| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- #include "models.h"
- ggml_cgraph * clip_graph_conformer::build() {
- const int n_frames = img.nx;
- const int n_pos = n_frames / 2;
- const int n_pos_embd = (((((n_frames + 1) / 2) + 1) / 2 + 1) / 2) * 2 - 1;
- GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
- ggml_tensor * pos_emb = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 512, n_pos_embd);
- ggml_set_name(pos_emb, "pos_emb");
- ggml_set_input(pos_emb);
- ggml_build_forward_expand(gf, pos_emb);
- ggml_tensor * inp = build_inp_raw(1);
- cb(inp, "input", -1);
- auto * cur = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- // pre encode, conv subsampling
- {
- // layer.0 - conv2d
- cur = ggml_conv_2d(ctx0, model.pre_encode_conv_X_w[0], cur, 2, 2, 1, 1, 1, 1);
- cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[0]);
- cb(cur, "conformer.pre_encode.conv.{}", 0);
- // layer.1 - relu
- cur = ggml_relu_inplace(ctx0, cur);
- // layer.2 conv2d dw
- cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[2], cur, 2, 2, 1, 1, 1, 1);
- cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[2]);
- cb(cur, "conformer.pre_encode.conv.{}", 2);
- // layer.3 conv2d
- cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[3], cur, 1, 1, 0, 0, 1, 1);
- cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[3]);
- cb(cur, "conformer.pre_encode.conv.{}", 3);
- // layer.4 - relu
- cur = ggml_relu_inplace(ctx0, cur);
- // layer.5 conv2d dw
- cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[5], cur, 2, 2, 1, 1, 1, 1);
- cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[5]);
- cb(cur, "conformer.pre_encode.conv.{}", 5);
- // layer.6 conv2d
- cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[6], cur, 1, 1, 0, 0, 1, 1);
- cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[6]);
- cb(cur, "conformer.pre_encode.conv.{}", 6);
- // layer.7 - relu
- cur = ggml_relu_inplace(ctx0, cur);
- // flatten channel and frequency axis
- cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3));
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0] * cur->ne[1], cur->ne[2]);
- // calculate out
- cur = ggml_mul_mat(ctx0, model.pre_encode_out_w, cur);
- cur = ggml_add(ctx0, cur, model.pre_encode_out_b);
- cb(cur, "conformer.pre_encode.out", -1);
- }
- // pos_emb
- cb(pos_emb, "pos_emb", -1);
- for (int il = 0; il < hparams.n_layer; il++) {
- const auto & layer = model.layers[il];
- auto * residual = cur;
- cb(cur, "layer.in", il);
- // feed_forward1
- cur = build_norm(cur, layer.ff_norm_w, layer.ff_norm_b, NORM_TYPE_NORMAL, 1e-5, il);
- cb(cur, "conformer.layers.{}.norm_feed_forward1", il);
- cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w, layer.ff_down_b, FFN_SILU,
- il);
- cb(cur, "conformer.layers.{}.feed_forward1.linear2", il);
- const auto fc_factor = 0.5f;
- residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));
- // self-attention
- {
- cur = build_norm(residual, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, 1e-5, il);
- cb(cur, "conformer.layers.{}.norm_self_att", il);
- ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
- Qcur = ggml_add(ctx0, Qcur, layer.q_b);
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, Qcur->ne[1]);
- ggml_tensor * Q_bias_u = ggml_add(ctx0, Qcur, layer.pos_bias_u);
- Q_bias_u = ggml_permute(ctx0, Q_bias_u, 0, 2, 1, 3);
- ggml_tensor * Q_bias_v = ggml_add(ctx0, Qcur, layer.pos_bias_v);
- Q_bias_v = ggml_permute(ctx0, Q_bias_v, 0, 2, 1, 3);
- // TODO @ngxson : some cont can/should be removed when ggml_mul_mat support these cases
- ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
- Kcur = ggml_add(ctx0, Kcur, layer.k_b);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, Kcur->ne[1]);
- Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
- ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
- Vcur = ggml_add(ctx0, Vcur, layer.v_b);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, Vcur->ne[1]);
- Vcur = ggml_cont(ctx0, ggml_permute(ctx0, Vcur, 1, 2, 0, 3));
- // build_attn won't fit due to matrix_ac and matrix_bd separation
- ggml_tensor * matrix_ac = ggml_mul_mat(ctx0, Q_bias_u, Kcur);
- matrix_ac = ggml_cont(ctx0, ggml_permute(ctx0, matrix_ac, 1, 0, 2, 3));
- cb(matrix_ac, "conformer.layers.{}.self_attn.id3", il);
- auto * p = ggml_mul_mat(ctx0, layer.linear_pos_w, pos_emb);
- cb(p, "conformer.layers.{}.self_attn.linear_pos", il);
- p = ggml_reshape_3d(ctx0, p, d_head, n_head, p->ne[1]);
- p = ggml_permute(ctx0, p, 0, 2, 1, 3);
- auto * matrix_bd = ggml_mul_mat(ctx0, Q_bias_v, p);
- matrix_bd = ggml_cont(ctx0, ggml_permute(ctx0, matrix_bd, 1, 0, 2, 3));
- // rel shift
- {
- const auto pos_len = matrix_bd->ne[0];
- const auto q_len = matrix_bd->ne[1];
- const auto h = matrix_bd->ne[2];
- matrix_bd = ggml_pad(ctx0, matrix_bd, 1, 0, 0, 0);
- matrix_bd = ggml_roll(ctx0, matrix_bd, 1, 0, 0, 0);
- matrix_bd = ggml_reshape_3d(ctx0, matrix_bd, q_len, pos_len + 1, h);
- matrix_bd = ggml_view_3d(ctx0, matrix_bd, q_len, pos_len, h, matrix_bd->nb[1],
- matrix_bd->nb[2], matrix_bd->nb[0] * q_len);
- matrix_bd = ggml_cont_3d(ctx0, matrix_bd, pos_len, q_len, h);
- }
- matrix_bd = ggml_view_3d(ctx0, matrix_bd, matrix_ac->ne[0], matrix_bd->ne[1],
- matrix_bd->ne[2], matrix_bd->nb[1], matrix_bd->nb[2], 0);
- auto * scores = ggml_add(ctx0, matrix_ac, matrix_bd);
- scores = ggml_scale(ctx0, scores, 1.0f / std::sqrt(d_head));
- cb(scores, "conformer.layers.{}.self_attn.id0", il);
- ggml_tensor * attn = ggml_soft_max(ctx0, scores);
- ggml_tensor * x = ggml_mul_mat(ctx0, attn, Vcur);
- x = ggml_permute(ctx0, x, 2, 0, 1, 3);
- x = ggml_cont_2d(ctx0, x, x->ne[0] * x->ne[1], x->ne[2]);
- ggml_tensor * out = ggml_mul_mat(ctx0, layer.o_w, x);
- out = ggml_add(ctx0, out, layer.o_b);
- cb(out, "conformer.layers.{}.self_attn.linear_out", il);
- cur = out;
- }
- residual = ggml_add(ctx0, residual, cur);
- cur = build_norm(residual, layer.norm_conv_w, layer.norm_conv_b, NORM_TYPE_NORMAL, 1e-5, il);
- cb(cur, "conformer.layers.{}.norm_conv", il);
- // conv
- {
- auto * x = cur;
- x = ggml_mul_mat(ctx0, layer.conv_pw1_w, x);
- x = ggml_add(ctx0, x, layer.conv_pw1_b);
- cb(x, "conformer.layers.{}.conv.pointwise_conv1", il);
- // ggml_glu doesn't support sigmoid
- // TODO @ngxson : support this ops in ggml
- {
- int64_t d = x->ne[0] / 2;
- ggml_tensor * gate = ggml_sigmoid(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], d * x->nb[0]));
- x = ggml_mul(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], 0), gate);
- x = ggml_cont(ctx0, ggml_transpose(ctx0, x));
- }
- // use ggml_ssm_conv for f32 precision
- x = ggml_pad(ctx0, x, 4, 0, 0, 0);
- x = ggml_roll(ctx0, x, 4, 0, 0, 0);
- x = ggml_pad(ctx0, x, 4, 0, 0, 0);
- x = ggml_ssm_conv(ctx0, x, layer.conv_dw_w);
- x = ggml_add(ctx0, x, layer.conv_dw_b);
- x = ggml_add(ctx0, ggml_mul(ctx0, x, layer.conv_norm_w), layer.conv_norm_b);
- x = ggml_silu(ctx0, x);
- // pointwise_conv2
- x = ggml_mul_mat(ctx0, layer.conv_pw2_w, x);
- x = ggml_add(ctx0, x, layer.conv_pw2_b);
- cur = x;
- }
- residual = ggml_add(ctx0, residual, cur);
- cur = build_norm(residual, layer.ff_norm_1_w, layer.ff_norm_1_b, NORM_TYPE_NORMAL, 1e-5, il);
- cb(cur, "conformer.layers.{}.norm_feed_forward2", il);
- cur = build_ffn(cur, layer.ff_up_1_w, layer.ff_up_1_b, nullptr, nullptr, layer.ff_down_1_w, layer.ff_down_1_b,
- FFN_SILU, il); // TODO(tarek): read activation for ffn from hparams
- cb(cur, "conformer.layers.{}.feed_forward2.linear2", il);
- residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));
- cb(residual, "conformer.layers.{}.conv.id", il);
- cur = build_norm(residual, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, 1e-5, il);
- cb(cur, "conformer.layers.{}.norm_out", il);
- }
- // audio adapter
- cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
- cb(cur, "audio_adapter.model.{}", 0);
- cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_3_w, model.mm_3_b, FFN_GELU_ERF, -1);
- cb(cur, "projected", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
|