main.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. #include "common.h"
  2. #include "console.h"
  3. #include "llama.h"
  4. #include <cassert>
  5. #include <cinttypes>
  6. #include <cmath>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <ctime>
  10. #include <fstream>
  11. #include <iostream>
  12. #include <sstream>
  13. #include <string>
  14. #include <vector>
  15. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  16. #include <signal.h>
  17. #include <unistd.h>
  18. #elif defined (_WIN32)
  19. #define WIN32_LEAN_AND_MEAN
  20. #ifndef NOMINMAX
  21. #define NOMINMAX
  22. #endif
  23. #include <windows.h>
  24. #include <signal.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. #pragma warning(disable: 4244 4267) // possible loss of data
  28. #endif
  29. static llama_context ** g_ctx;
  30. static llama_model ** g_model;
  31. static gpt_params * g_params;
  32. static std::vector<llama_token> * g_input_tokens;
  33. static std::ostringstream * g_output_ss;
  34. static std::vector<llama_token> * g_output_tokens;
  35. static bool is_interacting = false;
  36. static bool file_exists(const std::string &path) {
  37. std::ifstream f(path.c_str());
  38. return f.good();
  39. }
  40. static bool file_is_empty(const std::string &path) {
  41. std::ifstream f;
  42. f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
  43. f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
  44. return f.tellg() == 0;
  45. }
  46. static void write_logfile(
  47. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  48. const std::vector<llama_token> & input_tokens, const std::string & output,
  49. const std::vector<llama_token> & output_tokens
  50. ) {
  51. if (params.logdir.empty()) {
  52. return;
  53. }
  54. const std::string timestamp = get_sortable_timestamp();
  55. const bool success = create_directory_with_parents(params.logdir);
  56. if (!success) {
  57. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  58. __func__, params.logdir.c_str());
  59. return;
  60. }
  61. const std::string logfile_path = params.logdir + timestamp + ".yml";
  62. FILE * logfile = fopen(logfile_path.c_str(), "w");
  63. if (logfile == NULL) {
  64. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  65. return;
  66. }
  67. fprintf(logfile, "binary: main\n");
  68. char model_desc[128];
  69. llama_model_desc(model, model_desc, sizeof(model_desc));
  70. dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
  71. fprintf(logfile, "\n");
  72. fprintf(logfile, "######################\n");
  73. fprintf(logfile, "# Generation Results #\n");
  74. fprintf(logfile, "######################\n");
  75. fprintf(logfile, "\n");
  76. dump_string_yaml_multiline(logfile, "output", output.c_str());
  77. dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
  78. llama_dump_timing_info_yaml(logfile, ctx);
  79. fclose(logfile);
  80. }
  81. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  82. static void sigint_handler(int signo) {
  83. if (signo == SIGINT) {
  84. if (!is_interacting) {
  85. is_interacting = true;
  86. } else {
  87. console::cleanup();
  88. printf("\n");
  89. llama_print_timings(*g_ctx);
  90. write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
  91. _exit(130);
  92. }
  93. }
  94. }
  95. #endif
  96. static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
  97. (void) level;
  98. (void) user_data;
  99. LOG_TEE("%s", text);
  100. }
  101. int main(int argc, char ** argv) {
  102. gpt_params params;
  103. g_params = &params;
  104. if (!gpt_params_parse(argc, argv, params)) {
  105. return 1;
  106. }
  107. llama_sampling_params & sparams = params.sparams;
  108. #ifndef LOG_DISABLE_LOGS
  109. log_set_target(log_filename_generator("main", "log"));
  110. LOG_TEE("Log start\n");
  111. log_dump_cmdline(argc, argv);
  112. llama_log_set(llama_log_callback_logTee, nullptr);
  113. #endif // LOG_DISABLE_LOGS
  114. // TODO: Dump params ?
  115. //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
  116. // save choice to use color for later
  117. // (note for later: this is a slightly awkward choice)
  118. console::init(params.simple_io, params.use_color);
  119. atexit([]() { console::cleanup(); });
  120. if (params.logits_all) {
  121. printf("\n************\n");
  122. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  123. printf("************\n\n");
  124. return 0;
  125. }
  126. if (params.embedding) {
  127. printf("\n************\n");
  128. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  129. printf("************\n\n");
  130. return 0;
  131. }
  132. if (params.n_ctx != 0 && params.n_ctx < 8) {
  133. LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  134. params.n_ctx = 8;
  135. }
  136. if (params.rope_freq_base != 0.0) {
  137. LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
  138. }
  139. if (params.rope_freq_scale != 0.0) {
  140. LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
  141. }
  142. LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  143. LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  144. if (params.seed == LLAMA_DEFAULT_SEED) {
  145. params.seed = time(NULL);
  146. }
  147. LOG_TEE("%s: seed = %u\n", __func__, params.seed);
  148. std::mt19937 rng(params.seed);
  149. if (params.random_prompt) {
  150. params.prompt = gpt_random_prompt(rng);
  151. }
  152. LOG("%s: llama backend init\n", __func__);
  153. llama_backend_init(params.numa);
  154. llama_model * model;
  155. llama_context * ctx;
  156. llama_context * ctx_guidance = NULL;
  157. g_model = &model;
  158. g_ctx = &ctx;
  159. // load the model and apply lora adapter, if any
  160. LOG("%s: load the model and apply lora adapter, if any\n", __func__);
  161. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  162. if (sparams.cfg_scale > 1.f) {
  163. struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
  164. ctx_guidance = llama_new_context_with_model(model, lparams);
  165. }
  166. if (model == NULL) {
  167. LOG_TEE("%s: error: unable to load model\n", __func__);
  168. return 1;
  169. }
  170. const int n_ctx_train = llama_n_ctx_train(model);
  171. const int n_ctx = llama_n_ctx(ctx);
  172. LOG("n_ctx: %d\n", n_ctx);
  173. if (n_ctx > n_ctx_train) {
  174. LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
  175. __func__, n_ctx_train, n_ctx);
  176. }
  177. // print system information
  178. {
  179. LOG_TEE("\n");
  180. LOG_TEE("%s\n", get_system_info(params).c_str());
  181. }
  182. std::string path_session = params.path_prompt_cache;
  183. std::vector<llama_token> session_tokens;
  184. if (!path_session.empty()) {
  185. LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  186. if (!file_exists(path_session)) {
  187. LOG_TEE("%s: session file does not exist, will create.\n", __func__);
  188. } else if (file_is_empty(path_session)) {
  189. LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
  190. } else {
  191. // The file exists and is not empty
  192. session_tokens.resize(n_ctx);
  193. size_t n_token_count_out = 0;
  194. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  195. LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  196. return 1;
  197. }
  198. session_tokens.resize(n_token_count_out);
  199. llama_set_rng_seed(ctx, params.seed);
  200. LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
  201. }
  202. }
  203. const bool add_bos = llama_should_add_bos_token(model);
  204. LOG("add_bos: %d\n", add_bos);
  205. std::vector<llama_token> embd_inp;
  206. if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
  207. LOG("tokenize the prompt\n");
  208. if (params.chatml) {
  209. params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
  210. }
  211. embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
  212. } else {
  213. LOG("use session tokens\n");
  214. embd_inp = session_tokens;
  215. }
  216. LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
  217. LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
  218. // Should not run without any tokens
  219. if (embd_inp.empty()) {
  220. embd_inp.push_back(llama_token_bos(model));
  221. LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
  222. }
  223. // Tokenize negative prompt
  224. std::vector<llama_token> guidance_inp;
  225. int guidance_offset = 0;
  226. int original_prompt_len = 0;
  227. if (ctx_guidance) {
  228. LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
  229. guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
  230. LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
  231. std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
  232. LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
  233. original_prompt_len = original_inp.size();
  234. guidance_offset = (int)guidance_inp.size() - original_prompt_len;
  235. LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
  236. LOG("guidance_offset: %s", log_tostr(guidance_offset));
  237. }
  238. if ((int) embd_inp.size() > n_ctx - 4) {
  239. LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  240. return 1;
  241. }
  242. // debug message about similarity of saved session, if applicable
  243. size_t n_matching_session_tokens = 0;
  244. if (!session_tokens.empty()) {
  245. for (llama_token id : session_tokens) {
  246. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  247. break;
  248. }
  249. n_matching_session_tokens++;
  250. }
  251. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  252. LOG_TEE("%s: using full prompt from session file\n", __func__);
  253. } else if (n_matching_session_tokens >= embd_inp.size()) {
  254. LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
  255. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  256. LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  257. __func__, n_matching_session_tokens, embd_inp.size());
  258. } else {
  259. LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
  260. __func__, n_matching_session_tokens, embd_inp.size());
  261. }
  262. // remove any "future" tokens that we might have inherited from the previous session
  263. llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
  264. }
  265. LOGLN(
  266. "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
  267. log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
  268. // if we will use the cache for the full prompt without reaching the end of the cache, force
  269. // reevaluation of the last token token to recalculate the cached logits
  270. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
  271. LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
  272. session_tokens.resize(embd_inp.size() - 1);
  273. }
  274. // number of tokens to keep when resetting context
  275. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
  276. params.n_keep = (int)embd_inp.size();
  277. }
  278. // prefix & suffix for instruct mode
  279. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
  280. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
  281. LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
  282. LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
  283. // chatml prefix & suffix
  284. const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
  285. const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
  286. LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
  287. LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
  288. // in instruct mode, we inject a prefix and a suffix to each input by the user
  289. if (params.instruct) {
  290. params.interactive_first = true;
  291. params.antiprompt.emplace_back("### Instruction:\n\n");
  292. }
  293. // similar for chatml mode
  294. else if (params.chatml) {
  295. params.interactive_first = true;
  296. params.antiprompt.emplace_back("<|im_start|>user\n");
  297. }
  298. // enable interactive mode if interactive start is specified
  299. if (params.interactive_first) {
  300. params.interactive = true;
  301. }
  302. if (params.verbose_prompt) {
  303. LOG_TEE("\n");
  304. LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  305. LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  306. for (int i = 0; i < (int) embd_inp.size(); i++) {
  307. LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
  308. }
  309. if (ctx_guidance) {
  310. LOG_TEE("\n");
  311. LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
  312. LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
  313. for (int i = 0; i < (int) guidance_inp.size(); i++) {
  314. LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
  315. }
  316. }
  317. if (params.n_keep > 0) {
  318. LOG_TEE("%s: static prompt based on n_keep: '", __func__);
  319. for (int i = 0; i < params.n_keep; i++) {
  320. LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
  321. }
  322. LOG_TEE("'\n");
  323. }
  324. LOG_TEE("\n");
  325. }
  326. if (params.interactive) {
  327. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  328. struct sigaction sigint_action;
  329. sigint_action.sa_handler = sigint_handler;
  330. sigemptyset (&sigint_action.sa_mask);
  331. sigint_action.sa_flags = 0;
  332. sigaction(SIGINT, &sigint_action, NULL);
  333. #elif defined (_WIN32)
  334. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  335. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  336. };
  337. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  338. #endif
  339. LOG_TEE("%s: interactive mode on.\n", __func__);
  340. if (!params.antiprompt.empty()) {
  341. for (const auto & antiprompt : params.antiprompt) {
  342. LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
  343. if (params.verbose_prompt) {
  344. auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
  345. for (int i = 0; i < (int) tmp.size(); i++) {
  346. LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
  347. }
  348. }
  349. }
  350. }
  351. if (params.input_prefix_bos) {
  352. LOG_TEE("Input prefix with BOS\n");
  353. }
  354. if (!params.input_prefix.empty()) {
  355. LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
  356. if (params.verbose_prompt) {
  357. auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
  358. for (int i = 0; i < (int) tmp.size(); i++) {
  359. LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
  360. }
  361. }
  362. }
  363. if (!params.input_suffix.empty()) {
  364. LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
  365. if (params.verbose_prompt) {
  366. auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
  367. for (int i = 0; i < (int) tmp.size(); i++) {
  368. LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
  369. }
  370. }
  371. }
  372. }
  373. LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
  374. LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
  375. LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  376. // group-attention state
  377. // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
  378. int ga_i = 0;
  379. const int ga_n = params.grp_attn_n;
  380. const int ga_w = params.grp_attn_w;
  381. if (ga_n != 1) {
  382. GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
  383. GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
  384. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
  385. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
  386. LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
  387. }
  388. LOG_TEE("\n\n");
  389. if (params.interactive) {
  390. const char *control_message;
  391. if (params.multiline_input) {
  392. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  393. " - To return control without starting a new line, end your input with '/'.\n";
  394. } else {
  395. control_message = " - Press Return to return control to LLaMa.\n"
  396. " - To return control without starting a new line, end your input with '/'.\n"
  397. " - If you want to submit another line, end your input with '\\'.\n";
  398. }
  399. LOG_TEE("== Running in interactive mode. ==\n");
  400. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  401. LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
  402. #endif
  403. LOG_TEE( "%s\n", control_message);
  404. is_interacting = params.interactive_first;
  405. }
  406. bool is_antiprompt = false;
  407. bool input_echo = true;
  408. bool display = true;
  409. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  410. int n_past = 0;
  411. int n_remain = params.n_predict;
  412. int n_consumed = 0;
  413. int n_session_consumed = 0;
  414. int n_past_guidance = 0;
  415. std::vector<int> input_tokens; g_input_tokens = &input_tokens;
  416. std::vector<int> output_tokens; g_output_tokens = &output_tokens;
  417. std::ostringstream output_ss; g_output_ss = &output_ss;
  418. // the first thing we will do is to output the prompt, so set color accordingly
  419. console::set_display(console::prompt);
  420. display = params.display_prompt;
  421. std::vector<llama_token> embd;
  422. std::vector<llama_token> embd_guidance;
  423. struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
  424. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  425. // predict
  426. if (!embd.empty()) {
  427. // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
  428. // --prompt or --file which uses the same value.
  429. int max_embd_size = n_ctx - 4;
  430. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  431. if ((int) embd.size() > max_embd_size) {
  432. const int skipped_tokens = (int) embd.size() - max_embd_size;
  433. embd.resize(max_embd_size);
  434. console::set_display(console::error);
  435. printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  436. console::set_display(console::reset);
  437. fflush(stdout);
  438. }
  439. if (ga_n == 1) {
  440. // infinite text generation via context shifting
  441. // if we run out of context:
  442. // - take the n_keep first tokens from the original prompt (via n_past)
  443. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  444. if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
  445. if (params.n_predict == -2) {
  446. LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
  447. break;
  448. }
  449. const int n_left = n_past - params.n_keep - 1;
  450. const int n_discard = n_left/2;
  451. LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
  452. n_past, n_left, n_ctx, params.n_keep, n_discard);
  453. llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
  454. llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
  455. n_past -= n_discard;
  456. if (ctx_guidance) {
  457. n_past_guidance -= n_discard;
  458. }
  459. LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
  460. LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
  461. LOG("clear session path\n");
  462. path_session.clear();
  463. }
  464. } else {
  465. // context extension via Self-Extend
  466. while (n_past >= ga_i + ga_w) {
  467. const int ib = (ga_n*ga_i)/ga_w;
  468. const int bd = (ga_w/ga_n)*(ga_n - 1);
  469. const int dd = (ga_w/ga_n) - ib*bd - ga_w;
  470. LOG("\n");
  471. LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
  472. LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
  473. LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
  474. llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd);
  475. llama_kv_cache_seq_div (ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
  476. llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
  477. n_past -= bd;
  478. ga_i += ga_w/ga_n;
  479. LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
  480. }
  481. }
  482. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  483. if (n_session_consumed < (int) session_tokens.size()) {
  484. size_t i = 0;
  485. for ( ; i < embd.size(); i++) {
  486. if (embd[i] != session_tokens[n_session_consumed]) {
  487. session_tokens.resize(n_session_consumed);
  488. break;
  489. }
  490. n_past++;
  491. n_session_consumed++;
  492. if (n_session_consumed >= (int) session_tokens.size()) {
  493. ++i;
  494. break;
  495. }
  496. }
  497. if (i > 0) {
  498. embd.erase(embd.begin(), embd.begin() + i);
  499. }
  500. }
  501. // evaluate tokens in batches
  502. // embd is typically prepared beforehand to fit within a batch, but not always
  503. if (ctx_guidance) {
  504. int input_size = 0;
  505. llama_token * input_buf = NULL;
  506. if (n_past_guidance < (int) guidance_inp.size()) {
  507. // Guidance context should have the same data with these modifications:
  508. //
  509. // * Replace the initial prompt
  510. // * Shift everything by guidance_offset
  511. embd_guidance = guidance_inp;
  512. if (embd.begin() + original_prompt_len < embd.end()) {
  513. embd_guidance.insert(
  514. embd_guidance.end(),
  515. embd.begin() + original_prompt_len,
  516. embd.end()
  517. );
  518. }
  519. input_buf = embd_guidance.data();
  520. input_size = embd_guidance.size();
  521. LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
  522. } else {
  523. input_buf = embd.data();
  524. input_size = embd.size();
  525. }
  526. for (int i = 0; i < input_size; i += params.n_batch) {
  527. int n_eval = std::min(input_size - i, params.n_batch);
  528. if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
  529. LOG_TEE("%s : failed to eval\n", __func__);
  530. return 1;
  531. }
  532. n_past_guidance += n_eval;
  533. }
  534. }
  535. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  536. int n_eval = (int) embd.size() - i;
  537. if (n_eval > params.n_batch) {
  538. n_eval = params.n_batch;
  539. }
  540. LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
  541. if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
  542. LOG_TEE("%s : failed to eval\n", __func__);
  543. return 1;
  544. }
  545. n_past += n_eval;
  546. LOG("n_past = %d\n", n_past);
  547. // Display total tokens alongside total time
  548. if (params.n_print > 0 && n_past % params.n_print == 0) {
  549. LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
  550. }
  551. }
  552. if (!embd.empty() && !path_session.empty()) {
  553. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  554. n_session_consumed = session_tokens.size();
  555. }
  556. }
  557. embd.clear();
  558. embd_guidance.clear();
  559. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  560. // optionally save the session on first sample (for faster prompt loading next time)
  561. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  562. need_to_save_session = false;
  563. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  564. LOG("saved session to %s\n", path_session.c_str());
  565. }
  566. const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
  567. llama_sampling_accept(ctx_sampling, ctx, id, true);
  568. LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
  569. embd.push_back(id);
  570. // echo this to console
  571. input_echo = true;
  572. // decrement remaining sampling budget
  573. --n_remain;
  574. LOG("n_remain: %d\n", n_remain);
  575. } else {
  576. // some user input remains from prompt or interaction, forward it to processing
  577. LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
  578. while ((int) embd_inp.size() > n_consumed) {
  579. embd.push_back(embd_inp[n_consumed]);
  580. // push the prompt in the sampling context in order to apply repetition penalties later
  581. // for the prompt, we don't apply grammar rules
  582. llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
  583. ++n_consumed;
  584. if ((int) embd.size() >= params.n_batch) {
  585. break;
  586. }
  587. }
  588. }
  589. // display text
  590. if (input_echo && display) {
  591. for (auto id : embd) {
  592. const std::string token_str = llama_token_to_piece(ctx, id);
  593. printf("%s", token_str.c_str());
  594. if (embd.size() > 1) {
  595. input_tokens.push_back(id);
  596. } else {
  597. output_tokens.push_back(id);
  598. output_ss << token_str;
  599. }
  600. }
  601. fflush(stdout);
  602. }
  603. // reset color to default if there is no pending user input
  604. if (input_echo && (int) embd_inp.size() == n_consumed) {
  605. console::set_display(console::reset);
  606. display = true;
  607. }
  608. // if not currently processing queued inputs;
  609. if ((int) embd_inp.size() <= n_consumed) {
  610. // check for reverse prompt in the last n_prev tokens
  611. if (!params.antiprompt.empty()) {
  612. const int n_prev = 32;
  613. const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
  614. is_antiprompt = false;
  615. // Check if each of the reverse prompts appears at the end of the output.
  616. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  617. // so we'll compensate for that by widening the search window a bit.
  618. for (std::string & antiprompt : params.antiprompt) {
  619. size_t extra_padding = params.interactive ? 0 : 2;
  620. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  621. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  622. : 0;
  623. if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
  624. if (params.interactive) {
  625. is_interacting = true;
  626. }
  627. is_antiprompt = true;
  628. break;
  629. }
  630. }
  631. if (is_antiprompt) {
  632. LOG("found antiprompt: %s\n", last_output.c_str());
  633. }
  634. }
  635. // deal with end of text token in interactive mode
  636. if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
  637. LOG("found EOS token\n");
  638. if (params.interactive) {
  639. if (!params.antiprompt.empty()) {
  640. // tokenize and inject first reverse prompt
  641. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
  642. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  643. is_antiprompt = true;
  644. }
  645. is_interacting = true;
  646. printf("\n");
  647. } else if (params.instruct || params.chatml) {
  648. is_interacting = true;
  649. }
  650. }
  651. if (n_past > 0 && is_interacting) {
  652. LOG("waiting for user input\n");
  653. if (params.instruct || params.chatml) {
  654. printf("\n> ");
  655. }
  656. if (params.input_prefix_bos) {
  657. LOG("adding input prefix BOS token\n");
  658. embd_inp.push_back(llama_token_bos(model));
  659. }
  660. std::string buffer;
  661. if (!params.input_prefix.empty()) {
  662. LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
  663. printf("%s", params.input_prefix.c_str());
  664. }
  665. // color user input only
  666. console::set_display(console::user_input);
  667. display = params.display_prompt;
  668. std::string line;
  669. bool another_line = true;
  670. do {
  671. another_line = console::readline(line, params.multiline_input);
  672. buffer += line;
  673. } while (another_line);
  674. // done taking input, reset color
  675. console::set_display(console::reset);
  676. display = true;
  677. // Add tokens to embd only if the input buffer is non-empty
  678. // Entering a empty line lets the user pass control back
  679. if (buffer.length() > 1) {
  680. // append input suffix if any
  681. if (!params.input_suffix.empty()) {
  682. LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
  683. printf("%s", params.input_suffix.c_str());
  684. }
  685. LOG("buffer: '%s'\n", buffer.c_str());
  686. const size_t original_size = embd_inp.size();
  687. // instruct mode: insert instruction prefix
  688. if (params.instruct && !is_antiprompt) {
  689. LOG("inserting instruction prefix\n");
  690. n_consumed = embd_inp.size();
  691. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  692. }
  693. // chatml mode: insert user chat prefix
  694. if (params.chatml && !is_antiprompt) {
  695. LOG("inserting chatml prefix\n");
  696. n_consumed = embd_inp.size();
  697. embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
  698. }
  699. if (params.escape) {
  700. process_escapes(buffer);
  701. }
  702. const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
  703. const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
  704. const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
  705. LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
  706. embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
  707. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  708. embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
  709. // instruct mode: insert response suffix
  710. if (params.instruct) {
  711. LOG("inserting instruction suffix\n");
  712. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  713. }
  714. // chatml mode: insert assistant chat suffix
  715. if (params.chatml) {
  716. LOG("inserting chatml suffix\n");
  717. embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
  718. }
  719. for (size_t i = original_size; i < embd_inp.size(); ++i) {
  720. const llama_token token = embd_inp[i];
  721. output_tokens.push_back(token);
  722. output_ss << llama_token_to_piece(ctx, token);
  723. }
  724. n_remain -= line_inp.size();
  725. LOG("n_remain: %d\n", n_remain);
  726. } else {
  727. LOG("empty line, passing control back\n");
  728. }
  729. input_echo = false; // do not echo this again
  730. }
  731. if (n_past > 0) {
  732. if (is_interacting) {
  733. llama_sampling_reset(ctx_sampling);
  734. }
  735. is_interacting = false;
  736. }
  737. }
  738. // end of text token
  739. if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
  740. LOG_TEE(" [end of text]\n");
  741. break;
  742. }
  743. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  744. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
  745. if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
  746. n_remain = params.n_predict;
  747. is_interacting = true;
  748. }
  749. }
  750. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  751. LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  752. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  753. }
  754. llama_print_timings(ctx);
  755. write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
  756. if (ctx_guidance) { llama_free(ctx_guidance); }
  757. llama_free(ctx);
  758. llama_free_model(model);
  759. llama_sampling_free(ctx_sampling);
  760. llama_backend_free();
  761. #ifndef LOG_DISABLE_LOGS
  762. LOG_TEE("Log end\n");
  763. #endif // LOG_DISABLE_LOGS
  764. return 0;
  765. }