common.cpp 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <algorithm>
  4. #include <cassert>
  5. #include <cmath>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <fstream>
  9. #include <iterator>
  10. #include <iostream>
  11. #include <regex>
  12. #include <sstream>
  13. #include <string>
  14. #include <unordered_map>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(_MSC_VER)
  38. #pragma warning(disable: 4244 4267) // possible loss of data
  39. #endif
  40. int32_t get_num_physical_cores() {
  41. #ifdef __linux__
  42. // enumerate the set of thread siblings, num entries is num cores
  43. std::unordered_set<std::string> siblings;
  44. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  45. std::ifstream thread_siblings("/sys/devices/system/cpu"
  46. + std::to_string(cpu) + "/topology/thread_siblings");
  47. if (!thread_siblings.is_open()) {
  48. break; // no more cpus
  49. }
  50. std::string line;
  51. if (std::getline(thread_siblings, line)) {
  52. siblings.insert(line);
  53. }
  54. }
  55. if (!siblings.empty()) {
  56. return static_cast<int32_t>(siblings.size());
  57. }
  58. #elif defined(__APPLE__) && defined(__MACH__)
  59. int32_t num_physical_cores;
  60. size_t len = sizeof(num_physical_cores);
  61. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  62. if (result == 0) {
  63. return num_physical_cores;
  64. }
  65. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  66. if (result == 0) {
  67. return num_physical_cores;
  68. }
  69. #elif defined(_WIN32)
  70. //TODO: Implement
  71. #endif
  72. unsigned int n_threads = std::thread::hardware_concurrency();
  73. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  74. }
  75. void process_escapes(std::string& input) {
  76. std::size_t input_len = input.length();
  77. std::size_t output_idx = 0;
  78. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  79. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  80. switch (input[++input_idx]) {
  81. case 'n': input[output_idx++] = '\n'; break;
  82. case 'r': input[output_idx++] = '\r'; break;
  83. case 't': input[output_idx++] = '\t'; break;
  84. case '\'': input[output_idx++] = '\''; break;
  85. case '\"': input[output_idx++] = '\"'; break;
  86. case '\\': input[output_idx++] = '\\'; break;
  87. case 'x':
  88. // Handle \x12, etc
  89. if (input_idx + 2 < input_len) {
  90. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  91. char *err_p = nullptr;
  92. const long val = std::strtol(x, &err_p, 16);
  93. if (err_p == x + 2) {
  94. input_idx += 2;
  95. input[output_idx++] = char(val);
  96. break;
  97. }
  98. }
  99. // fall through
  100. default: input[output_idx++] = '\\';
  101. input[output_idx++] = input[input_idx]; break;
  102. }
  103. } else {
  104. input[output_idx++] = input[input_idx];
  105. }
  106. }
  107. input.resize(output_idx);
  108. }
  109. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  110. bool result = true;
  111. try {
  112. if (!gpt_params_parse_ex(argc, argv, params)) {
  113. gpt_print_usage(argc, argv, gpt_params());
  114. exit(0);
  115. }
  116. }
  117. catch (const std::invalid_argument & ex) {
  118. fprintf(stderr, "%s\n", ex.what());
  119. gpt_print_usage(argc, argv, gpt_params());
  120. exit(1);
  121. }
  122. return result;
  123. }
  124. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  125. bool invalid_param = false;
  126. std::string arg;
  127. const std::string arg_prefix = "--";
  128. llama_sampling_params & sparams = params.sparams;
  129. for (int i = 1; i < argc; i++) {
  130. arg = argv[i];
  131. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  132. std::replace(arg.begin(), arg.end(), '_', '-');
  133. }
  134. if (arg == "-s" || arg == "--seed") {
  135. if (++i >= argc) {
  136. invalid_param = true;
  137. break;
  138. }
  139. params.seed = std::stoul(argv[i]);
  140. } else if (arg == "-t" || arg == "--threads") {
  141. if (++i >= argc) {
  142. invalid_param = true;
  143. break;
  144. }
  145. params.n_threads = std::stoi(argv[i]);
  146. if (params.n_threads <= 0) {
  147. params.n_threads = std::thread::hardware_concurrency();
  148. }
  149. } else if (arg == "-tb" || arg == "--threads-batch") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. break;
  153. }
  154. params.n_threads_batch = std::stoi(argv[i]);
  155. if (params.n_threads_batch <= 0) {
  156. params.n_threads_batch = std::thread::hardware_concurrency();
  157. }
  158. } else if (arg == "-p" || arg == "--prompt") {
  159. if (++i >= argc) {
  160. invalid_param = true;
  161. break;
  162. }
  163. params.prompt = argv[i];
  164. } else if (arg == "-e" || arg == "--escape") {
  165. params.escape = true;
  166. } else if (arg == "--prompt-cache") {
  167. if (++i >= argc) {
  168. invalid_param = true;
  169. break;
  170. }
  171. params.path_prompt_cache = argv[i];
  172. } else if (arg == "--prompt-cache-all") {
  173. params.prompt_cache_all = true;
  174. } else if (arg == "--prompt-cache-ro") {
  175. params.prompt_cache_ro = true;
  176. } else if (arg == "-f" || arg == "--file") {
  177. if (++i >= argc) {
  178. invalid_param = true;
  179. break;
  180. }
  181. std::ifstream file(argv[i]);
  182. if (!file) {
  183. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  184. invalid_param = true;
  185. break;
  186. }
  187. // store the external file name in params
  188. params.prompt_file = argv[i];
  189. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  190. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  191. params.prompt.pop_back();
  192. }
  193. } else if (arg == "-n" || arg == "--n-predict") {
  194. if (++i >= argc) {
  195. invalid_param = true;
  196. break;
  197. }
  198. params.n_predict = std::stoi(argv[i]);
  199. } else if (arg == "--top-k") {
  200. if (++i >= argc) {
  201. invalid_param = true;
  202. break;
  203. }
  204. sparams.top_k = std::stoi(argv[i]);
  205. } else if (arg == "-c" || arg == "--ctx-size") {
  206. if (++i >= argc) {
  207. invalid_param = true;
  208. break;
  209. }
  210. params.n_ctx = std::stoi(argv[i]);
  211. } else if (arg == "--rope-freq-base") {
  212. if (++i >= argc) {
  213. invalid_param = true;
  214. break;
  215. }
  216. params.rope_freq_base = std::stof(argv[i]);
  217. } else if (arg == "--rope-freq-scale") {
  218. if (++i >= argc) {
  219. invalid_param = true;
  220. break;
  221. }
  222. params.rope_freq_scale = std::stof(argv[i]);
  223. } else if (arg == "--rope-scaling") {
  224. if (++i >= argc) {
  225. invalid_param = true;
  226. break;
  227. }
  228. std::string value(argv[i]);
  229. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  230. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  231. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  232. else { invalid_param = true; break; }
  233. } else if (arg == "--rope-scale") {
  234. if (++i >= argc) {
  235. invalid_param = true;
  236. break;
  237. }
  238. params.rope_freq_scale = 1.0f/std::stof(argv[i]);
  239. } else if (arg == "--yarn-orig-ctx") {
  240. if (++i >= argc) {
  241. invalid_param = true;
  242. break;
  243. }
  244. params.yarn_orig_ctx = std::stoi(argv[i]);
  245. } else if (arg == "--yarn-ext-factor") {
  246. if (++i >= argc) {
  247. invalid_param = true;
  248. break;
  249. }
  250. params.yarn_ext_factor = std::stof(argv[i]);
  251. } else if (arg == "--yarn-attn-factor") {
  252. if (++i >= argc) {
  253. invalid_param = true;
  254. break;
  255. }
  256. params.yarn_attn_factor = std::stof(argv[i]);
  257. } else if (arg == "--yarn-beta-fast") {
  258. if (++i >= argc) {
  259. invalid_param = true;
  260. break;
  261. }
  262. params.yarn_beta_fast = std::stof(argv[i]);
  263. } else if (arg == "--yarn-beta-slow") {
  264. if (++i >= argc) {
  265. invalid_param = true;
  266. break;
  267. }
  268. params.yarn_beta_slow = std::stof(argv[i]);
  269. } else if (arg == "--memory-f32") {
  270. params.memory_f16 = false;
  271. } else if (arg == "--samplers") {
  272. if (++i >= argc) {
  273. invalid_param = true;
  274. break;
  275. }
  276. sparams.samplers_sequence = parse_samplers_input(argv[i]);
  277. } else if (arg == "--sampling-seq") {
  278. if (++i >= argc) {
  279. invalid_param = true;
  280. break;
  281. }
  282. sparams.samplers_sequence = argv[i];
  283. } else if (arg == "--top-p") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. sparams.top_p = std::stof(argv[i]);
  289. } else if (arg == "--min-p") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. sparams.min_p = std::stof(argv[i]);
  295. } else if (arg == "--temp") {
  296. if (++i >= argc) {
  297. invalid_param = true;
  298. break;
  299. }
  300. sparams.temp = std::stof(argv[i]);
  301. sparams.temp = std::max(sparams.temp, 0.0f);
  302. } else if (arg == "--tfs") {
  303. if (++i >= argc) {
  304. invalid_param = true;
  305. break;
  306. }
  307. sparams.tfs_z = std::stof(argv[i]);
  308. } else if (arg == "--typical") {
  309. if (++i >= argc) {
  310. invalid_param = true;
  311. break;
  312. }
  313. sparams.typical_p = std::stof(argv[i]);
  314. } else if (arg == "--repeat-last-n") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. sparams.penalty_last_n = std::stoi(argv[i]);
  320. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  321. } else if (arg == "--repeat-penalty") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. sparams.penalty_repeat = std::stof(argv[i]);
  327. } else if (arg == "--frequency-penalty") {
  328. if (++i >= argc) {
  329. invalid_param = true;
  330. break;
  331. }
  332. sparams.penalty_freq = std::stof(argv[i]);
  333. } else if (arg == "--presence-penalty") {
  334. if (++i >= argc) {
  335. invalid_param = true;
  336. break;
  337. }
  338. sparams.penalty_present = std::stof(argv[i]);
  339. } else if (arg == "--mirostat") {
  340. if (++i >= argc) {
  341. invalid_param = true;
  342. break;
  343. }
  344. sparams.mirostat = std::stoi(argv[i]);
  345. } else if (arg == "--mirostat-lr") {
  346. if (++i >= argc) {
  347. invalid_param = true;
  348. break;
  349. }
  350. sparams.mirostat_eta = std::stof(argv[i]);
  351. } else if (arg == "--mirostat-ent") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. sparams.mirostat_tau = std::stof(argv[i]);
  357. } else if (arg == "--cfg-negative-prompt") {
  358. if (++i >= argc) {
  359. invalid_param = true;
  360. break;
  361. }
  362. sparams.cfg_negative_prompt = argv[i];
  363. } else if (arg == "--cfg-negative-prompt-file") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. std::ifstream file(argv[i]);
  369. if (!file) {
  370. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  371. invalid_param = true;
  372. break;
  373. }
  374. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  375. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  376. sparams.cfg_negative_prompt.pop_back();
  377. }
  378. } else if (arg == "--cfg-scale") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. sparams.cfg_scale = std::stof(argv[i]);
  384. } else if (arg == "-b" || arg == "--batch-size") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. params.n_batch = std::stoi(argv[i]);
  390. } else if (arg == "--keep") {
  391. if (++i >= argc) {
  392. invalid_param = true;
  393. break;
  394. }
  395. params.n_keep = std::stoi(argv[i]);
  396. } else if (arg == "--draft") {
  397. if (++i >= argc) {
  398. invalid_param = true;
  399. break;
  400. }
  401. params.n_draft = std::stoi(argv[i]);
  402. } else if (arg == "--chunks") {
  403. if (++i >= argc) {
  404. invalid_param = true;
  405. break;
  406. }
  407. params.n_chunks = std::stoi(argv[i]);
  408. } else if (arg == "-np" || arg == "--parallel") {
  409. if (++i >= argc) {
  410. invalid_param = true;
  411. break;
  412. }
  413. params.n_parallel = std::stoi(argv[i]);
  414. } else if (arg == "-ns" || arg == "--sequences") {
  415. if (++i >= argc) {
  416. invalid_param = true;
  417. break;
  418. }
  419. params.n_sequences = std::stoi(argv[i]);
  420. } else if (arg == "--p-accept" || arg == "-pa") {
  421. if (++i >= argc) {
  422. invalid_param = true;
  423. break;
  424. }
  425. params.p_accept = std::stof(argv[i]);
  426. } else if (arg == "--p-split" || arg == "-ps") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. params.p_split = std::stof(argv[i]);
  432. } else if (arg == "-m" || arg == "--model") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. params.model = argv[i];
  438. } else if (arg == "-md" || arg == "--model-draft") {
  439. if (++i >= argc) {
  440. invalid_param = true;
  441. break;
  442. }
  443. params.model_draft = argv[i];
  444. } else if (arg == "-a" || arg == "--alias") {
  445. if (++i >= argc) {
  446. invalid_param = true;
  447. break;
  448. }
  449. params.model_alias = argv[i];
  450. } else if (arg == "--lora") {
  451. if (++i >= argc) {
  452. invalid_param = true;
  453. break;
  454. }
  455. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  456. params.use_mmap = false;
  457. } else if (arg == "--lora-scaled") {
  458. if (++i >= argc) {
  459. invalid_param = true;
  460. break;
  461. }
  462. const char * lora_adapter = argv[i];
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  468. params.use_mmap = false;
  469. } else if (arg == "--lora-base") {
  470. if (++i >= argc) {
  471. invalid_param = true;
  472. break;
  473. }
  474. params.lora_base = argv[i];
  475. } else if (arg == "--mmproj") {
  476. if (++i >= argc) {
  477. invalid_param = true;
  478. break;
  479. }
  480. params.mmproj = argv[i];
  481. } else if (arg == "--image") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. params.image = argv[i];
  487. } else if (arg == "-i" || arg == "--interactive") {
  488. params.interactive = true;
  489. } else if (arg == "--embedding") {
  490. params.embedding = true;
  491. } else if (arg == "--interactive-first") {
  492. params.interactive_first = true;
  493. } else if (arg == "-ins" || arg == "--instruct") {
  494. params.instruct = true;
  495. } else if (arg == "-cml" || arg == "--chatml") {
  496. params.chatml = true;
  497. } else if (arg == "--infill") {
  498. params.infill = true;
  499. } else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  500. params.dump_kv_cache = true;
  501. } else if (arg == "--multiline-input") {
  502. params.multiline_input = true;
  503. } else if (arg == "--simple-io") {
  504. params.simple_io = true;
  505. } else if (arg == "-cb" || arg == "--cont-batching") {
  506. params.cont_batching = true;
  507. } else if (arg == "--color") {
  508. params.use_color = true;
  509. } else if (arg == "--mlock") {
  510. params.use_mlock = true;
  511. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  512. if (++i >= argc) {
  513. invalid_param = true;
  514. break;
  515. }
  516. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  517. params.n_gpu_layers = std::stoi(argv[i]);
  518. #else
  519. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  520. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  521. #endif
  522. } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  523. if (++i >= argc) {
  524. invalid_param = true;
  525. break;
  526. }
  527. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  528. params.n_gpu_layers_draft = std::stoi(argv[i]);
  529. #else
  530. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  531. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  532. #endif
  533. } else if (arg == "--main-gpu" || arg == "-mg") {
  534. if (++i >= argc) {
  535. invalid_param = true;
  536. break;
  537. }
  538. #ifdef GGML_USE_CUBLAS
  539. params.main_gpu = std::stoi(argv[i]);
  540. #else
  541. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
  542. #endif
  543. } else if (arg == "--tensor-split" || arg == "-ts") {
  544. if (++i >= argc) {
  545. invalid_param = true;
  546. break;
  547. }
  548. #ifdef GGML_USE_CUBLAS
  549. std::string arg_next = argv[i];
  550. // split string by , and /
  551. const std::regex regex{R"([,/]+)"};
  552. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  553. std::vector<std::string> split_arg{it, {}};
  554. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  555. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  556. if (i < split_arg.size()) {
  557. params.tensor_split[i] = std::stof(split_arg[i]);
  558. } else {
  559. params.tensor_split[i] = 0.0f;
  560. }
  561. }
  562. #else
  563. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
  564. #endif // GGML_USE_CUBLAS
  565. } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
  566. #ifdef GGML_USE_CUBLAS
  567. params.mul_mat_q = false;
  568. #else
  569. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
  570. #endif // GGML_USE_CUBLAS
  571. } else if (arg == "--no-mmap") {
  572. params.use_mmap = false;
  573. } else if (arg == "--numa") {
  574. params.numa = true;
  575. } else if (arg == "--verbose-prompt") {
  576. params.verbose_prompt = true;
  577. } else if (arg == "-r" || arg == "--reverse-prompt") {
  578. if (++i >= argc) {
  579. invalid_param = true;
  580. break;
  581. }
  582. params.antiprompt.push_back(argv[i]);
  583. } else if (arg == "-ld" || arg == "--logdir") {
  584. if (++i >= argc) {
  585. invalid_param = true;
  586. break;
  587. }
  588. params.logdir = argv[i];
  589. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  590. params.logdir += DIRECTORY_SEPARATOR;
  591. }
  592. } else if (arg == "--perplexity" || arg == "--all-logits") {
  593. params.logits_all = true;
  594. } else if (arg == "--ppl-stride") {
  595. if (++i >= argc) {
  596. invalid_param = true;
  597. break;
  598. }
  599. params.ppl_stride = std::stoi(argv[i]);
  600. } else if (arg == "--ppl-output-type") {
  601. if (++i >= argc) {
  602. invalid_param = true;
  603. break;
  604. }
  605. params.ppl_output_type = std::stoi(argv[i]);
  606. } else if (arg == "--hellaswag") {
  607. params.hellaswag = true;
  608. } else if (arg == "--hellaswag-tasks") {
  609. if (++i >= argc) {
  610. invalid_param = true;
  611. break;
  612. }
  613. params.hellaswag_tasks = std::stoi(argv[i]);
  614. } else if (arg == "--ignore-eos") {
  615. params.ignore_eos = true;
  616. } else if (arg == "--no-penalize-nl") {
  617. sparams.penalize_nl = false;
  618. } else if (arg == "-l" || arg == "--logit-bias") {
  619. if (++i >= argc) {
  620. invalid_param = true;
  621. break;
  622. }
  623. std::stringstream ss(argv[i]);
  624. llama_token key;
  625. char sign;
  626. std::string value_str;
  627. try {
  628. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  629. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  630. } else {
  631. throw std::exception();
  632. }
  633. } catch (const std::exception&) {
  634. invalid_param = true;
  635. break;
  636. }
  637. } else if (arg == "-h" || arg == "--help") {
  638. return false;
  639. } else if (arg == "--random-prompt") {
  640. params.random_prompt = true;
  641. } else if (arg == "--in-prefix-bos") {
  642. params.input_prefix_bos = true;
  643. } else if (arg == "--in-prefix") {
  644. if (++i >= argc) {
  645. invalid_param = true;
  646. break;
  647. }
  648. params.input_prefix = argv[i];
  649. } else if (arg == "--in-suffix") {
  650. if (++i >= argc) {
  651. invalid_param = true;
  652. break;
  653. }
  654. params.input_suffix = argv[i];
  655. } else if (arg == "--grammar") {
  656. if (++i >= argc) {
  657. invalid_param = true;
  658. break;
  659. }
  660. sparams.grammar = argv[i];
  661. } else if (arg == "--grammar-file") {
  662. if (++i >= argc) {
  663. invalid_param = true;
  664. break;
  665. }
  666. std::ifstream file(argv[i]);
  667. if (!file) {
  668. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  669. invalid_param = true;
  670. break;
  671. }
  672. std::copy(
  673. std::istreambuf_iterator<char>(file),
  674. std::istreambuf_iterator<char>(),
  675. std::back_inserter(sparams.grammar)
  676. );
  677. #ifndef LOG_DISABLE_LOGS
  678. // Parse args for logging parameters
  679. } else if ( log_param_single_parse( argv[i] ) ) {
  680. // Do nothing, log_param_single_parse automatically does it's thing
  681. // and returns if a match was found and parsed.
  682. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
  683. // We have a matching known parameter requiring an argument,
  684. // now we need to check if there is anything after this argv
  685. // and flag invalid_param or parse it.
  686. if (++i >= argc) {
  687. invalid_param = true;
  688. break;
  689. }
  690. if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
  691. invalid_param = true;
  692. break;
  693. }
  694. // End of Parse args for logging parameters
  695. #endif // LOG_DISABLE_LOGS
  696. } else {
  697. throw std::invalid_argument("error: unknown argument: " + arg);
  698. }
  699. }
  700. if (invalid_param) {
  701. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  702. }
  703. if (params.prompt_cache_all &&
  704. (params.interactive || params.interactive_first ||
  705. params.instruct)) {
  706. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  707. }
  708. if (params.escape) {
  709. process_escapes(params.prompt);
  710. process_escapes(params.input_prefix);
  711. process_escapes(params.input_suffix);
  712. process_escapes(sparams.cfg_negative_prompt);
  713. for (auto & antiprompt : params.antiprompt) {
  714. process_escapes(antiprompt);
  715. }
  716. }
  717. return true;
  718. }
  719. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  720. const llama_sampling_params & sparams = params.sparams;
  721. printf("\n");
  722. printf("usage: %s [options]\n", argv[0]);
  723. printf("\n");
  724. printf("options:\n");
  725. printf(" -h, --help show this help message and exit\n");
  726. printf(" -i, --interactive run in interactive mode\n");
  727. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  728. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  729. printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
  730. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  731. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  732. printf(" halt generation at PROMPT, return control in interactive mode\n");
  733. printf(" (can be specified more than once for multiple prompts).\n");
  734. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  735. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  736. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  737. printf(" -tb N, --threads-batch N\n");
  738. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  739. printf(" -p PROMPT, --prompt PROMPT\n");
  740. printf(" prompt to start generation with (default: empty)\n");
  741. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  742. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  743. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  744. printf(" not supported with --interactive or other interactive options\n");
  745. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  746. printf(" --random-prompt start with a randomized prompt.\n");
  747. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  748. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  749. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  750. printf(" -f FNAME, --file FNAME\n");
  751. printf(" prompt file to start generation.\n");
  752. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  753. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  754. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  755. printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
  756. printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
  757. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  758. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  759. printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
  760. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  761. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  762. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  763. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  764. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  765. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  766. printf(" --mirostat N use Mirostat sampling.\n");
  767. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  768. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  769. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  770. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  771. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  772. printf(" modifies the likelihood of token appearing in the completion,\n");
  773. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  774. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  775. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  776. printf(" --grammar-file FNAME file to read grammar from\n");
  777. printf(" --cfg-negative-prompt PROMPT\n");
  778. printf(" negative prompt to use for guidance. (default: empty)\n");
  779. printf(" --cfg-negative-prompt-file FNAME\n");
  780. printf(" negative prompt file to use for guidance. (default: empty)\n");
  781. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  782. printf(" --rope-scaling {none,linear,yarn}\n");
  783. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  784. printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
  785. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  786. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  787. printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
  788. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  789. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  790. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  791. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  792. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  793. printf(" --no-penalize-nl do not penalize newline token\n");
  794. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  795. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  796. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  797. printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
  798. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  799. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  800. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  801. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  802. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  803. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  804. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  805. printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
  806. printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
  807. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  808. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  809. printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
  810. if (llama_mlock_supported()) {
  811. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  812. }
  813. if (llama_mmap_supported()) {
  814. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  815. }
  816. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  817. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  818. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  819. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  820. printf(" -ngl N, --n-gpu-layers N\n");
  821. printf(" number of layers to store in VRAM\n");
  822. printf(" -ngld N, --n-gpu-layers-draft N\n");
  823. printf(" number of layers to store in VRAM for the draft model\n");
  824. printf(" -ts SPLIT --tensor-split SPLIT\n");
  825. printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
  826. printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
  827. #ifdef GGML_USE_CUBLAS
  828. printf(" -nommq, --no-mul-mat-q\n");
  829. printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
  830. printf(" Not recommended since this is both slower and uses more VRAM.\n");
  831. #endif // GGML_USE_CUBLAS
  832. #endif
  833. printf(" --verbose-prompt print prompt before generation\n");
  834. printf(" -dkvc, --dump-kv-cache\n");
  835. printf(" verbose print of the KV cache\n");
  836. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  837. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  838. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  839. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  840. printf(" -m FNAME, --model FNAME\n");
  841. printf(" model path (default: %s)\n", params.model.c_str());
  842. printf(" -md FNAME, --model-draft FNAME\n");
  843. printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
  844. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  845. printf(" path under which to save YAML logs (no logging if unset)\n");
  846. printf("\n");
  847. #ifndef LOG_DISABLE_LOGS
  848. log_print_usage();
  849. #endif // LOG_DISABLE_LOGS
  850. }
  851. std::string get_system_info(const gpt_params & params) {
  852. std::ostringstream os;
  853. os << "system_info: n_threads = " << params.n_threads;
  854. if (params.n_threads_batch != -1) {
  855. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  856. }
  857. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  858. return os.str();
  859. }
  860. std::string gpt_random_prompt(std::mt19937 & rng) {
  861. const int r = rng() % 10;
  862. switch (r) {
  863. case 0: return "So";
  864. case 1: return "Once upon a time";
  865. case 2: return "When";
  866. case 3: return "The";
  867. case 4: return "After";
  868. case 5: return "If";
  869. case 6: return "import";
  870. case 7: return "He";
  871. case 8: return "She";
  872. case 9: return "They";
  873. }
  874. GGML_UNREACHABLE();
  875. }
  876. //
  877. // String parsing
  878. //
  879. std::string parse_samplers_input(std::string input) {
  880. std::string output = "";
  881. // since samplers names are written multiple ways
  882. // make it ready for both system names and input names
  883. std::unordered_map<std::string, char> samplers_symbols {
  884. {"top_k", 'k'},
  885. {"top-k", 'k'},
  886. {"top_p", 'p'},
  887. {"top-p", 'p'},
  888. {"nucleus", 'p'},
  889. {"typical_p", 'y'},
  890. {"typical-p", 'y'},
  891. {"typical", 'y'},
  892. {"min_p", 'm'},
  893. {"min-p", 'm'},
  894. {"tfs_z", 'f'},
  895. {"tfs-z", 'f'},
  896. {"tfs", 'f'},
  897. {"temp", 't'},
  898. {"temperature",'t'}
  899. };
  900. // expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
  901. size_t separator = input.find(';');
  902. while (separator != input.npos) {
  903. std::string name = input.substr(0,separator);
  904. input = input.substr(separator+1);
  905. separator = input.find(';');
  906. if (samplers_symbols.find(name) != samplers_symbols.end()) {
  907. output += samplers_symbols[name];
  908. }
  909. }
  910. if (samplers_symbols.find(input) != samplers_symbols.end()) {
  911. output += samplers_symbols[input];
  912. }
  913. return output;
  914. }
  915. //
  916. // Model utils
  917. //
  918. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  919. auto mparams = llama_model_default_params();
  920. if (params.n_gpu_layers != -1) {
  921. mparams.n_gpu_layers = params.n_gpu_layers;
  922. }
  923. mparams.main_gpu = params.main_gpu;
  924. mparams.tensor_split = params.tensor_split;
  925. mparams.use_mmap = params.use_mmap;
  926. mparams.use_mlock = params.use_mlock;
  927. return mparams;
  928. }
  929. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  930. auto cparams = llama_context_default_params();
  931. cparams.n_ctx = params.n_ctx;
  932. cparams.n_batch = params.n_batch;
  933. cparams.n_threads = params.n_threads;
  934. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  935. cparams.mul_mat_q = params.mul_mat_q;
  936. cparams.seed = params.seed;
  937. cparams.f16_kv = params.memory_f16;
  938. cparams.logits_all = params.logits_all;
  939. cparams.embedding = params.embedding;
  940. cparams.rope_scaling_type = params.rope_scaling_type;
  941. cparams.rope_freq_base = params.rope_freq_base;
  942. cparams.rope_freq_scale = params.rope_freq_scale;
  943. cparams.yarn_ext_factor = params.yarn_ext_factor;
  944. cparams.yarn_attn_factor = params.yarn_attn_factor;
  945. cparams.yarn_beta_fast = params.yarn_beta_fast;
  946. cparams.yarn_beta_slow = params.yarn_beta_slow;
  947. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  948. return cparams;
  949. }
  950. void llama_batch_clear(struct llama_batch & batch) {
  951. batch.n_tokens = 0;
  952. }
  953. void llama_batch_add(
  954. struct llama_batch & batch,
  955. llama_token id,
  956. llama_pos pos,
  957. const std::vector<llama_seq_id> & seq_ids,
  958. bool logits) {
  959. batch.token [batch.n_tokens] = id;
  960. batch.pos [batch.n_tokens] = pos;
  961. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  962. for (size_t i = 0; i < seq_ids.size(); ++i) {
  963. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  964. }
  965. batch.logits [batch.n_tokens] = logits;
  966. batch.n_tokens++;
  967. }
  968. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  969. auto mparams = llama_model_params_from_gpt_params(params);
  970. llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
  971. if (model == NULL) {
  972. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  973. return std::make_tuple(nullptr, nullptr);
  974. }
  975. auto cparams = llama_context_params_from_gpt_params(params);
  976. llama_context * lctx = llama_new_context_with_model(model, cparams);
  977. if (lctx == NULL) {
  978. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  979. llama_free_model(model);
  980. return std::make_tuple(nullptr, nullptr);
  981. }
  982. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  983. const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
  984. float lora_scale = std::get<1>(params.lora_adapter[i]);
  985. int err = llama_model_apply_lora_from_file(model,
  986. lora_adapter.c_str(),
  987. lora_scale,
  988. ((i > 0) || params.lora_base.empty())
  989. ? NULL
  990. : params.lora_base.c_str(),
  991. params.n_threads);
  992. if (err != 0) {
  993. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  994. llama_free(lctx);
  995. llama_free_model(model);
  996. return std::make_tuple(nullptr, nullptr);
  997. }
  998. }
  999. if (params.ignore_eos) {
  1000. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  1001. }
  1002. {
  1003. LOG("warming up the model with an empty run\n");
  1004. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  1005. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  1006. llama_kv_cache_clear(lctx);
  1007. llama_reset_timings(lctx);
  1008. }
  1009. return std::make_tuple(model, lctx);
  1010. }
  1011. //
  1012. // Vocab utils
  1013. //
  1014. std::vector<llama_token> llama_tokenize(
  1015. const struct llama_context * ctx,
  1016. const std::string & text,
  1017. bool add_bos,
  1018. bool special) {
  1019. return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
  1020. }
  1021. std::vector<llama_token> llama_tokenize(
  1022. const struct llama_model * model,
  1023. const std::string & text,
  1024. bool add_bos,
  1025. bool special) {
  1026. // upper limit for the number of tokens
  1027. int n_tokens = text.length() + add_bos;
  1028. std::vector<llama_token> result(n_tokens);
  1029. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1030. if (n_tokens < 0) {
  1031. result.resize(-n_tokens);
  1032. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1033. GGML_ASSERT(check == -n_tokens);
  1034. } else {
  1035. result.resize(n_tokens);
  1036. }
  1037. return result;
  1038. }
  1039. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1040. std::vector<char> result(8, 0);
  1041. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1042. if (n_tokens < 0) {
  1043. result.resize(-n_tokens);
  1044. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1045. GGML_ASSERT(check == -n_tokens);
  1046. } else {
  1047. result.resize(n_tokens);
  1048. }
  1049. return std::string(result.data(), result.size());
  1050. }
  1051. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1052. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  1053. std::string piece;
  1054. std::string result;
  1055. for (size_t i = 0; i < tokens.size(); ++i) {
  1056. piece = llama_token_to_piece(ctx, tokens[i]);
  1057. // remove the leading space of the first non-BOS token
  1058. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  1059. piece = piece.substr(1);
  1060. }
  1061. result += piece;
  1062. }
  1063. return result;
  1064. }
  1065. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1066. std::string piece;
  1067. std::string result;
  1068. for (size_t i = 0; i < tokens.size(); ++i) {
  1069. piece = llama_token_to_piece(ctx, tokens[i]);
  1070. result += piece;
  1071. }
  1072. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1073. return result;
  1074. }
  1075. bool llama_should_add_bos_token(const llama_model * model) {
  1076. const int add_bos = llama_add_bos_token(model);
  1077. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  1078. }
  1079. //
  1080. // YAML utils
  1081. //
  1082. // returns true if successful, false otherwise
  1083. bool create_directory_with_parents(const std::string & path) {
  1084. #ifdef _WIN32
  1085. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  1086. std::wstring wpath = converter.from_bytes(path);
  1087. // if the path already exists, check whether it's a directory
  1088. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  1089. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1090. return true;
  1091. }
  1092. size_t pos_slash = 0;
  1093. // process path from front to back, procedurally creating directories
  1094. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  1095. const std::wstring subpath = wpath.substr(0, pos_slash);
  1096. const wchar_t * test = subpath.c_str();
  1097. const bool success = CreateDirectoryW(test, NULL);
  1098. if (!success) {
  1099. const DWORD error = GetLastError();
  1100. // if the path already exists, ensure that it's a directory
  1101. if (error == ERROR_ALREADY_EXISTS) {
  1102. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  1103. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1104. return false;
  1105. }
  1106. } else {
  1107. return false;
  1108. }
  1109. }
  1110. pos_slash += 1;
  1111. }
  1112. return true;
  1113. #else
  1114. // if the path already exists, check whether it's a directory
  1115. struct stat info;
  1116. if (stat(path.c_str(), &info) == 0) {
  1117. return S_ISDIR(info.st_mode);
  1118. }
  1119. size_t pos_slash = 1; // skip leading slashes for directory creation
  1120. // process path from front to back, procedurally creating directories
  1121. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  1122. const std::string subpath = path.substr(0, pos_slash);
  1123. struct stat info;
  1124. // if the path already exists, ensure that it's a directory
  1125. if (stat(subpath.c_str(), &info) == 0) {
  1126. if (!S_ISDIR(info.st_mode)) {
  1127. return false;
  1128. }
  1129. } else {
  1130. // create parent directories
  1131. const int ret = mkdir(subpath.c_str(), 0755);
  1132. if (ret != 0) {
  1133. return false;
  1134. }
  1135. }
  1136. pos_slash += 1;
  1137. }
  1138. return true;
  1139. #endif // _WIN32
  1140. }
  1141. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  1142. if (data.empty()) {
  1143. fprintf(stream, "%s:\n", prop_name);
  1144. return;
  1145. }
  1146. fprintf(stream, "%s: [", prop_name);
  1147. for (size_t i = 0; i < data.size() - 1; ++i) {
  1148. fprintf(stream, "%e, ", data[i]);
  1149. }
  1150. fprintf(stream, "%e]\n", data.back());
  1151. }
  1152. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  1153. if (data.empty()) {
  1154. fprintf(stream, "%s:\n", prop_name);
  1155. return;
  1156. }
  1157. fprintf(stream, "%s: [", prop_name);
  1158. for (size_t i = 0; i < data.size() - 1; ++i) {
  1159. fprintf(stream, "%d, ", data[i]);
  1160. }
  1161. fprintf(stream, "%d]\n", data.back());
  1162. }
  1163. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  1164. std::string data_str(data == NULL ? "" : data);
  1165. if (data_str.empty()) {
  1166. fprintf(stream, "%s:\n", prop_name);
  1167. return;
  1168. }
  1169. size_t pos_start = 0;
  1170. size_t pos_found = 0;
  1171. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  1172. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1173. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1174. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  1175. data_str = "\"" + data_str + "\"";
  1176. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1177. return;
  1178. }
  1179. if (data_str.find('\n') == std::string::npos) {
  1180. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1181. return;
  1182. }
  1183. fprintf(stream, "%s: |\n", prop_name);
  1184. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1185. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1186. pos_start = pos_found + 1;
  1187. }
  1188. }
  1189. std::string get_sortable_timestamp() {
  1190. using clock = std::chrono::system_clock;
  1191. const clock::time_point current_time = clock::now();
  1192. const time_t as_time_t = clock::to_time_t(current_time);
  1193. char timestamp_no_ns[100];
  1194. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1195. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1196. current_time.time_since_epoch() % 1000000000).count();
  1197. char timestamp_ns[11];
  1198. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1199. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1200. }
  1201. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1202. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1203. const llama_sampling_params & sparams = params.sparams;
  1204. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  1205. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  1206. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1207. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1208. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1209. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1210. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1211. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1212. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1213. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  1214. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  1215. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1216. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1217. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1218. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1219. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1220. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1221. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1222. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1223. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1224. #ifdef NDEBUG
  1225. fprintf(stream, "debug: false\n");
  1226. #else
  1227. fprintf(stream, "debug: true\n");
  1228. #endif // NDEBUG
  1229. fprintf(stream, "model_desc: %s\n", model_desc);
  1230. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  1231. #ifdef __OPTIMIZE__
  1232. fprintf(stream, "optimize: true\n");
  1233. #else
  1234. fprintf(stream, "optimize: false\n");
  1235. #endif // __OPTIMIZE__
  1236. fprintf(stream, "time: %s\n", timestamp.c_str());
  1237. fprintf(stream, "\n");
  1238. fprintf(stream, "###############\n");
  1239. fprintf(stream, "# User Inputs #\n");
  1240. fprintf(stream, "###############\n");
  1241. fprintf(stream, "\n");
  1242. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1243. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1244. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  1245. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  1246. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1247. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1248. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1249. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1250. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1251. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  1252. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  1253. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1254. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1255. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1256. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  1257. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  1258. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  1259. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1260. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1261. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1262. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  1263. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1264. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1265. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1266. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1267. fprintf(stream, "logit_bias:\n");
  1268. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  1269. if (ignore_eos && lb.first == logit_bias_eos->first) {
  1270. continue;
  1271. }
  1272. fprintf(stream, " %d: %f", lb.first, lb.second);
  1273. }
  1274. fprintf(stream, "lora:\n");
  1275. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1276. if (std::get<1>(la) != 1.0f) {
  1277. continue;
  1278. }
  1279. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  1280. }
  1281. fprintf(stream, "lora_scaled:\n");
  1282. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1283. if (std::get<1>(la) == 1.0f) {
  1284. continue;
  1285. }
  1286. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  1287. }
  1288. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  1289. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1290. fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
  1291. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  1292. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  1293. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  1294. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1295. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  1296. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1297. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1298. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1299. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1300. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  1301. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1302. fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
  1303. fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
  1304. fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
  1305. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1306. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1307. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  1308. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  1309. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1310. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1311. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1312. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  1313. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  1314. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  1315. fprintf(stream, "reverse_prompt:\n");
  1316. for (std::string ap : params.antiprompt) {
  1317. size_t pos = 0;
  1318. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1319. ap.replace(pos, 1, "\\n");
  1320. pos += 1;
  1321. }
  1322. fprintf(stream, " - %s\n", ap.c_str());
  1323. }
  1324. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1325. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1326. fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
  1327. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1328. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  1329. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  1330. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
  1331. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  1332. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  1333. fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
  1334. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  1335. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  1336. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  1337. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  1338. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1339. }
  1340. //
  1341. // KV cache utils
  1342. //
  1343. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
  1344. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  1345. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  1346. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1347. llama_kv_cache_view_cell * c_curr = view.cells;
  1348. llama_seq_id * cs_curr = view.cells_sequences;
  1349. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1350. if (i % row_size == 0) {
  1351. printf("\n%5d: ", i);
  1352. }
  1353. int seq_count = 0;
  1354. for (int j = 0; j < view.n_max_seq; j++) {
  1355. if (cs_curr[j] >= 0) { seq_count++; }
  1356. }
  1357. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  1358. }
  1359. printf("\n=== Done dumping\n");
  1360. }
  1361. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
  1362. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  1363. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  1364. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1365. std::unordered_map<llama_seq_id, size_t> seqs;
  1366. llama_kv_cache_view_cell * c_curr = view.cells;
  1367. llama_seq_id * cs_curr = view.cells_sequences;
  1368. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1369. for (int j = 0; j < view.n_max_seq; j++) {
  1370. if (cs_curr[j] < 0) { continue; }
  1371. if (seqs.find(cs_curr[j]) == seqs.end()) {
  1372. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1373. seqs[cs_curr[j]] = seqs.size();
  1374. }
  1375. }
  1376. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1377. }
  1378. printf("=== Sequence legend: ");
  1379. for (const auto & it : seqs) {
  1380. printf("%zu=%d, ", it.second, it.first);
  1381. }
  1382. printf("'+'=other sequence ids");
  1383. c_curr = view.cells;
  1384. cs_curr = view.cells_sequences;
  1385. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1386. if (i % row_size == 0) {
  1387. printf("\n%5d: ", i);
  1388. }
  1389. for (int j = 0; j < view.n_max_seq; j++) {
  1390. if (cs_curr[j] >= 0) {
  1391. const auto & it = seqs.find(cs_curr[j]);
  1392. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  1393. } else {
  1394. putchar('.');
  1395. }
  1396. }
  1397. putchar(' ');
  1398. }
  1399. printf("\n=== Done dumping\n");
  1400. }