml_tensor * src0 = dst->src[0];
  6829. const struct ggml_tensor * src1 = dst->src[1];
  6830. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6831. GGML_ASSERT(ggml_is_scalar(src1));
  6832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6833. return;
  6834. }
  6835. // scalar to add
  6836. const float v = *(float *) src1->data;
  6837. const int ith = params->ith;
  6838. const int nth = params->nth;
  6839. const int nr = ggml_nrows(src0);
  6840. GGML_TENSOR_UNARY_OP_LOCALS
  6841. const enum ggml_type type = src0->type;
  6842. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6843. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6844. // we don't support permuted src0
  6845. GGML_ASSERT(nb00 == ggml_type_size(type));
  6846. // dst cannot be transposed or permuted
  6847. GGML_ASSERT(nb0 <= nb1);
  6848. GGML_ASSERT(nb1 <= nb2);
  6849. GGML_ASSERT(nb2 <= nb3);
  6850. GGML_ASSERT(ggml_is_quantized(src0->type));
  6851. GGML_ASSERT(dst->type == src0->type);
  6852. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6853. // rows per thread
  6854. const int dr = (nr + nth - 1)/nth;
  6855. // row range for this thread
  6856. const int ir0 = dr*ith;
  6857. const int ir1 = MIN(ir0 + dr, nr);
  6858. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6859. for (int ir = ir0; ir < ir1; ++ir) {
  6860. // src0 and dst are same shape => same indices
  6861. const int i3 = ir/(ne2*ne1);
  6862. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6863. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6864. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6865. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6866. assert(ne0 % 32 == 0);
  6867. // unquantize row from src0 to temp buffer
  6868. dequantize_row_q(src0_row, wdata, ne0);
  6869. // add src1
  6870. ggml_vec_acc1_f32(ne0, wdata, v);
  6871. // quantize row to dst
  6872. quantize_row_q(wdata, dst_row, ne0);
  6873. }
  6874. }
  6875. static void ggml_compute_forward_add1(
  6876. const struct ggml_compute_params * params,
  6877. struct ggml_tensor * dst) {
  6878. const struct ggml_tensor * src0 = dst->src[0];
  6879. const struct ggml_tensor * src1 = dst->src[1];
  6880. switch (src0->type) {
  6881. case GGML_TYPE_F32:
  6882. {
  6883. ggml_compute_forward_add1_f32(params, dst);
  6884. } break;
  6885. case GGML_TYPE_F16:
  6886. {
  6887. if (src1->type == GGML_TYPE_F16) {
  6888. ggml_compute_forward_add1_f16_f16(params, dst);
  6889. }
  6890. else if (src1->type == GGML_TYPE_F32) {
  6891. ggml_compute_forward_add1_f16_f32(params, dst);
  6892. }
  6893. else {
  6894. GGML_ASSERT(false);
  6895. }
  6896. } break;
  6897. case GGML_TYPE_Q4_0:
  6898. case GGML_TYPE_Q4_1:
  6899. case GGML_TYPE_Q5_0:
  6900. case GGML_TYPE_Q5_1:
  6901. case GGML_TYPE_Q8_0:
  6902. case GGML_TYPE_Q8_1:
  6903. case GGML_TYPE_Q2_K:
  6904. case GGML_TYPE_Q3_K:
  6905. case GGML_TYPE_Q4_K:
  6906. case GGML_TYPE_Q5_K:
  6907. case GGML_TYPE_Q6_K:
  6908. case GGML_TYPE_IQ2_XXS:
  6909. case GGML_TYPE_IQ2_XS:
  6910. case GGML_TYPE_IQ3_XXS:
  6911. case GGML_TYPE_IQ1_S:
  6912. case GGML_TYPE_IQ1_M:
  6913. case GGML_TYPE_IQ4_NL:
  6914. case GGML_TYPE_IQ4_XS:
  6915. case GGML_TYPE_IQ3_S:
  6916. case GGML_TYPE_IQ2_S:
  6917. {
  6918. ggml_compute_forward_add1_q_f32(params, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_acc
  6927. static void ggml_compute_forward_acc_f32(
  6928. const struct ggml_compute_params * params,
  6929. struct ggml_tensor * dst) {
  6930. const struct ggml_tensor * src0 = dst->src[0];
  6931. const struct ggml_tensor * src1 = dst->src[1];
  6932. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6933. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6934. // view src0 and dst with these strides and data offset inbytes during acc
  6935. // nb0 is implicitly element_size because src0 and dst are contiguous
  6936. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6937. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6938. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6939. size_t offset = ((int32_t *) dst->op_params)[3];
  6940. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6941. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6942. if (params->ith != 0) {
  6943. return;
  6944. }
  6945. // memcpy needs to be synchronized across threads to avoid race conditions.
  6946. // => do it in INIT phase
  6947. memcpy(
  6948. ((char *) dst->data),
  6949. ((char *) src0->data),
  6950. ggml_nbytes(dst));
  6951. }
  6952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6953. return;
  6954. }
  6955. const int ith = params->ith;
  6956. const int nth = params->nth;
  6957. const int nr = ggml_nrows(src1);
  6958. const int nc = src1->ne[0];
  6959. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6960. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6961. // src0 and dst as viewed during acc
  6962. const size_t nb0 = ggml_element_size(src0);
  6963. const size_t nb00 = nb0;
  6964. const size_t nb01 = nb1;
  6965. const size_t nb02 = nb2;
  6966. const size_t nb03 = nb3;
  6967. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6968. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6969. GGML_ASSERT(nb10 == sizeof(float));
  6970. // rows per thread
  6971. const int dr = (nr + nth - 1)/nth;
  6972. // row range for this thread
  6973. const int ir0 = dr*ith;
  6974. const int ir1 = MIN(ir0 + dr, nr);
  6975. for (int ir = ir0; ir < ir1; ++ir) {
  6976. // src0 and dst are viewed with shape of src1 and offset
  6977. // => same indices
  6978. const int i3 = ir/(ne12*ne11);
  6979. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6980. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6981. #ifdef GGML_USE_ACCELERATE
  6982. vDSP_vadd(
  6983. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6984. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6985. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6986. #else
  6987. ggml_vec_add_f32(nc,
  6988. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6989. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6990. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6991. #endif
  6992. }
  6993. }
  6994. static void ggml_compute_forward_acc(
  6995. const struct ggml_compute_params * params,
  6996. struct ggml_tensor * dst) {
  6997. const struct ggml_tensor * src0 = dst->src[0];
  6998. switch (src0->type) {
  6999. case GGML_TYPE_F32:
  7000. {
  7001. ggml_compute_forward_acc_f32(params, dst);
  7002. } break;
  7003. case GGML_TYPE_F16:
  7004. case GGML_TYPE_Q4_0:
  7005. case GGML_TYPE_Q4_1:
  7006. case GGML_TYPE_Q5_0:
  7007. case GGML_TYPE_Q5_1:
  7008. case GGML_TYPE_Q8_0:
  7009. case GGML_TYPE_Q8_1:
  7010. case GGML_TYPE_Q2_K:
  7011. case GGML_TYPE_Q3_K:
  7012. case GGML_TYPE_Q4_K:
  7013. case GGML_TYPE_Q5_K:
  7014. case GGML_TYPE_Q6_K:
  7015. case GGML_TYPE_IQ2_XXS:
  7016. case GGML_TYPE_IQ2_XS:
  7017. case GGML_TYPE_IQ3_XXS:
  7018. case GGML_TYPE_IQ1_S:
  7019. case GGML_TYPE_IQ1_M:
  7020. case GGML_TYPE_IQ4_NL:
  7021. case GGML_TYPE_IQ4_XS:
  7022. case GGML_TYPE_IQ3_S:
  7023. case GGML_TYPE_IQ2_S:
  7024. default:
  7025. {
  7026. GGML_ASSERT(false);
  7027. } break;
  7028. }
  7029. }
  7030. // ggml_compute_forward_sub
  7031. static void ggml_compute_forward_sub_f32(
  7032. const struct ggml_compute_params * params,
  7033. struct ggml_tensor * dst) {
  7034. const struct ggml_tensor * src0 = dst->src[0];
  7035. const struct ggml_tensor * src1 = dst->src[1];
  7036. assert(params->ith == 0);
  7037. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7039. return;
  7040. }
  7041. const int nr = ggml_nrows(src0);
  7042. GGML_TENSOR_BINARY_OP_LOCALS
  7043. GGML_ASSERT( nb0 == sizeof(float));
  7044. GGML_ASSERT(nb00 == sizeof(float));
  7045. if (nb10 == sizeof(float)) {
  7046. for (int ir = 0; ir < nr; ++ir) {
  7047. // src0, src1 and dst are same shape => same indices
  7048. const int i3 = ir/(ne2*ne1);
  7049. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7050. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7051. #ifdef GGML_USE_ACCELERATE
  7052. vDSP_vsub(
  7053. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7054. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7055. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7056. ne0);
  7057. #else
  7058. ggml_vec_sub_f32(ne0,
  7059. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7060. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7061. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7062. #endif
  7063. // }
  7064. // }
  7065. }
  7066. } else {
  7067. // src1 is not contiguous
  7068. for (int ir = 0; ir < nr; ++ir) {
  7069. // src0, src1 and dst are same shape => same indices
  7070. const int i3 = ir/(ne2*ne1);
  7071. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7072. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7073. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7074. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7075. for (int i0 = 0; i0 < ne0; i0++) {
  7076. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7077. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. static void ggml_compute_forward_sub(
  7083. const struct ggml_compute_params * params,
  7084. struct ggml_tensor * dst) {
  7085. const struct ggml_tensor * src0 = dst->src[0];
  7086. switch (src0->type) {
  7087. case GGML_TYPE_F32:
  7088. {
  7089. ggml_compute_forward_sub_f32(params, dst);
  7090. } break;
  7091. default:
  7092. {
  7093. GGML_ASSERT(false);
  7094. } break;
  7095. }
  7096. }
  7097. // ggml_compute_forward_mul
  7098. static void ggml_compute_forward_mul_f32(
  7099. const struct ggml_compute_params * params,
  7100. struct ggml_tensor * dst) {
  7101. const struct ggml_tensor * src0 = dst->src[0];
  7102. const struct ggml_tensor * src1 = dst->src[1];
  7103. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7104. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7105. return;
  7106. }
  7107. const int ith = params->ith;
  7108. const int nth = params->nth;
  7109. #if defined(GGML_USE_CLBLAST)
  7110. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7111. // TODO: OpenCL kernel support full broadcast
  7112. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7113. if (ith == 0) {
  7114. ggml_cl_mul(src0, src1, dst);
  7115. }
  7116. return;
  7117. }
  7118. #endif
  7119. const int64_t nr = ggml_nrows(src0);
  7120. GGML_TENSOR_BINARY_OP_LOCALS
  7121. GGML_ASSERT( nb0 == sizeof(float));
  7122. GGML_ASSERT(nb00 == sizeof(float));
  7123. if (nb10 == sizeof(float)) {
  7124. for (int64_t ir = ith; ir < nr; ir += nth) {
  7125. // src0 and dst are same shape => same indices
  7126. const int64_t i03 = ir/(ne02*ne01);
  7127. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7128. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7129. const int64_t i13 = i03 % ne13;
  7130. const int64_t i12 = i02 % ne12;
  7131. const int64_t i11 = i01 % ne11;
  7132. const int64_t nr0 = ne00 / ne10;
  7133. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7134. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7135. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7136. for (int64_t r = 0 ; r < nr0; ++r) {
  7137. #ifdef GGML_USE_ACCELERATE
  7138. UNUSED(ggml_vec_mul_f32);
  7139. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7140. #else
  7141. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7142. #endif
  7143. }
  7144. }
  7145. } else {
  7146. // src1 is not contiguous
  7147. for (int64_t ir = ith; ir < nr; ir += nth) {
  7148. // src0 and dst are same shape => same indices
  7149. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7150. const int64_t i03 = ir/(ne02*ne01);
  7151. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7152. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7153. const int64_t i13 = i03 % ne13;
  7154. const int64_t i12 = i02 % ne12;
  7155. const int64_t i11 = i01 % ne11;
  7156. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7157. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7158. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7159. const int64_t i10 = i0 % ne10;
  7160. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7161. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7162. }
  7163. }
  7164. }
  7165. }
  7166. static void ggml_compute_forward_mul(
  7167. const struct ggml_compute_params * params,
  7168. struct ggml_tensor * dst) {
  7169. const struct ggml_tensor * src0 = dst->src[0];
  7170. const struct ggml_tensor * src1 = dst->src[1];
  7171. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7172. switch (src0->type) {
  7173. case GGML_TYPE_F32:
  7174. {
  7175. ggml_compute_forward_mul_f32(params, dst);
  7176. } break;
  7177. default:
  7178. {
  7179. GGML_ASSERT(false);
  7180. } break;
  7181. }
  7182. }
  7183. // ggml_compute_forward_div
  7184. static void ggml_compute_forward_div_f32(
  7185. const struct ggml_compute_params * params,
  7186. struct ggml_tensor * dst) {
  7187. const struct ggml_tensor * src0 = dst->src[0];
  7188. const struct ggml_tensor * src1 = dst->src[1];
  7189. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7191. return;
  7192. }
  7193. const int ith = params->ith;
  7194. const int nth = params->nth;
  7195. const int64_t nr = ggml_nrows(src0);
  7196. GGML_TENSOR_BINARY_OP_LOCALS
  7197. GGML_ASSERT( nb0 == sizeof(float));
  7198. GGML_ASSERT(nb00 == sizeof(float));
  7199. if (nb10 == sizeof(float)) {
  7200. for (int64_t ir = ith; ir < nr; ir += nth) {
  7201. // src0 and dst are same shape => same indices
  7202. const int64_t i03 = ir/(ne02*ne01);
  7203. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7204. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7205. const int64_t i13 = i03 % ne13;
  7206. const int64_t i12 = i02 % ne12;
  7207. const int64_t i11 = i01 % ne11;
  7208. const int64_t nr0 = ne00 / ne10;
  7209. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7210. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7211. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7212. for (int64_t r = 0; r < nr0; ++r) {
  7213. #ifdef GGML_USE_ACCELERATE
  7214. UNUSED(ggml_vec_div_f32);
  7215. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7216. #else
  7217. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7218. #endif
  7219. }
  7220. }
  7221. } else {
  7222. // src1 is not contiguous
  7223. for (int64_t ir = ith; ir < nr; ir += nth) {
  7224. // src0 and dst are same shape => same indices
  7225. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7226. const int64_t i03 = ir/(ne02*ne01);
  7227. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7228. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7229. const int64_t i13 = i03 % ne13;
  7230. const int64_t i12 = i02 % ne12;
  7231. const int64_t i11 = i01 % ne11;
  7232. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7233. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7234. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7235. const int64_t i10 = i0 % ne10;
  7236. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7237. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7238. }
  7239. }
  7240. }
  7241. }
  7242. static void ggml_compute_forward_div(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. switch (src0->type) {
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_div_f32(params, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_sqr
  7258. static void ggml_compute_forward_sqr_f32(
  7259. const struct ggml_compute_params * params,
  7260. struct ggml_tensor * dst) {
  7261. const struct ggml_tensor * src0 = dst->src[0];
  7262. assert(params->ith == 0);
  7263. assert(ggml_are_same_shape(src0, dst));
  7264. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7265. return;
  7266. }
  7267. const int n = ggml_nrows(src0);
  7268. const int nc = src0->ne[0];
  7269. assert( dst->nb[0] == sizeof(float));
  7270. assert(src0->nb[0] == sizeof(float));
  7271. for (int i = 0; i < n; i++) {
  7272. ggml_vec_sqr_f32(nc,
  7273. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7274. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7275. }
  7276. }
  7277. static void ggml_compute_forward_sqr(
  7278. const struct ggml_compute_params * params,
  7279. struct ggml_tensor * dst) {
  7280. const struct ggml_tensor * src0 = dst->src[0];
  7281. switch (src0->type) {
  7282. case GGML_TYPE_F32:
  7283. {
  7284. ggml_compute_forward_sqr_f32(params, dst);
  7285. } break;
  7286. default:
  7287. {
  7288. GGML_ASSERT(false);
  7289. } break;
  7290. }
  7291. }
  7292. // ggml_compute_forward_sqrt
  7293. static void ggml_compute_forward_sqrt_f32(
  7294. const struct ggml_compute_params * params,
  7295. struct ggml_tensor * dst) {
  7296. const struct ggml_tensor * src0 = dst->src[0];
  7297. assert(params->ith == 0);
  7298. assert(ggml_are_same_shape(src0, dst));
  7299. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7300. return;
  7301. }
  7302. const int n = ggml_nrows(src0);
  7303. const int nc = src0->ne[0];
  7304. assert( dst->nb[0] == sizeof(float));
  7305. assert(src0->nb[0] == sizeof(float));
  7306. for (int i = 0; i < n; i++) {
  7307. ggml_vec_sqrt_f32(nc,
  7308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7310. }
  7311. }
  7312. static void ggml_compute_forward_sqrt(
  7313. const struct ggml_compute_params * params,
  7314. struct ggml_tensor * dst) {
  7315. const struct ggml_tensor * src0 = dst->src[0];
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_sqrt_f32(params, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_log
  7328. static void ggml_compute_forward_log_f32(
  7329. const struct ggml_compute_params * params,
  7330. struct ggml_tensor * dst) {
  7331. const struct ggml_tensor * src0 = dst->src[0];
  7332. GGML_ASSERT(params->ith == 0);
  7333. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7335. return;
  7336. }
  7337. const int n = ggml_nrows(src0);
  7338. const int nc = src0->ne[0];
  7339. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7340. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7341. for (int i = 0; i < n; i++) {
  7342. ggml_vec_log_f32(nc,
  7343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7345. }
  7346. }
  7347. static void ggml_compute_forward_log(
  7348. const struct ggml_compute_params * params,
  7349. struct ggml_tensor * dst) {
  7350. const struct ggml_tensor * src0 = dst->src[0];
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_log_f32(params, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. // ggml_compute_forward_sum
  7363. static void ggml_compute_forward_sum_f32(
  7364. const struct ggml_compute_params * params,
  7365. struct ggml_tensor * dst) {
  7366. const struct ggml_tensor * src0 = dst->src[0];
  7367. assert(params->ith == 0);
  7368. assert(ggml_is_scalar(dst));
  7369. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7370. return;
  7371. }
  7372. assert(ggml_is_scalar(dst));
  7373. assert(src0->nb[0] == sizeof(float));
  7374. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7375. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7376. ggml_float sum = 0;
  7377. ggml_float row_sum = 0;
  7378. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7379. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7380. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7381. ggml_vec_sum_f32_ggf(ne00,
  7382. &row_sum,
  7383. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7384. sum += row_sum;
  7385. }
  7386. }
  7387. }
  7388. ((float *) dst->data)[0] = sum;
  7389. }
  7390. static void ggml_compute_forward_sum_f16(
  7391. const struct ggml_compute_params * params,
  7392. struct ggml_tensor * dst) {
  7393. const struct ggml_tensor * src0 = dst->src[0];
  7394. assert(params->ith == 0);
  7395. assert(ggml_is_scalar(dst));
  7396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7397. return;
  7398. }
  7399. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7400. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7401. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7402. float sum = 0;
  7403. float row_sum = 0;
  7404. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7405. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7406. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7407. ggml_vec_sum_f16_ggf(ne00,
  7408. &row_sum,
  7409. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7410. sum += row_sum;
  7411. }
  7412. }
  7413. }
  7414. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7415. }
  7416. static void ggml_compute_forward_sum(
  7417. const struct ggml_compute_params * params,
  7418. struct ggml_tensor * dst) {
  7419. const struct ggml_tensor * src0 = dst->src[0];
  7420. switch (src0->type) {
  7421. case GGML_TYPE_F32:
  7422. {
  7423. ggml_compute_forward_sum_f32(params, dst);
  7424. } break;
  7425. case GGML_TYPE_F16:
  7426. {
  7427. ggml_compute_forward_sum_f16(params, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_sum_rows
  7436. static void ggml_compute_forward_sum_rows_f32(
  7437. const struct ggml_compute_params * params,
  7438. struct ggml_tensor * dst) {
  7439. const struct ggml_tensor * src0 = dst->src[0];
  7440. GGML_ASSERT(params->ith == 0);
  7441. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7442. return;
  7443. }
  7444. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7445. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7446. GGML_TENSOR_UNARY_OP_LOCALS
  7447. GGML_ASSERT(ne0 == 1);
  7448. GGML_ASSERT(ne1 == ne01);
  7449. GGML_ASSERT(ne2 == ne02);
  7450. GGML_ASSERT(ne3 == ne03);
  7451. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7452. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7453. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7454. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7455. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7456. float row_sum = 0;
  7457. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7458. dst_row[0] = row_sum;
  7459. }
  7460. }
  7461. }
  7462. }
  7463. static void ggml_compute_forward_sum_rows(
  7464. const struct ggml_compute_params * params,
  7465. struct ggml_tensor * dst) {
  7466. const struct ggml_tensor * src0 = dst->src[0];
  7467. switch (src0->type) {
  7468. case GGML_TYPE_F32:
  7469. {
  7470. ggml_compute_forward_sum_rows_f32(params, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_mean
  7479. static void ggml_compute_forward_mean_f32(
  7480. const struct ggml_compute_params * params,
  7481. struct ggml_tensor * dst) {
  7482. const struct ggml_tensor * src0 = dst->src[0];
  7483. assert(params->ith == 0);
  7484. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7485. return;
  7486. }
  7487. assert(src0->nb[0] == sizeof(float));
  7488. GGML_TENSOR_UNARY_OP_LOCALS
  7489. assert(ne0 == 1);
  7490. assert(ne1 == ne01);
  7491. assert(ne2 == ne02);
  7492. assert(ne3 == ne03);
  7493. UNUSED(ne0);
  7494. UNUSED(ne1);
  7495. UNUSED(ne2);
  7496. UNUSED(ne3);
  7497. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7499. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7500. ggml_vec_sum_f32(ne00,
  7501. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7502. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7503. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7504. }
  7505. }
  7506. }
  7507. }
  7508. static void ggml_compute_forward_mean(
  7509. const struct ggml_compute_params * params,
  7510. struct ggml_tensor * dst) {
  7511. const struct ggml_tensor * src0 = dst->src[0];
  7512. switch (src0->type) {
  7513. case GGML_TYPE_F32:
  7514. {
  7515. ggml_compute_forward_mean_f32(params, dst);
  7516. } break;
  7517. default:
  7518. {
  7519. GGML_ASSERT(false);
  7520. } break;
  7521. }
  7522. }
  7523. // ggml_compute_forward_argmax
  7524. static void ggml_compute_forward_argmax_f32(
  7525. const struct ggml_compute_params * params,
  7526. struct ggml_tensor * dst) {
  7527. const struct ggml_tensor * src0 = dst->src[0];
  7528. assert(params->ith == 0);
  7529. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7530. return;
  7531. }
  7532. assert(src0->nb[0] == sizeof(float));
  7533. assert(dst->nb[0] == sizeof(float));
  7534. const int64_t ne00 = src0->ne[0];
  7535. const int64_t ne01 = src0->ne[1];
  7536. const size_t nb01 = src0->nb[1];
  7537. const size_t nb0 = dst->nb[0];
  7538. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7539. float * src = (float *) ((char *) src0->data + i1*nb01);
  7540. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7541. int v = 0;
  7542. ggml_vec_argmax_f32(ne00, &v, src);
  7543. dst_[0] = v;
  7544. }
  7545. }
  7546. static void ggml_compute_forward_argmax(
  7547. const struct ggml_compute_params * params,
  7548. struct ggml_tensor * dst) {
  7549. const struct ggml_tensor * src0 = dst->src[0];
  7550. switch (src0->type) {
  7551. case GGML_TYPE_F32:
  7552. {
  7553. ggml_compute_forward_argmax_f32(params, dst);
  7554. } break;
  7555. default:
  7556. {
  7557. GGML_ASSERT(false);
  7558. } break;
  7559. }
  7560. }
  7561. // ggml_compute_forward_repeat
  7562. static void ggml_compute_forward_repeat_f32(
  7563. const struct ggml_compute_params * params,
  7564. struct ggml_tensor * dst) {
  7565. const struct ggml_tensor * src0 = dst->src[0];
  7566. GGML_ASSERT(params->ith == 0);
  7567. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7568. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7569. return;
  7570. }
  7571. GGML_TENSOR_UNARY_OP_LOCALS
  7572. // guaranteed to be an integer due to the check in ggml_can_repeat
  7573. const int nr0 = (int)(ne0/ne00);
  7574. const int nr1 = (int)(ne1/ne01);
  7575. const int nr2 = (int)(ne2/ne02);
  7576. const int nr3 = (int)(ne3/ne03);
  7577. // TODO: support for transposed / permuted tensors
  7578. GGML_ASSERT(nb0 == sizeof(float));
  7579. GGML_ASSERT(nb00 == sizeof(float));
  7580. // TODO: maybe this is not optimal?
  7581. for (int i3 = 0; i3 < nr3; i3++) {
  7582. for (int k3 = 0; k3 < ne03; k3++) {
  7583. for (int i2 = 0; i2 < nr2; i2++) {
  7584. for (int k2 = 0; k2 < ne02; k2++) {
  7585. for (int i1 = 0; i1 < nr1; i1++) {
  7586. for (int k1 = 0; k1 < ne01; k1++) {
  7587. for (int i0 = 0; i0 < nr0; i0++) {
  7588. ggml_vec_cpy_f32(ne00,
  7589. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7590. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7591. }
  7592. }
  7593. }
  7594. }
  7595. }
  7596. }
  7597. }
  7598. }
  7599. static void ggml_compute_forward_repeat_f16(
  7600. const struct ggml_compute_params * params,
  7601. struct ggml_tensor * dst) {
  7602. const struct ggml_tensor * src0 = dst->src[0];
  7603. GGML_ASSERT(params->ith == 0);
  7604. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7605. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7606. return;
  7607. }
  7608. GGML_TENSOR_UNARY_OP_LOCALS
  7609. // guaranteed to be an integer due to the check in ggml_can_repeat
  7610. const int nr0 = (int)(ne0/ne00);
  7611. const int nr1 = (int)(ne1/ne01);
  7612. const int nr2 = (int)(ne2/ne02);
  7613. const int nr3 = (int)(ne3/ne03);
  7614. // TODO: support for transposed / permuted tensors
  7615. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7616. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7617. // TODO: maybe this is not optimal?
  7618. for (int i3 = 0; i3 < nr3; i3++) {
  7619. for (int k3 = 0; k3 < ne03; k3++) {
  7620. for (int i2 = 0; i2 < nr2; i2++) {
  7621. for (int k2 = 0; k2 < ne02; k2++) {
  7622. for (int i1 = 0; i1 < nr1; i1++) {
  7623. for (int k1 = 0; k1 < ne01; k1++) {
  7624. for (int i0 = 0; i0 < nr0; i0++) {
  7625. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7626. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7627. // ggml_vec_cpy_f16(ne00, y, x)
  7628. for (int i = 0; i < ne00; ++i) {
  7629. y[i] = x[i];
  7630. }
  7631. }
  7632. }
  7633. }
  7634. }
  7635. }
  7636. }
  7637. }
  7638. }
  7639. static void ggml_compute_forward_repeat(
  7640. const struct ggml_compute_params * params,
  7641. struct ggml_tensor * dst) {
  7642. const struct ggml_tensor * src0 = dst->src[0];
  7643. switch (src0->type) {
  7644. case GGML_TYPE_F16:
  7645. case GGML_TYPE_I16:
  7646. {
  7647. ggml_compute_forward_repeat_f16(params, dst);
  7648. } break;
  7649. case GGML_TYPE_F32:
  7650. case GGML_TYPE_I32:
  7651. {
  7652. ggml_compute_forward_repeat_f32(params, dst);
  7653. } break;
  7654. default:
  7655. {
  7656. GGML_ASSERT(false);
  7657. } break;
  7658. }
  7659. }
  7660. // ggml_compute_forward_repeat_back
  7661. static void ggml_compute_forward_repeat_back_f32(
  7662. const struct ggml_compute_params * params,
  7663. struct ggml_tensor * dst) {
  7664. const struct ggml_tensor * src0 = dst->src[0];
  7665. GGML_ASSERT(params->ith == 0);
  7666. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7667. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7668. return;
  7669. }
  7670. GGML_TENSOR_UNARY_OP_LOCALS
  7671. // guaranteed to be an integer due to the check in ggml_can_repeat
  7672. const int nr0 = (int)(ne00/ne0);
  7673. const int nr1 = (int)(ne01/ne1);
  7674. const int nr2 = (int)(ne02/ne2);
  7675. const int nr3 = (int)(ne03/ne3);
  7676. // TODO: support for transposed / permuted tensors
  7677. GGML_ASSERT(nb0 == sizeof(float));
  7678. GGML_ASSERT(nb00 == sizeof(float));
  7679. if (ggml_is_contiguous(dst)) {
  7680. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7681. } else {
  7682. for (int k3 = 0; k3 < ne3; k3++) {
  7683. for (int k2 = 0; k2 < ne2; k2++) {
  7684. for (int k1 = 0; k1 < ne1; k1++) {
  7685. ggml_vec_set_f32(ne0,
  7686. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7687. 0);
  7688. }
  7689. }
  7690. }
  7691. }
  7692. // TODO: maybe this is not optimal?
  7693. for (int i3 = 0; i3 < nr3; i3++) {
  7694. for (int k3 = 0; k3 < ne3; k3++) {
  7695. for (int i2 = 0; i2 < nr2; i2++) {
  7696. for (int k2 = 0; k2 < ne2; k2++) {
  7697. for (int i1 = 0; i1 < nr1; i1++) {
  7698. for (int k1 = 0; k1 < ne1; k1++) {
  7699. for (int i0 = 0; i0 < nr0; i0++) {
  7700. ggml_vec_acc_f32(ne0,
  7701. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7702. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7703. }
  7704. }
  7705. }
  7706. }
  7707. }
  7708. }
  7709. }
  7710. }
  7711. static void ggml_compute_forward_repeat_back(
  7712. const struct ggml_compute_params * params,
  7713. struct ggml_tensor * dst) {
  7714. const struct ggml_tensor * src0 = dst->src[0];
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_repeat_back_f32(params, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. // ggml_compute_forward_concat
  7727. static void ggml_compute_forward_concat_f32(
  7728. const struct ggml_compute_params * params,
  7729. struct ggml_tensor * dst) {
  7730. const struct ggml_tensor * src0 = dst->src[0];
  7731. const struct ggml_tensor * src1 = dst->src[1];
  7732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7733. return;
  7734. }
  7735. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7736. const int ith = params->ith;
  7737. const int nth = params->nth;
  7738. GGML_TENSOR_BINARY_OP_LOCALS
  7739. // TODO: support for transposed / permuted tensors
  7740. GGML_ASSERT(nb0 == sizeof(float));
  7741. GGML_ASSERT(nb00 == sizeof(float));
  7742. GGML_ASSERT(nb10 == sizeof(float));
  7743. for (int i3 = 0; i3 < ne3; i3++) {
  7744. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7745. if (i2 < ne02) { // src0
  7746. for (int i1 = 0; i1 < ne1; i1++) {
  7747. for (int i0 = 0; i0 < ne0; i0++) {
  7748. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7749. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7750. *y = *x;
  7751. }
  7752. }
  7753. } // src1
  7754. else {
  7755. for (int i1 = 0; i1 < ne1; i1++) {
  7756. for (int i0 = 0; i0 < ne0; i0++) {
  7757. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7758. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7759. *y = *x;
  7760. }
  7761. }
  7762. }
  7763. }
  7764. }
  7765. }
  7766. static void ggml_compute_forward_concat(
  7767. const struct ggml_compute_params* params,
  7768. struct ggml_tensor* dst) {
  7769. const struct ggml_tensor * src0 = dst->src[0];
  7770. switch (src0->type) {
  7771. case GGML_TYPE_F32:
  7772. case GGML_TYPE_I32:
  7773. {
  7774. ggml_compute_forward_concat_f32(params, dst);
  7775. } break;
  7776. default:
  7777. {
  7778. GGML_ASSERT(false);
  7779. } break;
  7780. }
  7781. }
  7782. // ggml_compute_forward_abs
  7783. static void ggml_compute_forward_abs_f32(
  7784. const struct ggml_compute_params * params,
  7785. struct ggml_tensor * dst) {
  7786. const struct ggml_tensor * src0 = dst->src[0];
  7787. assert(params->ith == 0);
  7788. assert(ggml_are_same_shape(src0, dst));
  7789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7790. return;
  7791. }
  7792. const int n = ggml_nrows(src0);
  7793. const int nc = src0->ne[0];
  7794. assert(dst->nb[0] == sizeof(float));
  7795. assert(src0->nb[0] == sizeof(float));
  7796. for (int i = 0; i < n; i++) {
  7797. ggml_vec_abs_f32(nc,
  7798. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7799. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7800. }
  7801. }
  7802. static void ggml_compute_forward_abs(
  7803. const struct ggml_compute_params * params,
  7804. struct ggml_tensor * dst) {
  7805. const struct ggml_tensor * src0 = dst->src[0];
  7806. switch (src0->type) {
  7807. case GGML_TYPE_F32:
  7808. {
  7809. ggml_compute_forward_abs_f32(params, dst);
  7810. } break;
  7811. default:
  7812. {
  7813. GGML_ASSERT(false);
  7814. } break;
  7815. }
  7816. }
  7817. // ggml_compute_forward_sgn
  7818. static void ggml_compute_forward_sgn_f32(
  7819. const struct ggml_compute_params * params,
  7820. struct ggml_tensor * dst) {
  7821. const struct ggml_tensor * src0 = dst->src[0];
  7822. assert(params->ith == 0);
  7823. assert(ggml_are_same_shape(src0, dst));
  7824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7825. return;
  7826. }
  7827. const int n = ggml_nrows(src0);
  7828. const int nc = src0->ne[0];
  7829. assert(dst->nb[0] == sizeof(float));
  7830. assert(src0->nb[0] == sizeof(float));
  7831. for (int i = 0; i < n; i++) {
  7832. ggml_vec_sgn_f32(nc,
  7833. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7834. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7835. }
  7836. }
  7837. static void ggml_compute_forward_sgn(
  7838. const struct ggml_compute_params * params,
  7839. struct ggml_tensor * dst) {
  7840. const struct ggml_tensor * src0 = dst->src[0];
  7841. switch (src0->type) {
  7842. case GGML_TYPE_F32:
  7843. {
  7844. ggml_compute_forward_sgn_f32(params, dst);
  7845. } break;
  7846. default:
  7847. {
  7848. GGML_ASSERT(false);
  7849. } break;
  7850. }
  7851. }
  7852. // ggml_compute_forward_neg
  7853. static void ggml_compute_forward_neg_f32(
  7854. const struct ggml_compute_params * params,
  7855. struct ggml_tensor * dst) {
  7856. const struct ggml_tensor * src0 = dst->src[0];
  7857. assert(params->ith == 0);
  7858. assert(ggml_are_same_shape(src0, dst));
  7859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7860. return;
  7861. }
  7862. const int n = ggml_nrows(src0);
  7863. const int nc = src0->ne[0];
  7864. assert(dst->nb[0] == sizeof(float));
  7865. assert(src0->nb[0] == sizeof(float));
  7866. for (int i = 0; i < n; i++) {
  7867. ggml_vec_neg_f32(nc,
  7868. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7869. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7870. }
  7871. }
  7872. static void ggml_compute_forward_neg(
  7873. const struct ggml_compute_params * params,
  7874. struct ggml_tensor * dst) {
  7875. const struct ggml_tensor * src0 = dst->src[0];
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_neg_f32(params, dst);
  7880. } break;
  7881. default:
  7882. {
  7883. GGML_ASSERT(false);
  7884. } break;
  7885. }
  7886. }
  7887. // ggml_compute_forward_step
  7888. static void ggml_compute_forward_step_f32(
  7889. const struct ggml_compute_params * params,
  7890. struct ggml_tensor * dst) {
  7891. const struct ggml_tensor * src0 = dst->src[0];
  7892. assert(params->ith == 0);
  7893. assert(ggml_are_same_shape(src0, dst));
  7894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7895. return;
  7896. }
  7897. const int n = ggml_nrows(src0);
  7898. const int nc = src0->ne[0];
  7899. assert(dst->nb[0] == sizeof(float));
  7900. assert(src0->nb[0] == sizeof(float));
  7901. for (int i = 0; i < n; i++) {
  7902. ggml_vec_step_f32(nc,
  7903. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7904. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7905. }
  7906. }
  7907. static void ggml_compute_forward_step(
  7908. const struct ggml_compute_params * params,
  7909. struct ggml_tensor * dst) {
  7910. const struct ggml_tensor * src0 = dst->src[0];
  7911. switch (src0->type) {
  7912. case GGML_TYPE_F32:
  7913. {
  7914. ggml_compute_forward_step_f32(params, dst);
  7915. } break;
  7916. default:
  7917. {
  7918. GGML_ASSERT(false);
  7919. } break;
  7920. }
  7921. }
  7922. // ggml_compute_forward_tanh
  7923. static void ggml_compute_forward_tanh_f32(
  7924. const struct ggml_compute_params * params,
  7925. struct ggml_tensor * dst) {
  7926. const struct ggml_tensor * src0 = dst->src[0];
  7927. assert(params->ith == 0);
  7928. assert(ggml_are_same_shape(src0, dst));
  7929. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7930. return;
  7931. }
  7932. const int n = ggml_nrows(src0);
  7933. const int nc = src0->ne[0];
  7934. assert(dst->nb[0] == sizeof(float));
  7935. assert(src0->nb[0] == sizeof(float));
  7936. for (int i = 0; i < n; i++) {
  7937. ggml_vec_tanh_f32(nc,
  7938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7940. }
  7941. }
  7942. static void ggml_compute_forward_tanh(
  7943. const struct ggml_compute_params * params,
  7944. struct ggml_tensor * dst) {
  7945. const struct ggml_tensor * src0 = dst->src[0];
  7946. switch (src0->type) {
  7947. case GGML_TYPE_F32:
  7948. {
  7949. ggml_compute_forward_tanh_f32(params, dst);
  7950. } break;
  7951. default:
  7952. {
  7953. GGML_ASSERT(false);
  7954. } break;
  7955. }
  7956. }
  7957. // ggml_compute_forward_elu
  7958. static void ggml_compute_forward_elu_f32(
  7959. const struct ggml_compute_params * params,
  7960. struct ggml_tensor * dst) {
  7961. const struct ggml_tensor * src0 = dst->src[0];
  7962. assert(params->ith == 0);
  7963. assert(ggml_are_same_shape(src0, dst));
  7964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7965. return;
  7966. }
  7967. const int n = ggml_nrows(src0);
  7968. const int nc = src0->ne[0];
  7969. assert(dst->nb[0] == sizeof(float));
  7970. assert(src0->nb[0] == sizeof(float));
  7971. for (int i = 0; i < n; i++) {
  7972. ggml_vec_elu_f32(nc,
  7973. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7974. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7975. }
  7976. }
  7977. static void ggml_compute_forward_elu(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. switch (src0->type) {
  7982. case GGML_TYPE_F32:
  7983. {
  7984. ggml_compute_forward_elu_f32(params, dst);
  7985. } break;
  7986. default:
  7987. {
  7988. GGML_ASSERT(false);
  7989. } break;
  7990. }
  7991. }
  7992. // ggml_compute_forward_relu
  7993. static void ggml_compute_forward_relu_f32(
  7994. const struct ggml_compute_params * params,
  7995. struct ggml_tensor * dst) {
  7996. const struct ggml_tensor * src0 = dst->src[0];
  7997. assert(params->ith == 0);
  7998. assert(ggml_are_same_shape(src0, dst));
  7999. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8000. return;
  8001. }
  8002. const int n = ggml_nrows(src0);
  8003. const int nc = src0->ne[0];
  8004. assert(dst->nb[0] == sizeof(float));
  8005. assert(src0->nb[0] == sizeof(float));
  8006. for (int i = 0; i < n; i++) {
  8007. ggml_vec_relu_f32(nc,
  8008. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8009. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8010. }
  8011. }
  8012. static void ggml_compute_forward_relu(
  8013. const struct ggml_compute_params * params,
  8014. struct ggml_tensor * dst) {
  8015. const struct ggml_tensor * src0 = dst->src[0];
  8016. switch (src0->type) {
  8017. case GGML_TYPE_F32:
  8018. {
  8019. ggml_compute_forward_relu_f32(params, dst);
  8020. } break;
  8021. default:
  8022. {
  8023. GGML_ASSERT(false);
  8024. } break;
  8025. }
  8026. }
  8027. // ggml_compute_forward_gelu
  8028. static void ggml_compute_forward_gelu_f32(
  8029. const struct ggml_compute_params * params,
  8030. struct ggml_tensor * dst) {
  8031. const struct ggml_tensor * src0 = dst->src[0];
  8032. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8033. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8036. return;
  8037. }
  8038. const int ith = params->ith;
  8039. const int nth = params->nth;
  8040. const int nc = src0->ne[0];
  8041. const int nr = ggml_nrows(src0);
  8042. // rows per thread
  8043. const int dr = (nr + nth - 1)/nth;
  8044. // row range for this thread
  8045. const int ir0 = dr*ith;
  8046. const int ir1 = MIN(ir0 + dr, nr);
  8047. for (int i1 = ir0; i1 < ir1; i1++) {
  8048. ggml_vec_gelu_f32(nc,
  8049. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8050. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8051. #ifndef NDEBUG
  8052. for (int k = 0; k < nc; k++) {
  8053. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8054. UNUSED(x);
  8055. assert(!isnan(x));
  8056. assert(!isinf(x));
  8057. }
  8058. #endif
  8059. }
  8060. }
  8061. static void ggml_compute_forward_gelu(
  8062. const struct ggml_compute_params * params,
  8063. struct ggml_tensor * dst) {
  8064. const struct ggml_tensor * src0 = dst->src[0];
  8065. switch (src0->type) {
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_gelu_f32(params, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_gelu_quick
  8077. static void ggml_compute_forward_gelu_quick_f32(
  8078. const struct ggml_compute_params * params,
  8079. struct ggml_tensor * dst) {
  8080. const struct ggml_tensor * src0 = dst->src[0];
  8081. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8082. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8083. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8084. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8085. return;
  8086. }
  8087. const int ith = params->ith;
  8088. const int nth = params->nth;
  8089. const int nc = src0->ne[0];
  8090. const int nr = ggml_nrows(src0);
  8091. // rows per thread
  8092. const int dr = (nr + nth - 1)/nth;
  8093. // row range for this thread
  8094. const int ir0 = dr*ith;
  8095. const int ir1 = MIN(ir0 + dr, nr);
  8096. for (int i1 = ir0; i1 < ir1; i1++) {
  8097. ggml_vec_gelu_quick_f32(nc,
  8098. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8099. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8100. #ifndef NDEBUG
  8101. for (int k = 0; k < nc; k++) {
  8102. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8103. UNUSED(x);
  8104. assert(!isnan(x));
  8105. assert(!isinf(x));
  8106. }
  8107. #endif
  8108. }
  8109. }
  8110. static void ggml_compute_forward_gelu_quick(
  8111. const struct ggml_compute_params * params,
  8112. struct ggml_tensor * dst) {
  8113. const struct ggml_tensor * src0 = dst->src[0];
  8114. switch (src0->type) {
  8115. case GGML_TYPE_F32:
  8116. {
  8117. ggml_compute_forward_gelu_quick_f32(params, dst);
  8118. } break;
  8119. default:
  8120. {
  8121. GGML_ASSERT(false);
  8122. } break;
  8123. }
  8124. }
  8125. // ggml_compute_forward_silu
  8126. static void ggml_compute_forward_silu_f32(
  8127. const struct ggml_compute_params * params,
  8128. struct ggml_tensor * dst) {
  8129. const struct ggml_tensor * src0 = dst->src[0];
  8130. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8131. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8133. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8134. return;
  8135. }
  8136. const int ith = params->ith;
  8137. const int nth = params->nth;
  8138. const int nc = src0->ne[0];
  8139. const int nr = ggml_nrows(src0);
  8140. // rows per thread
  8141. const int dr = (nr + nth - 1)/nth;
  8142. // row range for this thread
  8143. const int ir0 = dr*ith;
  8144. const int ir1 = MIN(ir0 + dr, nr);
  8145. for (int i1 = ir0; i1 < ir1; i1++) {
  8146. ggml_vec_silu_f32(nc,
  8147. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8148. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8149. #ifndef NDEBUG
  8150. for (int k = 0; k < nc; k++) {
  8151. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8152. UNUSED(x);
  8153. assert(!isnan(x));
  8154. assert(!isinf(x));
  8155. }
  8156. #endif
  8157. }
  8158. }
  8159. static void ggml_compute_forward_silu(
  8160. const struct ggml_compute_params * params,
  8161. struct ggml_tensor * dst) {
  8162. const struct ggml_tensor * src0 = dst->src[0];
  8163. switch (src0->type) {
  8164. case GGML_TYPE_F32:
  8165. {
  8166. ggml_compute_forward_silu_f32(params, dst);
  8167. } break;
  8168. default:
  8169. {
  8170. GGML_ASSERT(false);
  8171. } break;
  8172. }
  8173. }
  8174. // ggml_compute_forward_leaky_relu
  8175. static void ggml_compute_forward_leaky_relu_f32(
  8176. const struct ggml_compute_params * params,
  8177. struct ggml_tensor * dst) {
  8178. const struct ggml_tensor * src0 = dst->src[0];
  8179. assert(params->ith == 0);
  8180. assert(ggml_are_same_shape(src0, dst));
  8181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8182. return;
  8183. }
  8184. const int n = ggml_nrows(src0);
  8185. const int nc = src0->ne[0];
  8186. float negative_slope;
  8187. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8188. assert(dst->nb[0] == sizeof(float));
  8189. assert(src0->nb[0] == sizeof(float));
  8190. for (int i = 0; i < n; i++) {
  8191. ggml_vec_leaky_relu_f32(nc,
  8192. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8193. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8194. }
  8195. }
  8196. static void ggml_compute_forward_leaky_relu(
  8197. const struct ggml_compute_params * params,
  8198. struct ggml_tensor * dst) {
  8199. const struct ggml_tensor * src0 = dst->src[0];
  8200. switch (src0->type) {
  8201. case GGML_TYPE_F32:
  8202. {
  8203. ggml_compute_forward_leaky_relu_f32(params, dst);
  8204. } break;
  8205. default:
  8206. {
  8207. GGML_ASSERT(false);
  8208. } break;
  8209. }
  8210. }
  8211. // ggml_compute_forward_silu_back
  8212. static void ggml_compute_forward_silu_back_f32(
  8213. const struct ggml_compute_params * params,
  8214. struct ggml_tensor * dst) {
  8215. const struct ggml_tensor * src0 = dst->src[0];
  8216. const struct ggml_tensor * grad = dst->src[1];
  8217. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8218. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8219. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8220. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8221. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8223. return;
  8224. }
  8225. const int ith = params->ith;
  8226. const int nth = params->nth;
  8227. const int nc = src0->ne[0];
  8228. const int nr = ggml_nrows(src0);
  8229. // rows per thread
  8230. const int dr = (nr + nth - 1)/nth;
  8231. // row range for this thread
  8232. const int ir0 = dr*ith;
  8233. const int ir1 = MIN(ir0 + dr, nr);
  8234. for (int i1 = ir0; i1 < ir1; i1++) {
  8235. ggml_vec_silu_backward_f32(nc,
  8236. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8237. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8238. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8239. #ifndef NDEBUG
  8240. for (int k = 0; k < nc; k++) {
  8241. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8242. UNUSED(x);
  8243. assert(!isnan(x));
  8244. assert(!isinf(x));
  8245. }
  8246. #endif
  8247. }
  8248. }
  8249. static void ggml_compute_forward_silu_back(
  8250. const struct ggml_compute_params * params,
  8251. struct ggml_tensor * dst) {
  8252. const struct ggml_tensor * src0 = dst->src[0];
  8253. switch (src0->type) {
  8254. case GGML_TYPE_F32:
  8255. {
  8256. ggml_compute_forward_silu_back_f32(params, dst);
  8257. } break;
  8258. default:
  8259. {
  8260. GGML_ASSERT(false);
  8261. } break;
  8262. }
  8263. }
  8264. static void ggml_compute_forward_hardswish_f32(
  8265. const struct ggml_compute_params * params,
  8266. struct ggml_tensor * dst) {
  8267. const struct ggml_tensor * src0 = dst->src[0];
  8268. assert(params->ith == 0);
  8269. assert(ggml_are_same_shape(src0, dst));
  8270. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8271. return;
  8272. }
  8273. const int n = ggml_nrows(src0);
  8274. const int nc = src0->ne[0];
  8275. assert(dst->nb[0] == sizeof(float));
  8276. assert(src0->nb[0] == sizeof(float));
  8277. for (int i = 0; i < n; i++) {
  8278. ggml_vec_hardswish_f32(nc,
  8279. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8280. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8281. }
  8282. }
  8283. static void ggml_compute_forward_hardswish(
  8284. const struct ggml_compute_params * params,
  8285. struct ggml_tensor * dst) {
  8286. const struct ggml_tensor * src0 = dst->src[0];
  8287. switch (src0->type) {
  8288. case GGML_TYPE_F32:
  8289. {
  8290. ggml_compute_forward_hardswish_f32(params, dst);
  8291. } break;
  8292. default:
  8293. {
  8294. GGML_ASSERT(false);
  8295. } break;
  8296. }
  8297. }
  8298. static void ggml_compute_forward_hardsigmoid_f32(
  8299. const struct ggml_compute_params * params,
  8300. struct ggml_tensor * dst) {
  8301. const struct ggml_tensor * src0 = dst->src[0];
  8302. assert(params->ith == 0);
  8303. assert(ggml_are_same_shape(src0, dst));
  8304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8305. return;
  8306. }
  8307. const int n = ggml_nrows(src0);
  8308. const int nc = src0->ne[0];
  8309. assert(dst->nb[0] == sizeof(float));
  8310. assert(src0->nb[0] == sizeof(float));
  8311. for (int i = 0; i < n; i++) {
  8312. ggml_vec_hardsigmoid_f32(nc,
  8313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8315. }
  8316. }
  8317. static void ggml_compute_forward_hardsigmoid(
  8318. const struct ggml_compute_params * params,
  8319. struct ggml_tensor * dst) {
  8320. const struct ggml_tensor * src0 = dst->src[0];
  8321. switch (src0->type) {
  8322. case GGML_TYPE_F32:
  8323. {
  8324. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8325. } break;
  8326. default:
  8327. {
  8328. GGML_ASSERT(false);
  8329. } break;
  8330. }
  8331. }
  8332. // ggml_compute_forward_norm
  8333. static void ggml_compute_forward_norm_f32(
  8334. const struct ggml_compute_params * params,
  8335. struct ggml_tensor * dst) {
  8336. const struct ggml_tensor * src0 = dst->src[0];
  8337. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8339. return;
  8340. }
  8341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8342. const int ith = params->ith;
  8343. const int nth = params->nth;
  8344. GGML_TENSOR_UNARY_OP_LOCALS
  8345. float eps;
  8346. memcpy(&eps, dst->op_params, sizeof(float));
  8347. GGML_ASSERT(eps > 0.0f);
  8348. // TODO: optimize
  8349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8351. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8352. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8353. ggml_float sum = 0.0;
  8354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8355. sum += (ggml_float)x[i00];
  8356. }
  8357. float mean = sum/ne00;
  8358. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8359. ggml_float sum2 = 0.0;
  8360. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8361. float v = x[i00] - mean;
  8362. y[i00] = v;
  8363. sum2 += (ggml_float)(v*v);
  8364. }
  8365. float variance = sum2/ne00;
  8366. const float scale = 1.0f/sqrtf(variance + eps);
  8367. ggml_vec_scale_f32(ne00, y, scale);
  8368. }
  8369. }
  8370. }
  8371. }
  8372. static void ggml_compute_forward_norm(
  8373. const struct ggml_compute_params * params,
  8374. struct ggml_tensor * dst) {
  8375. const struct ggml_tensor * src0 = dst->src[0];
  8376. switch (src0->type) {
  8377. case GGML_TYPE_F32:
  8378. {
  8379. ggml_compute_forward_norm_f32(params, dst);
  8380. } break;
  8381. default:
  8382. {
  8383. GGML_ASSERT(false);
  8384. } break;
  8385. }
  8386. }
  8387. // ggml_compute_forward_group_rms_norm
  8388. static void ggml_compute_forward_rms_norm_f32(
  8389. const struct ggml_compute_params * params,
  8390. struct ggml_tensor * dst) {
  8391. const struct ggml_tensor * src0 = dst->src[0];
  8392. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8394. return;
  8395. }
  8396. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8397. const int ith = params->ith;
  8398. const int nth = params->nth;
  8399. GGML_TENSOR_UNARY_OP_LOCALS
  8400. float eps;
  8401. memcpy(&eps, dst->op_params, sizeof(float));
  8402. GGML_ASSERT(eps > 0.0f);
  8403. // TODO: optimize
  8404. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8405. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8406. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8407. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8408. ggml_float sum = 0.0;
  8409. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8410. sum += (ggml_float)(x[i00] * x[i00]);
  8411. }
  8412. const float mean = sum/ne00;
  8413. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8414. memcpy(y, x, ne00 * sizeof(float));
  8415. // for (int i00 = 0; i00 < ne00; i00++) {
  8416. // y[i00] = x[i00];
  8417. // }
  8418. const float scale = 1.0f/sqrtf(mean + eps);
  8419. ggml_vec_scale_f32(ne00, y, scale);
  8420. }
  8421. }
  8422. }
  8423. }
  8424. static void ggml_compute_forward_rms_norm(
  8425. const struct ggml_compute_params * params,
  8426. struct ggml_tensor * dst) {
  8427. const struct ggml_tensor * src0 = dst->src[0];
  8428. switch (src0->type) {
  8429. case GGML_TYPE_F32:
  8430. {
  8431. ggml_compute_forward_rms_norm_f32(params, dst);
  8432. } break;
  8433. default:
  8434. {
  8435. GGML_ASSERT(false);
  8436. } break;
  8437. }
  8438. }
  8439. static void ggml_compute_forward_rms_norm_back_f32(
  8440. const struct ggml_compute_params * params,
  8441. struct ggml_tensor * dst) {
  8442. const struct ggml_tensor * src0 = dst->src[0];
  8443. const struct ggml_tensor * src1 = dst->src[1];
  8444. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8445. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8446. return;
  8447. }
  8448. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8449. const int ith = params->ith;
  8450. const int nth = params->nth;
  8451. GGML_TENSOR_BINARY_OP_LOCALS
  8452. float eps;
  8453. memcpy(&eps, dst->op_params, sizeof(float));
  8454. // TODO: optimize
  8455. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8456. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8457. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8458. // src1 is same shape as src0 => same indices
  8459. const int64_t i11 = i01;
  8460. const int64_t i12 = i02;
  8461. const int64_t i13 = i03;
  8462. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8463. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8464. ggml_float sum_xx = 0.0;
  8465. ggml_float sum_xdz = 0.0;
  8466. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8467. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8468. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8469. }
  8470. //const float mean = (float)(sum_xx)/ne00;
  8471. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8472. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8473. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8474. // we could cache rms from forward pass to improve performance.
  8475. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8476. //const float rms = sqrtf(mean_eps);
  8477. const float rrms = 1.0f / sqrtf(mean_eps);
  8478. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8479. {
  8480. // z = rms_norm(x)
  8481. //
  8482. // rms_norm(src0) =
  8483. // scale(
  8484. // src0,
  8485. // div(
  8486. // 1,
  8487. // sqrt(
  8488. // add(
  8489. // scale(
  8490. // sum(
  8491. // sqr(
  8492. // src0)),
  8493. // (1.0/N)),
  8494. // eps))));
  8495. // postorder:
  8496. // ## op args grad
  8497. // 00 param src0 grad[#00]
  8498. // 01 const 1
  8499. // 02 sqr (#00) grad[#02]
  8500. // 03 sum (#02) grad[#03]
  8501. // 04 const 1/N
  8502. // 05 scale (#03, #04) grad[#05]
  8503. // 06 const eps
  8504. // 07 add (#05, #06) grad[#07]
  8505. // 08 sqrt (#07) grad[#08]
  8506. // 09 div (#01,#08) grad[#09]
  8507. // 10 scale (#00,#09) grad[#10]
  8508. //
  8509. // backward pass, given grad[#10]
  8510. // #10: scale
  8511. // grad[#00] += scale(grad[#10],#09)
  8512. // grad[#09] += sum(mul(grad[#10],#00))
  8513. // #09: div
  8514. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8515. // #08: sqrt
  8516. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8517. // #07: add
  8518. // grad[#05] += grad[#07]
  8519. // #05: scale
  8520. // grad[#03] += scale(grad[#05],#04)
  8521. // #03: sum
  8522. // grad[#02] += repeat(grad[#03], #02)
  8523. // #02:
  8524. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8525. //
  8526. // substitute and simplify:
  8527. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8528. // grad[#02] = repeat(grad[#03], #02)
  8529. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8530. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8531. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8532. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8533. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8534. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8535. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8536. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8537. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8538. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8539. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8540. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8541. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8542. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8543. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8544. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8545. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8546. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8547. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8548. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8549. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8550. // a = b*c + d*e
  8551. // a = b*c*f/f + d*e*f/f
  8552. // a = (b*c*f + d*e*f)*(1/f)
  8553. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8554. // a = (b + d*e/c)*c
  8555. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8556. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8557. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8558. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8559. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8560. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8561. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8562. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8563. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8564. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8565. }
  8566. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8567. // post-order:
  8568. // dx := x
  8569. // dx := scale(dx,-mean_xdz/mean_eps)
  8570. // dx := add(dx, dz)
  8571. // dx := scale(dx, rrms)
  8572. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8573. ggml_vec_cpy_f32 (ne00, dx, x);
  8574. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8575. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8576. ggml_vec_acc_f32 (ne00, dx, dz);
  8577. ggml_vec_scale_f32(ne00, dx, rrms);
  8578. }
  8579. }
  8580. }
  8581. }
  8582. static void ggml_compute_forward_rms_norm_back(
  8583. const struct ggml_compute_params * params,
  8584. struct ggml_tensor * dst) {
  8585. const struct ggml_tensor * src0 = dst->src[0];
  8586. switch (src0->type) {
  8587. case GGML_TYPE_F32:
  8588. {
  8589. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8590. } break;
  8591. default:
  8592. {
  8593. GGML_ASSERT(false);
  8594. } break;
  8595. }
  8596. }
  8597. // ggml_compute_forward_group_norm
  8598. static void ggml_compute_forward_group_norm_f32(
  8599. const struct ggml_compute_params * params,
  8600. struct ggml_tensor * dst) {
  8601. const struct ggml_tensor * src0 = dst->src[0];
  8602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8603. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8604. return;
  8605. }
  8606. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8607. const int ith = params->ith;
  8608. const int nth = params->nth;
  8609. GGML_TENSOR_UNARY_OP_LOCALS
  8610. const float eps = 1e-6f; // TODO: make this a parameter
  8611. // TODO: optimize
  8612. int n_channels = src0->ne[2];
  8613. int n_groups = dst->op_params[0];
  8614. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8615. for (int i = ith; i < n_groups; i += nth) {
  8616. int start = i * n_channels_per_group;
  8617. int end = start + n_channels_per_group;
  8618. if (end > n_channels) {
  8619. end = n_channels;
  8620. }
  8621. int step = end - start;
  8622. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8623. ggml_float sum = 0.0;
  8624. for (int64_t i02 = start; i02 < end; i02++) {
  8625. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8626. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8627. ggml_float sumr = 0.0;
  8628. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8629. sumr += (ggml_float)x[i00];
  8630. }
  8631. sum += sumr;
  8632. }
  8633. }
  8634. const float mean = sum / (ne00 * ne01 * step);
  8635. ggml_float sum2 = 0.0;
  8636. for (int64_t i02 = start; i02 < end; i02++) {
  8637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8638. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8639. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8640. ggml_float sumr = 0.0;
  8641. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8642. float v = x[i00] - mean;
  8643. y[i00] = v;
  8644. sumr += (ggml_float)(v * v);
  8645. }
  8646. sum2 += sumr;
  8647. }
  8648. }
  8649. const float variance = sum2 / (ne00 * ne01 * step);
  8650. const float scale = 1.0f / sqrtf(variance + eps);
  8651. for (int64_t i02 = start; i02 < end; i02++) {
  8652. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8653. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8654. ggml_vec_scale_f32(ne00, y, scale);
  8655. }
  8656. }
  8657. }
  8658. }
  8659. }
  8660. static void ggml_compute_forward_group_norm(
  8661. const struct ggml_compute_params * params,
  8662. struct ggml_tensor * dst) {
  8663. const struct ggml_tensor * src0 = dst->src[0];
  8664. switch (src0->type) {
  8665. case GGML_TYPE_F32:
  8666. {
  8667. ggml_compute_forward_group_norm_f32(params, dst);
  8668. } break;
  8669. default:
  8670. {
  8671. GGML_ASSERT(false);
  8672. } break;
  8673. }
  8674. }
  8675. // ggml_compute_forward_mul_mat
  8676. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8677. // helper function to determine if it is better to use BLAS or not
  8678. // for large matrices, BLAS is faster
  8679. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8680. const struct ggml_tensor * src0 = dst->src[0];
  8681. const struct ggml_tensor * src1 = dst->src[1];
  8682. //const int64_t ne00 = src0->ne[0];
  8683. //const int64_t ne01 = src0->ne[1];
  8684. const int64_t ne10 = src1->ne[0];
  8685. const int64_t ne0 = dst->ne[0];
  8686. const int64_t ne1 = dst->ne[1];
  8687. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8688. // all the experts for each batch element and the processing would become incredibly slow
  8689. // TODO: find the optimal values for these
  8690. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8691. ggml_is_contiguous(src0) &&
  8692. ggml_is_contiguous(src1) &&
  8693. //src0->type == GGML_TYPE_F32 &&
  8694. src1->type == GGML_TYPE_F32 &&
  8695. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8696. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8697. return true;
  8698. }
  8699. return false;
  8700. }
  8701. #endif
  8702. static void ggml_compute_forward_mul_mat(
  8703. const struct ggml_compute_params * params,
  8704. struct ggml_tensor * dst) {
  8705. const struct ggml_tensor * src0 = dst->src[0];
  8706. const struct ggml_tensor * src1 = dst->src[1];
  8707. int64_t t0 = ggml_perf_time_us();
  8708. UNUSED(t0);
  8709. GGML_TENSOR_BINARY_OP_LOCALS
  8710. const int ith = params->ith;
  8711. const int nth = params->nth;
  8712. const enum ggml_type type = src0->type;
  8713. const bool src1_cont = ggml_is_contiguous(src1);
  8714. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8715. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8716. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8717. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8718. GGML_ASSERT(ne0 == ne01);
  8719. GGML_ASSERT(ne1 == ne11);
  8720. GGML_ASSERT(ne2 == ne12);
  8721. GGML_ASSERT(ne3 == ne13);
  8722. // we don't support permuted src0 or src1
  8723. GGML_ASSERT(nb00 == ggml_type_size(type));
  8724. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8725. // dst cannot be transposed or permuted
  8726. GGML_ASSERT(nb0 == sizeof(float));
  8727. GGML_ASSERT(nb0 <= nb1);
  8728. GGML_ASSERT(nb1 <= nb2);
  8729. GGML_ASSERT(nb2 <= nb3);
  8730. // broadcast factors
  8731. const int64_t r2 = ne12/ne02;
  8732. const int64_t r3 = ne13/ne03;
  8733. // nb01 >= nb00 - src0 is not transposed
  8734. // compute by src0 rows
  8735. #if defined(GGML_USE_CLBLAST)
  8736. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8737. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8738. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8739. }
  8740. return;
  8741. }
  8742. #endif
  8743. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8744. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8745. const int64_t ne_plane = ne01*ne00;
  8746. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8747. UNUSED(desired_wsize);
  8748. if (params->type == GGML_TASK_TYPE_INIT) {
  8749. if (type != GGML_TYPE_F32) {
  8750. assert(params->wsize >= desired_wsize);
  8751. // parallelize by src0 rows
  8752. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8753. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8754. // broadcast src0 into src1 across 2nd,3rd dimension
  8755. const int64_t i03 = i13/r3;
  8756. const int64_t i02 = i12/r2;
  8757. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8758. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8759. ggml_to_float_t const to_float = type_traits[type].to_float;
  8760. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8761. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8762. }
  8763. }
  8764. }
  8765. }
  8766. return;
  8767. }
  8768. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8769. return;
  8770. }
  8771. // perform sgemm, parallelization controlled by blas lib
  8772. if (ith != 0) {
  8773. return;
  8774. }
  8775. //const int64_t tgemm0 = ggml_perf_time_us();
  8776. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8777. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8778. const int64_t i03 = i13/r3;
  8779. const int64_t i02 = i12/r2;
  8780. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8781. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8782. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8783. if (type != GGML_TYPE_F32) {
  8784. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8785. }
  8786. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8787. ne1, ne01, ne10,
  8788. 1.0f, y, ne10,
  8789. x, ne00,
  8790. 0.0f, d, ne01);
  8791. }
  8792. }
  8793. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8794. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8795. return;
  8796. }
  8797. #endif
  8798. #if GGML_USE_LLAMAFILE
  8799. if (src1_cont) {
  8800. for (int64_t i13 = 0; i13 < ne13; i13++)
  8801. for (int64_t i12 = 0; i12 < ne12; i12++)
  8802. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8803. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8804. nb01/ggml_type_size(src0->type),
  8805. (const char *)src1->data + i12*nb12 + i13*nb13,
  8806. nb11/ggml_type_size(src1->type),
  8807. (char *)dst->data + i12*nb2 + i13*nb3,
  8808. nb1/ggml_type_size(dst->type),
  8809. ith, nth,
  8810. params->type,
  8811. src0->type,
  8812. src1->type,
  8813. dst->type))
  8814. goto UseGgmlGemm1;
  8815. return;
  8816. }
  8817. UseGgmlGemm1:;
  8818. #endif
  8819. if (params->type == GGML_TASK_TYPE_INIT) {
  8820. if (ith != 0) {
  8821. return;
  8822. }
  8823. if (src1->type != vec_dot_type) {
  8824. char * wdata = params->wdata;
  8825. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8826. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8827. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8828. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8829. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8830. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8831. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8832. wdata += row_size;
  8833. }
  8834. }
  8835. }
  8836. }
  8837. return;
  8838. }
  8839. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8840. return;
  8841. }
  8842. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8843. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8844. #if GGML_USE_LLAMAFILE
  8845. if (src1->type != vec_dot_type) {
  8846. for (int64_t i13 = 0; i13 < ne13; i13++)
  8847. for (int64_t i12 = 0; i12 < ne12; i12++)
  8848. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8849. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8850. nb01/ggml_type_size(src0->type),
  8851. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  8852. row_size/ggml_type_size(vec_dot_type),
  8853. (char *)dst->data + i12*nb2 + i13*nb3,
  8854. nb1/ggml_type_size(dst->type),
  8855. ith, nth,
  8856. params->type,
  8857. src0->type,
  8858. vec_dot_type,
  8859. dst->type))
  8860. goto UseGgmlGemm2;
  8861. return;
  8862. }
  8863. UseGgmlGemm2:;
  8864. #endif
  8865. const int64_t nr0 = ne01; // src0 rows
  8866. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8867. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8868. // distribute the thread work across the inner or outer loop based on which one is larger
  8869. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8870. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8871. const int64_t ith0 = ith % nth0;
  8872. const int64_t ith1 = ith / nth0;
  8873. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8874. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8875. const int64_t ir010 = dr0*ith0;
  8876. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8877. const int64_t ir110 = dr1*ith1;
  8878. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8879. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8880. // threads with no work simply yield (not sure if it helps)
  8881. if (ir010 >= ir011 || ir110 >= ir111) {
  8882. sched_yield();
  8883. return;
  8884. }
  8885. assert(ne12 % ne02 == 0);
  8886. assert(ne13 % ne03 == 0);
  8887. // block-tiling attempt
  8888. const int64_t blck_0 = 16;
  8889. const int64_t blck_1 = 16;
  8890. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8891. int64_t nrc = vec_dot_num_rows;
  8892. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8893. // this check can be removed once they are extended to support odd numbered rows/cols too
  8894. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8895. nrc = 1;
  8896. }
  8897. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8898. // attempt to reduce false-sharing (does not seem to make a difference)
  8899. // 16 * 2, accounting for mmla kernels
  8900. float tmp[32];
  8901. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8902. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8903. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8904. const int64_t i13 = (ir1/(ne12*ne1));
  8905. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8906. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8907. // broadcast src0 into src1
  8908. const int64_t i03 = i13/r3;
  8909. const int64_t i02 = i12/r2;
  8910. const int64_t i1 = i11;
  8911. const int64_t i2 = i12;
  8912. const int64_t i3 = i13;
  8913. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8914. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8915. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8916. // the original src1 data pointer, so we should index using the indices directly
  8917. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8918. const char * src1_col = (const char *) wdata +
  8919. (src1_cont || src1->type != vec_dot_type
  8920. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8921. : (i11*nb11 + i12*nb12 + i13*nb13));
  8922. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8923. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8924. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8925. //}
  8926. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8927. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8928. }
  8929. for (int cn = 0; cn < nrc; ++cn) {
  8930. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8931. }
  8932. }
  8933. }
  8934. }
  8935. }
  8936. // ggml_compute_forward_mul_mat_id
  8937. static void ggml_compute_forward_mul_mat_id(
  8938. const struct ggml_compute_params * params,
  8939. struct ggml_tensor * dst) {
  8940. const struct ggml_tensor * src0 = dst->src[0];
  8941. const struct ggml_tensor * src1 = dst->src[1];
  8942. const struct ggml_tensor * ids = dst->src[2];
  8943. GGML_TENSOR_BINARY_OP_LOCALS
  8944. const int ith = params->ith;
  8945. const int nth = params->nth;
  8946. const enum ggml_type type = src0->type;
  8947. const bool src1_cont = ggml_is_contiguous(src1);
  8948. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8949. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8950. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8951. // we don't support permuted src0 or src1
  8952. GGML_ASSERT(nb00 == ggml_type_size(type));
  8953. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8954. // dst cannot be transposed or permuted
  8955. GGML_ASSERT(nb0 == sizeof(float));
  8956. GGML_ASSERT(nb0 <= nb1);
  8957. GGML_ASSERT(nb1 <= nb2);
  8958. GGML_ASSERT(nb2 <= nb3);
  8959. // row groups
  8960. const int n_ids = ids->ne[0]; // n_expert_used
  8961. const int n_as = ne02; // n_expert
  8962. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8963. (char *) params->wdata :
  8964. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8965. struct mmid_row_mapping {
  8966. int32_t i1;
  8967. int32_t i2;
  8968. };
  8969. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8970. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  8971. if (params->type == GGML_TASK_TYPE_INIT) {
  8972. if (ith != 0) {
  8973. return;
  8974. }
  8975. char * wdata = params->wdata;
  8976. if (src1->type != vec_dot_type) {
  8977. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8978. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8979. assert(src1->type == GGML_TYPE_F32);
  8980. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8981. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8982. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8983. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8984. wdata += row_size;
  8985. }
  8986. }
  8987. }
  8988. }
  8989. // initialize matrix_row_counts
  8990. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8991. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  8992. // group rows by src0 matrix
  8993. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  8994. for (int id = 0; id < n_ids; ++id) {
  8995. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  8996. assert(i02 >= 0 && i02 < n_as);
  8997. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  8998. matrix_row_counts[i02] += 1;
  8999. }
  9000. }
  9001. return;
  9002. }
  9003. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9004. return;
  9005. }
  9006. // compute each matrix multiplication in sequence
  9007. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9008. const int64_t cne1 = matrix_row_counts[cur_a];
  9009. if (cne1 == 0) {
  9010. continue;
  9011. }
  9012. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9013. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9014. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9015. const int64_t nr0 = ne01; // src0 rows
  9016. const int64_t nr1 = cne1; // src1 rows
  9017. // distribute the thread work across the inner or outer loop based on which one is larger
  9018. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9019. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9020. const int64_t ith0 = ith % nth0;
  9021. const int64_t ith1 = ith / nth0;
  9022. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9023. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9024. const int64_t ir010 = dr0*ith0;
  9025. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9026. const int64_t ir110 = dr1*ith1;
  9027. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9028. // threads with no work simply yield (not sure if it helps)
  9029. //if (ir010 >= ir011 || ir110 >= ir111) {
  9030. // sched_yield();
  9031. // continue;
  9032. //}
  9033. // block-tiling attempt
  9034. const int64_t blck_0 = 16;
  9035. const int64_t blck_1 = 16;
  9036. // attempt to reduce false-sharing (does not seem to make a difference)
  9037. float tmp[16];
  9038. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9039. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9040. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9041. const int64_t _i12 = ir1; // logical row index for this expert
  9042. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9043. const int id = row_mapping.i1; // selected expert index
  9044. const int64_t i11 = id % ne11;
  9045. const int64_t i12 = row_mapping.i2; // row index in src1
  9046. const int64_t i1 = id; // selected expert index
  9047. const int64_t i2 = i12; // row
  9048. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9049. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9050. // the original src1 data pointer, so we should index using the indices directly
  9051. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9052. const char * src1_col = (const char *) wdata +
  9053. (src1_cont || src1->type != vec_dot_type
  9054. ? (i11 + i12*ne11)*row_size
  9055. : (i11*nb11 + i12*nb12));
  9056. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9057. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9058. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9059. //}
  9060. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9061. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9062. }
  9063. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9064. }
  9065. }
  9066. }
  9067. }
  9068. #undef MMID_MATRIX_ROW
  9069. }
  9070. // ggml_compute_forward_out_prod
  9071. static void ggml_compute_forward_out_prod_f32(
  9072. const struct ggml_compute_params * params,
  9073. struct ggml_tensor * dst) {
  9074. const struct ggml_tensor * src0 = dst->src[0];
  9075. const struct ggml_tensor * src1 = dst->src[1];
  9076. // int64_t t0 = ggml_perf_time_us();
  9077. // UNUSED(t0);
  9078. GGML_TENSOR_BINARY_OP_LOCALS
  9079. const int ith = params->ith;
  9080. const int nth = params->nth;
  9081. GGML_ASSERT(ne0 == ne00);
  9082. GGML_ASSERT(ne1 == ne10);
  9083. GGML_ASSERT(ne2 == ne02);
  9084. GGML_ASSERT(ne02 == ne12);
  9085. GGML_ASSERT(ne3 == ne13);
  9086. GGML_ASSERT(ne03 == ne13);
  9087. // we don't support permuted src0 or src1
  9088. GGML_ASSERT(nb00 == sizeof(float));
  9089. // dst cannot be transposed or permuted
  9090. GGML_ASSERT(nb0 == sizeof(float));
  9091. // GGML_ASSERT(nb0 <= nb1);
  9092. // GGML_ASSERT(nb1 <= nb2);
  9093. // GGML_ASSERT(nb2 <= nb3);
  9094. // nb01 >= nb00 - src0 is not transposed
  9095. // compute by src0 rows
  9096. // TODO: #if defined(GGML_USE_CLBLAST)
  9097. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9098. bool use_blas = ggml_is_matrix(src0) &&
  9099. ggml_is_matrix(src1) &&
  9100. ggml_is_contiguous(src0) &&
  9101. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9102. #endif
  9103. if (params->type == GGML_TASK_TYPE_INIT) {
  9104. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9105. if (use_blas) {
  9106. return;
  9107. }
  9108. #endif
  9109. if (ith != 0) {
  9110. return;
  9111. }
  9112. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9113. return;
  9114. }
  9115. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9116. return;
  9117. }
  9118. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9119. if (use_blas) {
  9120. if (params->ith != 0) { // All threads other than the first do no work.
  9121. return;
  9122. }
  9123. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9124. // src0: (k,n)
  9125. // src1: (k,m)
  9126. // dst: (m,n)
  9127. //
  9128. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9129. // Also expressed as (major,minor)
  9130. // a: (m,k): so src1 transposed
  9131. // b: (k,n): so src0
  9132. // c: (m,n)
  9133. //
  9134. // However, if ggml_is_transposed(src1) is true, then
  9135. // src1->data already contains a transposed version, so sgemm mustn't
  9136. // transpose it further.
  9137. int n = src0->ne[0];
  9138. int k = src0->ne[1];
  9139. int m = src1->ne[0];
  9140. int transposeA, lda;
  9141. if (!ggml_is_transposed(src1)) {
  9142. transposeA = CblasTrans;
  9143. lda = m;
  9144. } else {
  9145. transposeA = CblasNoTrans;
  9146. lda = k;
  9147. }
  9148. float * a = (float *) ((char *) src1->data);
  9149. float * b = (float *) ((char *) src0->data);
  9150. float * c = (float *) ((char *) dst->data);
  9151. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9152. return;
  9153. }
  9154. #endif
  9155. // dst[:,:,:,:] = 0
  9156. // for i2,i3:
  9157. // for i1:
  9158. // for i01:
  9159. // for i0:
  9160. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9161. // parallelize by last three dimensions
  9162. // total rows in dst
  9163. const int64_t nr = ne1*ne2*ne3;
  9164. // rows per thread
  9165. const int64_t dr = (nr + nth - 1)/nth;
  9166. // row range for this thread
  9167. const int64_t ir0 = dr*ith;
  9168. const int64_t ir1 = MIN(ir0 + dr, nr);
  9169. // block-tiling attempt
  9170. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9171. const int64_t blck_1 = 16;
  9172. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9173. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9174. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9175. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9176. for (int64_t ir = bir; ir < bir1; ++ir) {
  9177. // dst indices
  9178. const int64_t i3 = ir/(ne2*ne1);
  9179. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9180. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9181. const int64_t i02 = i2;
  9182. const int64_t i03 = i3;
  9183. //const int64_t i10 = i1;
  9184. const int64_t i12 = i2;
  9185. const int64_t i13 = i3;
  9186. #if GGML_VEC_MAD_UNROLL > 2
  9187. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9188. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9189. const int64_t i11 = i01;
  9190. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9191. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9192. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9193. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9194. }
  9195. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9196. const int64_t i11 = i01;
  9197. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9198. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9199. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9200. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9201. }
  9202. #else
  9203. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9204. const int64_t i11 = i01;
  9205. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9206. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9207. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9208. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9209. }
  9210. #endif
  9211. }
  9212. }
  9213. }
  9214. //int64_t t1 = ggml_perf_time_us();
  9215. //static int64_t acc = 0;
  9216. //acc += t1 - t0;
  9217. //if (t1 - t0 > 10) {
  9218. // printf("\n");
  9219. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9220. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9221. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9222. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9223. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9224. //}
  9225. }
  9226. static void ggml_compute_forward_out_prod_q_f32(
  9227. const struct ggml_compute_params * params,
  9228. struct ggml_tensor * dst) {
  9229. const struct ggml_tensor * src0 = dst->src[0];
  9230. const struct ggml_tensor * src1 = dst->src[1];
  9231. // int64_t t0 = ggml_perf_time_us();
  9232. // UNUSED(t0);
  9233. GGML_TENSOR_BINARY_OP_LOCALS;
  9234. const int ith = params->ith;
  9235. const int nth = params->nth;
  9236. const enum ggml_type type = src0->type;
  9237. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9238. GGML_ASSERT(ne02 == ne12);
  9239. GGML_ASSERT(ne03 == ne13);
  9240. GGML_ASSERT(ne2 == ne12);
  9241. GGML_ASSERT(ne3 == ne13);
  9242. // we don't support permuted src0 dim0
  9243. GGML_ASSERT(nb00 == ggml_type_size(type));
  9244. // dst dim0 cannot be transposed or permuted
  9245. GGML_ASSERT(nb0 == sizeof(float));
  9246. // GGML_ASSERT(nb0 <= nb1);
  9247. // GGML_ASSERT(nb1 <= nb2);
  9248. // GGML_ASSERT(nb2 <= nb3);
  9249. GGML_ASSERT(ne0 == ne00);
  9250. GGML_ASSERT(ne1 == ne10);
  9251. GGML_ASSERT(ne2 == ne02);
  9252. GGML_ASSERT(ne3 == ne03);
  9253. // nb01 >= nb00 - src0 is not transposed
  9254. // compute by src0 rows
  9255. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9256. if (params->type == GGML_TASK_TYPE_INIT) {
  9257. if (ith != 0) {
  9258. return;
  9259. }
  9260. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9261. return;
  9262. }
  9263. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9264. return;
  9265. }
  9266. // parallelize by last three dimensions
  9267. // total rows in dst
  9268. const int64_t nr = ne1*ne2*ne3;
  9269. // rows per thread
  9270. const int64_t dr = (nr + nth - 1)/nth;
  9271. // row range for this thread
  9272. const int64_t ir0 = dr*ith;
  9273. const int64_t ir1 = MIN(ir0 + dr, nr);
  9274. // dst[:,:,:,:] = 0
  9275. // for i2,i3:
  9276. // for i1:
  9277. // for i01:
  9278. // for i0:
  9279. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9280. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9281. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9282. // dst indices
  9283. const int64_t i3 = ir/(ne2*ne1);
  9284. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9285. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9286. const int64_t i02 = i2;
  9287. const int64_t i03 = i3;
  9288. //const int64_t i10 = i1;
  9289. const int64_t i12 = i2;
  9290. const int64_t i13 = i3;
  9291. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9292. const int64_t i11 = i01;
  9293. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9294. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9295. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9296. dequantize_row_q(s0, wdata, ne0);
  9297. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9298. }
  9299. }
  9300. //int64_t t1 = ggml_perf_time_us();
  9301. //static int64_t acc = 0;
  9302. //acc += t1 - t0;
  9303. //if (t1 - t0 > 10) {
  9304. // printf("\n");
  9305. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9306. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9307. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9308. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9309. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9310. //}
  9311. }
  9312. static void ggml_compute_forward_out_prod(
  9313. const struct ggml_compute_params * params,
  9314. struct ggml_tensor * dst) {
  9315. const struct ggml_tensor * src0 = dst->src[0];
  9316. switch (src0->type) {
  9317. case GGML_TYPE_Q4_0:
  9318. case GGML_TYPE_Q4_1:
  9319. case GGML_TYPE_Q5_0:
  9320. case GGML_TYPE_Q5_1:
  9321. case GGML_TYPE_Q8_0:
  9322. case GGML_TYPE_Q2_K:
  9323. case GGML_TYPE_Q3_K:
  9324. case GGML_TYPE_Q4_K:
  9325. case GGML_TYPE_Q5_K:
  9326. case GGML_TYPE_Q6_K:
  9327. case GGML_TYPE_IQ2_XXS:
  9328. case GGML_TYPE_IQ2_XS:
  9329. case GGML_TYPE_IQ3_XXS:
  9330. case GGML_TYPE_IQ1_S:
  9331. case GGML_TYPE_IQ1_M:
  9332. case GGML_TYPE_IQ4_NL:
  9333. case GGML_TYPE_IQ4_XS:
  9334. case GGML_TYPE_IQ3_S:
  9335. case GGML_TYPE_IQ2_S:
  9336. {
  9337. ggml_compute_forward_out_prod_q_f32(params, dst);
  9338. } break;
  9339. case GGML_TYPE_F16:
  9340. {
  9341. GGML_ASSERT(false); // todo
  9342. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9343. } break;
  9344. case GGML_TYPE_F32:
  9345. {
  9346. ggml_compute_forward_out_prod_f32(params, dst);
  9347. } break;
  9348. default:
  9349. {
  9350. GGML_ASSERT(false);
  9351. } break;
  9352. }
  9353. }
  9354. // ggml_compute_forward_scale
  9355. static void ggml_compute_forward_scale_f32(
  9356. const struct ggml_compute_params * params,
  9357. struct ggml_tensor * dst) {
  9358. const struct ggml_tensor * src0 = dst->src[0];
  9359. GGML_ASSERT(ggml_is_contiguous(src0));
  9360. GGML_ASSERT(ggml_is_contiguous(dst));
  9361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9363. return;
  9364. }
  9365. // scale factor
  9366. float v;
  9367. memcpy(&v, dst->op_params, sizeof(float));
  9368. const int ith = params->ith;
  9369. const int nth = params->nth;
  9370. const int nc = src0->ne[0];
  9371. const int nr = ggml_nrows(src0);
  9372. // rows per thread
  9373. const int dr = (nr + nth - 1)/nth;
  9374. // row range for this thread
  9375. const int ir0 = dr*ith;
  9376. const int ir1 = MIN(ir0 + dr, nr);
  9377. const size_t nb01 = src0->nb[1];
  9378. const size_t nb1 = dst->nb[1];
  9379. for (int i1 = ir0; i1 < ir1; i1++) {
  9380. if (dst->data != src0->data) {
  9381. // src0 is same shape as dst => same indices
  9382. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9383. }
  9384. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9385. }
  9386. }
  9387. static void ggml_compute_forward_scale(
  9388. const struct ggml_compute_params * params,
  9389. struct ggml_tensor * dst) {
  9390. const struct ggml_tensor * src0 = dst->src[0];
  9391. switch (src0->type) {
  9392. case GGML_TYPE_F32:
  9393. {
  9394. ggml_compute_forward_scale_f32(params, dst);
  9395. } break;
  9396. default:
  9397. {
  9398. GGML_ASSERT(false);
  9399. } break;
  9400. }
  9401. }
  9402. // ggml_compute_forward_set
  9403. static void ggml_compute_forward_set_f32(
  9404. const struct ggml_compute_params * params,
  9405. struct ggml_tensor * dst) {
  9406. const struct ggml_tensor * src0 = dst->src[0];
  9407. const struct ggml_tensor * src1 = dst->src[1];
  9408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9409. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9410. // view src0 and dst with these strides and data offset inbytes during set
  9411. // nb0 is implicitly element_size because src0 and dst are contiguous
  9412. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9413. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9414. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9415. size_t offset = ((int32_t *) dst->op_params)[3];
  9416. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9417. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9418. if (params->ith != 0) {
  9419. return;
  9420. }
  9421. // memcpy needs to be synchronized across threads to avoid race conditions.
  9422. // => do it in INIT phase
  9423. memcpy(
  9424. ((char *) dst->data),
  9425. ((char *) src0->data),
  9426. ggml_nbytes(dst));
  9427. }
  9428. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9429. return;
  9430. }
  9431. const int ith = params->ith;
  9432. const int nth = params->nth;
  9433. const int nr = ggml_nrows(src1);
  9434. const int nc = src1->ne[0];
  9435. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9436. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9437. // src0 and dst as viewed during set
  9438. const size_t nb0 = ggml_element_size(src0);
  9439. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9440. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9441. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9442. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9443. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9444. GGML_ASSERT(nb10 == sizeof(float));
  9445. // rows per thread
  9446. const int dr = (nr + nth - 1)/nth;
  9447. // row range for this thread
  9448. const int ir0 = dr*ith;
  9449. const int ir1 = MIN(ir0 + dr, nr);
  9450. for (int ir = ir0; ir < ir1; ++ir) {
  9451. // src0 and dst are viewed with shape of src1 and offset
  9452. // => same indices
  9453. const int i3 = ir/(ne12*ne11);
  9454. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9455. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9456. ggml_vec_cpy_f32(nc,
  9457. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9458. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9459. }
  9460. }
  9461. static void ggml_compute_forward_set(
  9462. const struct ggml_compute_params * params,
  9463. struct ggml_tensor * dst) {
  9464. const struct ggml_tensor * src0 = dst->src[0];
  9465. switch (src0->type) {
  9466. case GGML_TYPE_F32:
  9467. {
  9468. ggml_compute_forward_set_f32(params, dst);
  9469. } break;
  9470. case GGML_TYPE_F16:
  9471. case GGML_TYPE_Q4_0:
  9472. case GGML_TYPE_Q4_1:
  9473. case GGML_TYPE_Q5_0:
  9474. case GGML_TYPE_Q5_1:
  9475. case GGML_TYPE_Q8_0:
  9476. case GGML_TYPE_Q8_1:
  9477. case GGML_TYPE_Q2_K:
  9478. case GGML_TYPE_Q3_K:
  9479. case GGML_TYPE_Q4_K:
  9480. case GGML_TYPE_Q5_K:
  9481. case GGML_TYPE_Q6_K:
  9482. case GGML_TYPE_IQ2_XXS:
  9483. case GGML_TYPE_IQ2_XS:
  9484. case GGML_TYPE_IQ3_XXS:
  9485. case GGML_TYPE_IQ1_S:
  9486. case GGML_TYPE_IQ1_M:
  9487. case GGML_TYPE_IQ4_NL:
  9488. case GGML_TYPE_IQ4_XS:
  9489. case GGML_TYPE_IQ3_S:
  9490. case GGML_TYPE_IQ2_S:
  9491. default:
  9492. {
  9493. GGML_ASSERT(false);
  9494. } break;
  9495. }
  9496. }
  9497. // ggml_compute_forward_cpy
  9498. static void ggml_compute_forward_cpy(
  9499. const struct ggml_compute_params * params,
  9500. struct ggml_tensor * dst) {
  9501. ggml_compute_forward_dup(params, dst);
  9502. }
  9503. // ggml_compute_forward_cont
  9504. static void ggml_compute_forward_cont(
  9505. const struct ggml_compute_params * params,
  9506. struct ggml_tensor * dst) {
  9507. ggml_compute_forward_dup(params, dst);
  9508. }
  9509. // ggml_compute_forward_reshape
  9510. static void ggml_compute_forward_reshape(
  9511. const struct ggml_compute_params * params,
  9512. struct ggml_tensor * dst) {
  9513. // NOP
  9514. UNUSED(params);
  9515. UNUSED(dst);
  9516. }
  9517. // ggml_compute_forward_view
  9518. static void ggml_compute_forward_view(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * dst) {
  9521. // NOP
  9522. UNUSED(params);
  9523. UNUSED(dst);
  9524. }
  9525. // ggml_compute_forward_permute
  9526. static void ggml_compute_forward_permute(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * dst) {
  9529. // NOP
  9530. UNUSED(params);
  9531. UNUSED(dst);
  9532. }
  9533. // ggml_compute_forward_transpose
  9534. static void ggml_compute_forward_transpose(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * dst) {
  9537. // NOP
  9538. UNUSED(params);
  9539. UNUSED(dst);
  9540. }
  9541. // ggml_compute_forward_get_rows
  9542. static void ggml_compute_forward_get_rows_q(
  9543. const struct ggml_compute_params * params,
  9544. struct ggml_tensor * dst) {
  9545. const struct ggml_tensor * src0 = dst->src[0];
  9546. const struct ggml_tensor * src1 = dst->src[1];
  9547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9548. return;
  9549. }
  9550. GGML_TENSOR_BINARY_OP_LOCALS
  9551. const int64_t nc = ne00;
  9552. const int64_t nr = ggml_nelements(src1);
  9553. const enum ggml_type type = src0->type;
  9554. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9555. assert(ne0 == nc);
  9556. assert(ne02 == ne11);
  9557. assert(nb00 == ggml_type_size(type));
  9558. assert(ggml_nrows(dst) == nr);
  9559. const int ith = params->ith;
  9560. const int nth = params->nth;
  9561. // rows per thread
  9562. const int dr = (nr + nth - 1)/nth;
  9563. // row range for this thread
  9564. const int ir0 = dr*ith;
  9565. const int ir1 = MIN(ir0 + dr, nr);
  9566. for (int64_t i = ir0; i < ir1; ++i) {
  9567. const int64_t i12 = i/(ne11*ne10);
  9568. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9569. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9570. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9571. dequantize_row_q(
  9572. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9573. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9574. }
  9575. }
  9576. static void ggml_compute_forward_get_rows_f16(
  9577. const struct ggml_compute_params * params,
  9578. struct ggml_tensor * dst) {
  9579. const struct ggml_tensor * src0 = dst->src[0];
  9580. const struct ggml_tensor * src1 = dst->src[1];
  9581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9582. return;
  9583. }
  9584. GGML_TENSOR_BINARY_OP_LOCALS
  9585. const int64_t nc = ne00;
  9586. const int64_t nr = ggml_nelements(src1);
  9587. assert(ne0 == nc);
  9588. assert(ne02 == ne11);
  9589. assert(nb00 == sizeof(ggml_fp16_t));
  9590. assert(ggml_nrows(dst) == nr);
  9591. const int ith = params->ith;
  9592. const int nth = params->nth;
  9593. // rows per thread
  9594. const int dr = (nr + nth - 1)/nth;
  9595. // row range for this thread
  9596. const int ir0 = dr*ith;
  9597. const int ir1 = MIN(ir0 + dr, nr);
  9598. for (int64_t i = ir0; i < ir1; ++i) {
  9599. const int64_t i12 = i/(ne11*ne10);
  9600. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9601. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9602. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9603. ggml_fp16_to_fp32_row(
  9604. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9605. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9606. }
  9607. }
  9608. static void ggml_compute_forward_get_rows_f32(
  9609. const struct ggml_compute_params * params,
  9610. struct ggml_tensor * dst) {
  9611. const struct ggml_tensor * src0 = dst->src[0];
  9612. const struct ggml_tensor * src1 = dst->src[1];
  9613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9614. return;
  9615. }
  9616. GGML_TENSOR_BINARY_OP_LOCALS
  9617. const int64_t nc = ne00;
  9618. const int64_t nr = ggml_nelements(src1);
  9619. assert(ne0 == nc);
  9620. assert(ne02 == ne11);
  9621. assert(nb00 == sizeof(float));
  9622. assert(ggml_nrows(dst) == nr);
  9623. const int ith = params->ith;
  9624. const int nth = params->nth;
  9625. // rows per thread
  9626. const int dr = (nr + nth - 1)/nth;
  9627. // row range for this thread
  9628. const int ir0 = dr*ith;
  9629. const int ir1 = MIN(ir0 + dr, nr);
  9630. for (int64_t i = ir0; i < ir1; ++i) {
  9631. const int64_t i12 = i/(ne11*ne10);
  9632. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9633. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9634. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9635. ggml_vec_cpy_f32(nc,
  9636. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9637. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9638. }
  9639. }
  9640. static void ggml_compute_forward_get_rows(
  9641. const struct ggml_compute_params * params,
  9642. struct ggml_tensor * dst) {
  9643. const struct ggml_tensor * src0 = dst->src[0];
  9644. switch (src0->type) {
  9645. case GGML_TYPE_Q4_0:
  9646. case GGML_TYPE_Q4_1:
  9647. case GGML_TYPE_Q5_0:
  9648. case GGML_TYPE_Q5_1:
  9649. case GGML_TYPE_Q8_0:
  9650. case GGML_TYPE_Q8_1:
  9651. case GGML_TYPE_Q2_K:
  9652. case GGML_TYPE_Q3_K:
  9653. case GGML_TYPE_Q4_K:
  9654. case GGML_TYPE_Q5_K:
  9655. case GGML_TYPE_Q6_K:
  9656. case GGML_TYPE_IQ2_XXS:
  9657. case GGML_TYPE_IQ2_XS:
  9658. case GGML_TYPE_IQ3_XXS:
  9659. case GGML_TYPE_IQ1_S:
  9660. case GGML_TYPE_IQ1_M:
  9661. case GGML_TYPE_IQ4_NL:
  9662. case GGML_TYPE_IQ4_XS:
  9663. case GGML_TYPE_IQ3_S:
  9664. case GGML_TYPE_IQ2_S:
  9665. {
  9666. ggml_compute_forward_get_rows_q(params, dst);
  9667. } break;
  9668. case GGML_TYPE_F16:
  9669. {
  9670. ggml_compute_forward_get_rows_f16(params, dst);
  9671. } break;
  9672. case GGML_TYPE_F32:
  9673. case GGML_TYPE_I32:
  9674. {
  9675. ggml_compute_forward_get_rows_f32(params, dst);
  9676. } break;
  9677. default:
  9678. {
  9679. GGML_ASSERT(false);
  9680. } break;
  9681. }
  9682. //static bool first = true;
  9683. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9684. //if (first) {
  9685. // first = false;
  9686. //} else {
  9687. // for (int k = 0; k < dst->ne[1]; ++k) {
  9688. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9689. // for (int i = 0; i < 16; ++i) {
  9690. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9691. // }
  9692. // printf("\n");
  9693. // }
  9694. // printf("\n");
  9695. // }
  9696. // printf("\n");
  9697. // exit(0);
  9698. //}
  9699. }
  9700. // ggml_compute_forward_get_rows_back
  9701. static void ggml_compute_forward_get_rows_back_f32_f16(
  9702. const struct ggml_compute_params * params,
  9703. struct ggml_tensor * dst) {
  9704. const struct ggml_tensor * src0 = dst->src[0];
  9705. const struct ggml_tensor * src1 = dst->src[1];
  9706. GGML_ASSERT(params->ith == 0);
  9707. GGML_ASSERT(ggml_is_contiguous(dst));
  9708. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9709. if (params->type == GGML_TASK_TYPE_INIT) {
  9710. if (params->ith != 0) {
  9711. return;
  9712. }
  9713. memset(dst->data, 0, ggml_nbytes(dst));
  9714. }
  9715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9716. return;
  9717. }
  9718. const int nc = src0->ne[0];
  9719. const int nr = ggml_nelements(src1);
  9720. GGML_ASSERT( dst->ne[0] == nc);
  9721. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9722. for (int i = 0; i < nr; ++i) {
  9723. const int r = ((int32_t *) src1->data)[i];
  9724. for (int j = 0; j < nc; ++j) {
  9725. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9726. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9727. }
  9728. }
  9729. }
  9730. static void ggml_compute_forward_get_rows_back_f32(
  9731. const struct ggml_compute_params * params,
  9732. struct ggml_tensor * dst) {
  9733. const struct ggml_tensor * src0 = dst->src[0];
  9734. const struct ggml_tensor * src1 = dst->src[1];
  9735. GGML_ASSERT(params->ith == 0);
  9736. GGML_ASSERT(ggml_is_contiguous(dst));
  9737. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9738. if (params->type == GGML_TASK_TYPE_INIT) {
  9739. if (params->ith != 0) {
  9740. return;
  9741. }
  9742. memset(dst->data, 0, ggml_nbytes(dst));
  9743. }
  9744. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9745. return;
  9746. }
  9747. const int nc = src0->ne[0];
  9748. const int nr = ggml_nelements(src1);
  9749. GGML_ASSERT( dst->ne[0] == nc);
  9750. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9751. for (int i = 0; i < nr; ++i) {
  9752. const int r = ((int32_t *) src1->data)[i];
  9753. ggml_vec_add_f32(nc,
  9754. (float *) ((char *) dst->data + r*dst->nb[1]),
  9755. (float *) ((char *) dst->data + r*dst->nb[1]),
  9756. (float *) ((char *) src0->data + i*src0->nb[1]));
  9757. }
  9758. }
  9759. static void ggml_compute_forward_get_rows_back(
  9760. const struct ggml_compute_params * params,
  9761. struct ggml_tensor * dst) {
  9762. const struct ggml_tensor * src0 = dst->src[0];
  9763. switch (src0->type) {
  9764. case GGML_TYPE_F16:
  9765. {
  9766. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9767. } break;
  9768. case GGML_TYPE_F32:
  9769. {
  9770. ggml_compute_forward_get_rows_back_f32(params, dst);
  9771. } break;
  9772. default:
  9773. {
  9774. GGML_ASSERT(false);
  9775. } break;
  9776. }
  9777. //static bool first = true;
  9778. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9779. //if (first) {
  9780. // first = false;
  9781. //} else {
  9782. // for (int k = 0; k < dst->ne[1]; ++k) {
  9783. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9784. // for (int i = 0; i < 16; ++i) {
  9785. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9786. // }
  9787. // printf("\n");
  9788. // }
  9789. // printf("\n");
  9790. // }
  9791. // printf("\n");
  9792. // exit(0);
  9793. //}
  9794. }
  9795. // ggml_compute_forward_diag
  9796. static void ggml_compute_forward_diag_f32(
  9797. const struct ggml_compute_params * params,
  9798. struct ggml_tensor * dst) {
  9799. const struct ggml_tensor * src0 = dst->src[0];
  9800. GGML_ASSERT(params->ith == 0);
  9801. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9802. return;
  9803. }
  9804. // TODO: handle transposed/permuted matrices
  9805. GGML_TENSOR_UNARY_OP_LOCALS
  9806. GGML_ASSERT(ne00 == ne0);
  9807. GGML_ASSERT(ne00 == ne1);
  9808. GGML_ASSERT(ne01 == 1);
  9809. GGML_ASSERT(ne02 == ne2);
  9810. GGML_ASSERT(ne03 == ne3);
  9811. GGML_ASSERT(nb00 == sizeof(float));
  9812. GGML_ASSERT(nb0 == sizeof(float));
  9813. for (int i3 = 0; i3 < ne3; i3++) {
  9814. for (int i2 = 0; i2 < ne2; i2++) {
  9815. for (int i1 = 0; i1 < ne1; i1++) {
  9816. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9817. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9818. for (int i0 = 0; i0 < i1; i0++) {
  9819. d[i0] = 0;
  9820. }
  9821. d[i1] = s[i1];
  9822. for (int i0 = i1+1; i0 < ne0; i0++) {
  9823. d[i0] = 0;
  9824. }
  9825. }
  9826. }
  9827. }
  9828. }
  9829. static void ggml_compute_forward_diag(
  9830. const struct ggml_compute_params * params,
  9831. struct ggml_tensor * dst) {
  9832. const struct ggml_tensor * src0 = dst->src[0];
  9833. switch (src0->type) {
  9834. case GGML_TYPE_F32:
  9835. {
  9836. ggml_compute_forward_diag_f32(params, dst);
  9837. } break;
  9838. default:
  9839. {
  9840. GGML_ASSERT(false);
  9841. } break;
  9842. }
  9843. }
  9844. // ggml_compute_forward_diag_mask_inf
  9845. static void ggml_compute_forward_diag_mask_f32(
  9846. const struct ggml_compute_params * params,
  9847. struct ggml_tensor * dst,
  9848. const float value) {
  9849. const struct ggml_tensor * src0 = dst->src[0];
  9850. const int ith = params->ith;
  9851. const int nth = params->nth;
  9852. const int n_past = ((int32_t *) dst->op_params)[0];
  9853. const bool inplace = src0->data == dst->data;
  9854. GGML_ASSERT(n_past >= 0);
  9855. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9856. if (ith != 0) {
  9857. return;
  9858. }
  9859. // memcpy needs to be synchronized across threads to avoid race conditions.
  9860. // => do it in INIT phase
  9861. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9862. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9863. memcpy(
  9864. ((char *) dst->data),
  9865. ((char *) src0->data),
  9866. ggml_nbytes(dst));
  9867. }
  9868. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9869. return;
  9870. }
  9871. // TODO: handle transposed/permuted matrices
  9872. const int n = ggml_nrows(src0);
  9873. const int nc = src0->ne[0];
  9874. const int nr = src0->ne[1];
  9875. const int nz = n/nr;
  9876. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9877. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9878. for (int k = 0; k < nz; k++) {
  9879. for (int j = ith; j < nr; j += nth) {
  9880. for (int i = n_past; i < nc; i++) {
  9881. if (i > n_past + j) {
  9882. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9883. }
  9884. }
  9885. }
  9886. }
  9887. }
  9888. static void ggml_compute_forward_diag_mask_inf(
  9889. const struct ggml_compute_params * params,
  9890. struct ggml_tensor * dst) {
  9891. const struct ggml_tensor * src0 = dst->src[0];
  9892. switch (src0->type) {
  9893. case GGML_TYPE_F32:
  9894. {
  9895. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9896. } break;
  9897. default:
  9898. {
  9899. GGML_ASSERT(false);
  9900. } break;
  9901. }
  9902. }
  9903. static void ggml_compute_forward_diag_mask_zero(
  9904. const struct ggml_compute_params * params,
  9905. struct ggml_tensor * dst) {
  9906. const struct ggml_tensor * src0 = dst->src[0];
  9907. switch (src0->type) {
  9908. case GGML_TYPE_F32:
  9909. {
  9910. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9911. } break;
  9912. default:
  9913. {
  9914. GGML_ASSERT(false);
  9915. } break;
  9916. }
  9917. }
  9918. // ggml_compute_forward_soft_max
  9919. static void ggml_compute_forward_soft_max_f32(
  9920. const struct ggml_compute_params * params,
  9921. struct ggml_tensor * dst) {
  9922. const struct ggml_tensor * src0 = dst->src[0];
  9923. const struct ggml_tensor * src1 = dst->src[1];
  9924. const struct ggml_tensor * src2 = dst->src[2];
  9925. assert(ggml_is_contiguous(dst));
  9926. assert(ggml_are_same_shape(src0, dst));
  9927. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9928. return;
  9929. }
  9930. float scale = 1.0f;
  9931. float max_bias = 0.0f;
  9932. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9933. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9934. // TODO: handle transposed/permuted matrices
  9935. const int ith = params->ith;
  9936. const int nth = params->nth;
  9937. GGML_TENSOR_UNARY_OP_LOCALS
  9938. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9939. // TODO: is this supposed to be ceil instead of floor?
  9940. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9941. const uint32_t n_head_kv = ne02;
  9942. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9943. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9944. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9945. const int nc = src0->ne[0];
  9946. const int nr = ggml_nrows(src0);
  9947. // rows per thread
  9948. const int dr = (nr + nth - 1)/nth;
  9949. // row range for this thread
  9950. const int ir0 = dr*ith;
  9951. const int ir1 = MIN(ir0 + dr, nr);
  9952. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9953. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9954. float * pos = src2 ? (float *) src2->data : src0->data;
  9955. for (int i1 = ir0; i1 < ir1; i1++) {
  9956. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9957. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9958. // broadcast the mask across rows
  9959. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9960. ggml_vec_cpy_f32 (nc, wp, sp);
  9961. ggml_vec_scale_f32(nc, wp, scale);
  9962. if (mp) {
  9963. ggml_vec_acc_f32(nc, wp, mp);
  9964. }
  9965. // ALiBi bias
  9966. if (max_bias > 0.0f) {
  9967. const uint32_t h = (i1/ne01)%ne02; // head
  9968. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9969. for (int i = 0; i < nc; i++) {
  9970. wp[i] = wp[i] + slope*pos[i];
  9971. }
  9972. }
  9973. #ifndef NDEBUG
  9974. for (int i = 0; i < nc; ++i) {
  9975. //printf("p[%d] = %f\n", i, p[i]);
  9976. assert(!isnan(wp[i]));
  9977. }
  9978. #endif
  9979. float max = -INFINITY;
  9980. ggml_vec_max_f32(nc, &max, wp);
  9981. ggml_float sum = 0.0;
  9982. uint16_t scvt;
  9983. for (int i = 0; i < nc; i++) {
  9984. if (wp[i] == -INFINITY) {
  9985. dp[i] = 0.0f;
  9986. } else {
  9987. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9988. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9989. memcpy(&scvt, &s, sizeof(scvt));
  9990. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9991. sum += (ggml_float)val;
  9992. dp[i] = val;
  9993. }
  9994. }
  9995. assert(sum > 0.0);
  9996. sum = 1.0/sum;
  9997. ggml_vec_scale_f32(nc, dp, sum);
  9998. #ifndef NDEBUG
  9999. for (int i = 0; i < nc; ++i) {
  10000. assert(!isnan(dp[i]));
  10001. assert(!isinf(dp[i]));
  10002. }
  10003. #endif
  10004. }
  10005. }
  10006. static void ggml_compute_forward_soft_max(
  10007. const struct ggml_compute_params * params,
  10008. struct ggml_tensor * dst) {
  10009. const struct ggml_tensor * src0 = dst->src[0];
  10010. switch (src0->type) {
  10011. case GGML_TYPE_F32:
  10012. {
  10013. ggml_compute_forward_soft_max_f32(params, dst);
  10014. } break;
  10015. default:
  10016. {
  10017. GGML_ASSERT(false);
  10018. } break;
  10019. }
  10020. }
  10021. // ggml_compute_forward_soft_max_back
  10022. static void ggml_compute_forward_soft_max_back_f32(
  10023. const struct ggml_compute_params * params,
  10024. struct ggml_tensor * dst) {
  10025. const struct ggml_tensor * src0 = dst->src[0];
  10026. const struct ggml_tensor * src1 = dst->src[1];
  10027. GGML_ASSERT(ggml_is_contiguous(src0));
  10028. GGML_ASSERT(ggml_is_contiguous(src1));
  10029. GGML_ASSERT(ggml_is_contiguous(dst));
  10030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10031. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10032. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10033. return;
  10034. }
  10035. // TODO: handle transposed/permuted matrices
  10036. const int ith = params->ith;
  10037. const int nth = params->nth;
  10038. const int nc = src0->ne[0];
  10039. const int nr = ggml_nrows(src0);
  10040. // rows per thread
  10041. const int dr = (nr + nth - 1)/nth;
  10042. // row range for this thread
  10043. const int ir0 = dr*ith;
  10044. const int ir1 = MIN(ir0 + dr, nr);
  10045. for (int i1 = ir0; i1 < ir1; i1++) {
  10046. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10047. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10048. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10049. #ifndef NDEBUG
  10050. for (int i = 0; i < nc; ++i) {
  10051. //printf("p[%d] = %f\n", i, p[i]);
  10052. assert(!isnan(dy[i]));
  10053. assert(!isnan(y[i]));
  10054. }
  10055. #endif
  10056. // Jii = yi - yi*yi
  10057. // Jij = -yi*yj
  10058. // J = diag(y)-y.T*y
  10059. // dx = J * dy
  10060. // dxk = sum_i(Jki * dyi)
  10061. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10062. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10063. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10064. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10065. // dxk = -yk * dot(y, dy) + yk*dyk
  10066. // dxk = yk * (- dot(y, dy) + dyk)
  10067. // dxk = yk * (dyk - dot(y, dy))
  10068. //
  10069. // post-order:
  10070. // dot_y_dy := dot(y, dy)
  10071. // dx := dy
  10072. // dx := dx - dot_y_dy
  10073. // dx := dx * y
  10074. // linear runtime, no additional memory
  10075. float dot_y_dy = 0;
  10076. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10077. ggml_vec_cpy_f32 (nc, dx, dy);
  10078. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10079. ggml_vec_mul_f32 (nc, dx, dx, y);
  10080. #ifndef NDEBUG
  10081. for (int i = 0; i < nc; ++i) {
  10082. assert(!isnan(dx[i]));
  10083. assert(!isinf(dx[i]));
  10084. }
  10085. #endif
  10086. }
  10087. }
  10088. static void ggml_compute_forward_soft_max_back(
  10089. const struct ggml_compute_params * params,
  10090. struct ggml_tensor * dst) {
  10091. const struct ggml_tensor * src0 = dst->src[0];
  10092. switch (src0->type) {
  10093. case GGML_TYPE_F32:
  10094. {
  10095. ggml_compute_forward_soft_max_back_f32(params, dst);
  10096. } break;
  10097. default:
  10098. {
  10099. GGML_ASSERT(false);
  10100. } break;
  10101. }
  10102. }
  10103. // ggml_compute_forward_alibi
  10104. static void ggml_compute_forward_alibi_f32(
  10105. const struct ggml_compute_params * params,
  10106. struct ggml_tensor * dst) {
  10107. const struct ggml_tensor * src0 = dst->src[0];
  10108. assert(params->ith == 0);
  10109. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10110. return;
  10111. }
  10112. //const int n_past = ((int32_t *) dst->op_params)[0];
  10113. const int n_head = ((int32_t *) dst->op_params)[1];
  10114. float max_bias;
  10115. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10116. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10117. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10118. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10119. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10120. const int64_t n = ggml_nrows(src0);
  10121. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10122. const size_t nb0 = src0->nb[0];
  10123. const size_t nb1 = src0->nb[1];
  10124. const size_t nb2 = src0->nb[2];
  10125. //const int nb3 = src0->nb[3];
  10126. GGML_ASSERT(nb0 == sizeof(float));
  10127. GGML_ASSERT(n_head == ne2);
  10128. // add alibi to src0 (KQ_scaled)
  10129. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10130. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10131. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10132. for (int64_t k = 0; k < ne2_ne3; k++) {
  10133. // TODO: k*nb2 or k*nb3
  10134. float m_k;
  10135. if (k < n_heads_log2_floor) {
  10136. m_k = powf(m0, k + 1);
  10137. } else {
  10138. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10139. }
  10140. for (int64_t i = 0; i < ne0; i++) {
  10141. for (int64_t j = 0; j < ne1; j++) {
  10142. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10143. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10144. pdst[0] = i * m_k + src[0];
  10145. }
  10146. }
  10147. }
  10148. }
  10149. static void ggml_compute_forward_alibi_f16(
  10150. const struct ggml_compute_params * params,
  10151. struct ggml_tensor * dst) {
  10152. const struct ggml_tensor * src0 = dst->src[0];
  10153. assert(params->ith == 0);
  10154. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10155. return;
  10156. }
  10157. //const int n_past = ((int32_t *) dst->op_params)[0];
  10158. const int n_head = ((int32_t *) dst->op_params)[1];
  10159. float max_bias;
  10160. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10161. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10162. const int ne1 = src0->ne[1]; // seq_len_without_past
  10163. const int ne2 = src0->ne[2]; // n_head -> this is k
  10164. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10165. const int n = ggml_nrows(src0);
  10166. const int ne2_ne3 = n/ne1; // ne2*ne3
  10167. const int nb0 = src0->nb[0];
  10168. const int nb1 = src0->nb[1];
  10169. const int nb2 = src0->nb[2];
  10170. //const int nb3 = src0->nb[3];
  10171. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10172. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10173. GGML_ASSERT(n_head == ne2);
  10174. // add alibi to src0 (KQ_scaled)
  10175. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10176. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10177. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10178. for (int k = 0; k < ne2_ne3; k++) {
  10179. // TODO: k*nb2 or k*nb3
  10180. float m_k;
  10181. if (k < n_heads_log2_floor) {
  10182. m_k = powf(m0, k + 1);
  10183. } else {
  10184. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10185. }
  10186. for (int i = 0; i < ne0; i++) {
  10187. for (int j = 0; j < ne1; j++) {
  10188. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10189. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10190. // we return F32
  10191. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10192. }
  10193. }
  10194. }
  10195. }
  10196. static void ggml_compute_forward_alibi(
  10197. const struct ggml_compute_params * params,
  10198. struct ggml_tensor * dst) {
  10199. const struct ggml_tensor * src0 = dst->src[0];
  10200. switch (src0->type) {
  10201. case GGML_TYPE_F16:
  10202. {
  10203. ggml_compute_forward_alibi_f16(params, dst);
  10204. } break;
  10205. case GGML_TYPE_F32:
  10206. {
  10207. ggml_compute_forward_alibi_f32(params, dst);
  10208. } break;
  10209. case GGML_TYPE_Q4_0:
  10210. case GGML_TYPE_Q4_1:
  10211. case GGML_TYPE_Q5_0:
  10212. case GGML_TYPE_Q5_1:
  10213. case GGML_TYPE_Q8_0:
  10214. case GGML_TYPE_Q8_1:
  10215. case GGML_TYPE_Q2_K:
  10216. case GGML_TYPE_Q3_K:
  10217. case GGML_TYPE_Q4_K:
  10218. case GGML_TYPE_Q5_K:
  10219. case GGML_TYPE_Q6_K:
  10220. case GGML_TYPE_IQ2_XXS:
  10221. case GGML_TYPE_IQ2_XS:
  10222. case GGML_TYPE_IQ3_XXS:
  10223. case GGML_TYPE_IQ1_S:
  10224. case GGML_TYPE_IQ1_M:
  10225. case GGML_TYPE_IQ4_NL:
  10226. case GGML_TYPE_IQ4_XS:
  10227. case GGML_TYPE_IQ3_S:
  10228. case GGML_TYPE_IQ2_S:
  10229. case GGML_TYPE_Q8_K:
  10230. case GGML_TYPE_I8:
  10231. case GGML_TYPE_I16:
  10232. case GGML_TYPE_I32:
  10233. case GGML_TYPE_I64:
  10234. case GGML_TYPE_F64:
  10235. case GGML_TYPE_COUNT:
  10236. {
  10237. GGML_ASSERT(false);
  10238. } break;
  10239. }
  10240. }
  10241. // ggml_compute_forward_clamp
  10242. static void ggml_compute_forward_clamp_f32(
  10243. const struct ggml_compute_params * params,
  10244. struct ggml_tensor * dst) {
  10245. const struct ggml_tensor * src0 = dst->src[0];
  10246. assert(params->ith == 0);
  10247. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10248. return;
  10249. }
  10250. float min;
  10251. float max;
  10252. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10253. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10254. const int ith = params->ith;
  10255. const int nth = params->nth;
  10256. const int n = ggml_nrows(src0);
  10257. const int nc = src0->ne[0];
  10258. const size_t nb00 = src0->nb[0];
  10259. const size_t nb01 = src0->nb[1];
  10260. const size_t nb0 = dst->nb[0];
  10261. const size_t nb1 = dst->nb[1];
  10262. GGML_ASSERT( nb0 == sizeof(float));
  10263. GGML_ASSERT(nb00 == sizeof(float));
  10264. for (int j = ith; j < n; j += nth) {
  10265. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10266. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10267. for (int i = 0; i < nc; i++) {
  10268. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10269. }
  10270. }
  10271. }
  10272. static void ggml_compute_forward_clamp(
  10273. const struct ggml_compute_params * params,
  10274. struct ggml_tensor * dst) {
  10275. const struct ggml_tensor * src0 = dst->src[0];
  10276. switch (src0->type) {
  10277. case GGML_TYPE_F32:
  10278. {
  10279. ggml_compute_forward_clamp_f32(params, dst);
  10280. } break;
  10281. case GGML_TYPE_F16:
  10282. case GGML_TYPE_Q4_0:
  10283. case GGML_TYPE_Q4_1:
  10284. case GGML_TYPE_Q5_0:
  10285. case GGML_TYPE_Q5_1:
  10286. case GGML_TYPE_Q8_0:
  10287. case GGML_TYPE_Q8_1:
  10288. case GGML_TYPE_Q2_K:
  10289. case GGML_TYPE_Q3_K:
  10290. case GGML_TYPE_Q4_K:
  10291. case GGML_TYPE_Q5_K:
  10292. case GGML_TYPE_Q6_K:
  10293. case GGML_TYPE_IQ2_XXS:
  10294. case GGML_TYPE_IQ2_XS:
  10295. case GGML_TYPE_IQ3_XXS:
  10296. case GGML_TYPE_IQ1_S:
  10297. case GGML_TYPE_IQ1_M:
  10298. case GGML_TYPE_IQ4_NL:
  10299. case GGML_TYPE_IQ4_XS:
  10300. case GGML_TYPE_IQ3_S:
  10301. case GGML_TYPE_IQ2_S:
  10302. case GGML_TYPE_Q8_K:
  10303. case GGML_TYPE_I8:
  10304. case GGML_TYPE_I16:
  10305. case GGML_TYPE_I32:
  10306. case GGML_TYPE_I64:
  10307. case GGML_TYPE_F64:
  10308. case GGML_TYPE_COUNT:
  10309. {
  10310. GGML_ASSERT(false);
  10311. } break;
  10312. }
  10313. }
  10314. // ggml_compute_forward_rope
  10315. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10316. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10317. return 1 - MIN(1, MAX(0, y));
  10318. }
  10319. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10320. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10321. static void rope_yarn(
  10322. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10323. float * cos_theta, float * sin_theta
  10324. ) {
  10325. // Get n-d rotational scaling corrected for extrapolation
  10326. float theta_interp = freq_scale * theta_extrap;
  10327. float theta = theta_interp;
  10328. if (ext_factor != 0.0f) {
  10329. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10330. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10331. // Get n-d magnitude scaling corrected for interpolation
  10332. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10333. }
  10334. *cos_theta = cosf(theta) * mscale;
  10335. *sin_theta = sinf(theta) * mscale;
  10336. }
  10337. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10338. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10339. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10340. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10341. }
  10342. static void ggml_rope_cache_init(
  10343. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10344. float * cache, float sin_sign, float theta_scale
  10345. ) {
  10346. float theta = theta_base;
  10347. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10348. rope_yarn(
  10349. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10350. );
  10351. cache[i0 + 1] *= sin_sign;
  10352. theta *= theta_scale;
  10353. }
  10354. }
  10355. GGML_CALL void ggml_rope_yarn_corr_dims(
  10356. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10357. ) {
  10358. // start and end correction dims
  10359. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10360. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10361. dims[0] = MAX(0, start);
  10362. dims[1] = MIN(n_dims - 1, end);
  10363. }
  10364. static void ggml_compute_forward_rope_f32(
  10365. const struct ggml_compute_params * params,
  10366. struct ggml_tensor * dst,
  10367. const bool forward) {
  10368. const struct ggml_tensor * src0 = dst->src[0];
  10369. const struct ggml_tensor * src1 = dst->src[1];
  10370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10371. return;
  10372. }
  10373. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10374. // these two only relevant for xPos RoPE:
  10375. float xpos_base;
  10376. bool xpos_down;
  10377. //const int n_past = ((int32_t *) dst->op_params)[0];
  10378. const int n_dims = ((int32_t *) dst->op_params)[1];
  10379. const int mode = ((int32_t *) dst->op_params)[2];
  10380. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10381. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10382. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10383. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10384. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10385. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10386. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10387. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10388. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10389. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10390. GGML_TENSOR_UNARY_OP_LOCALS
  10391. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10392. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10393. GGML_ASSERT(nb00 == sizeof(float));
  10394. const int ith = params->ith;
  10395. const int nth = params->nth;
  10396. const int nr = ggml_nrows(dst);
  10397. GGML_ASSERT(n_dims <= ne0);
  10398. GGML_ASSERT(n_dims % 2 == 0);
  10399. // rows per thread
  10400. const int dr = (nr + nth - 1)/nth;
  10401. // row range for this thread
  10402. const int ir0 = dr*ith;
  10403. const int ir1 = MIN(ir0 + dr, nr);
  10404. // row index used to determine which thread to use
  10405. int ir = 0;
  10406. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10407. const float inv_ndims = -1.f/n_dims;
  10408. float corr_dims[2];
  10409. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10410. const bool is_neox = mode & 2;
  10411. const bool is_glm = mode & 4;
  10412. // backward process uses inverse rotation by cos and sin.
  10413. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10414. // this essentially just switches the sign of sin.
  10415. const float sin_sign = forward ? 1.0f : -1.0f;
  10416. const int32_t * pos = (const int32_t *) src1->data;
  10417. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10418. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10419. const int64_t p = pos[i2];
  10420. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10421. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10422. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10423. }
  10424. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10425. if (ir++ < ir0) continue;
  10426. if (ir > ir1) break;
  10427. float theta_base = (float)p;
  10428. if (is_glm) {
  10429. theta_base = MIN(p, n_ctx - 2);
  10430. float block_theta = MAX(p - (n_ctx - 2), 0);
  10431. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10432. const float cos_theta = cosf(theta_base);
  10433. const float sin_theta = sinf(theta_base) * sin_sign;
  10434. const float cos_block_theta = cosf(block_theta);
  10435. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10436. theta_base *= theta_scale;
  10437. block_theta *= theta_scale;
  10438. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10439. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10440. const float x0 = src[0];
  10441. const float x1 = src[n_dims/2];
  10442. const float x2 = src[n_dims];
  10443. const float x3 = src[n_dims/2*3];
  10444. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10445. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10446. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10447. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10448. }
  10449. } else if (!is_neox) {
  10450. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10451. const float cos_theta = cache[i0 + 0];
  10452. const float sin_theta = cache[i0 + 1];
  10453. // zeta scaling for xPos only:
  10454. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10455. if (xpos_down) zeta = 1.0f / zeta;
  10456. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10457. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10458. const float x0 = src[0];
  10459. const float x1 = src[1];
  10460. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10461. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10462. }
  10463. } else {
  10464. // TODO: this might be wrong for ne0 != n_dims - need double check
  10465. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10466. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10467. theta_base *= freq_scale;
  10468. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10469. if (ic < n_dims) {
  10470. const int64_t ib = 0;
  10471. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10472. float cur_rot = inv_ndims * ic - ib;
  10473. float cos_theta, sin_theta;
  10474. rope_yarn(
  10475. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10476. &cos_theta, &sin_theta
  10477. );
  10478. sin_theta *= sin_sign;
  10479. theta_base *= theta_scale;
  10480. const int64_t i0 = ib*n_dims + ic/2;
  10481. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10482. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10483. const float x0 = src[0];
  10484. const float x1 = src[n_dims/2];
  10485. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10486. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10487. } else {
  10488. const int64_t i0 = ic;
  10489. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10490. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10491. dst_data[0] = src[0];
  10492. dst_data[1] = src[1];
  10493. }
  10494. }
  10495. }
  10496. }
  10497. }
  10498. }
  10499. }
  10500. static void ggml_compute_forward_rope_f16(
  10501. const struct ggml_compute_params * params,
  10502. struct ggml_tensor * dst,
  10503. const bool forward) {
  10504. const struct ggml_tensor * src0 = dst->src[0];
  10505. const struct ggml_tensor * src1 = dst->src[1];
  10506. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10507. return;
  10508. }
  10509. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10510. //const int n_past = ((int32_t *) dst->op_params)[0];
  10511. const int n_dims = ((int32_t *) dst->op_params)[1];
  10512. const int mode = ((int32_t *) dst->op_params)[2];
  10513. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10514. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10515. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10516. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10517. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10518. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10519. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10520. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10521. GGML_TENSOR_UNARY_OP_LOCALS
  10522. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10523. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10524. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10525. const int ith = params->ith;
  10526. const int nth = params->nth;
  10527. const int nr = ggml_nrows(dst);
  10528. GGML_ASSERT(n_dims <= ne0);
  10529. GGML_ASSERT(n_dims % 2 == 0);
  10530. // rows per thread
  10531. const int dr = (nr + nth - 1)/nth;
  10532. // row range for this thread
  10533. const int ir0 = dr*ith;
  10534. const int ir1 = MIN(ir0 + dr, nr);
  10535. // row index used to determine which thread to use
  10536. int ir = 0;
  10537. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10538. const float inv_ndims = -1.f/n_dims;
  10539. float corr_dims[2];
  10540. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10541. const bool is_neox = mode & 2;
  10542. const bool is_glm = mode & 4;
  10543. // backward process uses inverse rotation by cos and sin.
  10544. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10545. // this essentially just switches the sign of sin.
  10546. const float sin_sign = forward ? 1.0f : -1.0f;
  10547. const int32_t * pos = (const int32_t *) src1->data;
  10548. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10549. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10550. const int64_t p = pos[i2];
  10551. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10552. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10553. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10554. }
  10555. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10556. if (ir++ < ir0) continue;
  10557. if (ir > ir1) break;
  10558. float theta_base = (float)p;
  10559. if (is_glm) {
  10560. theta_base = MIN(p, n_ctx - 2);
  10561. float block_theta = MAX(p - (n_ctx - 2), 0);
  10562. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10563. const float cos_theta = cosf(theta_base);
  10564. const float sin_theta = sinf(theta_base) * sin_sign;
  10565. const float cos_block_theta = cosf(block_theta);
  10566. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10567. theta_base *= theta_scale;
  10568. block_theta *= theta_scale;
  10569. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10570. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10571. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10572. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10573. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10574. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10575. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10576. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10577. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10578. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10579. }
  10580. } else if (!is_neox) {
  10581. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10582. const float cos_theta = cache[i0 + 0];
  10583. const float sin_theta = cache[i0 + 1];
  10584. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10585. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10586. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10587. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10588. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10589. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10590. }
  10591. } else {
  10592. // TODO: this might be wrong for ne0 != n_dims - need double check
  10593. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10594. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10595. theta_base *= freq_scale;
  10596. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10597. if (ic < n_dims) {
  10598. const int64_t ib = 0;
  10599. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10600. float cur_rot = inv_ndims * ic - ib;
  10601. float cos_theta, sin_theta;
  10602. rope_yarn(
  10603. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10604. &cos_theta, &sin_theta
  10605. );
  10606. sin_theta *= sin_sign;
  10607. theta_base *= theta_scale;
  10608. const int64_t i0 = ib*n_dims + ic/2;
  10609. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10610. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10611. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10612. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10613. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10614. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10615. } else {
  10616. const int64_t i0 = ic;
  10617. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10618. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10619. dst_data[0] = src[0];
  10620. dst_data[1] = src[1];
  10621. }
  10622. }
  10623. }
  10624. }
  10625. }
  10626. }
  10627. }
  10628. static void ggml_compute_forward_rope(
  10629. const struct ggml_compute_params * params,
  10630. struct ggml_tensor * dst) {
  10631. const struct ggml_tensor * src0 = dst->src[0];
  10632. switch (src0->type) {
  10633. case GGML_TYPE_F16:
  10634. {
  10635. ggml_compute_forward_rope_f16(params, dst, true);
  10636. } break;
  10637. case GGML_TYPE_F32:
  10638. {
  10639. ggml_compute_forward_rope_f32(params, dst, true);
  10640. } break;
  10641. default:
  10642. {
  10643. GGML_ASSERT(false);
  10644. } break;
  10645. }
  10646. }
  10647. // ggml_compute_forward_rope_back
  10648. static void ggml_compute_forward_rope_back(
  10649. const struct ggml_compute_params * params,
  10650. struct ggml_tensor * dst) {
  10651. const struct ggml_tensor * src0 = dst->src[0];
  10652. switch (src0->type) {
  10653. case GGML_TYPE_F16:
  10654. {
  10655. ggml_compute_forward_rope_f16(params, dst, false);
  10656. } break;
  10657. case GGML_TYPE_F32:
  10658. {
  10659. ggml_compute_forward_rope_f32(params, dst, false);
  10660. } break;
  10661. default:
  10662. {
  10663. GGML_ASSERT(false);
  10664. } break;
  10665. }
  10666. }
  10667. // ggml_compute_forward_conv_transpose_1d
  10668. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10669. const struct ggml_compute_params * params,
  10670. struct ggml_tensor * dst) {
  10671. const struct ggml_tensor * src0 = dst->src[0];
  10672. const struct ggml_tensor * src1 = dst->src[1];
  10673. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10674. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10675. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10676. int64_t t0 = ggml_perf_time_us();
  10677. UNUSED(t0);
  10678. GGML_TENSOR_BINARY_OP_LOCALS
  10679. const int ith = params->ith;
  10680. const int nth = params->nth;
  10681. const int nk = ne00*ne01*ne02;
  10682. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10683. GGML_ASSERT(nb10 == sizeof(float));
  10684. if (params->type == GGML_TASK_TYPE_INIT) {
  10685. if (ith != 0) {
  10686. return;
  10687. }
  10688. memset(params->wdata, 0, params->wsize);
  10689. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10690. {
  10691. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10692. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10693. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10694. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10695. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10696. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10697. dst_data[i00*ne02 + i02] = src[i00];
  10698. }
  10699. }
  10700. }
  10701. }
  10702. // permute source data (src1) from (L x Cin) to (Cin x L)
  10703. {
  10704. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10705. ggml_fp16_t * dst_data = wdata;
  10706. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10707. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10708. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10709. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10710. }
  10711. }
  10712. }
  10713. // need to zero dst since we are accumulating into it
  10714. memset(dst->data, 0, ggml_nbytes(dst));
  10715. return;
  10716. }
  10717. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10718. return;
  10719. }
  10720. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10721. // total rows in dst
  10722. const int nr = ne1;
  10723. // rows per thread
  10724. const int dr = (nr + nth - 1)/nth;
  10725. // row range for this thread
  10726. const int ir0 = dr*ith;
  10727. const int ir1 = MIN(ir0 + dr, nr);
  10728. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10729. ggml_fp16_t * const wdata_src = wdata + nk;
  10730. for (int i1 = ir0; i1 < ir1; i1++) {
  10731. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10732. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10733. for (int i10 = 0; i10 < ne10; i10++) {
  10734. const int i1n = i10*ne11;
  10735. for (int i00 = 0; i00 < ne00; i00++) {
  10736. float v = 0;
  10737. ggml_vec_dot_f16(ne02, &v, 0,
  10738. (ggml_fp16_t *) wdata_src + i1n, 0,
  10739. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10740. dst_data[i10*s0 + i00] += v;
  10741. }
  10742. }
  10743. }
  10744. }
  10745. static void ggml_compute_forward_conv_transpose_1d_f32(
  10746. const struct ggml_compute_params * params,
  10747. struct ggml_tensor * dst) {
  10748. const struct ggml_tensor * src0 = dst->src[0];
  10749. const struct ggml_tensor * src1 = dst->src[1];
  10750. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10751. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10752. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10753. int64_t t0 = ggml_perf_time_us();
  10754. UNUSED(t0);
  10755. GGML_TENSOR_BINARY_OP_LOCALS
  10756. const int ith = params->ith;
  10757. const int nth = params->nth;
  10758. const int nk = ne00*ne01*ne02;
  10759. GGML_ASSERT(nb00 == sizeof(float));
  10760. GGML_ASSERT(nb10 == sizeof(float));
  10761. if (params->type == GGML_TASK_TYPE_INIT) {
  10762. if (ith != 0) {
  10763. return;
  10764. }
  10765. memset(params->wdata, 0, params->wsize);
  10766. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10767. {
  10768. float * const wdata = (float *) params->wdata + 0;
  10769. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10770. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10771. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10772. float * dst_data = wdata + i01*ne00*ne02;
  10773. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10774. dst_data[i00*ne02 + i02] = src[i00];
  10775. }
  10776. }
  10777. }
  10778. }
  10779. // prepare source data (src1)
  10780. {
  10781. float * const wdata = (float *) params->wdata + nk;
  10782. float * dst_data = wdata;
  10783. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10784. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10785. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10786. dst_data[i10*ne11 + i11] = src[i10];
  10787. }
  10788. }
  10789. }
  10790. // need to zero dst since we are accumulating into it
  10791. memset(dst->data, 0, ggml_nbytes(dst));
  10792. return;
  10793. }
  10794. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10795. return;
  10796. }
  10797. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10798. // total rows in dst
  10799. const int nr = ne1;
  10800. // rows per thread
  10801. const int dr = (nr + nth - 1)/nth;
  10802. // row range for this thread
  10803. const int ir0 = dr*ith;
  10804. const int ir1 = MIN(ir0 + dr, nr);
  10805. float * const wdata = (float *) params->wdata + 0;
  10806. float * const wdata_src = wdata + nk;
  10807. for (int i1 = ir0; i1 < ir1; i1++) {
  10808. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10809. float * wdata_kernel = wdata + i1*ne02*ne00;
  10810. for (int i10 = 0; i10 < ne10; i10++) {
  10811. const int i1n = i10*ne11;
  10812. for (int i00 = 0; i00 < ne00; i00++) {
  10813. float v = 0;
  10814. ggml_vec_dot_f32(ne02, &v, 0,
  10815. wdata_src + i1n, 0,
  10816. wdata_kernel + i00*ne02, 0, 1);
  10817. dst_data[i10*s0 + i00] += v;
  10818. }
  10819. }
  10820. }
  10821. }
  10822. static void ggml_compute_forward_conv_transpose_1d(
  10823. const struct ggml_compute_params * params,
  10824. struct ggml_tensor * dst) {
  10825. const struct ggml_tensor * src0 = dst->src[0];
  10826. switch (src0->type) {
  10827. case GGML_TYPE_F16:
  10828. {
  10829. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10830. } break;
  10831. case GGML_TYPE_F32:
  10832. {
  10833. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10834. } break;
  10835. default:
  10836. {
  10837. GGML_ASSERT(false);
  10838. } break;
  10839. }
  10840. }
  10841. // src0: kernel [OC, IC, KH, KW]
  10842. // src1: image [N, IC, IH, IW]
  10843. // dst: result [N, OH, OW, IC*KH*KW]
  10844. static void ggml_compute_forward_im2col_f32(
  10845. const struct ggml_compute_params * params,
  10846. struct ggml_tensor * dst) {
  10847. const struct ggml_tensor * src0 = dst->src[0];
  10848. const struct ggml_tensor * src1 = dst->src[1];
  10849. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10850. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10851. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10852. int64_t t0 = ggml_perf_time_us();
  10853. UNUSED(t0);
  10854. GGML_TENSOR_BINARY_OP_LOCALS;
  10855. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10856. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10857. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10858. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10859. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10860. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10861. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10862. const int ith = params->ith;
  10863. const int nth = params->nth;
  10864. const int64_t N = is_2D ? ne13 : ne12;
  10865. const int64_t IC = is_2D ? ne12 : ne11;
  10866. const int64_t IH = is_2D ? ne11 : 1;
  10867. const int64_t IW = ne10;
  10868. const int64_t KH = is_2D ? ne01 : 1;
  10869. const int64_t KW = ne00;
  10870. const int64_t OH = is_2D ? ne2 : 1;
  10871. const int64_t OW = ne1;
  10872. int ofs0 = is_2D ? nb13 : nb12;
  10873. int ofs1 = is_2D ? nb12 : nb11;
  10874. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10875. GGML_ASSERT(nb10 == sizeof(float));
  10876. if (params->type == GGML_TASK_TYPE_INIT) {
  10877. return;
  10878. }
  10879. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10880. return;
  10881. }
  10882. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10883. {
  10884. float * const wdata = (float *) dst->data;
  10885. for (int64_t in = 0; in < N; in++) {
  10886. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10887. for (int64_t iow = 0; iow < OW; iow++) {
  10888. for (int64_t iic = ith; iic < IC; iic += nth) {
  10889. // micro kernel
  10890. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10891. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10892. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10893. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10894. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10895. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10896. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10897. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10898. } else {
  10899. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10900. }
  10901. }
  10902. }
  10903. }
  10904. }
  10905. }
  10906. }
  10907. }
  10908. }
  10909. // src0: kernel [OC, IC, KH, KW]
  10910. // src1: image [N, IC, IH, IW]
  10911. // dst: result [N, OH, OW, IC*KH*KW]
  10912. static void ggml_compute_forward_im2col_f16(
  10913. const struct ggml_compute_params * params,
  10914. struct ggml_tensor * dst) {
  10915. const struct ggml_tensor * src0 = dst->src[0];
  10916. const struct ggml_tensor * src1 = dst->src[1];
  10917. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10918. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10919. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10920. int64_t t0 = ggml_perf_time_us();
  10921. UNUSED(t0);
  10922. GGML_TENSOR_BINARY_OP_LOCALS;
  10923. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10924. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10925. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10926. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10927. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10928. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10929. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10930. const int ith = params->ith;
  10931. const int nth = params->nth;
  10932. const int64_t N = is_2D ? ne13 : ne12;
  10933. const int64_t IC = is_2D ? ne12 : ne11;
  10934. const int64_t IH = is_2D ? ne11 : 1;
  10935. const int64_t IW = ne10;
  10936. const int64_t KH = is_2D ? ne01 : 1;
  10937. const int64_t KW = ne00;
  10938. const int64_t OH = is_2D ? ne2 : 1;
  10939. const int64_t OW = ne1;
  10940. int ofs0 = is_2D ? nb13 : nb12;
  10941. int ofs1 = is_2D ? nb12 : nb11;
  10942. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10943. GGML_ASSERT(nb10 == sizeof(float));
  10944. if (params->type == GGML_TASK_TYPE_INIT) {
  10945. return;
  10946. }
  10947. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10948. return;
  10949. }
  10950. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10951. {
  10952. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10953. for (int64_t in = 0; in < N; in++) {
  10954. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10955. for (int64_t iow = 0; iow < OW; iow++) {
  10956. for (int64_t iic = ith; iic < IC; iic += nth) {
  10957. // micro kernel
  10958. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10959. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10960. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10961. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10962. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10963. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10964. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10965. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10966. } else {
  10967. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10968. }
  10969. }
  10970. }
  10971. }
  10972. }
  10973. }
  10974. }
  10975. }
  10976. }
  10977. static void ggml_compute_forward_im2col(
  10978. const struct ggml_compute_params * params,
  10979. struct ggml_tensor * dst) {
  10980. switch (dst->type) {
  10981. case GGML_TYPE_F16:
  10982. {
  10983. ggml_compute_forward_im2col_f16(params, dst);
  10984. } break;
  10985. case GGML_TYPE_F32:
  10986. {
  10987. ggml_compute_forward_im2col_f32(params, dst);
  10988. } break;
  10989. default:
  10990. {
  10991. GGML_ASSERT(false);
  10992. } break;
  10993. }
  10994. }
  10995. // ggml_compute_forward_conv_transpose_2d
  10996. static void ggml_compute_forward_conv_transpose_2d(
  10997. const struct ggml_compute_params * params,
  10998. struct ggml_tensor * dst) {
  10999. const struct ggml_tensor * src0 = dst->src[0];
  11000. const struct ggml_tensor * src1 = dst->src[1];
  11001. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11002. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11003. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11004. int64_t t0 = ggml_perf_time_us();
  11005. UNUSED(t0);
  11006. GGML_TENSOR_BINARY_OP_LOCALS
  11007. const int ith = params->ith;
  11008. const int nth = params->nth;
  11009. const int nk = ne00*ne01*ne02*ne03;
  11010. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11011. GGML_ASSERT(nb10 == sizeof(float));
  11012. if (params->type == GGML_TASK_TYPE_INIT) {
  11013. if (ith != 0) {
  11014. return;
  11015. }
  11016. memset(params->wdata, 0, params->wsize);
  11017. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11018. {
  11019. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11020. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11021. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11022. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11023. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11024. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11025. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11026. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11027. }
  11028. }
  11029. }
  11030. }
  11031. }
  11032. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11033. {
  11034. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11035. for (int i12 = 0; i12 < ne12; i12++) {
  11036. for (int i11 = 0; i11 < ne11; i11++) {
  11037. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11038. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11039. for (int i10 = 0; i10 < ne10; i10++) {
  11040. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11041. }
  11042. }
  11043. }
  11044. }
  11045. memset(dst->data, 0, ggml_nbytes(dst));
  11046. return;
  11047. }
  11048. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11049. return;
  11050. }
  11051. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11052. // total patches in dst
  11053. const int np = ne2;
  11054. // patches per thread
  11055. const int dp = (np + nth - 1)/nth;
  11056. // patch range for this thread
  11057. const int ip0 = dp*ith;
  11058. const int ip1 = MIN(ip0 + dp, np);
  11059. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11060. ggml_fp16_t * const wdata_src = wdata + nk;
  11061. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11062. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11063. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11064. for (int i11 = 0; i11 < ne11; i11++) {
  11065. for (int i10 = 0; i10 < ne10; i10++) {
  11066. const int i1n = i11*ne10*ne12 + i10*ne12;
  11067. for (int i01 = 0; i01 < ne01; i01++) {
  11068. for (int i00 = 0; i00 < ne00; i00++) {
  11069. float v = 0;
  11070. ggml_vec_dot_f16(ne03, &v, 0,
  11071. wdata_src + i1n, 0,
  11072. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11073. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11074. }
  11075. }
  11076. }
  11077. }
  11078. }
  11079. }
  11080. // ggml_compute_forward_pool_1d_sk_p0
  11081. static void ggml_compute_forward_pool_1d_sk_p0(
  11082. const struct ggml_compute_params * params,
  11083. const enum ggml_op_pool op,
  11084. const int k,
  11085. struct ggml_tensor * dst) {
  11086. const struct ggml_tensor * src = dst->src[0];
  11087. assert(src->type == GGML_TYPE_F32);
  11088. assert(params->ith == 0);
  11089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11090. return;
  11091. }
  11092. const char * cdata = (const char *)src->data;
  11093. const char * const data_end = cdata + ggml_nbytes(src);
  11094. float * drow = (float *)dst->data;
  11095. const int64_t rs = dst->ne[0];
  11096. while (cdata < data_end) {
  11097. const float * const srow = (const float *)cdata;
  11098. int j = 0;
  11099. for (int64_t i = 0; i < rs; ++i) {
  11100. switch (op) {
  11101. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11102. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11103. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11104. }
  11105. for (int ki = 0; ki < k; ++ki) {
  11106. switch (op) {
  11107. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11108. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11109. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11110. }
  11111. ++j;
  11112. }
  11113. switch (op) {
  11114. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11115. case GGML_OP_POOL_MAX: break;
  11116. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11117. }
  11118. }
  11119. cdata += src->nb[1];
  11120. drow += rs;
  11121. }
  11122. }
  11123. // ggml_compute_forward_pool_1d
  11124. static void ggml_compute_forward_pool_1d(
  11125. const struct ggml_compute_params * params,
  11126. struct ggml_tensor * dst) {
  11127. const int32_t * opts = (const int32_t *)dst->op_params;
  11128. enum ggml_op_pool op = opts[0];
  11129. const int k0 = opts[1];
  11130. const int s0 = opts[2];
  11131. const int p0 = opts[3];
  11132. GGML_ASSERT(p0 == 0); // padding not supported
  11133. GGML_ASSERT(k0 == s0); // only s = k supported
  11134. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11135. }
  11136. // ggml_compute_forward_pool_2d
  11137. static void ggml_compute_forward_pool_2d(
  11138. const struct ggml_compute_params * params,
  11139. struct ggml_tensor * dst) {
  11140. const struct ggml_tensor * src = dst->src[0];
  11141. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11142. GGML_ASSERT(params->ith == 0);
  11143. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11144. return;
  11145. }
  11146. const int32_t * opts = (const int32_t *)dst->op_params;
  11147. enum ggml_op_pool op = opts[0];
  11148. const int k0 = opts[1];
  11149. const int k1 = opts[2];
  11150. const int s0 = opts[3];
  11151. const int s1 = opts[4];
  11152. const int p0 = opts[5];
  11153. const int p1 = opts[6];
  11154. const char * cdata = (const char*)src->data;
  11155. const char * const data_end = cdata + ggml_nbytes(src);
  11156. const int64_t px = dst->ne[0];
  11157. const int64_t py = dst->ne[1];
  11158. const int64_t pa = px * py;
  11159. float * dplane = (float *)dst->data;
  11160. const int ka = k0 * k1;
  11161. const int offset0 = -p0;
  11162. const int offset1 = -p1;
  11163. while (cdata < data_end) {
  11164. for (int oy = 0; oy < py; ++oy) {
  11165. float * const drow = dplane + oy * px;
  11166. for (int ox = 0; ox < px; ++ox) {
  11167. float * const out = drow + ox;
  11168. switch (op) {
  11169. case GGML_OP_POOL_AVG: *out = 0; break;
  11170. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11171. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11172. }
  11173. const int ix = offset0 + ox * s0;
  11174. const int iy = offset1 + oy * s1;
  11175. for (int ky = 0; ky < k1; ++ky) {
  11176. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11177. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11178. for (int kx = 0; kx < k0; ++kx) {
  11179. int j = ix + kx;
  11180. if (j < 0 || j >= src->ne[0]) continue;
  11181. switch (op) {
  11182. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11183. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11184. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11185. }
  11186. }
  11187. }
  11188. switch (op) {
  11189. case GGML_OP_POOL_AVG: *out /= ka; break;
  11190. case GGML_OP_POOL_MAX: break;
  11191. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11192. }
  11193. }
  11194. }
  11195. cdata += src->nb[2];
  11196. dplane += pa;
  11197. }
  11198. }
  11199. // ggml_compute_forward_upscale
  11200. static void ggml_compute_forward_upscale_f32(
  11201. const struct ggml_compute_params * params,
  11202. struct ggml_tensor * dst) {
  11203. const struct ggml_tensor * src0 = dst->src[0];
  11204. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11205. return;
  11206. }
  11207. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11208. const int ith = params->ith;
  11209. const int nth = params->nth;
  11210. GGML_TENSOR_UNARY_OP_LOCALS
  11211. const int scale_factor = dst->op_params[0];
  11212. // TODO: optimize
  11213. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11214. const int64_t i03 = i3;
  11215. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11216. const int64_t i02 = i2;
  11217. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11218. const int64_t i01 = i1 / scale_factor;
  11219. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11220. const int64_t i00 = i0 / scale_factor;
  11221. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11222. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11223. *y = *x;
  11224. }
  11225. }
  11226. }
  11227. }
  11228. }
  11229. static void ggml_compute_forward_upscale(
  11230. const struct ggml_compute_params * params,
  11231. struct ggml_tensor * dst) {
  11232. const struct ggml_tensor * src0 = dst->src[0];
  11233. switch (src0->type) {
  11234. case GGML_TYPE_F32:
  11235. {
  11236. ggml_compute_forward_upscale_f32(params, dst);
  11237. } break;
  11238. default:
  11239. {
  11240. GGML_ASSERT(false);
  11241. } break;
  11242. }
  11243. }
  11244. // ggml_compute_forward_pad
  11245. static void ggml_compute_forward_pad_f32(
  11246. const struct ggml_compute_params * params,
  11247. struct ggml_tensor * dst) {
  11248. const struct ggml_tensor * src0 = dst->src[0];
  11249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11250. return;
  11251. }
  11252. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11253. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11254. const int ith = params->ith;
  11255. const int nth = params->nth;
  11256. GGML_TENSOR_UNARY_OP_LOCALS
  11257. float * dst_ptr = (float *) dst->data;
  11258. // TODO: optimize
  11259. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11260. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11261. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11262. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11263. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11264. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11265. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11266. dst_ptr[dst_idx] = *src_ptr;
  11267. } else {
  11268. dst_ptr[dst_idx] = 0;
  11269. }
  11270. }
  11271. }
  11272. }
  11273. }
  11274. }
  11275. static void ggml_compute_forward_pad(
  11276. const struct ggml_compute_params * params,
  11277. struct ggml_tensor * dst) {
  11278. const struct ggml_tensor * src0 = dst->src[0];
  11279. switch (src0->type) {
  11280. case GGML_TYPE_F32:
  11281. {
  11282. ggml_compute_forward_pad_f32(params, dst);
  11283. } break;
  11284. default:
  11285. {
  11286. GGML_ASSERT(false);
  11287. } break;
  11288. }
  11289. }
  11290. // ggml_compute_forward_arange
  11291. static void ggml_compute_forward_arange_f32(
  11292. const struct ggml_compute_params * params,
  11293. struct ggml_tensor * dst) {
  11294. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11295. return;
  11296. }
  11297. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11298. const int ith = params->ith;
  11299. const int nth = params->nth;
  11300. const float start = ggml_get_op_params_f32(dst, 0);
  11301. const float stop = ggml_get_op_params_f32(dst, 1);
  11302. const float step = ggml_get_op_params_f32(dst, 2);
  11303. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11304. GGML_ASSERT(ggml_nelements(dst) == steps);
  11305. for (int64_t i = ith; i < steps; i+= nth) {
  11306. float value = start + step * i;
  11307. ((float *)dst->data)[i] = value;
  11308. }
  11309. }
  11310. static void ggml_compute_forward_arange(
  11311. const struct ggml_compute_params * params,
  11312. struct ggml_tensor * dst) {
  11313. switch (dst->type) {
  11314. case GGML_TYPE_F32:
  11315. {
  11316. ggml_compute_forward_arange_f32(params, dst);
  11317. } break;
  11318. default:
  11319. {
  11320. GGML_ASSERT(false);
  11321. } break;
  11322. }
  11323. }
  11324. static void ggml_compute_forward_timestep_embedding_f32(
  11325. const struct ggml_compute_params * params,
  11326. struct ggml_tensor * dst) {
  11327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11328. return;
  11329. }
  11330. const struct ggml_tensor * src0 = dst->src[0];
  11331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11332. const int ith = params->ith;
  11333. const int nth = params->nth;
  11334. GGML_TENSOR_UNARY_OP_LOCALS
  11335. const int dim = ggml_get_op_params_i32(dst, 0);
  11336. const int max_period = ggml_get_op_params_i32(dst, 1);
  11337. int half = dim / 2;
  11338. for (int64_t i = 0; i < ne00; i++) {
  11339. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11340. for (int64_t j = ith; j < half; j += nth) {
  11341. float timestep = ((float *)src0->data)[i];
  11342. float freq = (float)expf(-logf(max_period) * j / half);
  11343. float arg = timestep * freq;
  11344. embed_data[j] = cosf(arg);
  11345. embed_data[j + half] = sinf(arg);
  11346. }
  11347. if (dim % 2 != 0 && ith == 0) {
  11348. embed_data[dim] = 0.f;
  11349. }
  11350. }
  11351. }
  11352. static void ggml_compute_forward_timestep_embedding(
  11353. const struct ggml_compute_params * params,
  11354. struct ggml_tensor * dst) {
  11355. const struct ggml_tensor * src0 = dst->src[0];
  11356. switch (src0->type) {
  11357. case GGML_TYPE_F32:
  11358. {
  11359. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11360. } break;
  11361. default:
  11362. {
  11363. GGML_ASSERT(false);
  11364. } break;
  11365. }
  11366. }
  11367. // ggml_compute_forward_argsort
  11368. static void ggml_compute_forward_argsort_f32(
  11369. const struct ggml_compute_params * params,
  11370. struct ggml_tensor * dst) {
  11371. const struct ggml_tensor * src0 = dst->src[0];
  11372. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11373. return;
  11374. }
  11375. GGML_TENSOR_UNARY_OP_LOCALS
  11376. GGML_ASSERT(nb0 == sizeof(float));
  11377. const int ith = params->ith;
  11378. const int nth = params->nth;
  11379. const int64_t nr = ggml_nrows(src0);
  11380. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11381. for (int64_t i = ith; i < nr; i += nth) {
  11382. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11383. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11384. for (int64_t j = 0; j < ne0; j++) {
  11385. dst_data[j] = j;
  11386. }
  11387. // C doesn't have a functional sort, so we do a bubble sort instead
  11388. for (int64_t j = 0; j < ne0; j++) {
  11389. for (int64_t k = j + 1; k < ne0; k++) {
  11390. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11391. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11392. int32_t tmp = dst_data[j];
  11393. dst_data[j] = dst_data[k];
  11394. dst_data[k] = tmp;
  11395. }
  11396. }
  11397. }
  11398. }
  11399. }
  11400. static void ggml_compute_forward_argsort(
  11401. const struct ggml_compute_params * params,
  11402. struct ggml_tensor * dst) {
  11403. const struct ggml_tensor * src0 = dst->src[0];
  11404. switch (src0->type) {
  11405. case GGML_TYPE_F32:
  11406. {
  11407. ggml_compute_forward_argsort_f32(params, dst);
  11408. } break;
  11409. default:
  11410. {
  11411. GGML_ASSERT(false);
  11412. } break;
  11413. }
  11414. }
  11415. // ggml_compute_forward_flash_attn
  11416. static void ggml_compute_forward_flash_attn_f32(
  11417. const struct ggml_compute_params * params,
  11418. const bool masked,
  11419. struct ggml_tensor * dst) {
  11420. const struct ggml_tensor * q = dst->src[0];
  11421. const struct ggml_tensor * k = dst->src[1];
  11422. const struct ggml_tensor * v = dst->src[2];
  11423. int64_t t0 = ggml_perf_time_us();
  11424. UNUSED(t0);
  11425. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11426. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11427. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11428. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11429. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11430. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11431. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11432. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11433. const int ith = params->ith;
  11434. const int nth = params->nth;
  11435. const int64_t D = neq0;
  11436. const int64_t N = neq1;
  11437. const int64_t P = nek1 - N;
  11438. const int64_t M = P + N;
  11439. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11440. GGML_ASSERT(ne0 == D);
  11441. GGML_ASSERT(ne1 == N);
  11442. GGML_ASSERT(P >= 0);
  11443. GGML_ASSERT(nbq0 == sizeof(float));
  11444. GGML_ASSERT(nbk0 == sizeof(float));
  11445. GGML_ASSERT(nbv0 == sizeof(float));
  11446. GGML_ASSERT(neq0 == D);
  11447. GGML_ASSERT(nek0 == D);
  11448. GGML_ASSERT(nev1 == D);
  11449. GGML_ASSERT(neq1 == N);
  11450. GGML_ASSERT(nek1 == N + P);
  11451. GGML_ASSERT(nev1 == D);
  11452. // dst cannot be transposed or permuted
  11453. GGML_ASSERT(nb0 == sizeof(float));
  11454. GGML_ASSERT(nb0 <= nb1);
  11455. GGML_ASSERT(nb1 <= nb2);
  11456. GGML_ASSERT(nb2 <= nb3);
  11457. if (params->type == GGML_TASK_TYPE_INIT) {
  11458. return;
  11459. }
  11460. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11461. return;
  11462. }
  11463. // parallelize by q rows using ggml_vec_dot_f32
  11464. // total rows in q
  11465. const int nr = neq1*neq2*neq3;
  11466. // rows per thread
  11467. const int dr = (nr + nth - 1)/nth;
  11468. // row range for this thread
  11469. const int ir0 = dr*ith;
  11470. const int ir1 = MIN(ir0 + dr, nr);
  11471. const float scale = 1.0f/sqrtf(D);
  11472. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11473. for (int ir = ir0; ir < ir1; ++ir) {
  11474. // q indices
  11475. const int iq3 = ir/(neq2*neq1);
  11476. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11477. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11478. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11479. for (int i = M; i < Mup; ++i) {
  11480. S[i] = -INFINITY;
  11481. }
  11482. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11483. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11484. // k indices
  11485. const int ik3 = iq3;
  11486. const int ik2 = iq2 % nek2;
  11487. const int ik1 = ic;
  11488. // S indices
  11489. const int i1 = ik1;
  11490. ggml_vec_dot_f32(neq0,
  11491. S + i1, 0,
  11492. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11493. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11494. }
  11495. // scale
  11496. ggml_vec_scale_f32(masked_begin, S, scale);
  11497. for (int64_t i = masked_begin; i < M; i++) {
  11498. S[i] = -INFINITY;
  11499. }
  11500. // softmax
  11501. // exclude known -INF S[..] values from max and loop
  11502. // dont forget to set their SW values to zero
  11503. {
  11504. float max = -INFINITY;
  11505. ggml_vec_max_f32(masked_begin, &max, S);
  11506. ggml_float sum = 0.0;
  11507. {
  11508. #ifdef GGML_SOFT_MAX_ACCELERATE
  11509. max = -max;
  11510. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11511. vvexpf(S, S, &Mup);
  11512. ggml_vec_sum_f32(Mup, &sum, S);
  11513. #else
  11514. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11515. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11516. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11517. if (i >= masked_begin) {
  11518. break;
  11519. }
  11520. float * SS = S + i;
  11521. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11522. if (i + j >= masked_begin) {
  11523. break;
  11524. } else if (SS[j] == -INFINITY) {
  11525. SS[j] = 0.0f;
  11526. } else {
  11527. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11528. const float val = expf(SS[j] - max);
  11529. #else
  11530. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11531. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11532. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11533. #endif
  11534. sump[j] += (ggml_float)val;
  11535. SS[j] = val;
  11536. }
  11537. }
  11538. }
  11539. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11540. sum += sump[i];
  11541. }
  11542. #endif
  11543. }
  11544. assert(sum > 0.0);
  11545. sum = 1.0/sum;
  11546. ggml_vec_scale_f32(masked_begin, S, sum);
  11547. #ifndef NDEBUG
  11548. for (int i = 0; i < masked_begin; ++i) {
  11549. assert(!isnan(S[i]));
  11550. assert(!isinf(S[i]));
  11551. }
  11552. #endif
  11553. }
  11554. for (int64_t ic = 0; ic < nev1; ++ic) {
  11555. // dst indices
  11556. const int i1 = iq1;
  11557. const int i2 = iq2;
  11558. const int i3 = iq3;
  11559. // v indices
  11560. const int iv2 = iq2 % nev2;
  11561. const int iv3 = iq3;
  11562. ggml_vec_dot_f32(masked_begin,
  11563. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11564. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11565. S, 0, 1);
  11566. }
  11567. }
  11568. }
  11569. static void ggml_compute_forward_flash_attn_f16(
  11570. const struct ggml_compute_params * params,
  11571. const bool masked,
  11572. struct ggml_tensor * dst) {
  11573. const struct ggml_tensor * q = dst->src[0];
  11574. const struct ggml_tensor * k = dst->src[1];
  11575. const struct ggml_tensor * v = dst->src[2];
  11576. int64_t t0 = ggml_perf_time_us();
  11577. UNUSED(t0);
  11578. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11579. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11580. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11581. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11582. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11583. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11584. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11585. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11586. const int ith = params->ith;
  11587. const int nth = params->nth;
  11588. const int64_t D = neq0;
  11589. const int64_t N = neq1;
  11590. const int64_t P = nek1 - N;
  11591. const int64_t M = P + N;
  11592. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11593. GGML_ASSERT(ne0 == D);
  11594. GGML_ASSERT(ne1 == N);
  11595. GGML_ASSERT(P >= 0);
  11596. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11597. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11598. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11599. GGML_ASSERT(neq0 == D);
  11600. GGML_ASSERT(nek0 == D);
  11601. GGML_ASSERT(nev1 == D);
  11602. GGML_ASSERT(neq1 == N);
  11603. GGML_ASSERT(nek1 == N + P);
  11604. GGML_ASSERT(nev1 == D);
  11605. // dst cannot be transposed or permuted
  11606. GGML_ASSERT(nb0 == sizeof(float));
  11607. GGML_ASSERT(nb0 <= nb1);
  11608. GGML_ASSERT(nb1 <= nb2);
  11609. GGML_ASSERT(nb2 <= nb3);
  11610. if (params->type == GGML_TASK_TYPE_INIT) {
  11611. return;
  11612. }
  11613. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11614. return;
  11615. }
  11616. // parallelize by q rows using ggml_vec_dot_f32
  11617. // total rows in q
  11618. const int nr = neq1*neq2*neq3;
  11619. // rows per thread
  11620. const int dr = (nr + nth - 1)/nth;
  11621. // row range for this thread
  11622. const int ir0 = dr*ith;
  11623. const int ir1 = MIN(ir0 + dr, nr);
  11624. const float scale = 1.0f/sqrtf(D);
  11625. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11626. for (int ir = ir0; ir < ir1; ++ir) {
  11627. // q indices
  11628. const int iq3 = ir/(neq2*neq1);
  11629. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11630. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11631. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11632. for (int i = M; i < Mup; ++i) {
  11633. S[i] = -INFINITY;
  11634. }
  11635. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11636. for (int64_t ic = 0; ic < nek1; ++ic) {
  11637. // k indices
  11638. const int ik3 = iq3;
  11639. const int ik2 = iq2 % nek2;
  11640. const int ik1 = ic;
  11641. // S indices
  11642. const int i1 = ik1;
  11643. ggml_vec_dot_f16(neq0,
  11644. S + i1, 0,
  11645. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11646. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11647. }
  11648. } else {
  11649. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11650. // k indices
  11651. const int ik3 = iq3;
  11652. const int ik2 = iq2 % nek2;
  11653. const int ik1 = ic;
  11654. // S indices
  11655. const int i1 = ik1;
  11656. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11657. S + i1,
  11658. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11659. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11660. }
  11661. }
  11662. // scale
  11663. ggml_vec_scale_f32(nek1, S, scale);
  11664. if (masked) {
  11665. for (int64_t i = P; i < M; i++) {
  11666. if (i > P + iq1) {
  11667. S[i] = -INFINITY;
  11668. }
  11669. }
  11670. }
  11671. // softmax
  11672. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11673. // dont forget to set their S values to zero
  11674. {
  11675. float max = -INFINITY;
  11676. ggml_vec_max_f32(M, &max, S);
  11677. ggml_float sum = 0.0;
  11678. {
  11679. #ifdef GGML_SOFT_MAX_ACCELERATE
  11680. max = -max;
  11681. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11682. vvexpf(S, S, &Mup);
  11683. ggml_vec_sum_f32(Mup, &sum, S);
  11684. #else
  11685. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11686. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11687. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11688. float * SS = S + i;
  11689. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11690. if (SS[j] == -INFINITY) {
  11691. SS[j] = 0.0f;
  11692. } else {
  11693. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11694. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11695. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11696. sump[j] += (ggml_float)val;
  11697. SS[j] = val;
  11698. }
  11699. }
  11700. }
  11701. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11702. sum += sump[i];
  11703. }
  11704. #endif
  11705. }
  11706. assert(sum > 0.0);
  11707. sum = 1.0/sum;
  11708. ggml_vec_scale_f32(M, S, sum);
  11709. #ifndef NDEBUG
  11710. for (int i = 0; i < M; ++i) {
  11711. assert(!isnan(S[i]));
  11712. assert(!isinf(S[i]));
  11713. }
  11714. #endif
  11715. }
  11716. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11717. for (int64_t i = 0; i < M; i++) {
  11718. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11719. }
  11720. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11721. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11722. for (int64_t ic = 0; ic < nev1; ++ic) {
  11723. // dst indices
  11724. const int i1 = iq1;
  11725. const int i2 = iq2;
  11726. const int i3 = iq3;
  11727. // v indices
  11728. const int iv2 = iq2 % nev2;
  11729. const int iv3 = iq3;
  11730. ggml_vec_dot_f16(nev0,
  11731. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11732. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11733. S16, 0, 1);
  11734. }
  11735. } else {
  11736. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11737. // dst indices
  11738. const int i1 = iq1;
  11739. const int i2 = iq2;
  11740. const int i3 = iq3;
  11741. // v indices
  11742. const int iv2 = iq2 % nev2;
  11743. const int iv3 = iq3;
  11744. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11745. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11746. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11747. S16);
  11748. }
  11749. }
  11750. }
  11751. }
  11752. static void ggml_compute_forward_flash_attn(
  11753. const struct ggml_compute_params * params,
  11754. const bool masked,
  11755. struct ggml_tensor * dst) {
  11756. const struct ggml_tensor * q = dst->src[0];
  11757. switch (q->type) {
  11758. case GGML_TYPE_F16:
  11759. {
  11760. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11761. } break;
  11762. case GGML_TYPE_F32:
  11763. {
  11764. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11765. } break;
  11766. default:
  11767. {
  11768. GGML_ASSERT(false);
  11769. } break;
  11770. }
  11771. }
  11772. // ggml_compute_forward_flash_ff
  11773. static void ggml_compute_forward_flash_ff_f16(
  11774. const struct ggml_compute_params * params,
  11775. struct ggml_tensor * dst) {
  11776. const struct ggml_tensor * a = dst->src[0]; // F16
  11777. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11778. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11779. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11780. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11781. int64_t t0 = ggml_perf_time_us();
  11782. UNUSED(t0);
  11783. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11784. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11785. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11786. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11787. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11788. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11789. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11790. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11791. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11792. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11793. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11794. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11795. const int ith = params->ith;
  11796. const int nth = params->nth;
  11797. const int64_t D = nea0;
  11798. //const int64_t N = nea1;
  11799. const int64_t M = neb01;
  11800. GGML_ASSERT(ne0 == nea0);
  11801. GGML_ASSERT(ne1 == nea1);
  11802. GGML_ASSERT(ne2 == nea2);
  11803. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11804. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11805. GGML_ASSERT(nbb10 == sizeof(float));
  11806. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11807. GGML_ASSERT(nbc10 == sizeof(float));
  11808. GGML_ASSERT(neb00 == D);
  11809. GGML_ASSERT(neb01 == M);
  11810. GGML_ASSERT(neb10 == M);
  11811. GGML_ASSERT(neb11 == 1);
  11812. GGML_ASSERT(nec00 == M);
  11813. GGML_ASSERT(nec01 == D);
  11814. GGML_ASSERT(nec10 == D);
  11815. GGML_ASSERT(nec11 == 1);
  11816. // dst cannot be transposed or permuted
  11817. GGML_ASSERT(nb0 == sizeof(float));
  11818. GGML_ASSERT(nb0 <= nb1);
  11819. GGML_ASSERT(nb1 <= nb2);
  11820. GGML_ASSERT(nb2 <= nb3);
  11821. if (params->type == GGML_TASK_TYPE_INIT) {
  11822. return;
  11823. }
  11824. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11825. return;
  11826. }
  11827. // parallelize by a rows using ggml_vec_dot_f32
  11828. // total rows in a
  11829. const int nr = nea1*nea2*nea3;
  11830. // rows per thread
  11831. const int dr = (nr + nth - 1)/nth;
  11832. // row range for this thread
  11833. const int ir0 = dr*ith;
  11834. const int ir1 = MIN(ir0 + dr, nr);
  11835. for (int ir = ir0; ir < ir1; ++ir) {
  11836. // a indices
  11837. const int ia3 = ir/(nea2*nea1);
  11838. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11839. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11840. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11841. for (int64_t ic = 0; ic < neb01; ++ic) {
  11842. // b0 indices
  11843. const int ib03 = ia3;
  11844. const int ib02 = ia2;
  11845. const int ib01 = ic;
  11846. // S indices
  11847. const int i1 = ib01;
  11848. ggml_vec_dot_f16(nea0,
  11849. S + i1, 0,
  11850. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11851. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11852. }
  11853. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11854. //ggml_vec_gelu_f32(neb01, S, S);
  11855. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11856. for (int64_t i = 0; i < M; i++) {
  11857. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11858. }
  11859. ggml_vec_gelu_f16(neb01, S16, S16);
  11860. {
  11861. // dst indices
  11862. const int i1 = ia1;
  11863. const int i2 = ia2;
  11864. const int i3 = ia3;
  11865. for (int64_t ic = 0; ic < nec01; ++ic) {
  11866. ggml_vec_dot_f16(neb01,
  11867. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11868. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11869. S16, 0, 1);
  11870. }
  11871. ggml_vec_add_f32(nec01,
  11872. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11873. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11874. (float *) c1->data);
  11875. }
  11876. }
  11877. }
  11878. static void ggml_compute_forward_flash_ff(
  11879. const struct ggml_compute_params * params,
  11880. struct ggml_tensor * dst) {
  11881. const struct ggml_tensor * b0 = dst->src[1];
  11882. switch (b0->type) {
  11883. case GGML_TYPE_F16:
  11884. {
  11885. ggml_compute_forward_flash_ff_f16(params, dst);
  11886. } break;
  11887. case GGML_TYPE_F32:
  11888. {
  11889. GGML_ASSERT(false); // TODO
  11890. } break;
  11891. default:
  11892. {
  11893. GGML_ASSERT(false);
  11894. } break;
  11895. }
  11896. }
  11897. // ggml_compute_forward_flash_attn_back
  11898. static void ggml_compute_forward_flash_attn_back_f32(
  11899. const struct ggml_compute_params * params,
  11900. const bool masked,
  11901. struct ggml_tensor * dst) {
  11902. const struct ggml_tensor * q = dst->src[0];
  11903. const struct ggml_tensor * k = dst->src[1];
  11904. const struct ggml_tensor * v = dst->src[2];
  11905. const struct ggml_tensor * d = dst->src[3];
  11906. int64_t t0 = ggml_perf_time_us();
  11907. UNUSED(t0);
  11908. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11909. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11910. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11911. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11912. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11913. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11914. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11915. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11916. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11917. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11918. const int ith = params->ith;
  11919. const int nth = params->nth;
  11920. const int64_t D = neq0;
  11921. const int64_t N = neq1;
  11922. const int64_t P = nek1 - N;
  11923. const int64_t M = P + N;
  11924. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11925. const int mxDM = MAX(D, Mup);
  11926. // GGML_ASSERT(ne0 == D);
  11927. // GGML_ASSERT(ne1 == N);
  11928. GGML_ASSERT(P >= 0);
  11929. GGML_ASSERT(nbq0 == sizeof(float));
  11930. GGML_ASSERT(nbk0 == sizeof(float));
  11931. GGML_ASSERT(nbv0 == sizeof(float));
  11932. GGML_ASSERT(neq0 == D);
  11933. GGML_ASSERT(nek0 == D);
  11934. GGML_ASSERT(nev1 == D);
  11935. GGML_ASSERT(ned0 == D);
  11936. GGML_ASSERT(neq1 == N);
  11937. GGML_ASSERT(nek1 == N + P);
  11938. GGML_ASSERT(nev1 == D);
  11939. GGML_ASSERT(ned1 == N);
  11940. // dst cannot be transposed or permuted
  11941. GGML_ASSERT(nb0 == sizeof(float));
  11942. GGML_ASSERT(nb0 <= nb1);
  11943. GGML_ASSERT(nb1 <= nb2);
  11944. GGML_ASSERT(nb2 <= nb3);
  11945. if (params->type == GGML_TASK_TYPE_INIT) {
  11946. if (ith == 0) {
  11947. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11948. }
  11949. return;
  11950. }
  11951. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11952. return;
  11953. }
  11954. const int64_t elem_q = ggml_nelements(q);
  11955. const int64_t elem_k = ggml_nelements(k);
  11956. enum ggml_type result_type = dst->type;
  11957. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11958. const size_t tsize = ggml_type_size(result_type);
  11959. const size_t offs_q = 0;
  11960. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11961. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11962. void * grad_q = (char *) dst->data;
  11963. void * grad_k = (char *) dst->data + offs_k;
  11964. void * grad_v = (char *) dst->data + offs_v;
  11965. const size_t nbgq1 = nb0*neq0;
  11966. const size_t nbgq2 = nb0*neq0*neq1;
  11967. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11968. const size_t nbgk1 = nb0*nek0;
  11969. const size_t nbgk2 = nb0*nek0*nek1;
  11970. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11971. const size_t nbgv1 = nb0*nev0;
  11972. const size_t nbgv2 = nb0*nev0*nev1;
  11973. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11974. // parallelize by k rows using ggml_vec_dot_f32
  11975. // total rows in k
  11976. const int nr = nek2*nek3;
  11977. // rows per thread
  11978. const int dr = (nr + nth - 1)/nth;
  11979. // row range for this thread
  11980. const int ir0 = dr*ith;
  11981. const int ir1 = MIN(ir0 + dr, nr);
  11982. const float scale = 1.0f/sqrtf(D);
  11983. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11984. // how often k2 (and v2) is repeated in q2
  11985. int nrep = neq2/nek2;
  11986. for (int ir = ir0; ir < ir1; ++ir) {
  11987. // q indices
  11988. const int ik3 = ir/(nek2);
  11989. const int ik2 = ir - ik3*nek2;
  11990. const int iq3 = ik3;
  11991. const int id3 = ik3;
  11992. const int iv3 = ik3;
  11993. const int iv2 = ik2;
  11994. for (int irep = 0; irep < nrep; ++irep) {
  11995. const int iq2 = ik2 + irep*nek2;
  11996. const int id2 = iq2;
  11997. // (ik2 + irep*nek2) % nek2 == ik2
  11998. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11999. const int id1 = iq1;
  12000. // not sure about CACHE_LINE_SIZE_F32..
  12001. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12002. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12003. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12004. for (int i = M; i < Mup; ++i) {
  12005. S[i] = -INFINITY;
  12006. }
  12007. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12008. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12009. // k indices
  12010. const int ik1 = ic;
  12011. // S indices
  12012. const int i1 = ik1;
  12013. ggml_vec_dot_f32(neq0,
  12014. S + i1, 0,
  12015. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12016. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12017. }
  12018. // scale
  12019. ggml_vec_scale_f32(masked_begin, S, scale);
  12020. for (int64_t i = masked_begin; i < M; i++) {
  12021. S[i] = -INFINITY;
  12022. }
  12023. // softmax
  12024. // exclude known -INF S[..] values from max and loop
  12025. // dont forget to set their SM values to zero
  12026. {
  12027. float max = -INFINITY;
  12028. ggml_vec_max_f32(masked_begin, &max, S);
  12029. ggml_float sum = 0.0;
  12030. {
  12031. #ifdef GGML_SOFT_MAX_ACCELERATE
  12032. max = -max;
  12033. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12034. vvexpf(SM, SM, &Mup);
  12035. ggml_vec_sum_f32(Mup, &sum, SM);
  12036. #else
  12037. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12038. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12039. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12040. if (i >= masked_begin) {
  12041. break;
  12042. }
  12043. float * SR = S + i;
  12044. float * SW = SM + i;
  12045. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12046. if (i + j >= masked_begin) {
  12047. break;
  12048. } else if (SR[j] == -INFINITY) {
  12049. SW[j] = 0.0f;
  12050. } else {
  12051. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12052. const float val = expf(SR[j] - max);
  12053. #else
  12054. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12055. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12056. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12057. #endif
  12058. sump[j] += (ggml_float)val;
  12059. SW[j] = val;
  12060. }
  12061. }
  12062. }
  12063. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12064. sum += sump[i];
  12065. }
  12066. #endif
  12067. }
  12068. assert(sum > 0.0);
  12069. sum = 1.0/sum;
  12070. ggml_vec_scale_f32(masked_begin, SM, sum);
  12071. }
  12072. // step-by-step explanation
  12073. {
  12074. // forward-process shape grads from backward process
  12075. // parallel_for ik2,ik3:
  12076. // for irep:
  12077. // iq2 = ik2 + irep*nek2
  12078. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12079. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12080. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12081. // for iq1:
  12082. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12083. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12084. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12085. // S0 = -Inf [D,1,1,1]
  12086. // ~S1[i] = dot(kcur[:D,i], qcur)
  12087. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12088. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12089. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12090. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12091. // ~S5[i] = dot(vcur[:,i], S4)
  12092. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12093. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12094. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12095. // dst backward-/ grad[dst] = d
  12096. //
  12097. // output gradients with their dependencies:
  12098. //
  12099. // grad[kcur] = grad[S1].T @ qcur
  12100. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12101. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12102. // grad[S4] = grad[S5] @ vcur
  12103. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12104. // grad[qcur] = grad[S1] @ kcur
  12105. // grad[vcur] = grad[S5].T @ S4
  12106. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12107. //
  12108. // in post-order:
  12109. //
  12110. // S1 = qcur @ kcur.T
  12111. // S2 = S1 * scale
  12112. // S3 = diag_mask_inf(S2, P)
  12113. // S4 = softmax(S3)
  12114. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12115. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12116. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12117. // grad[qcur] = grad[S1] @ kcur
  12118. // grad[kcur] = grad[S1].T @ qcur
  12119. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12120. //
  12121. // using less variables (SM=S4):
  12122. //
  12123. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12124. // SM = softmax(S)
  12125. // S = d[:D,iq1,iq2,iq3] @ vcur
  12126. // dot_SM_gradSM = dot(SM, S)
  12127. // S = SM * (S - dot(SM, S))
  12128. // S = diag_mask_zero(S, P) * scale
  12129. //
  12130. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12131. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12132. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12133. }
  12134. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12135. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12136. // for ic:
  12137. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12138. // exclude known future zero S[..] values from operation
  12139. ggml_vec_set_f32(masked_begin, S, 0);
  12140. for (int64_t ic = 0; ic < D; ++ic) {
  12141. ggml_vec_mad_f32(masked_begin,
  12142. S,
  12143. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12144. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12145. }
  12146. // S = SM * (S - dot(SM, S))
  12147. float dot_SM_gradSM = 0;
  12148. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12149. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12150. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12151. // S = diag_mask_zero(S, P) * scale
  12152. // already done by above ggml_vec_set_f32
  12153. // exclude known zero S[..] values from operation
  12154. ggml_vec_scale_f32(masked_begin, S, scale);
  12155. // S shape [M,1]
  12156. // SM shape [M,1]
  12157. // kcur shape [D,M]
  12158. // qcur shape [D,1]
  12159. // vcur shape [M,D]
  12160. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12161. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12162. // for ic:
  12163. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12164. // exclude known zero S[..] values from loop
  12165. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12166. ggml_vec_mad_f32(D,
  12167. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12168. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12169. S[ic]);
  12170. }
  12171. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12172. // for ic:
  12173. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12174. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12175. // exclude known zero S[..] values from loop
  12176. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12177. ggml_vec_mad_f32(D,
  12178. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12179. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12180. S[ic]);
  12181. }
  12182. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12183. // for ic:
  12184. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12185. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12186. // exclude known zero SM[..] values from mad
  12187. for (int64_t ic = 0; ic < D; ++ic) {
  12188. ggml_vec_mad_f32(masked_begin,
  12189. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12190. SM,
  12191. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12192. }
  12193. }
  12194. }
  12195. }
  12196. }
  12197. static void ggml_compute_forward_flash_attn_back(
  12198. const struct ggml_compute_params * params,
  12199. const bool masked,
  12200. struct ggml_tensor * dst) {
  12201. const struct ggml_tensor * q = dst->src[0];
  12202. switch (q->type) {
  12203. case GGML_TYPE_F32:
  12204. {
  12205. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12206. } break;
  12207. default:
  12208. {
  12209. GGML_ASSERT(false);
  12210. } break;
  12211. }
  12212. }
  12213. // ggml_compute_forward_ssm_conv
  12214. static void ggml_compute_forward_ssm_conv_f32(
  12215. const struct ggml_compute_params * params,
  12216. struct ggml_tensor * dst) {
  12217. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12218. return;
  12219. }
  12220. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12221. const struct ggml_tensor * src1 = dst->src[1]; // x
  12222. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12223. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12224. const int ith = params->ith;
  12225. const int nth = params->nth;
  12226. const int nc = src2->ne[0]; // d_conv
  12227. const int nr = src0->ne[1]; // d_inner
  12228. const int n_t = src1->ne[1]; // n_tokens
  12229. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12230. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12231. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12232. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12233. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12234. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12235. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12236. // for use with the destination state offset between sequences
  12237. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12238. // rows per thread
  12239. const int dr = (nr + nth - 1)/nth;
  12240. // row range for this thread
  12241. const int ir0 = dr*ith;
  12242. const int ir1 = MIN(ir0 + dr, nr);
  12243. const int ir = ir1 - ir0;
  12244. if (n_kv > 1) {
  12245. // multiple sequences means it's hard to know when it's the first time a state is read,
  12246. // so copy them all over to the destination, just to be sure.
  12247. for (int i3 = 0; i3 < n_kv; ++i3) {
  12248. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12249. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12250. // can't use memcpy because of d_conv vs d_conv - 1
  12251. for (int i1 = 0; i1 < ir; ++i1) {
  12252. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12253. // copy s0 to last (d_conv - 1) columns of s
  12254. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12255. }
  12256. }
  12257. }
  12258. }
  12259. for (int i2 = 0; i2 < n_t; ++i2) {
  12260. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12261. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12262. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12263. float * s0; // {d_conv - 1, d_inner, n_kv}
  12264. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12265. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12266. int ne0s0;
  12267. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12268. // avoid needing to copy the state for the first token
  12269. if (i2 == 0) {
  12270. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12271. ne0s0 = src0->ne[0];
  12272. } else {
  12273. // the source is the last (d_conv - 1) columns of the destination
  12274. s0 = s + 1;
  12275. ne0s0 = nc;
  12276. }
  12277. // d_inner
  12278. for (int i1 = 0; i1 < ir; ++i1) {
  12279. // shift state left
  12280. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12281. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12282. }
  12283. // insert x on the last column
  12284. s[(nc - 1) + i1*nc] = x0[i1];
  12285. }
  12286. // handle copies when there are multiple output states
  12287. for (int i3 = 1; i3 < n_kv; ++i3) {
  12288. int32_t seq = sq[i3];
  12289. if (0 <= seq && seq < n_kv) {
  12290. float * s1 = s + (seq - sq[0])*nc*nr;
  12291. memcpy(s1, s, nc*ir*sizeof(float));
  12292. } else {
  12293. // stop at negative or too big seq_ids
  12294. break;
  12295. }
  12296. }
  12297. // it seems a little faster when this is separate from the state shift
  12298. for (int i1 = 0; i1 < ir; ++i1) {
  12299. // rowwise dot product
  12300. float sumf = 0.0f;
  12301. for (int i0 = 0; i0 < nc; ++i0) {
  12302. int i = i0 + i1*nc;
  12303. sumf += s[i] * c[i];
  12304. }
  12305. x[i1] = sumf;
  12306. }
  12307. }
  12308. }
  12309. static void ggml_compute_forward_ssm_conv(
  12310. const struct ggml_compute_params * params,
  12311. struct ggml_tensor * dst) {
  12312. switch (dst->src[0]->type) {
  12313. case GGML_TYPE_F32:
  12314. {
  12315. ggml_compute_forward_ssm_conv_f32(params, dst);
  12316. } break;
  12317. default:
  12318. {
  12319. GGML_ASSERT(false);
  12320. } break;
  12321. }
  12322. }
  12323. // ggml_compute_forward_ssm_scan
  12324. static void ggml_compute_forward_ssm_scan_f32(
  12325. const struct ggml_compute_params * params,
  12326. struct ggml_tensor * dst) {
  12327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12328. return;
  12329. }
  12330. const struct ggml_tensor * src0 = dst->src[0]; // s
  12331. const struct ggml_tensor * src1 = dst->src[1]; // x
  12332. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12333. const struct ggml_tensor * src3 = dst->src[3]; // A
  12334. const struct ggml_tensor * src4 = dst->src[4]; // B
  12335. const struct ggml_tensor * src5 = dst->src[5]; // C
  12336. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12337. const int ith = params->ith;
  12338. const int nth = params->nth;
  12339. const int64_t nc = src0->ne[0]; // d_state
  12340. const int64_t nr = src0->ne[1]; // d_inner
  12341. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12342. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12343. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12344. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12345. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12346. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12347. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12348. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12349. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12350. // required for the dot product between s and C, and when copying the states
  12351. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12352. // required for per-sequence offsets for states
  12353. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12354. // required to get correct offset for state destination (i.e. src1->nb[2])
  12355. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12356. // rows per thread
  12357. const int dr = (nr + nth - 1)/nth;
  12358. // row range for this thread
  12359. const int ir0 = dr*ith;
  12360. const int ir1 = MIN(ir0 + dr, nr);
  12361. const int ir = ir1 - ir0;
  12362. if (n_kv > 1) {
  12363. // it's hard to know if the source states have already been copied
  12364. // when there are multiple, so copy them already.
  12365. for (int i3 = 0; i3 < n_kv; ++i3) {
  12366. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12367. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12368. memcpy(s, s0, nc*ir*sizeof(float));
  12369. }
  12370. }
  12371. for (int i2 = 0; i2 < n_t; ++i2) {
  12372. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12373. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12374. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12375. float * s0;
  12376. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12377. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12378. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12379. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12380. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12381. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12382. // avoid needing to copy the state for the first token
  12383. if (i2 == 0) {
  12384. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12385. } else {
  12386. // otherwise the source is the same as the destination
  12387. s0 = s;
  12388. }
  12389. // d_inner
  12390. for (int i1 = 0; i1 < ir; ++i1) {
  12391. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12392. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12393. float x_dt = x[i1] * dt_soft_plus;
  12394. float sumf = 0.0f;
  12395. // d_state
  12396. for (int i0 = 0; i0 < nc; ++i0) {
  12397. int i = i0 + i1*nc;
  12398. // state = prev_state * dA + dB * x
  12399. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12400. // y = rowwise_dotprod(state, C)
  12401. sumf += state * C[i0];
  12402. s[i] = state;
  12403. }
  12404. y[i1] = sumf;
  12405. }
  12406. // handle copies when there are multiple output states
  12407. for (int i3 = 1; i3 < n_kv; ++i3) {
  12408. int32_t seq = sq[i3];
  12409. if (0 <= seq && seq < n_kv) {
  12410. float * s1 = s + (seq - sq[0])*nc*nr;
  12411. memcpy(s1, s, nc*ir*sizeof(float));
  12412. } else {
  12413. // stop at negative or too big seq_ids
  12414. break;
  12415. }
  12416. }
  12417. }
  12418. }
  12419. static void ggml_compute_forward_ssm_scan(
  12420. const struct ggml_compute_params * params,
  12421. struct ggml_tensor * dst) {
  12422. switch (dst->src[0]->type) {
  12423. case GGML_TYPE_F32:
  12424. {
  12425. ggml_compute_forward_ssm_scan_f32(params, dst);
  12426. } break;
  12427. default:
  12428. {
  12429. GGML_ASSERT(false);
  12430. } break;
  12431. }
  12432. }
  12433. // ggml_compute_forward_win_part
  12434. static void ggml_compute_forward_win_part_f32(
  12435. const struct ggml_compute_params * params,
  12436. struct ggml_tensor * dst) {
  12437. const struct ggml_tensor * src0 = dst->src[0];
  12438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12439. return;
  12440. }
  12441. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12442. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12443. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12444. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12445. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12446. assert(ne00 == ne0);
  12447. assert(ne3 == nep0*nep1);
  12448. // TODO: optimize / multi-thread
  12449. for (int py = 0; py < nep1; ++py) {
  12450. for (int px = 0; px < nep0; ++px) {
  12451. const int64_t i3 = py*nep0 + px;
  12452. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12453. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12454. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12455. const int64_t i02 = py*w + i2;
  12456. const int64_t i01 = px*w + i1;
  12457. const int64_t i00 = i0;
  12458. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12459. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12460. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12461. ((float *) dst->data)[i] = 0.0f;
  12462. } else {
  12463. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12464. }
  12465. }
  12466. }
  12467. }
  12468. }
  12469. }
  12470. }
  12471. static void ggml_compute_forward_win_part(
  12472. const struct ggml_compute_params * params,
  12473. struct ggml_tensor * dst) {
  12474. const struct ggml_tensor * src0 = dst->src[0];
  12475. switch (src0->type) {
  12476. case GGML_TYPE_F32:
  12477. {
  12478. ggml_compute_forward_win_part_f32(params, dst);
  12479. } break;
  12480. default:
  12481. {
  12482. GGML_ASSERT(false);
  12483. } break;
  12484. }
  12485. }
  12486. // ggml_compute_forward_win_unpart
  12487. static void ggml_compute_forward_win_unpart_f32(
  12488. const struct ggml_compute_params * params,
  12489. struct ggml_tensor * dst) {
  12490. const struct ggml_tensor * src0 = dst->src[0];
  12491. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12492. return;
  12493. }
  12494. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12495. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12496. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12497. // padding
  12498. const int px = (w - ne1%w)%w;
  12499. //const int py = (w - ne2%w)%w;
  12500. const int npx = (px + ne1)/w;
  12501. //const int npy = (py + ne2)/w;
  12502. assert(ne0 == ne00);
  12503. // TODO: optimize / multi-thread
  12504. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12505. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12506. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12507. const int ip2 = i2/w;
  12508. const int ip1 = i1/w;
  12509. const int64_t i02 = i2%w;
  12510. const int64_t i01 = i1%w;
  12511. const int64_t i00 = i0;
  12512. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12513. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12514. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12515. }
  12516. }
  12517. }
  12518. }
  12519. static void ggml_compute_forward_win_unpart(
  12520. const struct ggml_compute_params * params,
  12521. struct ggml_tensor * dst) {
  12522. const struct ggml_tensor * src0 = dst->src[0];
  12523. switch (src0->type) {
  12524. case GGML_TYPE_F32:
  12525. {
  12526. ggml_compute_forward_win_unpart_f32(params, dst);
  12527. } break;
  12528. default:
  12529. {
  12530. GGML_ASSERT(false);
  12531. } break;
  12532. }
  12533. }
  12534. //gmml_compute_forward_unary
  12535. static void ggml_compute_forward_unary(
  12536. const struct ggml_compute_params * params,
  12537. struct ggml_tensor * dst) {
  12538. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12539. switch (op) {
  12540. case GGML_UNARY_OP_ABS:
  12541. {
  12542. ggml_compute_forward_abs(params, dst);
  12543. } break;
  12544. case GGML_UNARY_OP_SGN:
  12545. {
  12546. ggml_compute_forward_sgn(params, dst);
  12547. } break;
  12548. case GGML_UNARY_OP_NEG:
  12549. {
  12550. ggml_compute_forward_neg(params, dst);
  12551. } break;
  12552. case GGML_UNARY_OP_STEP:
  12553. {
  12554. ggml_compute_forward_step(params, dst);
  12555. } break;
  12556. case GGML_UNARY_OP_TANH:
  12557. {
  12558. ggml_compute_forward_tanh(params, dst);
  12559. } break;
  12560. case GGML_UNARY_OP_ELU:
  12561. {
  12562. ggml_compute_forward_elu(params, dst);
  12563. } break;
  12564. case GGML_UNARY_OP_RELU:
  12565. {
  12566. ggml_compute_forward_relu(params, dst);
  12567. } break;
  12568. case GGML_UNARY_OP_GELU:
  12569. {
  12570. ggml_compute_forward_gelu(params, dst);
  12571. } break;
  12572. case GGML_UNARY_OP_GELU_QUICK:
  12573. {
  12574. ggml_compute_forward_gelu_quick(params, dst);
  12575. } break;
  12576. case GGML_UNARY_OP_SILU:
  12577. {
  12578. ggml_compute_forward_silu(params, dst);
  12579. } break;
  12580. case GGML_UNARY_OP_HARDSWISH:
  12581. {
  12582. ggml_compute_forward_hardswish(params, dst);
  12583. } break;
  12584. case GGML_UNARY_OP_HARDSIGMOID:
  12585. {
  12586. ggml_compute_forward_hardsigmoid(params, dst);
  12587. } break;
  12588. default:
  12589. {
  12590. GGML_ASSERT(false);
  12591. } break;
  12592. }
  12593. }
  12594. // ggml_compute_forward_get_rel_pos
  12595. static void ggml_compute_forward_get_rel_pos_f16(
  12596. const struct ggml_compute_params * params,
  12597. struct ggml_tensor * dst) {
  12598. const struct ggml_tensor * src0 = dst->src[0];
  12599. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12600. return;
  12601. }
  12602. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12603. GGML_TENSOR_UNARY_OP_LOCALS
  12604. const int64_t w = ne1;
  12605. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12606. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12607. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12608. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12609. const int64_t pos = (w - i1 - 1) + i2;
  12610. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12611. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12612. }
  12613. }
  12614. }
  12615. }
  12616. static void ggml_compute_forward_get_rel_pos(
  12617. const struct ggml_compute_params * params,
  12618. struct ggml_tensor * dst) {
  12619. const struct ggml_tensor * src0 = dst->src[0];
  12620. switch (src0->type) {
  12621. case GGML_TYPE_F16:
  12622. {
  12623. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12624. } break;
  12625. default:
  12626. {
  12627. GGML_ASSERT(false);
  12628. } break;
  12629. }
  12630. }
  12631. // ggml_compute_forward_add_rel_pos
  12632. static void ggml_compute_forward_add_rel_pos_f32(
  12633. const struct ggml_compute_params * params,
  12634. struct ggml_tensor * dst) {
  12635. const struct ggml_tensor * src0 = dst->src[0];
  12636. const struct ggml_tensor * src1 = dst->src[1];
  12637. const struct ggml_tensor * src2 = dst->src[2];
  12638. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12639. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12640. if (params->ith != 0) {
  12641. return;
  12642. }
  12643. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12644. return;
  12645. }
  12646. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12647. return;
  12648. }
  12649. int64_t t0 = ggml_perf_time_us();
  12650. UNUSED(t0);
  12651. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12652. float * src1_data = (float *) src1->data;
  12653. float * src2_data = (float *) src2->data;
  12654. float * dst_data = (float *) dst->data;
  12655. const int64_t ne10 = src1->ne[0];
  12656. const int64_t ne11 = src1->ne[1];
  12657. const int64_t ne12 = src1->ne[2];
  12658. const int64_t ne13 = src1->ne[3];
  12659. const int ith = params->ith;
  12660. const int nth = params->nth;
  12661. // total patches in dst
  12662. const int np = ne13;
  12663. // patches per thread
  12664. const int dp = (np + nth - 1)/nth;
  12665. // patch range for this thread
  12666. const int ip0 = dp*ith;
  12667. const int ip1 = MIN(ip0 + dp, np);
  12668. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12669. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12670. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12671. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12672. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12673. const int64_t jp0 = jp1 + i10;
  12674. const float src1_e = src1_data[jp0];
  12675. const float src2_e = src2_data[jp0];
  12676. const int64_t jdh = jp0 * ne10;
  12677. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12678. for (int64_t j = 0; j < ne10; ++j) {
  12679. dst_data[jdh + j ] += src2_e;
  12680. dst_data[jdw + j*ne10] += src1_e;
  12681. }
  12682. }
  12683. }
  12684. }
  12685. }
  12686. }
  12687. static void ggml_compute_forward_add_rel_pos(
  12688. const struct ggml_compute_params * params,
  12689. struct ggml_tensor * dst) {
  12690. const struct ggml_tensor * src0 = dst->src[0];
  12691. switch (src0->type) {
  12692. case GGML_TYPE_F32:
  12693. {
  12694. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12695. } break;
  12696. default:
  12697. {
  12698. GGML_ASSERT(false);
  12699. } break;
  12700. }
  12701. }
  12702. // ggml_compute_forward_map_unary
  12703. static void ggml_compute_forward_map_unary_f32(
  12704. const struct ggml_compute_params * params,
  12705. struct ggml_tensor * dst,
  12706. const ggml_unary_op_f32_t fun) {
  12707. const struct ggml_tensor * src0 = dst->src[0];
  12708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12709. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12710. return;
  12711. }
  12712. const int n = ggml_nrows(src0);
  12713. const int nc = src0->ne[0];
  12714. assert( dst->nb[0] == sizeof(float));
  12715. assert(src0->nb[0] == sizeof(float));
  12716. for (int i = 0; i < n; i++) {
  12717. fun(nc,
  12718. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12719. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12720. }
  12721. }
  12722. static void ggml_compute_forward_map_unary(
  12723. const struct ggml_compute_params * params,
  12724. struct ggml_tensor * dst,
  12725. const ggml_unary_op_f32_t fun) {
  12726. const struct ggml_tensor * src0 = dst->src[0];
  12727. switch (src0->type) {
  12728. case GGML_TYPE_F32:
  12729. {
  12730. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12731. } break;
  12732. default:
  12733. {
  12734. GGML_ASSERT(false);
  12735. } break;
  12736. }
  12737. }
  12738. // ggml_compute_forward_map_binary
  12739. static void ggml_compute_forward_map_binary_f32(
  12740. const struct ggml_compute_params * params,
  12741. struct ggml_tensor * dst,
  12742. const ggml_binary_op_f32_t fun) {
  12743. const struct ggml_tensor * src0 = dst->src[0];
  12744. const struct ggml_tensor * src1 = dst->src[1];
  12745. assert(params->ith == 0);
  12746. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12747. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12748. return;
  12749. }
  12750. const int n = ggml_nrows(src0);
  12751. const int nc = src0->ne[0];
  12752. assert( dst->nb[0] == sizeof(float));
  12753. assert(src0->nb[0] == sizeof(float));
  12754. assert(src1->nb[0] == sizeof(float));
  12755. for (int i = 0; i < n; i++) {
  12756. fun(nc,
  12757. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12758. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12759. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12760. }
  12761. }
  12762. static void ggml_compute_forward_map_binary(
  12763. const struct ggml_compute_params * params,
  12764. struct ggml_tensor * dst,
  12765. const ggml_binary_op_f32_t fun) {
  12766. const struct ggml_tensor * src0 = dst->src[0];
  12767. switch (src0->type) {
  12768. case GGML_TYPE_F32:
  12769. {
  12770. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12771. } break;
  12772. default:
  12773. {
  12774. GGML_ASSERT(false);
  12775. } break;
  12776. }
  12777. }
  12778. // ggml_compute_forward_map_custom1
  12779. static void ggml_compute_forward_map_custom1_f32(
  12780. const struct ggml_compute_params * params,
  12781. struct ggml_tensor * dst,
  12782. const ggml_custom1_op_f32_t fun) {
  12783. const struct ggml_tensor * a = dst->src[0];
  12784. assert(params->ith == 0);
  12785. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12786. return;
  12787. }
  12788. fun(dst, a);
  12789. }
  12790. // ggml_compute_forward_map_custom2
  12791. static void ggml_compute_forward_map_custom2_f32(
  12792. const struct ggml_compute_params * params,
  12793. struct ggml_tensor * dst,
  12794. const ggml_custom2_op_f32_t fun) {
  12795. const struct ggml_tensor * a = dst->src[0];
  12796. const struct ggml_tensor * b = dst->src[1];
  12797. assert(params->ith == 0);
  12798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12799. return;
  12800. }
  12801. fun(dst, a, b);
  12802. }
  12803. // ggml_compute_forward_map_custom3
  12804. static void ggml_compute_forward_map_custom3_f32(
  12805. const struct ggml_compute_params * params,
  12806. struct ggml_tensor * dst,
  12807. const ggml_custom3_op_f32_t fun) {
  12808. const struct ggml_tensor * a = dst->src[0];
  12809. const struct ggml_tensor * b = dst->src[1];
  12810. const struct ggml_tensor * c = dst->src[1];
  12811. assert(params->ith == 0);
  12812. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12813. return;
  12814. }
  12815. fun(dst, a, b, c);
  12816. }
  12817. // ggml_compute_forward_map_custom1
  12818. static void ggml_compute_forward_map_custom1(
  12819. const struct ggml_compute_params * params,
  12820. struct ggml_tensor * dst) {
  12821. const struct ggml_tensor * a = dst->src[0];
  12822. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12823. return;
  12824. }
  12825. struct ggml_map_custom1_op_params p;
  12826. memcpy(&p, dst->op_params, sizeof(p));
  12827. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12828. }
  12829. // ggml_compute_forward_map_custom2
  12830. static void ggml_compute_forward_map_custom2(
  12831. const struct ggml_compute_params * params,
  12832. struct ggml_tensor * dst) {
  12833. const struct ggml_tensor * a = dst->src[0];
  12834. const struct ggml_tensor * b = dst->src[1];
  12835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12836. return;
  12837. }
  12838. struct ggml_map_custom2_op_params p;
  12839. memcpy(&p, dst->op_params, sizeof(p));
  12840. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12841. }
  12842. // ggml_compute_forward_map_custom3
  12843. static void ggml_compute_forward_map_custom3(
  12844. const struct ggml_compute_params * params,
  12845. struct ggml_tensor * dst) {
  12846. const struct ggml_tensor * a = dst->src[0];
  12847. const struct ggml_tensor * b = dst->src[1];
  12848. const struct ggml_tensor * c = dst->src[2];
  12849. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12850. return;
  12851. }
  12852. struct ggml_map_custom3_op_params p;
  12853. memcpy(&p, dst->op_params, sizeof(p));
  12854. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12855. }
  12856. // ggml_compute_forward_cross_entropy_loss
  12857. static void ggml_compute_forward_cross_entropy_loss_f32(
  12858. const struct ggml_compute_params * params,
  12859. struct ggml_tensor * dst) {
  12860. const struct ggml_tensor * src0 = dst->src[0];
  12861. const struct ggml_tensor * src1 = dst->src[1];
  12862. GGML_ASSERT(ggml_is_contiguous(src0));
  12863. GGML_ASSERT(ggml_is_contiguous(src1));
  12864. GGML_ASSERT(ggml_is_scalar(dst));
  12865. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12866. const int ith = params->ith;
  12867. const int nth = params->nth;
  12868. float * sums = (float *) params->wdata;
  12869. // TODO: handle transposed/permuted matrices
  12870. const int nc = src0->ne[0];
  12871. const int nr = ggml_nrows(src0);
  12872. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12873. if (params->type == GGML_TASK_TYPE_INIT) {
  12874. if (ith == 0) {
  12875. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12876. }
  12877. return;
  12878. }
  12879. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12880. if (ith == 0) {
  12881. float * dp = (float *) dst->data;
  12882. ggml_vec_sum_f32(nth, dp, sums);
  12883. dp[0] *= -1.0f / (float) nr;
  12884. }
  12885. return;
  12886. }
  12887. const double eps = 1e-9;
  12888. // rows per thread
  12889. const int dr = (nr + nth - 1)/nth;
  12890. // row range for this thread
  12891. const int ir0 = dr*ith;
  12892. const int ir1 = MIN(ir0 + dr, nr);
  12893. for (int i1 = ir0; i1 < ir1; i1++) {
  12894. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12895. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12896. float * st = ((float *) params->wdata) + nth + ith*nc;
  12897. #ifndef NDEBUG
  12898. for (int i = 0; i < nc; ++i) {
  12899. //printf("p[%d] = %f\n", i, p[i]);
  12900. assert(!isnan(s0[i]));
  12901. assert(!isnan(s1[i]));
  12902. }
  12903. #endif
  12904. // soft_max
  12905. ggml_float sum = 0.0;
  12906. {
  12907. float max = -INFINITY;
  12908. ggml_vec_max_f32(nc, &max, s0);
  12909. uint16_t scvt; UNUSED(scvt);
  12910. for (int i = 0; i < nc; i++) {
  12911. if (s0[i] == -INFINITY) {
  12912. st[i] = 0.0f;
  12913. } else {
  12914. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12915. const float s = s0[i] - max;
  12916. const float val = expf(s);
  12917. #else
  12918. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12919. memcpy(&scvt, &s, sizeof(scvt));
  12920. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12921. #endif
  12922. sum += (ggml_float)val;
  12923. st[i] = val;
  12924. }
  12925. }
  12926. assert(sum > 0.0);
  12927. // sum = 1.0/sum;
  12928. }
  12929. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12930. sum = (1.0 - eps) / sum;
  12931. ggml_vec_scale_f32(nc, st, sum);
  12932. ggml_vec_add1_f32(nc, st, st, eps);
  12933. ggml_vec_log_f32(nc, st, st);
  12934. ggml_vec_mul_f32(nc, st, st, s1);
  12935. float st_sum = 0;
  12936. ggml_vec_sum_f32(nc, &st_sum, st);
  12937. sums[ith] += st_sum;
  12938. #ifndef NDEBUG
  12939. for (int i = 0; i < nc; ++i) {
  12940. assert(!isnan(st[i]));
  12941. assert(!isinf(st[i]));
  12942. }
  12943. #endif
  12944. }
  12945. }
  12946. static void ggml_compute_forward_cross_entropy_loss(
  12947. const struct ggml_compute_params * params,
  12948. struct ggml_tensor * dst) {
  12949. const struct ggml_tensor * src0 = dst->src[0];
  12950. switch (src0->type) {
  12951. case GGML_TYPE_F32:
  12952. {
  12953. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12954. } break;
  12955. default:
  12956. {
  12957. GGML_ASSERT(false);
  12958. } break;
  12959. }
  12960. }
  12961. // ggml_compute_forward_cross_entropy_loss_back
  12962. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12963. const struct ggml_compute_params * params,
  12964. struct ggml_tensor * dst) {
  12965. const struct ggml_tensor * src0 = dst->src[0];
  12966. const struct ggml_tensor * src1 = dst->src[1];
  12967. const struct ggml_tensor * opt0 = dst->src[2];
  12968. GGML_ASSERT(ggml_is_contiguous(dst));
  12969. GGML_ASSERT(ggml_is_contiguous(src0));
  12970. GGML_ASSERT(ggml_is_contiguous(src1));
  12971. GGML_ASSERT(ggml_is_contiguous(opt0));
  12972. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12973. const int64_t ith = params->ith;
  12974. const int64_t nth = params->nth;
  12975. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12976. return;
  12977. }
  12978. const double eps = 1e-9;
  12979. // TODO: handle transposed/permuted matrices
  12980. const int64_t nc = src0->ne[0];
  12981. const int64_t nr = ggml_nrows(src0);
  12982. // rows per thread
  12983. const int64_t dr = (nr + nth - 1)/nth;
  12984. // row range for this thread
  12985. const int64_t ir0 = dr*ith;
  12986. const int64_t ir1 = MIN(ir0 + dr, nr);
  12987. float * d = (float *) opt0->data;
  12988. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12989. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12990. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12991. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12992. #ifndef NDEBUG
  12993. for (int i = 0; i < nc; ++i) {
  12994. //printf("p[%d] = %f\n", i, p[i]);
  12995. assert(!isnan(s0[i]));
  12996. assert(!isnan(s1[i]));
  12997. }
  12998. #endif
  12999. // soft_max
  13000. ggml_float sum = 0.0;
  13001. {
  13002. float max = -INFINITY;
  13003. ggml_vec_max_f32(nc, &max, s0);
  13004. uint16_t scvt; UNUSED(scvt);
  13005. for (int i = 0; i < nc; i++) {
  13006. if (s0[i] == -INFINITY) {
  13007. ds0[i] = 0.0f;
  13008. } else {
  13009. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13010. const float s = s0[i] - max;
  13011. const float val = expf(s);
  13012. #else
  13013. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13014. memcpy(&scvt, &s, sizeof(scvt));
  13015. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13016. #endif
  13017. sum += (ggml_float)val;
  13018. ds0[i] = val;
  13019. }
  13020. }
  13021. assert(sum > 0.0);
  13022. sum = (1.0 - eps)/sum;
  13023. }
  13024. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13025. ggml_vec_scale_f32(nc, ds0, sum);
  13026. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13027. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13028. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13029. #ifndef NDEBUG
  13030. for (int i = 0; i < nc; ++i) {
  13031. assert(!isnan(ds0[i]));
  13032. assert(!isinf(ds0[i]));
  13033. }
  13034. #endif
  13035. }
  13036. }
  13037. static void ggml_compute_forward_cross_entropy_loss_back(
  13038. const struct ggml_compute_params * params,
  13039. struct ggml_tensor * dst) {
  13040. const struct ggml_tensor * src0 = dst->src[0];
  13041. switch (src0->type) {
  13042. case GGML_TYPE_F32:
  13043. {
  13044. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13045. } break;
  13046. default:
  13047. {
  13048. GGML_ASSERT(false);
  13049. } break;
  13050. }
  13051. }
  13052. /////////////////////////////////
  13053. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13054. GGML_ASSERT(params);
  13055. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13056. return;
  13057. }
  13058. switch (tensor->op) {
  13059. case GGML_OP_DUP:
  13060. {
  13061. ggml_compute_forward_dup(params, tensor);
  13062. } break;
  13063. case GGML_OP_ADD:
  13064. {
  13065. ggml_compute_forward_add(params, tensor);
  13066. } break;
  13067. case GGML_OP_ADD1:
  13068. {
  13069. ggml_compute_forward_add1(params, tensor);
  13070. } break;
  13071. case GGML_OP_ACC:
  13072. {
  13073. ggml_compute_forward_acc(params, tensor);
  13074. } break;
  13075. case GGML_OP_SUB:
  13076. {
  13077. ggml_compute_forward_sub(params, tensor);
  13078. } break;
  13079. case GGML_OP_MUL:
  13080. {
  13081. ggml_compute_forward_mul(params, tensor);
  13082. } break;
  13083. case GGML_OP_DIV:
  13084. {
  13085. ggml_compute_forward_div(params, tensor);
  13086. } break;
  13087. case GGML_OP_SQR:
  13088. {
  13089. ggml_compute_forward_sqr(params, tensor);
  13090. } break;
  13091. case GGML_OP_SQRT:
  13092. {
  13093. ggml_compute_forward_sqrt(params, tensor);
  13094. } break;
  13095. case GGML_OP_LOG:
  13096. {
  13097. ggml_compute_forward_log(params, tensor);
  13098. } break;
  13099. case GGML_OP_SUM:
  13100. {
  13101. ggml_compute_forward_sum(params, tensor);
  13102. } break;
  13103. case GGML_OP_SUM_ROWS:
  13104. {
  13105. ggml_compute_forward_sum_rows(params, tensor);
  13106. } break;
  13107. case GGML_OP_MEAN:
  13108. {
  13109. ggml_compute_forward_mean(params, tensor);
  13110. } break;
  13111. case GGML_OP_ARGMAX:
  13112. {
  13113. ggml_compute_forward_argmax(params, tensor);
  13114. } break;
  13115. case GGML_OP_REPEAT:
  13116. {
  13117. ggml_compute_forward_repeat(params, tensor);
  13118. } break;
  13119. case GGML_OP_REPEAT_BACK:
  13120. {
  13121. ggml_compute_forward_repeat_back(params, tensor);
  13122. } break;
  13123. case GGML_OP_CONCAT:
  13124. {
  13125. ggml_compute_forward_concat(params, tensor);
  13126. } break;
  13127. case GGML_OP_SILU_BACK:
  13128. {
  13129. ggml_compute_forward_silu_back(params, tensor);
  13130. } break;
  13131. case GGML_OP_NORM:
  13132. {
  13133. ggml_compute_forward_norm(params, tensor);
  13134. } break;
  13135. case GGML_OP_RMS_NORM:
  13136. {
  13137. ggml_compute_forward_rms_norm(params, tensor);
  13138. } break;
  13139. case GGML_OP_RMS_NORM_BACK:
  13140. {
  13141. ggml_compute_forward_rms_norm_back(params, tensor);
  13142. } break;
  13143. case GGML_OP_GROUP_NORM:
  13144. {
  13145. ggml_compute_forward_group_norm(params, tensor);
  13146. } break;
  13147. case GGML_OP_MUL_MAT:
  13148. {
  13149. ggml_compute_forward_mul_mat(params, tensor);
  13150. } break;
  13151. case GGML_OP_MUL_MAT_ID:
  13152. {
  13153. ggml_compute_forward_mul_mat_id(params, tensor);
  13154. } break;
  13155. case GGML_OP_OUT_PROD:
  13156. {
  13157. ggml_compute_forward_out_prod(params, tensor);
  13158. } break;
  13159. case GGML_OP_SCALE:
  13160. {
  13161. ggml_compute_forward_scale(params, tensor);
  13162. } break;
  13163. case GGML_OP_SET:
  13164. {
  13165. ggml_compute_forward_set(params, tensor);
  13166. } break;
  13167. case GGML_OP_CPY:
  13168. {
  13169. ggml_compute_forward_cpy(params, tensor);
  13170. } break;
  13171. case GGML_OP_CONT:
  13172. {
  13173. ggml_compute_forward_cont(params, tensor);
  13174. } break;
  13175. case GGML_OP_RESHAPE:
  13176. {
  13177. ggml_compute_forward_reshape(params, tensor);
  13178. } break;
  13179. case GGML_OP_VIEW:
  13180. {
  13181. ggml_compute_forward_view(params, tensor);
  13182. } break;
  13183. case GGML_OP_PERMUTE:
  13184. {
  13185. ggml_compute_forward_permute(params, tensor);
  13186. } break;
  13187. case GGML_OP_TRANSPOSE:
  13188. {
  13189. ggml_compute_forward_transpose(params, tensor);
  13190. } break;
  13191. case GGML_OP_GET_ROWS:
  13192. {
  13193. ggml_compute_forward_get_rows(params, tensor);
  13194. } break;
  13195. case GGML_OP_GET_ROWS_BACK:
  13196. {
  13197. ggml_compute_forward_get_rows_back(params, tensor);
  13198. } break;
  13199. case GGML_OP_DIAG:
  13200. {
  13201. ggml_compute_forward_diag(params, tensor);
  13202. } break;
  13203. case GGML_OP_DIAG_MASK_INF:
  13204. {
  13205. ggml_compute_forward_diag_mask_inf(params, tensor);
  13206. } break;
  13207. case GGML_OP_DIAG_MASK_ZERO:
  13208. {
  13209. ggml_compute_forward_diag_mask_zero(params, tensor);
  13210. } break;
  13211. case GGML_OP_SOFT_MAX:
  13212. {
  13213. ggml_compute_forward_soft_max(params, tensor);
  13214. } break;
  13215. case GGML_OP_SOFT_MAX_BACK:
  13216. {
  13217. ggml_compute_forward_soft_max_back(params, tensor);
  13218. } break;
  13219. case GGML_OP_ROPE:
  13220. {
  13221. ggml_compute_forward_rope(params, tensor);
  13222. } break;
  13223. case GGML_OP_ROPE_BACK:
  13224. {
  13225. ggml_compute_forward_rope_back(params, tensor);
  13226. } break;
  13227. case GGML_OP_ALIBI:
  13228. {
  13229. ggml_compute_forward_alibi(params, tensor);
  13230. } break;
  13231. case GGML_OP_CLAMP:
  13232. {
  13233. ggml_compute_forward_clamp(params, tensor);
  13234. } break;
  13235. case GGML_OP_CONV_TRANSPOSE_1D:
  13236. {
  13237. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13238. } break;
  13239. case GGML_OP_IM2COL:
  13240. {
  13241. ggml_compute_forward_im2col(params, tensor);
  13242. } break;
  13243. case GGML_OP_CONV_TRANSPOSE_2D:
  13244. {
  13245. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13246. } break;
  13247. case GGML_OP_POOL_1D:
  13248. {
  13249. ggml_compute_forward_pool_1d(params, tensor);
  13250. } break;
  13251. case GGML_OP_POOL_2D:
  13252. {
  13253. ggml_compute_forward_pool_2d(params, tensor);
  13254. } break;
  13255. case GGML_OP_UPSCALE:
  13256. {
  13257. ggml_compute_forward_upscale(params, tensor);
  13258. } break;
  13259. case GGML_OP_PAD:
  13260. {
  13261. ggml_compute_forward_pad(params, tensor);
  13262. } break;
  13263. case GGML_OP_ARANGE:
  13264. {
  13265. ggml_compute_forward_arange(params, tensor);
  13266. } break;
  13267. case GGML_OP_TIMESTEP_EMBEDDING:
  13268. {
  13269. ggml_compute_forward_timestep_embedding(params, tensor);
  13270. } break;
  13271. case GGML_OP_ARGSORT:
  13272. {
  13273. ggml_compute_forward_argsort(params, tensor);
  13274. } break;
  13275. case GGML_OP_LEAKY_RELU:
  13276. {
  13277. ggml_compute_forward_leaky_relu(params, tensor);
  13278. } break;
  13279. case GGML_OP_FLASH_ATTN:
  13280. {
  13281. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13282. GGML_ASSERT(t == 0 || t == 1);
  13283. const bool masked = t != 0;
  13284. ggml_compute_forward_flash_attn(params, masked, tensor);
  13285. } break;
  13286. case GGML_OP_FLASH_FF:
  13287. {
  13288. ggml_compute_forward_flash_ff(params, tensor);
  13289. } break;
  13290. case GGML_OP_FLASH_ATTN_BACK:
  13291. {
  13292. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13293. GGML_ASSERT(t == 0 || t == 1);
  13294. bool masked = t != 0;
  13295. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13296. } break;
  13297. case GGML_OP_SSM_CONV:
  13298. {
  13299. ggml_compute_forward_ssm_conv(params, tensor);
  13300. } break;
  13301. case GGML_OP_SSM_SCAN:
  13302. {
  13303. ggml_compute_forward_ssm_scan(params, tensor);
  13304. } break;
  13305. case GGML_OP_WIN_PART:
  13306. {
  13307. ggml_compute_forward_win_part(params, tensor);
  13308. } break;
  13309. case GGML_OP_WIN_UNPART:
  13310. {
  13311. ggml_compute_forward_win_unpart(params, tensor);
  13312. } break;
  13313. case GGML_OP_UNARY:
  13314. {
  13315. ggml_compute_forward_unary(params, tensor);
  13316. } break;
  13317. case GGML_OP_GET_REL_POS:
  13318. {
  13319. ggml_compute_forward_get_rel_pos(params, tensor);
  13320. } break;
  13321. case GGML_OP_ADD_REL_POS:
  13322. {
  13323. ggml_compute_forward_add_rel_pos(params, tensor);
  13324. } break;
  13325. case GGML_OP_MAP_UNARY:
  13326. {
  13327. ggml_unary_op_f32_t fun;
  13328. memcpy(&fun, tensor->op_params, sizeof(fun));
  13329. ggml_compute_forward_map_unary(params, tensor, fun);
  13330. }
  13331. break;
  13332. case GGML_OP_MAP_BINARY:
  13333. {
  13334. ggml_binary_op_f32_t fun;
  13335. memcpy(&fun, tensor->op_params, sizeof(fun));
  13336. ggml_compute_forward_map_binary(params, tensor, fun);
  13337. }
  13338. break;
  13339. case GGML_OP_MAP_CUSTOM1_F32:
  13340. {
  13341. ggml_custom1_op_f32_t fun;
  13342. memcpy(&fun, tensor->op_params, sizeof(fun));
  13343. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13344. }
  13345. break;
  13346. case GGML_OP_MAP_CUSTOM2_F32:
  13347. {
  13348. ggml_custom2_op_f32_t fun;
  13349. memcpy(&fun, tensor->op_params, sizeof(fun));
  13350. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13351. }
  13352. break;
  13353. case GGML_OP_MAP_CUSTOM3_F32:
  13354. {
  13355. ggml_custom3_op_f32_t fun;
  13356. memcpy(&fun, tensor->op_params, sizeof(fun));
  13357. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13358. }
  13359. break;
  13360. case GGML_OP_MAP_CUSTOM1:
  13361. {
  13362. ggml_compute_forward_map_custom1(params, tensor);
  13363. }
  13364. break;
  13365. case GGML_OP_MAP_CUSTOM2:
  13366. {
  13367. ggml_compute_forward_map_custom2(params, tensor);
  13368. }
  13369. break;
  13370. case GGML_OP_MAP_CUSTOM3:
  13371. {
  13372. ggml_compute_forward_map_custom3(params, tensor);
  13373. }
  13374. break;
  13375. case GGML_OP_CROSS_ENTROPY_LOSS:
  13376. {
  13377. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13378. }
  13379. break;
  13380. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13381. {
  13382. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13383. }
  13384. break;
  13385. case GGML_OP_NONE:
  13386. {
  13387. // nop
  13388. } break;
  13389. case GGML_OP_COUNT:
  13390. {
  13391. GGML_ASSERT(false);
  13392. } break;
  13393. }
  13394. }
  13395. ////////////////////////////////////////////////////////////////////////////////
  13396. static size_t ggml_hash_size(size_t min_sz) {
  13397. // next primes after powers of two
  13398. static const size_t primes[] = {
  13399. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13400. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13401. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13402. 16777259, 33554467, 67108879, 134217757, 268435459,
  13403. 536870923, 1073741827, 2147483659
  13404. };
  13405. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13406. // find the smallest prime that is larger or equal to min_sz
  13407. size_t l = 0;
  13408. size_t r = n_primes;
  13409. while (l < r) {
  13410. size_t m = (l + r)/2;
  13411. if (primes[m] < min_sz) {
  13412. l = m + 1;
  13413. } else {
  13414. r = m;
  13415. }
  13416. }
  13417. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13418. return sz;
  13419. }
  13420. static size_t ggml_hash(const void * p) {
  13421. return (size_t)p;
  13422. }
  13423. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13424. size_t h = ggml_hash(key) % hash_set.size;
  13425. // linear probing
  13426. size_t i = h;
  13427. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13428. i = (i + 1) % hash_set.size;
  13429. if (i == h) {
  13430. // visited all hash table entries -> not found
  13431. return GGML_HASHTABLE_FULL;
  13432. }
  13433. }
  13434. return i;
  13435. }
  13436. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13437. size_t i = ggml_hash_find(hash_set, key);
  13438. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13439. }
  13440. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13441. size_t i = ggml_hash_find(hash_set, key);
  13442. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13443. if (hash_set.keys[i] == key) {
  13444. return GGML_HASHTABLE_ALREADY_EXISTS;
  13445. }
  13446. // insert
  13447. GGML_ASSERT(hash_set.keys[i] == NULL);
  13448. hash_set.keys[i] = key;
  13449. return i;
  13450. }
  13451. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13452. size_t i = ggml_hash_find(hash_set, key);
  13453. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13454. hash_set.keys[i] = key;
  13455. return i;
  13456. }
  13457. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13458. size = ggml_hash_size(size);
  13459. struct ggml_hash_set result;
  13460. result.size = size;
  13461. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13462. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13463. return result;
  13464. }
  13465. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13466. GGML_FREE(hash_set.keys);
  13467. }
  13468. struct hash_map {
  13469. struct ggml_hash_set set;
  13470. struct ggml_tensor ** vals;
  13471. };
  13472. static struct hash_map * ggml_new_hash_map(size_t size) {
  13473. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13474. result->set = ggml_hash_set_new(size);
  13475. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13476. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13477. return result;
  13478. }
  13479. static void ggml_hash_map_free(struct hash_map * map) {
  13480. ggml_hash_set_free(map->set);
  13481. GGML_FREE(map->vals);
  13482. GGML_FREE(map);
  13483. }
  13484. // gradient checkpointing
  13485. static struct ggml_tensor * ggml_recompute_graph_node(
  13486. struct ggml_context * ctx,
  13487. struct ggml_cgraph * graph,
  13488. struct hash_map * replacements,
  13489. struct ggml_tensor * node) {
  13490. if (node == NULL) {
  13491. return NULL;
  13492. }
  13493. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13494. return node;
  13495. }
  13496. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13497. return node;
  13498. }
  13499. int count_children = 0;
  13500. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13501. if (node->src[k]) {
  13502. ++count_children;
  13503. }
  13504. }
  13505. if (count_children == 0) {
  13506. return node;
  13507. }
  13508. size_t i = ggml_hash_find(replacements->set, node);
  13509. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13510. if (replacements->set.keys[i] == node) {
  13511. return replacements->vals[i];
  13512. }
  13513. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13514. // insert clone into replacements
  13515. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13516. replacements->set.keys[i] = node;
  13517. replacements->vals[i] = clone;
  13518. clone->op = node->op;
  13519. clone->grad = node->grad;
  13520. clone->flags = node->flags;
  13521. clone->extra = node->extra;
  13522. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13523. clone->nb[k] = node->nb[k];
  13524. }
  13525. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13526. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13527. }
  13528. if (node->view_src != NULL) {
  13529. clone->data = (node->view_src->data == NULL)
  13530. ? NULL // view_src not yet allocated
  13531. : (char *) node->view_src->data // view_src already allocated
  13532. + node->view_offs;
  13533. clone->view_src = node->view_src;
  13534. clone->view_offs = node->view_offs;
  13535. }
  13536. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13537. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13538. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13539. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13540. return clone;
  13541. }
  13542. void ggml_build_backward_gradient_checkpointing(
  13543. struct ggml_context * ctx,
  13544. struct ggml_cgraph * gf,
  13545. struct ggml_cgraph * gb,
  13546. struct ggml_cgraph * gb_tmp,
  13547. struct ggml_tensor * * checkpoints,
  13548. int n_checkpoints) {
  13549. ggml_graph_cpy(gf, gb_tmp);
  13550. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13551. if (n_checkpoints <= 0) {
  13552. ggml_graph_cpy(gb_tmp, gb);
  13553. return;
  13554. }
  13555. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13556. // insert checkpoints in replacements
  13557. for (int i = 0; i < n_checkpoints; ++i) {
  13558. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13559. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13560. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13561. replacements->set.keys[k] = checkpoints[i];
  13562. replacements->vals[k] = checkpoints[i];
  13563. }
  13564. ggml_graph_cpy(gf, gb);
  13565. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13566. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13567. // by recomputing them from checkpoints
  13568. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13569. struct ggml_tensor * node = gb_tmp->nodes[i];
  13570. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13571. // insert new tensors recomputing src, reusing already made replacements,
  13572. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13573. // recurse for input tensors,
  13574. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13575. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13576. }
  13577. // insert rewritten backward node with replacements made into resulting backward graph gb
  13578. ggml_build_forward_expand(gb, node);
  13579. }
  13580. ggml_hash_map_free(replacements);
  13581. }
  13582. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13583. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13584. if (ggml_hash_contains(zero_table, a)) {
  13585. return b;
  13586. } else {
  13587. return ggml_add_impl(ctx, a, b, false);
  13588. }
  13589. }
  13590. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13591. if (ggml_hash_contains(zero_table, a)) {
  13592. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13593. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13594. } else {
  13595. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13596. }
  13597. }
  13598. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13599. if (ggml_hash_contains(zero_table, a)) {
  13600. return ggml_repeat(ctx, b, a);
  13601. } else {
  13602. return ggml_add1_impl(ctx, a, b, false);
  13603. }
  13604. }
  13605. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13606. if (ggml_hash_contains(zero_table, a)) {
  13607. return ggml_neg(ctx, b);
  13608. } else {
  13609. return ggml_sub_impl(ctx, a, b, false);
  13610. }
  13611. }
  13612. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13613. struct ggml_tensor * src0 = tensor->src[0];
  13614. struct ggml_tensor * src1 = tensor->src[1];
  13615. switch (tensor->op) {
  13616. case GGML_OP_DUP:
  13617. {
  13618. if (src0->grad) {
  13619. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13620. }
  13621. } break;
  13622. case GGML_OP_ADD:
  13623. {
  13624. if (src0->grad) {
  13625. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13626. }
  13627. if (src1->grad) {
  13628. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13629. }
  13630. } break;
  13631. case GGML_OP_ADD1:
  13632. {
  13633. if (src0->grad) {
  13634. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13635. }
  13636. if (src1->grad) {
  13637. src1->grad = ggml_add_or_set(ctx,
  13638. src1->grad,
  13639. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13640. zero_table);
  13641. }
  13642. } break;
  13643. case GGML_OP_ACC:
  13644. {
  13645. if (src0->grad) {
  13646. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13647. }
  13648. if (src1->grad) {
  13649. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13650. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13651. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13652. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13653. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13654. tensor->grad,
  13655. src1->grad->ne[0],
  13656. src1->grad->ne[1],
  13657. src1->grad->ne[2],
  13658. src1->grad->ne[3],
  13659. nb1, nb2, nb3, offset);
  13660. src1->grad =
  13661. ggml_add_or_set(ctx,
  13662. src1->grad,
  13663. ggml_reshape(ctx,
  13664. ggml_cont(ctx, tensor_grad_view),
  13665. src1->grad),
  13666. zero_table);
  13667. }
  13668. } break;
  13669. case GGML_OP_SUB:
  13670. {
  13671. if (src0->grad) {
  13672. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13673. }
  13674. if (src1->grad) {
  13675. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13676. }
  13677. } break;
  13678. case GGML_OP_MUL:
  13679. {
  13680. if (src0->grad) {
  13681. src0->grad =
  13682. ggml_add_or_set(ctx,
  13683. src0->grad,
  13684. ggml_mul(ctx, src1, tensor->grad),
  13685. zero_table);
  13686. }
  13687. if (src1->grad) {
  13688. src1->grad =
  13689. ggml_add_or_set(ctx,
  13690. src1->grad,
  13691. ggml_mul(ctx, src0, tensor->grad),
  13692. zero_table);
  13693. }
  13694. } break;
  13695. case GGML_OP_DIV:
  13696. {
  13697. if (src0->grad) {
  13698. src0->grad =
  13699. ggml_add_or_set(ctx,
  13700. src0->grad,
  13701. ggml_div(ctx, tensor->grad, src1),
  13702. zero_table);
  13703. }
  13704. if (src1->grad) {
  13705. src1->grad =
  13706. ggml_sub_or_set(ctx,
  13707. src1->grad,
  13708. ggml_mul(ctx,
  13709. tensor->grad,
  13710. ggml_div(ctx, tensor, src1)),
  13711. zero_table);
  13712. }
  13713. } break;
  13714. case GGML_OP_SQR:
  13715. {
  13716. if (src0->grad) {
  13717. src0->grad =
  13718. ggml_add_or_set(ctx,
  13719. src0->grad,
  13720. ggml_scale(ctx,
  13721. ggml_mul(ctx, src0, tensor->grad),
  13722. 2.0f),
  13723. zero_table);
  13724. }
  13725. } break;
  13726. case GGML_OP_SQRT:
  13727. {
  13728. if (src0->grad) {
  13729. src0->grad =
  13730. ggml_add_or_set(ctx,
  13731. src0->grad,
  13732. ggml_scale(ctx,
  13733. ggml_div(ctx,
  13734. tensor->grad,
  13735. tensor),
  13736. 0.5f),
  13737. zero_table);
  13738. }
  13739. } break;
  13740. case GGML_OP_LOG:
  13741. {
  13742. if (src0->grad) {
  13743. src0->grad =
  13744. ggml_add_or_set(ctx,
  13745. src0->grad,
  13746. ggml_div(ctx,
  13747. tensor->grad,
  13748. src0),
  13749. zero_table);
  13750. }
  13751. } break;
  13752. case GGML_OP_SUM:
  13753. {
  13754. if (src0->grad) {
  13755. src0->grad =
  13756. ggml_add1_or_set(ctx,
  13757. src0->grad,
  13758. tensor->grad,
  13759. zero_table);
  13760. }
  13761. } break;
  13762. case GGML_OP_SUM_ROWS:
  13763. {
  13764. if (src0->grad) {
  13765. src0->grad =
  13766. ggml_add_or_set(ctx,
  13767. src0->grad,
  13768. ggml_repeat(ctx,
  13769. tensor->grad,
  13770. src0->grad),
  13771. zero_table);
  13772. }
  13773. } break;
  13774. case GGML_OP_MEAN:
  13775. case GGML_OP_ARGMAX:
  13776. {
  13777. GGML_ASSERT(false); // TODO: implement
  13778. } break;
  13779. case GGML_OP_REPEAT:
  13780. {
  13781. // necessary for llama
  13782. if (src0->grad) {
  13783. src0->grad = ggml_add_or_set(ctx,
  13784. src0->grad,
  13785. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13786. zero_table);
  13787. }
  13788. } break;
  13789. case GGML_OP_REPEAT_BACK:
  13790. {
  13791. if (src0->grad) {
  13792. // TODO: test this
  13793. src0->grad = ggml_add_or_set(ctx,
  13794. src0->grad,
  13795. ggml_repeat(ctx, tensor->grad, src0->grad),
  13796. zero_table);
  13797. }
  13798. } break;
  13799. case GGML_OP_CONCAT:
  13800. {
  13801. GGML_ASSERT(false); // TODO: implement
  13802. } break;
  13803. case GGML_OP_SILU_BACK:
  13804. {
  13805. GGML_ASSERT(false); // TODO: not implemented
  13806. } break;
  13807. case GGML_OP_NORM:
  13808. {
  13809. GGML_ASSERT(false); // TODO: not implemented
  13810. } break;
  13811. case GGML_OP_RMS_NORM:
  13812. {
  13813. // necessary for llama
  13814. if (src0->grad) {
  13815. float eps;
  13816. memcpy(&eps, tensor->op_params, sizeof(float));
  13817. src0->grad = ggml_add_or_set(ctx,
  13818. src0->grad,
  13819. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13820. zero_table);
  13821. }
  13822. } break;
  13823. case GGML_OP_RMS_NORM_BACK:
  13824. {
  13825. GGML_ASSERT(false); // TODO: not implemented
  13826. } break;
  13827. case GGML_OP_GROUP_NORM:
  13828. {
  13829. GGML_ASSERT(false); // TODO: not implemented
  13830. } break;
  13831. case GGML_OP_MUL_MAT:
  13832. {
  13833. // https://cs231n.github.io/optimization-2/#staged
  13834. // # forward pass
  13835. // s0 = np.random.randn(5, 10)
  13836. // s1 = np.random.randn(10, 3)
  13837. // t = s0.dot(s1)
  13838. // # now suppose we had the gradient on t from above in the circuit
  13839. // dt = np.random.randn(*t.shape) # same shape as t
  13840. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13841. // ds1 = t.T.dot(dt)
  13842. // tensor.shape [m,p,qq,rr]
  13843. // src0.shape [n,m,q1,r1]
  13844. // src1.shape [n,p,qq,rr]
  13845. // necessary for llama
  13846. if (src0->grad) {
  13847. struct ggml_tensor * s1_tg =
  13848. ggml_out_prod(ctx, // [n,m,qq,rr]
  13849. src1, // [n,p,qq,rr]
  13850. tensor->grad); // [m,p,qq,rr]
  13851. const int64_t qq = s1_tg->ne[2];
  13852. const int64_t rr = s1_tg->ne[3];
  13853. const int64_t q1 = src0->ne[2];
  13854. const int64_t r1 = src0->ne[3];
  13855. const bool ne2_broadcasted = qq > q1;
  13856. const bool ne3_broadcasted = rr > r1;
  13857. if (ne2_broadcasted || ne3_broadcasted) {
  13858. // sum broadcast repetitions of s1_tg into shape of src0
  13859. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13860. }
  13861. src0->grad =
  13862. ggml_add_or_set(ctx,
  13863. src0->grad, // [n,m,q1,r1]
  13864. s1_tg, // [n,m,q1,r1]
  13865. zero_table);
  13866. }
  13867. if (src1->grad) {
  13868. src1->grad =
  13869. ggml_add_or_set(ctx,
  13870. src1->grad, // [n,p,qq,rr]
  13871. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13872. // ggml_cont(ctx, // [m,n,q1,r1]
  13873. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13874. // tensor->grad), // [m,p,qq,rr]
  13875. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13876. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13877. // // and then use ggml_out_prod
  13878. ggml_out_prod(ctx, // [n,p,qq,rr]
  13879. src0, // [n,m,q1,r1]
  13880. ggml_transpose(ctx, // [p,m,qq,rr]
  13881. tensor->grad)), // [m,p,qq,rr]
  13882. zero_table);
  13883. }
  13884. } break;
  13885. case GGML_OP_MUL_MAT_ID:
  13886. {
  13887. GGML_ASSERT(false); // TODO: not implemented
  13888. } break;
  13889. case GGML_OP_OUT_PROD:
  13890. {
  13891. GGML_ASSERT(false); // TODO: not implemented
  13892. } break;
  13893. case GGML_OP_SCALE:
  13894. {
  13895. // necessary for llama
  13896. if (src0->grad) {
  13897. float s;
  13898. memcpy(&s, tensor->op_params, sizeof(float));
  13899. src0->grad =
  13900. ggml_add_or_set(ctx,
  13901. src0->grad,
  13902. ggml_scale_impl(ctx, tensor->grad, s, false),
  13903. zero_table);
  13904. }
  13905. } break;
  13906. case GGML_OP_SET:
  13907. {
  13908. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13909. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13910. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13911. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13912. struct ggml_tensor * tensor_grad_view = NULL;
  13913. if (src0->grad || src1->grad) {
  13914. GGML_ASSERT(src0->type == tensor->type);
  13915. GGML_ASSERT(tensor->grad->type == tensor->type);
  13916. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13917. tensor_grad_view = ggml_view_4d(ctx,
  13918. tensor->grad,
  13919. src1->grad->ne[0],
  13920. src1->grad->ne[1],
  13921. src1->grad->ne[2],
  13922. src1->grad->ne[3],
  13923. nb1, nb2, nb3, offset);
  13924. }
  13925. if (src0->grad) {
  13926. src0->grad = ggml_add_or_set(ctx,
  13927. src0->grad,
  13928. ggml_acc_impl(ctx,
  13929. tensor->grad,
  13930. ggml_neg(ctx, tensor_grad_view),
  13931. nb1, nb2, nb3, offset, false),
  13932. zero_table);
  13933. }
  13934. if (src1->grad) {
  13935. src1->grad =
  13936. ggml_add_or_set(ctx,
  13937. src1->grad,
  13938. ggml_reshape(ctx,
  13939. ggml_cont(ctx, tensor_grad_view),
  13940. src1->grad),
  13941. zero_table);
  13942. }
  13943. } break;
  13944. case GGML_OP_CPY:
  13945. {
  13946. // necessary for llama
  13947. // cpy overwrites value of src1 by src0 and returns view(src1)
  13948. // the overwriting is mathematically equivalent to:
  13949. // tensor = src0 * 1 + src1 * 0
  13950. if (src0->grad) {
  13951. // dsrc0 = dtensor * 1
  13952. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13953. }
  13954. if (src1->grad) {
  13955. // dsrc1 = dtensor * 0 -> noop
  13956. }
  13957. } break;
  13958. case GGML_OP_CONT:
  13959. {
  13960. // same as cpy
  13961. if (src0->grad) {
  13962. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13963. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13964. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13965. }
  13966. } break;
  13967. case GGML_OP_RESHAPE:
  13968. {
  13969. // necessary for llama
  13970. if (src0->grad) {
  13971. src0->grad =
  13972. ggml_add_or_set(ctx, src0->grad,
  13973. ggml_reshape(ctx,
  13974. ggml_is_contiguous(tensor->grad)
  13975. ? tensor->grad
  13976. : ggml_cont(ctx, tensor->grad),
  13977. src0->grad),
  13978. zero_table);
  13979. }
  13980. } break;
  13981. case GGML_OP_VIEW:
  13982. {
  13983. // necessary for llama
  13984. if (src0->grad) {
  13985. size_t offset;
  13986. memcpy(&offset, tensor->op_params, sizeof(offset));
  13987. size_t nb1 = tensor->nb[1];
  13988. size_t nb2 = tensor->nb[2];
  13989. size_t nb3 = tensor->nb[3];
  13990. if (src0->type != src0->grad->type) {
  13991. // gradient is typically F32, but src0 could be other type
  13992. size_t ng = ggml_element_size(src0->grad);
  13993. size_t n0 = ggml_element_size(src0);
  13994. GGML_ASSERT(offset % n0 == 0);
  13995. GGML_ASSERT(nb1 % n0 == 0);
  13996. GGML_ASSERT(nb2 % n0 == 0);
  13997. GGML_ASSERT(nb3 % n0 == 0);
  13998. offset = (offset / n0) * ng;
  13999. nb1 = (nb1 / n0) * ng;
  14000. nb2 = (nb2 / n0) * ng;
  14001. nb3 = (nb3 / n0) * ng;
  14002. }
  14003. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14004. }
  14005. } break;
  14006. case GGML_OP_PERMUTE:
  14007. {
  14008. // necessary for llama
  14009. if (src0->grad) {
  14010. int32_t * axes = (int32_t *) tensor->op_params;
  14011. int axis0 = axes[0] & 0x3;
  14012. int axis1 = axes[1] & 0x3;
  14013. int axis2 = axes[2] & 0x3;
  14014. int axis3 = axes[3] & 0x3;
  14015. int axes_backward[4] = {0,0,0,0};
  14016. axes_backward[axis0] = 0;
  14017. axes_backward[axis1] = 1;
  14018. axes_backward[axis2] = 2;
  14019. axes_backward[axis3] = 3;
  14020. src0->grad =
  14021. ggml_add_or_set(ctx, src0->grad,
  14022. ggml_permute(ctx,
  14023. tensor->grad,
  14024. axes_backward[0],
  14025. axes_backward[1],
  14026. axes_backward[2],
  14027. axes_backward[3]),
  14028. zero_table);
  14029. }
  14030. } break;
  14031. case GGML_OP_TRANSPOSE:
  14032. {
  14033. // necessary for llama
  14034. if (src0->grad) {
  14035. src0->grad =
  14036. ggml_add_or_set(ctx, src0->grad,
  14037. ggml_transpose(ctx, tensor->grad),
  14038. zero_table);
  14039. }
  14040. } break;
  14041. case GGML_OP_GET_ROWS:
  14042. {
  14043. // necessary for llama (only for tokenizer)
  14044. if (src0->grad) {
  14045. src0->grad =
  14046. ggml_add_or_set(ctx, src0->grad,
  14047. // last ggml_get_rows_back argument src0->grad is only
  14048. // necessary to setup correct output shape
  14049. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14050. zero_table);
  14051. }
  14052. if (src1->grad) {
  14053. // noop
  14054. }
  14055. } break;
  14056. case GGML_OP_GET_ROWS_BACK:
  14057. {
  14058. GGML_ASSERT(false); // TODO: not implemented
  14059. } break;
  14060. case GGML_OP_DIAG:
  14061. {
  14062. GGML_ASSERT(false); // TODO: not implemented
  14063. } break;
  14064. case GGML_OP_DIAG_MASK_INF:
  14065. {
  14066. // necessary for llama
  14067. if (src0->grad) {
  14068. const int n_past = ((int32_t *) tensor->op_params)[0];
  14069. src0->grad =
  14070. ggml_add_or_set(ctx, src0->grad,
  14071. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14072. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14073. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14074. zero_table);
  14075. }
  14076. } break;
  14077. case GGML_OP_DIAG_MASK_ZERO:
  14078. {
  14079. // necessary for llama
  14080. if (src0->grad) {
  14081. const int n_past = ((int32_t *) tensor->op_params)[0];
  14082. src0->grad =
  14083. ggml_add_or_set(ctx, src0->grad,
  14084. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14085. zero_table);
  14086. }
  14087. } break;
  14088. case GGML_OP_SOFT_MAX:
  14089. {
  14090. // necessary for llama
  14091. if (src0->grad) {
  14092. src0->grad =
  14093. ggml_add_or_set(ctx, src0->grad,
  14094. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14095. zero_table);
  14096. }
  14097. } break;
  14098. case GGML_OP_SOFT_MAX_BACK:
  14099. {
  14100. GGML_ASSERT(false); // TODO: not implemented
  14101. } break;
  14102. case GGML_OP_ROPE:
  14103. {
  14104. // necessary for llama
  14105. if (src0->grad) {
  14106. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14107. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14108. const int mode = ((int32_t *) tensor->op_params)[2];
  14109. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14110. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14111. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14112. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14113. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14114. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14115. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14116. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14117. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14118. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14119. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14120. src0->grad = ggml_add_or_set(ctx,
  14121. src0->grad,
  14122. ggml_rope_back(ctx,
  14123. tensor->grad,
  14124. src1,
  14125. n_dims,
  14126. mode,
  14127. n_ctx,
  14128. n_orig_ctx,
  14129. freq_base,
  14130. freq_scale,
  14131. ext_factor,
  14132. attn_factor,
  14133. beta_fast,
  14134. beta_slow,
  14135. xpos_base,
  14136. xpos_down),
  14137. zero_table);
  14138. }
  14139. } break;
  14140. case GGML_OP_ROPE_BACK:
  14141. {
  14142. if (src0->grad) {
  14143. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14144. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14145. const int mode = ((int32_t *) tensor->op_params)[2];
  14146. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14147. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14148. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14149. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14150. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14151. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14152. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14153. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14154. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14155. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14156. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14157. src0->grad = ggml_add_or_set(ctx,
  14158. src0->grad,
  14159. ggml_rope_impl(ctx,
  14160. tensor->grad,
  14161. src1,
  14162. n_dims,
  14163. mode,
  14164. n_ctx,
  14165. n_orig_ctx,
  14166. freq_base,
  14167. freq_scale,
  14168. ext_factor,
  14169. attn_factor,
  14170. beta_fast,
  14171. beta_slow,
  14172. xpos_base,
  14173. xpos_down,
  14174. false),
  14175. zero_table);
  14176. }
  14177. } break;
  14178. case GGML_OP_ALIBI:
  14179. {
  14180. GGML_ASSERT(false); // TODO: not implemented
  14181. } break;
  14182. case GGML_OP_CLAMP:
  14183. {
  14184. GGML_ASSERT(false); // TODO: not implemented
  14185. } break;
  14186. case GGML_OP_CONV_TRANSPOSE_1D:
  14187. {
  14188. GGML_ASSERT(false); // TODO: not implemented
  14189. } break;
  14190. case GGML_OP_IM2COL:
  14191. {
  14192. GGML_ASSERT(false); // TODO: not implemented
  14193. } break;
  14194. case GGML_OP_CONV_TRANSPOSE_2D:
  14195. {
  14196. GGML_ASSERT(false); // TODO: not implemented
  14197. } break;
  14198. case GGML_OP_POOL_1D:
  14199. {
  14200. GGML_ASSERT(false); // TODO: not implemented
  14201. } break;
  14202. case GGML_OP_POOL_2D:
  14203. {
  14204. GGML_ASSERT(false); // TODO: not implemented
  14205. } break;
  14206. case GGML_OP_UPSCALE:
  14207. {
  14208. GGML_ASSERT(false); // TODO: not implemented
  14209. } break;
  14210. case GGML_OP_PAD:
  14211. {
  14212. GGML_ASSERT(false); // TODO: not implemented
  14213. } break;
  14214. case GGML_OP_ARANGE:
  14215. {
  14216. GGML_ASSERT(false); // TODO: not implemented
  14217. } break;
  14218. case GGML_OP_TIMESTEP_EMBEDDING:
  14219. {
  14220. GGML_ASSERT(false); // TODO: not implemented
  14221. } break;
  14222. case GGML_OP_ARGSORT:
  14223. {
  14224. GGML_ASSERT(false); // TODO: not implemented
  14225. } break;
  14226. case GGML_OP_LEAKY_RELU:
  14227. {
  14228. GGML_ASSERT(false); // TODO: not implemented
  14229. } break;
  14230. case GGML_OP_FLASH_ATTN:
  14231. {
  14232. struct ggml_tensor * flash_grad = NULL;
  14233. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14234. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14235. GGML_ASSERT(t == 0 || t == 1);
  14236. bool masked = t != 0;
  14237. flash_grad =
  14238. ggml_flash_attn_back(ctx,
  14239. src0,
  14240. src1,
  14241. tensor->src[2],
  14242. tensor->grad,
  14243. masked);
  14244. }
  14245. struct ggml_tensor * src2 = tensor->src[2];
  14246. const int64_t elem_q = ggml_nelements(src0);
  14247. const int64_t elem_k = ggml_nelements(src1);
  14248. const int64_t elem_v = ggml_nelements(src2);
  14249. enum ggml_type result_type = flash_grad->type;
  14250. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14251. const size_t tsize = ggml_type_size(result_type);
  14252. const size_t offs_q = 0;
  14253. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14254. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14255. if (src0->grad) {
  14256. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14257. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14258. src0->grad = ggml_add_or_set(ctx,
  14259. src0->grad,
  14260. grad_q,
  14261. zero_table);
  14262. }
  14263. if (src1->grad) {
  14264. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14265. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14266. src1->grad = ggml_add_or_set(ctx,
  14267. src1->grad,
  14268. grad_k,
  14269. zero_table);
  14270. }
  14271. if (src2->grad) {
  14272. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14273. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14274. src2->grad = ggml_add_or_set(ctx,
  14275. src2->grad,
  14276. grad_v,
  14277. zero_table);
  14278. }
  14279. } break;
  14280. case GGML_OP_FLASH_FF:
  14281. {
  14282. GGML_ASSERT(false); // not supported
  14283. } break;
  14284. case GGML_OP_FLASH_ATTN_BACK:
  14285. {
  14286. GGML_ASSERT(false); // not supported
  14287. } break;
  14288. case GGML_OP_SSM_CONV:
  14289. case GGML_OP_SSM_SCAN:
  14290. {
  14291. GGML_ASSERT(false); // TODO: not implemented
  14292. } break;
  14293. case GGML_OP_WIN_PART:
  14294. case GGML_OP_WIN_UNPART:
  14295. case GGML_OP_UNARY:
  14296. {
  14297. switch (ggml_get_unary_op(tensor)) {
  14298. case GGML_UNARY_OP_ABS:
  14299. {
  14300. if (src0->grad) {
  14301. src0->grad =
  14302. ggml_add_or_set(ctx,
  14303. src0->grad,
  14304. ggml_mul(ctx,
  14305. ggml_sgn(ctx, src0),
  14306. tensor->grad),
  14307. zero_table);
  14308. }
  14309. } break;
  14310. case GGML_UNARY_OP_SGN:
  14311. {
  14312. if (src0->grad) {
  14313. // noop
  14314. }
  14315. } break;
  14316. case GGML_UNARY_OP_NEG:
  14317. {
  14318. if (src0->grad) {
  14319. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14320. }
  14321. } break;
  14322. case GGML_UNARY_OP_STEP:
  14323. {
  14324. if (src0->grad) {
  14325. // noop
  14326. }
  14327. } break;
  14328. case GGML_UNARY_OP_TANH:
  14329. {
  14330. GGML_ASSERT(false); // TODO: not implemented
  14331. } break;
  14332. case GGML_UNARY_OP_ELU:
  14333. {
  14334. GGML_ASSERT(false); // TODO: not implemented
  14335. } break;
  14336. case GGML_UNARY_OP_RELU:
  14337. {
  14338. if (src0->grad) {
  14339. src0->grad = ggml_add_or_set(ctx,
  14340. src0->grad,
  14341. ggml_mul(ctx,
  14342. ggml_step(ctx, src0),
  14343. tensor->grad),
  14344. zero_table);
  14345. }
  14346. } break;
  14347. case GGML_UNARY_OP_GELU:
  14348. {
  14349. GGML_ASSERT(false); // TODO: not implemented
  14350. } break;
  14351. case GGML_UNARY_OP_GELU_QUICK:
  14352. {
  14353. GGML_ASSERT(false); // TODO: not implemented
  14354. } break;
  14355. case GGML_UNARY_OP_SILU:
  14356. {
  14357. // necessary for llama
  14358. if (src0->grad) {
  14359. src0->grad = ggml_add_or_set(ctx,
  14360. src0->grad,
  14361. ggml_silu_back(ctx, src0, tensor->grad),
  14362. zero_table);
  14363. }
  14364. } break;
  14365. default:
  14366. GGML_ASSERT(false);
  14367. }
  14368. } break;
  14369. case GGML_OP_GET_REL_POS:
  14370. case GGML_OP_ADD_REL_POS:
  14371. case GGML_OP_MAP_UNARY:
  14372. case GGML_OP_MAP_BINARY:
  14373. case GGML_OP_MAP_CUSTOM1_F32:
  14374. case GGML_OP_MAP_CUSTOM2_F32:
  14375. case GGML_OP_MAP_CUSTOM3_F32:
  14376. case GGML_OP_MAP_CUSTOM1:
  14377. case GGML_OP_MAP_CUSTOM2:
  14378. case GGML_OP_MAP_CUSTOM3:
  14379. {
  14380. GGML_ASSERT(false); // not supported
  14381. } break;
  14382. case GGML_OP_CROSS_ENTROPY_LOSS:
  14383. {
  14384. if (src0->grad) {
  14385. src0->grad = ggml_add_or_set(ctx,
  14386. src0->grad,
  14387. ggml_cross_entropy_loss_back(ctx,
  14388. src0,
  14389. src1,
  14390. tensor->grad),
  14391. zero_table);
  14392. }
  14393. } break;
  14394. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14395. {
  14396. GGML_ASSERT(false); // not supported
  14397. } break;
  14398. case GGML_OP_NONE:
  14399. {
  14400. // nop
  14401. } break;
  14402. case GGML_OP_COUNT:
  14403. {
  14404. GGML_ASSERT(false);
  14405. } break;
  14406. }
  14407. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14408. if (tensor->src[i] && tensor->src[i]->grad) {
  14409. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14410. }
  14411. }
  14412. }
  14413. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14414. if (node->grad == NULL) {
  14415. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14416. // it can also happen during forward pass, if the user performs computations with constants
  14417. if (node->op != GGML_OP_NONE) {
  14418. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14419. }
  14420. }
  14421. // check if already visited
  14422. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14423. return;
  14424. }
  14425. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14426. const int k =
  14427. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14428. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14429. /* unknown order, just fall back to using i*/ i;
  14430. if (node->src[k]) {
  14431. ggml_visit_parents(cgraph, node->src[k]);
  14432. }
  14433. }
  14434. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14435. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14436. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14437. if (strlen(node->name) == 0) {
  14438. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14439. }
  14440. cgraph->leafs[cgraph->n_leafs] = node;
  14441. cgraph->n_leafs++;
  14442. } else {
  14443. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14444. if (strlen(node->name) == 0) {
  14445. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14446. }
  14447. cgraph->nodes[cgraph->n_nodes] = node;
  14448. if (cgraph->grads) {
  14449. cgraph->grads[cgraph->n_nodes] = node->grad;
  14450. }
  14451. cgraph->n_nodes++;
  14452. }
  14453. }
  14454. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14455. if (!expand) {
  14456. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14457. ggml_graph_clear(cgraph);
  14458. }
  14459. const int n0 = cgraph->n_nodes;
  14460. UNUSED(n0);
  14461. ggml_visit_parents(cgraph, tensor);
  14462. const int n_new = cgraph->n_nodes - n0;
  14463. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14464. if (n_new > 0) {
  14465. // the last added node should always be starting point
  14466. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14467. }
  14468. }
  14469. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14470. ggml_build_forward_impl(cgraph, tensor, true);
  14471. }
  14472. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14473. GGML_ASSERT(gf->n_nodes > 0);
  14474. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14475. if (keep) {
  14476. for (int i = 0; i < gf->n_nodes; i++) {
  14477. struct ggml_tensor * node = gf->nodes[i];
  14478. if (node->grad) {
  14479. node->grad = ggml_dup_tensor(ctx, node);
  14480. gf->grads[i] = node->grad;
  14481. }
  14482. }
  14483. }
  14484. // remember original gradients which start with zero values
  14485. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14486. for (int i = 0; i < gf->n_nodes; i++) {
  14487. if (gf->grads[i]) {
  14488. ggml_hash_insert(zero_table, gf->grads[i]);
  14489. }
  14490. }
  14491. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14492. struct ggml_tensor * node = gf->nodes[i];
  14493. // inplace operations to add gradients are not created by ggml_compute_backward
  14494. // use allocator to automatically make inplace operations
  14495. if (node->grad) {
  14496. ggml_compute_backward(ctx, node, zero_table);
  14497. }
  14498. }
  14499. for (int i = 0; i < gf->n_nodes; i++) {
  14500. struct ggml_tensor * node = gf->nodes[i];
  14501. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14502. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14503. ggml_build_forward_expand(gb, node->grad);
  14504. }
  14505. }
  14506. ggml_hash_set_free(zero_table);
  14507. }
  14508. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14509. size_t nbytes = sizeof(struct ggml_cgraph);
  14510. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14511. if (grads) {
  14512. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14513. }
  14514. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14515. return nbytes;
  14516. }
  14517. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14518. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14519. }
  14520. size_t ggml_graph_overhead(void) {
  14521. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14522. }
  14523. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14524. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14525. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14526. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14527. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14528. size_t hash_size = ggml_hash_size(size * 2);
  14529. struct ggml_tensor ** nodes_ptr = data_start;
  14530. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14531. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14532. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14533. // check that we allocated the correct amount of memory
  14534. assert(obj_size == (size_t) (
  14535. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14536. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14537. *cgraph = (struct ggml_cgraph) {
  14538. /*.size =*/ size,
  14539. /*.n_nodes =*/ 0,
  14540. /*.n_leafs =*/ 0,
  14541. /*.nodes =*/ nodes_ptr,
  14542. /*.grads =*/ grads_ptr,
  14543. /*.leafs =*/ leafs_ptr,
  14544. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14545. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14546. /*.perf_runs =*/ 0,
  14547. /*.perf_cycles =*/ 0,
  14548. /*.perf_time_us =*/ 0,
  14549. };
  14550. return cgraph;
  14551. }
  14552. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14553. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14554. }
  14555. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14556. struct ggml_cgraph cgraph = {
  14557. /*.size =*/ 0,
  14558. /*.n_nodes =*/ i1 - i0,
  14559. /*.n_leafs =*/ 0,
  14560. /*.nodes =*/ cgraph0->nodes + i0,
  14561. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14562. /*.leafs =*/ NULL,
  14563. /*.hash_table =*/ { 0, NULL },
  14564. /*.order =*/ cgraph0->order,
  14565. /*.perf_runs =*/ 0,
  14566. /*.perf_cycles =*/ 0,
  14567. /*.perf_time_us =*/ 0,
  14568. };
  14569. return cgraph;
  14570. }
  14571. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14572. GGML_ASSERT(dst->size >= src->n_leafs);
  14573. GGML_ASSERT(dst->size >= src->n_nodes);
  14574. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14575. dst->n_leafs = src->n_leafs;
  14576. dst->n_nodes = src->n_nodes;
  14577. dst->order = src->order;
  14578. for (int i = 0; i < src->n_leafs; ++i) {
  14579. dst->leafs[i] = src->leafs[i];
  14580. }
  14581. for (int i = 0; i < src->n_nodes; ++i) {
  14582. dst->nodes[i] = src->nodes[i];
  14583. }
  14584. if (src->grads) {
  14585. GGML_ASSERT(dst->grads != NULL);
  14586. for (int i = 0; i < src->n_nodes; ++i) {
  14587. dst->grads[i] = src->grads[i];
  14588. }
  14589. }
  14590. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14591. if (src->visited_hash_table.keys[i]) {
  14592. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14593. }
  14594. }
  14595. }
  14596. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14597. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14598. ggml_graph_cpy(cgraph, result);
  14599. return result;
  14600. }
  14601. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14602. GGML_ASSERT(cgraph->grads != NULL);
  14603. for (int i = 0; i < cgraph->n_nodes; i++) {
  14604. struct ggml_tensor * grad = cgraph->grads[i];
  14605. if (grad) {
  14606. ggml_set_zero(grad);
  14607. }
  14608. }
  14609. }
  14610. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14611. cgraph->n_leafs = 0;
  14612. cgraph->n_nodes = 0;
  14613. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14614. }
  14615. //
  14616. // thread data
  14617. //
  14618. // synchronization is done via busy loops
  14619. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14620. //
  14621. #ifdef __APPLE__
  14622. //#include <os/lock.h>
  14623. //
  14624. //typedef os_unfair_lock ggml_lock_t;
  14625. //
  14626. //#define ggml_lock_init(x) UNUSED(x)
  14627. //#define ggml_lock_destroy(x) UNUSED(x)
  14628. //#define ggml_lock_lock os_unfair_lock_lock
  14629. //#define ggml_lock_unlock os_unfair_lock_unlock
  14630. //
  14631. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14632. typedef int ggml_lock_t;
  14633. #define ggml_lock_init(x) UNUSED(x)
  14634. #define ggml_lock_destroy(x) UNUSED(x)
  14635. #define ggml_lock_lock(x) UNUSED(x)
  14636. #define ggml_lock_unlock(x) UNUSED(x)
  14637. #define GGML_LOCK_INITIALIZER 0
  14638. typedef pthread_t ggml_thread_t;
  14639. #define ggml_thread_create pthread_create
  14640. #define ggml_thread_join pthread_join
  14641. #else
  14642. //typedef pthread_spinlock_t ggml_lock_t;
  14643. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14644. //#define ggml_lock_destroy pthread_spin_destroy
  14645. //#define ggml_lock_lock pthread_spin_lock
  14646. //#define ggml_lock_unlock pthread_spin_unlock
  14647. typedef int ggml_lock_t;
  14648. #define ggml_lock_init(x) UNUSED(x)
  14649. #define ggml_lock_destroy(x) UNUSED(x)
  14650. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14651. #define ggml_lock_lock(x) _mm_pause()
  14652. #else
  14653. #define ggml_lock_lock(x) UNUSED(x)
  14654. #endif
  14655. #define ggml_lock_unlock(x) UNUSED(x)
  14656. #define GGML_LOCK_INITIALIZER 0
  14657. typedef pthread_t ggml_thread_t;
  14658. #define ggml_thread_create pthread_create
  14659. #define ggml_thread_join pthread_join
  14660. #endif
  14661. // Android's libc implementation "bionic" does not support setting affinity
  14662. #if defined(__gnu_linux__)
  14663. static void set_numa_thread_affinity(int thread_n) {
  14664. if (!ggml_is_numa()) {
  14665. return;
  14666. }
  14667. int node_num;
  14668. int rv;
  14669. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14670. switch(g_state.numa.numa_strategy) {
  14671. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14672. // run thread on node_num thread_n / (threads per node)
  14673. node_num = thread_n % g_state.numa.n_nodes;
  14674. break;
  14675. case GGML_NUMA_STRATEGY_ISOLATE:
  14676. // run thread on current_node
  14677. node_num = g_state.numa.current_node;
  14678. break;
  14679. case GGML_NUMA_STRATEGY_NUMACTL:
  14680. // use the cpuset that numactl gave us
  14681. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14682. if (rv) {
  14683. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14684. }
  14685. return;
  14686. default:
  14687. return;
  14688. }
  14689. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14690. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14691. CPU_ZERO_S(setsize, cpus);
  14692. for (size_t i = 0; i < node->n_cpus; ++i) {
  14693. CPU_SET_S(node->cpus[i], setsize, cpus);
  14694. }
  14695. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14696. if (rv) {
  14697. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14698. }
  14699. CPU_FREE(cpus);
  14700. }
  14701. static void clear_numa_thread_affinity(void) {
  14702. if (!ggml_is_numa()) {
  14703. return;
  14704. }
  14705. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14706. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14707. CPU_ZERO_S(setsize, cpus);
  14708. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14709. CPU_SET_S(i, setsize, cpus);
  14710. }
  14711. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14712. if (rv) {
  14713. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14714. }
  14715. CPU_FREE(cpus);
  14716. }
  14717. #else
  14718. // TODO: Windows etc.
  14719. // (the linux implementation may also work on BSD, someone should test)
  14720. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14721. static void clear_numa_thread_affinity(void) {}
  14722. #endif
  14723. struct ggml_compute_state_shared {
  14724. const struct ggml_cgraph * cgraph;
  14725. const struct ggml_cplan * cplan;
  14726. int64_t perf_node_start_cycles;
  14727. int64_t perf_node_start_time_us;
  14728. const int n_threads;
  14729. // synchronization primitives
  14730. atomic_int n_active; // num active threads
  14731. atomic_int node_n; // active graph node
  14732. atomic_int node_task; // active graph node task phase
  14733. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14734. void * abort_callback_data;
  14735. };
  14736. struct ggml_compute_state {
  14737. ggml_thread_t thrd;
  14738. int ith;
  14739. struct ggml_compute_state_shared * shared;
  14740. enum ggml_status ec;
  14741. };
  14742. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14743. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14744. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14745. node->perf_runs++;
  14746. node->perf_cycles += cycles_cur;
  14747. node->perf_time_us += time_us_cur;
  14748. }
  14749. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14750. int n_tasks = 0;
  14751. if (ggml_is_empty(node)) {
  14752. // no need to multi-thread a no-op
  14753. n_tasks = 1;
  14754. return n_tasks;
  14755. }
  14756. switch (node->op) {
  14757. case GGML_OP_CPY:
  14758. case GGML_OP_DUP:
  14759. case GGML_OP_ADD:
  14760. case GGML_OP_ADD1:
  14761. case GGML_OP_ACC:
  14762. {
  14763. n_tasks = n_threads;
  14764. } break;
  14765. case GGML_OP_SUB:
  14766. case GGML_OP_SQR:
  14767. case GGML_OP_SQRT:
  14768. case GGML_OP_LOG:
  14769. case GGML_OP_SUM:
  14770. case GGML_OP_SUM_ROWS:
  14771. case GGML_OP_MEAN:
  14772. case GGML_OP_ARGMAX:
  14773. case GGML_OP_REPEAT:
  14774. case GGML_OP_REPEAT_BACK:
  14775. case GGML_OP_LEAKY_RELU:
  14776. {
  14777. n_tasks = 1;
  14778. } break;
  14779. case GGML_OP_UNARY:
  14780. switch (ggml_get_unary_op(node)) {
  14781. case GGML_UNARY_OP_ABS:
  14782. case GGML_UNARY_OP_SGN:
  14783. case GGML_UNARY_OP_NEG:
  14784. case GGML_UNARY_OP_STEP:
  14785. case GGML_UNARY_OP_TANH:
  14786. case GGML_UNARY_OP_ELU:
  14787. case GGML_UNARY_OP_RELU:
  14788. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14789. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14790. {
  14791. n_tasks = 1;
  14792. } break;
  14793. case GGML_UNARY_OP_GELU:
  14794. case GGML_UNARY_OP_GELU_QUICK:
  14795. case GGML_UNARY_OP_SILU:
  14796. {
  14797. n_tasks = n_threads;
  14798. } break;
  14799. default:
  14800. GGML_ASSERT(false);
  14801. }
  14802. break;
  14803. case GGML_OP_SILU_BACK:
  14804. case GGML_OP_MUL:
  14805. case GGML_OP_DIV:
  14806. case GGML_OP_NORM:
  14807. case GGML_OP_RMS_NORM:
  14808. case GGML_OP_RMS_NORM_BACK:
  14809. case GGML_OP_GROUP_NORM:
  14810. case GGML_OP_CONCAT:
  14811. {
  14812. n_tasks = n_threads;
  14813. } break;
  14814. case GGML_OP_MUL_MAT:
  14815. {
  14816. n_tasks = n_threads;
  14817. // TODO: use different scheduling for different matrix sizes
  14818. //const int nr0 = ggml_nrows(node->src[0]);
  14819. //const int nr1 = ggml_nrows(node->src[1]);
  14820. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14821. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14822. } break;
  14823. case GGML_OP_MUL_MAT_ID:
  14824. {
  14825. n_tasks = n_threads;
  14826. } break;
  14827. case GGML_OP_OUT_PROD:
  14828. {
  14829. n_tasks = n_threads;
  14830. } break;
  14831. case GGML_OP_GET_ROWS:
  14832. {
  14833. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14834. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14835. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14836. } break;
  14837. case GGML_OP_SCALE:
  14838. case GGML_OP_SET:
  14839. case GGML_OP_CONT:
  14840. case GGML_OP_RESHAPE:
  14841. case GGML_OP_VIEW:
  14842. case GGML_OP_PERMUTE:
  14843. case GGML_OP_TRANSPOSE:
  14844. case GGML_OP_GET_ROWS_BACK:
  14845. case GGML_OP_DIAG:
  14846. {
  14847. n_tasks = 1;
  14848. } break;
  14849. case GGML_OP_DIAG_MASK_ZERO:
  14850. case GGML_OP_DIAG_MASK_INF:
  14851. case GGML_OP_SOFT_MAX_BACK:
  14852. case GGML_OP_ROPE:
  14853. case GGML_OP_ROPE_BACK:
  14854. case GGML_OP_ADD_REL_POS:
  14855. {
  14856. n_tasks = n_threads;
  14857. } break;
  14858. case GGML_OP_ALIBI:
  14859. {
  14860. n_tasks = 1; //TODO
  14861. } break;
  14862. case GGML_OP_CLAMP:
  14863. {
  14864. n_tasks = 1; //TODO
  14865. } break;
  14866. case GGML_OP_SOFT_MAX:
  14867. {
  14868. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14869. } break;
  14870. case GGML_OP_CONV_TRANSPOSE_1D:
  14871. {
  14872. n_tasks = n_threads;
  14873. } break;
  14874. case GGML_OP_IM2COL:
  14875. {
  14876. n_tasks = n_threads;
  14877. } break;
  14878. case GGML_OP_CONV_TRANSPOSE_2D:
  14879. {
  14880. n_tasks = n_threads;
  14881. } break;
  14882. case GGML_OP_POOL_1D:
  14883. case GGML_OP_POOL_2D:
  14884. {
  14885. n_tasks = 1;
  14886. } break;
  14887. case GGML_OP_UPSCALE:
  14888. {
  14889. n_tasks = n_threads;
  14890. } break;
  14891. case GGML_OP_PAD:
  14892. {
  14893. n_tasks = n_threads;
  14894. } break;
  14895. case GGML_OP_ARANGE:
  14896. {
  14897. n_tasks = n_threads;
  14898. } break;
  14899. case GGML_OP_TIMESTEP_EMBEDDING:
  14900. {
  14901. n_tasks = n_threads;
  14902. } break;
  14903. case GGML_OP_ARGSORT:
  14904. {
  14905. n_tasks = n_threads;
  14906. } break;
  14907. case GGML_OP_FLASH_ATTN:
  14908. {
  14909. n_tasks = n_threads;
  14910. } break;
  14911. case GGML_OP_FLASH_FF:
  14912. {
  14913. n_tasks = n_threads;
  14914. } break;
  14915. case GGML_OP_FLASH_ATTN_BACK:
  14916. {
  14917. n_tasks = n_threads;
  14918. } break;
  14919. case GGML_OP_SSM_CONV:
  14920. case GGML_OP_SSM_SCAN:
  14921. {
  14922. n_tasks = n_threads;
  14923. } break;
  14924. case GGML_OP_WIN_PART:
  14925. case GGML_OP_WIN_UNPART:
  14926. case GGML_OP_GET_REL_POS:
  14927. case GGML_OP_MAP_UNARY:
  14928. case GGML_OP_MAP_BINARY:
  14929. case GGML_OP_MAP_CUSTOM1_F32:
  14930. case GGML_OP_MAP_CUSTOM2_F32:
  14931. case GGML_OP_MAP_CUSTOM3_F32:
  14932. {
  14933. n_tasks = 1;
  14934. } break;
  14935. case GGML_OP_MAP_CUSTOM1:
  14936. {
  14937. struct ggml_map_custom1_op_params p;
  14938. memcpy(&p, node->op_params, sizeof(p));
  14939. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14940. n_tasks = n_threads;
  14941. } else {
  14942. n_tasks = MIN(p.n_tasks, n_threads);
  14943. }
  14944. } break;
  14945. case GGML_OP_MAP_CUSTOM2:
  14946. {
  14947. struct ggml_map_custom2_op_params p;
  14948. memcpy(&p, node->op_params, sizeof(p));
  14949. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14950. n_tasks = n_threads;
  14951. } else {
  14952. n_tasks = MIN(p.n_tasks, n_threads);
  14953. }
  14954. } break;
  14955. case GGML_OP_MAP_CUSTOM3:
  14956. {
  14957. struct ggml_map_custom3_op_params p;
  14958. memcpy(&p, node->op_params, sizeof(p));
  14959. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14960. n_tasks = n_threads;
  14961. } else {
  14962. n_tasks = MIN(p.n_tasks, n_threads);
  14963. }
  14964. } break;
  14965. case GGML_OP_CROSS_ENTROPY_LOSS:
  14966. {
  14967. n_tasks = n_threads;
  14968. } break;
  14969. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14970. {
  14971. n_tasks = n_threads;
  14972. } break;
  14973. case GGML_OP_NONE:
  14974. {
  14975. n_tasks = 1;
  14976. } break;
  14977. case GGML_OP_COUNT:
  14978. {
  14979. GGML_ASSERT(false);
  14980. } break;
  14981. default:
  14982. {
  14983. fprintf(stderr, "%s: op not implemented: ", __func__);
  14984. if (node->op < GGML_OP_COUNT) {
  14985. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14986. } else {
  14987. fprintf(stderr, "%d\n", node->op);
  14988. }
  14989. GGML_ASSERT(false);
  14990. } break;
  14991. }
  14992. assert(n_tasks > 0);
  14993. return n_tasks;
  14994. }
  14995. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14996. // wait for other threads to finish
  14997. const int last_node_n = * node_n;
  14998. while (true) {
  14999. if (do_yield) {
  15000. sched_yield();
  15001. }
  15002. * node_n = atomic_load(&state->shared->node_n);
  15003. if (* node_n != last_node_n) break;
  15004. }
  15005. }
  15006. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15007. // wait for other threads to finish
  15008. const int last_task_phase = * task_phase;
  15009. while (true) {
  15010. if (do_yield) {
  15011. sched_yield();
  15012. }
  15013. * task_phase = atomic_load(&state->shared->node_task);
  15014. if (* task_phase != last_task_phase) break;
  15015. }
  15016. }
  15017. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15018. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15019. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15020. const struct ggml_cplan * cplan = state->shared->cplan;
  15021. const int n_threads = state->shared->n_threads;
  15022. set_numa_thread_affinity(state->ith);
  15023. int node_n = -1;
  15024. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15025. while (true) {
  15026. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15027. state->shared->node_n += 1;
  15028. state->ec = GGML_STATUS_ABORTED;
  15029. return 0;
  15030. }
  15031. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15032. // all other threads are finished and spinning
  15033. // do finalize and init here so we don't have synchronize again
  15034. struct ggml_compute_params params = {
  15035. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15036. /*.ith =*/ 0,
  15037. /*.nth =*/ 0,
  15038. /*.wsize =*/ cplan->work_size,
  15039. /*.wdata =*/ cplan->work_data,
  15040. };
  15041. if (node_n != -1) {
  15042. /* FINALIZE */
  15043. struct ggml_tensor * node = cgraph->nodes[node_n];
  15044. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15045. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15046. ggml_compute_forward(&params, node);
  15047. }
  15048. ggml_graph_compute_perf_stats_node(node, state->shared);
  15049. }
  15050. // distribute new work or execute it direct if 1T
  15051. while (++node_n < cgraph->n_nodes) {
  15052. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15053. struct ggml_tensor * node = cgraph->nodes[node_n];
  15054. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15055. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15056. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15057. params.nth = n_tasks;
  15058. if (n_tasks == 1) {
  15059. /* INIT */
  15060. if (GGML_OP_HAS_INIT[node->op]) {
  15061. params.type = GGML_TASK_TYPE_INIT;
  15062. ggml_compute_forward(&params, node);
  15063. }
  15064. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15065. // they do something more efficient than spinning (?)
  15066. params.type = GGML_TASK_TYPE_COMPUTE;
  15067. ggml_compute_forward(&params, node);
  15068. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15069. params.type = GGML_TASK_TYPE_FINALIZE;
  15070. ggml_compute_forward(&params, node);
  15071. }
  15072. ggml_graph_compute_perf_stats_node(node, state->shared);
  15073. } else {
  15074. break;
  15075. }
  15076. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15077. break;
  15078. }
  15079. }
  15080. task_phase = GGML_TASK_TYPE_INIT;
  15081. atomic_store(&state->shared->n_active, n_threads);
  15082. atomic_store(&state->shared->node_n, node_n);
  15083. atomic_store(&state->shared->node_task, task_phase);
  15084. } else {
  15085. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15086. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15087. }
  15088. // check if we should stop
  15089. if (node_n >= cgraph->n_nodes) break;
  15090. /* INIT & COMPUTE */
  15091. struct ggml_tensor * node = cgraph->nodes[node_n];
  15092. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15093. struct ggml_compute_params params = {
  15094. /*.type =*/ GGML_TASK_TYPE_INIT,
  15095. /*.ith =*/ state->ith,
  15096. /*.nth =*/ n_tasks,
  15097. /*.wsize =*/ cplan->work_size,
  15098. /*.wdata =*/ cplan->work_data,
  15099. };
  15100. if (state->ith < n_tasks) {
  15101. if (GGML_OP_HAS_INIT[node->op]) {
  15102. ggml_compute_forward(&params, node);
  15103. }
  15104. }
  15105. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15106. task_phase = GGML_TASK_TYPE_COMPUTE;
  15107. atomic_store(&state->shared->n_active, n_threads);
  15108. atomic_store(&state->shared->node_task, task_phase);
  15109. }
  15110. else {
  15111. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15112. // depending on the workload and the operating system.
  15113. // since it is not clear what is the best approach, it should potentially become user-configurable
  15114. // ref: https://github.com/ggerganov/ggml/issues/291
  15115. // UPD: adding the do_yield flag seems to resolve the issue universally
  15116. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15117. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15118. }
  15119. if (state->ith < n_tasks) {
  15120. params.type = GGML_TASK_TYPE_COMPUTE;
  15121. ggml_compute_forward(&params, node);
  15122. }
  15123. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15124. task_phase = GGML_TASK_TYPE_FINALIZE;
  15125. atomic_store(&state->shared->n_active, n_threads);
  15126. atomic_store(&state->shared->node_task, task_phase);
  15127. }
  15128. else {
  15129. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15130. }
  15131. }
  15132. return 0;
  15133. }
  15134. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15135. if (n_threads <= 0) {
  15136. n_threads = GGML_DEFAULT_N_THREADS;
  15137. }
  15138. size_t work_size = 0;
  15139. struct ggml_cplan cplan;
  15140. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15141. int max_tasks = 1;
  15142. // thread scheduling for the different operations + work buffer size estimation
  15143. for (int i = 0; i < cgraph->n_nodes; i++) {
  15144. struct ggml_tensor * node = cgraph->nodes[i];
  15145. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15146. max_tasks = MAX(max_tasks, n_tasks);
  15147. size_t cur = 0;
  15148. switch (node->op) {
  15149. case GGML_OP_CPY:
  15150. case GGML_OP_DUP:
  15151. {
  15152. if (ggml_is_quantized(node->type)) {
  15153. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15154. }
  15155. } break;
  15156. case GGML_OP_ADD:
  15157. case GGML_OP_ADD1:
  15158. {
  15159. if (ggml_is_quantized(node->src[0]->type)) {
  15160. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15161. }
  15162. } break;
  15163. case GGML_OP_ACC:
  15164. {
  15165. if (ggml_is_quantized(node->src[0]->type)) {
  15166. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15167. }
  15168. } break;
  15169. case GGML_OP_MUL_MAT:
  15170. {
  15171. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15172. #if defined(GGML_USE_CLBLAST)
  15173. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15174. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15175. } else
  15176. #endif
  15177. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15178. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15179. if (node->src[0]->type != GGML_TYPE_F32) {
  15180. // here we need memory for fully dequantized matrix from src0
  15181. // take into account that src0 can be broadcasted into src1[2,3]
  15182. cur = ggml_type_size(GGML_TYPE_F32)
  15183. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15184. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15185. }
  15186. } else
  15187. #endif
  15188. if (node->src[1]->type != vec_dot_type) {
  15189. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15190. }
  15191. } break;
  15192. case GGML_OP_MUL_MAT_ID:
  15193. {
  15194. cur = 0;
  15195. const struct ggml_tensor * src0 = node->src[0];
  15196. const struct ggml_tensor * src1 = node->src[1];
  15197. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15198. if (src1->type != vec_dot_type) {
  15199. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15200. }
  15201. const int n_as = src0->ne[2];
  15202. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15203. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15204. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15205. } break;
  15206. case GGML_OP_OUT_PROD:
  15207. {
  15208. if (ggml_is_quantized(node->src[0]->type)) {
  15209. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15210. }
  15211. } break;
  15212. case GGML_OP_SOFT_MAX:
  15213. case GGML_OP_ROPE:
  15214. {
  15215. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15216. } break;
  15217. case GGML_OP_CONV_TRANSPOSE_1D:
  15218. {
  15219. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15220. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15221. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15222. const int64_t ne00 = node->src[0]->ne[0]; // K
  15223. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15224. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15225. const int64_t ne10 = node->src[1]->ne[0]; // L
  15226. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15227. if (node->src[0]->type == GGML_TYPE_F16 &&
  15228. node->src[1]->type == GGML_TYPE_F32) {
  15229. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15230. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15231. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15232. node->src[1]->type == GGML_TYPE_F32) {
  15233. cur += sizeof(float)*ne00*ne01*ne02;
  15234. cur += sizeof(float)*ne10*ne11;
  15235. } else {
  15236. GGML_ASSERT(false);
  15237. }
  15238. } break;
  15239. case GGML_OP_CONV_TRANSPOSE_2D:
  15240. {
  15241. const int64_t ne00 = node->src[0]->ne[0]; // W
  15242. const int64_t ne01 = node->src[0]->ne[1]; // H
  15243. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15244. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15245. const int64_t ne10 = node->src[1]->ne[0]; // W
  15246. const int64_t ne11 = node->src[1]->ne[1]; // H
  15247. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15248. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15249. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15250. } break;
  15251. case GGML_OP_FLASH_ATTN:
  15252. {
  15253. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15254. if (node->src[1]->type == GGML_TYPE_F32) {
  15255. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15256. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15257. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15258. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15259. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15260. }
  15261. } break;
  15262. case GGML_OP_FLASH_FF:
  15263. {
  15264. if (node->src[1]->type == GGML_TYPE_F32) {
  15265. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15266. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15267. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15268. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15269. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15270. }
  15271. } break;
  15272. case GGML_OP_FLASH_ATTN_BACK:
  15273. {
  15274. const int64_t D = node->src[0]->ne[0];
  15275. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15276. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15277. if (node->src[1]->type == GGML_TYPE_F32) {
  15278. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15279. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15280. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15281. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15282. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15283. }
  15284. } break;
  15285. case GGML_OP_CROSS_ENTROPY_LOSS:
  15286. {
  15287. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15288. } break;
  15289. case GGML_OP_COUNT:
  15290. {
  15291. GGML_ASSERT(false);
  15292. } break;
  15293. default:
  15294. break;
  15295. }
  15296. work_size = MAX(work_size, cur);
  15297. }
  15298. if (work_size > 0) {
  15299. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15300. }
  15301. cplan.n_threads = MIN(max_tasks, n_threads);
  15302. cplan.work_size = work_size;
  15303. cplan.work_data = NULL;
  15304. return cplan;
  15305. }
  15306. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15307. {
  15308. GGML_ASSERT(cplan);
  15309. GGML_ASSERT(cplan->n_threads > 0);
  15310. if (cplan->work_size > 0) {
  15311. GGML_ASSERT(cplan->work_data);
  15312. }
  15313. }
  15314. const int n_threads = cplan->n_threads;
  15315. struct ggml_compute_state_shared state_shared = {
  15316. /*.cgraph =*/ cgraph,
  15317. /*.cgraph_plan =*/ cplan,
  15318. /*.perf_node_start_cycles =*/ 0,
  15319. /*.perf_node_start_time_us =*/ 0,
  15320. /*.n_threads =*/ n_threads,
  15321. /*.n_active =*/ n_threads,
  15322. /*.node_n =*/ -1,
  15323. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15324. /*.abort_callback =*/ NULL,
  15325. /*.abort_callback_data =*/ NULL,
  15326. };
  15327. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15328. // create thread pool
  15329. if (n_threads > 1) {
  15330. for (int j = 1; j < n_threads; ++j) {
  15331. workers[j] = (struct ggml_compute_state) {
  15332. .thrd = 0,
  15333. .ith = j,
  15334. .shared = &state_shared,
  15335. .ec = GGML_STATUS_SUCCESS,
  15336. };
  15337. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15338. GGML_ASSERT(rc == 0);
  15339. UNUSED(rc);
  15340. }
  15341. }
  15342. workers[0].ith = 0;
  15343. workers[0].shared = &state_shared;
  15344. workers[0].ec = GGML_STATUS_SUCCESS;
  15345. const int64_t perf_start_cycles = ggml_perf_cycles();
  15346. const int64_t perf_start_time_us = ggml_perf_time_us();
  15347. // this is a work thread too
  15348. ggml_graph_compute_thread(&workers[0]);
  15349. enum ggml_status compute_status = workers[0].ec;
  15350. // don't leave affinity set on the main thread
  15351. clear_numa_thread_affinity();
  15352. // join or kill thread pool
  15353. if (n_threads > 1) {
  15354. for (int j = 1; j < n_threads; j++) {
  15355. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15356. GGML_ASSERT(rc == 0);
  15357. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15358. compute_status = workers[j].ec;
  15359. }
  15360. }
  15361. // performance stats (graph)
  15362. {
  15363. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15364. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15365. cgraph->perf_runs++;
  15366. cgraph->perf_cycles += perf_cycles_cur;
  15367. cgraph->perf_time_us += perf_time_us_cur;
  15368. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15369. __func__, cgraph->perf_runs,
  15370. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15371. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15372. (double) perf_time_us_cur / 1000.0,
  15373. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15374. }
  15375. return compute_status;
  15376. }
  15377. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15378. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15379. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15380. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15381. return ggml_graph_compute(cgraph, &cplan);
  15382. }
  15383. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15384. for (int i = 0; i < cgraph->n_leafs; i++) {
  15385. struct ggml_tensor * leaf = cgraph->leafs[i];
  15386. if (strcmp(leaf->name, name) == 0) {
  15387. return leaf;
  15388. }
  15389. }
  15390. for (int i = 0; i < cgraph->n_nodes; i++) {
  15391. struct ggml_tensor * node = cgraph->nodes[i];
  15392. if (strcmp(node->name, name) == 0) {
  15393. return node;
  15394. }
  15395. }
  15396. return NULL;
  15397. }
  15398. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15399. const int64_t * ne = tensor->ne;
  15400. const size_t * nb = tensor->nb;
  15401. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15402. ggml_type_name(tensor->type),
  15403. ggml_op_name (tensor->op),
  15404. ggml_n_dims(tensor),
  15405. ne[0], ne[1], ne[2], ne[3],
  15406. nb[0], nb[1], nb[2], nb[3],
  15407. tensor->data,
  15408. tensor->name);
  15409. }
  15410. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15411. const int64_t * ne = tensor->ne;
  15412. const size_t * nb = tensor->nb;
  15413. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15414. arg,
  15415. ggml_type_name(tensor->type),
  15416. ggml_op_name (tensor->op),
  15417. ggml_n_dims(tensor),
  15418. ne[0], ne[1], ne[2], ne[3],
  15419. nb[0], nb[1], nb[2], nb[3],
  15420. tensor->data,
  15421. tensor->name);
  15422. }
  15423. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15424. uint64_t size_eval = 0;
  15425. // compute size of intermediate results
  15426. // TODO: does not take into account scratch buffers !!!!
  15427. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15428. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15429. }
  15430. // print
  15431. {
  15432. FILE * fout = stdout;
  15433. fprintf(fout, "\n");
  15434. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15435. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15436. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15437. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15438. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15439. // header
  15440. fprintf(fout, "\n");
  15441. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15442. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15443. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15444. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15445. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15446. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15447. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15448. }
  15449. // header
  15450. fprintf(fout, "\n");
  15451. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15452. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15453. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15454. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15455. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15456. if (cgraph->nodes[i]->src[j]) {
  15457. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15458. }
  15459. }
  15460. fprintf(fout, "\n");
  15461. }
  15462. fprintf(fout, "\n");
  15463. }
  15464. // write binary data
  15465. {
  15466. FILE * fout = ggml_fopen(fname, "wb");
  15467. if (!fout) {
  15468. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15469. return;
  15470. }
  15471. // header
  15472. {
  15473. const uint32_t magic = GGML_FILE_MAGIC;
  15474. const uint32_t version = GGML_FILE_VERSION;
  15475. const uint32_t n_leafs = cgraph->n_leafs;
  15476. const uint32_t n_nodes = cgraph->n_nodes;
  15477. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15478. fwrite(&version, sizeof(uint32_t), 1, fout);
  15479. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15480. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15481. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15482. }
  15483. // leafs
  15484. {
  15485. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15486. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15487. const uint32_t type = tensor->type;
  15488. const uint32_t op = tensor->op;
  15489. fwrite(&type, sizeof(uint32_t), 1, fout);
  15490. fwrite(&op, sizeof(uint32_t), 1, fout);
  15491. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15492. const uint64_t ne = tensor->ne[j];
  15493. const uint64_t nb = tensor->nb[j];
  15494. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15495. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15496. }
  15497. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15498. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15499. // dump the data
  15500. // TODO: pad this to 32 byte boundary
  15501. {
  15502. const size_t size = ggml_nbytes(tensor);
  15503. fwrite(tensor->data, sizeof(char), size, fout);
  15504. }
  15505. }
  15506. }
  15507. // nodes
  15508. {
  15509. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15510. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15511. const uint32_t type = tensor->type;
  15512. const uint32_t op = tensor->op;
  15513. fwrite(&type, sizeof(uint32_t), 1, fout);
  15514. fwrite(&op, sizeof(uint32_t), 1, fout);
  15515. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15516. const uint64_t ne = tensor->ne[j];
  15517. const uint64_t nb = tensor->nb[j];
  15518. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15519. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15520. }
  15521. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15522. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15523. // output the op arguments
  15524. {
  15525. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15526. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15527. args[j] = tensor->src[j];
  15528. }
  15529. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15530. if (args[j]) {
  15531. int32_t idx = -1;
  15532. // check if leaf
  15533. {
  15534. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15535. if (args[j] == cgraph->leafs[k]) {
  15536. idx = k;
  15537. break;
  15538. }
  15539. }
  15540. }
  15541. // check if node
  15542. if (idx == -1) {
  15543. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15544. if (args[j] == cgraph->nodes[k]) {
  15545. idx = cgraph->n_leafs + k;
  15546. break;
  15547. }
  15548. }
  15549. }
  15550. if (idx == -1) {
  15551. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15552. fclose(fout);
  15553. return;
  15554. }
  15555. fwrite(&idx, sizeof(int32_t), 1, fout);
  15556. } else {
  15557. const int32_t nul = -1;
  15558. fwrite(&nul, sizeof(int32_t), 1, fout);
  15559. }
  15560. }
  15561. }
  15562. }
  15563. }
  15564. fclose(fout);
  15565. }
  15566. }
  15567. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15568. assert(*ctx_data == NULL);
  15569. assert(*ctx_eval == NULL);
  15570. struct ggml_cgraph * result = NULL;
  15571. struct ggml_tensor * data = NULL;
  15572. // read file into data
  15573. {
  15574. FILE * fin = ggml_fopen(fname, "rb");
  15575. if (!fin) {
  15576. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15577. return result;
  15578. }
  15579. size_t fsize = 0;
  15580. fseek(fin, 0, SEEK_END);
  15581. fsize = ftell(fin);
  15582. fseek(fin, 0, SEEK_SET);
  15583. // create the data context
  15584. {
  15585. const size_t overhead = 1*ggml_tensor_overhead();
  15586. struct ggml_init_params params = {
  15587. .mem_size = fsize + overhead,
  15588. .mem_buffer = NULL,
  15589. .no_alloc = false,
  15590. };
  15591. *ctx_data = ggml_init(params);
  15592. if (!*ctx_data) {
  15593. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15594. fclose(fin);
  15595. return result;
  15596. }
  15597. }
  15598. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15599. {
  15600. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15601. if (ret != fsize) {
  15602. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15603. fclose(fin);
  15604. return result;
  15605. }
  15606. }
  15607. fclose(fin);
  15608. }
  15609. // populate result
  15610. {
  15611. char * ptr = (char *) data->data;
  15612. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15613. if (magic != GGML_FILE_MAGIC) {
  15614. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15615. return result;
  15616. }
  15617. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15618. if (version != GGML_FILE_VERSION) {
  15619. fprintf(stderr, "%s: invalid version number\n", __func__);
  15620. return result;
  15621. }
  15622. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15623. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15624. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15625. const int graph_size = MAX(n_leafs, n_nodes);
  15626. // create the data context
  15627. {
  15628. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15629. struct ggml_init_params params = {
  15630. .mem_size = size_eval + overhead,
  15631. .mem_buffer = NULL,
  15632. .no_alloc = true,
  15633. };
  15634. *ctx_eval = ggml_init(params);
  15635. if (!*ctx_eval) {
  15636. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15637. return result;
  15638. }
  15639. }
  15640. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15641. result->n_leafs = n_leafs;
  15642. result->n_nodes = n_nodes;
  15643. // leafs
  15644. {
  15645. uint32_t type;
  15646. uint32_t op;
  15647. for (uint32_t i = 0; i < n_leafs; ++i) {
  15648. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15649. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15650. int64_t ne[GGML_MAX_DIMS];
  15651. size_t nb[GGML_MAX_DIMS];
  15652. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15653. uint64_t ne_cur;
  15654. uint64_t nb_cur;
  15655. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15656. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15657. ne[j] = ne_cur;
  15658. nb[j] = nb_cur;
  15659. }
  15660. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15661. tensor->op = (enum ggml_op) op;
  15662. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15663. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15664. tensor->data = (void *) ptr;
  15665. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15666. tensor->nb[j] = nb[j];
  15667. }
  15668. result->leafs[i] = tensor;
  15669. ptr += ggml_nbytes(tensor);
  15670. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15671. }
  15672. }
  15673. ggml_set_no_alloc(*ctx_eval, false);
  15674. // nodes
  15675. {
  15676. uint32_t type;
  15677. uint32_t op;
  15678. for (uint32_t i = 0; i < n_nodes; ++i) {
  15679. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15680. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15681. enum ggml_op eop = (enum ggml_op) op;
  15682. int64_t ne[GGML_MAX_DIMS];
  15683. size_t nb[GGML_MAX_DIMS];
  15684. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15685. uint64_t ne_cur;
  15686. uint64_t nb_cur;
  15687. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15688. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15689. ne[j] = ne_cur;
  15690. nb[j] = nb_cur;
  15691. }
  15692. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15693. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15694. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15695. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15696. // parse args
  15697. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15698. const int32_t arg_idx = ptr_arg_idx[j];
  15699. if (arg_idx == -1) {
  15700. continue;
  15701. }
  15702. if (arg_idx < result->n_leafs) {
  15703. args[j] = result->leafs[arg_idx];
  15704. } else {
  15705. args[j] = result->nodes[arg_idx - result->n_leafs];
  15706. }
  15707. }
  15708. // create the tensor
  15709. // "view" operations are handled differently
  15710. // TODO: handle inplace ops - currently a copy is always made
  15711. struct ggml_tensor * tensor = NULL;
  15712. switch (eop) {
  15713. // TODO: implement other view ops
  15714. case GGML_OP_RESHAPE:
  15715. {
  15716. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15717. } break;
  15718. case GGML_OP_VIEW:
  15719. {
  15720. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15721. size_t offs;
  15722. memcpy(&offs, ptr_op_params, sizeof(offs));
  15723. tensor->data = ((char *) tensor->data) + offs;
  15724. } break;
  15725. case GGML_OP_TRANSPOSE:
  15726. {
  15727. tensor = ggml_transpose(*ctx_eval, args[0]);
  15728. } break;
  15729. case GGML_OP_PERMUTE:
  15730. {
  15731. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15732. } break;
  15733. default:
  15734. {
  15735. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15736. tensor->op = eop;
  15737. } break;
  15738. }
  15739. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15740. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15741. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15742. tensor->nb[j] = nb[j];
  15743. }
  15744. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15745. tensor->src[j] = args[j];
  15746. }
  15747. result->nodes[i] = tensor;
  15748. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15749. }
  15750. }
  15751. }
  15752. return result;
  15753. }
  15754. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15755. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15756. GGML_PRINT("=== GRAPH ===\n");
  15757. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15758. for (int i = 0; i < cgraph->n_nodes; i++) {
  15759. struct ggml_tensor * node = cgraph->nodes[i];
  15760. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15761. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15762. i,
  15763. node->ne[0], node->ne[1], node->ne[2],
  15764. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15765. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15766. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15767. (double) node->perf_time_us / 1000.0,
  15768. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15769. }
  15770. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15771. for (int i = 0; i < cgraph->n_leafs; i++) {
  15772. struct ggml_tensor * node = cgraph->leafs[i];
  15773. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15774. i,
  15775. node->ne[0], node->ne[1],
  15776. ggml_op_name(node->op),
  15777. ggml_get_name(node));
  15778. }
  15779. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15780. if (perf_total_per_op_us[i] == 0) {
  15781. continue;
  15782. }
  15783. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15784. }
  15785. GGML_PRINT("========================================\n");
  15786. }
  15787. // check if node is part of the graph
  15788. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15789. if (cgraph == NULL) {
  15790. return true;
  15791. }
  15792. for (int i = 0; i < cgraph->n_nodes; i++) {
  15793. if (cgraph->nodes[i] == node) {
  15794. return true;
  15795. }
  15796. }
  15797. return false;
  15798. }
  15799. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15800. for (int i = 0; i < cgraph->n_nodes; i++) {
  15801. struct ggml_tensor * parent = cgraph->nodes[i];
  15802. if (parent->grad == node) {
  15803. return parent;
  15804. }
  15805. }
  15806. return NULL;
  15807. }
  15808. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15809. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15810. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15811. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15812. gparent0 ? (void *) gparent0 : (void *) parent,
  15813. gparent0 ? "g" : "x",
  15814. gparent ? (void *) gparent : (void *) node,
  15815. gparent ? "g" : "x",
  15816. gparent ? "empty" : "vee",
  15817. gparent ? "dashed" : "solid",
  15818. label);
  15819. }
  15820. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15821. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15822. (void *) parent, "x",
  15823. (void *) node, "x",
  15824. label);
  15825. }
  15826. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15827. char color[16];
  15828. FILE * fp = ggml_fopen(filename, "w");
  15829. GGML_ASSERT(fp);
  15830. fprintf(fp, "digraph G {\n");
  15831. fprintf(fp, " newrank = true;\n");
  15832. fprintf(fp, " rankdir = LR;\n");
  15833. for (int i = 0; i < gb->n_nodes; i++) {
  15834. struct ggml_tensor * node = gb->nodes[i];
  15835. if (ggml_graph_get_parent(gb, node) != NULL) {
  15836. continue;
  15837. }
  15838. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15839. snprintf(color, sizeof(color), "yellow");
  15840. } else if (node->grad) {
  15841. if (ggml_graph_find(gf, node)) {
  15842. snprintf(color, sizeof(color), "green");
  15843. } else {
  15844. snprintf(color, sizeof(color), "lightblue");
  15845. }
  15846. } else {
  15847. snprintf(color, sizeof(color), "white");
  15848. }
  15849. fprintf(fp, " \"%p\" [ "
  15850. "style = filled; fillcolor = %s; shape = record; "
  15851. "label=\"",
  15852. (void *) node, color);
  15853. if (strlen(node->name) > 0) {
  15854. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15855. } else {
  15856. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15857. }
  15858. if (ggml_is_matrix(node)) {
  15859. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15860. } else {
  15861. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15862. }
  15863. if (node->grad) {
  15864. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15865. } else {
  15866. fprintf(fp, "\"; ]\n");
  15867. }
  15868. }
  15869. for (int i = 0; i < gb->n_leafs; i++) {
  15870. struct ggml_tensor * node = gb->leafs[i];
  15871. snprintf(color, sizeof(color), "pink");
  15872. fprintf(fp, " \"%p\" [ "
  15873. "style = filled; fillcolor = %s; shape = record; "
  15874. "label=\"<x>",
  15875. (void *) node, color);
  15876. if (strlen(node->name) > 0) {
  15877. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15878. } else {
  15879. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15880. }
  15881. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15882. if (ggml_nelements(node) < 5) {
  15883. fprintf(fp, " | (");
  15884. for (int j = 0; j < ggml_nelements(node); j++) {
  15885. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15886. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15887. }
  15888. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15889. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15890. }
  15891. else {
  15892. fprintf(fp, "#");
  15893. }
  15894. if (j < ggml_nelements(node) - 1) {
  15895. fprintf(fp, ", ");
  15896. }
  15897. }
  15898. fprintf(fp, ")");
  15899. }
  15900. fprintf(fp, "\"; ]\n");
  15901. }
  15902. for (int i = 0; i < gb->n_nodes; i++) {
  15903. struct ggml_tensor * node = gb->nodes[i];
  15904. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15905. if (node->src[j]) {
  15906. char label[16];
  15907. snprintf(label, sizeof(label), "src %d", j);
  15908. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15909. }
  15910. }
  15911. }
  15912. for (int i = 0; i < gb->n_leafs; i++) {
  15913. struct ggml_tensor * node = gb->leafs[i];
  15914. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15915. if (node->src[j]) {
  15916. char label[16];
  15917. snprintf(label, sizeof(label), "src %d", j);
  15918. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15919. }
  15920. }
  15921. }
  15922. fprintf(fp, "}\n");
  15923. fclose(fp);
  15924. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15925. }
  15926. ////////////////////////////////////////////////////////////////////////////////
  15927. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15928. int i = 0;
  15929. for (int p = 0; p < np; ++p) {
  15930. const int64_t ne = ggml_nelements(ps[p]) ;
  15931. // TODO: add function to set tensor from array
  15932. for (int64_t j = 0; j < ne; ++j) {
  15933. ggml_set_f32_1d(ps[p], j, x[i++]);
  15934. }
  15935. }
  15936. }
  15937. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15938. int i = 0;
  15939. for (int p = 0; p < np; ++p) {
  15940. const int64_t ne = ggml_nelements(ps[p]) ;
  15941. // TODO: add function to get all elements at once
  15942. for (int64_t j = 0; j < ne; ++j) {
  15943. x[i++] = ggml_get_f32_1d(ps[p], j);
  15944. }
  15945. }
  15946. }
  15947. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15948. int64_t i = 0;
  15949. for (int p = 0; p < np; ++p) {
  15950. const int64_t ne = ggml_nelements(ps[p]) ;
  15951. // TODO: add function to get all elements at once
  15952. for (int64_t j = 0; j < ne; ++j) {
  15953. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15954. }
  15955. }
  15956. }
  15957. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15958. int64_t i = 0;
  15959. for (int p = 0; p < np; ++p) {
  15960. const int64_t ne = ggml_nelements(ps[p]) ;
  15961. // TODO: add function to get all elements at once
  15962. for (int64_t j = 0; j < ne; ++j) {
  15963. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15964. }
  15965. }
  15966. }
  15967. //
  15968. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15969. //
  15970. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15971. //
  15972. static enum ggml_opt_result ggml_opt_adam(
  15973. struct ggml_context * ctx,
  15974. struct ggml_opt_context * opt,
  15975. struct ggml_opt_params params,
  15976. struct ggml_tensor * f,
  15977. struct ggml_cgraph * gf,
  15978. struct ggml_cgraph * gb,
  15979. ggml_opt_callback callback,
  15980. void * callback_data) {
  15981. GGML_ASSERT(ggml_is_scalar(f));
  15982. // these will store the parameters we want to optimize
  15983. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15984. int np = 0;
  15985. int64_t nx = 0;
  15986. for (int i = 0; i < gf->n_nodes; ++i) {
  15987. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15988. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15989. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15990. ps[np++] = gf->nodes[i];
  15991. nx += ggml_nelements(gf->nodes[i]);
  15992. }
  15993. }
  15994. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15995. int iter = opt->iter;
  15996. ggml_opt_init(opt->ctx, opt, params, nx);
  15997. opt->iter = iter;
  15998. }
  15999. // constants
  16000. float sched = params.adam.sched;
  16001. const float alpha = params.adam.alpha;
  16002. const float decay = params.adam.decay * alpha;
  16003. const float beta1 = params.adam.beta1;
  16004. const float beta2 = params.adam.beta2;
  16005. const float eps = params.adam.eps;
  16006. const float gclip = params.adam.gclip;
  16007. const int decay_min_ndim = params.adam.decay_min_ndim;
  16008. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16009. const float accum_norm = 1.0f / (float) n_accum;
  16010. float * g = opt->adam.g->data; // gradients
  16011. float * m = opt->adam.m->data; // first moment
  16012. float * v = opt->adam.v->data; // second moment
  16013. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16014. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16015. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16016. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16017. bool cancel = false;
  16018. // compute the function value
  16019. float fx = 0;
  16020. ggml_set_zero(opt->adam.g);
  16021. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16022. if (callback) {
  16023. callback(callback_data, accum_step, &sched, &cancel);
  16024. if (cancel) {
  16025. return GGML_OPT_RESULT_CANCEL;
  16026. }
  16027. }
  16028. // ggml_graph_reset (gf);
  16029. ggml_set_f32 (f->grad, 1.0f);
  16030. ggml_graph_compute(gb, &cplan);
  16031. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16032. fx += ggml_get_f32_1d(f, 0);
  16033. }
  16034. fx *= accum_norm;
  16035. opt->adam.fx_prev = fx;
  16036. opt->adam.fx_best = opt->adam.fx_prev;
  16037. if (pf) {
  16038. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16039. }
  16040. opt->loss_before = opt->adam.fx_prev;
  16041. opt->loss_after = opt->adam.fx_prev;
  16042. // initialize
  16043. if (opt->just_initialized) {
  16044. opt->adam.n_no_improvement = 0;
  16045. opt->just_initialized = false;
  16046. }
  16047. float * fx_best = &opt->adam.fx_best;
  16048. float * fx_prev = &opt->adam.fx_prev;
  16049. int * n_no_improvement = &opt->adam.n_no_improvement;
  16050. int iter0 = opt->iter;
  16051. // run the optimizer
  16052. for (int t = 0; t < params.adam.n_iter; ++t) {
  16053. opt->iter = iter0 + t + 1;
  16054. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16055. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16056. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16057. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16058. for (int i = 0; i < np; ++i) {
  16059. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16060. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16061. }
  16062. const int64_t t_start_wall = ggml_time_us();
  16063. const int64_t t_start_cpu = ggml_cycles();
  16064. UNUSED(t_start_wall);
  16065. UNUSED(t_start_cpu);
  16066. {
  16067. float gnorm = 1.0f;
  16068. if (gclip > 0.0f) {
  16069. // gradient clipping
  16070. ggml_float sum = 0.0;
  16071. for (int64_t i = 0; i < nx; ++i) {
  16072. sum += (ggml_float)(g[i]*g[i]);
  16073. }
  16074. ggml_float norm = sqrt(sum);
  16075. if (norm > (ggml_float) gclip) {
  16076. gnorm = (float) ((ggml_float) gclip / norm);
  16077. }
  16078. }
  16079. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16080. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16081. int64_t i = 0;
  16082. for (int p = 0; p < np; ++p) {
  16083. const int64_t ne = ggml_nelements(ps[p]);
  16084. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16085. for (int64_t j = 0; j < ne; ++j) {
  16086. float x = ggml_get_f32_1d(ps[p], j);
  16087. float g_ = g[i]*gnorm;
  16088. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16089. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16090. float mh = m[i]*beta1h;
  16091. float vh = v[i]*beta2h;
  16092. vh = sqrtf(vh) + eps;
  16093. x = x*(1.0f - p_decay) - mh/vh;
  16094. ggml_set_f32_1d(ps[p], j, x);
  16095. ++i;
  16096. }
  16097. }
  16098. }
  16099. fx = 0;
  16100. ggml_set_zero(opt->adam.g);
  16101. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16102. if (callback) {
  16103. callback(callback_data, accum_step, &sched, &cancel);
  16104. if (cancel) {
  16105. return GGML_OPT_RESULT_CANCEL;;
  16106. }
  16107. }
  16108. // ggml_graph_reset (gf);
  16109. ggml_set_f32 (f->grad, 1.0f);
  16110. ggml_graph_compute(gb, &cplan);
  16111. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16112. fx += ggml_get_f32_1d(f, 0);
  16113. }
  16114. fx *= accum_norm;
  16115. opt->loss_after = fx;
  16116. // check convergence
  16117. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16118. GGML_PRINT_DEBUG("converged\n");
  16119. return GGML_OPT_RESULT_OK;
  16120. }
  16121. // delta-based convergence test
  16122. if (pf != NULL) {
  16123. // need at least params.past iterations to start checking for convergence
  16124. if (params.past <= iter0 + t) {
  16125. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16126. if (fabsf(rate) < params.delta) {
  16127. return GGML_OPT_RESULT_OK;
  16128. }
  16129. }
  16130. pf[(iter0 + t)%params.past] = fx;
  16131. }
  16132. // check for improvement
  16133. if (params.max_no_improvement > 0) {
  16134. if (fx_best[0] > fx) {
  16135. fx_best[0] = fx;
  16136. n_no_improvement[0] = 0;
  16137. } else {
  16138. ++n_no_improvement[0];
  16139. if (n_no_improvement[0] >= params.max_no_improvement) {
  16140. return GGML_OPT_RESULT_OK;
  16141. }
  16142. }
  16143. }
  16144. fx_prev[0] = fx;
  16145. {
  16146. const int64_t t_end_cpu = ggml_cycles();
  16147. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16148. UNUSED(t_end_cpu);
  16149. const int64_t t_end_wall = ggml_time_us();
  16150. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16151. UNUSED(t_end_wall);
  16152. }
  16153. }
  16154. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16155. }
  16156. //
  16157. // L-BFGS
  16158. //
  16159. // the L-BFGS implementation below is based on the following implementation:
  16160. //
  16161. // https://github.com/chokkan/liblbfgs
  16162. //
  16163. struct ggml_lbfgs_iteration_data {
  16164. float alpha;
  16165. float ys;
  16166. float * s;
  16167. float * y;
  16168. };
  16169. static enum ggml_opt_result linesearch_backtracking(
  16170. const struct ggml_opt_params * params,
  16171. int nx,
  16172. float * x,
  16173. float * fx,
  16174. float * g,
  16175. float * d,
  16176. float * step,
  16177. const float * xp,
  16178. struct ggml_tensor * f,
  16179. struct ggml_cgraph * gb,
  16180. struct ggml_cplan * cplan,
  16181. const int np,
  16182. struct ggml_tensor * ps[],
  16183. bool * cancel,
  16184. ggml_opt_callback callback,
  16185. void * callback_data) {
  16186. int count = 0;
  16187. float width = 0.0f;
  16188. float dg = 0.0f;
  16189. float finit = 0.0f;
  16190. float dginit = 0.0f;
  16191. float dgtest = 0.0f;
  16192. const float dec = 0.5f;
  16193. const float inc = 2.1f;
  16194. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16195. const float accum_norm = 1.0f / (float) n_accum;
  16196. if (*step <= 0.f) {
  16197. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16198. }
  16199. // compute the initial gradient in the search direction
  16200. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16201. // make sure that d points to a descent direction
  16202. if (0 < dginit) {
  16203. return GGML_LINESEARCH_FAIL;
  16204. }
  16205. // initialize local variables
  16206. finit = *fx;
  16207. dgtest = params->lbfgs.ftol*dginit;
  16208. while (true) {
  16209. ggml_vec_cpy_f32(nx, x, xp);
  16210. ggml_vec_mad_f32(nx, x, d, *step);
  16211. // evaluate the function and gradient values
  16212. {
  16213. ggml_opt_set_params(np, ps, x);
  16214. *fx = 0;
  16215. memset(g, 0, sizeof(float)*nx);
  16216. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16217. if (callback) {
  16218. // LBFG-S does not support learning rate -> ignore learning schedule
  16219. float sched = 0;
  16220. callback(callback_data, accum_step, &sched, cancel);
  16221. if (*cancel) {
  16222. return GGML_OPT_RESULT_CANCEL;
  16223. }
  16224. }
  16225. // ggml_graph_reset (gf);
  16226. ggml_set_f32 (f->grad, 1.0f);
  16227. ggml_graph_compute(gb, cplan);
  16228. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16229. *fx += ggml_get_f32_1d(f, 0);
  16230. }
  16231. *fx *= accum_norm;
  16232. }
  16233. ++count;
  16234. if (*fx > finit + (*step)*dgtest) {
  16235. width = dec;
  16236. } else {
  16237. // Armijo condition is satisfied
  16238. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16239. return count;
  16240. }
  16241. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16242. // check the Wolfe condition
  16243. if (dg < params->lbfgs.wolfe * dginit) {
  16244. width = inc;
  16245. } else {
  16246. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16247. // regular Wolfe conditions
  16248. return count;
  16249. }
  16250. if(dg > -params->lbfgs.wolfe*dginit) {
  16251. width = dec;
  16252. } else {
  16253. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16254. return count;
  16255. }
  16256. }
  16257. }
  16258. if (*step < params->lbfgs.min_step) {
  16259. return GGML_LINESEARCH_MINIMUM_STEP;
  16260. }
  16261. if (*step > params->lbfgs.max_step) {
  16262. return GGML_LINESEARCH_MAXIMUM_STEP;
  16263. }
  16264. if (params->lbfgs.max_linesearch <= count) {
  16265. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16266. }
  16267. (*step) *= width;
  16268. }
  16269. GGML_ASSERT(false && "line search failed");
  16270. return GGML_LINESEARCH_FAIL;
  16271. }
  16272. static enum ggml_opt_result ggml_opt_lbfgs(
  16273. struct ggml_context * ctx,
  16274. struct ggml_opt_context * opt,
  16275. struct ggml_opt_params params,
  16276. struct ggml_tensor * f,
  16277. struct ggml_cgraph * gf,
  16278. struct ggml_cgraph * gb,
  16279. ggml_opt_callback callback,
  16280. void * callback_data) {
  16281. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16282. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16283. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16284. return GGML_OPT_RESULT_INVALID_WOLFE;
  16285. }
  16286. }
  16287. const int m = params.lbfgs.m;
  16288. // these will store the parameters we want to optimize
  16289. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16290. int np = 0;
  16291. int nx = 0;
  16292. for (int i = 0; i < gf->n_nodes; ++i) {
  16293. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16294. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16295. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16296. ps[np++] = gf->nodes[i];
  16297. nx += ggml_nelements(gf->nodes[i]);
  16298. }
  16299. }
  16300. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16301. int iter = opt->iter;
  16302. ggml_opt_init(ctx, opt, params, nx);
  16303. opt->iter = iter;
  16304. }
  16305. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16306. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16307. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16308. float * x = opt->lbfgs.x->data; // current parameters
  16309. float * xp = opt->lbfgs.xp->data; // previous parameters
  16310. float * g = opt->lbfgs.g->data; // current gradient
  16311. float * gp = opt->lbfgs.gp->data; // previous gradient
  16312. float * d = opt->lbfgs.d->data; // search direction
  16313. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16314. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16315. const float accum_norm = 1.0f / (float) n_accum;
  16316. float fx = 0.0f; // cost function value
  16317. float xnorm = 0.0f; // ||x||
  16318. float gnorm = 0.0f; // ||g||
  16319. // initialize x from the graph nodes
  16320. ggml_opt_get_params(np, ps, x);
  16321. // the L-BFGS memory
  16322. float * lm_alpha = opt->lbfgs.lmal->data;
  16323. float * lm_ys = opt->lbfgs.lmys->data;
  16324. float * lm_s = opt->lbfgs.lms->data;
  16325. float * lm_y = opt->lbfgs.lmy->data;
  16326. bool cancel = false;
  16327. // evaluate the function value and its gradient
  16328. {
  16329. ggml_opt_set_params(np, ps, x);
  16330. fx = 0;
  16331. memset(g, 0, sizeof(float)*nx);
  16332. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16333. if (callback) {
  16334. // LBFG-S does not support learning rate -> ignore learning schedule
  16335. float sched = 0;
  16336. callback(callback_data, accum_step, &sched, &cancel);
  16337. if (cancel) {
  16338. return GGML_OPT_RESULT_CANCEL;
  16339. }
  16340. }
  16341. // ggml_graph_reset (gf);
  16342. ggml_set_f32 (f->grad, 1.0f);
  16343. ggml_graph_compute(gb, &cplan);
  16344. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16345. fx += ggml_get_f32_1d(f, 0);
  16346. }
  16347. fx *= accum_norm;
  16348. opt->loss_before = fx;
  16349. opt->loss_after = fx;
  16350. }
  16351. // search direction = -gradient
  16352. ggml_vec_neg_f32(nx, d, g);
  16353. // ||x||, ||g||
  16354. ggml_vec_norm_f32(nx, &xnorm, x);
  16355. ggml_vec_norm_f32(nx, &gnorm, g);
  16356. if (xnorm < 1.0f) {
  16357. xnorm = 1.0f;
  16358. }
  16359. // already optimized
  16360. if (gnorm/xnorm <= params.lbfgs.eps) {
  16361. return GGML_OPT_RESULT_OK;
  16362. }
  16363. if (opt->just_initialized) {
  16364. if (pf) {
  16365. pf[0] = fx;
  16366. }
  16367. opt->lbfgs.fx_best = fx;
  16368. // initial step
  16369. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16370. opt->lbfgs.j = 0;
  16371. opt->lbfgs.k = 1;
  16372. opt->lbfgs.end = 0;
  16373. opt->lbfgs.n_no_improvement = 0;
  16374. opt->just_initialized = false;
  16375. }
  16376. float * fx_best = &opt->lbfgs.fx_best;
  16377. float * step = &opt->lbfgs.step;
  16378. int * j = &opt->lbfgs.j;
  16379. int * k = &opt->lbfgs.k;
  16380. int * end = &opt->lbfgs.end;
  16381. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16382. int ls = 0;
  16383. int bound = 0;
  16384. float ys = 0.0f;
  16385. float yy = 0.0f;
  16386. float beta = 0.0f;
  16387. int it = 0;
  16388. while (true) {
  16389. // store the current position and gradient vectors
  16390. ggml_vec_cpy_f32(nx, xp, x);
  16391. ggml_vec_cpy_f32(nx, gp, g);
  16392. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16393. // to determine if the optimization should be cancelled
  16394. // this is a simple change, but not doing this atm, since I don't have a nice
  16395. // way to test and don't want to break something with so many changes lined up
  16396. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16397. if (cancel) {
  16398. return GGML_OPT_RESULT_CANCEL;
  16399. }
  16400. if (ls < 0) {
  16401. // linesearch failed - go back to the previous point and return
  16402. ggml_vec_cpy_f32(nx, x, xp);
  16403. ggml_vec_cpy_f32(nx, g, gp);
  16404. return ls;
  16405. }
  16406. opt->loss_after = fx;
  16407. ggml_vec_norm_f32(nx, &xnorm, x);
  16408. ggml_vec_norm_f32(nx, &gnorm, g);
  16409. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16410. if (xnorm < 1.0f) {
  16411. xnorm = 1.0f;
  16412. }
  16413. if (gnorm/xnorm <= params.lbfgs.eps) {
  16414. // converged
  16415. return GGML_OPT_RESULT_OK;
  16416. }
  16417. // delta-based convergence test
  16418. if (pf != NULL) {
  16419. // need at least params.past iterations to start checking for convergence
  16420. if (params.past <= k[0]) {
  16421. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16422. if (fabsf(rate) < params.delta) {
  16423. return GGML_OPT_RESULT_OK;
  16424. }
  16425. }
  16426. pf[k[0]%params.past] = fx;
  16427. }
  16428. // check for improvement
  16429. if (params.max_no_improvement > 0) {
  16430. if (fx < fx_best[0]) {
  16431. fx_best[0] = fx;
  16432. n_no_improvement[0] = 0;
  16433. } else {
  16434. n_no_improvement[0]++;
  16435. if (n_no_improvement[0] >= params.max_no_improvement) {
  16436. return GGML_OPT_RESULT_OK;
  16437. }
  16438. }
  16439. }
  16440. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16441. // reached the maximum number of iterations
  16442. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16443. }
  16444. // update vectors s and y:
  16445. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16446. // y_{k+1} = g_{k+1} - g_{k}.
  16447. //
  16448. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16449. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16450. // compute scalars ys and yy:
  16451. // ys = y^t \cdot s -> 1 / \rho.
  16452. // yy = y^t \cdot y.
  16453. //
  16454. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16455. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16456. lm_ys[end[0]] = ys;
  16457. // find new search direction
  16458. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16459. bound = (m <= k[0]) ? m : k[0];
  16460. k[0]++;
  16461. it++;
  16462. end[0] = (end[0] + 1)%m;
  16463. // initialize search direction with -g
  16464. ggml_vec_neg_f32(nx, d, g);
  16465. j[0] = end[0];
  16466. for (int i = 0; i < bound; ++i) {
  16467. j[0] = (j[0] + m - 1) % m;
  16468. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16469. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16470. lm_alpha[j[0]] /= lm_ys[j[0]];
  16471. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16472. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16473. }
  16474. ggml_vec_scale_f32(nx, d, ys/yy);
  16475. for (int i = 0; i < bound; ++i) {
  16476. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16477. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16478. beta /= lm_ys[j[0]];
  16479. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16480. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16481. j[0] = (j[0] + 1)%m;
  16482. }
  16483. step[0] = 1.0;
  16484. }
  16485. GGML_ASSERT(false && "lbfgs failed");
  16486. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16487. }
  16488. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16489. struct ggml_opt_params result;
  16490. switch (type) {
  16491. case GGML_OPT_TYPE_ADAM:
  16492. {
  16493. result = (struct ggml_opt_params) {
  16494. .type = GGML_OPT_TYPE_ADAM,
  16495. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16496. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16497. .past = 0,
  16498. .delta = 1e-5f,
  16499. .max_no_improvement = 100,
  16500. .print_forward_graph = true,
  16501. .print_backward_graph = true,
  16502. .n_gradient_accumulation = 1,
  16503. .adam = {
  16504. .n_iter = 10000,
  16505. .sched = 1.000f,
  16506. .decay = 0.0f,
  16507. .decay_min_ndim = 2,
  16508. .alpha = 0.001f,
  16509. .beta1 = 0.9f,
  16510. .beta2 = 0.999f,
  16511. .eps = 1e-8f,
  16512. .eps_f = 1e-5f,
  16513. .eps_g = 1e-3f,
  16514. .gclip = 0.0f,
  16515. },
  16516. };
  16517. } break;
  16518. case GGML_OPT_TYPE_LBFGS:
  16519. {
  16520. result = (struct ggml_opt_params) {
  16521. .type = GGML_OPT_TYPE_LBFGS,
  16522. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16523. .n_threads = 1,
  16524. .past = 0,
  16525. .delta = 1e-5f,
  16526. .max_no_improvement = 0,
  16527. .print_forward_graph = true,
  16528. .print_backward_graph = true,
  16529. .n_gradient_accumulation = 1,
  16530. .lbfgs = {
  16531. .m = 6,
  16532. .n_iter = 100,
  16533. .max_linesearch = 20,
  16534. .eps = 1e-5f,
  16535. .ftol = 1e-4f,
  16536. .wolfe = 0.9f,
  16537. .min_step = 1e-20f,
  16538. .max_step = 1e+20f,
  16539. .linesearch = GGML_LINESEARCH_DEFAULT,
  16540. },
  16541. };
  16542. } break;
  16543. }
  16544. return result;
  16545. }
  16546. GGML_API void ggml_opt_init(
  16547. struct ggml_context * ctx,
  16548. struct ggml_opt_context * opt,
  16549. struct ggml_opt_params params,
  16550. int64_t nx) {
  16551. opt->ctx = ctx;
  16552. opt->params = params;
  16553. opt->iter = 0;
  16554. opt->nx = nx;
  16555. opt->just_initialized = true;
  16556. if (opt->ctx == NULL) {
  16557. struct ggml_init_params ctx_opt_params;
  16558. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16559. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16560. if (opt->params.past > 0) {
  16561. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16562. }
  16563. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16564. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16565. if (opt->params.past > 0) {
  16566. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16567. }
  16568. }
  16569. ctx_opt_params.mem_buffer = NULL;
  16570. ctx_opt_params.no_alloc = false;
  16571. opt->ctx = ggml_init(ctx_opt_params);
  16572. }
  16573. switch (opt->params.type) {
  16574. case GGML_OPT_TYPE_ADAM:
  16575. {
  16576. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16577. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16578. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16579. opt->adam.pf = params.past > 0
  16580. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16581. : NULL;
  16582. ggml_set_zero(opt->adam.m);
  16583. ggml_set_zero(opt->adam.v);
  16584. if (opt->adam.pf) {
  16585. ggml_set_zero(opt->adam.pf);
  16586. }
  16587. } break;
  16588. case GGML_OPT_TYPE_LBFGS:
  16589. {
  16590. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16591. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16592. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16593. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16594. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16595. opt->lbfgs.pf = params.past > 0
  16596. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16597. : NULL;
  16598. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16599. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16600. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16601. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16602. ggml_set_zero(opt->lbfgs.x);
  16603. ggml_set_zero(opt->lbfgs.xp);
  16604. ggml_set_zero(opt->lbfgs.g);
  16605. ggml_set_zero(opt->lbfgs.gp);
  16606. ggml_set_zero(opt->lbfgs.d);
  16607. if (opt->lbfgs.pf) {
  16608. ggml_set_zero(opt->lbfgs.pf);
  16609. }
  16610. ggml_set_zero(opt->lbfgs.lmal);
  16611. ggml_set_zero(opt->lbfgs.lmys);
  16612. ggml_set_zero(opt->lbfgs.lms);
  16613. ggml_set_zero(opt->lbfgs.lmy);
  16614. } break;
  16615. }
  16616. }
  16617. enum ggml_opt_result ggml_opt(
  16618. struct ggml_context * ctx,
  16619. struct ggml_opt_params params,
  16620. struct ggml_tensor * f) {
  16621. bool free_ctx = false;
  16622. if (ctx == NULL) {
  16623. struct ggml_init_params params_ctx = {
  16624. .mem_size = 16*1024*1024,
  16625. .mem_buffer = NULL,
  16626. .no_alloc = false,
  16627. };
  16628. ctx = ggml_init(params_ctx);
  16629. if (ctx == NULL) {
  16630. return GGML_OPT_RESULT_NO_CONTEXT;
  16631. }
  16632. free_ctx = true;
  16633. }
  16634. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16635. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16636. ggml_opt_init(ctx, opt, params, 0);
  16637. result = ggml_opt_resume(ctx, opt, f);
  16638. if (free_ctx) {
  16639. ggml_free(ctx);
  16640. }
  16641. return result;
  16642. }
  16643. enum ggml_opt_result ggml_opt_resume(
  16644. struct ggml_context * ctx,
  16645. struct ggml_opt_context * opt,
  16646. struct ggml_tensor * f) {
  16647. // build forward + backward compute graphs
  16648. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16649. ggml_build_forward_expand(gf, f);
  16650. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16651. ggml_build_backward_expand(ctx, gf, gb, true);
  16652. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16653. }
  16654. enum ggml_opt_result ggml_opt_resume_g(
  16655. struct ggml_context * ctx,
  16656. struct ggml_opt_context * opt,
  16657. struct ggml_tensor * f,
  16658. struct ggml_cgraph * gf,
  16659. struct ggml_cgraph * gb,
  16660. ggml_opt_callback callback,
  16661. void * callback_data) {
  16662. // build forward + backward compute graphs
  16663. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16664. switch (opt->params.type) {
  16665. case GGML_OPT_TYPE_ADAM:
  16666. {
  16667. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16668. } break;
  16669. case GGML_OPT_TYPE_LBFGS:
  16670. {
  16671. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16672. } break;
  16673. }
  16674. if (opt->params.print_forward_graph) {
  16675. ggml_graph_print (gf);
  16676. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16677. }
  16678. if (opt->params.print_backward_graph) {
  16679. ggml_graph_print (gb);
  16680. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16681. }
  16682. return result;
  16683. }
  16684. ////////////////////////////////////////////////////////////////////////////////
  16685. void ggml_set_input(struct ggml_tensor * tensor) {
  16686. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16687. }
  16688. void ggml_set_output(struct ggml_tensor * tensor) {
  16689. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16690. }
  16691. ////////////////////////////////////////////////////////////////////////////////
  16692. void ggml_quantize_init(enum ggml_type type) {
  16693. ggml_critical_section_start();
  16694. switch (type) {
  16695. case GGML_TYPE_IQ2_XXS:
  16696. case GGML_TYPE_IQ2_XS:
  16697. case GGML_TYPE_IQ2_S:
  16698. case GGML_TYPE_IQ1_S:
  16699. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16700. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16701. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16702. default: // nothing
  16703. break;
  16704. }
  16705. ggml_critical_section_end();
  16706. }
  16707. void ggml_quantize_free(void) {
  16708. ggml_critical_section_start();
  16709. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16710. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16711. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16712. iq3xs_free_impl(256);
  16713. ggml_critical_section_end();
  16714. }
  16715. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16716. return
  16717. type == GGML_TYPE_IQ2_XXS ||
  16718. type == GGML_TYPE_IQ2_XS ||
  16719. type == GGML_TYPE_IQ1_S;// ||
  16720. //type == GGML_TYPE_IQ1_M;
  16721. }
  16722. size_t ggml_quantize_chunk(
  16723. enum ggml_type type,
  16724. const float * src,
  16725. void * dst,
  16726. int64_t start,
  16727. int64_t nrows,
  16728. int64_t n_per_row,
  16729. const float * imatrix) {
  16730. const int64_t n = (int64_t) nrows * n_per_row;
  16731. if (ggml_quantize_requires_imatrix(type)) {
  16732. GGML_ASSERT(imatrix != NULL);
  16733. }
  16734. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16735. GGML_ASSERT(start % n_per_row == 0);
  16736. ggml_quantize_init(type); // this is noop if already initialized
  16737. const size_t start_row = start / n_per_row;
  16738. const size_t row_size = ggml_row_size(type, n_per_row);
  16739. size_t result = 0;
  16740. switch (type) {
  16741. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16742. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16743. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16744. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16745. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16746. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16747. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16748. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16749. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16750. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16751. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16752. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16753. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16754. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. #if QK_K == 64
  16760. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. #else
  16762. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. #endif
  16764. case GGML_TYPE_F16:
  16765. {
  16766. size_t elemsize = sizeof(ggml_fp16_t);
  16767. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16768. result = n * elemsize;
  16769. } break;
  16770. case GGML_TYPE_F32:
  16771. {
  16772. size_t elemsize = sizeof(float);
  16773. result = n * elemsize;
  16774. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16775. } break;
  16776. default:
  16777. assert(false);
  16778. }
  16779. GGML_ASSERT(result == nrows * row_size);
  16780. return result;
  16781. }
  16782. ////////////////////////////////////////////////////////////////////////////////
  16783. struct gguf_str {
  16784. uint64_t n; // GGUFv2
  16785. char * data;
  16786. };
  16787. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16788. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16789. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16790. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16791. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16792. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16793. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16794. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16795. [GGUF_TYPE_BOOL] = sizeof(bool),
  16796. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16797. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16798. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16799. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16800. [GGUF_TYPE_ARRAY] = 0, // undefined
  16801. };
  16802. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16803. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16804. [GGUF_TYPE_UINT8] = "u8",
  16805. [GGUF_TYPE_INT8] = "i8",
  16806. [GGUF_TYPE_UINT16] = "u16",
  16807. [GGUF_TYPE_INT16] = "i16",
  16808. [GGUF_TYPE_UINT32] = "u32",
  16809. [GGUF_TYPE_INT32] = "i32",
  16810. [GGUF_TYPE_FLOAT32] = "f32",
  16811. [GGUF_TYPE_BOOL] = "bool",
  16812. [GGUF_TYPE_STRING] = "str",
  16813. [GGUF_TYPE_ARRAY] = "arr",
  16814. [GGUF_TYPE_UINT64] = "u64",
  16815. [GGUF_TYPE_INT64] = "i64",
  16816. [GGUF_TYPE_FLOAT64] = "f64",
  16817. };
  16818. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16819. union gguf_value {
  16820. uint8_t uint8;
  16821. int8_t int8;
  16822. uint16_t uint16;
  16823. int16_t int16;
  16824. uint32_t uint32;
  16825. int32_t int32;
  16826. float float32;
  16827. uint64_t uint64;
  16828. int64_t int64;
  16829. double float64;
  16830. bool bool_;
  16831. struct gguf_str str;
  16832. struct {
  16833. enum gguf_type type;
  16834. uint64_t n; // GGUFv2
  16835. void * data;
  16836. } arr;
  16837. };
  16838. struct gguf_kv {
  16839. struct gguf_str key;
  16840. enum gguf_type type;
  16841. union gguf_value value;
  16842. };
  16843. struct gguf_header {
  16844. char magic[4];
  16845. uint32_t version;
  16846. uint64_t n_tensors; // GGUFv2
  16847. uint64_t n_kv; // GGUFv2
  16848. };
  16849. struct gguf_tensor_info {
  16850. struct gguf_str name;
  16851. uint32_t n_dims;
  16852. uint64_t ne[GGML_MAX_DIMS];
  16853. enum ggml_type type;
  16854. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16855. // for writing API
  16856. const void * data;
  16857. size_t size;
  16858. };
  16859. struct gguf_context {
  16860. struct gguf_header header;
  16861. struct gguf_kv * kv;
  16862. struct gguf_tensor_info * infos;
  16863. size_t alignment;
  16864. size_t offset; // offset of `data` from beginning of file
  16865. size_t size; // size of `data` in bytes
  16866. //uint8_t * padding;
  16867. void * data;
  16868. };
  16869. static size_t gguf_type_size(enum gguf_type type) {
  16870. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16871. return GGUF_TYPE_SIZE[type];
  16872. }
  16873. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16874. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16875. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16876. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16877. GGML_ASSERT(info->ne[i] > 0);
  16878. }
  16879. // prevent overflow for total number of elements
  16880. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16881. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16882. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16883. }
  16884. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16885. const size_t n = fread(dst, 1, size, file);
  16886. *offset += n;
  16887. return n == size;
  16888. }
  16889. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16890. p->n = 0;
  16891. p->data = NULL;
  16892. bool ok = true;
  16893. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16894. // early exit if string length is invalid, prevents from integer overflow
  16895. if (p->n == SIZE_MAX) {
  16896. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16897. return false;
  16898. }
  16899. p->data = GGML_CALLOC(p->n + 1, 1);
  16900. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16901. return ok;
  16902. }
  16903. static void gguf_free_kv(struct gguf_kv * kv) {
  16904. if (kv->key.data) {
  16905. GGML_FREE(kv->key.data);
  16906. }
  16907. if (kv->type == GGUF_TYPE_STRING) {
  16908. if (kv->value.str.data) {
  16909. GGML_FREE(kv->value.str.data);
  16910. }
  16911. }
  16912. if (kv->type == GGUF_TYPE_ARRAY) {
  16913. if (kv->value.arr.data) {
  16914. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16915. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16916. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16917. if (str->data) {
  16918. GGML_FREE(str->data);
  16919. }
  16920. }
  16921. }
  16922. GGML_FREE(kv->value.arr.data);
  16923. }
  16924. }
  16925. }
  16926. struct gguf_context * gguf_init_empty(void) {
  16927. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16928. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16929. ctx->header.version = GGUF_VERSION;
  16930. ctx->header.n_tensors = 0;
  16931. ctx->header.n_kv = 0;
  16932. ctx->kv = NULL;
  16933. ctx->infos = NULL;
  16934. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16935. ctx->offset = 0;
  16936. ctx->size = 0;
  16937. ctx->data = NULL;
  16938. return ctx;
  16939. }
  16940. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16941. FILE * file = ggml_fopen(fname, "rb");
  16942. if (!file) {
  16943. return NULL;
  16944. }
  16945. // offset from start of file
  16946. size_t offset = 0;
  16947. char magic[4];
  16948. // check the magic before making allocations
  16949. {
  16950. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16951. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16952. if (magic[i] != GGUF_MAGIC[i]) {
  16953. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16954. fclose(file);
  16955. return NULL;
  16956. }
  16957. }
  16958. }
  16959. bool ok = true;
  16960. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16961. // read the header
  16962. {
  16963. strncpy(ctx->header.magic, magic, 4);
  16964. ctx->kv = NULL;
  16965. ctx->infos = NULL;
  16966. ctx->data = NULL;
  16967. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16968. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16969. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16970. if (ctx->header.version == 1) {
  16971. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16972. fclose(file);
  16973. gguf_free(ctx);
  16974. return NULL;
  16975. }
  16976. // sanity-checks to prevent from integer/buffer overflows
  16977. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16978. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16979. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16980. if (!ok) {
  16981. fprintf(stderr, "%s: failed to read header\n", __func__);
  16982. fclose(file);
  16983. gguf_free(ctx);
  16984. return NULL;
  16985. }
  16986. }
  16987. // read the kv pairs
  16988. {
  16989. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16990. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16991. struct gguf_kv * kv = &ctx->kv[i];
  16992. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16993. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16994. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16995. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16996. switch (kv->type) {
  16997. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16998. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16999. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17000. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17001. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17002. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17003. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17004. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17005. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17006. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17007. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17008. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17009. case GGUF_TYPE_ARRAY:
  17010. {
  17011. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17012. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17013. switch (kv->value.arr.type) {
  17014. case GGUF_TYPE_UINT8:
  17015. case GGUF_TYPE_INT8:
  17016. case GGUF_TYPE_UINT16:
  17017. case GGUF_TYPE_INT16:
  17018. case GGUF_TYPE_UINT32:
  17019. case GGUF_TYPE_INT32:
  17020. case GGUF_TYPE_FLOAT32:
  17021. case GGUF_TYPE_UINT64:
  17022. case GGUF_TYPE_INT64:
  17023. case GGUF_TYPE_FLOAT64:
  17024. case GGUF_TYPE_BOOL:
  17025. {
  17026. // prevent from integer overflow in the malloc below
  17027. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17028. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17029. fclose(file);
  17030. gguf_free(ctx);
  17031. return NULL;
  17032. }
  17033. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17034. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17035. } break;
  17036. case GGUF_TYPE_STRING:
  17037. {
  17038. // prevent from integer overflow in the malloc below
  17039. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17040. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17041. fclose(file);
  17042. gguf_free(ctx);
  17043. return NULL;
  17044. }
  17045. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17046. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17047. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17048. }
  17049. } break;
  17050. case GGUF_TYPE_ARRAY:
  17051. default: GGML_ASSERT(false && "invalid type"); break;
  17052. }
  17053. } break;
  17054. default: GGML_ASSERT(false && "invalid type");
  17055. }
  17056. if (!ok) {
  17057. break;
  17058. }
  17059. }
  17060. if (!ok) {
  17061. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17062. fclose(file);
  17063. gguf_free(ctx);
  17064. return NULL;
  17065. }
  17066. }
  17067. // read the tensor infos
  17068. {
  17069. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17070. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17071. struct gguf_tensor_info * info = &ctx->infos[i];
  17072. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17073. info->ne[j] = 1;
  17074. }
  17075. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17076. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17077. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17078. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17079. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17080. }
  17081. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17082. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17083. gguf_tensor_info_sanitize(info);
  17084. if (!ok) {
  17085. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17086. fclose(file);
  17087. gguf_free(ctx);
  17088. return NULL;
  17089. }
  17090. }
  17091. }
  17092. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17093. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17094. if (alignment_idx != -1) {
  17095. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17096. }
  17097. // we require the data section to be aligned, so take into account any padding
  17098. {
  17099. const size_t offset_pad = offset % ctx->alignment;
  17100. if (offset_pad != 0) {
  17101. offset += ctx->alignment - offset_pad;
  17102. fseek(file, offset, SEEK_SET);
  17103. }
  17104. }
  17105. // store the current file offset - this is where the data section starts
  17106. ctx->offset = offset;
  17107. // compute the total size of the data section, taking into account the alignment
  17108. {
  17109. ctx->size = 0;
  17110. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17111. struct gguf_tensor_info * info = &ctx->infos[i];
  17112. const int64_t ne =
  17113. (int64_t) info->ne[0] *
  17114. (int64_t) info->ne[1] *
  17115. (int64_t) info->ne[2] *
  17116. (int64_t) info->ne[3];
  17117. if (ne % ggml_blck_size(info->type) != 0) {
  17118. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17119. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17120. fclose(file);
  17121. gguf_free(ctx);
  17122. return NULL;
  17123. }
  17124. const size_t size_cur = ggml_row_size(info->type, ne);
  17125. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17126. }
  17127. }
  17128. // load the tensor data only if requested
  17129. if (params.ctx != NULL) {
  17130. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17131. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17132. // the ggml_tensor structs to the appropriate locations in the binary blob
  17133. // compute the exact size needed for the new ggml_context
  17134. const size_t mem_size =
  17135. params.no_alloc ?
  17136. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17137. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17138. struct ggml_init_params pdata = {
  17139. .mem_size = mem_size,
  17140. .mem_buffer = NULL,
  17141. .no_alloc = params.no_alloc,
  17142. };
  17143. *params.ctx = ggml_init(pdata);
  17144. struct ggml_context * ctx_data = *params.ctx;
  17145. struct ggml_tensor * data = NULL;
  17146. if (!params.no_alloc) {
  17147. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17148. ok = ok && data != NULL;
  17149. // read the binary blob with the tensor data
  17150. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17151. if (!ok) {
  17152. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17153. fclose(file);
  17154. ggml_free(ctx_data);
  17155. gguf_free(ctx);
  17156. return NULL;
  17157. }
  17158. ctx->data = data->data;
  17159. }
  17160. ggml_set_no_alloc(ctx_data, true);
  17161. // create the tensors
  17162. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17163. const int64_t ne[GGML_MAX_DIMS] = {
  17164. ctx->infos[i].ne[0],
  17165. ctx->infos[i].ne[1],
  17166. ctx->infos[i].ne[2],
  17167. ctx->infos[i].ne[3],
  17168. };
  17169. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17170. ok = ok && cur != NULL;
  17171. if (!ok) {
  17172. break;
  17173. }
  17174. ggml_set_name(cur, ctx->infos[i].name.data);
  17175. // point the data member to the appropriate location in the binary blob using the tensor infos
  17176. if (!params.no_alloc) {
  17177. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17178. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17179. }
  17180. }
  17181. if (!ok) {
  17182. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17183. fclose(file);
  17184. ggml_free(ctx_data);
  17185. gguf_free(ctx);
  17186. return NULL;
  17187. }
  17188. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17189. }
  17190. fclose(file);
  17191. return ctx;
  17192. }
  17193. void gguf_free(struct gguf_context * ctx) {
  17194. if (ctx == NULL) {
  17195. return;
  17196. }
  17197. if (ctx->kv) {
  17198. // free string memory - not great..
  17199. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17200. gguf_free_kv(&ctx->kv[i]);
  17201. }
  17202. GGML_FREE(ctx->kv);
  17203. }
  17204. if (ctx->infos) {
  17205. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17206. struct gguf_tensor_info * info = &ctx->infos[i];
  17207. if (info->name.data) {
  17208. GGML_FREE(info->name.data);
  17209. }
  17210. }
  17211. GGML_FREE(ctx->infos);
  17212. }
  17213. GGML_ALIGNED_FREE(ctx);
  17214. }
  17215. const char * gguf_type_name(enum gguf_type type) {
  17216. return GGUF_TYPE_NAME[type];
  17217. }
  17218. int gguf_get_version(const struct gguf_context * ctx) {
  17219. return ctx->header.version;
  17220. }
  17221. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17222. return ctx->alignment;
  17223. }
  17224. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17225. return ctx->offset;
  17226. }
  17227. void * gguf_get_data(const struct gguf_context * ctx) {
  17228. return ctx->data;
  17229. }
  17230. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17231. return ctx->header.n_kv;
  17232. }
  17233. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17234. // return -1 if key not found
  17235. int keyfound = -1;
  17236. const int n_kv = gguf_get_n_kv(ctx);
  17237. for (int i = 0; i < n_kv; ++i) {
  17238. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17239. keyfound = i;
  17240. break;
  17241. }
  17242. }
  17243. return keyfound;
  17244. }
  17245. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17246. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17247. return ctx->kv[key_id].key.data;
  17248. }
  17249. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17251. return ctx->kv[key_id].type;
  17252. }
  17253. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17256. return ctx->kv[key_id].value.arr.type;
  17257. }
  17258. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17261. return ctx->kv[key_id].value.arr.data;
  17262. }
  17263. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17266. struct gguf_kv * kv = &ctx->kv[key_id];
  17267. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17268. return str->data;
  17269. }
  17270. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17271. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17272. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17273. return ctx->kv[key_id].value.arr.n;
  17274. }
  17275. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17276. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17277. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17278. return ctx->kv[key_id].value.uint8;
  17279. }
  17280. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17283. return ctx->kv[key_id].value.int8;
  17284. }
  17285. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17288. return ctx->kv[key_id].value.uint16;
  17289. }
  17290. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17293. return ctx->kv[key_id].value.int16;
  17294. }
  17295. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17298. return ctx->kv[key_id].value.uint32;
  17299. }
  17300. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17303. return ctx->kv[key_id].value.int32;
  17304. }
  17305. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17308. return ctx->kv[key_id].value.float32;
  17309. }
  17310. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17313. return ctx->kv[key_id].value.uint64;
  17314. }
  17315. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17318. return ctx->kv[key_id].value.int64;
  17319. }
  17320. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17323. return ctx->kv[key_id].value.float64;
  17324. }
  17325. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17326. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17327. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17328. return ctx->kv[key_id].value.bool_;
  17329. }
  17330. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17331. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17332. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17333. return ctx->kv[key_id].value.str.data;
  17334. }
  17335. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17336. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17337. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17338. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17339. return &ctx->kv[key_id].value;
  17340. }
  17341. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17342. return ctx->header.n_tensors;
  17343. }
  17344. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17345. // return -1 if tensor not found
  17346. int tensorfound = -1;
  17347. const int n_tensors = gguf_get_n_tensors(ctx);
  17348. for (int i = 0; i < n_tensors; ++i) {
  17349. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17350. tensorfound = i;
  17351. break;
  17352. }
  17353. }
  17354. return tensorfound;
  17355. }
  17356. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17357. return ctx->infos[i].offset;
  17358. }
  17359. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17360. return ctx->infos[i].name.data;
  17361. }
  17362. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17363. return ctx->infos[i].type;
  17364. }
  17365. // returns the index
  17366. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17367. const int idx = gguf_find_key(ctx, key);
  17368. if (idx >= 0) {
  17369. return idx;
  17370. }
  17371. const int n_kv = gguf_get_n_kv(ctx);
  17372. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17373. ctx->kv[n_kv].key.n = strlen(key);
  17374. ctx->kv[n_kv].key.data = strdup(key);
  17375. ctx->header.n_kv++;
  17376. return n_kv;
  17377. }
  17378. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17379. const int idx = gguf_find_key(ctx, key);
  17380. if (idx >= 0) {
  17381. const int n_kv = gguf_get_n_kv(ctx);
  17382. gguf_free_kv(&ctx->kv[idx]);
  17383. for (int i = idx; i < n_kv-1; ++i) {
  17384. ctx->kv[i] = ctx->kv[i+1];
  17385. }
  17386. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17387. ctx->header.n_kv--;
  17388. }
  17389. }
  17390. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17391. const int idx = gguf_get_or_add_key(ctx, key);
  17392. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17393. ctx->kv[idx].value.uint8 = val;
  17394. }
  17395. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17396. const int idx = gguf_get_or_add_key(ctx, key);
  17397. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17398. ctx->kv[idx].value.int8 = val;
  17399. }
  17400. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17401. const int idx = gguf_get_or_add_key(ctx, key);
  17402. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17403. ctx->kv[idx].value.uint16 = val;
  17404. }
  17405. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17406. const int idx = gguf_get_or_add_key(ctx, key);
  17407. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17408. ctx->kv[idx].value.int16 = val;
  17409. }
  17410. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17411. const int idx = gguf_get_or_add_key(ctx, key);
  17412. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17413. ctx->kv[idx].value.uint32 = val;
  17414. }
  17415. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17416. const int idx = gguf_get_or_add_key(ctx, key);
  17417. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17418. ctx->kv[idx].value.int32 = val;
  17419. }
  17420. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17421. const int idx = gguf_get_or_add_key(ctx, key);
  17422. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17423. ctx->kv[idx].value.float32 = val;
  17424. }
  17425. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17426. const int idx = gguf_get_or_add_key(ctx, key);
  17427. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17428. ctx->kv[idx].value.uint64 = val;
  17429. }
  17430. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17431. const int idx = gguf_get_or_add_key(ctx, key);
  17432. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17433. ctx->kv[idx].value.int64 = val;
  17434. }
  17435. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17436. const int idx = gguf_get_or_add_key(ctx, key);
  17437. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17438. ctx->kv[idx].value.float64 = val;
  17439. }
  17440. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17441. const int idx = gguf_get_or_add_key(ctx, key);
  17442. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17443. ctx->kv[idx].value.bool_ = val;
  17444. }
  17445. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17446. const int idx = gguf_get_or_add_key(ctx, key);
  17447. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17448. ctx->kv[idx].value.str.n = strlen(val);
  17449. ctx->kv[idx].value.str.data = strdup(val);
  17450. }
  17451. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17452. const int idx = gguf_get_or_add_key(ctx, key);
  17453. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17454. ctx->kv[idx].value.arr.type = type;
  17455. ctx->kv[idx].value.arr.n = n;
  17456. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17457. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17458. }
  17459. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17460. const int idx = gguf_get_or_add_key(ctx, key);
  17461. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17462. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17463. ctx->kv[idx].value.arr.n = n;
  17464. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17465. for (int i = 0; i < n; i++) {
  17466. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17467. str->n = strlen(data[i]);
  17468. str->data = strdup(data[i]);
  17469. }
  17470. }
  17471. // set or add KV pairs from another context
  17472. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17473. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17474. switch (src->kv[i].type) {
  17475. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17476. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17477. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17478. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17479. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17480. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17481. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17482. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17483. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17484. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17485. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17486. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17487. case GGUF_TYPE_ARRAY:
  17488. {
  17489. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17490. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17491. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17492. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17493. }
  17494. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17495. GGML_FREE((void *)data);
  17496. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17497. GGML_ASSERT(false && "nested arrays not supported");
  17498. } else {
  17499. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17500. }
  17501. } break;
  17502. default: GGML_ASSERT(false && "invalid type"); break;
  17503. }
  17504. }
  17505. }
  17506. void gguf_add_tensor(
  17507. struct gguf_context * ctx,
  17508. const struct ggml_tensor * tensor) {
  17509. const int idx = ctx->header.n_tensors;
  17510. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17511. ctx->infos[idx].name.n = strlen(tensor->name);
  17512. ctx->infos[idx].name.data = strdup(tensor->name);
  17513. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17514. ctx->infos[idx].ne[i] = 1;
  17515. }
  17516. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17517. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17518. ctx->infos[idx].ne[i] = tensor->ne[i];
  17519. }
  17520. ctx->infos[idx].type = tensor->type;
  17521. ctx->infos[idx].offset = 0;
  17522. ctx->infos[idx].data = tensor->data;
  17523. ctx->infos[idx].size = ggml_nbytes(tensor);
  17524. if (ctx->header.n_tensors > 0) {
  17525. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17526. }
  17527. ctx->header.n_tensors++;
  17528. }
  17529. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17530. const int idx = gguf_find_tensor(ctx, name);
  17531. if (idx < 0) {
  17532. GGML_ASSERT(false && "tensor not found");
  17533. }
  17534. ctx->infos[idx].type = type;
  17535. }
  17536. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17537. const int idx = gguf_find_tensor(ctx, name);
  17538. if (idx < 0) {
  17539. GGML_ASSERT(false && "tensor not found");
  17540. }
  17541. ctx->infos[idx].data = data;
  17542. ctx->infos[idx].size = size;
  17543. // update offsets
  17544. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17545. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17546. }
  17547. }
  17548. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17549. // fwrite(&val->n, sizeof(val->n), 1, file);
  17550. // fwrite(val->data, sizeof(char), val->n, file);
  17551. //}
  17552. //
  17553. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17554. // fwrite(val, sizeof(char), size, file);
  17555. //}
  17556. struct gguf_buf {
  17557. void * data;
  17558. size_t size;
  17559. size_t offset;
  17560. };
  17561. static struct gguf_buf gguf_buf_init(size_t size) {
  17562. struct gguf_buf buf = {
  17563. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17564. /*buf.size =*/ size,
  17565. /*buf.offset =*/ 0,
  17566. };
  17567. return buf;
  17568. }
  17569. static void gguf_buf_free(struct gguf_buf buf) {
  17570. if (buf.data) {
  17571. GGML_FREE(buf.data);
  17572. }
  17573. }
  17574. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17575. if (buf->offset + size > buf->size) {
  17576. buf->size = 1.5*(buf->offset + size);
  17577. if (buf->data) {
  17578. buf->data = realloc(buf->data, buf->size);
  17579. }
  17580. }
  17581. }
  17582. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17583. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17584. if (buf->data) {
  17585. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17586. }
  17587. buf->offset += sizeof(val->n);
  17588. if (buf->data) {
  17589. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17590. }
  17591. buf->offset += val->n;
  17592. }
  17593. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17594. gguf_buf_grow(buf, el_size);
  17595. if (buf->data) {
  17596. memcpy((char *) buf->data + buf->offset, val, el_size);
  17597. }
  17598. buf->offset += el_size;
  17599. }
  17600. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17601. // write header
  17602. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17603. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17604. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17605. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17606. // write key-value pairs
  17607. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17608. struct gguf_kv * kv = &ctx->kv[i];
  17609. gguf_bwrite_str(buf, &kv->key);
  17610. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17611. switch (kv->type) {
  17612. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17613. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17614. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17615. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17616. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17617. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17618. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17619. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17620. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17621. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17622. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17623. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17624. case GGUF_TYPE_ARRAY:
  17625. {
  17626. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17627. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17628. switch (kv->value.arr.type) {
  17629. case GGUF_TYPE_UINT8:
  17630. case GGUF_TYPE_INT8:
  17631. case GGUF_TYPE_UINT16:
  17632. case GGUF_TYPE_INT16:
  17633. case GGUF_TYPE_UINT32:
  17634. case GGUF_TYPE_INT32:
  17635. case GGUF_TYPE_FLOAT32:
  17636. case GGUF_TYPE_UINT64:
  17637. case GGUF_TYPE_INT64:
  17638. case GGUF_TYPE_FLOAT64:
  17639. case GGUF_TYPE_BOOL:
  17640. {
  17641. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17642. } break;
  17643. case GGUF_TYPE_STRING:
  17644. {
  17645. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17646. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17647. }
  17648. } break;
  17649. case GGUF_TYPE_ARRAY:
  17650. default: GGML_ASSERT(false && "invalid type"); break;
  17651. }
  17652. } break;
  17653. default: GGML_ASSERT(false && "invalid type");
  17654. }
  17655. }
  17656. // write tensor infos
  17657. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17658. struct gguf_tensor_info * info = &ctx->infos[i];
  17659. gguf_bwrite_str(buf, &info->name);
  17660. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17661. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17662. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17663. }
  17664. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17665. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17666. }
  17667. // we require the data section to be aligned, so take into account any padding
  17668. {
  17669. const size_t offset = buf->offset;
  17670. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17671. if (offset_pad != offset) {
  17672. uint8_t pad = 0;
  17673. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17674. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17675. }
  17676. }
  17677. }
  17678. if (only_meta) {
  17679. return;
  17680. }
  17681. size_t offset = 0;
  17682. // write tensor data
  17683. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17684. struct gguf_tensor_info * info = &ctx->infos[i];
  17685. const size_t size = info->size;
  17686. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17687. gguf_bwrite_el(buf, info->data, size);
  17688. if (size_pad != size) {
  17689. uint8_t pad = 0;
  17690. for (size_t j = 0; j < size_pad - size; ++j) {
  17691. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17692. }
  17693. }
  17694. GGML_ASSERT(offset == info->offset);
  17695. offset += size_pad;
  17696. }
  17697. }
  17698. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17699. FILE * file = ggml_fopen(fname, "wb");
  17700. if (!file) {
  17701. GGML_ASSERT(false && "failed to open file for writing");
  17702. }
  17703. struct gguf_buf buf = gguf_buf_init(16*1024);
  17704. gguf_write_to_buf(ctx, &buf, only_meta);
  17705. fwrite(buf.data, 1, buf.offset, file);
  17706. gguf_buf_free(buf);
  17707. fclose(file);
  17708. }
  17709. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17710. // no allocs - only compute size
  17711. struct gguf_buf buf = gguf_buf_init(0);
  17712. gguf_write_to_buf(ctx, &buf, true);
  17713. return buf.offset;
  17714. }
  17715. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17716. struct gguf_buf buf = gguf_buf_init(16*1024);
  17717. gguf_write_to_buf(ctx, &buf, true);
  17718. memcpy(data, buf.data, buf.offset);
  17719. gguf_buf_free(buf);
  17720. }
  17721. ////////////////////////////////////////////////////////////////////////////////
  17722. int ggml_cpu_has_avx(void) {
  17723. #if defined(__AVX__)
  17724. return 1;
  17725. #else
  17726. return 0;
  17727. #endif
  17728. }
  17729. int ggml_cpu_has_avx_vnni(void) {
  17730. #if defined(__AVXVNNI__)
  17731. return 1;
  17732. #else
  17733. return 0;
  17734. #endif
  17735. }
  17736. int ggml_cpu_has_avx2(void) {
  17737. #if defined(__AVX2__)
  17738. return 1;
  17739. #else
  17740. return 0;
  17741. #endif
  17742. }
  17743. int ggml_cpu_has_avx512(void) {
  17744. #if defined(__AVX512F__)
  17745. return 1;
  17746. #else
  17747. return 0;
  17748. #endif
  17749. }
  17750. int ggml_cpu_has_avx512_vbmi(void) {
  17751. #if defined(__AVX512VBMI__)
  17752. return 1;
  17753. #else
  17754. return 0;
  17755. #endif
  17756. }
  17757. int ggml_cpu_has_avx512_vnni(void) {
  17758. #if defined(__AVX512VNNI__)
  17759. return 1;
  17760. #else
  17761. return 0;
  17762. #endif
  17763. }
  17764. int ggml_cpu_has_fma(void) {
  17765. #if defined(__FMA__)
  17766. return 1;
  17767. #else
  17768. return 0;
  17769. #endif
  17770. }
  17771. int ggml_cpu_has_neon(void) {
  17772. #if defined(__ARM_NEON)
  17773. return 1;
  17774. #else
  17775. return 0;
  17776. #endif
  17777. }
  17778. int ggml_cpu_has_arm_fma(void) {
  17779. #if defined(__ARM_FEATURE_FMA)
  17780. return 1;
  17781. #else
  17782. return 0;
  17783. #endif
  17784. }
  17785. int ggml_cpu_has_metal(void) {
  17786. #if defined(GGML_USE_METAL)
  17787. return 1;
  17788. #else
  17789. return 0;
  17790. #endif
  17791. }
  17792. int ggml_cpu_has_f16c(void) {
  17793. #if defined(__F16C__)
  17794. return 1;
  17795. #else
  17796. return 0;
  17797. #endif
  17798. }
  17799. int ggml_cpu_has_fp16_va(void) {
  17800. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17801. return 1;
  17802. #else
  17803. return 0;
  17804. #endif
  17805. }
  17806. int ggml_cpu_has_wasm_simd(void) {
  17807. #if defined(__wasm_simd128__)
  17808. return 1;
  17809. #else
  17810. return 0;
  17811. #endif
  17812. }
  17813. int ggml_cpu_has_blas(void) {
  17814. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17815. return 1;
  17816. #else
  17817. return 0;
  17818. #endif
  17819. }
  17820. int ggml_cpu_has_cuda(void) {
  17821. #if defined(GGML_USE_CUDA)
  17822. return 1;
  17823. #else
  17824. return 0;
  17825. #endif
  17826. }
  17827. int ggml_cpu_has_clblast(void) {
  17828. #if defined(GGML_USE_CLBLAST)
  17829. return 1;
  17830. #else
  17831. return 0;
  17832. #endif
  17833. }
  17834. int ggml_cpu_has_vulkan(void) {
  17835. #if defined(GGML_USE_VULKAN)
  17836. return 1;
  17837. #else
  17838. return 0;
  17839. #endif
  17840. }
  17841. int ggml_cpu_has_kompute(void) {
  17842. #if defined(GGML_USE_KOMPUTE)
  17843. return 1;
  17844. #else
  17845. return 0;
  17846. #endif
  17847. }
  17848. int ggml_cpu_has_sycl(void) {
  17849. #if defined(GGML_USE_SYCL)
  17850. return 1;
  17851. #else
  17852. return 0;
  17853. #endif
  17854. }
  17855. int ggml_cpu_has_gpublas(void) {
  17856. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17857. ggml_cpu_has_sycl();
  17858. }
  17859. int ggml_cpu_has_sse3(void) {
  17860. #if defined(__SSE3__)
  17861. return 1;
  17862. #else
  17863. return 0;
  17864. #endif
  17865. }
  17866. int ggml_cpu_has_ssse3(void) {
  17867. #if defined(__SSSE3__)
  17868. return 1;
  17869. #else
  17870. return 0;
  17871. #endif
  17872. }
  17873. int ggml_cpu_has_vsx(void) {
  17874. #if defined(__POWER9_VECTOR__)
  17875. return 1;
  17876. #else
  17877. return 0;
  17878. #endif
  17879. }
  17880. int ggml_cpu_has_matmul_int8(void) {
  17881. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17882. return 1;
  17883. #else
  17884. return 0;
  17885. #endif
  17886. }
  17887. ////////////////////////////////////////////////////////////////////////////////