| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268 |
- #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
- #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
- // suppress warnings in CL headers for GCC and Clang
- #pragma GCC diagnostic ignored "-Woverlength-strings"
- #ifdef __clang__
- #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
- #endif
- #include "ggml-opencl.h"
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include "ggml-backend-impl.h"
- #include "ggml.h"
- #include <CL/cl.h>
- #include <inttypes.h>
- #include <string.h>
- #include <cstddef>
- #include <cstdint>
- #include <fstream>
- #include <vector>
- #include <string>
- #include <cmath>
- #include <map>
- #include <memory>
- #include <charconv>
- #include <mutex>
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
- #define UNUSED(x) (void)(x)
- #define CL_CHECK(err) \
- do { \
- cl_int err_ = (err); \
- if (err_ != CL_SUCCESS) { \
- GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- GGML_ASSERT(0); \
- } \
- } while (0)
- //------------------------------------------------------------------------------
- // OpenCL
- //------------------------------------------------------------------------------
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
- // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
- // Precompute mp (m' in the paper) and L such that division
- // can be computed using a multiply (high 32b of 64b result)
- // and a shift:
- //
- // n/d = (mulhi(n, mp) + n) >> L;
- struct fastdiv_vals {
- uint32_t mp;
- uint32_t L;
- uint32_t d;
- uint32_t pad;
- };
- static_assert(sizeof(fastdiv_vals) == 16, "fastdiv_vals size incorrect");
- static fastdiv_vals init_fastdiv_values(uint64_t d_64) {
- GGML_ASSERT(d_64 != 0);
- GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
- uint32_t d = (uint32_t)d_64;
- // compute L = ceil(log2(d));
- uint32_t L = 0;
- while (L < 32 && (uint32_t{ 1 } << L) < d) {
- L++;
- }
- uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
- // pack divisor as well to reduce error surface
- return { mp, L, d, 0 };
- }
- enum GPU_FAMILY {
- ADRENO,
- INTEL,
- UNKNOWN,
- };
- enum ADRENO_GPU_GEN {
- ADRENO_UNKNOWN,
- A7X,
- A8X,
- X1E,
- };
- enum ADRENO_CL_COMPILER_TYPE {
- E031,
- DX,
- };
- struct ggml_cl_version {
- cl_uint major = 0;
- cl_uint minor = 0;
- };
- struct ggml_cl_compiler_version {
- ADRENO_CL_COMPILER_TYPE type;
- int major = -1;
- int minor = -1;
- int patch = -1;
- bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major == x && minor == y && patch == z && type == t;
- }
- bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
- }
- bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return same(t, x, y, z) || newer_than(t, x, y, z);
- }
- };
- static size_t align_to(size_t value, size_t to_alignment) {
- GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
- GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
- return ((value + to_alignment - 1) / to_alignment) * to_alignment;
- }
- // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version parse_cl_version(std::string_view str) {
- size_t major_str_begin = 0;
- size_t major_str_end = str.find(".", major_str_begin);
- if (major_str_end == std::string::npos) {
- return {};
- }
- size_t minor_str_begin = major_str_end + 1;
- size_t minor_str_end = str.find(" ", minor_str_begin);
- if (minor_str_end == std::string::npos) {
- return {};
- }
- cl_uint version_major;
- if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
- return {};
- }
- cl_uint version_minor;
- if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
- return {};
- }
- return { version_major, version_minor };
- }
- // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
- size_t param_size;
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, ¶m_size));
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
- size_t param_size;
- #if CL_TARGET_OPENCL_VERSION >= 300
- if (platform_version.major >= 3) {
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
- unsigned versions_count = param_size / sizeof(cl_name_version);
- cl_version version_max = 0;
- for (unsigned i = 0; i < versions_count; i++) {
- version_max = std::max<cl_version>(versions[i].version, version_max);
- }
- return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
- }
- #else
- GGML_UNUSED(platform_version);
- #endif // CL_TARGET_OPENCL_VERSION >= 300
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
- if (strstr(device_name, "730") ||
- strstr(device_name, "740") ||
- strstr(device_name, "750")) {
- return ADRENO_GPU_GEN::A7X;
- }
- if (strstr(device_name, "830")) {
- return ADRENO_GPU_GEN::A8X;
- }
- if (strstr(device_name, "X1")) {
- return ADRENO_GPU_GEN::X1E;
- }
- return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
- }
- static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
- std::string driver_ver_str(driver_version);
- ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
- size_t compiler_ver_pos = driver_ver_str.find("E031");
- size_t compiler_ver_len = 13;
- size_t compiler_major_offset = 5;
- size_t compiler_minor_offset = 8;
- size_t compiler_patch_offset = 11;
- if (compiler_ver_pos == std::string::npos) {
- compiler_ver_pos = driver_ver_str.find("DX");
- if (compiler_ver_pos == std::string::npos) {
- return {};
- }
- type = ADRENO_CL_COMPILER_TYPE::DX;
- compiler_ver_len = 11;
- compiler_major_offset = 3;
- }
- std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
- int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
- int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
- int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
- return { type, major, minor, patch };
- }
- // Profiling
- struct ProfilingInfo {
- std::string op_name;
- std::string kernel_name;
- cl_kernel kernel;
- cl_event evt;
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong overhead_start;
- cl_ulong overhead_end;
- // For the times below, see spec for clGetEventProfilingInfo
- // The time kernel spent in cmd queue - SUBMIT - QUEUED
- cl_ulong cmd_queued_duration_ns;
- // The time kernel spent for submission - START - SUBMIT
- cl_ulong cmd_submit_duration_ns;
- // Kernel execution time in nanoseconds - END - START
- cl_ulong cmd_duration_ns;
- // The time for the kernel to complete - COMPLETE - END
- cl_ulong cmd_complete_duration_ns;
- // Total time to finish the kernel - COMPELTE - QUEUED
- cl_ulong cmd_total_duration_ns;
- // Global and local work sizes.
- size_t global_size[3];
- size_t local_size[3];
- // Op output size.
- size_t output_size[4];
- };
- static void populateProfilingInfo(
- ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
- size_t global_size[3], size_t local_size[3],
- const ggml_tensor * tensor) {
- info.op_name = tensor->name;
- info.kernel = kernel;
- info.evt = evt;
- // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
- info.local_size[0] = 0;
- info.local_size[1] = 0;
- info.local_size[2] = 0;
- info.global_size[0] = 0;
- info.global_size[1] = 0;
- info.global_size[2] = 0;
- if (local_size) {
- for (cl_uint i = 0; i < work_dim; ++i) {
- info.local_size[i] = local_size[i];
- }
- }
- for (cl_uint i = 0; i < work_dim; ++i) {
- info.global_size[i] = global_size[i];
- }
- info.output_size[0] = tensor->ne[0];
- info.output_size[1] = tensor->ne[1];
- info.output_size[2] = tensor->ne[2];
- info.output_size[3] = tensor->ne[3];
- }
- struct ggml_backend_opencl_context;
- // backend device context
- struct ggml_backend_opencl_device_context {
- cl_platform_id platform;
- std::string platform_name;
- cl_device_id device;
- std::string device_name;
- cl_device_type device_type;
- std::string device_version;
- // Initialized by ggml_cl2_init().
- ggml_backend_opencl_context * backend_ctx = nullptr;
- // Initialized by ggml_backend_opencl_device_get_buffer_type()
- ggml_backend_buffer_type buffer_type;
- cl_context context = nullptr;
- };
- // backend context
- struct ggml_backend_opencl_context {
- int ref_count;
- cl_device_id device;
- std::string device_name;
- std::string driver_version;
- GPU_FAMILY gpu_family;
- ADRENO_GPU_GEN adreno_gen;
- cl_int alignment;
- size_t max_alloc_size;
- size_t max_workgroup_size;
- bool fp16_support;
- bool has_vector_subgroup_broadcast;
- bool disable_fusion;
- ggml_cl_compiler_version adreno_cl_compiler_version;
- int adreno_wave_size;
- cl_bool non_uniform_workgroups;
- cl_context context;
- cl_command_queue queue;
- cl_program program_add;
- cl_program program_add_id;
- cl_program program_clamp;
- cl_program program_cpy;
- cl_program program_cvt;
- cl_program program_diag_mask_inf;
- cl_program program_gelu;
- cl_program program_gemv_noshuffle_general;
- cl_program program_gemv_noshuffle;
- cl_program program_get_rows;
- cl_program program_set_rows;
- cl_program program_glu;
- cl_program program_im2col_f16;
- cl_program program_im2col_f32;
- cl_program program_mul_mat_Ab_Bi_8x4;
- cl_program program_mul_mv_q4_0_f32;
- cl_program program_mul_mv_q4_0_f32_v;
- cl_program program_mul_mv_q4_0_f32_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
- cl_program program_mul_mv_q6_K;
- cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
- cl_program program_mul_mv_mxfp4_f32;
- cl_program program_mul_mv_mxfp4_f32_flat;
- cl_program program_mul_mv_f16_f16;
- cl_program program_mul_mv_f16_f32_1row;
- cl_program program_mul_mv_f16_f32_l4;
- cl_program program_mul_mv_f16_f32;
- cl_program program_mul_mv_f32_f32;
- cl_program program_mul;
- cl_program program_mul_mat_f16_f32_tiled;
- cl_program program_mul_mm_f16_f32_kqv;
- cl_program program_mul_mm_f16_f32_kq;
- cl_program program_div;
- cl_program program_sub;
- cl_program program_norm;
- cl_program program_relu;
- cl_program program_rms_norm;
- cl_program program_group_norm;
- cl_program program_rope;
- cl_program program_scale;
- cl_program program_silu;
- cl_program program_sigmoid;
- cl_program program_softmax_f32;
- cl_program program_softmax_f16;
- cl_program program_softmax_4_f32;
- cl_program program_softmax_4_f16;
- cl_program program_argsort_f32_i32;
- cl_program program_sum_rows_f32;
- cl_program program_repeat;
- cl_program program_pad;
- cl_program program_tanh;
- cl_program program_upscale;
- cl_program program_concat;
- cl_program program_conv_2d_f16;
- cl_program program_conv_2d_f32;
- cl_program program_conv_2d_f16_f32;
- cl_program program_tsembd;
- cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
- cl_program program_mul_mv_id_q4_0_f32_8x_flat;
- cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
- cl_program program_mul_mv_id_mxfp4_f32;
- cl_program program_mul_mv_id_mxfp4_f32_flat;
- cl_program program_mul_mm_f32_f32_l4_lm;
- cl_program program_mul_mm_f16_f32_l4_lm;
- cl_program program_mul_mm_q8_0_f32_l4_lm;
- cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
- cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
- cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
- cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
- cl_kernel kernel_add_id;
- cl_kernel kernel_scale;
- cl_kernel kernel_silu, kernel_silu_4;
- cl_kernel kernel_gelu, kernel_gelu_4;
- cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
- cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
- cl_kernel kernel_relu;
- cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
- cl_kernel kernel_clamp;
- cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
- kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
- cl_kernel kernel_norm, kernel_norm_mul_add;
- cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
- cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
- cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
- cl_kernel kernel_soft_max, kernel_soft_max_4;
- cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
- std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
- std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
- std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
- cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
- cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
- cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
- cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
- cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
- cl_kernel kernel_mul_mat_f32_f32;
- cl_kernel kernel_mul_mat_f16_f16;
- cl_kernel kernel_mul_mat_f16_f32_1row;
- cl_kernel kernel_mul_mat_f16_f32;
- cl_kernel kernel_mul_mat_f16_f32_l4;
- cl_kernel kernel_mul_mat_f16_f32_tiled;
- cl_kernel kernel_mul_mm_f16_f32_kqv;
- cl_kernel kernel_mul_mm_f16_f32_kq;
- cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
- cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
- cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
- cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
- cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
- cl_kernel kernel_convert_block_q4_0_noshuffle;
- cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
- cl_kernel kernel_mul_mv_q6_K_f32;
- cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
- cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
- cl_kernel kernel_im2col_f32, kernel_im2col_f16;
- cl_kernel kernel_argsort_f32_i32;
- cl_kernel kernel_sum_rows_f32;
- cl_kernel kernel_repeat;
- cl_kernel kernel_pad;
- cl_kernel kernel_tanh_f32_nd;
- cl_kernel kernel_tanh_f16_nd;
- cl_kernel kernel_upscale;
- cl_kernel kernel_upscale_bilinear;
- cl_kernel kernel_concat_f32_contiguous;
- cl_kernel kernel_concat_f32_non_contiguous;
- cl_kernel kernel_conv_2d_f16;
- cl_kernel kernel_conv_2d_f32;
- cl_kernel kernel_conv_2d_f16_f32;
- cl_kernel kernel_timestep_embedding;
- cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
- cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
- cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
- cl_kernel kernel_mul_mv_id_mxfp4_f32;
- cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
- cl_kernel kernel_mul_mm_f32_f32_l4_lm;
- cl_kernel kernel_mul_mm_f16_f32_l4_lm;
- cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
- std::vector<ProfilingInfo> profiling_info;
- void write_profiling_info() {
- FILE * fperf = fopen("cl_profiling.csv", "w");
- if (!fperf) {
- GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
- return;
- }
- // Populate profiling info
- for (ProfilingInfo & info : profiling_info) {
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong cmd_complete;
- CL_CHECK(clWaitForEvents(1, &info.evt));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
- CL_CHECK(clReleaseEvent(info.evt));
- char kernel_name[512];
- CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
- sizeof(kernel_name), kernel_name, NULL));
- info.kernel_name = kernel_name;
- info.cmd_queued = cmd_queued;
- info.cmd_submit = cmd_submit;
- info.cmd_start = cmd_start;
- info.cmd_end = cmd_end;
- info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
- info.cmd_submit_duration_ns = cmd_start - cmd_submit;
- info.cmd_duration_ns = cmd_end - cmd_start;
- info.cmd_complete_duration_ns = cmd_complete - cmd_end;
- info.cmd_total_duration_ns = cmd_complete - cmd_queued;
- }
- // Dump a csv
- fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
- for (const ProfilingInfo & info : profiling_info) {
- fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
- info.op_name.c_str(), info.kernel_name.c_str(),
- info.cmd_duration_ns/1.e6f,
- info.global_size[0], info.global_size[1], info.global_size[2],
- info.local_size[0], info.local_size[1], info.local_size[2],
- info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
- }
- fclose(fperf);
- // Dump a simple chrome trace
- FILE* ftrace = fopen("cl_trace.json", "w");
- if (!ftrace) {
- GGML_LOG_ERROR("Failed to open cl_trace.json\n");
- return;
- }
- fprintf(ftrace, "[\n");
- for (const ProfilingInfo & info : profiling_info) {
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_queued/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_submit/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_start/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_end/1000);
- }
- fclose(ftrace);
- }
- size_t get_kernel_workgroup_size(cl_kernel kernel) const {
- size_t workgroup_size = 0;
- size_t ret_size = 0;
- CL_CHECK(
- clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
- sizeof(size_t), &workgroup_size, &ret_size));
- GGML_ASSERT(sizeof(size_t) == ret_size);
- return workgroup_size;
- }
- void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- profiling_info.emplace_back();
- populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
- #else
- GGML_UNUSED(tensor);
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Transpose kernels
- cl_program program_transpose;
- cl_kernel kernel_transpose_32;
- cl_kernel kernel_transpose_32_16;
- cl_kernel kernel_transpose_16;
- cl_kernel kernel_transpose_16_4x1;
- cl_mem A_s_d_max; // max scale buffer size for transpose
- cl_mem A_q_d_max; // max weight buffer size for transpose
- cl_mem B_d_max; // max activation buffer size for transpose
- // Gemm and Gemv related programs, kernels, etc
- cl_program program_CL_gemm;
- cl_program program_CL_gemv_general;
- cl_program program_CL_gemv_4096_1_11008;
- cl_program program_CL_gemv_4096_1_4096;
- cl_program program_CL_gemv_11008_1_4096;
- cl_program program_CL_gemv_32000_1_4096;
- cl_kernel CL_mul_mat_Ab_Bi_8x4;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- void free() {
- ref_count--;
- if (ref_count == 0) {
- #ifdef GGML_OPENCL_PROFILING
- write_profiling_info();
- profiling_info.clear();
- #endif
- }
- }
- };
- // All registered devices with a default device in the front.
- static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
- inline std::string read_file(const std::string &path) {
- std::ifstream ifs(path);
- if (!ifs) {
- return "";
- }
- std::string text;
- ifs.seekg(0, std::ios::end);
- text.resize(ifs.tellg());
- ifs.seekg(0, std::ios::beg);
- ifs.read(&text[0], text.size());
- return text;
- }
- static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
- cl_program p;
- char *program_log;
- size_t program_size;
- size_t log_size;
- int err;
- program_size = strlen(program_buffer);
- p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
- if(err < 0) {
- GGML_LOG_ERROR("OpenCL error creating program");
- exit(1);
- }
- err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
- if(err < 0) {
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
- program_log = (char*) malloc(log_size + 1);
- program_log[log_size] = '\0';
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
- GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
- free(program_log);
- exit(1);
- }
- return p;
- }
- static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
- cl_int err;
- // compiler options for general kernels
- auto opencl_c_std =
- std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
- std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable -cl-unsafe-math-optimizations"
- " -cl-finite-math-only -cl-fast-relaxed-math";
- GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
- // add
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "add.cl.h"
- };
- #else
- const std::string kernel_src = read_file("add.cl");
- #endif
- backend_ctx->program_add =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
- CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // add_id
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "add_id.cl.h"
- };
- #else
- const std::string kernel_src = read_file("add_id.cl");
- #endif
- backend_ctx->program_add_id =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
- GGML_LOG_CONT(".");
- }
- // clamp
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "clamp.cl.h"
- };
- #else
- const std::string kernel_src = read_file("clamp.cl");
- #endif
- backend_ctx->program_clamp =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
- GGML_LOG_CONT(".");
- }
- // cpy
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cpy.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cpy.cl");
- #endif
- backend_ctx->program_cpy =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // cvt
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cvt.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cvt.cl");
- #endif
- backend_ctx->program_cvt =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // diag_mask_inf
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "diag_mask_inf.cl.h"
- };
- #else
- const std::string kernel_src = read_file("diag_mask_inf.cl");
- #endif
- backend_ctx->program_diag_mask_inf =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
- GGML_LOG_CONT(".");
- }
- // gelu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "gelu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("gelu.cl");
- #endif
- backend_ctx->program_gelu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // glu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "glu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("glu.cl");
- #endif
- backend_ctx->program_glu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
- CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
- CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
- CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // get_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "get_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("get_rows.cl");
- #endif
- backend_ctx->program_get_rows =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f32.cl");
- #endif
- backend_ctx->program_im2col_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f16.cl");
- #endif
- backend_ctx->program_im2col_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_v
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_v.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_v =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_8x_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_8x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_16x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q6_k
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q6_k.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q6_k.cl");
- #endif
- backend_ctx->program_mul_mv_q6_K =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q8_0_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q8_0_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
- #endif
- backend_ctx->program_mul_mv_q8_0_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q8_0_f32_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q8_0_f32_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q8_0_f32_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_mxfp4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_mxfp4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
- #endif
- backend_ctx->program_mul_mv_mxfp4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_mxfp4_f32_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_mxfp4_f32_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
- #endif
- backend_ctx->program_mul_mv_mxfp4_f32_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_1row
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_1row.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_1row =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_l4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_l4.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_l4 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f32_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f32_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f32_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mat_f16_f32_tiled
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mat_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
- #endif
- backend_ctx->program_mul_mat_f16_f32_tiled =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mm_f32_f32_l4_lm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mm_f32_f32_l4_lm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
- #endif
- backend_ctx->program_mul_mm_f32_f32_l4_lm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mm_f16_f32_l4_lm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mm_f16_f32_l4_lm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
- #endif
- backend_ctx->program_mul_mm_f16_f32_l4_lm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mm_q8_0_f32_l4_lm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mm_q8_0_f32_l4_lm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
- #endif
- backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mm_f16_f32_kq_kqv
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mm_f16_f32_kq_kqv.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mm_f16_f32_kq_kqv.cl");
- #endif
- backend_ctx->program_mul_mm_f16_f32_kqv =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts+" -DKQV ");
- backend_ctx->program_mul_mm_f16_f32_kq =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kqv = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kqv, "mul_mm_f16_f32_kqv", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kq = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kq, "mul_mm_f16_f32_kq", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul.cl");
- #endif
- backend_ctx->program_mul =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("norm.cl");
- #endif
- backend_ctx->program_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
- GGML_LOG_CONT(".");
- }
- // relu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "relu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("relu.cl");
- #endif
- backend_ctx->program_relu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
- GGML_LOG_CONT(".");
- }
- // rms_norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rms_norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rms_norm.cl");
- #endif
- backend_ctx->program_rms_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
- GGML_LOG_CONT(".");
- }
- // rope
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rope.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rope.cl");
- #endif
- backend_ctx->program_rope =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // scale
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "scale.cl.h"
- };
- #else
- const std::string kernel_src = read_file("scale.cl");
- #endif
- backend_ctx->program_scale =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
- GGML_LOG_CONT(".");
- }
- // silu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "silu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("silu.cl");
- #endif
- backend_ctx->program_silu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
- CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f32.cl");
- #endif
- backend_ctx->program_softmax_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f16.cl");
- #endif
- backend_ctx->program_softmax_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f32.cl");
- #endif
- backend_ctx->program_softmax_4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f16.cl");
- #endif
- backend_ctx->program_softmax_4_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // flash_attn
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_f16 {
- #include "flash_attn_f16.cl.h"
- };
- const std::string kernel_src_f32 {
- #include "flash_attn_f32.cl.h"
- };
- const std::string kernel_src_f32_f16 {
- #include "flash_attn_f32_f16.cl.h"
- };
- #else
- const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
- const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
- const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
- #endif
- if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
- const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
- { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
- {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
- {192, 192, 16, 16}, {256, 256, 16, 16},
- };
- for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
- const int dk = fa_dims[i].dk;
- const int dv = fa_dims[i].dv;
- const int bm = fa_dims[i].bm;
- const int bn = fa_dims[i].bn;
- std::string OPTS = compile_opts +
- " -D DK=" + std::to_string(dk) +
- " -D DV=" + std::to_string(dv) +
- " -D BLOCK_M=" + std::to_string(bm) +
- " -D BLOCK_N=" + std::to_string(bn);
- cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
- cl_kernel k_f16, k_f16_q1;
- CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
- CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
- backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
- backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
- CL_CHECK(clReleaseProgram(prog_f16));
- cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
- cl_kernel k_f32, k_f32_q1;
- CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
- CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
- backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
- backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
- CL_CHECK(clReleaseProgram(prog_f32));
- cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
- cl_kernel k_f32_f16, k_f32_f16_q1;
- CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
- CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
- backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
- backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
- CL_CHECK(clReleaseProgram(prog_f32_f16));
- backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
- backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
- }
- GGML_LOG_CONT(".");
- }
- }
- // argsort
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "argsort.cl.h"
- };
- #else
- const std::string kernel_src = read_file("argsort.cl");
- #endif
- backend_ctx->program_argsort_f32_i32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
- GGML_LOG_CONT(".");
- }
- // div
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "div.cl.h"
- };
- #else
- const std::string kernel_src = read_file("div.cl");
- #endif
- std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable -cl-finite-math-only ";
- backend_ctx->program_div =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
- CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
- CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // sub
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sub.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sub.cl");
- #endif
- backend_ctx->program_sub =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
- CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
- CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // sum_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sum_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sum_rows.cl");
- #endif
- backend_ctx->program_sum_rows_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // sigmoid
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sigmoid.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sigmoid.cl");
- #endif
- backend_ctx->program_sigmoid =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // group_norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "group_norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("group_norm.cl");
- #endif
- backend_ctx->program_group_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
- GGML_LOG_CONT(".");
- }
- // repeat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "repeat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("repeat.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_repeat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
- backend_ctx->program_repeat = nullptr;
- backend_ctx->kernel_repeat = nullptr;
- }
- }
- // pad
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "pad.cl.h"
- };
- #else
- const std::string kernel_src = read_file("pad.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_pad =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
- backend_ctx->program_pad = nullptr;
- backend_ctx->kernel_pad = nullptr;
- }
- }
- // tanh
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "tanh.cl.h"
- };
- #else
- const std::string kernel_src = read_file("tanh.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_tanh =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
- CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
- backend_ctx->program_tanh = nullptr;
- backend_ctx->kernel_tanh_f32_nd = nullptr;
- backend_ctx->kernel_tanh_f16_nd = nullptr;
- }
- }
- // upscale
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "upscale.cl.h"
- };
- #else
- const std::string kernel_src = read_file("upscale.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_upscale =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
- if (backend_ctx->program_upscale) {
- cl_int err_bilinear;
- backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
- if (err_bilinear != CL_SUCCESS) {
- GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- } else {
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
- backend_ctx->program_upscale = nullptr;
- backend_ctx->kernel_upscale = nullptr;
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- }
- // concat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "concat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("concat.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_concat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
- CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
- backend_ctx->program_concat = nullptr;
- backend_ctx->kernel_concat_f32_contiguous = nullptr;
- backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
- }
- }
- // timestep_embedding
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "tsembd.cl.h"
- };
- #else
- const std::string kernel_src = read_file("tsembd.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_tsembd =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_tsembd = nullptr;
- backend_ctx->kernel_timestep_embedding = nullptr;
- }
- }
- // set_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "set_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("set_rows.cl");
- #endif
- backend_ctx->program_set_rows =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
- CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
- CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
- CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
- GGML_LOG_CONT(".");
- }
- // conv2d
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "conv2d.cl.h"
- };
- const std::string kernel_src_f16_f32 {
- #include "conv2d_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("conv2d.cl");
- const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_conv_2d_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
- CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- backend_ctx->program_conv_2d_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_conv_2d_f16 = nullptr;
- backend_ctx->kernel_conv_2d_f16 = nullptr;
- backend_ctx->program_conv_2d_f32 = nullptr;
- backend_ctx->kernel_conv_2d_f32 = nullptr;
- }
- if (!kernel_src_f16_f32.empty()) {
- backend_ctx->program_conv_2d_f16_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_conv_2d_f16_f32 = nullptr;
- backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
- }
- }
- // mul_mv_id_q4_0_f32_8x_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_id_q8_0_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_q8_0_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
- #endif
- backend_ctx->program_mul_mv_id_q8_0_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_id_q8_0_f32_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_q8_0_f32_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
- #endif
- backend_ctx->program_mul_mv_id_q8_0_f32_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_id_mxfp4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_mxfp4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
- #endif
- backend_ctx->program_mul_mv_id_mxfp4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_id_mxfp4_f32_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_mxfp4_f32_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
- #endif
- backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // Adreno kernels
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // transpose
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "transpose.cl.h"
- };
- #else
- const std::string kernel_src = read_file("transpose.cl");
- #endif
- backend_ctx->program_transpose =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle_general
- {
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv_general {
- #include "gemv_noshuffle_general.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
- #endif
- backend_ctx->program_CL_gemv_general = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle
- {
- // Gemv 2048, 16384
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv {
- #include "gemv_noshuffle.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
- #endif
- backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 2048, 16384
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 5504, 44032
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=5504 "
- " -DBLOCK_STRIDE_A=44032 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 16000, 128000
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=16000 "
- " -DBLOCK_STRIDE_A=128000 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mat_Ab_Bi_8x4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemm {
- #include "mul_mat_Ab_Bi_8x4.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
- #endif
- backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
- GGML_LOG_CONT(".");
- }
- std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -cl-fast-relaxed-math";
- // gemv_moe_mxfp4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "gemv_moe_mxfp4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
- #endif
- backend_ctx->program_gemv_moe_mxfp4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
- CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemm_moe_mxfp4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "gemm_moe_mxfp4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
- #endif
- backend_ctx->program_gemm_moe_mxfp4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
- CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_CONT("\n");
- }
- // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- // XXX static bool initialized = false;
- // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
- namespace /* anonymous */ {
- extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
- }
- // Look for available and suitable devices.
- static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
- std::vector<ggml_backend_device> found_devices;
- #ifdef GGML_OPENCL_PROFILING
- GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
- #endif
- struct cl_device;
- struct cl_platform {
- cl_platform_id id;
- unsigned number;
- char name[128];
- char vendor[128];
- struct cl_device * devices;
- unsigned n_devices;
- struct cl_device * default_device;
- };
- struct cl_device {
- struct cl_platform * platform;
- cl_device_id id;
- unsigned number;
- cl_device_type type;
- char name[128];
- char version[128];
- };
- enum { NPLAT = 16, NDEV = 16 };
- struct cl_platform platforms[NPLAT];
- unsigned n_platforms = 0;
- struct cl_device devices[NDEV];
- unsigned n_devices = 0;
- struct cl_device * default_device = NULL;
- unsigned default_platform_number = 0;
- cl_platform_id platform_ids[NPLAT];
- if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
- GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
- return found_devices;
- }
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- p->number = i;
- p->id = platform_ids[i];
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
- cl_device_id device_ids[NDEV];
- cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
- if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
- p->n_devices = 0;
- } else {
- CL_CHECK(clGetDeviceIDsError);
- }
- p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
- p->default_device = NULL;
- for (unsigned j = 0; j < p->n_devices; j++) {
- struct cl_device * d = &devices[n_devices];
- d->number = n_devices++;
- d->id = device_ids[j];
- d->platform = p;
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
- if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
- p->default_device = d;
- }
- }
- if (default_device == NULL && p->default_device != NULL) {
- default_device = p->default_device;
- default_platform_number = i;
- }
- }
- if (n_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
- return found_devices;
- }
- char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
- char * user_device_string = getenv("GGML_OPENCL_DEVICE");
- int user_platform_number = -1;
- int user_device_number = -1;
- cl_device * candidate_devices = nullptr;
- unsigned n_candidate_devices = 0;
- unsigned n;
- if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
- user_platform_number = (int)n;
- }
- if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
- user_device_number = (int)n;
- }
- if (user_platform_number != -1 && user_device_number != -1) {
- cl_platform* platform = &platforms[user_platform_number];
- if ((unsigned)user_device_number >= platform->n_devices) {
- GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
- exit(1);
- }
- default_device = &platform->devices[user_device_number];
- candidate_devices = platform->devices;
- n_candidate_devices = platform->n_devices;
- } else {
- // Choose a platform by matching a substring.
- if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- if (strstr(p->name, user_platform_string) != NULL ||
- strstr(p->vendor, user_platform_string) != NULL) {
- user_platform_number = (int)i;
- break;
- }
- }
- if (user_platform_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
- exit(1);
- }
- }
- int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
- struct cl_platform * p = &platforms[platform_idx];
- candidate_devices = p->devices;
- n_candidate_devices = p->n_devices;
- default_device = p->default_device;
- if (n_candidate_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
- exit(1);
- }
- if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
- for (unsigned i = 0; i < n_candidate_devices; i++) {
- struct cl_device * d = &candidate_devices[i];
- if (strstr(d->name, user_device_string) != NULL) {
- user_device_number = d->number;
- break;
- }
- }
- if (user_device_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
- exit(1);
- }
- }
- if (user_device_number != -1) {
- candidate_devices = &devices[user_device_number];
- n_candidate_devices = 1;
- default_device = &candidate_devices[0];
- }
- GGML_ASSERT(n_candidate_devices > 0);
- if (default_device == NULL) {
- default_device = &candidate_devices[0];
- }
- }
- GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
- // Put the default device in front.
- for (unsigned i = 1; i < n_candidate_devices; i++) {
- if (&candidate_devices[i] == default_device) {
- std::swap(candidate_devices[0], candidate_devices[i]);
- default_device = &candidate_devices[0];
- break;
- }
- }
- GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
- std::vector<cl_device_id> device_ids;
- for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
- device_ids.push_back(dev->id);
- }
- cl_int err;
- cl_context shared_context;
- cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
- CL_CHECK(
- (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
- for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
- GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
- auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
- /*.platform =*/dev->platform->id,
- /*.platform_nane =*/dev->platform->name,
- /*.device =*/dev->id,
- /*.device_name =*/dev->name,
- /*.device_type =*/dev->type,
- /*.device_version =*/dev->version,
- /*.backend_ctx =*/nullptr,
- /*.buffer_type =*/{},
- /*.context =*/shared_context,
- });
- found_devices.push_back(ggml_backend_device{
- /* .iface = */ ggml_backend_opencl_device_i,
- /* .reg = */ reg,
- /* .context = */ dev_ctx.get(),
- });
- if (!ggml_cl2_init(&found_devices.back())) {
- found_devices.pop_back();
- GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
- continue;
- }
- dev_ctx.release();
- }
- if (found_devices.size()) {
- auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
- GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
- dev_ctx->device_version.c_str());
- if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
- GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
- dev_ctx->device_name.c_str());
- }
- }
- return found_devices;
- }
- // Initialize device if it is supported (returns nullptr if it is not).
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- GGML_ASSERT(dev);
- GGML_ASSERT(dev->context);
- ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- GGML_ASSERT(dev_ctx->platform);
- GGML_ASSERT(dev_ctx->device);
- if (dev_ctx->backend_ctx) {
- return dev_ctx->backend_ctx;
- }
- auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
- backend_ctx->device = dev_ctx->device;
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- // ref_count get increased in ggml_backend_opencl_device_init
- // This function is also used to retrieve backend context, so we don't want
- // to increase ref_count for each call. We only want to increase ref_count
- // when the associated device is initialized
- backend_ctx->ref_count = 0;
- if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
- strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
- strstr(dev_ctx->device_version.c_str(), "Adreno")) {
- backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
- // Usually device version contains the detailed device name
- backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
- if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
- backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
- }
- // Use wave size of 64 for all Adreno GPUs.
- backend_ctx->adreno_wave_size = 64;
- } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
- backend_ctx->gpu_family = GPU_FAMILY::INTEL;
- } else {
- GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- return nullptr;
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
- GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
- "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
- return nullptr;
- }
- #endif
- // Populate backend device name
- backend_ctx->device_name = dev_ctx->device_name;
- // A local ref of cl_device_id for convenience
- cl_device_id device = backend_ctx->device;
- ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
- // Check device OpenCL version, OpenCL 2.0 or above is required
- ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
- if (opencl_c_version.major < 2) {
- GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
- return nullptr;
- }
- // Check driver version
- size_t driver_version_str_size;
- clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
- char *driver_version = (char *)alloca(driver_version_str_size + 1);
- clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
- driver_version[driver_version_str_size] = '\0';
- GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
- backend_ctx->driver_version = driver_version;
- backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
- backend_ctx->has_vector_subgroup_broadcast =
- (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
- (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
- GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
- backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
- size_t ext_str_size;
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
- char *ext_buffer = (char *)alloca(ext_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
- ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
- // Check if ext_buffer contains cl_khr_fp16
- backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
- GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
- // fp16 is required
- if (!backend_ctx->fp16_support) {
- GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
- return nullptr;
- }
- // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
- // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
- if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
- strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
- GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
- "(note that subgroups is an optional feature in OpenCL 3.0)\n");
- return nullptr;
- }
- cl_uint base_align_in_bits;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
- GGML_ASSERT(base_align_in_bits % 8u == 0);
- backend_ctx->alignment = base_align_in_bits / 8u;
- GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
- clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
- GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
- clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
- GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
- // Check SVM.
- cl_device_svm_capabilities svm_caps;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
- GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
- svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
- if (opencl_c_version.major >= 3) {
- // Assume it is not available for 3.0, since it is optional in 3.0.
- // If compiling against 3.0, then we can query.
- backend_ctx->non_uniform_workgroups = false;
- #if CL_TARGET_OPENCL_VERSION >= 300
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
- &backend_ctx->non_uniform_workgroups, 0));
- #endif
- } else {
- GGML_ASSERT(opencl_c_version.major == 2);
- // Non-uniform workgroup sizes is mandatory feature in v2.x.
- backend_ctx->non_uniform_workgroups = true;
- }
- // Print out configurations
- #ifdef GGML_OPENCL_SOA_Q
- GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
- #endif // GGML_OPENCL_SOA_Q
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- cl_int err;
- // A local ref of cl_context for convenience
- cl_context context = backend_ctx->context = dev_ctx->context;
- //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
- // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
- // (queue = clCreateCommandQueue(context, device, 0, &err), err)
- //)));
- cl_command_queue_properties command_queue_props = 0;
- #ifdef GGML_OPENCL_PROFILING
- command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
- #endif
- CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
- // Load kernels
- load_cl_kernels(backend_ctx.get(), opencl_c_version);
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Allocate intermediate buffers and images
- size_t required_A_q_d_bytes = 311164928;
- size_t required_A_s_d_bytes = 38895616;
- size_t required_B_d_bytes = 45088768;
- // Ensure buffer sizes do not exceed the maximum allocation size
- size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
- size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
- size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
- if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_q_d_bytes, max_A_q_d_bytes);
- }
- if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_s_d_bytes, max_A_s_d_bytes);
- }
- if (required_B_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_B_d_bytes, max_B_d_bytes);
- }
- CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
- dev_ctx->backend_ctx = backend_ctx.release();
- return dev_ctx->backend_ctx;
- }
- static void ggml_cl2_free(ggml_backend_t backend) {
- ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
- ctx->free();
- // The CL context is shared by all backends, release it if all backends have been released
- bool should_release_opencl = true;
- for (auto device : g_ggml_backend_opencl_devices) {
- ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
- if (ctx_dev->backend_ctx->ref_count > 0) {
- should_release_opencl = false;
- }
- }
- if (should_release_opencl) {
- CL_CHECK(clReleaseContext(ctx->context));
- }
- }
- //------------------------------------------------------------------------------
- // Tensor extra management
- //------------------------------------------------------------------------------
- struct ggml_tensor_extra_cl {
- // The buffer object that holds the data.
- cl_mem data_device;
- // The offset into the buffer object. This is primarily for scratch buffer
- // and view operation.
- // NB: this offset no longer includes view offset (view_offs). Whenever this
- // offset is used, view_offs should be considered.
- cl_ulong offset;
- // The actual size of the cl_mem object. This is needed when returning the
- // block to the pool.
- size_t actual_size;
- void reset() {
- data_device = nullptr;
- offset = 0;
- actual_size = 0;
- }
- };
- // Additional tensor extra structs for quantized tensors.
- // These tensors are loaded from files and should not be allocated in scratch --
- // they should always be allocated from the pool. Hence, they do not have an
- // `offset`, which indicate their locations in the scratch buffer.
- struct ggml_tensor_extra_cl_q4_0 {
- // Quantized values.
- cl_mem q = nullptr;
- // Quantized values in image1d_buffer_t.
- cl_mem q_img = nullptr;
- // Scales.
- cl_mem d = nullptr;
- // Scales in image1d_buffer_t.
- cl_mem d_img = nullptr;
- // Size of quantized values.
- size_t size_q = 0;
- // Size of scales.
- size_t size_d = 0;
- ~ggml_tensor_extra_cl_q4_0() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (d != nullptr) {
- CL_CHECK(clReleaseMemObject(d));
- d = nullptr;
- }
- // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
- // enabled. They point to the images in ggml_backend_opencl_buffer_context.
- // So, there is no need to release them here.
- // TODO: initialize them for non SMALL_PATH path, or remove them.
- q_img = nullptr;
- d_img = nullptr;
- size_q = 0;
- size_d = 0;
- }
- };
- struct ggml_tensor_extra_cl_mxfp4 {
- // Quantized values.
- cl_mem q = nullptr;
- // Quantized values in image1d_buffer_t.
- cl_mem q_img = nullptr;
- // Scales in E8M0.
- cl_mem e = nullptr;
- // Scales in image1d_buffer_t.
- cl_mem e_img = nullptr;
- // Size of quantized values.
- size_t size_q = 0;
- // Size of scales.
- size_t size_e = 0;
- ~ggml_tensor_extra_cl_mxfp4() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (e != nullptr) {
- CL_CHECK(clReleaseMemObject(e));
- e = nullptr;
- }
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q_img));
- q = nullptr;
- }
- // Currently, q_img and d_img are not used. They can be image1d_buffer_t
- // that wraps around q and d to utilize image access path.
- q_img = nullptr;
- e_img = nullptr;
- size_q = 0;
- size_e = 0;
- }
- };
- struct ggml_tensor_extra_cl_q8_0 {
- cl_mem q = nullptr;
- cl_mem q_img = nullptr;
- cl_mem d = nullptr;
- cl_mem d_img = nullptr;
- size_t size_q = 0;
- size_t size_d = 0;
- ~ggml_tensor_extra_cl_q8_0() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (d != nullptr) {
- CL_CHECK(clReleaseMemObject(d));
- d = nullptr;
- }
- // Currently, q_img and d_img are not used. They can be image1d_buffer_t
- // that wraps around q and d to utilize image access path.
- q_img = nullptr;
- d_img = nullptr;
- size_q = 0;
- size_d = 0;
- }
- };
- //------------------------------------------------------------------------------
- // Backend API
- //------------------------------------------------------------------------------
- //
- // backend
- //
- static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
- return "OpenCL";
- UNUSED(backend);
- }
- static void ggml_backend_opencl_free(ggml_backend_t backend) {
- ggml_cl2_free(backend);
- }
- static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- GGML_UNUSED(backend);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
- return false;
- }
- static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
- auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
- cl_event evt;
- CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseEvent(evt));
- }
- // Syncronizes the 'backend_ctx's device with others so that commands
- // enqueued to it won't start until commands in the other devices have
- // completed.
- static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
- if (g_ggml_backend_opencl_devices.size() < 2)
- return; // No other devices to synchronize with.
- std::vector<cl_event> events;
- events.reserve(g_ggml_backend_opencl_devices.size());
- for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
- auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
- if (backend_ctx != other_backend_ctx) {
- cl_event ev;
- CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
- CL_CHECK(clFlush(other_backend_ctx->queue));
- events.push_back(ev);
- }
- }
- CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
- for (auto ev : events) {
- CL_CHECK(clReleaseEvent(ev));
- }
- }
- static void sync_with_other_backends(ggml_backend_t backend) {
- auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
- sync_with_other_backends(backend_ctx);
- }
- static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
- if (!ggml_can_fuse(cgraph, node_idx, ops)) {
- return false;
- }
- if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
- const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx+1];
- GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
- GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
- // rms_norm only supports f32
- if (mul->src[0]->type != GGML_TYPE_F32 ||
- mul->src[1]->type != GGML_TYPE_F32 ||
- mul->type != GGML_TYPE_F32) {
- return false;
- }
- // if rms_norm is the B operand, then we don't handle broadcast
- if (rms_norm == mul->src[1] &&
- !ggml_are_same_shape(mul->src[0], rms_norm)) {
- return false;
- }
- // rms_norm assumes contiguous rows
- if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
- return false;
- }
- } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
- const ggml_tensor *norm = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx+1];
- const ggml_tensor *add = cgraph->nodes[node_idx+2];
- const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
- const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
- // norm fusion only supports F32
- if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
- return false;
- }
- if (norm->src[0]->ne[0] % 4 != 0) {
- return false;
- }
- if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
- return false;
- }
- } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
- const ggml_tensor *gn = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx+1];
- const ggml_tensor *add = cgraph->nodes[node_idx+2];
- const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
- const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
- if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
- return false;
- }
- if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
- return false;
- }
- }
- return true;
- }
- static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
- static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
- static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
- static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- // NOTE: this may oversynchronize by synchronizing with
- // backends/devices which don't compute 'cgraph's
- // dependencies.
- sync_with_other_backends(backend);
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
- ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
- i += 2;
- continue;
- }
- if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
- ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
- i += 2;
- continue;
- }
- if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
- ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
- i++;
- continue;
- }
- bool ok = ggml_cl_compute_forward(backend, node);
- if (!ok) {
- GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
- ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
- switch (op->op) {
- case GGML_OP_NONE:
- return true;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- case GGML_TYPE_Q4_0:
- #ifdef GGML_OPENCL_SOA_Q
- // We do not support flattened Q4_0 (and possibly other Q's)
- return false;
- #else // GGML_OPENCL_SOA_Q
- return true;
- #endif // GGML_OPENCL_SOA_Q
- default:
- return false;
- }
- case GGML_OP_SET_ROWS:
- {
- // TODO: add support
- // ref: https://github.com/ggml-org/llama.cpp/pull/14274
- #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
- if (op->src[0]->type != GGML_TYPE_F32) {
- return false;
- }
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
- default:
- return false;
- }
- }
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_F16:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- default:
- return false;
- }
- case GGML_OP_SCALE:
- return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
- case GGML_OP_ADD:
- if (op->type == GGML_TYPE_F16) {
- const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
- const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
- if (src0_ok && src1_ok) {
- return true;
- }
- }
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_SUB:
- return (op->src[0]->type == op->src[1]->type) &&
- (op->src[0]->type == op->type) &&
- (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
- case GGML_OP_ADD_ID:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- case GGML_UNARY_OP_SIGMOID:
- return ggml_is_contiguous(op->src[0]);
- case GGML_UNARY_OP_TANH:
- return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
- (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
- default:
- return false;
- }
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(op)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
- default:
- return false;
- }
- case GGML_OP_CLAMP:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_NORM:
- return true;
- case GGML_OP_RMS_NORM:
- return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
- case GGML_OP_REPEAT:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
- case GGML_OP_PAD:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_UPSCALE: {
- ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & 0xFF);
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
- (mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR);
- }
- case GGML_OP_CONV_2D:
- return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
- (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
- (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
- case GGML_OP_CONCAT:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_TIMESTEP_EMBEDDING:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_GROUP_NORM:
- return ggml_is_contiguous(op->src[0]);
- case GGML_OP_MUL_MAT:
- if (op->src[0]->type == GGML_TYPE_F16) {
- return true;
- } else if (op->src[0]->type == GGML_TYPE_F32) {
- return op->src[1]->type == GGML_TYPE_F32;
- } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
- op->src[0]->type == GGML_TYPE_Q6_K) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
- return op->src[1]->type == GGML_TYPE_F32;
- }
- return false;
- case GGML_OP_MUL_MAT_ID:
- if (op->src[0]->type == GGML_TYPE_Q4_0 ||
- op->src[0]->type == GGML_TYPE_Q8_0 ||
- op->src[0]->type == GGML_TYPE_MXFP4) {
- if (op->src[1]->type == GGML_TYPE_F32) {
- return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- }
- }
- return false;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_ROPE: {
- const int mode = ((const int32_t *) op->op_params)[2];
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope && !is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- if (is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- return true;
- }
- case GGML_OP_IM2COL:
- return true;
- case GGML_OP_ARGSORT: {
- cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- int cols = 1;
- while (cols < op->ne[0]) {
- cols *= 2;
- }
- return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
- }
- case GGML_OP_SUM_ROWS:
- return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
- case GGML_OP_FLASH_ATTN_EXT:
- {
- const ggml_tensor * q = op->src[0];
- const ggml_tensor * k = op->src[1];
- const ggml_tensor * v = op->src[2];
- const int dk = q->ne[0];
- const int dv = v->ne[0];
- const struct { int dk; int dv; } supported_dims[] = {
- { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
- {112, 112}, {128, 128}, {192, 128},
- {192, 192}, {256, 256},
- };
- bool dims_supported = false;
- for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
- if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
- dims_supported = true;
- break;
- }
- }
- if (!dims_supported) {
- return false;
- }
- const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
- v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
- v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
- const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
- v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
- return is_f32_f32 || is_f16_f16 || is_f32_f16;
- }
- default:
- return false;
- }
- }
- // Forward declaration - implementation appears later in the file.
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
- static ggml_guid_t ggml_backend_opencl_guid() {
- static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
- return &guid;
- }
- static ggml_backend_i ggml_backend_opencl_i = {
- /* .get_name = */ ggml_backend_opencl_name,
- /* .free = */ ggml_backend_opencl_free,
- /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
- /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
- /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
- /* .synchronize = */ ggml_backend_opencl_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_opencl_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .graph_optimize = */ NULL,
- };
- ggml_backend_t ggml_backend_opencl_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .iface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx
- };
- return backend;
- }
- bool ggml_backend_is_opencl(ggml_backend_t backend) {
- return backend && backend->iface.get_name == ggml_backend_opencl_name;
- }
- //
- // buffer
- //
- struct ggml_backend_opencl_buffer_context {
- // A buffer context can hold multiple cl_mem objects. This is for flattening
- // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
- // each tensor is allocated a separate buffer. When flattening is enabled
- // with small allocation, each tensor is backed by two cl_mem objects (for
- // quants and scales) packed into a backend_opencl_buffer.
- ggml_backend_opencl_buffer_context(cl_mem buf)
- : name("OpenCL") {
- buffer.push_back(buf);
- }
- ~ggml_backend_opencl_buffer_context() {
- for (cl_mem buf : buffer) {
- CL_CHECK(clReleaseMemObject(buf));
- }
- for (cl_mem im : img) {
- CL_CHECK(clReleaseMemObject(im));
- }
- // Delete all extras to trigger their destructors
- for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
- delete e;
- }
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
- delete e;
- }
- for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
- delete e;
- }
- }
- ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
- ggml_tensor_extra_cl * extra;
- if (temp_tensor_extras.empty()) {
- extra = new ggml_tensor_extra_cl();
- } else {
- extra = temp_tensor_extras.back();
- temp_tensor_extras.pop_back();
- }
- temp_tensor_extras_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
- ggml_tensor_extra_cl_q4_0 * extra;
- if (temp_tensor_extras_q4_0.empty()) {
- extra = new ggml_tensor_extra_cl_q4_0();
- } else {
- extra = temp_tensor_extras_q4_0.back();
- temp_tensor_extras_q4_0.pop_back();
- }
- temp_tensor_extras_q4_0_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
- ggml_tensor_extra_cl_mxfp4 * extra;
- if (temp_tensor_extras_mxfp4.empty()) {
- extra = new ggml_tensor_extra_cl_mxfp4();
- } else {
- extra = temp_tensor_extras_mxfp4.back();
- temp_tensor_extras_mxfp4.pop_back();
- }
- temp_tensor_extras_mxfp4_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
- ggml_tensor_extra_cl_q8_0 * extra;
- if (temp_tensor_extras_q8_0.empty()) {
- extra = new ggml_tensor_extra_cl_q8_0();
- } else {
- extra = temp_tensor_extras_q8_0.back();
- temp_tensor_extras_q8_0.pop_back();
- }
- temp_tensor_extras_q8_0_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- void reset() {
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- temp_tensor_extras.push_back(e);
- }
- temp_tensor_extras_in_use.clear();
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- temp_tensor_extras_q4_0.push_back(e);
- }
- temp_tensor_extras_q4_0_in_use.clear();
- for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
- temp_tensor_extras_mxfp4.push_back(e);
- }
- temp_tensor_extras_mxfp4_in_use.clear();
- for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
- temp_tensor_extras_q8_0.push_back(e);
- }
- temp_tensor_extras_q8_0_in_use.clear();
- }
- // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
- // being used are in `temp_tensor_extras_in_use`. At the first run, new
- // extras get created and put in `in_use`. When the buffer is reset via
- // the `reset` callback, all extras in `in_use` get moved to available extras
- // for reuse.
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
- std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
- std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
- std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
- std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
- // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
- // before any tensor is initialized (at the beginning of alloc_tensor_range).
- // Hence, there is alway a buffer object in this vector. When each tensor is
- // being initialized, this original buffer object will be released if both
- // flattening and small allocation are enabled, and additional buffer
- // objects will be created in init_tensor to represent flattened quantized
- // weights.
- std::vector<cl_mem> buffer;
- // These are image1d_buffer_t objects that wrap around the quants and scales.
- // For Q4_0 quantization, there should be two of them - one for quants and
- // one for scales. They should be populated only when flattening and small
- // allocation are enabled.
- std::vector<cl_mem> img;
- std::string name;
- };
- static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- delete ctx;
- }
- static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
- return (void *) (uintptr_t) backend_ctx->alignment;
- }
- static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_cl2_init(buffer->buft->device);
- if (tensor->view_src != nullptr) {
- GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
- GGML_ASSERT(view_extra && "view_extra is nullptr?");
- // Reuse extra of the parent tensor. The offset of this view tensor
- // becomes `extra->offset + view_offs` and needs to be calculated when
- // it is used. This changes is needed because of the change to
- // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
- // `buffer` passed in here will always be `tensor->buffer`. It is OK
- // to allocate extras from the same buffer context for ordinary
- // intermediate tensors. But for views into kv cache tensors, doing so
- // would mess up the extras used by kv cache.
- // Before #7640, `buffer` is for intermediate tensors, which is always
- // different from that of kv cache tensors.
- //
- // NB: now extra->offset no longer accounts for view_offs.
- // NB: this should not apply to weight tensors (for end-to-end runs, but
- // may apply for test-backend-ops).
- // FIXME: if any unexpected results are seen, double check the offset -
- // there could be other places that need fix.
- tensor->extra = view_extra;
- } else {
- {
- size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
- ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
- extra->offset = offset;
- extra->data_device = ctx->buffer[0];
- extra->actual_size = ggml_nbytes(tensor);
- tensor->extra = extra;
- }
- }
- return GGML_STATUS_SUCCESS;
- }
- // The optimized gemm and gemv kernels are used for large matrices without batch.
- // tensor is the quantized weights matrix.
- inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
- int64_t threshold_ne0 = 512;
- int64_t threshold_ne1 = 512;
- if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
- backend_ctx->adreno_cl_compiler_version.type != DX) {
- threshold_ne0 = 128;
- threshold_ne1 = 128;
- }
- return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
- tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
- GGML_UNUSED(backend_ctx);
- int ne01 = tensor->ne[1];
- return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
- }
- static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- // We separate the quantized bits and scale from block_q4_0 by using an
- // additional kernel, where each thread handles a block. We first read the
- // original weights into a temporary buffer, then create two separate
- // buffers for quantized bits and scales, which are then populated by the
- // conversion kernel.
- if (tensor->type == GGML_TYPE_Q4_0) {
- // Tensors should have been preallocated, therefore they should
- // already have ggml_tensor_extra_cl as extra.
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
- size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
- GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // We consider the specified offset arg as always, although For weights
- // the offset arg should be 0 (we do not assert this).
- //GGML_ASSERT(offset == 0);
- // We create subbuffers from the original tensor buffer for scales and
- // quants - i.e., scales and quants are aliases into the buffer obejct
- // that backs the original tensor. This is a cleaner way to adapt to the
- // new memory management.
- // In the old code, we allocate new buffers for scales and quants
- // respectively, which could still be done but would result in double
- // allocation; properly deallocating the preallocated buffer that backs
- // the tensors is tricky and would leak the backend specific information
- // into the general backend code.
- // Does this create misaligned subbuffers (alignment is 1024) in certain
- // cases ?
- cl_buffer_region region;
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- // Create subbuffer for scales.
- region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
- region.size = size_d;
- extra->d = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- auto previous_origin = region.origin;
- // Create subbuffer for quants.
- region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- // The optimized kernels need weights in natural order, so unshuffle.
- if (use_adreno_kernels(backend_ctx, tensor)) {
- kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
- }
- #else
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- // transpose the weights and scales
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Only do transpose for large, non batched matrix
- // TODO: use preallocated images instead of sub-buffer then image
- if (use_adreno_kernels(backend_ctx, tensor)) {
- // <----------------------------------------------------------------------------------> //
- // start transpose
- // <----------------------------------------------------------------------------------> //
- int M = tensor->ne[1]; // ne01
- int K = tensor->ne[0]; // ne00
- //For matrix-vector multiplication kernel, we assume K is a multiple of 32
- GGML_ASSERT(K % 32 == 0);
- //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
- GGML_ASSERT(M % 4 == 0);
- // transpose is out of place, so we need to allocate transposed buffers
- // <----------------------------------------------------------------------------------> //
- // use sub_buffer of max buffer size instead
- size_t q_size_bytes = K * M / 8 * sizeof(float);
- cl_buffer_region region;
- region.origin = 0;
- region.size = q_size_bytes;
- cl_mem qT_d = clCreateSubBuffer(
- backend_ctx->A_q_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
- CL_CHECK(err);
- bool K_tile_trans = true;
- if ((K / 32) % 4 != 0){
- K_tile_trans =false;
- }
- size_t d_size_bytes = M * (K / 32) * 2;
- region.origin = 0;
- region.size = d_size_bytes;
- cl_mem dT_d = clCreateSubBuffer(
- backend_ctx->A_s_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // create images from the buffers
- // <----------------------------------------------------------------------------------> //
- cl_mem q_d_image1D;
- cl_mem d_d_image1D;
- cl_mem qT_d_image1D;
- cl_mem dT_d_image1D;
- cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- cl_image_desc img_desc_1d;
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = extra->q;
- q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = qT_d;
- qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- if (K_tile_trans) {
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- img_desc_1d.image_width = M * K / 32 / 4;
- } else {
- img_fmt_1d = { CL_R, CL_HALF_FLOAT };
- img_desc_1d.image_width = M * K / 32;
- }
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.buffer = extra->d;
- d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
- img_desc_1d.buffer = dT_d;
- dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // set up and call the transpose kernels
- // <----------------------------------------------------------------------------------> //
- // weights
- int height_q = M / 4;
- int width_q = K / 4 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
- size_t local_size_q[3] = {4, 16, 1};
- size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- int height_s = M / 4;
- int width_s = K / 32 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- if (!K_tile_trans) {
- kernel = backend_ctx->kernel_transpose_16_4x1;
- width_s = K / 32;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
- size_t local_size_s[3] = {4, 16, 1};
- size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // copy transposed buffer contents to original buffers
- // <----------------------------------------------------------------------------------> //
- // weights
- CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // deallocate transpose buffers
- // <----------------------------------------------------------------------------------> //
- CL_CHECK(clReleaseMemObject(qT_d));
- CL_CHECK(clReleaseMemObject(dT_d));
- // deallocate temporary images
- CL_CHECK(clReleaseMemObject(q_d_image1D));
- CL_CHECK(clReleaseMemObject(d_d_image1D));
- CL_CHECK(clReleaseMemObject(qT_d_image1D));
- CL_CHECK(clReleaseMemObject(dT_d_image1D));
- // <----------------------------------------------------------------------------------> //
- // end transpose
- // <----------------------------------------------------------------------------------> //
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- return;
- }
- if (tensor->type == GGML_TYPE_MXFP4) {
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
- size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
- GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- cl_buffer_region region;
- // Create subbuffer for scales.
- region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
- region.size = size_e;
- extra->e = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- auto previous_origin = region.origin;
- // Create subbuffer for quants.
- region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (use_adreno_moe_kernels(backend_ctx, tensor)) {
- cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
- int ne00 = tensor->ne[0];
- int ne01 = tensor->ne[1];
- int ne02 = tensor->ne[2];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
- size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
- size_t local_work_size[3] = {64, 2, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- return;
- }
- #endif
- cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
- size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[3] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- // Create image for Q
- cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
- cl_image_desc img_desc_q = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(ggml_nelements(tensor)/32*2),
- 0, 0, 0, 0, 0, 0, 0,
- { extra->q }
- };
- extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
- tensor->extra = extra;
- return;
- }
- if (tensor->type == GGML_TYPE_Q8_0) {
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
- size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
- GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- cl_buffer_region region;
- // Create subbuffer for scales.
- region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
- region.size = size_d;
- extra->d = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- auto previous_origin = region.origin;
- // Create subbuffer for quants.
- region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->extra);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- // Make sure all previously submitted commands in other devices are finished.
- sync_with_other_backends(backend_ctx);
- #ifdef GGML_OPENCL_SOA_Q
- // In end-to-end runs, get_tensor is usually used to get back the logits,
- // where we can simply do clEnqueueReadBuffer since they are f32.
- // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
- // which requires reading back quantized weight tensors.
- // To properly support this, we need to restore block_q4_0 struct arrays
- // from the flattened buffers.
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- } else if (tensor->type == GGML_TYPE_MXFP4) {
- ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (use_adreno_moe_kernels(backend_ctx, tensor)) {
- cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
- int ne00 = tensor->ne[0];
- int ne01 = tensor->ne[1];
- int ne02 = tensor->ne[2];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
- size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
- size_t local_work_size[3] = {64, 2, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- #endif
- cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- if (tensor->type == GGML_TYPE_Q8_0) {
- ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- CL_CHECK(clEnqueueReadBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_dev_t dev = buffer->buft->device;
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- for (cl_mem buf : ctx->buffer) {
- CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
- }
- CL_CHECK(clFinish(queue));
- }
- static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ctx->reset();
- }
- static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
- /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_opencl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_opencl_buffer_clear,
- /* .reset = */ ggml_backend_opencl_buffer_reset,
- };
- //
- // buffer type
- //
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
- return "OpenCL";
- GGML_UNUSED(buffer_type);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
- // clCreateBuffer returns -61 for size 0
- size = std::max(size, (size_t)1);
- cl_int err;
- cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
- if (err != CL_SUCCESS) {
- GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
- return nullptr;
- }
- ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
- return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
- }
- static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- return backend_ctx->alignment;
- }
- static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
- static size_t max_size = -1;
- if (max_size == (size_t)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- max_size = backend_ctx->max_alloc_size;
- }
- return max_size;
- }
- static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_opencl(backend);
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL,
- /* .is_host = */ NULL,
- };
- //
- // backend device
- //
- static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
- return "GPUOpenCL";
- GGML_UNUSED(dev);
- }
- static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- return dev_ctx->device_name.c_str();
- }
- static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- *free = 1;
- *total = 1;
- GGML_UNUSED(dev);
- }
- static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
- return GGML_BACKEND_DEVICE_TYPE_GPU;
- GGML_UNUSED(dev);
- }
- static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_opencl_device_get_name(dev);
- props->description = ggml_backend_opencl_device_get_description(dev);
- props->type = ggml_backend_opencl_device_get_type(dev);
- ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = ggml_backend_dev_caps {
- /* .async = */ false,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
- // Getting a new reference to the backend, increase ref_count
- backend_ctx->ref_count++;
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx,
- };
- return backend;
- GGML_UNUSED(params);
- }
- static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
- auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
- dev_ctx->buffer_type = ggml_backend_buffer_type{
- /* .iface = */ ggml_backend_opencl_buffer_type_interface,
- /* .device = */ dev,
- /* .context = */ nullptr,
- };
- return &dev_ctx->buffer_type;
- }
- static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
- GGML_UNUSED(dev);
- GGML_UNUSED(ptr);
- GGML_UNUSED(size);
- GGML_UNUSED(max_tensor_size);
- return nullptr;
- }
- static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- return ggml_opencl_supports_op(dev, op);
- }
- static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
- if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
- buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
- return false;
- }
- // Check cl_context is the same. clEnqueue* commands may not use
- // buffers from another cl_context.
- ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
- ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
- return backend_ctx0->context == backend_ctx1->context;
- }
- namespace /* anonymous */ {
- struct ggml_backend_device_i ggml_backend_opencl_device_i = {
- /* .get_name = */ ggml_backend_opencl_device_get_name,
- /* .get_description = */ ggml_backend_opencl_device_get_description,
- /* .get_memory = */ ggml_backend_opencl_device_get_memory,
- /* .get_type = */ ggml_backend_opencl_device_get_type,
- /* .get_props = */ ggml_backend_opencl_device_get_props,
- /* .init_backend = */ ggml_backend_opencl_device_init,
- /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
- /* .supports_op = */ ggml_backend_opencl_device_supports_op,
- /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- }
- // Backend registry
- static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
- return "OpenCL";
- GGML_UNUSED(reg);
- }
- static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
- return g_ggml_backend_opencl_devices.size();
- GGML_UNUSED(reg);
- }
- static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
- return &g_ggml_backend_opencl_devices[index];
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
- }
- static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
- /* .get_name = */ ggml_backend_opencl_reg_get_name,
- /* .device_count = */ ggml_backend_opencl_reg_device_count,
- /* .device_get = */ ggml_backend_opencl_reg_device_get,
- /* .get_proc_address = */ NULL,
- };
- ggml_backend_reg_t ggml_backend_opencl_reg(void) {
- static std::mutex mutex;
- static ggml_backend_reg reg;
- static bool initialized = false;
- std::lock_guard<std::mutex> lock(mutex);
- if (initialized) {
- return ®
- }
- initialized = true;
- g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(®);
- reg = ggml_backend_reg{
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_opencl_reg_i,
- /* .context = */ NULL,
- };
- return ®
- }
- GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
- //------------------------------------------------------------------------------
- // Debugging utils
- //------------------------------------------------------------------------------
- #if 0
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
- "wrong q4_0 block size/padding");
- #include <math.h>
- #ifdef __cplusplus
- #include "half.hpp"
- #endif
- static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
- void * buf = malloc(ggml_nbytes(tensor));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- void * buf_q;
- void * buf_d;
- #endif
- // Make sure everything is done.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
- GGML_ASSERT(extra);
- size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
- size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
- GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
- buf_q = malloc(size_q);
- buf_d = malloc(size_d);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
- CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- } else if (tensor->type == GGML_TYPE_MXFP4) {
- ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
- GGML_ASSERT(extra);
- size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
- size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
- GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
- buf_q = malloc(size_q);
- buf_d = malloc(size_e);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
- CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- } else {
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- }
- #else
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- #endif // GGML_OPENCL_SOA_Q
- // Open file and dump.
- char fname[512];
- snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
- FILE * f = fopen(fname, "w");
- if (!f) {
- printf("Failed to open %s\n", fname);
- return;
- }
- if (tensor->type == GGML_TYPE_F32) {
- float * data = (float *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_I32) {
- int * data = (int *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%d\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_F16) {
- #ifdef __cplusplus
- half_float::half * data = (half_float::half *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (std::isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", float(data[i]));
- }
- #endif
- } else if (tensor->type == GGML_TYPE_Q4_0) {
- #ifdef GGML_OPENCL_SOA_Q
- ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
- unsigned char * data_q = (unsigned char *)buf_q;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data_d[i]);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data_q[k]);
- }
- fprintf(f, "\n");
- data_q += QK4_0/2;
- }
- free(buf_d);
- free(buf_q);
- #else
- block_q4_0 * data = (block_q4_0 *) buf;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data[i].d);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data[i].qs[k]);
- }
- fprintf(f, "\n");
- }
- #endif // GGML_OPENCL_SOA_Q
- }
- free(buf);
- fflush(f);
- fclose(f);
- }
- #else
- #define dump_tensor(tensor)
- #endif
- //------------------------------------------------------------------------------
- // Ops
- //------------------------------------------------------------------------------
- static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- UNUSED(backend);
- UNUSED(src0);
- UNUSED(src1);
- UNUSED(dst);
- }
- static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0->ne[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const cl_ulong nb10 = src1->nb[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_get_rows_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_get_rows_f16;
- break;
- case GGML_TYPE_Q4_0:
- kernel = backend_ctx->kernel_get_rows_q4_0;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
- size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
- // ne0 = ne00
- // ne2 = ne02
- // ne3 = ne03
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const int ne0 = dst->ne[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- const int nblk0 = ne0/ggml_blck_size(dst->type);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (dst->type) {
- case GGML_TYPE_F32:
- if (src1->type == GGML_TYPE_I64) {
- kernel = backend_ctx->kernel_set_rows_f32_i64;
- } else {
- kernel = backend_ctx->kernel_set_rows_f32_i32;
- }
- break;
- case GGML_TYPE_F16:
- if (src1->type == GGML_TYPE_I64) {
- kernel = backend_ctx->kernel_set_rows_f16_i64;
- } else {
- kernel = backend_ctx->kernel_set_rows_f16_i32;
- }
- break;
- default:
- GGML_ABORT("not implemented");
- }
- fastdiv_vals ne11_ = init_fastdiv_values(ne11);
- fastdiv_vals ne12_ = init_fastdiv_values(ne12);
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(fastdiv_vals), &ne11_));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(fastdiv_vals), &ne12_));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
- int nth0 = 64;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- }
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- while (nth0 < nblk0 && nth0 < max_workgroup_size) {
- nth0 *= 2;
- }
- int rows_per_workgroup = 1;
- if (nth0 > nblk0) {
- rows_per_workgroup = nth0 / nblk0;
- nth0 = nblk0;
- }
- size_t global_work_size[] = {
- (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
- (size_t)ne02*rows_per_workgroup,
- (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int ne2 = dst->ne[2];
- const int ne3 = dst->ne[3];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
- if (bcast_row) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ne11 == 1);
- }
- if (dst->type == GGML_TYPE_F32) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
- if (bcast_row) {
- kernel = backend_ctx->kernel_add_row;
- const int ne = ne00 / 4;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_add;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- } else if (dst->type == GGML_TYPE_F16) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
- const int type_src0 = (src0->type == GGML_TYPE_F32);
- const int type_src1 = (src1->type == GGML_TYPE_F32);
- if (bcast_row) {
- kernel = backend_ctx->kernel_add_row_f16;
- const int ne = ne00 / 4;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
- } else {
- kernel = backend_ctx->kernel_add_f16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
- }
- } else {
- GGML_ASSERT(false && "unsupported data types for add");
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const ggml_tensor * src2 = dst->src[2];
- GGML_ASSERT(src2);
- GGML_ASSERT(src2->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous_rows(src0));
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb21 = src2->nb[1];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offset2 = extra2->offset + src2->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_add_id;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
- int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
- size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
- size_t local_work_size[] = { (size_t)nth, 1, 1 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == src1->type);
- GGML_ASSERT(src0->type == dst->type);
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3]; UNUSED(ne13);
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int ne2 = dst->ne[2];
- const int ne3 = dst->ne[3];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_mul_row;
- } else {
- kernel = backend_ctx->kernel_mul_row_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_mul;
- } else {
- kernel = backend_ctx->kernel_mul_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == src1->type);
- GGML_ASSERT(src0->type == dst->type);
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne0 = dst->ne[0];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_div_row;
- } else {
- kernel = backend_ctx->kernel_div_row_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_div;
- } else {
- kernel = backend_ctx->kernel_div_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == src1->type);
- GGML_ASSERT(src0->type == dst->type);
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne0 = dst->ne[0];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_sub_row;
- } else {
- kernel = backend_ctx->kernel_sub_row_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- if (src0->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_sub;
- } else {
- kernel = backend_ctx->kernel_sub_f16;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_erf_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu_erf;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_quick_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu_quick;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_silu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_silu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_relu;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_sigmoid_f32;
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_sigmoid_f16;
- } else {
- GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float min;
- float max;
- memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
- cl_kernel kernel = backend_ctx->kernel_clamp;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int nth = MIN(64, ne00);
- cl_kernel kernel = backend_ctx->kernel_norm;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- //ggml_backend_opencl_device_context * dev_ctx =
- // (ggml_backend_opencl_device_context *)backend->device->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- GGML_ASSERT(ne00 % 4 == 0);
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- cl_kernel kernel = backend_ctx->kernel_rms_norm;
- // Note, this kernel declares local memory in kernel args and the size
- // depends on subgroup size.
- // Note, this requires OpenCL 2.1 and above
- // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
- size_t sgs;
- //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
- // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
- // sizeof(local_work_size), local_work_size,
- // sizeof(size_t), &sgs, NULL));
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- // This is local memory - the size depends on subgroup size.
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
- GGML_ASSERT(mul_tensor);
- GGML_ASSERT(rms_norm_tensor);
- // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
- const ggml_tensor * src0 = rms_norm_tensor->src[0];
- const ggml_tensor * src1;
- if (mul_tensor->src[0] == rms_norm_tensor) {
- src1 = mul_tensor->src[1];
- } else if (mul_tensor->src[1] == rms_norm_tensor) {
- src1 = mul_tensor->src[0];
- } else {
- GGML_ASSERT(false && "Invalid args for rms_norm and mul");
- }
- const ggml_tensor * dst = mul_tensor;
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- float eps;
- memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- GGML_ASSERT(ne00 % 4 == 0);
- size_t sgs;
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
- int nth = sgs;
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- while (nth < ne00 && nth < max_workgroup_size) {
- nth *= 2;
- }
- nth = MIN(nth, max_workgroup_size);
- nth = MIN(nth, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs, NULL));
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
- GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
- const ggml_tensor * src0 = norm_tensor->src[0];
- const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
- const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
- const ggml_tensor * dst = add_tensor;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offset2 = extra2->offset + src2->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- float eps;
- memcpy(&eps, norm_tensor->op_params, sizeof(float));
- const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
- const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
- const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
- const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
- const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
- const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
- size_t sgs;
- if (backend_ctx->gpu_family == ADRENO) sgs = 64;
- else if (backend_ctx->gpu_family == INTEL) sgs = 32;
- else GGML_ASSERT(false && "Unsupported GPU");
- cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
- int nth = sgs;
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
- nth = MIN(nth, max_workgroup_size);
- nth = MIN(nth, ne00/4);
- size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t lws[] = {(size_t)nth, 1, 1};
- size_t num_subgroups = (nth + sgs - 1) / sgs;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
- }
- static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
- GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
- const ggml_tensor * src0 = gn_tensor->src[0];
- const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
- const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
- const ggml_tensor * dst = add_tensor;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offset2 = extra2->offset + src2->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- int groups;
- float eps;
- memcpy(&groups, gn_tensor->op_params, sizeof(int));
- memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
- cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- int ne = ggml_nelements(src0);
- int group_size = ne / groups;
- size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
- size_t gws[] = { (size_t)groups * lws[0] };
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
- backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
- }
- static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- int32_t n_groups = ((const int32_t *) dst->op_params)[0];
- int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
- float eps = ((const float *) dst->op_params)[1];
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne = ne00*ne01*ne02;
- cl_kernel kernel = backend_ctx->kernel_group_norm;
- size_t sgs = 64;
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
- size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
- size_t local_work_size[] = {(size_t)sgs, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0_abs = extra0->offset + src0->view_offs;
- cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_tanh_f32_nd;
- } else if (dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_tanh_f16_nd;
- } else {
- GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
- }
- GGML_ASSERT(kernel != nullptr);
- const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
- const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
- const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
- size_t global_work_size[3];
- if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
- return;
- }
- global_work_size[0] = (size_t)ne10;
- global_work_size[1] = (size_t)ne11;
- global_work_size[2] = (size_t)ne12;
- size_t lws0 = 16, lws1 = 4, lws2 = 1;
- if (ne10 < 16) lws0 = ne10;
- if (ne11 < 4) lws1 = ne11;
- if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
- while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
- while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
- while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
- size_t local_work_size[] = {lws0, lws1, lws2};
- size_t* local_work_size_ptr = local_work_size;
- if (!backend_ctx->non_uniform_workgroups) {
- if (global_work_size[0] % local_work_size[0] != 0 ||
- global_work_size[1] % local_work_size[1] != 0 ||
- global_work_size[2] % local_work_size[2] != 0) {
- local_work_size_ptr = NULL;
- }
- }
- if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(dst->type == src0->type);
- UNUSED(src1_shape_def);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_repeat == nullptr) {
- GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
- const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
- const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
- const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
- cl_kernel kernel = backend_ctx->kernel_repeat;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
- size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
- size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
- size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
- size_t global_work_size[] = { gws0, gws1, gws2 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_pad == nullptr) {
- GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int s_ne0 = src0->ne[0];
- const int s_ne1 = src0->ne[1];
- const int s_ne2 = src0->ne[2];
- const int s_ne3 = src0->ne[3];
- const int s_nb0 = src0->nb[0];
- const int s_nb1 = src0->nb[1];
- const int s_nb2 = src0->nb[2];
- const int s_nb3 = src0->nb[3];
- const int d_ne0 = dst->ne[0];
- const int d_ne1 = dst->ne[1];
- const int d_ne2 = dst->ne[2];
- const int d_ne3 = dst->ne[3];
- const int d_nb0 = dst->nb[0];
- const int d_nb1 = dst->nb[1];
- const int d_nb2 = dst->nb[2];
- const int d_nb3 = dst->nb[3];
- const int lp0 = ((const int*)(dst->op_params))[0];
- const int rp0 = ((const int*)(dst->op_params))[1];
- const int lp1 = ((const int*)(dst->op_params))[2];
- const int rp1 = ((const int*)(dst->op_params))[3];
- const int lp2 = ((const int*)(dst->op_params))[4];
- const int rp2 = ((const int*)(dst->op_params))[5];
- const int lp3 = ((const int*)(dst->op_params))[6];
- const int rp3 = ((const int*)(dst->op_params))[7];
- cl_kernel kernel = backend_ctx->kernel_pad;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
- size_t lws0 = 64;
- size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
- size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
- size_t local_work_size[] = { lws0, 1, 1 };
- size_t * local_work_size_ptr = local_work_size;
- if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
- const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
- cl_kernel kernel = nullptr;
- if (mode == GGML_SCALE_MODE_NEAREST) {
- kernel = backend_ctx->kernel_upscale;
- if (kernel == nullptr) {
- GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- } else if (mode == GGML_SCALE_MODE_BILINEAR) {
- kernel = backend_ctx->kernel_upscale_bilinear;
- if (kernel == nullptr) {
- GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- } else {
- GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int ne2 = dst->ne[2];
- const int ne3 = dst->ne[3];
- float sf0 = (float)ne0 / ne00;
- float sf1 = (float)ne1 / ne01;
- float sf2 = (float)ne2 / ne02;
- float sf3 = (float)ne3 / ne03;
- float pixel_offset = 0.5f;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
- if (mode == GGML_SCALE_MODE_NEAREST) {
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
- } else if (mode == GGML_SCALE_MODE_BILINEAR) {
- if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
- sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
- sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
- pixel_offset = 0.0f;
- }
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
- }
- size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
- if (dst_total_elements == 0) {
- return;
- }
- size_t global_work_size[] = { dst_total_elements, 1, 1 };
- size_t local_work_size_pref = 256;
- size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
- GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
- cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
- cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
- const int32_t dim = ((const int32_t *) dst->op_params)[0];
- GGML_ASSERT(dim >= 0 && dim <= 3);
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
- if (dim == 3) {
- size_t nbytes_src0 = ggml_nbytes(src0);
- size_t nbytes_src1 = ggml_nbytes(src1);
- CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
- off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
- CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
- off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
- } else {
- cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
- size_t global_work_size[3];
- for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
- cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
- cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
- cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
- int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
- int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
- int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), ¤t_off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), ¤t_off_src1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), ¤t_off_dst));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
- global_work_size[0] = d_ne0;
- global_work_size[1] = d_ne1;
- global_work_size[2] = d_ne2;
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- }
- } else {
- cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
- cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
- cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
- cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
- cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
- cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
- size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
- d_ne2 > 0 ? (size_t)d_ne2 : 1,
- d_ne3 > 0 ? (size_t)d_ne3 : 1 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
- }
- }
- static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_timestep_embedding == nullptr) {
- GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int logical_dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
- const int dst_nb1_bytes = dst->nb[1];
- cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
- size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
- size_t gws1 = (size_t)src0->ne[0];
- size_t global_work_size[] = {gws0, gws1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
- const ggml_tensor * v = dst->src[2];
- const ggml_tensor * mask = dst->src[3];
- const ggml_tensor * sinks = dst->src[4];
- GGML_ASSERT(q->extra);
- GGML_ASSERT(k->extra);
- GGML_ASSERT(v->extra);
- GGML_ASSERT(dst->extra);
- if (mask) {
- GGML_ASSERT(mask->extra);
- }
- if (sinks) {
- GGML_ASSERT(sinks->extra);
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- const int n_q = q->ne[1];
- const int n_kv = k->ne[1];
- const int d_head_q = q->ne[0];
- const int d_head_v = v->ne[0];
- const int n_head = q->ne[2];
- const int n_head_kv = k->ne[2];
- const int n_batch = q->ne[3];
- cl_kernel kernel = NULL;
- const bool is_f16 = q->type == GGML_TYPE_F16;
- const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
- const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
- if (n_q == 1) {
- if (is_mixed) {
- kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
- } else if (is_f16) {
- kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
- } else {
- kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
- }
- } else {
- if (is_mixed) {
- kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
- } else if (is_f16) {
- kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
- } else {
- kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
- }
- }
- GGML_ASSERT(kernel != NULL);
- ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
- ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
- ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
- ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
- ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
- cl_ulong offset_q = extra_q->offset + q->view_offs;
- cl_ulong offset_k = extra_k->offset + k->view_offs;
- cl_ulong offset_v = extra_v->offset + v->view_offs;
- cl_ulong offset_o = extra_o->offset + dst->view_offs;
- cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
- cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
- cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
- cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
- const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
- const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
- const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
- const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
- const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
- const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
- const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
- const int mask_ne2 = mask ? mask->ne[2] : 0;
- const int mask_ne3 = mask ? mask->ne[3] : 0;
- float scale, max_bias, logit_softcap;
- const float * params = (const float *)dst->op_params;
- scale = params[0];
- max_bias = params[1];
- logit_softcap = params[2];
- const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
- const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
- const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
- const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
- CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
- CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
- CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
- CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
- CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
- CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
- CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
- if (n_q == 1) {
- const size_t wg_size = 64;
- size_t local_work_size[] = { wg_size, 1 };
- size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- } else {
- const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
- const size_t wg_size = block_m;
- size_t local_work_size[] = { wg_size, 1 };
- size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int M = src0->ne[1];
- const int N = src1->ne[1];
- const int K = src0->ne[0];
- cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
- // Tiling parameters. These need to be tuned for optimal performance.
- // They must match the #defines in the kernel mul_mat_f16_f32.cl.
- //
- // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
- // TPWM / TPWN: Threads per Work-group. This is the work-group size.
- // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
- //
- // The following relationships must hold:
- // OPWM = TPWM * OPTM
- // OPWN = TPWN * OPTN
- //
- const int OPWM = 64;
- const int OPWN = 64;
- const int TPWM = 16;
- const int TPWN = 8;
- size_t local_work_size[2] = { TPWM, TPWN };
- size_t global_work_size[2] = {
- (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
- (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
- };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_TENSOR_BINARY_OP_LOCALS;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
- const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
- const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
- const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
- const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
- const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
- const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
- const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
- const int64_t NPQ = (int64_t)N * OW * OH;
- const uint32_t BS_K = 64;
- const uint32_t BS_NPQ = 64;
- const uint32_t BS_CRS = 16;
- const uint32_t VEC_SIZE = 4;
- const uint32_t TS_K = 4;
- const uint32_t TS_NPQ = 8;
- const uint32_t WG_K = BS_K / TS_K;
- const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
- auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
- const uint32_t NB_K = splitWork(Cout, BS_K);
- const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
- cl_kernel kernel;
- size_t shmem_size;
- if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_conv_2d_f16;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_conv_2d_f32;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_conv_2d_f16_f32;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
- } else {
- GGML_ASSERT(false && "Unsupported data type combination for conv2d");
- }
- cl_uint idx = 0;
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
- size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
- size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const cl_ulong nb10 = src1->nb[0];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- GGML_ASSERT(ne00 == ne10);
- cl_kernel kernel;
- cl_context context = backend_ctx->context;
- cl_int status;
- cl_image_format img_fmt_1d;
- cl_image_desc img_desc_1d;
- cl_buffer_region region;
- cl_mem A_image1d;
- cl_mem A_sub_buffer;
- cl_mem B_sub_buffer;
- cl_mem D_image1d;
- cl_mem D_sub_buffer;
- int M = ne01;
- int N = ne1;
- int K = ne00;
- if (nb01 > nb02) {
- // KQ
- kernel = backend_ctx->kernel_mul_mm_f16_f32_kq;
- } else {
- // KQV
- kernel = backend_ctx->kernel_mul_mm_f16_f32_kqv;
- }
- // create sub-buffer for A
- // <--------------------------------------------> //
- extra0 = src0->view_src ? (ggml_tensor_extra_cl *)src0->view_src->extra : (ggml_tensor_extra_cl *)src0->extra;
- region.origin = (extra0->offset);
- if (nb01 > nb02) {
- // KQ
- region.size = nb01 * ne01;
- } else {
- // KQV
- region.size = nb02 * ne02;
- }
- A_sub_buffer = clCreateSubBuffer((extra0->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create sub-buffer for B
- // <--------------------------------------------> //
- region.origin = (extra1->offset);
- region.size = nb10 * ne10 * ne11 * ne12;
- B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- img_fmt_1d = {CL_RGBA, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- if (nb01 > nb02) {
- img_desc_1d.image_width = (nb01 * ne01 / 4)/4;
- }
- else {
- img_desc_1d.image_width = (nb02 * ne02 / 4)/4;
- }
- img_desc_1d.buffer = A_sub_buffer;
- A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
- CL_CHECK(status);
- // create sub-buffer for output C
- // <--------------------------------------------> //
- region.origin = (extrad->offset);
- region.size = ne0 * ne1 * dst->ne[2] * dst->nb[0]; // size of C in bytes
- D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create image for C output
- // <--------------------------------------------> //
- img_fmt_1d = {CL_R, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = ne0 * ne1 * dst->ne[2] * dst->nb[0] / 4;
- img_desc_1d.buffer = D_sub_buffer;
- D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- int offset_src0 = 0;
- int offset_src1 = 0;
- // set kernel args
- // <--------------------------------------------> //
- cl_uint k_arg = 0;
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src0));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_sub_buffer));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src1));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &D_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &extrad->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &M));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &K));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &N));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &nb01));
- size_t global_work_size[3] = {64, static_cast<size_t>(((M+63)/64)), static_cast<size_t>(((N+31)/32)*ne12)};
- size_t local_work_size[3] = {64, 1, 2};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- // deallocate sub buffers and images
- // <--------------------------------------------> //
- CL_CHECK(clReleaseMemObject(A_image1d));
- CL_CHECK(clReleaseMemObject(D_image1d));
- CL_CHECK(clReleaseMemObject(A_sub_buffer));
- CL_CHECK(clReleaseMemObject(B_sub_buffer));
- CL_CHECK(clReleaseMemObject(D_sub_buffer));
- }
- static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
- ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
- #endif
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- int r2 = ne12/ne02;
- int r3 = ne13/ne03;
- GGML_ASSERT(ne00 == ne10);
- int nth0 = 32;
- int nth1 = 1;
- int nrows = 1;
- // The number of values produced by each subgroup
- int ndst = 4;
- cl_kernel kernel;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context context = backend_ctx->context;
- if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){
- if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0){
- ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
- return;
- }
- }
- if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
- // init CL objects
- // <--------------------------------------------> //
- cl_int status;
- cl_image_format img_fmt_1d;
- cl_image_desc img_desc_1d;
- cl_buffer_region region;
- cl_mem A_image1d = nullptr;
- cl_mem B_image1d = nullptr;
- cl_mem B_sub_buffer = nullptr;
- cl_mem C_d = nullptr;
- // for B transpose
- cl_mem B_d = nullptr;
- cl_mem B_d_input_image = nullptr;
- // <--------------------------------------------> //
- // define matrix dimensions
- // <--------------------------------------------> //
- int M = ne01;
- int N = ne1;
- int K = ne00;
- int padding;
- // <--------------------------------------------> //
- // q4_0 x fp32
- if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
- // TODO: remove duplicate definitions of image description + format -- move to top
- // create an image for A
- // <--------------------------------------------> //
- if (N == 1) {
- img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
- } else {
- img_fmt_1d = { CL_R, CL_FLOAT};
- }
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
- img_desc_1d.buffer = extra0_q4_0->q;
- A_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create a sub_buffer for B
- // <--------------------------------------------> //
- region.origin = (extra1->offset);
- region.size = K * N * sizeof(float);
- B_sub_buffer = clCreateSubBuffer(
- extra1->data_device,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // transpose activation for Skyler's gemm
- if (N != 1) {
- //how many extra elements beyond multiple of 8
- int extra_elements = N % 8;
- //how much padding to add
- padding = 0;
- if (extra_elements > 0){
- padding = 8 - extra_elements;
- }
- // Specify the starting offset (in bytes)
- region.origin = 0;
- // Specify the size of the sub-buffer (divide by 2 for FP16)
- region.size = K * (N + padding) * sizeof(float)/2;
- B_d = clCreateSubBuffer(
- backend_ctx->B_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
- cl_image_desc image_desc_B_d_input = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * N / 4),
- 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
- };
- B_d_input_image = clCreateImage(
- context,
- 0,
- &image_format_B_d_input,
- &image_desc_B_d_input,
- NULL,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
- cl_image_desc image_desc_B_d_output = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * (N + padding)/4),
- 0, 0, 0, 0, 0, 0, 0, { B_d }
- };
- B_image1d = clCreateImage(
- context,
- 0,
- &image_format_B_d_output,
- &image_desc_B_d_output,
- NULL,
- &status);
- CL_CHECK(status);
- int height_B = N/4;
- if (height_B == 0) {
- height_B = 1;
- }
- int width_B = K/4;
- int padded_height_B = (N + padding)/4;
- kernel = backend_ctx->kernel_transpose_32_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
- size_t local_size_t[2] = { 1, 16 };
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=4;
- local_size_t[1]=8;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_size_t[0]=1;
- local_size_t[1]=8;
- } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- }
- size_t global_size_t[2] = {
- static_cast<size_t>(width_B),
- static_cast<size_t>(padded_height_B)
- };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
- } else {
- // no need to transpose B in other cases
- // create an image for B from sub_buffer
- // <--------------------------------------------> //
- img_fmt_1d = {CL_RGBA, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_width = K * N / 4;
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.buffer = B_sub_buffer;
- B_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- }
- // choose gemm or gemv kernel
- // <--------------------------------------------> //
- if (N == 1) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- if (M == 4096 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- } else if (M == 4096 && K == 11008) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- } else if (M == 11008 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- } else if (M == 32000 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- }
- } else {
- kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
- }
- // <--------------------------------------------> //
- // set kernel args
- // <--------------------------------------------> //
- cl_uint k_arg = 0;
- if (N == 1) {
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
- } else {
- region.origin = extrad->offset; // Specify the starting offset (in bytes)
- region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
- C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- int padded_N = ne1 + padding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
- }
- // <--------------------------------------------> //
- // choose workgroup size
- // <--------------------------------------------> //
- size_t global_work_size[3] = {
- 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
- size_t local_work_size[3] = {64, 2, 4};
- global_work_size[0] = (size_t)(ceil((float)ne1/8));
- global_work_size[1] = (size_t)(ne01/4);
- global_work_size[2] = (size_t)(1);
- local_work_size[0] = (size_t)(1); //4x32 for FP32
- local_work_size[1] = (size_t)(128);
- local_work_size[2] = (size_t)(1);
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 1;
- local_work_size[1] = 128;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- }
- if (N == 1) {
- size_t wavesize = backend_ctx->adreno_wave_size;
- local_work_size[0] = wavesize; // localsize
- local_work_size[1] = 4; // reduce factor
- local_work_size[2] = 1;
- global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
- global_work_size[1] = 4; // reduce factor
- global_work_size[2] = 1;
- }
- // <--------------------------------------------> //
- // enqueue kernel with profiling
- // <--------------------------------------------> //
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- // <--------------------------------------------> //
- // deallocate sub buffers and images
- // <--------------------------------------------> //
- CL_CHECK(clReleaseMemObject(A_image1d));
- CL_CHECK(clReleaseMemObject(B_sub_buffer));
- CL_CHECK(clReleaseMemObject(B_image1d));
- if (N != 1) {
- CL_CHECK(clReleaseMemObject(B_d));
- CL_CHECK(clReleaseMemObject(B_d_input_image));
- CL_CHECK(clReleaseMemObject(C_d));
- }
- // <--------------------------------------------> //
- return;
- }
- } // if (ne01 && ne1)
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- // GEMM using local memory
- // Current BK = 16, so ne00 % 16 == 0
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00 % 16 == 0 &&
- ne11 > 1) {
- switch(src0t) {
- case GGML_TYPE_F32: {
- kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
- nth0 = 128; // calculated as (BM*BN)/(TM*TN)
- int batch_stride_a = ne00*ne01;
- int batch_stride_b = ne10*ne11;
- int batch_stride_d = ne0*ne1;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
- // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
- size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- return;
- }
- case GGML_TYPE_F16: {
- kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
- nth0 = 128; // calculated as (BM*BN)/(TM*TN)
- int batch_stride_a = ne00*ne01;
- int batch_stride_b = ne10*ne11;
- int batch_stride_d = ne0*ne1;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
- // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
- size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- return;
- }
- case GGML_TYPE_Q8_0: {
- if (ne11 < 32) {
- break;
- }
- kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
- nth0 = 128; // calculated as (BM*BN)/(TM*TN)
- int batch_stride_a = ne00*ne01;
- int batch_stride_b = ne10*ne11;
- int batch_stride_d = ne0*ne1;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
- // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
- size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- return;
- }
- default:
- break;
- }
- }
- if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
- src0->ne[1] > 32 && // M > 32
- src1->ne[1] > 32 && // N > 32
- src0->ne[0] > 32 && // K > 32
- src0->ne[2] == 1 && src0->ne[3] == 1 &&
- src1->ne[2] == 1 && src1->ne[3] == 1 &&
- ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
- backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
- ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
- return;
- }
- if (!ggml_is_transposed(src0) &&
- !ggml_is_transposed(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00%32 == 0 &&
- ne11 > 2) {
- #ifdef GGML_OPENCL_SOA_Q
- // Set up kernel.
- switch(src0t) {
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- break;
- }
- // Launch kernel.
- if (src0t == GGML_TYPE_Q4_0) {
- size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- if (backend_ctx->gpu_family == INTEL) {
- // Set global size for Intel. It uses 16x output values.
- global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
- global_work_size[1] = (size_t)ne11*nth1;
- global_work_size[2] = (size_t)ne12*ne13;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- return;
- }
- #else // GGML_OPENCL_SOA_Q
- // TODO: add block_q4_0 variant.
- #endif // GGML_OPENCL_SOA_Q
- }
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- //GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- kernel = backend_ctx->kernel_mul_mat_f32_f32;
- nrows = 4;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_F16:
- //GGML_ASSERT(ne02 == ne12);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- if (src1t == GGML_TYPE_F32) {
- if (ne11 * ne12 < 4) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
- nrows = ne11;
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f32;
- nrows = 4;
- }
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f16;
- nrows = 4;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- #ifdef GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst =8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #else // GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
- // group produces N_DST (4 for Q4_0 kernel) values in the result.
- // The number of workgroups on dim 0 (the leading dimension) is
- // the nearest multiple of 4 that covers ne0 (equals ne01).
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #endif // GGML_OPENCL_SOA_Q
- break;
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q8_0: {
- #ifdef GGML_OPENCL_SOA_Q
- kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
- // nth0 - subgroup size
- // nth1 - number of subgroups per workgroup
- // ndst - number of output values per workgroup = output per subgroup * number of subgroups
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 2;
- ndst = nth1*4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 2;
- ndst = nth1*4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
- #else
- kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
- // nth0 - subgroup size
- // nth1 - number of subgroups per workgroup
- // ndst - number of output values per workgroup = output per subgroup * number of subgroups
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 2;
- ndst = nth1*4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 2;
- ndst = nth1*4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
- #endif // GGML_OPENCL_SOA_Q
- break;
- }
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 2;
- nth1 = 16;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 2;
- nth1 = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- case GGML_TYPE_MXFP4: {
- #ifdef GGML_OPENCL_SOA_Q
- kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
- cl_mem q;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 2;
- ndst = nth1*2;
- q = extra0_mxfp4->q;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 2;
- ndst = nth1*2;
- q = extra0_mxfp4->q_img;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
- #else
- kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 2;
- ndst = nth1*2;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 2;
- ndst = nth1*2;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
- #endif
- break;
- }
- default:
- GGML_ASSERT(false && "not implemented");
- }
- if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
- src0t == GGML_TYPE_Q4_1 ||
- src0t == GGML_TYPE_Q8_0 ||
- src0t == GGML_TYPE_Q2_K) {
- // Each SIMD group produces N_DST values in the result. Assuming each
- // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
- // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
- // (number of workgroups) will be a nearest multiple of
- // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
- // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
- size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else if (src0t == GGML_TYPE_Q4_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q3_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q5_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q6_K) {
- size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- int64_t ny = (ne11 + nrows - 1)/nrows;
- size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const ggml_tensor * src2 = dst->src[2];
- GGML_ASSERT(src2);
- GGML_ASSERT(src2->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offset2 = extra2->offset + src2->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- GGML_UNUSED(offset0);
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
- ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
- #endif
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne20 = src2->ne[0];
- const int ne21 = src2->ne[1];
- const cl_ulong nb21 = src2->nb[1];
- const cl_ulong nb20 = src2->nb[0];
- UNUSED(nb20);
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int r2 = ne12/ne02;
- const int r3 = ne13/ne03;
- const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
- GGML_ASSERT(ne00 == ne10);
- int sgs = 32; // subgroup size
- int nsg = 1; // number of subgroups
- int nrows = 1; // number of row in src1
- int ndst = 4; // number of values produced by each subgroup
- cl_kernel kernel;
- // subgroup mat vec
- switch (src0->type) {
- case GGML_TYPE_Q4_0: {
- kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 1;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 1;
- ndst = 8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
- break;
- }
- case GGML_TYPE_Q8_0: {
- #ifdef GGML_OPENCL_SOA_Q
- kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 2;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 2;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
- #else
- kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 2;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 2;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
- #endif // GGML_OPENCL_SOA_Q
- break;
- }
- case GGML_TYPE_MXFP4: {
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (use_adreno_moe_kernels(backend_ctx, src0)) {
- cl_int status;
- size_t local_size[3] = {64, 2, 1};
- size_t global_size[3] = {64, 2, 1};
- cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
- int tile_size = 320;
- if (ne12 == 1) { // for gemv
- kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
- // create a sub_buffer for src2
- cl_buffer_region region;
- region.origin = offset2;
- region.size = ne20 * ne21 * sizeof(int);
- buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- // set thread grid
- global_size[0] = static_cast<size_t>(ne01);
- global_size[1] = 4;
- global_size[2] = static_cast<size_t>(ne20);
- local_size[1] = 4;
- } else { // for gemm
- kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
- // preprocess router table
- int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
- void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
- void * host_src2 = malloc(ne21 * nb21);
- CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
- int total_experts = nb21 / nb20;
- int out_idx = 0;
- for (int i_expert = 0; i_expert < ne02; i_expert++) {
- for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
- for (int j = 0; j < ne21; j++) {
- for (int i = 0; i < ne20; i++) {
- int expert = ((int *)host_src2)[j * total_experts + i];
- if (i_expert == expert) {
- ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
- ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
- ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
- ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
- out_idx += 4;
- }
- }
- }
- }
- }
- buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
- CL_CHECK(status);
- // set thread grid
- global_size[0] = static_cast<size_t>(tile_size);
- global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
- }
- // create a sub_buffer for src1
- cl_buffer_region region;
- region.origin = offset1;
- region.size = ne10 * ne11 * ne12 * sizeof(float);
- src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- // create image for src1
- cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
- cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
- buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
- CL_CHECK(status);
- // Set kernel args
- int arg_idx = 0;
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
- if (ne12 == 1) {
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
- } else {
- CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
- }
- // launch kernel
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
- // deallocate sub buffers and images
- CL_CHECK(clReleaseMemObject(src1_sub_buffer));
- CL_CHECK(clReleaseMemObject(buf_src1_image));
- CL_CHECK(clReleaseMemObject(buf_src2));
- return;
- } // else fallback to generic kernel
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- #ifdef GGML_OPENCL_SOA_Q
- kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
- cl_mem q;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 2;
- ndst = 2;
- q = extra0_mxfp4->q;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 1;
- ndst = 4;
- q = extra0_mxfp4->q_img;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- #else // GGML_OPENCL_SOA_Q
- kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 2;
- ndst = 2;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 2;
- ndst = 2;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
- #endif // GGML_OPENCL_SOA_Q
- break;
- }
- default:
- GGML_ASSERT(false && "not implemented");;
- }
- int _ne1 = 1;
- int ne123 = dst_rows;
- size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
- size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- float scale;
- float bias;
- memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_scale;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- // GGML_OP_CPY happens between src0 and src1.
- // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
- UNUSED(dst);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_kernel kernel;
- switch (src0t) {
- case GGML_TYPE_F32:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f32_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f32_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- case GGML_TYPE_F16:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f16_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f16_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
- }
- static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cl_cpy(backend, src0, dst, nullptr);
- UNUSED(src1);
- }
- static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- int n_past = ((int32_t *)(dst->op_params))[0];
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (ne00%8 == 0) {
- kernel = backend_ctx->kernel_diag_mask_inf_8;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- kernel = backend_ctx->kernel_diag_mask_inf;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- }
- static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
- // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
- // alibi is not used; however, for some other models, it is used.
- // KQ_mask
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- }
- const ggml_tensor * src2 = dst->src[2];
- if (src2) {
- GGML_ASSERT(src2->extra);
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_long nb01 = src0->nb[1];
- const cl_long nb02 = src0->nb[2];
- const cl_long nb03 = src0->nb[3];
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_long nb11 = src1 ? src1->nb[1] : 0;
- const cl_long nb12 = src1 ? src1->nb[2] : 0;
- const cl_long nb13 = src1 ? src1->nb[3] : 0;
- const cl_long nb1 = dst->nb[1];
- const cl_long nb2 = dst->nb[2];
- const cl_long nb3 = dst->nb[3];
- float scale, max_bias;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- const int n_head = src0->ne[2];
- const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- // Local size must be wave size. Each workgroup is a wave, working on a row,
- // where a row corresponds to leading dimension.
- int nth = MIN(32, ne00);
- if (backend_ctx->gpu_family == INTEL) {
- // This is the same as the initial value.
- nth = MIN(32, ne00);
- }
- else if (backend_ctx->gpu_family == ADRENO) {
- nth = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- cl_kernel kernel;
- if (ne00%4 == 0) {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_4_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max_4;
- }
- } else {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max;
- }
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_tensor * src2 = dst->src[2];
- ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
- cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
- const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- GGML_ASSERT(ne10 % ne02 == 0);
- GGML_ASSERT(ne10 >= ne02);
- int nth = MIN(64, ne00);
- const int n_past = ((int *) dst->op_params)[0];
- const int n_dims = ((int *) dst->op_params)[1];
- const int mode = ((int *) dst->op_params)[2];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
- int32_t sections[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
- const bool is_neox = mode & 2;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- const int is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
- if (is_vision) {
- GGML_ASSERT(n_dims == ne00/2);
- }
- cl_kernel kernel;
- if (is_neox) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_neox_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_neox_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_mrope && !is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_multi_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_multi_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_vision_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_vision_f16;
- break;
- default:
- GGML_ASSERT(false);
- }
- } else {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_norm_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_norm_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
- // both mrope and vision kernels have sections
- if (is_mrope || is_vision) {
- CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, §ions));
- }
- // only mrope has is_imrope
- if (is_mrope && !is_vision) {
- CL_CHECK(clSetKernelArg(kernel, 34, sizeof(int), &is_imrope));
- }
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // src0 - filter, src1 - input
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const cl_long IC = src1->ne[is_2D ? 2 : 1];
- const cl_long IH = is_2D ? src1->ne[1] : 1;
- const cl_long IW = src1->ne[0];
- const cl_long KH = is_2D ? src0->ne[1] : 1;
- const cl_long KW = src0->ne[0];
- const cl_long OH = is_2D ? dst->ne[2] : 1;
- const cl_long OW = dst->ne[1];
- // nb is byte offset, src is type float32
- const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
- const cl_long batch = src1->ne[is_2D ? 3 : 2];
- const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
- const cl_long pelements = OW*KW*KH;
- const cl_long CHW = IC*KH*KW;
- cl_kernel kernel;
- if(dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_im2col_f16;
- } else {
- kernel = backend_ctx->kernel_im2col_f32;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
- const int num_blocks = (pelements + 256 - 1) / 256;
- size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
- size_t local_work_size[] = {256, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int ne00 = src0->ne[0];
- const int nrows = ggml_nrows(src0);
- int ne00_padded = 1;
- while (ne00_padded < ne00) {
- ne00_padded *= 2;
- }
- int order = (enum ggml_sort_order) dst->op_params[0];
- cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
- CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
- size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
- size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
- size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_kernel kernel;
- switch (ggml_get_glu_op(dst)) {
- case GGML_GLU_OP_GEGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu;
- } else {
- kernel = backend_ctx->kernel_geglu_f16;
- }
- break;
- case GGML_GLU_OP_REGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_reglu;
- } else {
- kernel = backend_ctx->kernel_reglu_f16;
- }
- break;
- case GGML_GLU_OP_SWIGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_swiglu;
- } else {
- kernel = backend_ctx->kernel_swiglu_f16;
- }
- break;
- case GGML_GLU_OP_SWIGLU_OAI:
- kernel = backend_ctx->kernel_swiglu_oai;
- break;
- case GGML_GLU_OP_GEGLU_ERF:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu_erf;
- } else {
- kernel = backend_ctx->kernel_geglu_erf_f16;
- }
- break;
- case GGML_GLU_OP_GEGLU_QUICK:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu_quick;
- } else {
- kernel = backend_ctx->kernel_geglu_quick_f16;
- }
- break;
- default:
- GGML_ABORT("Unsupported glu op");
- }
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- const int ne0 = dst->ne[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
- const cl_ulong nb1 = dst->nb[1];
- const int swp = ggml_get_op_params_i32(dst, 1);
- const float alpha = ggml_get_op_params_f32(dst, 2);
- const float limit = ggml_get_op_params_f32(dst, 3);
- const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
- const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
- if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
- }
- const size_t nrows = ggml_nrows(src0);
- size_t nth = 512;
- size_t global_work_size[] = {nrows*nth, 1, 1};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- //------------------------------------------------------------------------------
- // Op offloading
- //------------------------------------------------------------------------------
- typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
- ggml_cl_func_t func = nullptr;
- ggml_tensor * src0 = tensor->src[0];
- ggml_tensor * src1 = tensor->src[1];
- const bool any_on_device = tensor->extra
- || (src0 != nullptr && src0->extra)
- || (src1 != nullptr && src1->extra);
- switch (tensor->op) {
- case GGML_OP_GET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_get_rows;
- break;
- case GGML_OP_SET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_set_rows;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_cpy;
- break;
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_add;
- break;
- case GGML_OP_ADD_ID:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_add_id;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul;
- break;
- case GGML_OP_DIV:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_div;
- break;
- case GGML_OP_SUB:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sub;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu;
- break;
- case GGML_UNARY_OP_GELU_ERF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu_erf;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu_quick;
- break;
- case GGML_UNARY_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_silu;
- break;
- case GGML_UNARY_OP_RELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_relu;
- break;
- case GGML_UNARY_OP_SIGMOID:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sigmoid;
- break;
- case GGML_UNARY_OP_TANH:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_tanh;
- break;
- default:
- return false;
- } break;
- case GGML_OP_GLU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_glu;
- break;
- case GGML_OP_CLAMP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_clamp;
- break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rms_norm;
- break;
- case GGML_OP_GROUP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_group_norm;
- break;
- case GGML_OP_REPEAT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_repeat;
- break;
- case GGML_OP_PAD:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_pad(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_UPSCALE:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_upscale(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_CONV_2D:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_conv_2d;
- break;
- case GGML_OP_CONCAT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_concat;
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cl_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_scale;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rope;
- break;
- case GGML_OP_IM2COL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_im2col;
- break;
- case GGML_OP_ARGSORT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_argsort;
- break;
- case GGML_OP_SUM_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sum_rows;
- break;
- case GGML_OP_FLASH_ATTN_EXT:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
- return true;
- default:
- return false;
- }
- func(backend, tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|