| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include "ggml.h"
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- /**
- * This the arbitrary data which will be passed to each callback.
- * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
- */
- struct callback_data {
- std::vector<uint8_t> data;
- };
- static std::string ggml_ne_string(const ggml_tensor * t) {
- std::string str;
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- str += std::to_string(t->ne[i]);
- if (i + 1 < GGML_MAX_DIMS) {
- str += ", ";
- }
- }
- return str;
- }
- static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
- union {
- float f;
- uint32_t i;
- } u;
- u.i = (uint32_t)h.bits << 16;
- return u.f;
- }
- static float ggml_get_float_value(const uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
- size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
- float v;
- if (type == GGML_TYPE_F16) {
- v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
- } else if (type == GGML_TYPE_F32) {
- v = *(const float *) &data[i];
- } else if (type == GGML_TYPE_I64) {
- v = (float) *(const int64_t *) &data[i];
- } else if (type == GGML_TYPE_I32) {
- v = (float) *(const int32_t *) &data[i];
- } else if (type == GGML_TYPE_I16) {
- v = (float) *(const int16_t *) &data[i];
- } else if (type == GGML_TYPE_I8) {
- v = (float) *(const int8_t *) &data[i];
- } else if (type == GGML_TYPE_BF16) {
- v = ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
- } else {
- GGML_ABORT("fatal error");
- }
- return v;
- }
- static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
- GGML_ASSERT(n > 0);
- float sum = 0;
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- sum += v;
- }
- }
- }
- }
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- LOG(" [\n");
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- if (i2 == n && ne[2] > 2*n) {
- LOG(" ..., \n");
- i2 = ne[2] - n;
- }
- LOG(" [\n");
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- if (i1 == n && ne[1] > 2*n) {
- LOG(" ..., \n");
- i1 = ne[1] - n;
- }
- LOG(" [");
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- if (i0 == n && ne[0] > 2*n) {
- LOG("..., ");
- i0 = ne[0] - n;
- }
- const float v = ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- LOG("%12.4f", v);
- if (i0 < ne[0] - 1) LOG(", ");
- }
- LOG("],\n");
- }
- LOG(" ],\n");
- }
- LOG(" ]\n");
- LOG(" sum = %f\n", sum);
- }
- // TODO: make this abort configurable/optional?
- if (std::isnan(sum)) {
- LOG_ERR("encountered NaN - aborting\n");
- exit(0);
- }
- }
- /**
- * GGML operations callback during the graph execution.
- *
- * @param t current tensor
- * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
- * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
- * see ggml_backend_sched_eval_callback
- * @param user_data user data to pass at each call back
- * @return true to receive data or continue the graph, false otherwise
- */
- static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
- auto * cb_data = (callback_data *) user_data;
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- if (ask) {
- return true; // Always retrieve data
- }
- char src1_str[128] = {0};
- if (src1) {
- snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
- }
- LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
- t->name, ggml_type_name(t->type), ggml_op_desc(t),
- src0->name, ggml_ne_string(src0).c_str(),
- src1 ? src1_str : "",
- ggml_ne_string(t).c_str());
- // copy the data from the GPU memory if needed
- const bool is_host = ggml_backend_buffer_is_host(t->buffer);
- if (!is_host) {
- auto n_bytes = ggml_nbytes(t);
- cb_data->data.resize(n_bytes);
- ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
- }
- if (!ggml_is_quantized(t->type)) {
- uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
- ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
- }
- return true;
- }
- static bool run(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
- if (tokens.empty()) {
- LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
- return false;
- }
- if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return false;
- }
- return true;
- }
- int main(int argc, char ** argv) {
- callback_data cb_data;
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
- return 1;
- }
- common_init();
- llama_backend_init();
- llama_numa_init(params.numa);
- // pass the callback to the backend scheduler
- // it will be executed for each node during the graph computation
- params.cb_eval = ggml_debug;
- params.cb_eval_user_data = &cb_data;
- params.warmup = false;
- // init
- auto llama_init = common_init_from_params(params);
- auto * model = llama_init->model();
- auto * ctx = llama_init->context();
- if (model == nullptr || ctx == nullptr) {
- LOG_ERR("%s : failed to init\n", __func__);
- return 1;
- }
- // print system information
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- }
- bool OK = run(ctx, params);
- if (!OK) {
- return 1;
- }
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|