| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include <ctime>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- int main(int argc, char ** argv) {
- gpt_params params;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- params.embedding = true;
- if (params.n_ctx > 2048) {
- fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
- "expect poor results\n", __func__, params.n_ctx);
- }
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.random_prompt) {
- params.prompt = gpt_random_prompt(rng);
- }
- llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- // load the model
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
- params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
- }
- int n_past = 0;
- // Add a space in front of the first character to match OG llama tokenizer behavior
- params.prompt.insert(0, 1, ' ');
- // tokenize the prompt
- auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
- if (params.verbose_prompt) {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
- fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (int i = 0; i < (int) embd_inp.size(); i++) {
- fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
- }
- fprintf(stderr, "\n");
- }
- if (embd_inp.size() > (size_t)params.n_ctx) {
- fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
- __func__, embd_inp.size(), params.n_ctx);
- return 1;
- }
- while (!embd_inp.empty()) {
- int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
- if (llama_eval(ctx, embd_inp.data(), n_tokens, n_past, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- n_past += n_tokens;
- embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
- }
- const int n_embd = llama_n_embd(ctx);
- const auto embeddings = llama_get_embeddings(ctx);
- for (int i = 0; i < n_embd; i++) {
- printf("%f ", embeddings[i]);
- }
- printf("\n");
- llama_print_timings(ctx);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|