ggml-opencl.cpp 394 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <inttypes.h>
  15. #include <string.h>
  16. #include <cstddef>
  17. #include <cstdint>
  18. #include <fstream>
  19. #include <vector>
  20. #include <string>
  21. #include <cmath>
  22. #include <map>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  31. #define UNUSED(x) (void)(x)
  32. #define CL_CHECK(err) \
  33. do { \
  34. cl_int err_ = (err); \
  35. if (err_ != CL_SUCCESS) { \
  36. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  37. #err, err_, __FILE__, __LINE__); \
  38. GGML_ASSERT(0); \
  39. } \
  40. } while (0)
  41. //------------------------------------------------------------------------------
  42. // OpenCL
  43. //------------------------------------------------------------------------------
  44. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  45. // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
  46. // Precompute mp (m' in the paper) and L such that division
  47. // can be computed using a multiply (high 32b of 64b result)
  48. // and a shift:
  49. //
  50. // n/d = (mulhi(n, mp) + n) >> L;
  51. struct fastdiv_vals {
  52. uint32_t mp;
  53. uint32_t L;
  54. uint32_t d;
  55. uint32_t pad;
  56. };
  57. static_assert(sizeof(fastdiv_vals) == 16, "fastdiv_vals size incorrect");
  58. static fastdiv_vals init_fastdiv_values(uint64_t d_64) {
  59. GGML_ASSERT(d_64 != 0);
  60. GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
  61. uint32_t d = (uint32_t)d_64;
  62. // compute L = ceil(log2(d));
  63. uint32_t L = 0;
  64. while (L < 32 && (uint32_t{ 1 } << L) < d) {
  65. L++;
  66. }
  67. uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
  68. // pack divisor as well to reduce error surface
  69. return { mp, L, d, 0 };
  70. }
  71. enum GPU_FAMILY {
  72. ADRENO,
  73. INTEL,
  74. UNKNOWN,
  75. };
  76. enum ADRENO_GPU_GEN {
  77. ADRENO_UNKNOWN,
  78. A7X,
  79. A8X,
  80. X1E,
  81. };
  82. enum ADRENO_CL_COMPILER_TYPE {
  83. E031,
  84. DX,
  85. };
  86. struct ggml_cl_version {
  87. cl_uint major = 0;
  88. cl_uint minor = 0;
  89. };
  90. struct ggml_cl_compiler_version {
  91. ADRENO_CL_COMPILER_TYPE type;
  92. int major = -1;
  93. int minor = -1;
  94. int patch = -1;
  95. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  96. return major == x && minor == y && patch == z && type == t;
  97. }
  98. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  99. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  100. }
  101. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  102. return same(t, x, y, z) || newer_than(t, x, y, z);
  103. }
  104. };
  105. static size_t align_to(size_t value, size_t to_alignment) {
  106. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  107. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  108. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  109. }
  110. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  111. static ggml_cl_version parse_cl_version(std::string_view str) {
  112. size_t major_str_begin = 0;
  113. size_t major_str_end = str.find(".", major_str_begin);
  114. if (major_str_end == std::string::npos) {
  115. return {};
  116. }
  117. size_t minor_str_begin = major_str_end + 1;
  118. size_t minor_str_end = str.find(" ", minor_str_begin);
  119. if (minor_str_end == std::string::npos) {
  120. return {};
  121. }
  122. cl_uint version_major;
  123. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  124. return {};
  125. }
  126. cl_uint version_minor;
  127. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  128. return {};
  129. }
  130. return { version_major, version_minor };
  131. }
  132. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  133. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  134. size_t param_size;
  135. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  136. std::unique_ptr<char[]> param_storage(new char[param_size]);
  137. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  138. auto param_value = std::string_view(param_storage.get(), param_size);
  139. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  140. if (param_value.find(version_prefix) != 0) {
  141. return {};
  142. }
  143. param_value.remove_prefix(version_prefix.length());
  144. return parse_cl_version(param_value);
  145. }
  146. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  147. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  148. size_t param_size;
  149. #if CL_TARGET_OPENCL_VERSION >= 300
  150. if (platform_version.major >= 3) {
  151. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  152. if (!param_size) {
  153. return {};
  154. }
  155. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  156. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  157. unsigned versions_count = param_size / sizeof(cl_name_version);
  158. cl_version version_max = 0;
  159. for (unsigned i = 0; i < versions_count; i++) {
  160. version_max = std::max<cl_version>(versions[i].version, version_max);
  161. }
  162. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  163. }
  164. #else
  165. GGML_UNUSED(platform_version);
  166. #endif // CL_TARGET_OPENCL_VERSION >= 300
  167. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  168. if (!param_size) {
  169. return {};
  170. }
  171. std::unique_ptr<char[]> param_storage(new char[param_size]);
  172. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  173. auto param_value = std::string_view(param_storage.get(), param_size);
  174. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  175. if (param_value.find(version_prefix) != 0) {
  176. return {};
  177. }
  178. param_value.remove_prefix(version_prefix.length());
  179. return parse_cl_version(param_value);
  180. }
  181. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  182. if (strstr(device_name, "730") ||
  183. strstr(device_name, "740") ||
  184. strstr(device_name, "750")) {
  185. return ADRENO_GPU_GEN::A7X;
  186. }
  187. if (strstr(device_name, "830")) {
  188. return ADRENO_GPU_GEN::A8X;
  189. }
  190. if (strstr(device_name, "X1")) {
  191. return ADRENO_GPU_GEN::X1E;
  192. }
  193. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  194. }
  195. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  196. std::string driver_ver_str(driver_version);
  197. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  198. size_t compiler_ver_pos = driver_ver_str.find("E031");
  199. size_t compiler_ver_len = 13;
  200. size_t compiler_major_offset = 5;
  201. size_t compiler_minor_offset = 8;
  202. size_t compiler_patch_offset = 11;
  203. if (compiler_ver_pos == std::string::npos) {
  204. compiler_ver_pos = driver_ver_str.find("DX");
  205. if (compiler_ver_pos == std::string::npos) {
  206. return {};
  207. }
  208. type = ADRENO_CL_COMPILER_TYPE::DX;
  209. compiler_ver_len = 11;
  210. compiler_major_offset = 3;
  211. }
  212. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  213. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  214. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  215. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  216. return { type, major, minor, patch };
  217. }
  218. // Profiling
  219. struct ProfilingInfo {
  220. std::string op_name;
  221. std::string kernel_name;
  222. cl_kernel kernel;
  223. cl_event evt;
  224. cl_ulong cmd_queued;
  225. cl_ulong cmd_submit;
  226. cl_ulong cmd_start;
  227. cl_ulong cmd_end;
  228. cl_ulong overhead_start;
  229. cl_ulong overhead_end;
  230. // For the times below, see spec for clGetEventProfilingInfo
  231. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  232. cl_ulong cmd_queued_duration_ns;
  233. // The time kernel spent for submission - START - SUBMIT
  234. cl_ulong cmd_submit_duration_ns;
  235. // Kernel execution time in nanoseconds - END - START
  236. cl_ulong cmd_duration_ns;
  237. // The time for the kernel to complete - COMPLETE - END
  238. cl_ulong cmd_complete_duration_ns;
  239. // Total time to finish the kernel - COMPELTE - QUEUED
  240. cl_ulong cmd_total_duration_ns;
  241. // Global and local work sizes.
  242. size_t global_size[3];
  243. size_t local_size[3];
  244. // Op output size.
  245. size_t output_size[4];
  246. };
  247. static void populateProfilingInfo(
  248. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  249. size_t global_size[3], size_t local_size[3],
  250. const ggml_tensor * tensor) {
  251. info.op_name = tensor->name;
  252. info.kernel = kernel;
  253. info.evt = evt;
  254. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  255. info.local_size[0] = 0;
  256. info.local_size[1] = 0;
  257. info.local_size[2] = 0;
  258. info.global_size[0] = 0;
  259. info.global_size[1] = 0;
  260. info.global_size[2] = 0;
  261. if (local_size) {
  262. for (cl_uint i = 0; i < work_dim; ++i) {
  263. info.local_size[i] = local_size[i];
  264. }
  265. }
  266. for (cl_uint i = 0; i < work_dim; ++i) {
  267. info.global_size[i] = global_size[i];
  268. }
  269. info.output_size[0] = tensor->ne[0];
  270. info.output_size[1] = tensor->ne[1];
  271. info.output_size[2] = tensor->ne[2];
  272. info.output_size[3] = tensor->ne[3];
  273. }
  274. struct ggml_backend_opencl_context;
  275. // backend device context
  276. struct ggml_backend_opencl_device_context {
  277. cl_platform_id platform;
  278. std::string platform_name;
  279. cl_device_id device;
  280. std::string device_name;
  281. cl_device_type device_type;
  282. std::string device_version;
  283. // Initialized by ggml_cl2_init().
  284. ggml_backend_opencl_context * backend_ctx = nullptr;
  285. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  286. ggml_backend_buffer_type buffer_type;
  287. cl_context context = nullptr;
  288. };
  289. // backend context
  290. struct ggml_backend_opencl_context {
  291. int ref_count;
  292. cl_device_id device;
  293. std::string device_name;
  294. std::string driver_version;
  295. GPU_FAMILY gpu_family;
  296. ADRENO_GPU_GEN adreno_gen;
  297. cl_int alignment;
  298. size_t max_alloc_size;
  299. size_t max_workgroup_size;
  300. bool fp16_support;
  301. bool has_vector_subgroup_broadcast;
  302. bool disable_fusion;
  303. ggml_cl_compiler_version adreno_cl_compiler_version;
  304. int adreno_wave_size;
  305. cl_bool non_uniform_workgroups;
  306. cl_context context;
  307. cl_command_queue queue;
  308. cl_program program_add;
  309. cl_program program_add_id;
  310. cl_program program_clamp;
  311. cl_program program_cpy;
  312. cl_program program_cvt;
  313. cl_program program_diag_mask_inf;
  314. cl_program program_gelu;
  315. cl_program program_gemv_noshuffle_general;
  316. cl_program program_gemv_noshuffle;
  317. cl_program program_get_rows;
  318. cl_program program_set_rows;
  319. cl_program program_glu;
  320. cl_program program_im2col_f16;
  321. cl_program program_im2col_f32;
  322. cl_program program_mul_mat_Ab_Bi_8x4;
  323. cl_program program_mul_mv_q4_0_f32;
  324. cl_program program_mul_mv_q4_0_f32_v;
  325. cl_program program_mul_mv_q4_0_f32_8x_flat;
  326. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  327. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  328. cl_program program_mul_mv_q6_K;
  329. cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
  330. cl_program program_mul_mv_mxfp4_f32;
  331. cl_program program_mul_mv_mxfp4_f32_flat;
  332. cl_program program_mul_mv_f16_f16;
  333. cl_program program_mul_mv_f16_f32_1row;
  334. cl_program program_mul_mv_f16_f32_l4;
  335. cl_program program_mul_mv_f16_f32;
  336. cl_program program_mul_mv_f32_f32;
  337. cl_program program_mul;
  338. cl_program program_mul_mat_f16_f32_tiled;
  339. cl_program program_mul_mm_f16_f32_kqv;
  340. cl_program program_mul_mm_f16_f32_kq;
  341. cl_program program_div;
  342. cl_program program_sub;
  343. cl_program program_norm;
  344. cl_program program_relu;
  345. cl_program program_rms_norm;
  346. cl_program program_group_norm;
  347. cl_program program_rope;
  348. cl_program program_scale;
  349. cl_program program_silu;
  350. cl_program program_sigmoid;
  351. cl_program program_softmax_f32;
  352. cl_program program_softmax_f16;
  353. cl_program program_softmax_4_f32;
  354. cl_program program_softmax_4_f16;
  355. cl_program program_argsort_f32_i32;
  356. cl_program program_sum_rows_f32;
  357. cl_program program_repeat;
  358. cl_program program_pad;
  359. cl_program program_tanh;
  360. cl_program program_upscale;
  361. cl_program program_concat;
  362. cl_program program_conv_2d_f16;
  363. cl_program program_conv_2d_f32;
  364. cl_program program_conv_2d_f16_f32;
  365. cl_program program_tsembd;
  366. cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
  367. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  368. cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
  369. cl_program program_mul_mv_id_mxfp4_f32;
  370. cl_program program_mul_mv_id_mxfp4_f32_flat;
  371. cl_program program_mul_mm_f32_f32_l4_lm;
  372. cl_program program_mul_mm_f16_f32_l4_lm;
  373. cl_program program_mul_mm_q8_0_f32_l4_lm;
  374. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  375. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  376. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  377. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  378. cl_kernel kernel_add_id;
  379. cl_kernel kernel_scale;
  380. cl_kernel kernel_silu, kernel_silu_4;
  381. cl_kernel kernel_gelu, kernel_gelu_4;
  382. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  383. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  384. cl_kernel kernel_relu;
  385. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  386. cl_kernel kernel_clamp;
  387. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  388. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  389. cl_kernel kernel_norm, kernel_norm_mul_add;
  390. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  391. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  392. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  393. cl_kernel kernel_soft_max, kernel_soft_max_4;
  394. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  395. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  396. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  397. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  398. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  399. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  400. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  401. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  402. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  403. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  404. cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
  405. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  406. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  407. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  408. cl_kernel kernel_mul_mat_f32_f32;
  409. cl_kernel kernel_mul_mat_f16_f16;
  410. cl_kernel kernel_mul_mat_f16_f32_1row;
  411. cl_kernel kernel_mul_mat_f16_f32;
  412. cl_kernel kernel_mul_mat_f16_f32_l4;
  413. cl_kernel kernel_mul_mat_f16_f32_tiled;
  414. cl_kernel kernel_mul_mm_f16_f32_kqv;
  415. cl_kernel kernel_mul_mm_f16_f32_kq;
  416. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  417. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  418. cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
  419. cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
  420. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  421. cl_kernel kernel_convert_block_q4_0_noshuffle;
  422. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  423. cl_kernel kernel_mul_mv_q6_K_f32;
  424. cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
  425. cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
  426. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  427. cl_kernel kernel_argsort_f32_i32;
  428. cl_kernel kernel_sum_rows_f32;
  429. cl_kernel kernel_repeat;
  430. cl_kernel kernel_pad;
  431. cl_kernel kernel_tanh_f32_nd;
  432. cl_kernel kernel_tanh_f16_nd;
  433. cl_kernel kernel_upscale;
  434. cl_kernel kernel_upscale_bilinear;
  435. cl_kernel kernel_concat_f32_contiguous;
  436. cl_kernel kernel_concat_f32_non_contiguous;
  437. cl_kernel kernel_conv_2d_f16;
  438. cl_kernel kernel_conv_2d_f32;
  439. cl_kernel kernel_conv_2d_f16_f32;
  440. cl_kernel kernel_timestep_embedding;
  441. cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
  442. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  443. cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
  444. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  445. cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
  446. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  447. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  448. cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
  449. std::vector<ProfilingInfo> profiling_info;
  450. void write_profiling_info() {
  451. FILE * fperf = fopen("cl_profiling.csv", "w");
  452. if (!fperf) {
  453. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  454. return;
  455. }
  456. // Populate profiling info
  457. for (ProfilingInfo & info : profiling_info) {
  458. cl_ulong cmd_queued;
  459. cl_ulong cmd_submit;
  460. cl_ulong cmd_start;
  461. cl_ulong cmd_end;
  462. cl_ulong cmd_complete;
  463. CL_CHECK(clWaitForEvents(1, &info.evt));
  464. CL_CHECK(clGetEventProfilingInfo(
  465. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  466. CL_CHECK(clGetEventProfilingInfo(
  467. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  468. CL_CHECK(clGetEventProfilingInfo(
  469. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  470. CL_CHECK(clGetEventProfilingInfo(
  471. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  472. CL_CHECK(clGetEventProfilingInfo(
  473. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  474. CL_CHECK(clReleaseEvent(info.evt));
  475. char kernel_name[512];
  476. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  477. sizeof(kernel_name), kernel_name, NULL));
  478. info.kernel_name = kernel_name;
  479. info.cmd_queued = cmd_queued;
  480. info.cmd_submit = cmd_submit;
  481. info.cmd_start = cmd_start;
  482. info.cmd_end = cmd_end;
  483. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  484. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  485. info.cmd_duration_ns = cmd_end - cmd_start;
  486. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  487. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  488. }
  489. // Dump a csv
  490. fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
  491. for (const ProfilingInfo & info : profiling_info) {
  492. fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  493. info.op_name.c_str(), info.kernel_name.c_str(),
  494. info.cmd_duration_ns/1.e6f,
  495. info.global_size[0], info.global_size[1], info.global_size[2],
  496. info.local_size[0], info.local_size[1], info.local_size[2],
  497. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  498. }
  499. fclose(fperf);
  500. // Dump a simple chrome trace
  501. FILE* ftrace = fopen("cl_trace.json", "w");
  502. if (!ftrace) {
  503. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  504. return;
  505. }
  506. fprintf(ftrace, "[\n");
  507. for (const ProfilingInfo & info : profiling_info) {
  508. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  509. info.kernel_name.c_str(), info.cmd_queued/1000);
  510. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  511. info.kernel_name.c_str(), info.cmd_submit/1000);
  512. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  513. info.kernel_name.c_str(), info.cmd_start/1000);
  514. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  515. info.kernel_name.c_str(), info.cmd_end/1000);
  516. }
  517. fclose(ftrace);
  518. }
  519. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  520. size_t workgroup_size = 0;
  521. size_t ret_size = 0;
  522. CL_CHECK(
  523. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  524. sizeof(size_t), &workgroup_size, &ret_size));
  525. GGML_ASSERT(sizeof(size_t) == ret_size);
  526. return workgroup_size;
  527. }
  528. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  529. #ifdef GGML_OPENCL_PROFILING
  530. cl_event evt;
  531. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  532. profiling_info.emplace_back();
  533. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  534. #else
  535. GGML_UNUSED(tensor);
  536. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  537. #endif
  538. }
  539. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  540. // Transpose kernels
  541. cl_program program_transpose;
  542. cl_kernel kernel_transpose_32;
  543. cl_kernel kernel_transpose_32_16;
  544. cl_kernel kernel_transpose_16;
  545. cl_kernel kernel_transpose_16_4x1;
  546. cl_mem A_s_d_max; // max scale buffer size for transpose
  547. cl_mem A_q_d_max; // max weight buffer size for transpose
  548. cl_mem B_d_max; // max activation buffer size for transpose
  549. // Gemm and Gemv related programs, kernels, etc
  550. cl_program program_CL_gemm;
  551. cl_program program_CL_gemv_general;
  552. cl_program program_CL_gemv_4096_1_11008;
  553. cl_program program_CL_gemv_4096_1_4096;
  554. cl_program program_CL_gemv_11008_1_4096;
  555. cl_program program_CL_gemv_32000_1_4096;
  556. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  557. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  558. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  559. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  560. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  561. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  562. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  563. void free() {
  564. ref_count--;
  565. if (ref_count == 0) {
  566. #ifdef GGML_OPENCL_PROFILING
  567. write_profiling_info();
  568. profiling_info.clear();
  569. #endif
  570. }
  571. }
  572. };
  573. // All registered devices with a default device in the front.
  574. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  575. inline std::string read_file(const std::string &path) {
  576. std::ifstream ifs(path);
  577. if (!ifs) {
  578. return "";
  579. }
  580. std::string text;
  581. ifs.seekg(0, std::ios::end);
  582. text.resize(ifs.tellg());
  583. ifs.seekg(0, std::ios::beg);
  584. ifs.read(&text[0], text.size());
  585. return text;
  586. }
  587. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  588. cl_program p;
  589. char *program_log;
  590. size_t program_size;
  591. size_t log_size;
  592. int err;
  593. program_size = strlen(program_buffer);
  594. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  595. if(err < 0) {
  596. GGML_LOG_ERROR("OpenCL error creating program");
  597. exit(1);
  598. }
  599. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  600. if(err < 0) {
  601. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  602. program_log = (char*) malloc(log_size + 1);
  603. program_log[log_size] = '\0';
  604. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  605. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  606. free(program_log);
  607. exit(1);
  608. }
  609. return p;
  610. }
  611. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  612. cl_int err;
  613. // compiler options for general kernels
  614. auto opencl_c_std =
  615. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  616. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  617. " -cl-mad-enable -cl-unsafe-math-optimizations"
  618. " -cl-finite-math-only -cl-fast-relaxed-math";
  619. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  620. // add
  621. {
  622. #ifdef GGML_OPENCL_EMBED_KERNELS
  623. const std::string kernel_src {
  624. #include "add.cl.h"
  625. };
  626. #else
  627. const std::string kernel_src = read_file("add.cl");
  628. #endif
  629. backend_ctx->program_add =
  630. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  631. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  632. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  633. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  634. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  635. GGML_LOG_CONT(".");
  636. }
  637. // add_id
  638. {
  639. #ifdef GGML_OPENCL_EMBED_KERNELS
  640. const std::string kernel_src {
  641. #include "add_id.cl.h"
  642. };
  643. #else
  644. const std::string kernel_src = read_file("add_id.cl");
  645. #endif
  646. backend_ctx->program_add_id =
  647. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  648. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  649. GGML_LOG_CONT(".");
  650. }
  651. // clamp
  652. {
  653. #ifdef GGML_OPENCL_EMBED_KERNELS
  654. const std::string kernel_src {
  655. #include "clamp.cl.h"
  656. };
  657. #else
  658. const std::string kernel_src = read_file("clamp.cl");
  659. #endif
  660. backend_ctx->program_clamp =
  661. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  662. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  663. GGML_LOG_CONT(".");
  664. }
  665. // cpy
  666. {
  667. #ifdef GGML_OPENCL_EMBED_KERNELS
  668. const std::string kernel_src {
  669. #include "cpy.cl.h"
  670. };
  671. #else
  672. const std::string kernel_src = read_file("cpy.cl");
  673. #endif
  674. backend_ctx->program_cpy =
  675. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  676. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  677. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  678. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  679. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  680. GGML_LOG_CONT(".");
  681. }
  682. // cvt
  683. {
  684. #ifdef GGML_OPENCL_EMBED_KERNELS
  685. const std::string kernel_src {
  686. #include "cvt.cl.h"
  687. };
  688. #else
  689. const std::string kernel_src = read_file("cvt.cl");
  690. #endif
  691. backend_ctx->program_cvt =
  692. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  693. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  694. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  695. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  696. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
  697. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
  698. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
  699. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
  700. CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
  701. CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
  702. GGML_LOG_CONT(".");
  703. }
  704. // diag_mask_inf
  705. {
  706. #ifdef GGML_OPENCL_EMBED_KERNELS
  707. const std::string kernel_src {
  708. #include "diag_mask_inf.cl.h"
  709. };
  710. #else
  711. const std::string kernel_src = read_file("diag_mask_inf.cl");
  712. #endif
  713. backend_ctx->program_diag_mask_inf =
  714. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  715. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  716. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  717. GGML_LOG_CONT(".");
  718. }
  719. // gelu
  720. {
  721. #ifdef GGML_OPENCL_EMBED_KERNELS
  722. const std::string kernel_src {
  723. #include "gelu.cl.h"
  724. };
  725. #else
  726. const std::string kernel_src = read_file("gelu.cl");
  727. #endif
  728. backend_ctx->program_gelu =
  729. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  730. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  731. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  732. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  733. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  734. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  735. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  736. GGML_LOG_CONT(".");
  737. }
  738. // glu
  739. {
  740. #ifdef GGML_OPENCL_EMBED_KERNELS
  741. const std::string kernel_src {
  742. #include "glu.cl.h"
  743. };
  744. #else
  745. const std::string kernel_src = read_file("glu.cl");
  746. #endif
  747. backend_ctx->program_glu =
  748. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  749. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  750. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  751. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  752. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  753. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  754. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  755. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  756. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  757. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  758. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  759. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  760. GGML_LOG_CONT(".");
  761. }
  762. // get_rows
  763. {
  764. #ifdef GGML_OPENCL_EMBED_KERNELS
  765. const std::string kernel_src {
  766. #include "get_rows.cl.h"
  767. };
  768. #else
  769. const std::string kernel_src = read_file("get_rows.cl");
  770. #endif
  771. backend_ctx->program_get_rows =
  772. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  773. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  774. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  775. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  776. GGML_LOG_CONT(".");
  777. }
  778. // im2col_f32
  779. {
  780. #ifdef GGML_OPENCL_EMBED_KERNELS
  781. const std::string kernel_src {
  782. #include "im2col_f32.cl.h"
  783. };
  784. #else
  785. const std::string kernel_src = read_file("im2col_f32.cl");
  786. #endif
  787. backend_ctx->program_im2col_f32 =
  788. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  789. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  790. GGML_LOG_CONT(".");
  791. }
  792. // im2col_f16
  793. {
  794. #ifdef GGML_OPENCL_EMBED_KERNELS
  795. const std::string kernel_src {
  796. #include "im2col_f16.cl.h"
  797. };
  798. #else
  799. const std::string kernel_src = read_file("im2col_f16.cl");
  800. #endif
  801. backend_ctx->program_im2col_f16 =
  802. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  803. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  804. GGML_LOG_CONT(".");
  805. }
  806. // mul_mv_q4_0_f32
  807. {
  808. #ifdef GGML_OPENCL_EMBED_KERNELS
  809. const std::string kernel_src {
  810. #include "mul_mv_q4_0_f32.cl.h"
  811. };
  812. #else
  813. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  814. #endif
  815. backend_ctx->program_mul_mv_q4_0_f32 =
  816. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  817. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  818. GGML_LOG_CONT(".");
  819. }
  820. // mul_mv_q4_0_f32_v
  821. {
  822. #ifdef GGML_OPENCL_EMBED_KERNELS
  823. const std::string kernel_src {
  824. #include "mul_mv_q4_0_f32_v.cl.h"
  825. };
  826. #else
  827. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  828. #endif
  829. backend_ctx->program_mul_mv_q4_0_f32_v =
  830. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  831. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  832. GGML_LOG_CONT(".");
  833. }
  834. // mul_mv_q4_0_f32_8x_flat
  835. {
  836. #ifdef GGML_OPENCL_EMBED_KERNELS
  837. const std::string kernel_src {
  838. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  839. };
  840. #else
  841. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  842. #endif
  843. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  844. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  845. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  846. GGML_LOG_CONT(".");
  847. }
  848. // mul_mv_q4_0_f32_1d_8x_flat
  849. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  850. // those compiler versions since it is anyway not used for Adreno.
  851. if (backend_ctx->gpu_family != ADRENO ||
  852. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  853. backend_ctx->adreno_cl_compiler_version.type == DX) {
  854. #ifdef GGML_OPENCL_EMBED_KERNELS
  855. const std::string kernel_src {
  856. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  857. };
  858. #else
  859. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  860. #endif
  861. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  862. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  863. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  864. GGML_LOG_CONT(".");
  865. }
  866. // mul_mv_q4_0_f32_1d_16x_flat
  867. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  868. // those compiler versions since it is anyway not used for Adreno.
  869. if (backend_ctx->gpu_family != ADRENO ||
  870. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  871. backend_ctx->adreno_cl_compiler_version.type == DX) {
  872. #ifdef GGML_OPENCL_EMBED_KERNELS
  873. const std::string kernel_src {
  874. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  875. };
  876. #else
  877. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  878. #endif
  879. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  880. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  881. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  882. GGML_LOG_CONT(".");
  883. }
  884. // mul_mv_q6_k
  885. {
  886. #ifdef GGML_OPENCL_EMBED_KERNELS
  887. const std::string kernel_src {
  888. #include "mul_mv_q6_k.cl.h"
  889. };
  890. #else
  891. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  892. #endif
  893. backend_ctx->program_mul_mv_q6_K =
  894. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  895. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  896. GGML_LOG_CONT(".");
  897. }
  898. // mul_mv_q8_0_f32
  899. {
  900. #ifdef GGML_OPENCL_EMBED_KERNELS
  901. const std::string kernel_src {
  902. #include "mul_mv_q8_0_f32.cl.h"
  903. };
  904. #else
  905. const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
  906. #endif
  907. backend_ctx->program_mul_mv_q8_0_f32 =
  908. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  909. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
  910. GGML_LOG_CONT(".");
  911. }
  912. // mul_mv_q8_0_f32_flat
  913. {
  914. #ifdef GGML_OPENCL_EMBED_KERNELS
  915. const std::string kernel_src {
  916. #include "mul_mv_q8_0_f32_flat.cl.h"
  917. };
  918. #else
  919. const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
  920. #endif
  921. backend_ctx->program_mul_mv_q8_0_f32_flat =
  922. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  923. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
  924. GGML_LOG_CONT(".");
  925. }
  926. // mul_mv_mxfp4_f32
  927. {
  928. #ifdef GGML_OPENCL_EMBED_KERNELS
  929. const std::string kernel_src {
  930. #include "mul_mv_mxfp4_f32.cl.h"
  931. };
  932. #else
  933. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  934. #endif
  935. backend_ctx->program_mul_mv_mxfp4_f32 =
  936. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  937. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  938. GGML_LOG_CONT(".");
  939. }
  940. // mul_mv_mxfp4_f32_flat
  941. {
  942. #ifdef GGML_OPENCL_EMBED_KERNELS
  943. const std::string kernel_src {
  944. #include "mul_mv_mxfp4_f32_flat.cl.h"
  945. };
  946. #else
  947. const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
  948. #endif
  949. backend_ctx->program_mul_mv_mxfp4_f32_flat =
  950. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  951. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
  952. GGML_LOG_CONT(".");
  953. }
  954. // mul_mv_f16_f16
  955. {
  956. #ifdef GGML_OPENCL_EMBED_KERNELS
  957. const std::string kernel_src {
  958. #include "mul_mv_f16_f16.cl.h"
  959. };
  960. #else
  961. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  962. #endif
  963. backend_ctx->program_mul_mv_f16_f16 =
  964. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  965. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  966. GGML_LOG_CONT(".");
  967. }
  968. // mul_mv_f16_f32_1row
  969. {
  970. #ifdef GGML_OPENCL_EMBED_KERNELS
  971. const std::string kernel_src {
  972. #include "mul_mv_f16_f32_1row.cl.h"
  973. };
  974. #else
  975. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  976. #endif
  977. backend_ctx->program_mul_mv_f16_f32_1row =
  978. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  979. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  980. GGML_LOG_CONT(".");
  981. }
  982. // mul_mv_f16_f32_l4
  983. {
  984. #ifdef GGML_OPENCL_EMBED_KERNELS
  985. const std::string kernel_src {
  986. #include "mul_mv_f16_f32_l4.cl.h"
  987. };
  988. #else
  989. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  990. #endif
  991. backend_ctx->program_mul_mv_f16_f32_l4 =
  992. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  993. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  994. GGML_LOG_CONT(".");
  995. }
  996. // mul_mv_f16_f32
  997. {
  998. #ifdef GGML_OPENCL_EMBED_KERNELS
  999. const std::string kernel_src {
  1000. #include "mul_mv_f16_f32.cl.h"
  1001. };
  1002. #else
  1003. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  1004. #endif
  1005. backend_ctx->program_mul_mv_f16_f32 =
  1006. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1007. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  1008. GGML_LOG_CONT(".");
  1009. }
  1010. // mul_mv_f32_f32
  1011. {
  1012. #ifdef GGML_OPENCL_EMBED_KERNELS
  1013. const std::string kernel_src {
  1014. #include "mul_mv_f32_f32.cl.h"
  1015. };
  1016. #else
  1017. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  1018. #endif
  1019. backend_ctx->program_mul_mv_f32_f32 =
  1020. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1021. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  1022. GGML_LOG_CONT(".");
  1023. }
  1024. // mul_mat_f16_f32_tiled
  1025. {
  1026. #ifdef GGML_OPENCL_EMBED_KERNELS
  1027. const std::string kernel_src {
  1028. #include "mul_mat_f16_f32.cl.h"
  1029. };
  1030. #else
  1031. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  1032. #endif
  1033. backend_ctx->program_mul_mat_f16_f32_tiled =
  1034. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1035. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  1036. GGML_LOG_CONT(".");
  1037. }
  1038. // mul_mm_f32_f32_l4_lm
  1039. {
  1040. #ifdef GGML_OPENCL_EMBED_KERNELS
  1041. const std::string kernel_src {
  1042. #include "mul_mm_f32_f32_l4_lm.cl.h"
  1043. };
  1044. #else
  1045. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  1046. #endif
  1047. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  1048. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1049. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  1050. GGML_LOG_CONT(".");
  1051. }
  1052. // mul_mm_f16_f32_l4_lm
  1053. {
  1054. #ifdef GGML_OPENCL_EMBED_KERNELS
  1055. const std::string kernel_src {
  1056. #include "mul_mm_f16_f32_l4_lm.cl.h"
  1057. };
  1058. #else
  1059. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  1060. #endif
  1061. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  1062. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1063. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  1064. GGML_LOG_CONT(".");
  1065. }
  1066. // mul_mm_q8_0_f32_l4_lm
  1067. {
  1068. #ifdef GGML_OPENCL_EMBED_KERNELS
  1069. const std::string kernel_src {
  1070. #include "mul_mm_q8_0_f32_l4_lm.cl.h"
  1071. };
  1072. #else
  1073. const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
  1074. #endif
  1075. backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
  1076. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1077. CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
  1078. GGML_LOG_CONT(".");
  1079. }
  1080. // mul_mm_f16_f32_kq_kqv
  1081. {
  1082. #ifdef GGML_OPENCL_EMBED_KERNELS
  1083. const std::string kernel_src {
  1084. #include "mul_mm_f16_f32_kq_kqv.cl.h"
  1085. };
  1086. #else
  1087. const std::string kernel_src = read_file("mul_mm_f16_f32_kq_kqv.cl");
  1088. #endif
  1089. backend_ctx->program_mul_mm_f16_f32_kqv =
  1090. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts+" -DKQV ");
  1091. backend_ctx->program_mul_mm_f16_f32_kq =
  1092. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1093. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kqv = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kqv, "mul_mm_f16_f32_kqv", &err), err));
  1094. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_kq = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_kq, "mul_mm_f16_f32_kq", &err), err));
  1095. GGML_LOG_CONT(".");
  1096. }
  1097. // mul
  1098. {
  1099. #ifdef GGML_OPENCL_EMBED_KERNELS
  1100. const std::string kernel_src {
  1101. #include "mul.cl.h"
  1102. };
  1103. #else
  1104. const std::string kernel_src = read_file("mul.cl");
  1105. #endif
  1106. backend_ctx->program_mul =
  1107. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1108. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  1109. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  1110. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  1111. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  1112. GGML_LOG_CONT(".");
  1113. }
  1114. // norm
  1115. {
  1116. #ifdef GGML_OPENCL_EMBED_KERNELS
  1117. const std::string kernel_src {
  1118. #include "norm.cl.h"
  1119. };
  1120. #else
  1121. const std::string kernel_src = read_file("norm.cl");
  1122. #endif
  1123. backend_ctx->program_norm =
  1124. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1125. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1126. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1127. GGML_LOG_CONT(".");
  1128. }
  1129. // relu
  1130. {
  1131. #ifdef GGML_OPENCL_EMBED_KERNELS
  1132. const std::string kernel_src {
  1133. #include "relu.cl.h"
  1134. };
  1135. #else
  1136. const std::string kernel_src = read_file("relu.cl");
  1137. #endif
  1138. backend_ctx->program_relu =
  1139. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1140. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1141. GGML_LOG_CONT(".");
  1142. }
  1143. // rms_norm
  1144. {
  1145. #ifdef GGML_OPENCL_EMBED_KERNELS
  1146. const std::string kernel_src {
  1147. #include "rms_norm.cl.h"
  1148. };
  1149. #else
  1150. const std::string kernel_src = read_file("rms_norm.cl");
  1151. #endif
  1152. backend_ctx->program_rms_norm =
  1153. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1154. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1155. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1156. GGML_LOG_CONT(".");
  1157. }
  1158. // rope
  1159. {
  1160. #ifdef GGML_OPENCL_EMBED_KERNELS
  1161. const std::string kernel_src {
  1162. #include "rope.cl.h"
  1163. };
  1164. #else
  1165. const std::string kernel_src = read_file("rope.cl");
  1166. #endif
  1167. backend_ctx->program_rope =
  1168. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1169. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1170. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1171. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1172. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1173. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1174. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1175. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1176. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1177. GGML_LOG_CONT(".");
  1178. }
  1179. // scale
  1180. {
  1181. #ifdef GGML_OPENCL_EMBED_KERNELS
  1182. const std::string kernel_src {
  1183. #include "scale.cl.h"
  1184. };
  1185. #else
  1186. const std::string kernel_src = read_file("scale.cl");
  1187. #endif
  1188. backend_ctx->program_scale =
  1189. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1190. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1191. GGML_LOG_CONT(".");
  1192. }
  1193. // silu
  1194. {
  1195. #ifdef GGML_OPENCL_EMBED_KERNELS
  1196. const std::string kernel_src {
  1197. #include "silu.cl.h"
  1198. };
  1199. #else
  1200. const std::string kernel_src = read_file("silu.cl");
  1201. #endif
  1202. backend_ctx->program_silu =
  1203. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1204. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1205. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1206. GGML_LOG_CONT(".");
  1207. }
  1208. // softmax_f32
  1209. {
  1210. #ifdef GGML_OPENCL_EMBED_KERNELS
  1211. const std::string kernel_src {
  1212. #include "softmax_f32.cl.h"
  1213. };
  1214. #else
  1215. const std::string kernel_src = read_file("softmax_f32.cl");
  1216. #endif
  1217. backend_ctx->program_softmax_f32 =
  1218. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1219. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1220. GGML_LOG_CONT(".");
  1221. }
  1222. // softmax_f16
  1223. {
  1224. #ifdef GGML_OPENCL_EMBED_KERNELS
  1225. const std::string kernel_src {
  1226. #include "softmax_f16.cl.h"
  1227. };
  1228. #else
  1229. const std::string kernel_src = read_file("softmax_f16.cl");
  1230. #endif
  1231. backend_ctx->program_softmax_f16 =
  1232. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1233. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1234. GGML_LOG_CONT(".");
  1235. }
  1236. // softmax_4_f32
  1237. {
  1238. #ifdef GGML_OPENCL_EMBED_KERNELS
  1239. const std::string kernel_src {
  1240. #include "softmax_4_f32.cl.h"
  1241. };
  1242. #else
  1243. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1244. #endif
  1245. backend_ctx->program_softmax_4_f32 =
  1246. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1247. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1248. GGML_LOG_CONT(".");
  1249. }
  1250. // softmax_4_f16
  1251. {
  1252. #ifdef GGML_OPENCL_EMBED_KERNELS
  1253. const std::string kernel_src {
  1254. #include "softmax_4_f16.cl.h"
  1255. };
  1256. #else
  1257. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1258. #endif
  1259. backend_ctx->program_softmax_4_f16 =
  1260. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1261. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1262. GGML_LOG_CONT(".");
  1263. }
  1264. // flash_attn
  1265. {
  1266. #ifdef GGML_OPENCL_EMBED_KERNELS
  1267. const std::string kernel_src_f16 {
  1268. #include "flash_attn_f16.cl.h"
  1269. };
  1270. const std::string kernel_src_f32 {
  1271. #include "flash_attn_f32.cl.h"
  1272. };
  1273. const std::string kernel_src_f32_f16 {
  1274. #include "flash_attn_f32_f16.cl.h"
  1275. };
  1276. #else
  1277. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1278. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1279. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1280. #endif
  1281. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1282. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1283. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1284. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1285. {192, 192, 16, 16}, {256, 256, 16, 16},
  1286. };
  1287. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1288. const int dk = fa_dims[i].dk;
  1289. const int dv = fa_dims[i].dv;
  1290. const int bm = fa_dims[i].bm;
  1291. const int bn = fa_dims[i].bn;
  1292. std::string OPTS = compile_opts +
  1293. " -D DK=" + std::to_string(dk) +
  1294. " -D DV=" + std::to_string(dv) +
  1295. " -D BLOCK_M=" + std::to_string(bm) +
  1296. " -D BLOCK_N=" + std::to_string(bn);
  1297. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1298. cl_kernel k_f16, k_f16_q1;
  1299. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1300. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1301. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1302. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1303. CL_CHECK(clReleaseProgram(prog_f16));
  1304. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1305. cl_kernel k_f32, k_f32_q1;
  1306. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1307. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1308. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1309. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1310. CL_CHECK(clReleaseProgram(prog_f32));
  1311. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1312. cl_kernel k_f32_f16, k_f32_f16_q1;
  1313. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1314. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1315. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1316. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1317. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1318. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1319. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1320. }
  1321. GGML_LOG_CONT(".");
  1322. }
  1323. }
  1324. // argsort
  1325. {
  1326. #ifdef GGML_OPENCL_EMBED_KERNELS
  1327. const std::string kernel_src {
  1328. #include "argsort.cl.h"
  1329. };
  1330. #else
  1331. const std::string kernel_src = read_file("argsort.cl");
  1332. #endif
  1333. backend_ctx->program_argsort_f32_i32 =
  1334. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1335. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1336. GGML_LOG_CONT(".");
  1337. }
  1338. // div
  1339. {
  1340. #ifdef GGML_OPENCL_EMBED_KERNELS
  1341. const std::string kernel_src {
  1342. #include "div.cl.h"
  1343. };
  1344. #else
  1345. const std::string kernel_src = read_file("div.cl");
  1346. #endif
  1347. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1348. " -cl-mad-enable -cl-finite-math-only ";
  1349. backend_ctx->program_div =
  1350. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1351. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1352. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1353. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1354. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1355. GGML_LOG_CONT(".");
  1356. }
  1357. // sub
  1358. {
  1359. #ifdef GGML_OPENCL_EMBED_KERNELS
  1360. const std::string kernel_src {
  1361. #include "sub.cl.h"
  1362. };
  1363. #else
  1364. const std::string kernel_src = read_file("sub.cl");
  1365. #endif
  1366. backend_ctx->program_sub =
  1367. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1368. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1369. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1370. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1371. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1372. GGML_LOG_CONT(".");
  1373. }
  1374. // sum_rows
  1375. {
  1376. #ifdef GGML_OPENCL_EMBED_KERNELS
  1377. const std::string kernel_src {
  1378. #include "sum_rows.cl.h"
  1379. };
  1380. #else
  1381. const std::string kernel_src = read_file("sum_rows.cl");
  1382. #endif
  1383. backend_ctx->program_sum_rows_f32 =
  1384. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1385. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1386. GGML_LOG_CONT(".");
  1387. }
  1388. // sigmoid
  1389. {
  1390. #ifdef GGML_OPENCL_EMBED_KERNELS
  1391. const std::string kernel_src {
  1392. #include "sigmoid.cl.h"
  1393. };
  1394. #else
  1395. const std::string kernel_src = read_file("sigmoid.cl");
  1396. #endif
  1397. backend_ctx->program_sigmoid =
  1398. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1399. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1400. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1401. GGML_LOG_CONT(".");
  1402. }
  1403. // group_norm
  1404. {
  1405. #ifdef GGML_OPENCL_EMBED_KERNELS
  1406. const std::string kernel_src {
  1407. #include "group_norm.cl.h"
  1408. };
  1409. #else
  1410. const std::string kernel_src = read_file("group_norm.cl");
  1411. #endif
  1412. backend_ctx->program_group_norm =
  1413. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1414. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1415. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1416. GGML_LOG_CONT(".");
  1417. }
  1418. // repeat
  1419. {
  1420. #ifdef GGML_OPENCL_EMBED_KERNELS
  1421. const std::string kernel_src {
  1422. #include "repeat.cl.h"
  1423. };
  1424. #else
  1425. const std::string kernel_src = read_file("repeat.cl");
  1426. #endif
  1427. if (!kernel_src.empty()) {
  1428. backend_ctx->program_repeat =
  1429. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1430. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1431. GGML_LOG_CONT(".");
  1432. } else {
  1433. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1434. backend_ctx->program_repeat = nullptr;
  1435. backend_ctx->kernel_repeat = nullptr;
  1436. }
  1437. }
  1438. // pad
  1439. {
  1440. #ifdef GGML_OPENCL_EMBED_KERNELS
  1441. const std::string kernel_src {
  1442. #include "pad.cl.h"
  1443. };
  1444. #else
  1445. const std::string kernel_src = read_file("pad.cl");
  1446. #endif
  1447. if (!kernel_src.empty()) {
  1448. backend_ctx->program_pad =
  1449. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1450. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1451. GGML_LOG_CONT(".");
  1452. } else {
  1453. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1454. backend_ctx->program_pad = nullptr;
  1455. backend_ctx->kernel_pad = nullptr;
  1456. }
  1457. }
  1458. // tanh
  1459. {
  1460. #ifdef GGML_OPENCL_EMBED_KERNELS
  1461. const std::string kernel_src {
  1462. #include "tanh.cl.h"
  1463. };
  1464. #else
  1465. const std::string kernel_src = read_file("tanh.cl");
  1466. #endif
  1467. if (!kernel_src.empty()) {
  1468. backend_ctx->program_tanh =
  1469. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1470. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1471. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1472. GGML_LOG_CONT(".");
  1473. } else {
  1474. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1475. backend_ctx->program_tanh = nullptr;
  1476. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1477. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1478. }
  1479. }
  1480. // upscale
  1481. {
  1482. #ifdef GGML_OPENCL_EMBED_KERNELS
  1483. const std::string kernel_src {
  1484. #include "upscale.cl.h"
  1485. };
  1486. #else
  1487. const std::string kernel_src = read_file("upscale.cl");
  1488. #endif
  1489. if (!kernel_src.empty()) {
  1490. backend_ctx->program_upscale =
  1491. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1492. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1493. if (backend_ctx->program_upscale) {
  1494. cl_int err_bilinear;
  1495. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1496. if (err_bilinear != CL_SUCCESS) {
  1497. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1498. backend_ctx->kernel_upscale_bilinear = nullptr;
  1499. }
  1500. } else {
  1501. backend_ctx->kernel_upscale_bilinear = nullptr;
  1502. }
  1503. GGML_LOG_CONT(".");
  1504. } else {
  1505. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1506. backend_ctx->program_upscale = nullptr;
  1507. backend_ctx->kernel_upscale = nullptr;
  1508. backend_ctx->kernel_upscale_bilinear = nullptr;
  1509. }
  1510. }
  1511. // concat
  1512. {
  1513. #ifdef GGML_OPENCL_EMBED_KERNELS
  1514. const std::string kernel_src {
  1515. #include "concat.cl.h"
  1516. };
  1517. #else
  1518. const std::string kernel_src = read_file("concat.cl");
  1519. #endif
  1520. if (!kernel_src.empty()) {
  1521. backend_ctx->program_concat =
  1522. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1523. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1524. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1525. GGML_LOG_CONT(".");
  1526. } else {
  1527. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1528. backend_ctx->program_concat = nullptr;
  1529. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1530. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1531. }
  1532. }
  1533. // timestep_embedding
  1534. {
  1535. #ifdef GGML_OPENCL_EMBED_KERNELS
  1536. const std::string kernel_src {
  1537. #include "tsembd.cl.h"
  1538. };
  1539. #else
  1540. const std::string kernel_src = read_file("tsembd.cl");
  1541. #endif
  1542. if (!kernel_src.empty()) {
  1543. backend_ctx->program_tsembd =
  1544. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1545. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1546. GGML_LOG_CONT(".");
  1547. } else {
  1548. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1549. backend_ctx->program_tsembd = nullptr;
  1550. backend_ctx->kernel_timestep_embedding = nullptr;
  1551. }
  1552. }
  1553. // set_rows
  1554. {
  1555. #ifdef GGML_OPENCL_EMBED_KERNELS
  1556. const std::string kernel_src {
  1557. #include "set_rows.cl.h"
  1558. };
  1559. #else
  1560. const std::string kernel_src = read_file("set_rows.cl");
  1561. #endif
  1562. backend_ctx->program_set_rows =
  1563. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1564. CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
  1565. CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
  1566. CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
  1567. CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
  1568. GGML_LOG_CONT(".");
  1569. }
  1570. // conv2d
  1571. {
  1572. #ifdef GGML_OPENCL_EMBED_KERNELS
  1573. const std::string kernel_src {
  1574. #include "conv2d.cl.h"
  1575. };
  1576. const std::string kernel_src_f16_f32 {
  1577. #include "conv2d_f16_f32.cl.h"
  1578. };
  1579. #else
  1580. const std::string kernel_src = read_file("conv2d.cl");
  1581. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1582. #endif
  1583. if (!kernel_src.empty()) {
  1584. backend_ctx->program_conv_2d_f16 =
  1585. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1586. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1587. GGML_LOG_CONT(".");
  1588. backend_ctx->program_conv_2d_f32 =
  1589. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1590. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1591. GGML_LOG_CONT(".");
  1592. } else {
  1593. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1594. backend_ctx->program_conv_2d_f16 = nullptr;
  1595. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1596. backend_ctx->program_conv_2d_f32 = nullptr;
  1597. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1598. }
  1599. if (!kernel_src_f16_f32.empty()) {
  1600. backend_ctx->program_conv_2d_f16_f32 =
  1601. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1602. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1603. GGML_LOG_CONT(".");
  1604. } else {
  1605. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1606. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1607. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1608. }
  1609. }
  1610. // mul_mv_id_q4_0_f32_8x_flat
  1611. {
  1612. #ifdef GGML_OPENCL_EMBED_KERNELS
  1613. const std::string kernel_src {
  1614. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1615. };
  1616. #else
  1617. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1618. #endif
  1619. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1620. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1621. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1622. GGML_LOG_CONT(".");
  1623. }
  1624. // mul_mv_id_q8_0_f32
  1625. {
  1626. #ifdef GGML_OPENCL_EMBED_KERNELS
  1627. const std::string kernel_src {
  1628. #include "mul_mv_id_q8_0_f32.cl.h"
  1629. };
  1630. #else
  1631. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
  1632. #endif
  1633. backend_ctx->program_mul_mv_id_q8_0_f32 =
  1634. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1635. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
  1636. GGML_LOG_CONT(".");
  1637. }
  1638. // mul_mv_id_q8_0_f32_flat
  1639. {
  1640. #ifdef GGML_OPENCL_EMBED_KERNELS
  1641. const std::string kernel_src {
  1642. #include "mul_mv_id_q8_0_f32_flat.cl.h"
  1643. };
  1644. #else
  1645. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
  1646. #endif
  1647. backend_ctx->program_mul_mv_id_q8_0_f32_flat =
  1648. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1649. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
  1650. GGML_LOG_CONT(".");
  1651. }
  1652. // mul_mv_id_mxfp4_f32
  1653. {
  1654. #ifdef GGML_OPENCL_EMBED_KERNELS
  1655. const std::string kernel_src {
  1656. #include "mul_mv_id_mxfp4_f32.cl.h"
  1657. };
  1658. #else
  1659. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1660. #endif
  1661. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1662. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1663. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1664. GGML_LOG_CONT(".");
  1665. }
  1666. // mul_mv_id_mxfp4_f32_flat
  1667. {
  1668. #ifdef GGML_OPENCL_EMBED_KERNELS
  1669. const std::string kernel_src {
  1670. #include "mul_mv_id_mxfp4_f32_flat.cl.h"
  1671. };
  1672. #else
  1673. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
  1674. #endif
  1675. backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
  1676. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1677. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
  1678. GGML_LOG_CONT(".");
  1679. }
  1680. // Adreno kernels
  1681. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1682. // transpose
  1683. {
  1684. #ifdef GGML_OPENCL_EMBED_KERNELS
  1685. const std::string kernel_src {
  1686. #include "transpose.cl.h"
  1687. };
  1688. #else
  1689. const std::string kernel_src = read_file("transpose.cl");
  1690. #endif
  1691. backend_ctx->program_transpose =
  1692. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1693. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1694. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1695. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1696. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1697. GGML_LOG_CONT(".");
  1698. }
  1699. // gemv_noshuffle_general
  1700. {
  1701. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1702. " -cl-mad-enable "
  1703. " -DSIMDGROUP_WIDTH=" +
  1704. std::to_string(backend_ctx->adreno_wave_size);
  1705. if (backend_ctx->has_vector_subgroup_broadcast) {
  1706. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1707. }
  1708. #ifdef GGML_OPENCL_EMBED_KERNELS
  1709. const std::string kernel_src_CL_gemv_general {
  1710. #include "gemv_noshuffle_general.cl.h"
  1711. };
  1712. #else
  1713. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1714. #endif
  1715. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1716. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1717. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1718. GGML_LOG_CONT(".");
  1719. }
  1720. // gemv_noshuffle
  1721. {
  1722. // Gemv 2048, 16384
  1723. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1724. " -cl-mad-enable "
  1725. " -DLINE_STRIDE_A=2048 "
  1726. " -DBLOCK_STRIDE_A=16384 "
  1727. " -DSIMDGROUP_WIDTH=" +
  1728. std::to_string(backend_ctx->adreno_wave_size);
  1729. if (backend_ctx->has_vector_subgroup_broadcast) {
  1730. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1731. }
  1732. #ifdef GGML_OPENCL_EMBED_KERNELS
  1733. const std::string kernel_src_CL_gemv {
  1734. #include "gemv_noshuffle.cl.h"
  1735. };
  1736. #else
  1737. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1738. #endif
  1739. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1740. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1741. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1742. GGML_LOG_CONT(".");
  1743. // Gemv 2048, 16384
  1744. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1745. " -cl-mad-enable "
  1746. " -DLINE_STRIDE_A=2048 "
  1747. " -DBLOCK_STRIDE_A=16384 "
  1748. " -DSIMDGROUP_WIDTH=" +
  1749. std::to_string(backend_ctx->adreno_wave_size);
  1750. if (backend_ctx->has_vector_subgroup_broadcast) {
  1751. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1752. }
  1753. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1754. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1755. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1756. GGML_LOG_CONT(".");
  1757. // Gemv 5504, 44032
  1758. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1759. " -cl-mad-enable "
  1760. " -DLINE_STRIDE_A=5504 "
  1761. " -DBLOCK_STRIDE_A=44032 "
  1762. " -DSIMDGROUP_WIDTH=" +
  1763. std::to_string(backend_ctx->adreno_wave_size);
  1764. if (backend_ctx->has_vector_subgroup_broadcast) {
  1765. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1766. }
  1767. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1768. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1769. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1770. GGML_LOG_CONT(".");
  1771. // Gemv 16000, 128000
  1772. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1773. " -cl-mad-enable "
  1774. " -DLINE_STRIDE_A=16000 "
  1775. " -DBLOCK_STRIDE_A=128000 "
  1776. " -DSIMDGROUP_WIDTH=" +
  1777. std::to_string(backend_ctx->adreno_wave_size);
  1778. if (backend_ctx->has_vector_subgroup_broadcast) {
  1779. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1780. }
  1781. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1782. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1783. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1784. GGML_LOG_CONT(".");
  1785. }
  1786. // mul_mat_Ab_Bi_8x4
  1787. {
  1788. #ifdef GGML_OPENCL_EMBED_KERNELS
  1789. const std::string kernel_src_CL_gemm {
  1790. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1791. };
  1792. #else
  1793. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1794. #endif
  1795. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1796. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1797. GGML_LOG_CONT(".");
  1798. }
  1799. std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1800. " -cl-mad-enable "
  1801. " -cl-fast-relaxed-math";
  1802. // gemv_moe_mxfp4_f32
  1803. {
  1804. #ifdef GGML_OPENCL_EMBED_KERNELS
  1805. const std::string kernel_src {
  1806. #include "gemv_moe_mxfp4_f32.cl.h"
  1807. };
  1808. #else
  1809. const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
  1810. #endif
  1811. backend_ctx->program_gemv_moe_mxfp4_f32 =
  1812. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1813. CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
  1814. GGML_LOG_CONT(".");
  1815. }
  1816. // gemm_moe_mxfp4_f32
  1817. {
  1818. #ifdef GGML_OPENCL_EMBED_KERNELS
  1819. const std::string kernel_src {
  1820. #include "gemm_moe_mxfp4_f32.cl.h"
  1821. };
  1822. #else
  1823. const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
  1824. #endif
  1825. backend_ctx->program_gemm_moe_mxfp4_f32 =
  1826. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1827. CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
  1828. GGML_LOG_CONT(".");
  1829. }
  1830. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1831. GGML_LOG_CONT("\n");
  1832. }
  1833. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1834. // XXX static bool initialized = false;
  1835. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1836. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1837. namespace /* anonymous */ {
  1838. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1839. }
  1840. // Look for available and suitable devices.
  1841. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1842. std::vector<ggml_backend_device> found_devices;
  1843. #ifdef GGML_OPENCL_PROFILING
  1844. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1845. #endif
  1846. struct cl_device;
  1847. struct cl_platform {
  1848. cl_platform_id id;
  1849. unsigned number;
  1850. char name[128];
  1851. char vendor[128];
  1852. struct cl_device * devices;
  1853. unsigned n_devices;
  1854. struct cl_device * default_device;
  1855. };
  1856. struct cl_device {
  1857. struct cl_platform * platform;
  1858. cl_device_id id;
  1859. unsigned number;
  1860. cl_device_type type;
  1861. char name[128];
  1862. char version[128];
  1863. };
  1864. enum { NPLAT = 16, NDEV = 16 };
  1865. struct cl_platform platforms[NPLAT];
  1866. unsigned n_platforms = 0;
  1867. struct cl_device devices[NDEV];
  1868. unsigned n_devices = 0;
  1869. struct cl_device * default_device = NULL;
  1870. unsigned default_platform_number = 0;
  1871. cl_platform_id platform_ids[NPLAT];
  1872. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1873. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1874. return found_devices;
  1875. }
  1876. for (unsigned i = 0; i < n_platforms; i++) {
  1877. struct cl_platform * p = &platforms[i];
  1878. p->number = i;
  1879. p->id = platform_ids[i];
  1880. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1881. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1882. cl_device_id device_ids[NDEV];
  1883. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1884. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1885. p->n_devices = 0;
  1886. } else {
  1887. CL_CHECK(clGetDeviceIDsError);
  1888. }
  1889. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1890. p->default_device = NULL;
  1891. for (unsigned j = 0; j < p->n_devices; j++) {
  1892. struct cl_device * d = &devices[n_devices];
  1893. d->number = n_devices++;
  1894. d->id = device_ids[j];
  1895. d->platform = p;
  1896. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1897. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1898. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1899. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1900. p->default_device = d;
  1901. }
  1902. }
  1903. if (default_device == NULL && p->default_device != NULL) {
  1904. default_device = p->default_device;
  1905. default_platform_number = i;
  1906. }
  1907. }
  1908. if (n_devices == 0) {
  1909. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1910. return found_devices;
  1911. }
  1912. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1913. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1914. int user_platform_number = -1;
  1915. int user_device_number = -1;
  1916. cl_device * candidate_devices = nullptr;
  1917. unsigned n_candidate_devices = 0;
  1918. unsigned n;
  1919. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1920. user_platform_number = (int)n;
  1921. }
  1922. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1923. user_device_number = (int)n;
  1924. }
  1925. if (user_platform_number != -1 && user_device_number != -1) {
  1926. cl_platform* platform = &platforms[user_platform_number];
  1927. if ((unsigned)user_device_number >= platform->n_devices) {
  1928. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1929. exit(1);
  1930. }
  1931. default_device = &platform->devices[user_device_number];
  1932. candidate_devices = platform->devices;
  1933. n_candidate_devices = platform->n_devices;
  1934. } else {
  1935. // Choose a platform by matching a substring.
  1936. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1937. for (unsigned i = 0; i < n_platforms; i++) {
  1938. struct cl_platform * p = &platforms[i];
  1939. if (strstr(p->name, user_platform_string) != NULL ||
  1940. strstr(p->vendor, user_platform_string) != NULL) {
  1941. user_platform_number = (int)i;
  1942. break;
  1943. }
  1944. }
  1945. if (user_platform_number == -1) {
  1946. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1947. exit(1);
  1948. }
  1949. }
  1950. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1951. struct cl_platform * p = &platforms[platform_idx];
  1952. candidate_devices = p->devices;
  1953. n_candidate_devices = p->n_devices;
  1954. default_device = p->default_device;
  1955. if (n_candidate_devices == 0) {
  1956. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1957. exit(1);
  1958. }
  1959. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1960. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1961. struct cl_device * d = &candidate_devices[i];
  1962. if (strstr(d->name, user_device_string) != NULL) {
  1963. user_device_number = d->number;
  1964. break;
  1965. }
  1966. }
  1967. if (user_device_number == -1) {
  1968. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1969. exit(1);
  1970. }
  1971. }
  1972. if (user_device_number != -1) {
  1973. candidate_devices = &devices[user_device_number];
  1974. n_candidate_devices = 1;
  1975. default_device = &candidate_devices[0];
  1976. }
  1977. GGML_ASSERT(n_candidate_devices > 0);
  1978. if (default_device == NULL) {
  1979. default_device = &candidate_devices[0];
  1980. }
  1981. }
  1982. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1983. // Put the default device in front.
  1984. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1985. if (&candidate_devices[i] == default_device) {
  1986. std::swap(candidate_devices[0], candidate_devices[i]);
  1987. default_device = &candidate_devices[0];
  1988. break;
  1989. }
  1990. }
  1991. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1992. std::vector<cl_device_id> device_ids;
  1993. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1994. device_ids.push_back(dev->id);
  1995. }
  1996. cl_int err;
  1997. cl_context shared_context;
  1998. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1999. CL_CHECK(
  2000. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  2001. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  2002. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  2003. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  2004. /*.platform =*/dev->platform->id,
  2005. /*.platform_nane =*/dev->platform->name,
  2006. /*.device =*/dev->id,
  2007. /*.device_name =*/dev->name,
  2008. /*.device_type =*/dev->type,
  2009. /*.device_version =*/dev->version,
  2010. /*.backend_ctx =*/nullptr,
  2011. /*.buffer_type =*/{},
  2012. /*.context =*/shared_context,
  2013. });
  2014. found_devices.push_back(ggml_backend_device{
  2015. /* .iface = */ ggml_backend_opencl_device_i,
  2016. /* .reg = */ reg,
  2017. /* .context = */ dev_ctx.get(),
  2018. });
  2019. if (!ggml_cl2_init(&found_devices.back())) {
  2020. found_devices.pop_back();
  2021. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  2022. continue;
  2023. }
  2024. dev_ctx.release();
  2025. }
  2026. if (found_devices.size()) {
  2027. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  2028. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  2029. dev_ctx->device_version.c_str());
  2030. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  2031. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  2032. dev_ctx->device_name.c_str());
  2033. }
  2034. }
  2035. return found_devices;
  2036. }
  2037. // Initialize device if it is supported (returns nullptr if it is not).
  2038. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  2039. GGML_ASSERT(dev);
  2040. GGML_ASSERT(dev->context);
  2041. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2042. GGML_ASSERT(dev_ctx->platform);
  2043. GGML_ASSERT(dev_ctx->device);
  2044. if (dev_ctx->backend_ctx) {
  2045. return dev_ctx->backend_ctx;
  2046. }
  2047. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  2048. backend_ctx->device = dev_ctx->device;
  2049. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2050. // ref_count get increased in ggml_backend_opencl_device_init
  2051. // This function is also used to retrieve backend context, so we don't want
  2052. // to increase ref_count for each call. We only want to increase ref_count
  2053. // when the associated device is initialized
  2054. backend_ctx->ref_count = 0;
  2055. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  2056. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  2057. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  2058. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  2059. // Usually device version contains the detailed device name
  2060. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  2061. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  2062. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  2063. }
  2064. // Use wave size of 64 for all Adreno GPUs.
  2065. backend_ctx->adreno_wave_size = 64;
  2066. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  2067. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  2068. } else {
  2069. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  2070. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2071. return nullptr;
  2072. }
  2073. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2074. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  2075. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  2076. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  2077. return nullptr;
  2078. }
  2079. #endif
  2080. // Populate backend device name
  2081. backend_ctx->device_name = dev_ctx->device_name;
  2082. // A local ref of cl_device_id for convenience
  2083. cl_device_id device = backend_ctx->device;
  2084. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  2085. // Check device OpenCL version, OpenCL 2.0 or above is required
  2086. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  2087. if (opencl_c_version.major < 2) {
  2088. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  2089. return nullptr;
  2090. }
  2091. // Check driver version
  2092. size_t driver_version_str_size;
  2093. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  2094. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  2095. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  2096. driver_version[driver_version_str_size] = '\0';
  2097. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  2098. backend_ctx->driver_version = driver_version;
  2099. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  2100. backend_ctx->has_vector_subgroup_broadcast =
  2101. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  2102. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  2103. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  2104. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  2105. size_t ext_str_size;
  2106. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  2107. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  2108. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  2109. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  2110. // Check if ext_buffer contains cl_khr_fp16
  2111. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  2112. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  2113. // fp16 is required
  2114. if (!backend_ctx->fp16_support) {
  2115. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  2116. return nullptr;
  2117. }
  2118. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  2119. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  2120. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  2121. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  2122. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  2123. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  2124. return nullptr;
  2125. }
  2126. cl_uint base_align_in_bits;
  2127. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  2128. GGML_ASSERT(base_align_in_bits % 8u == 0);
  2129. backend_ctx->alignment = base_align_in_bits / 8u;
  2130. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  2131. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  2132. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  2133. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  2134. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  2135. // Check SVM.
  2136. cl_device_svm_capabilities svm_caps;
  2137. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  2138. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  2139. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  2140. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  2141. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  2142. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  2143. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  2144. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  2145. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  2146. if (opencl_c_version.major >= 3) {
  2147. // Assume it is not available for 3.0, since it is optional in 3.0.
  2148. // If compiling against 3.0, then we can query.
  2149. backend_ctx->non_uniform_workgroups = false;
  2150. #if CL_TARGET_OPENCL_VERSION >= 300
  2151. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  2152. &backend_ctx->non_uniform_workgroups, 0));
  2153. #endif
  2154. } else {
  2155. GGML_ASSERT(opencl_c_version.major == 2);
  2156. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  2157. backend_ctx->non_uniform_workgroups = true;
  2158. }
  2159. // Print out configurations
  2160. #ifdef GGML_OPENCL_SOA_Q
  2161. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  2162. #endif // GGML_OPENCL_SOA_Q
  2163. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2164. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  2165. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2166. cl_int err;
  2167. // A local ref of cl_context for convenience
  2168. cl_context context = backend_ctx->context = dev_ctx->context;
  2169. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  2170. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  2171. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  2172. //)));
  2173. cl_command_queue_properties command_queue_props = 0;
  2174. #ifdef GGML_OPENCL_PROFILING
  2175. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  2176. #endif
  2177. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  2178. // Load kernels
  2179. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  2180. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2181. // Allocate intermediate buffers and images
  2182. size_t required_A_q_d_bytes = 311164928;
  2183. size_t required_A_s_d_bytes = 38895616;
  2184. size_t required_B_d_bytes = 45088768;
  2185. // Ensure buffer sizes do not exceed the maximum allocation size
  2186. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  2187. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  2188. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  2189. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  2190. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2191. required_A_q_d_bytes, max_A_q_d_bytes);
  2192. }
  2193. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2194. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2195. required_A_s_d_bytes, max_A_s_d_bytes);
  2196. }
  2197. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2198. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2199. required_B_d_bytes, max_B_d_bytes);
  2200. }
  2201. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  2202. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  2203. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  2204. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2205. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2206. dev_ctx->backend_ctx = backend_ctx.release();
  2207. return dev_ctx->backend_ctx;
  2208. }
  2209. static void ggml_cl2_free(ggml_backend_t backend) {
  2210. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2211. ctx->free();
  2212. // The CL context is shared by all backends, release it if all backends have been released
  2213. bool should_release_opencl = true;
  2214. for (auto device : g_ggml_backend_opencl_devices) {
  2215. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2216. if (ctx_dev->backend_ctx->ref_count > 0) {
  2217. should_release_opencl = false;
  2218. }
  2219. }
  2220. if (should_release_opencl) {
  2221. CL_CHECK(clReleaseContext(ctx->context));
  2222. }
  2223. }
  2224. //------------------------------------------------------------------------------
  2225. // Tensor extra management
  2226. //------------------------------------------------------------------------------
  2227. struct ggml_tensor_extra_cl {
  2228. // The buffer object that holds the data.
  2229. cl_mem data_device;
  2230. // The offset into the buffer object. This is primarily for scratch buffer
  2231. // and view operation.
  2232. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2233. // offset is used, view_offs should be considered.
  2234. cl_ulong offset;
  2235. // The actual size of the cl_mem object. This is needed when returning the
  2236. // block to the pool.
  2237. size_t actual_size;
  2238. void reset() {
  2239. data_device = nullptr;
  2240. offset = 0;
  2241. actual_size = 0;
  2242. }
  2243. };
  2244. // Additional tensor extra structs for quantized tensors.
  2245. // These tensors are loaded from files and should not be allocated in scratch --
  2246. // they should always be allocated from the pool. Hence, they do not have an
  2247. // `offset`, which indicate their locations in the scratch buffer.
  2248. struct ggml_tensor_extra_cl_q4_0 {
  2249. // Quantized values.
  2250. cl_mem q = nullptr;
  2251. // Quantized values in image1d_buffer_t.
  2252. cl_mem q_img = nullptr;
  2253. // Scales.
  2254. cl_mem d = nullptr;
  2255. // Scales in image1d_buffer_t.
  2256. cl_mem d_img = nullptr;
  2257. // Size of quantized values.
  2258. size_t size_q = 0;
  2259. // Size of scales.
  2260. size_t size_d = 0;
  2261. ~ggml_tensor_extra_cl_q4_0() {
  2262. reset();
  2263. }
  2264. void reset() {
  2265. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2266. // They must be properly released so that the original buffer can be
  2267. // properly released to avoid memory leak.
  2268. if (q != nullptr) {
  2269. CL_CHECK(clReleaseMemObject(q));
  2270. q = nullptr;
  2271. }
  2272. if (d != nullptr) {
  2273. CL_CHECK(clReleaseMemObject(d));
  2274. d = nullptr;
  2275. }
  2276. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2277. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2278. // So, there is no need to release them here.
  2279. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2280. q_img = nullptr;
  2281. d_img = nullptr;
  2282. size_q = 0;
  2283. size_d = 0;
  2284. }
  2285. };
  2286. struct ggml_tensor_extra_cl_mxfp4 {
  2287. // Quantized values.
  2288. cl_mem q = nullptr;
  2289. // Quantized values in image1d_buffer_t.
  2290. cl_mem q_img = nullptr;
  2291. // Scales in E8M0.
  2292. cl_mem e = nullptr;
  2293. // Scales in image1d_buffer_t.
  2294. cl_mem e_img = nullptr;
  2295. // Size of quantized values.
  2296. size_t size_q = 0;
  2297. // Size of scales.
  2298. size_t size_e = 0;
  2299. ~ggml_tensor_extra_cl_mxfp4() {
  2300. reset();
  2301. }
  2302. void reset() {
  2303. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2304. // They must be properly released so that the original buffer can be
  2305. // properly released to avoid memory leak.
  2306. if (q != nullptr) {
  2307. CL_CHECK(clReleaseMemObject(q));
  2308. q = nullptr;
  2309. }
  2310. if (e != nullptr) {
  2311. CL_CHECK(clReleaseMemObject(e));
  2312. e = nullptr;
  2313. }
  2314. if (q != nullptr) {
  2315. CL_CHECK(clReleaseMemObject(q_img));
  2316. q = nullptr;
  2317. }
  2318. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2319. // that wraps around q and d to utilize image access path.
  2320. q_img = nullptr;
  2321. e_img = nullptr;
  2322. size_q = 0;
  2323. size_e = 0;
  2324. }
  2325. };
  2326. struct ggml_tensor_extra_cl_q8_0 {
  2327. cl_mem q = nullptr;
  2328. cl_mem q_img = nullptr;
  2329. cl_mem d = nullptr;
  2330. cl_mem d_img = nullptr;
  2331. size_t size_q = 0;
  2332. size_t size_d = 0;
  2333. ~ggml_tensor_extra_cl_q8_0() {
  2334. reset();
  2335. }
  2336. void reset() {
  2337. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2338. // They must be properly released so that the original buffer can be
  2339. // properly released to avoid memory leak.
  2340. if (q != nullptr) {
  2341. CL_CHECK(clReleaseMemObject(q));
  2342. q = nullptr;
  2343. }
  2344. if (d != nullptr) {
  2345. CL_CHECK(clReleaseMemObject(d));
  2346. d = nullptr;
  2347. }
  2348. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2349. // that wraps around q and d to utilize image access path.
  2350. q_img = nullptr;
  2351. d_img = nullptr;
  2352. size_q = 0;
  2353. size_d = 0;
  2354. }
  2355. };
  2356. //------------------------------------------------------------------------------
  2357. // Backend API
  2358. //------------------------------------------------------------------------------
  2359. //
  2360. // backend
  2361. //
  2362. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2363. return "OpenCL";
  2364. UNUSED(backend);
  2365. }
  2366. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2367. ggml_cl2_free(backend);
  2368. }
  2369. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2370. GGML_UNUSED(backend);
  2371. GGML_UNUSED(tensor);
  2372. GGML_UNUSED(data);
  2373. GGML_UNUSED(offset);
  2374. GGML_UNUSED(size);
  2375. }
  2376. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2377. GGML_UNUSED(backend);
  2378. GGML_UNUSED(tensor);
  2379. GGML_UNUSED(data);
  2380. GGML_UNUSED(offset);
  2381. GGML_UNUSED(size);
  2382. }
  2383. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2384. GGML_UNUSED(backend);
  2385. GGML_UNUSED(src);
  2386. GGML_UNUSED(dst);
  2387. return false;
  2388. }
  2389. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2390. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2391. cl_event evt;
  2392. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2393. CL_CHECK(clWaitForEvents(1, &evt));
  2394. CL_CHECK(clReleaseEvent(evt));
  2395. }
  2396. // Syncronizes the 'backend_ctx's device with others so that commands
  2397. // enqueued to it won't start until commands in the other devices have
  2398. // completed.
  2399. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2400. if (g_ggml_backend_opencl_devices.size() < 2)
  2401. return; // No other devices to synchronize with.
  2402. std::vector<cl_event> events;
  2403. events.reserve(g_ggml_backend_opencl_devices.size());
  2404. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2405. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2406. if (backend_ctx != other_backend_ctx) {
  2407. cl_event ev;
  2408. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2409. CL_CHECK(clFlush(other_backend_ctx->queue));
  2410. events.push_back(ev);
  2411. }
  2412. }
  2413. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2414. for (auto ev : events) {
  2415. CL_CHECK(clReleaseEvent(ev));
  2416. }
  2417. }
  2418. static void sync_with_other_backends(ggml_backend_t backend) {
  2419. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2420. sync_with_other_backends(backend_ctx);
  2421. }
  2422. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2423. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2424. return false;
  2425. }
  2426. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2427. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2428. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2429. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2430. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2431. // rms_norm only supports f32
  2432. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2433. mul->src[1]->type != GGML_TYPE_F32 ||
  2434. mul->type != GGML_TYPE_F32) {
  2435. return false;
  2436. }
  2437. // if rms_norm is the B operand, then we don't handle broadcast
  2438. if (rms_norm == mul->src[1] &&
  2439. !ggml_are_same_shape(mul->src[0], rms_norm)) {
  2440. return false;
  2441. }
  2442. // rms_norm assumes contiguous rows
  2443. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2444. return false;
  2445. }
  2446. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2447. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2448. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2449. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2450. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2451. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2452. // norm fusion only supports F32
  2453. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2454. return false;
  2455. }
  2456. if (norm->src[0]->ne[0] % 4 != 0) {
  2457. return false;
  2458. }
  2459. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2460. return false;
  2461. }
  2462. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2463. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2464. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2465. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2466. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2467. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2468. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2469. return false;
  2470. }
  2471. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2472. return false;
  2473. }
  2474. }
  2475. return true;
  2476. }
  2477. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2478. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2479. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2480. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2481. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2482. for (int i = 0; i < cgraph->n_nodes; i++) {
  2483. ggml_tensor * node = cgraph->nodes[i];
  2484. // NOTE: this may oversynchronize by synchronizing with
  2485. // backends/devices which don't compute 'cgraph's
  2486. // dependencies.
  2487. sync_with_other_backends(backend);
  2488. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2489. continue;
  2490. }
  2491. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2492. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2493. i += 2;
  2494. continue;
  2495. }
  2496. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2497. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2498. i += 2;
  2499. continue;
  2500. }
  2501. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2502. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2503. i++;
  2504. continue;
  2505. }
  2506. bool ok = ggml_cl_compute_forward(backend, node);
  2507. if (!ok) {
  2508. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2509. }
  2510. GGML_ASSERT(ok);
  2511. }
  2512. return GGML_STATUS_SUCCESS;
  2513. }
  2514. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2515. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2516. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2517. switch (op->op) {
  2518. case GGML_OP_NONE:
  2519. return true;
  2520. case GGML_OP_GET_ROWS:
  2521. switch (op->src[0]->type) {
  2522. case GGML_TYPE_F32:
  2523. case GGML_TYPE_F16:
  2524. return true;
  2525. case GGML_TYPE_Q4_0:
  2526. #ifdef GGML_OPENCL_SOA_Q
  2527. // We do not support flattened Q4_0 (and possibly other Q's)
  2528. return false;
  2529. #else // GGML_OPENCL_SOA_Q
  2530. return true;
  2531. #endif // GGML_OPENCL_SOA_Q
  2532. default:
  2533. return false;
  2534. }
  2535. case GGML_OP_SET_ROWS:
  2536. {
  2537. // TODO: add support
  2538. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2539. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2540. if (op->src[0]->type != GGML_TYPE_F32) {
  2541. return false;
  2542. }
  2543. switch (op->type) {
  2544. case GGML_TYPE_F16:
  2545. case GGML_TYPE_F32:
  2546. return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
  2547. default:
  2548. return false;
  2549. }
  2550. }
  2551. case GGML_OP_CPY:
  2552. case GGML_OP_DUP:
  2553. case GGML_OP_CONT:
  2554. switch (op->src[0]->type) {
  2555. case GGML_TYPE_F32:
  2556. switch (op->type) {
  2557. case GGML_TYPE_F16:
  2558. case GGML_TYPE_F32:
  2559. return true;
  2560. default:
  2561. return false;
  2562. }
  2563. case GGML_TYPE_F16:
  2564. switch (op->type) {
  2565. case GGML_TYPE_F16:
  2566. case GGML_TYPE_F32:
  2567. return true;
  2568. default:
  2569. return false;
  2570. }
  2571. default:
  2572. return false;
  2573. }
  2574. case GGML_OP_SCALE:
  2575. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2576. case GGML_OP_ADD:
  2577. if (op->type == GGML_TYPE_F16) {
  2578. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2579. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2580. if (src0_ok && src1_ok) {
  2581. return true;
  2582. }
  2583. }
  2584. case GGML_OP_MUL:
  2585. case GGML_OP_DIV:
  2586. case GGML_OP_SUB:
  2587. return (op->src[0]->type == op->src[1]->type) &&
  2588. (op->src[0]->type == op->type) &&
  2589. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2590. case GGML_OP_ADD_ID:
  2591. return op->src[0]->type == GGML_TYPE_F32;
  2592. case GGML_OP_UNARY:
  2593. switch (ggml_get_unary_op(op)) {
  2594. case GGML_UNARY_OP_GELU:
  2595. case GGML_UNARY_OP_SILU:
  2596. case GGML_UNARY_OP_RELU:
  2597. case GGML_UNARY_OP_GELU_ERF:
  2598. case GGML_UNARY_OP_GELU_QUICK:
  2599. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2600. case GGML_UNARY_OP_SIGMOID:
  2601. return ggml_is_contiguous(op->src[0]);
  2602. case GGML_UNARY_OP_TANH:
  2603. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2604. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2605. default:
  2606. return false;
  2607. }
  2608. case GGML_OP_GLU:
  2609. switch (ggml_get_glu_op(op)) {
  2610. case GGML_GLU_OP_GEGLU:
  2611. case GGML_GLU_OP_REGLU:
  2612. case GGML_GLU_OP_SWIGLU:
  2613. case GGML_GLU_OP_SWIGLU_OAI:
  2614. case GGML_GLU_OP_GEGLU_ERF:
  2615. case GGML_GLU_OP_GEGLU_QUICK:
  2616. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2617. default:
  2618. return false;
  2619. }
  2620. case GGML_OP_CLAMP:
  2621. return op->src[0]->type == GGML_TYPE_F32;
  2622. case GGML_OP_SOFT_MAX:
  2623. case GGML_OP_NORM:
  2624. return true;
  2625. case GGML_OP_RMS_NORM:
  2626. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2627. case GGML_OP_REPEAT:
  2628. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2629. case GGML_OP_PAD:
  2630. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2631. case GGML_OP_UPSCALE: {
  2632. ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(op, 0) & 0xFF);
  2633. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2634. (mode == GGML_SCALE_MODE_NEAREST || mode == GGML_SCALE_MODE_BILINEAR);
  2635. }
  2636. case GGML_OP_CONV_2D:
  2637. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2638. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2639. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2640. case GGML_OP_CONCAT:
  2641. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2642. case GGML_OP_TIMESTEP_EMBEDDING:
  2643. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2644. case GGML_OP_GROUP_NORM:
  2645. return ggml_is_contiguous(op->src[0]);
  2646. case GGML_OP_MUL_MAT:
  2647. if (op->src[0]->type == GGML_TYPE_F16) {
  2648. return true;
  2649. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2650. return op->src[1]->type == GGML_TYPE_F32;
  2651. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2652. op->src[0]->type == GGML_TYPE_Q6_K) {
  2653. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2654. } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
  2655. return op->src[1]->type == GGML_TYPE_F32;
  2656. }
  2657. return false;
  2658. case GGML_OP_MUL_MAT_ID:
  2659. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2660. op->src[0]->type == GGML_TYPE_Q8_0 ||
  2661. op->src[0]->type == GGML_TYPE_MXFP4) {
  2662. if (op->src[1]->type == GGML_TYPE_F32) {
  2663. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2664. }
  2665. }
  2666. return false;
  2667. case GGML_OP_RESHAPE:
  2668. case GGML_OP_VIEW:
  2669. case GGML_OP_PERMUTE:
  2670. case GGML_OP_TRANSPOSE:
  2671. return true;
  2672. case GGML_OP_DIAG_MASK_INF:
  2673. return op->ne[3] == 1;
  2674. case GGML_OP_ROPE: {
  2675. const int mode = ((const int32_t *) op->op_params)[2];
  2676. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2677. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2678. if (is_mrope && !is_vision) {
  2679. if (op->src[0]->type == GGML_TYPE_F32 ||
  2680. op->src[0]->type == GGML_TYPE_F16) {
  2681. return true;
  2682. }
  2683. return false;
  2684. }
  2685. if (is_vision) {
  2686. if (op->src[0]->type == GGML_TYPE_F32 ||
  2687. op->src[0]->type == GGML_TYPE_F16) {
  2688. return true;
  2689. }
  2690. return false;
  2691. }
  2692. return true;
  2693. }
  2694. case GGML_OP_IM2COL:
  2695. return true;
  2696. case GGML_OP_ARGSORT: {
  2697. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2698. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2699. int cols = 1;
  2700. while (cols < op->ne[0]) {
  2701. cols *= 2;
  2702. }
  2703. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2704. }
  2705. case GGML_OP_SUM_ROWS:
  2706. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2707. case GGML_OP_FLASH_ATTN_EXT:
  2708. {
  2709. const ggml_tensor * q = op->src[0];
  2710. const ggml_tensor * k = op->src[1];
  2711. const ggml_tensor * v = op->src[2];
  2712. const int dk = q->ne[0];
  2713. const int dv = v->ne[0];
  2714. const struct { int dk; int dv; } supported_dims[] = {
  2715. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2716. {112, 112}, {128, 128}, {192, 128},
  2717. {192, 192}, {256, 256},
  2718. };
  2719. bool dims_supported = false;
  2720. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2721. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2722. dims_supported = true;
  2723. break;
  2724. }
  2725. }
  2726. if (!dims_supported) {
  2727. return false;
  2728. }
  2729. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2730. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2731. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2732. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2733. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2734. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2735. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2736. }
  2737. default:
  2738. return false;
  2739. }
  2740. }
  2741. // Forward declaration - implementation appears later in the file.
  2742. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2743. static ggml_guid_t ggml_backend_opencl_guid() {
  2744. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2745. return &guid;
  2746. }
  2747. static ggml_backend_i ggml_backend_opencl_i = {
  2748. /* .get_name = */ ggml_backend_opencl_name,
  2749. /* .free = */ ggml_backend_opencl_free,
  2750. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2751. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2752. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2753. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2754. /* .graph_plan_create = */ NULL,
  2755. /* .graph_plan_free = */ NULL,
  2756. /* .graph_plan_update = */ NULL,
  2757. /* .graph_plan_compute = */ NULL,
  2758. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2759. /* .event_record = */ NULL,
  2760. /* .event_wait = */ NULL,
  2761. /* .graph_optimize = */ NULL,
  2762. };
  2763. ggml_backend_t ggml_backend_opencl_init(void) {
  2764. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2765. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2766. ggml_backend_t backend = new ggml_backend {
  2767. /* .guid = */ ggml_backend_opencl_guid(),
  2768. /* .iface = */ ggml_backend_opencl_i,
  2769. /* .device = */ dev,
  2770. /* .context = */ backend_ctx
  2771. };
  2772. return backend;
  2773. }
  2774. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2775. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2776. }
  2777. //
  2778. // buffer
  2779. //
  2780. struct ggml_backend_opencl_buffer_context {
  2781. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2782. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2783. // each tensor is allocated a separate buffer. When flattening is enabled
  2784. // with small allocation, each tensor is backed by two cl_mem objects (for
  2785. // quants and scales) packed into a backend_opencl_buffer.
  2786. ggml_backend_opencl_buffer_context(cl_mem buf)
  2787. : name("OpenCL") {
  2788. buffer.push_back(buf);
  2789. }
  2790. ~ggml_backend_opencl_buffer_context() {
  2791. for (cl_mem buf : buffer) {
  2792. CL_CHECK(clReleaseMemObject(buf));
  2793. }
  2794. for (cl_mem im : img) {
  2795. CL_CHECK(clReleaseMemObject(im));
  2796. }
  2797. // Delete all extras to trigger their destructors
  2798. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2799. delete e;
  2800. }
  2801. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2802. delete e;
  2803. }
  2804. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2805. delete e;
  2806. }
  2807. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2808. delete e;
  2809. }
  2810. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
  2811. delete e;
  2812. }
  2813. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2814. delete e;
  2815. }
  2816. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
  2817. delete e;
  2818. }
  2819. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2820. delete e;
  2821. }
  2822. }
  2823. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2824. ggml_tensor_extra_cl * extra;
  2825. if (temp_tensor_extras.empty()) {
  2826. extra = new ggml_tensor_extra_cl();
  2827. } else {
  2828. extra = temp_tensor_extras.back();
  2829. temp_tensor_extras.pop_back();
  2830. }
  2831. temp_tensor_extras_in_use.push_back(extra);
  2832. extra->reset();
  2833. return extra;
  2834. }
  2835. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2836. ggml_tensor_extra_cl_q4_0 * extra;
  2837. if (temp_tensor_extras_q4_0.empty()) {
  2838. extra = new ggml_tensor_extra_cl_q4_0();
  2839. } else {
  2840. extra = temp_tensor_extras_q4_0.back();
  2841. temp_tensor_extras_q4_0.pop_back();
  2842. }
  2843. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2844. extra->reset();
  2845. return extra;
  2846. }
  2847. ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
  2848. ggml_tensor_extra_cl_mxfp4 * extra;
  2849. if (temp_tensor_extras_mxfp4.empty()) {
  2850. extra = new ggml_tensor_extra_cl_mxfp4();
  2851. } else {
  2852. extra = temp_tensor_extras_mxfp4.back();
  2853. temp_tensor_extras_mxfp4.pop_back();
  2854. }
  2855. temp_tensor_extras_mxfp4_in_use.push_back(extra);
  2856. extra->reset();
  2857. return extra;
  2858. }
  2859. ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
  2860. ggml_tensor_extra_cl_q8_0 * extra;
  2861. if (temp_tensor_extras_q8_0.empty()) {
  2862. extra = new ggml_tensor_extra_cl_q8_0();
  2863. } else {
  2864. extra = temp_tensor_extras_q8_0.back();
  2865. temp_tensor_extras_q8_0.pop_back();
  2866. }
  2867. temp_tensor_extras_q8_0_in_use.push_back(extra);
  2868. extra->reset();
  2869. return extra;
  2870. }
  2871. void reset() {
  2872. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2873. temp_tensor_extras.push_back(e);
  2874. }
  2875. temp_tensor_extras_in_use.clear();
  2876. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2877. temp_tensor_extras_q4_0.push_back(e);
  2878. }
  2879. temp_tensor_extras_q4_0_in_use.clear();
  2880. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2881. temp_tensor_extras_mxfp4.push_back(e);
  2882. }
  2883. temp_tensor_extras_mxfp4_in_use.clear();
  2884. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2885. temp_tensor_extras_q8_0.push_back(e);
  2886. }
  2887. temp_tensor_extras_q8_0_in_use.clear();
  2888. }
  2889. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2890. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2891. // extras get created and put in `in_use`. When the buffer is reset via
  2892. // the `reset` callback, all extras in `in_use` get moved to available extras
  2893. // for reuse.
  2894. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2895. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2896. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2897. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2898. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
  2899. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
  2900. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
  2901. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
  2902. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2903. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2904. // Hence, there is alway a buffer object in this vector. When each tensor is
  2905. // being initialized, this original buffer object will be released if both
  2906. // flattening and small allocation are enabled, and additional buffer
  2907. // objects will be created in init_tensor to represent flattened quantized
  2908. // weights.
  2909. std::vector<cl_mem> buffer;
  2910. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2911. // For Q4_0 quantization, there should be two of them - one for quants and
  2912. // one for scales. They should be populated only when flattening and small
  2913. // allocation are enabled.
  2914. std::vector<cl_mem> img;
  2915. std::string name;
  2916. };
  2917. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2918. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2919. delete ctx;
  2920. }
  2921. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2922. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2923. return (void *) (uintptr_t) backend_ctx->alignment;
  2924. }
  2925. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2926. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2927. ggml_cl2_init(buffer->buft->device);
  2928. if (tensor->view_src != nullptr) {
  2929. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2930. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2931. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2932. // Reuse extra of the parent tensor. The offset of this view tensor
  2933. // becomes `extra->offset + view_offs` and needs to be calculated when
  2934. // it is used. This changes is needed because of the change to
  2935. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2936. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2937. // to allocate extras from the same buffer context for ordinary
  2938. // intermediate tensors. But for views into kv cache tensors, doing so
  2939. // would mess up the extras used by kv cache.
  2940. // Before #7640, `buffer` is for intermediate tensors, which is always
  2941. // different from that of kv cache tensors.
  2942. //
  2943. // NB: now extra->offset no longer accounts for view_offs.
  2944. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2945. // may apply for test-backend-ops).
  2946. // FIXME: if any unexpected results are seen, double check the offset -
  2947. // there could be other places that need fix.
  2948. tensor->extra = view_extra;
  2949. } else {
  2950. {
  2951. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2952. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2953. extra->offset = offset;
  2954. extra->data_device = ctx->buffer[0];
  2955. extra->actual_size = ggml_nbytes(tensor);
  2956. tensor->extra = extra;
  2957. }
  2958. }
  2959. return GGML_STATUS_SUCCESS;
  2960. }
  2961. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2962. // tensor is the quantized weights matrix.
  2963. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2964. int64_t threshold_ne0 = 512;
  2965. int64_t threshold_ne1 = 512;
  2966. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2967. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2968. threshold_ne0 = 128;
  2969. threshold_ne1 = 128;
  2970. }
  2971. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2972. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2973. }
  2974. inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2975. GGML_UNUSED(backend_ctx);
  2976. int ne01 = tensor->ne[1];
  2977. return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
  2978. }
  2979. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2980. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2981. cl_context context = backend_ctx->context;
  2982. cl_command_queue queue = backend_ctx->queue;
  2983. #ifdef GGML_OPENCL_SOA_Q
  2984. // We separate the quantized bits and scale from block_q4_0 by using an
  2985. // additional kernel, where each thread handles a block. We first read the
  2986. // original weights into a temporary buffer, then create two separate
  2987. // buffers for quantized bits and scales, which are then populated by the
  2988. // conversion kernel.
  2989. if (tensor->type == GGML_TYPE_Q4_0) {
  2990. // Tensors should have been preallocated, therefore they should
  2991. // already have ggml_tensor_extra_cl as extra.
  2992. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2993. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2994. // Allocate the new extra and create aliases from the original.
  2995. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2996. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2997. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2998. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2999. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3000. cl_int err;
  3001. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3002. ggml_nbytes(tensor), NULL, &err);
  3003. CL_CHECK(err);
  3004. CL_CHECK(clEnqueueWriteBuffer(
  3005. queue, data_device, CL_TRUE, 0,
  3006. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3007. // We consider the specified offset arg as always, although For weights
  3008. // the offset arg should be 0 (we do not assert this).
  3009. //GGML_ASSERT(offset == 0);
  3010. // We create subbuffers from the original tensor buffer for scales and
  3011. // quants - i.e., scales and quants are aliases into the buffer obejct
  3012. // that backs the original tensor. This is a cleaner way to adapt to the
  3013. // new memory management.
  3014. // In the old code, we allocate new buffers for scales and quants
  3015. // respectively, which could still be done but would result in double
  3016. // allocation; properly deallocating the preallocated buffer that backs
  3017. // the tensors is tricky and would leak the backend specific information
  3018. // into the general backend code.
  3019. // Does this create misaligned subbuffers (alignment is 1024) in certain
  3020. // cases ?
  3021. cl_buffer_region region;
  3022. // The original tensor memory is divided into scales and quants, i.e.,
  3023. // we first store scales, then quants.
  3024. // Create subbuffer for scales.
  3025. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3026. region.size = size_d;
  3027. extra->d = clCreateSubBuffer(
  3028. extra_orig->data_device, CL_MEM_READ_WRITE,
  3029. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3030. CL_CHECK(err);
  3031. auto previous_origin = region.origin;
  3032. // Create subbuffer for quants.
  3033. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3034. region.size = size_q;
  3035. extra->q = clCreateSubBuffer(
  3036. extra_orig->data_device, CL_MEM_READ_WRITE,
  3037. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3038. CL_CHECK(err);
  3039. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3040. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3041. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3042. // The optimized kernels need weights in natural order, so unshuffle.
  3043. if (use_adreno_kernels(backend_ctx, tensor)) {
  3044. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  3045. }
  3046. #else
  3047. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3048. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3049. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3050. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3051. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3052. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3053. size_t local_work_size[] = {64, 1, 1};
  3054. cl_event evt;
  3055. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3056. CL_CHECK(clWaitForEvents(1, &evt));
  3057. CL_CHECK(clReleaseMemObject(data_device));
  3058. tensor->extra = extra;
  3059. // transpose the weights and scales
  3060. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3061. // Only do transpose for large, non batched matrix
  3062. // TODO: use preallocated images instead of sub-buffer then image
  3063. if (use_adreno_kernels(backend_ctx, tensor)) {
  3064. // <----------------------------------------------------------------------------------> //
  3065. // start transpose
  3066. // <----------------------------------------------------------------------------------> //
  3067. int M = tensor->ne[1]; // ne01
  3068. int K = tensor->ne[0]; // ne00
  3069. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  3070. GGML_ASSERT(K % 32 == 0);
  3071. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  3072. GGML_ASSERT(M % 4 == 0);
  3073. // transpose is out of place, so we need to allocate transposed buffers
  3074. // <----------------------------------------------------------------------------------> //
  3075. // use sub_buffer of max buffer size instead
  3076. size_t q_size_bytes = K * M / 8 * sizeof(float);
  3077. cl_buffer_region region;
  3078. region.origin = 0;
  3079. region.size = q_size_bytes;
  3080. cl_mem qT_d = clCreateSubBuffer(
  3081. backend_ctx->A_q_d_max,
  3082. 0,
  3083. CL_BUFFER_CREATE_TYPE_REGION,
  3084. &region,
  3085. &err);
  3086. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  3087. CL_CHECK(err);
  3088. bool K_tile_trans = true;
  3089. if ((K / 32) % 4 != 0){
  3090. K_tile_trans =false;
  3091. }
  3092. size_t d_size_bytes = M * (K / 32) * 2;
  3093. region.origin = 0;
  3094. region.size = d_size_bytes;
  3095. cl_mem dT_d = clCreateSubBuffer(
  3096. backend_ctx->A_s_d_max,
  3097. 0,
  3098. CL_BUFFER_CREATE_TYPE_REGION,
  3099. &region,
  3100. &err);
  3101. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  3102. CL_CHECK(err);
  3103. // <----------------------------------------------------------------------------------> //
  3104. // create images from the buffers
  3105. // <----------------------------------------------------------------------------------> //
  3106. cl_mem q_d_image1D;
  3107. cl_mem d_d_image1D;
  3108. cl_mem qT_d_image1D;
  3109. cl_mem dT_d_image1D;
  3110. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3111. cl_image_desc img_desc_1d;
  3112. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3113. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3114. img_desc_1d.image_width = M * K / 4 / 4;
  3115. img_desc_1d.buffer = extra->q;
  3116. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3117. CL_CHECK(err);
  3118. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3119. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3120. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3121. img_desc_1d.image_width = M * K / 4 / 4;
  3122. img_desc_1d.buffer = qT_d;
  3123. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3124. CL_CHECK(err);
  3125. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3126. if (K_tile_trans) {
  3127. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3128. img_desc_1d.image_width = M * K / 32 / 4;
  3129. } else {
  3130. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  3131. img_desc_1d.image_width = M * K / 32;
  3132. }
  3133. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3134. img_desc_1d.buffer = extra->d;
  3135. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3136. CL_CHECK(err);
  3137. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3138. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3139. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3140. img_desc_1d.image_width = M * K / 32 / 4;
  3141. img_desc_1d.buffer = dT_d;
  3142. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3143. CL_CHECK(err);
  3144. // <----------------------------------------------------------------------------------> //
  3145. // set up and call the transpose kernels
  3146. // <----------------------------------------------------------------------------------> //
  3147. // weights
  3148. int height_q = M / 4;
  3149. int width_q = K / 4 / 4;
  3150. kernel = backend_ctx->kernel_transpose_16;
  3151. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  3152. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  3153. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  3154. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  3155. size_t local_size_q[3] = {4, 16, 1};
  3156. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  3157. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  3158. CL_CHECK(clWaitForEvents(1, &evt));
  3159. // scales
  3160. int height_s = M / 4;
  3161. int width_s = K / 32 / 4;
  3162. kernel = backend_ctx->kernel_transpose_16;
  3163. if (!K_tile_trans) {
  3164. kernel = backend_ctx->kernel_transpose_16_4x1;
  3165. width_s = K / 32;
  3166. }
  3167. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  3168. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  3169. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  3170. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  3171. size_t local_size_s[3] = {4, 16, 1};
  3172. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  3173. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  3174. CL_CHECK(clWaitForEvents(1, &evt));
  3175. // <----------------------------------------------------------------------------------> //
  3176. // copy transposed buffer contents to original buffers
  3177. // <----------------------------------------------------------------------------------> //
  3178. // weights
  3179. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  3180. CL_CHECK(clWaitForEvents(1, &evt));
  3181. // scales
  3182. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  3183. CL_CHECK(clWaitForEvents(1, &evt));
  3184. // <----------------------------------------------------------------------------------> //
  3185. // deallocate transpose buffers
  3186. // <----------------------------------------------------------------------------------> //
  3187. CL_CHECK(clReleaseMemObject(qT_d));
  3188. CL_CHECK(clReleaseMemObject(dT_d));
  3189. // deallocate temporary images
  3190. CL_CHECK(clReleaseMemObject(q_d_image1D));
  3191. CL_CHECK(clReleaseMemObject(d_d_image1D));
  3192. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  3193. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  3194. // <----------------------------------------------------------------------------------> //
  3195. // end transpose
  3196. // <----------------------------------------------------------------------------------> //
  3197. }
  3198. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3199. return;
  3200. }
  3201. if (tensor->type == GGML_TYPE_MXFP4) {
  3202. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3203. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3204. // Allocate the new extra and create aliases from the original.
  3205. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3206. ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
  3207. size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
  3208. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3209. GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3210. cl_int err;
  3211. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3212. ggml_nbytes(tensor), NULL, &err);
  3213. CL_CHECK(err);
  3214. CL_CHECK(clEnqueueWriteBuffer(
  3215. queue, data_device, CL_TRUE, 0,
  3216. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3217. // The original tensor memory is divided into scales and quants, i.e.,
  3218. // we first store scales, then quants.
  3219. cl_buffer_region region;
  3220. // Create subbuffer for scales.
  3221. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3222. region.size = size_e;
  3223. extra->e = clCreateSubBuffer(
  3224. extra_orig->data_device, CL_MEM_READ_WRITE,
  3225. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3226. CL_CHECK(err);
  3227. auto previous_origin = region.origin;
  3228. // Create subbuffer for quants.
  3229. region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
  3230. region.size = size_q;
  3231. extra->q = clCreateSubBuffer(
  3232. extra_orig->data_device, CL_MEM_READ_WRITE,
  3233. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3234. CL_CHECK(err);
  3235. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3236. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3237. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
  3238. int ne00 = tensor->ne[0];
  3239. int ne01 = tensor->ne[1];
  3240. int ne02 = tensor->ne[2];
  3241. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3242. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3243. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3244. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
  3245. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
  3246. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3247. size_t local_work_size[3] = {64, 2, 1};
  3248. cl_event evt;
  3249. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3250. CL_CHECK(clWaitForEvents(1, &evt));
  3251. CL_CHECK(clReleaseMemObject(data_device));
  3252. tensor->extra = extra;
  3253. return;
  3254. }
  3255. #endif
  3256. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
  3257. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3258. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3259. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3260. size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3261. size_t local_work_size[3] = {64, 1, 1};
  3262. cl_event evt;
  3263. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3264. CL_CHECK(clWaitForEvents(1, &evt));
  3265. CL_CHECK(clReleaseMemObject(data_device));
  3266. // Create image for Q
  3267. cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
  3268. cl_image_desc img_desc_q = {
  3269. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3270. static_cast<size_t>(ggml_nelements(tensor)/32*2),
  3271. 0, 0, 0, 0, 0, 0, 0,
  3272. { extra->q }
  3273. };
  3274. extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
  3275. tensor->extra = extra;
  3276. return;
  3277. }
  3278. if (tensor->type == GGML_TYPE_Q8_0) {
  3279. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3280. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3281. // Allocate the new extra and create aliases from the original.
  3282. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3283. ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
  3284. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3285. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
  3286. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3287. cl_int err;
  3288. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3289. ggml_nbytes(tensor), NULL, &err);
  3290. CL_CHECK(err);
  3291. CL_CHECK(clEnqueueWriteBuffer(
  3292. queue, data_device, CL_TRUE, 0,
  3293. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3294. // The original tensor memory is divided into scales and quants, i.e.,
  3295. // we first store scales, then quants.
  3296. cl_buffer_region region;
  3297. // Create subbuffer for scales.
  3298. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3299. region.size = size_d;
  3300. extra->d = clCreateSubBuffer(
  3301. extra_orig->data_device, CL_MEM_READ_WRITE,
  3302. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3303. CL_CHECK(err);
  3304. auto previous_origin = region.origin;
  3305. // Create subbuffer for quants.
  3306. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3307. region.size = size_q;
  3308. extra->q = clCreateSubBuffer(
  3309. extra_orig->data_device, CL_MEM_READ_WRITE,
  3310. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3311. CL_CHECK(err);
  3312. cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
  3313. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3314. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3315. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3316. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3317. size_t local_work_size[] = {64, 1, 1};
  3318. cl_event evt;
  3319. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3320. CL_CHECK(clWaitForEvents(1, &evt));
  3321. CL_CHECK(clReleaseMemObject(data_device));
  3322. tensor->extra = extra;
  3323. return;
  3324. }
  3325. #endif // GGML_OPENCL_SOA_Q
  3326. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3327. GGML_ASSERT(extra);
  3328. CL_CHECK(clEnqueueWriteBuffer(
  3329. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  3330. size, data, 0, NULL, NULL));
  3331. GGML_UNUSED(buffer);
  3332. }
  3333. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3334. GGML_ASSERT(tensor->extra);
  3335. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3336. cl_context context = backend_ctx->context;
  3337. cl_command_queue queue = backend_ctx->queue;
  3338. // Make sure all previously submitted commands in other devices are finished.
  3339. sync_with_other_backends(backend_ctx);
  3340. #ifdef GGML_OPENCL_SOA_Q
  3341. // In end-to-end runs, get_tensor is usually used to get back the logits,
  3342. // where we can simply do clEnqueueReadBuffer since they are f32.
  3343. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  3344. // which requires reading back quantized weight tensors.
  3345. // To properly support this, we need to restore block_q4_0 struct arrays
  3346. // from the flattened buffers.
  3347. if (tensor->type == GGML_TYPE_Q4_0) {
  3348. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  3349. cl_int err;
  3350. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3351. ggml_nbytes(tensor), NULL, &err);
  3352. CL_CHECK(err);
  3353. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  3354. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3355. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3356. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3357. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3358. size_t local_work_size[] = {1, 1, 1};
  3359. cl_event evt;
  3360. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3361. global_work_size, local_work_size, 0, NULL, &evt));
  3362. CL_CHECK(clWaitForEvents(1, &evt));
  3363. CL_CHECK(clEnqueueReadBuffer(
  3364. queue, data_device, CL_TRUE, offset,
  3365. size, data, 0, NULL, NULL));
  3366. CL_CHECK(clReleaseMemObject(data_device));
  3367. return;
  3368. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3369. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
  3370. cl_int err;
  3371. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3372. ggml_nbytes(tensor), NULL, &err);
  3373. CL_CHECK(err);
  3374. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3375. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3376. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
  3377. int ne00 = tensor->ne[0];
  3378. int ne01 = tensor->ne[1];
  3379. int ne02 = tensor->ne[2];
  3380. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3381. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3382. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3383. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
  3384. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
  3385. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3386. size_t local_work_size[3] = {64, 2, 1};
  3387. cl_event evt;
  3388. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3389. global_work_size, local_work_size, 0, NULL, &evt));
  3390. CL_CHECK(clWaitForEvents(1, &evt));
  3391. CL_CHECK(clEnqueueReadBuffer(
  3392. queue, data_device, CL_TRUE, offset,
  3393. size, data, 0, NULL, NULL));
  3394. CL_CHECK(clReleaseMemObject(data_device));
  3395. return;
  3396. }
  3397. #endif
  3398. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
  3399. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3400. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3401. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3402. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3403. size_t local_work_size[] = {1, 1, 1};
  3404. cl_event evt;
  3405. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3406. global_work_size, local_work_size, 0, NULL, &evt));
  3407. CL_CHECK(clWaitForEvents(1, &evt));
  3408. CL_CHECK(clEnqueueReadBuffer(
  3409. queue, data_device, CL_TRUE, offset,
  3410. size, data, 0, NULL, NULL));
  3411. CL_CHECK(clReleaseMemObject(data_device));
  3412. return;
  3413. }
  3414. if (tensor->type == GGML_TYPE_Q8_0) {
  3415. ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
  3416. cl_int err;
  3417. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3418. ggml_nbytes(tensor), NULL, &err);
  3419. CL_CHECK(err);
  3420. cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
  3421. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3422. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3423. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3424. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3425. size_t local_work_size[] = {1, 1, 1};
  3426. cl_event evt;
  3427. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3428. global_work_size, local_work_size, 0, NULL, &evt));
  3429. CL_CHECK(clWaitForEvents(1, &evt));
  3430. CL_CHECK(clEnqueueReadBuffer(
  3431. queue, data_device, CL_TRUE, offset,
  3432. size, data, 0, NULL, NULL));
  3433. CL_CHECK(clReleaseMemObject(data_device));
  3434. return;
  3435. }
  3436. #endif // GGML_OPENCL_SOA_Q
  3437. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3438. CL_CHECK(clEnqueueReadBuffer(
  3439. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  3440. size, data, 0, NULL, NULL));
  3441. GGML_UNUSED(buffer);
  3442. }
  3443. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3444. ggml_backend_dev_t dev = buffer->buft->device;
  3445. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  3446. cl_command_queue queue = backend_ctx->queue;
  3447. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3448. for (cl_mem buf : ctx->buffer) {
  3449. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  3450. }
  3451. CL_CHECK(clFinish(queue));
  3452. }
  3453. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  3454. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3455. ctx->reset();
  3456. }
  3457. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  3458. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  3459. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  3460. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  3461. /* .memset_tensor = */ NULL,
  3462. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  3463. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  3464. /* .cpy_tensor = */ NULL,
  3465. /* .clear = */ ggml_backend_opencl_buffer_clear,
  3466. /* .reset = */ ggml_backend_opencl_buffer_reset,
  3467. };
  3468. //
  3469. // buffer type
  3470. //
  3471. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  3472. return "OpenCL";
  3473. GGML_UNUSED(buffer_type);
  3474. }
  3475. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  3476. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  3477. // clCreateBuffer returns -61 for size 0
  3478. size = std::max(size, (size_t)1);
  3479. cl_int err;
  3480. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  3481. if (err != CL_SUCCESS) {
  3482. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  3483. return nullptr;
  3484. }
  3485. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  3486. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  3487. }
  3488. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  3489. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3490. return backend_ctx->alignment;
  3491. }
  3492. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  3493. static size_t max_size = -1;
  3494. if (max_size == (size_t)-1) {
  3495. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3496. max_size = backend_ctx->max_alloc_size;
  3497. }
  3498. return max_size;
  3499. }
  3500. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3501. return ggml_backend_is_opencl(backend);
  3502. UNUSED(buft);
  3503. }
  3504. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  3505. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  3506. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  3507. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  3508. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  3509. /* .get_alloc_size = */ NULL,
  3510. /* .is_host = */ NULL,
  3511. };
  3512. //
  3513. // backend device
  3514. //
  3515. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3516. return "GPUOpenCL";
  3517. GGML_UNUSED(dev);
  3518. }
  3519. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3520. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3521. return dev_ctx->device_name.c_str();
  3522. }
  3523. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3524. *free = 1;
  3525. *total = 1;
  3526. GGML_UNUSED(dev);
  3527. }
  3528. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3529. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3530. GGML_UNUSED(dev);
  3531. }
  3532. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3533. props->name = ggml_backend_opencl_device_get_name(dev);
  3534. props->description = ggml_backend_opencl_device_get_description(dev);
  3535. props->type = ggml_backend_opencl_device_get_type(dev);
  3536. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3537. props->caps = ggml_backend_dev_caps {
  3538. /* .async = */ false,
  3539. /* .host_buffer = */ false,
  3540. /* .buffer_from_host_ptr = */ false,
  3541. /* .events = */ false,
  3542. };
  3543. }
  3544. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3545. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3546. // Getting a new reference to the backend, increase ref_count
  3547. backend_ctx->ref_count++;
  3548. ggml_backend_t backend = new ggml_backend {
  3549. /* .guid = */ ggml_backend_opencl_guid(),
  3550. /* .interface = */ ggml_backend_opencl_i,
  3551. /* .device = */ dev,
  3552. /* .context = */ backend_ctx,
  3553. };
  3554. return backend;
  3555. GGML_UNUSED(params);
  3556. }
  3557. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3558. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3559. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3560. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3561. /* .device = */ dev,
  3562. /* .context = */ nullptr,
  3563. };
  3564. return &dev_ctx->buffer_type;
  3565. }
  3566. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3567. GGML_UNUSED(dev);
  3568. GGML_UNUSED(ptr);
  3569. GGML_UNUSED(size);
  3570. GGML_UNUSED(max_tensor_size);
  3571. return nullptr;
  3572. }
  3573. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3574. return ggml_opencl_supports_op(dev, op);
  3575. }
  3576. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3577. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3578. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3579. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3580. return false;
  3581. }
  3582. // Check cl_context is the same. clEnqueue* commands may not use
  3583. // buffers from another cl_context.
  3584. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3585. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3586. return backend_ctx0->context == backend_ctx1->context;
  3587. }
  3588. namespace /* anonymous */ {
  3589. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3590. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3591. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3592. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3593. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3594. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3595. /* .init_backend = */ ggml_backend_opencl_device_init,
  3596. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3597. /* .get_host_buffer_type = */ NULL,
  3598. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3599. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3600. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3601. /* .offload_op = */ NULL,
  3602. /* .event_new = */ NULL,
  3603. /* .event_free = */ NULL,
  3604. /* .event_synchronize = */ NULL,
  3605. };
  3606. }
  3607. // Backend registry
  3608. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3609. return "OpenCL";
  3610. GGML_UNUSED(reg);
  3611. }
  3612. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3613. return g_ggml_backend_opencl_devices.size();
  3614. GGML_UNUSED(reg);
  3615. }
  3616. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3617. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3618. return &g_ggml_backend_opencl_devices[index];
  3619. GGML_UNUSED(reg);
  3620. GGML_UNUSED(index);
  3621. }
  3622. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3623. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3624. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3625. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3626. /* .get_proc_address = */ NULL,
  3627. };
  3628. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3629. static std::mutex mutex;
  3630. static ggml_backend_reg reg;
  3631. static bool initialized = false;
  3632. std::lock_guard<std::mutex> lock(mutex);
  3633. if (initialized) {
  3634. return &reg;
  3635. }
  3636. initialized = true;
  3637. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3638. reg = ggml_backend_reg{
  3639. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3640. /* .iface = */ ggml_backend_opencl_reg_i,
  3641. /* .context = */ NULL,
  3642. };
  3643. return &reg;
  3644. }
  3645. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3646. //------------------------------------------------------------------------------
  3647. // Debugging utils
  3648. //------------------------------------------------------------------------------
  3649. #if 0
  3650. #define QK4_0 32
  3651. typedef struct {
  3652. ggml_fp16_t d; // delta
  3653. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3654. } block_q4_0;
  3655. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3656. "wrong q4_0 block size/padding");
  3657. #include <math.h>
  3658. #ifdef __cplusplus
  3659. #include "half.hpp"
  3660. #endif
  3661. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3662. void * buf = malloc(ggml_nbytes(tensor));
  3663. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3664. cl_command_queue queue = backend_ctx->queue;
  3665. #ifdef GGML_OPENCL_SOA_Q
  3666. void * buf_q;
  3667. void * buf_d;
  3668. #endif
  3669. // Make sure everything is done.
  3670. CL_CHECK(clFinish(queue));
  3671. #ifdef GGML_OPENCL_SOA_Q
  3672. if (tensor->type == GGML_TYPE_Q4_0) {
  3673. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3674. GGML_ASSERT(extra);
  3675. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3676. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3677. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3678. buf_q = malloc(size_q);
  3679. buf_d = malloc(size_d);
  3680. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3681. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3682. CL_CHECK(clFinish(queue));
  3683. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3684. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
  3685. GGML_ASSERT(extra);
  3686. size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
  3687. size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
  3688. GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
  3689. buf_q = malloc(size_q);
  3690. buf_d = malloc(size_e);
  3691. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3692. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
  3693. CL_CHECK(clFinish(queue));
  3694. } else {
  3695. // Read out the tensor from GPU memory.
  3696. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3697. GGML_ASSERT(extra);
  3698. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3699. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3700. CL_CHECK(clFinish(queue));
  3701. }
  3702. #else
  3703. // Read out the tensor from GPU memory.
  3704. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3705. GGML_ASSERT(extra);
  3706. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3707. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3708. CL_CHECK(clFinish(queue));
  3709. #endif // GGML_OPENCL_SOA_Q
  3710. // Open file and dump.
  3711. char fname[512];
  3712. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3713. FILE * f = fopen(fname, "w");
  3714. if (!f) {
  3715. printf("Failed to open %s\n", fname);
  3716. return;
  3717. }
  3718. if (tensor->type == GGML_TYPE_F32) {
  3719. float * data = (float *) buf;
  3720. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3721. if (isnan(data[i])) {
  3722. printf("NaN found: %s\n", tensor->name);
  3723. break;
  3724. }
  3725. fprintf(f, "%f\n", data[i]);
  3726. }
  3727. } else if (tensor->type == GGML_TYPE_I32) {
  3728. int * data = (int *) buf;
  3729. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3730. if (isnan(data[i])) {
  3731. printf("NaN found: %s\n", tensor->name);
  3732. break;
  3733. }
  3734. fprintf(f, "%d\n", data[i]);
  3735. }
  3736. } else if (tensor->type == GGML_TYPE_F16) {
  3737. #ifdef __cplusplus
  3738. half_float::half * data = (half_float::half *) buf;
  3739. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3740. if (std::isnan(data[i])) {
  3741. printf("NaN found: %s\n", tensor->name);
  3742. break;
  3743. }
  3744. fprintf(f, "%f\n", float(data[i]));
  3745. }
  3746. #endif
  3747. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3748. #ifdef GGML_OPENCL_SOA_Q
  3749. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3750. unsigned char * data_q = (unsigned char *)buf_q;
  3751. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3752. fprintf(f, "%04x, ", data_d[i]);
  3753. for (int k = 0; k < QK4_0/2; ++k) {
  3754. fprintf(f, "%02x, ", data_q[k]);
  3755. }
  3756. fprintf(f, "\n");
  3757. data_q += QK4_0/2;
  3758. }
  3759. free(buf_d);
  3760. free(buf_q);
  3761. #else
  3762. block_q4_0 * data = (block_q4_0 *) buf;
  3763. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3764. fprintf(f, "%04x, ", data[i].d);
  3765. for (int k = 0; k < QK4_0/2; ++k) {
  3766. fprintf(f, "%02x, ", data[i].qs[k]);
  3767. }
  3768. fprintf(f, "\n");
  3769. }
  3770. #endif // GGML_OPENCL_SOA_Q
  3771. }
  3772. free(buf);
  3773. fflush(f);
  3774. fclose(f);
  3775. }
  3776. #else
  3777. #define dump_tensor(tensor)
  3778. #endif
  3779. //------------------------------------------------------------------------------
  3780. // Ops
  3781. //------------------------------------------------------------------------------
  3782. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3783. const int64_t ne10 = src1->ne[0];
  3784. const int64_t ne0 = dst->ne[0];
  3785. const int64_t ne1 = dst->ne[1];
  3786. // TODO: find the optimal values for these
  3787. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3788. src1->type == GGML_TYPE_F32 &&
  3789. dst->type == GGML_TYPE_F32 &&
  3790. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3791. }
  3792. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3793. UNUSED(backend);
  3794. UNUSED(src0);
  3795. UNUSED(src1);
  3796. UNUSED(dst);
  3797. }
  3798. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3799. GGML_ASSERT(src0);
  3800. GGML_ASSERT(src0->extra);
  3801. GGML_ASSERT(src1);
  3802. GGML_ASSERT(src1->extra);
  3803. GGML_ASSERT(dst);
  3804. GGML_ASSERT(dst->extra);
  3805. const int ne00 = src0->ne[0];
  3806. const cl_ulong nb01 = src0->nb[1];
  3807. const cl_ulong nb02 = src0->nb[2];
  3808. const cl_ulong nb03 = src0->nb[3];
  3809. const int ne10 = src1->ne[0];
  3810. const cl_ulong nb10 = src1->nb[0];
  3811. const int ne11 = src1->ne[1];
  3812. const int ne12 = src1->ne[2];
  3813. const cl_ulong nb11 = src1->nb[1];
  3814. const cl_ulong nb12 = src1->nb[2];
  3815. const cl_ulong nb1 = dst->nb[1];
  3816. const cl_ulong nb2 = dst->nb[2];
  3817. const cl_ulong nb3 = dst->nb[3];
  3818. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3819. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3820. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3821. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3822. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3823. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3824. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3825. cl_kernel kernel;
  3826. switch (src0->type) {
  3827. case GGML_TYPE_F32:
  3828. kernel = backend_ctx->kernel_get_rows_f32;
  3829. break;
  3830. case GGML_TYPE_F16:
  3831. kernel = backend_ctx->kernel_get_rows_f16;
  3832. break;
  3833. case GGML_TYPE_Q4_0:
  3834. kernel = backend_ctx->kernel_get_rows_q4_0;
  3835. break;
  3836. default:
  3837. GGML_ASSERT(false && "not implemented");
  3838. }
  3839. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3840. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3841. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3842. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3843. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3844. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3845. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3846. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3847. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3848. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3849. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3850. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
  3851. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  3852. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  3853. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
  3854. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
  3855. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
  3856. size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
  3857. size_t local_work_size[] = {64, 1, 1};
  3858. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3859. }
  3860. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3861. GGML_ASSERT(src0);
  3862. GGML_ASSERT(src0->extra);
  3863. GGML_ASSERT(src1);
  3864. GGML_ASSERT(src1->extra);
  3865. GGML_ASSERT(dst);
  3866. GGML_ASSERT(dst->extra);
  3867. GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
  3868. // ne0 = ne00
  3869. // ne2 = ne02
  3870. // ne3 = ne03
  3871. const int ne01 = src0->ne[1];
  3872. const int ne02 = src0->ne[2];
  3873. const int ne03 = src0->ne[3];
  3874. const cl_ulong nb01 = src0->nb[1];
  3875. const cl_ulong nb02 = src0->nb[2];
  3876. const cl_ulong nb03 = src0->nb[3];
  3877. const int ne11 = src1->ne[1];
  3878. const int ne12 = src1->ne[2];
  3879. const cl_ulong nb10 = src1->nb[0];
  3880. const cl_ulong nb11 = src1->nb[1];
  3881. const cl_ulong nb12 = src1->nb[2];
  3882. const int ne0 = dst->ne[0];
  3883. const cl_ulong nb1 = dst->nb[1];
  3884. const cl_ulong nb2 = dst->nb[2];
  3885. const cl_ulong nb3 = dst->nb[3];
  3886. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3887. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3888. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3889. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3890. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3891. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3892. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3893. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3894. cl_kernel kernel;
  3895. switch (dst->type) {
  3896. case GGML_TYPE_F32:
  3897. if (src1->type == GGML_TYPE_I64) {
  3898. kernel = backend_ctx->kernel_set_rows_f32_i64;
  3899. } else {
  3900. kernel = backend_ctx->kernel_set_rows_f32_i32;
  3901. }
  3902. break;
  3903. case GGML_TYPE_F16:
  3904. if (src1->type == GGML_TYPE_I64) {
  3905. kernel = backend_ctx->kernel_set_rows_f16_i64;
  3906. } else {
  3907. kernel = backend_ctx->kernel_set_rows_f16_i32;
  3908. }
  3909. break;
  3910. default:
  3911. GGML_ABORT("not implemented");
  3912. }
  3913. fastdiv_vals ne11_ = init_fastdiv_values(ne11);
  3914. fastdiv_vals ne12_ = init_fastdiv_values(ne12);
  3915. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3916. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3917. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3918. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3919. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3920. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3921. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3922. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3923. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3924. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3925. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(fastdiv_vals), &ne11_));
  3926. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(fastdiv_vals), &ne12_));
  3927. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3928. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3929. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3930. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3931. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3932. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3933. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3934. int nth0 = 64;
  3935. if (backend_ctx->gpu_family == INTEL) {
  3936. nth0 = 32;
  3937. } else if (backend_ctx->gpu_family == ADRENO) {
  3938. nth0 = 64;
  3939. }
  3940. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3941. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3942. nth0 *= 2;
  3943. }
  3944. int rows_per_workgroup = 1;
  3945. if (nth0 > nblk0) {
  3946. rows_per_workgroup = nth0 / nblk0;
  3947. nth0 = nblk0;
  3948. }
  3949. size_t global_work_size[] = {
  3950. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3951. (size_t)ne02*rows_per_workgroup,
  3952. (size_t)ne03};
  3953. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3954. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3955. }
  3956. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3957. GGML_ASSERT(src0);
  3958. GGML_ASSERT(src0->extra);
  3959. GGML_ASSERT(src1);
  3960. GGML_ASSERT(src1->extra);
  3961. GGML_ASSERT(dst);
  3962. GGML_ASSERT(dst->extra);
  3963. const int ne00 = src0->ne[0];
  3964. const int ne01 = src0->ne[1];
  3965. const int ne02 = src0->ne[2];
  3966. const int ne03 = src0->ne[3];
  3967. const cl_ulong nb00 = src0->nb[0];
  3968. const cl_ulong nb01 = src0->nb[1];
  3969. const cl_ulong nb02 = src0->nb[2];
  3970. const cl_ulong nb03 = src0->nb[3];
  3971. const int ne10 = src1->ne[0];
  3972. const int ne11 = src1->ne[1];
  3973. const int ne12 = src1->ne[2];
  3974. const int ne13 = src1->ne[3];
  3975. const cl_ulong nb10 = src1->nb[0];
  3976. const cl_ulong nb11 = src1->nb[1];
  3977. const cl_ulong nb12 = src1->nb[2];
  3978. const cl_ulong nb13 = src1->nb[3];
  3979. const int ne0 = dst->ne[0];
  3980. const int ne1 = dst->ne[1];
  3981. const int ne2 = dst->ne[2];
  3982. const int ne3 = dst->ne[3];
  3983. const cl_ulong nb0 = dst->nb[0];
  3984. const cl_ulong nb1 = dst->nb[1];
  3985. const cl_ulong nb2 = dst->nb[2];
  3986. const cl_ulong nb3 = dst->nb[3];
  3987. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3988. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3989. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3990. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3991. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3992. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3993. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3994. cl_kernel kernel;
  3995. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  3996. if (bcast_row) {
  3997. GGML_ASSERT(ggml_is_contiguous(src0));
  3998. GGML_ASSERT(ne11 == 1);
  3999. }
  4000. if (dst->type == GGML_TYPE_F32) {
  4001. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  4002. if (bcast_row) {
  4003. kernel = backend_ctx->kernel_add_row;
  4004. const int ne = ne00 / 4;
  4005. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4006. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4007. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4008. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4009. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4010. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4011. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4012. } else {
  4013. kernel = backend_ctx->kernel_add;
  4014. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4015. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4016. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4017. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4018. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4019. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4020. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4021. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4022. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4023. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4024. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4025. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4026. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4027. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4028. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4029. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4030. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4031. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4032. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4033. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4034. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4035. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4036. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4037. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4038. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4039. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4040. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4041. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4042. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4043. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4044. }
  4045. } else if (dst->type == GGML_TYPE_F16) {
  4046. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  4047. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  4048. const int type_src0 = (src0->type == GGML_TYPE_F32);
  4049. const int type_src1 = (src1->type == GGML_TYPE_F32);
  4050. if (bcast_row) {
  4051. kernel = backend_ctx->kernel_add_row_f16;
  4052. const int ne = ne00 / 4;
  4053. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4054. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4055. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4056. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4057. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4058. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4059. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4060. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  4061. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  4062. } else {
  4063. kernel = backend_ctx->kernel_add_f16;
  4064. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4065. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4066. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4067. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4068. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4069. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4070. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4071. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4072. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4073. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4074. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4075. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4076. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4077. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4078. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4079. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4080. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4081. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4082. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4083. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4084. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4085. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4086. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4087. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4088. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4089. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4090. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4091. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4092. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4093. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4094. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  4095. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  4096. }
  4097. } else {
  4098. GGML_ASSERT(false && "unsupported data types for add");
  4099. }
  4100. if (bcast_row) {
  4101. int n = ggml_nelements(dst)/4;
  4102. size_t global_work_size[] = {(size_t)n, 1, 1};
  4103. size_t local_work_size[] = {64, 1, 1};
  4104. size_t * local_work_size_ptr = local_work_size;
  4105. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4106. local_work_size_ptr = nullptr;
  4107. }
  4108. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  4109. } else {
  4110. unsigned int nth = MIN(64, ne0);
  4111. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4112. size_t local_work_size[] = {nth, 1, 1};
  4113. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4114. }
  4115. }
  4116. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4117. GGML_ASSERT(src0);
  4118. GGML_ASSERT(src0->extra);
  4119. GGML_ASSERT(src1);
  4120. GGML_ASSERT(src1->extra);
  4121. GGML_ASSERT(dst);
  4122. GGML_ASSERT(dst->extra);
  4123. const ggml_tensor * src2 = dst->src[2];
  4124. GGML_ASSERT(src2);
  4125. GGML_ASSERT(src2->extra);
  4126. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4128. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  4129. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4130. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  4131. const int ne00 = src0->ne[0];
  4132. const int ne01 = src0->ne[1];
  4133. const int ne02 = src0->ne[2];
  4134. const cl_ulong nb01 = src0->nb[1];
  4135. const cl_ulong nb02 = src0->nb[2];
  4136. const cl_ulong nb11 = src1->nb[1];
  4137. const cl_ulong nb21 = src2->nb[1];
  4138. const int ne0 = dst->ne[0];
  4139. const int ne1 = dst->ne[1];
  4140. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4141. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4142. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4143. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4144. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4145. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4146. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4147. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4148. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4149. cl_kernel kernel = backend_ctx->kernel_add_id;
  4150. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4151. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4152. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4153. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4154. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4155. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4156. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4157. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4158. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4159. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4160. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4161. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  4162. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  4163. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  4164. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  4165. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  4166. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  4167. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4168. }
  4169. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4170. GGML_ASSERT(src0);
  4171. GGML_ASSERT(src0->extra);
  4172. GGML_ASSERT(src1);
  4173. GGML_ASSERT(src1->extra);
  4174. GGML_ASSERT(dst);
  4175. GGML_ASSERT(dst->extra);
  4176. GGML_ASSERT(src0->type == src1->type);
  4177. GGML_ASSERT(src0->type == dst->type);
  4178. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4179. const int ne00 = src0->ne[0];
  4180. const int ne01 = src0->ne[1];
  4181. const int ne02 = src0->ne[2];
  4182. const int ne03 = src0->ne[3];
  4183. const cl_ulong nb00 = src0->nb[0];
  4184. const cl_ulong nb01 = src0->nb[1];
  4185. const cl_ulong nb02 = src0->nb[2];
  4186. const cl_ulong nb03 = src0->nb[3];
  4187. const int ne10 = src1->ne[0];
  4188. const int ne11 = src1->ne[1];
  4189. const int ne12 = src1->ne[2];
  4190. const int ne13 = src1->ne[3]; UNUSED(ne13);
  4191. const cl_ulong nb10 = src1->nb[0];
  4192. const cl_ulong nb11 = src1->nb[1];
  4193. const cl_ulong nb12 = src1->nb[2];
  4194. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  4195. const int ne0 = dst->ne[0];
  4196. const int ne1 = dst->ne[1];
  4197. const int ne2 = dst->ne[2];
  4198. const int ne3 = dst->ne[3];
  4199. const cl_ulong nb0 = dst->nb[0];
  4200. const cl_ulong nb1 = dst->nb[1];
  4201. const cl_ulong nb2 = dst->nb[2];
  4202. const cl_ulong nb3 = dst->nb[3];
  4203. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4204. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4205. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4206. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4207. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4208. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4209. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4210. bool bcast_row = false;
  4211. cl_kernel kernel;
  4212. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4213. GGML_ASSERT(ggml_is_contiguous(src0));
  4214. // src1 is a row
  4215. GGML_ASSERT(ne11 == 1);
  4216. bcast_row = true;
  4217. int ne = ne00 / 4;
  4218. if (src0->type == GGML_TYPE_F32) {
  4219. kernel = backend_ctx->kernel_mul_row;
  4220. } else {
  4221. kernel = backend_ctx->kernel_mul_row_f16;
  4222. }
  4223. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4224. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4225. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4226. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4227. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4228. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4229. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4230. } else {
  4231. if (src0->type == GGML_TYPE_F32) {
  4232. kernel = backend_ctx->kernel_mul;
  4233. } else {
  4234. kernel = backend_ctx->kernel_mul_f16;
  4235. }
  4236. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4237. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4238. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4239. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4240. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4241. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4242. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4243. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4244. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4245. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4246. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4247. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4248. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4249. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4250. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4251. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4252. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4253. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4254. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4255. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4256. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4257. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4258. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4259. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4260. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4261. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4262. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4263. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4264. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4265. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4266. }
  4267. if (bcast_row) {
  4268. int n = ggml_nelements(dst)/4;
  4269. size_t global_work_size[] = {(size_t)n, 1, 1};
  4270. size_t local_work_size[] = {64, 1, 1};
  4271. size_t * local_work_size_ptr = local_work_size;
  4272. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4273. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4274. }
  4275. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4276. } else {
  4277. unsigned int nth = MIN(64, ne0);
  4278. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4279. size_t local_work_size[] = {nth, 1, 1};
  4280. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4281. }
  4282. }
  4283. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4284. GGML_ASSERT(src0);
  4285. GGML_ASSERT(src0->extra);
  4286. GGML_ASSERT(src1);
  4287. GGML_ASSERT(src1->extra);
  4288. GGML_ASSERT(dst);
  4289. GGML_ASSERT(dst->extra);
  4290. GGML_ASSERT(src0->type == src1->type);
  4291. GGML_ASSERT(src0->type == dst->type);
  4292. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4293. const int ne00 = src0->ne[0];
  4294. const int ne01 = src0->ne[1];
  4295. const int ne02 = src0->ne[2];
  4296. const int ne03 = src0->ne[3];
  4297. const cl_ulong nb00 = src0->nb[0];
  4298. const cl_ulong nb01 = src0->nb[1];
  4299. const cl_ulong nb02 = src0->nb[2];
  4300. const cl_ulong nb03 = src0->nb[3];
  4301. const int ne10 = src1->ne[0];
  4302. const int ne11 = src1->ne[1];
  4303. const int ne12 = src1->ne[2];
  4304. const int ne13 = src1->ne[3];
  4305. const cl_ulong nb10 = src1->nb[0];
  4306. const cl_ulong nb11 = src1->nb[1];
  4307. const cl_ulong nb12 = src1->nb[2];
  4308. const cl_ulong nb13 = src1->nb[3];
  4309. const int ne0 = dst->ne[0];
  4310. const cl_ulong nb0 = dst->nb[0];
  4311. const cl_ulong nb1 = dst->nb[1];
  4312. const cl_ulong nb2 = dst->nb[2];
  4313. const cl_ulong nb3 = dst->nb[3];
  4314. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4315. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4316. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4317. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4318. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4319. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4320. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4321. bool bcast_row = false;
  4322. cl_kernel kernel;
  4323. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4324. GGML_ASSERT(ggml_is_contiguous(src0));
  4325. // src1 is a row
  4326. GGML_ASSERT(ne11 == 1);
  4327. bcast_row = true;
  4328. int ne = ne00 / 4;
  4329. if (src0->type == GGML_TYPE_F32) {
  4330. kernel = backend_ctx->kernel_div_row;
  4331. } else {
  4332. kernel = backend_ctx->kernel_div_row_f16;
  4333. }
  4334. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4335. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4336. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4337. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4338. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4339. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4340. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4341. } else {
  4342. if (src0->type == GGML_TYPE_F32) {
  4343. kernel = backend_ctx->kernel_div;
  4344. } else {
  4345. kernel = backend_ctx->kernel_div_f16;
  4346. }
  4347. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4348. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4349. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4350. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4351. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4352. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4353. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4354. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4355. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4356. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4357. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4358. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4359. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4360. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4361. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4362. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4363. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4364. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4365. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4366. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4367. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4368. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4369. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4370. }
  4371. if (bcast_row) {
  4372. int n = ggml_nelements(dst)/4;
  4373. size_t global_work_size[] = {(size_t)n, 1, 1};
  4374. size_t local_work_size[] = {64, 1, 1};
  4375. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4376. } else {
  4377. unsigned int nth = MIN(64, ne0);
  4378. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4379. size_t local_work_size[] = {nth, 1, 1};
  4380. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4381. }
  4382. }
  4383. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4384. GGML_ASSERT(src0);
  4385. GGML_ASSERT(src0->extra);
  4386. GGML_ASSERT(src1);
  4387. GGML_ASSERT(src1->extra);
  4388. GGML_ASSERT(dst);
  4389. GGML_ASSERT(dst->extra);
  4390. GGML_ASSERT(src0->type == src1->type);
  4391. GGML_ASSERT(src0->type == dst->type);
  4392. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4393. const int ne00 = src0->ne[0];
  4394. const int ne01 = src0->ne[1];
  4395. const int ne02 = src0->ne[2];
  4396. const int ne03 = src0->ne[3];
  4397. const cl_ulong nb00 = src0->nb[0];
  4398. const cl_ulong nb01 = src0->nb[1];
  4399. const cl_ulong nb02 = src0->nb[2];
  4400. const cl_ulong nb03 = src0->nb[3];
  4401. const int ne10 = src1->ne[0];
  4402. const int ne11 = src1->ne[1];
  4403. const int ne12 = src1->ne[2];
  4404. const int ne13 = src1->ne[3];
  4405. const cl_ulong nb10 = src1->nb[0];
  4406. const cl_ulong nb11 = src1->nb[1];
  4407. const cl_ulong nb12 = src1->nb[2];
  4408. const cl_ulong nb13 = src1->nb[3];
  4409. const int ne0 = dst->ne[0];
  4410. const cl_ulong nb0 = dst->nb[0];
  4411. const cl_ulong nb1 = dst->nb[1];
  4412. const cl_ulong nb2 = dst->nb[2];
  4413. const cl_ulong nb3 = dst->nb[3];
  4414. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4415. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4416. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4417. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4418. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4419. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4420. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4421. bool bcast_row = false;
  4422. cl_kernel kernel;
  4423. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4424. GGML_ASSERT(ggml_is_contiguous(src0));
  4425. // src1 is a row
  4426. GGML_ASSERT(ne11 == 1);
  4427. bcast_row = true;
  4428. int ne = ne00 / 4;
  4429. if (src0->type == GGML_TYPE_F32) {
  4430. kernel = backend_ctx->kernel_sub_row;
  4431. } else {
  4432. kernel = backend_ctx->kernel_sub_row_f16;
  4433. }
  4434. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4435. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4436. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4437. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4438. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4439. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4440. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4441. } else {
  4442. if (src0->type == GGML_TYPE_F32) {
  4443. kernel = backend_ctx->kernel_sub;
  4444. } else {
  4445. kernel = backend_ctx->kernel_sub_f16;
  4446. }
  4447. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4448. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4449. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4450. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4451. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4452. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4453. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4454. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4455. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4456. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4457. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4458. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4459. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4460. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4461. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4462. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4463. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4464. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4465. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4466. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4467. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4468. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4469. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4470. }
  4471. if (bcast_row) {
  4472. int n = ggml_nelements(dst)/4;
  4473. size_t global_work_size[] = {(size_t)n, 1, 1};
  4474. size_t local_work_size[] = {64, 1, 1};
  4475. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4476. } else {
  4477. unsigned int nth = MIN(64, ne0);
  4478. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4479. size_t local_work_size[] = {nth, 1, 1};
  4480. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4481. }
  4482. }
  4483. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4484. GGML_ASSERT(src0);
  4485. GGML_ASSERT(src0->extra);
  4486. GGML_ASSERT(dst);
  4487. GGML_ASSERT(dst->extra);
  4488. UNUSED(src1);
  4489. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4490. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4491. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4492. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4493. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4494. cl_kernel kernel;
  4495. int n = ggml_nelements(dst);
  4496. if (n % 4 == 0) {
  4497. kernel = backend_ctx->kernel_gelu_4;
  4498. n /= 4;
  4499. } else {
  4500. kernel = backend_ctx->kernel_gelu;
  4501. }
  4502. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4503. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4504. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4505. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4506. size_t global_work_size[] = {(size_t)n, 1, 1};
  4507. size_t local_work_size[] = {64, 1, 1};
  4508. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4509. }
  4510. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4511. GGML_ASSERT(src0);
  4512. GGML_ASSERT(src0->extra);
  4513. GGML_ASSERT(dst);
  4514. GGML_ASSERT(dst->extra);
  4515. UNUSED(src1);
  4516. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4517. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4518. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4519. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4520. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4521. cl_kernel kernel;
  4522. int n = ggml_nelements(dst);
  4523. if (n % 4 == 0) {
  4524. kernel = backend_ctx->kernel_gelu_erf_4;
  4525. n /= 4;
  4526. } else {
  4527. kernel = backend_ctx->kernel_gelu_erf;
  4528. }
  4529. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4530. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4531. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4532. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4533. size_t global_work_size[] = {(size_t)n, 1, 1};
  4534. size_t local_work_size[] = {64, 1, 1};
  4535. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4536. }
  4537. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4538. GGML_ASSERT(src0);
  4539. GGML_ASSERT(src0->extra);
  4540. GGML_ASSERT(dst);
  4541. GGML_ASSERT(dst->extra);
  4542. UNUSED(src1);
  4543. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4544. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4545. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4546. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4547. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4548. cl_kernel kernel;
  4549. int n = ggml_nelements(dst);
  4550. if (n % 4 == 0) {
  4551. kernel = backend_ctx->kernel_gelu_quick_4;
  4552. n /= 4;
  4553. } else {
  4554. kernel = backend_ctx->kernel_gelu_quick;
  4555. }
  4556. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4557. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4558. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4559. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4560. size_t global_work_size[] = {(size_t)n, 1, 1};
  4561. size_t local_work_size[] = {64, 1, 1};
  4562. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4563. }
  4564. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4565. GGML_ASSERT(src0);
  4566. GGML_ASSERT(src0->extra);
  4567. GGML_ASSERT(dst);
  4568. GGML_ASSERT(dst->extra);
  4569. UNUSED(src1);
  4570. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4571. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4572. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4573. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4574. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4575. cl_kernel kernel;
  4576. int n = ggml_nelements(dst);
  4577. if (n % 4 == 0) {
  4578. kernel = backend_ctx->kernel_silu_4;
  4579. n /= 4;
  4580. } else {
  4581. kernel = backend_ctx->kernel_silu;
  4582. }
  4583. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4584. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4585. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4586. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4587. size_t global_work_size[] = {(size_t)n, 1, 1};
  4588. size_t local_work_size[] = {64, 1, 1};
  4589. size_t * local_work_size_ptr = local_work_size;
  4590. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4591. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4592. }
  4593. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4594. }
  4595. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4596. GGML_ASSERT(src0);
  4597. GGML_ASSERT(src0->extra);
  4598. GGML_ASSERT(dst);
  4599. GGML_ASSERT(dst->extra);
  4600. UNUSED(src1);
  4601. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4602. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4603. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4604. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4605. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4606. cl_kernel kernel = backend_ctx->kernel_relu;
  4607. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4608. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4609. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4610. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4611. const int64_t n = ggml_nelements(dst);
  4612. size_t global_work_size[] = {(size_t)n, 1, 1};
  4613. size_t local_work_size[] = {64, 1, 1};
  4614. size_t * local_work_size_ptr = local_work_size;
  4615. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4616. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4617. }
  4618. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4619. }
  4620. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4621. GGML_ASSERT(src0);
  4622. GGML_ASSERT(src0->extra);
  4623. GGML_ASSERT(dst);
  4624. GGML_ASSERT(dst->extra);
  4625. UNUSED(src1);
  4626. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4627. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4628. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4629. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4630. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4631. cl_kernel kernel;
  4632. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4633. kernel = backend_ctx->kernel_sigmoid_f32;
  4634. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  4635. kernel = backend_ctx->kernel_sigmoid_f16;
  4636. } else {
  4637. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  4638. }
  4639. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4640. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4641. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4642. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4643. const int64_t n = ggml_nelements(dst);
  4644. size_t global_work_size[] = {(size_t)n, 1, 1};
  4645. size_t local_work_size[] = {64, 1, 1};
  4646. size_t * local_work_size_ptr = local_work_size;
  4647. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4648. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4649. }
  4650. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4651. }
  4652. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4653. GGML_ASSERT(src0);
  4654. GGML_ASSERT(src0->extra);
  4655. GGML_ASSERT(dst);
  4656. GGML_ASSERT(dst->extra);
  4657. UNUSED(src1);
  4658. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4659. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4660. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4661. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4662. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4663. float min;
  4664. float max;
  4665. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4666. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4667. cl_kernel kernel = backend_ctx->kernel_clamp;
  4668. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4669. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4670. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4671. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4672. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  4673. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  4674. const int64_t n = ggml_nelements(dst);
  4675. size_t global_work_size[] = {(size_t)n, 1, 1};
  4676. size_t local_work_size[] = {64, 1, 1};
  4677. size_t * local_work_size_ptr = local_work_size;
  4678. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4679. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4680. }
  4681. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4682. }
  4683. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4684. GGML_ASSERT(src0);
  4685. GGML_ASSERT(src0->extra);
  4686. GGML_ASSERT(dst);
  4687. GGML_ASSERT(dst->extra);
  4688. UNUSED(src1);
  4689. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4690. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4691. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4692. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4693. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4694. float eps;
  4695. memcpy(&eps, dst->op_params, sizeof(float));
  4696. const int ne00 = src0 ? src0->ne[0] : 0;
  4697. const int ne01 = src0 ? src0->ne[1] : 0;
  4698. const int ne02 = src0 ? src0->ne[2] : 0;
  4699. const int ne03 = src0 ? src0->ne[3] : 0;
  4700. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4701. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4702. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4703. const int nth = MIN(64, ne00);
  4704. cl_kernel kernel = backend_ctx->kernel_norm;
  4705. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4706. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4707. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4708. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4709. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4710. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4711. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4712. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4713. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4714. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4715. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4716. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4717. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  4718. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4719. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4720. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4721. }
  4722. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4723. GGML_ASSERT(src0);
  4724. GGML_ASSERT(src0->extra);
  4725. GGML_ASSERT(dst);
  4726. GGML_ASSERT(dst->extra);
  4727. UNUSED(src1);
  4728. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4729. //ggml_backend_opencl_device_context * dev_ctx =
  4730. // (ggml_backend_opencl_device_context *)backend->device->context;
  4731. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4732. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4733. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4734. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4735. float eps;
  4736. memcpy(&eps, dst->op_params, sizeof(float));
  4737. const int ne00 = src0 ? src0->ne[0] : 0;
  4738. const int ne01 = src0 ? src0->ne[1] : 0;
  4739. const int ne02 = src0 ? src0->ne[2] : 0;
  4740. const int ne03 = src0 ? src0->ne[3] : 0;
  4741. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4742. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4743. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4744. GGML_ASSERT(ne00 % 4 == 0);
  4745. const int nth = MIN(64, ne00);
  4746. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4747. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4748. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  4749. // Note, this kernel declares local memory in kernel args and the size
  4750. // depends on subgroup size.
  4751. // Note, this requires OpenCL 2.1 and above
  4752. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  4753. size_t sgs;
  4754. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  4755. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  4756. // sizeof(local_work_size), local_work_size,
  4757. // sizeof(size_t), &sgs, NULL));
  4758. if (backend_ctx->gpu_family == ADRENO) {
  4759. sgs = 64;
  4760. } else if (backend_ctx->gpu_family == INTEL) {
  4761. sgs = 32;
  4762. } else {
  4763. GGML_ASSERT(false && "Unsupported GPU");
  4764. }
  4765. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4766. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4767. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4768. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4769. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4770. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4771. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4772. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4773. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4774. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4775. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4776. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4777. // This is local memory - the size depends on subgroup size.
  4778. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  4779. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4780. }
  4781. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  4782. GGML_ASSERT(mul_tensor);
  4783. GGML_ASSERT(rms_norm_tensor);
  4784. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  4785. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  4786. const ggml_tensor * src1;
  4787. if (mul_tensor->src[0] == rms_norm_tensor) {
  4788. src1 = mul_tensor->src[1];
  4789. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  4790. src1 = mul_tensor->src[0];
  4791. } else {
  4792. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  4793. }
  4794. const ggml_tensor * dst = mul_tensor;
  4795. GGML_ASSERT(src0);
  4796. GGML_ASSERT(src0->extra);
  4797. GGML_ASSERT(src1);
  4798. GGML_ASSERT(src1->extra);
  4799. GGML_ASSERT(dst);
  4800. GGML_ASSERT(dst->extra);
  4801. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4802. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4803. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4804. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4805. cl_ulong offset1 = extra1->offset + src0->view_offs;
  4806. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4807. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4808. float eps;
  4809. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  4810. const int ne00 = src0->ne[0];
  4811. const int ne01 = src0->ne[1];
  4812. const int ne02 = src0->ne[2];
  4813. const int ne03 = src0->ne[3];
  4814. const cl_ulong nb01 = src0->nb[1];
  4815. const cl_ulong nb02 = src0->nb[2];
  4816. const cl_ulong nb03 = src0->nb[3];
  4817. const int ne10 = src1->ne[0];
  4818. const int ne11 = src1->ne[1];
  4819. const int ne12 = src1->ne[2];
  4820. const int ne13 = src1->ne[3];
  4821. const cl_ulong nb11 = src1->nb[1];
  4822. const cl_ulong nb12 = src1->nb[2];
  4823. const cl_ulong nb13 = src1->nb[3];
  4824. const cl_ulong nb1 = dst->nb[1];
  4825. const cl_ulong nb2 = dst->nb[2];
  4826. const cl_ulong nb3 = dst->nb[3];
  4827. GGML_ASSERT(ne00 % 4 == 0);
  4828. size_t sgs;
  4829. if (backend_ctx->gpu_family == ADRENO) {
  4830. sgs = 64;
  4831. } else if (backend_ctx->gpu_family == INTEL) {
  4832. sgs = 32;
  4833. } else {
  4834. GGML_ASSERT(false && "Unsupported GPU");
  4835. }
  4836. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  4837. int nth = sgs;
  4838. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4839. while (nth < ne00 && nth < max_workgroup_size) {
  4840. nth *= 2;
  4841. }
  4842. nth = MIN(nth, max_workgroup_size);
  4843. nth = MIN(nth, ne00);
  4844. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4845. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4846. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4847. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4848. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4849. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4850. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4851. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4852. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4853. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4854. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4855. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4856. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4857. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4858. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4859. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4860. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4861. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4862. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  4863. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4864. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4865. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4866. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4867. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4868. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4869. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  4870. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs, NULL));
  4871. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4872. }
  4873. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4874. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  4875. const ggml_tensor * src0 = norm_tensor->src[0];
  4876. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4877. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4878. const ggml_tensor * dst = add_tensor;
  4879. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4880. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4881. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4882. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4883. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4884. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4885. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4886. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4887. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4888. float eps;
  4889. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  4890. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4891. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4892. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  4893. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4894. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  4895. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  4896. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  4897. size_t sgs;
  4898. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  4899. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  4900. else GGML_ASSERT(false && "Unsupported GPU");
  4901. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  4902. int nth = sgs;
  4903. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4904. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  4905. nth = MIN(nth, max_workgroup_size);
  4906. nth = MIN(nth, ne00/4);
  4907. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4908. size_t lws[] = {(size_t)nth, 1, 1};
  4909. size_t num_subgroups = (nth + sgs - 1) / sgs;
  4910. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4911. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4912. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4913. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4914. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4915. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4916. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4917. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4918. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4919. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4920. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  4921. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  4922. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  4923. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  4924. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  4925. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  4926. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  4927. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  4928. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  4929. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4930. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4931. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4932. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  4933. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  4934. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  4935. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  4936. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  4937. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  4938. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  4939. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  4940. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  4941. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  4942. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  4943. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  4944. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  4945. }
  4946. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4947. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  4948. const ggml_tensor * src0 = gn_tensor->src[0];
  4949. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4950. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4951. const ggml_tensor * dst = add_tensor;
  4952. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4953. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4954. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4955. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4956. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4957. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4958. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4959. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4960. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4961. int groups;
  4962. float eps;
  4963. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  4964. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  4965. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  4966. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4967. int ne = ggml_nelements(src0);
  4968. int group_size = ne / groups;
  4969. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  4970. size_t gws[] = { (size_t)groups * lws[0] };
  4971. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4972. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4973. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4974. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4975. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4976. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4977. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4978. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4979. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  4980. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  4981. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  4982. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  4983. }
  4984. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4985. GGML_ASSERT(src0);
  4986. GGML_ASSERT(src0->extra);
  4987. GGML_ASSERT(dst);
  4988. GGML_ASSERT(dst->extra);
  4989. UNUSED(src1);
  4990. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4991. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4992. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4993. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4994. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4995. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  4996. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  4997. float eps = ((const float *) dst->op_params)[1];
  4998. const int ne00 = src0->ne[0];
  4999. const int ne01 = src0->ne[1];
  5000. const int ne02 = src0->ne[2];
  5001. const int ne = ne00*ne01*ne02;
  5002. cl_kernel kernel = backend_ctx->kernel_group_norm;
  5003. size_t sgs = 64;
  5004. if (backend_ctx->gpu_family == ADRENO) {
  5005. sgs = 64;
  5006. } else if (backend_ctx->gpu_family == INTEL) {
  5007. sgs = 32;
  5008. } else {
  5009. GGML_ASSERT(false && "Unsupported GPU");
  5010. }
  5011. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5012. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5013. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5014. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5015. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  5016. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  5017. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  5018. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  5019. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  5020. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5021. }
  5022. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5023. GGML_ASSERT(src0);
  5024. GGML_ASSERT(src0->extra);
  5025. GGML_ASSERT(dst);
  5026. GGML_ASSERT(dst->extra);
  5027. UNUSED(src1);
  5028. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5029. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5030. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5031. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  5032. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  5033. cl_kernel kernel;
  5034. if (dst->type == GGML_TYPE_F32) {
  5035. kernel = backend_ctx->kernel_tanh_f32_nd;
  5036. } else if (dst->type == GGML_TYPE_F16) {
  5037. kernel = backend_ctx->kernel_tanh_f16_nd;
  5038. } else {
  5039. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  5040. }
  5041. GGML_ASSERT(kernel != nullptr);
  5042. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  5043. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  5044. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  5045. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  5046. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5047. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  5048. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5049. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  5050. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5051. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5052. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5053. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5054. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5055. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5056. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  5057. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  5058. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5059. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5060. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5061. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5062. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  5063. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  5064. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  5065. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  5066. size_t global_work_size[3];
  5067. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  5068. return;
  5069. }
  5070. global_work_size[0] = (size_t)ne10;
  5071. global_work_size[1] = (size_t)ne11;
  5072. global_work_size[2] = (size_t)ne12;
  5073. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  5074. if (ne10 < 16) lws0 = ne10;
  5075. if (ne11 < 4) lws1 = ne11;
  5076. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  5077. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  5078. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  5079. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  5080. size_t local_work_size[] = {lws0, lws1, lws2};
  5081. size_t* local_work_size_ptr = local_work_size;
  5082. if (!backend_ctx->non_uniform_workgroups) {
  5083. if (global_work_size[0] % local_work_size[0] != 0 ||
  5084. global_work_size[1] % local_work_size[1] != 0 ||
  5085. global_work_size[2] % local_work_size[2] != 0) {
  5086. local_work_size_ptr = NULL;
  5087. }
  5088. }
  5089. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  5090. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5091. }
  5092. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  5093. GGML_ASSERT(src0);
  5094. GGML_ASSERT(src0->extra);
  5095. GGML_ASSERT(dst);
  5096. GGML_ASSERT(dst->extra);
  5097. GGML_ASSERT(dst->type == src0->type);
  5098. UNUSED(src1_shape_def);
  5099. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5100. if (backend_ctx->kernel_repeat == nullptr) {
  5101. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  5102. return;
  5103. }
  5104. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5105. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5106. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5107. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5108. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  5109. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  5110. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  5111. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  5112. cl_kernel kernel = backend_ctx->kernel_repeat;
  5113. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5114. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  5115. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  5116. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5117. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  5118. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  5119. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  5120. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  5121. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  5122. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  5123. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  5124. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  5125. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  5126. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  5127. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  5128. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  5129. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  5130. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  5131. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  5132. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  5133. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  5134. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  5135. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  5136. size_t global_work_size[] = { gws0, gws1, gws2 };
  5137. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5138. }
  5139. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5140. GGML_ASSERT(src0);
  5141. GGML_ASSERT(src0->extra);
  5142. GGML_ASSERT(dst);
  5143. GGML_ASSERT(dst->extra);
  5144. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5145. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5146. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5147. if (backend_ctx->kernel_pad == nullptr) {
  5148. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  5149. return;
  5150. }
  5151. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5152. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5153. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5154. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5155. const int s_ne0 = src0->ne[0];
  5156. const int s_ne1 = src0->ne[1];
  5157. const int s_ne2 = src0->ne[2];
  5158. const int s_ne3 = src0->ne[3];
  5159. const int s_nb0 = src0->nb[0];
  5160. const int s_nb1 = src0->nb[1];
  5161. const int s_nb2 = src0->nb[2];
  5162. const int s_nb3 = src0->nb[3];
  5163. const int d_ne0 = dst->ne[0];
  5164. const int d_ne1 = dst->ne[1];
  5165. const int d_ne2 = dst->ne[2];
  5166. const int d_ne3 = dst->ne[3];
  5167. const int d_nb0 = dst->nb[0];
  5168. const int d_nb1 = dst->nb[1];
  5169. const int d_nb2 = dst->nb[2];
  5170. const int d_nb3 = dst->nb[3];
  5171. const int lp0 = ((const int*)(dst->op_params))[0];
  5172. const int rp0 = ((const int*)(dst->op_params))[1];
  5173. const int lp1 = ((const int*)(dst->op_params))[2];
  5174. const int rp1 = ((const int*)(dst->op_params))[3];
  5175. const int lp2 = ((const int*)(dst->op_params))[4];
  5176. const int rp2 = ((const int*)(dst->op_params))[5];
  5177. const int lp3 = ((const int*)(dst->op_params))[6];
  5178. const int rp3 = ((const int*)(dst->op_params))[7];
  5179. cl_kernel kernel = backend_ctx->kernel_pad;
  5180. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5181. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5182. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5183. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5184. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  5185. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  5186. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  5187. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
  5188. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
  5189. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
  5190. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
  5191. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
  5192. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5193. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5194. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5195. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
  5196. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
  5197. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
  5198. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
  5199. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
  5200. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
  5201. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
  5202. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
  5203. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
  5204. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
  5205. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
  5206. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
  5207. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
  5208. size_t lws0 = 64;
  5209. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  5210. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
  5211. size_t local_work_size[] = { lws0, 1, 1 };
  5212. size_t * local_work_size_ptr = local_work_size;
  5213. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  5214. local_work_size_ptr = nullptr;
  5215. }
  5216. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5217. }
  5218. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5219. GGML_ASSERT(src0);
  5220. GGML_ASSERT(src0->extra);
  5221. GGML_ASSERT(dst);
  5222. GGML_ASSERT(dst->extra);
  5223. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5224. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5225. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5226. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  5227. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  5228. cl_kernel kernel = nullptr;
  5229. if (mode == GGML_SCALE_MODE_NEAREST) {
  5230. kernel = backend_ctx->kernel_upscale;
  5231. if (kernel == nullptr) {
  5232. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5233. return;
  5234. }
  5235. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5236. kernel = backend_ctx->kernel_upscale_bilinear;
  5237. if (kernel == nullptr) {
  5238. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5239. return;
  5240. }
  5241. } else {
  5242. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  5243. return;
  5244. }
  5245. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5246. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5247. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5248. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5249. const cl_ulong nb00 = src0->nb[0];
  5250. const cl_ulong nb01 = src0->nb[1];
  5251. const cl_ulong nb02 = src0->nb[2];
  5252. const cl_ulong nb03 = src0->nb[3];
  5253. const int ne00 = src0->ne[0];
  5254. const int ne01 = src0->ne[1];
  5255. const int ne02 = src0->ne[2];
  5256. const int ne03 = src0->ne[3];
  5257. const int ne0 = dst->ne[0];
  5258. const int ne1 = dst->ne[1];
  5259. const int ne2 = dst->ne[2];
  5260. const int ne3 = dst->ne[3];
  5261. float sf0 = (float)ne0 / ne00;
  5262. float sf1 = (float)ne1 / ne01;
  5263. float sf2 = (float)ne2 / ne02;
  5264. float sf3 = (float)ne3 / ne03;
  5265. float pixel_offset = 0.5f;
  5266. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5267. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5268. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5269. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5270. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  5271. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  5272. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  5273. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  5274. if (mode == GGML_SCALE_MODE_NEAREST) {
  5275. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5276. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  5277. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  5278. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  5279. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  5280. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  5281. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  5282. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  5283. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5284. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  5285. sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
  5286. sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
  5287. pixel_offset = 0.0f;
  5288. }
  5289. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5290. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5291. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  5292. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  5293. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  5294. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  5295. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  5296. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  5297. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  5298. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  5299. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  5300. }
  5301. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  5302. if (dst_total_elements == 0) {
  5303. return;
  5304. }
  5305. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  5306. size_t local_work_size_pref = 256;
  5307. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  5308. size_t * local_work_size_ptr = local_work_size;
  5309. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  5310. local_work_size_ptr = nullptr;
  5311. }
  5312. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5313. }
  5314. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5315. GGML_ASSERT(src0);
  5316. GGML_ASSERT(src0->extra);
  5317. GGML_ASSERT(src1);
  5318. GGML_ASSERT(src1->extra);
  5319. GGML_ASSERT(dst);
  5320. GGML_ASSERT(dst->extra);
  5321. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5322. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5323. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5324. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5325. cl_command_queue queue = backend_ctx->queue;
  5326. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  5327. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  5328. return;
  5329. }
  5330. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  5331. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  5332. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  5333. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  5334. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  5335. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  5336. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  5337. GGML_ASSERT(dim >= 0 && dim <= 3);
  5338. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  5339. if (dim == 3) {
  5340. size_t nbytes_src0 = ggml_nbytes(src0);
  5341. size_t nbytes_src1 = ggml_nbytes(src1);
  5342. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  5343. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  5344. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  5345. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  5346. } else {
  5347. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  5348. size_t global_work_size[3];
  5349. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  5350. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  5351. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  5352. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  5353. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  5354. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  5355. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  5356. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5357. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  5358. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5359. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  5360. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5361. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  5362. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  5363. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  5364. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  5365. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  5366. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  5367. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  5368. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5369. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5370. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5371. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  5372. global_work_size[0] = d_ne0;
  5373. global_work_size[1] = d_ne1;
  5374. global_work_size[2] = d_ne2;
  5375. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5376. }
  5377. }
  5378. } else {
  5379. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  5380. cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5381. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5382. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5383. cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  5384. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  5385. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5386. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5387. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5388. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  5389. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5390. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  5391. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
  5392. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
  5393. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
  5394. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
  5395. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  5396. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  5397. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5398. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  5399. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  5400. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  5401. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  5402. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  5403. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
  5404. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
  5405. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
  5406. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
  5407. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  5408. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  5409. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  5410. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  5411. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  5412. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  5413. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  5414. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  5415. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  5416. }
  5417. }
  5418. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5419. GGML_ASSERT(src0);
  5420. GGML_ASSERT(src0->extra);
  5421. GGML_ASSERT(dst);
  5422. GGML_ASSERT(dst->extra);
  5423. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5424. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5425. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5426. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  5427. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  5428. return;
  5429. }
  5430. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5431. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5432. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5433. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5434. const int logical_dim = dst->op_params[0];
  5435. const int max_period = dst->op_params[1];
  5436. const int dst_nb1_bytes = dst->nb[1];
  5437. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  5438. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5439. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5440. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5441. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5442. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  5443. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  5444. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  5445. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  5446. size_t gws1 = (size_t)src0->ne[0];
  5447. size_t global_work_size[] = {gws0, gws1, 1};
  5448. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5449. }
  5450. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  5451. const ggml_tensor * v = dst->src[2];
  5452. const ggml_tensor * mask = dst->src[3];
  5453. const ggml_tensor * sinks = dst->src[4];
  5454. GGML_ASSERT(q->extra);
  5455. GGML_ASSERT(k->extra);
  5456. GGML_ASSERT(v->extra);
  5457. GGML_ASSERT(dst->extra);
  5458. if (mask) {
  5459. GGML_ASSERT(mask->extra);
  5460. }
  5461. if (sinks) {
  5462. GGML_ASSERT(sinks->extra);
  5463. }
  5464. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5465. const int n_q = q->ne[1];
  5466. const int n_kv = k->ne[1];
  5467. const int d_head_q = q->ne[0];
  5468. const int d_head_v = v->ne[0];
  5469. const int n_head = q->ne[2];
  5470. const int n_head_kv = k->ne[2];
  5471. const int n_batch = q->ne[3];
  5472. cl_kernel kernel = NULL;
  5473. const bool is_f16 = q->type == GGML_TYPE_F16;
  5474. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  5475. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  5476. if (n_q == 1) {
  5477. if (is_mixed) {
  5478. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  5479. } else if (is_f16) {
  5480. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  5481. } else {
  5482. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  5483. }
  5484. } else {
  5485. if (is_mixed) {
  5486. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  5487. } else if (is_f16) {
  5488. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  5489. } else {
  5490. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  5491. }
  5492. }
  5493. GGML_ASSERT(kernel != NULL);
  5494. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  5495. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  5496. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  5497. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  5498. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  5499. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  5500. cl_ulong offset_q = extra_q->offset + q->view_offs;
  5501. cl_ulong offset_k = extra_k->offset + k->view_offs;
  5502. cl_ulong offset_v = extra_v->offset + v->view_offs;
  5503. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  5504. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  5505. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  5506. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  5507. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  5508. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  5509. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  5510. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  5511. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  5512. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  5513. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  5514. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  5515. const int mask_ne2 = mask ? mask->ne[2] : 0;
  5516. const int mask_ne3 = mask ? mask->ne[3] : 0;
  5517. float scale, max_bias, logit_softcap;
  5518. const float * params = (const float *)dst->op_params;
  5519. scale = params[0];
  5520. max_bias = params[1];
  5521. logit_softcap = params[2];
  5522. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  5523. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  5524. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  5525. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  5526. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  5527. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  5528. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  5529. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  5530. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  5531. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  5532. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  5533. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  5534. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  5535. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  5536. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  5537. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  5538. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  5539. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  5540. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  5541. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  5542. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  5543. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  5544. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  5545. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  5546. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  5547. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  5548. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  5549. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  5550. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  5551. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  5552. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  5553. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  5554. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  5555. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  5556. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  5557. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  5558. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  5559. if (n_q == 1) {
  5560. const size_t wg_size = 64;
  5561. size_t local_work_size[] = { wg_size, 1 };
  5562. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  5563. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5564. } else {
  5565. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  5566. const size_t wg_size = block_m;
  5567. size_t local_work_size[] = { wg_size, 1 };
  5568. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  5569. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5570. }
  5571. }
  5572. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5573. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5574. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5575. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5576. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5577. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5578. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5579. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5580. const int M = src0->ne[1];
  5581. const int N = src1->ne[1];
  5582. const int K = src0->ne[0];
  5583. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5584. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5585. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5586. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5587. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5588. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5589. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5590. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5591. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5592. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5593. // Tiling parameters. These need to be tuned for optimal performance.
  5594. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5595. //
  5596. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5597. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5598. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5599. //
  5600. // The following relationships must hold:
  5601. // OPWM = TPWM * OPTM
  5602. // OPWN = TPWN * OPTN
  5603. //
  5604. const int OPWM = 64;
  5605. const int OPWN = 64;
  5606. const int TPWM = 16;
  5607. const int TPWN = 8;
  5608. size_t local_work_size[2] = { TPWM, TPWN };
  5609. size_t global_work_size[2] = {
  5610. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5611. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5612. };
  5613. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5614. }
  5615. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5616. GGML_TENSOR_BINARY_OP_LOCALS;
  5617. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5618. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5619. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5620. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5621. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5622. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5623. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5624. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  5625. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  5626. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  5627. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  5628. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  5629. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  5630. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  5631. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  5632. const int64_t NPQ = (int64_t)N * OW * OH;
  5633. const uint32_t BS_K = 64;
  5634. const uint32_t BS_NPQ = 64;
  5635. const uint32_t BS_CRS = 16;
  5636. const uint32_t VEC_SIZE = 4;
  5637. const uint32_t TS_K = 4;
  5638. const uint32_t TS_NPQ = 8;
  5639. const uint32_t WG_K = BS_K / TS_K;
  5640. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  5641. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  5642. const uint32_t NB_K = splitWork(Cout, BS_K);
  5643. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  5644. cl_kernel kernel;
  5645. size_t shmem_size;
  5646. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  5647. kernel = backend_ctx->kernel_conv_2d_f16;
  5648. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  5649. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  5650. kernel = backend_ctx->kernel_conv_2d_f32;
  5651. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5652. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  5653. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  5654. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5655. } else {
  5656. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  5657. }
  5658. cl_uint idx = 0;
  5659. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  5660. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  5661. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  5662. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  5663. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  5664. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  5665. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  5666. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  5667. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  5668. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  5669. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  5670. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  5671. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  5672. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  5673. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5674. }
  5675. static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5676. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5677. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5678. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5679. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5680. const int ne00 = src0->ne[0];
  5681. const int ne01 = src0->ne[1];
  5682. const int ne02 = src0->ne[2];
  5683. const cl_ulong nb01 = src0->nb[1];
  5684. const cl_ulong nb02 = src0->nb[2];
  5685. const int ne10 = src1->ne[0];
  5686. const int ne11 = src1->ne[1];
  5687. const int ne12 = src1->ne[2];
  5688. const cl_ulong nb10 = src1->nb[0];
  5689. const int ne0 = dst->ne[0];
  5690. const int ne1 = dst->ne[1];
  5691. GGML_ASSERT(ne00 == ne10);
  5692. cl_kernel kernel;
  5693. cl_context context = backend_ctx->context;
  5694. cl_int status;
  5695. cl_image_format img_fmt_1d;
  5696. cl_image_desc img_desc_1d;
  5697. cl_buffer_region region;
  5698. cl_mem A_image1d;
  5699. cl_mem A_sub_buffer;
  5700. cl_mem B_sub_buffer;
  5701. cl_mem D_image1d;
  5702. cl_mem D_sub_buffer;
  5703. int M = ne01;
  5704. int N = ne1;
  5705. int K = ne00;
  5706. if (nb01 > nb02) {
  5707. // KQ
  5708. kernel = backend_ctx->kernel_mul_mm_f16_f32_kq;
  5709. } else {
  5710. // KQV
  5711. kernel = backend_ctx->kernel_mul_mm_f16_f32_kqv;
  5712. }
  5713. // create sub-buffer for A
  5714. // <--------------------------------------------> //
  5715. extra0 = src0->view_src ? (ggml_tensor_extra_cl *)src0->view_src->extra : (ggml_tensor_extra_cl *)src0->extra;
  5716. region.origin = (extra0->offset);
  5717. if (nb01 > nb02) {
  5718. // KQ
  5719. region.size = nb01 * ne01;
  5720. } else {
  5721. // KQV
  5722. region.size = nb02 * ne02;
  5723. }
  5724. A_sub_buffer = clCreateSubBuffer((extra0->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5725. CL_CHECK(status);
  5726. // <--------------------------------------------> //
  5727. // create sub-buffer for B
  5728. // <--------------------------------------------> //
  5729. region.origin = (extra1->offset);
  5730. region.size = nb10 * ne10 * ne11 * ne12;
  5731. B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5732. CL_CHECK(status);
  5733. // <--------------------------------------------> //
  5734. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5735. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5736. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5737. if (nb01 > nb02) {
  5738. img_desc_1d.image_width = (nb01 * ne01 / 4)/4;
  5739. }
  5740. else {
  5741. img_desc_1d.image_width = (nb02 * ne02 / 4)/4;
  5742. }
  5743. img_desc_1d.buffer = A_sub_buffer;
  5744. A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  5745. CL_CHECK(status);
  5746. // create sub-buffer for output C
  5747. // <--------------------------------------------> //
  5748. region.origin = (extrad->offset);
  5749. region.size = ne0 * ne1 * dst->ne[2] * dst->nb[0]; // size of C in bytes
  5750. D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5751. CL_CHECK(status);
  5752. // <--------------------------------------------> //
  5753. // create image for C output
  5754. // <--------------------------------------------> //
  5755. img_fmt_1d = {CL_R, CL_FLOAT};
  5756. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5757. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5758. img_desc_1d.image_width = ne0 * ne1 * dst->ne[2] * dst->nb[0] / 4;
  5759. img_desc_1d.buffer = D_sub_buffer;
  5760. D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
  5761. CL_CHECK(status);
  5762. // <--------------------------------------------> //
  5763. int offset_src0 = 0;
  5764. int offset_src1 = 0;
  5765. // set kernel args
  5766. // <--------------------------------------------> //
  5767. cl_uint k_arg = 0;
  5768. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  5769. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src0));
  5770. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_sub_buffer));
  5771. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &offset_src1));
  5772. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &D_image1d));
  5773. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &extrad->offset));
  5774. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &M));
  5775. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &K));
  5776. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &N));
  5777. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  5778. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  5779. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &nb01));
  5780. size_t global_work_size[3] = {64, static_cast<size_t>(((M+63)/64)), static_cast<size_t>(((N+31)/32)*ne12)};
  5781. size_t local_work_size[3] = {64, 1, 2};
  5782. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5783. // deallocate sub buffers and images
  5784. // <--------------------------------------------> //
  5785. CL_CHECK(clReleaseMemObject(A_image1d));
  5786. CL_CHECK(clReleaseMemObject(D_image1d));
  5787. CL_CHECK(clReleaseMemObject(A_sub_buffer));
  5788. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  5789. CL_CHECK(clReleaseMemObject(D_sub_buffer));
  5790. }
  5791. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5792. GGML_ASSERT(src0);
  5793. GGML_ASSERT(src0->extra);
  5794. GGML_ASSERT(src1);
  5795. GGML_ASSERT(src1->extra);
  5796. GGML_ASSERT(dst);
  5797. GGML_ASSERT(dst->extra);
  5798. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  5799. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  5800. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5801. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5802. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5803. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5804. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5805. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5806. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5807. #ifdef GGML_OPENCL_SOA_Q
  5808. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5809. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  5810. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  5811. #endif
  5812. const int ne00 = src0 ? src0->ne[0] : 0;
  5813. const int ne01 = src0 ? src0->ne[1] : 0;
  5814. const int ne02 = src0 ? src0->ne[2] : 0;
  5815. const int ne03 = src0 ? src0->ne[3] : 0;
  5816. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5817. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5818. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5819. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5820. const int ne10 = src1 ? src1->ne[0] : 0;
  5821. const int ne11 = src1 ? src1->ne[1] : 0;
  5822. const int ne12 = src1 ? src1->ne[2] : 0;
  5823. const int ne13 = src1 ? src1->ne[3] : 0;
  5824. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  5825. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  5826. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  5827. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  5828. const int ne0 = dst ? dst->ne[0] : 0;
  5829. const int ne1 = dst ? dst->ne[1] : 0;
  5830. int r2 = ne12/ne02;
  5831. int r3 = ne13/ne03;
  5832. GGML_ASSERT(ne00 == ne10);
  5833. int nth0 = 32;
  5834. int nth1 = 1;
  5835. int nrows = 1;
  5836. // The number of values produced by each subgroup
  5837. int ndst = 4;
  5838. cl_kernel kernel;
  5839. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  5840. cl_context context = backend_ctx->context;
  5841. if(src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32){
  5842. if (ne01 >= 64 && ne1 >= 32 && ne00 >= 16 && (ne12 % ne02) == 0){
  5843. ggml_cl_mul_mat_kq_kqv_adreno(backend, src0, src1, dst);
  5844. return;
  5845. }
  5846. }
  5847. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  5848. // init CL objects
  5849. // <--------------------------------------------> //
  5850. cl_int status;
  5851. cl_image_format img_fmt_1d;
  5852. cl_image_desc img_desc_1d;
  5853. cl_buffer_region region;
  5854. cl_mem A_image1d = nullptr;
  5855. cl_mem B_image1d = nullptr;
  5856. cl_mem B_sub_buffer = nullptr;
  5857. cl_mem C_d = nullptr;
  5858. // for B transpose
  5859. cl_mem B_d = nullptr;
  5860. cl_mem B_d_input_image = nullptr;
  5861. // <--------------------------------------------> //
  5862. // define matrix dimensions
  5863. // <--------------------------------------------> //
  5864. int M = ne01;
  5865. int N = ne1;
  5866. int K = ne00;
  5867. int padding;
  5868. // <--------------------------------------------> //
  5869. // q4_0 x fp32
  5870. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  5871. // TODO: remove duplicate definitions of image description + format -- move to top
  5872. // create an image for A
  5873. // <--------------------------------------------> //
  5874. if (N == 1) {
  5875. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  5876. } else {
  5877. img_fmt_1d = { CL_R, CL_FLOAT};
  5878. }
  5879. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5880. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5881. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  5882. img_desc_1d.buffer = extra0_q4_0->q;
  5883. A_image1d = clCreateImage(
  5884. context,
  5885. CL_MEM_READ_ONLY,
  5886. &img_fmt_1d,
  5887. &img_desc_1d,
  5888. NULL,
  5889. &status);
  5890. CL_CHECK(status);
  5891. // <--------------------------------------------> //
  5892. // create a sub_buffer for B
  5893. // <--------------------------------------------> //
  5894. region.origin = (extra1->offset);
  5895. region.size = K * N * sizeof(float);
  5896. B_sub_buffer = clCreateSubBuffer(
  5897. extra1->data_device,
  5898. 0,
  5899. CL_BUFFER_CREATE_TYPE_REGION,
  5900. &region,
  5901. &status);
  5902. CL_CHECK(status);
  5903. // <--------------------------------------------> //
  5904. // transpose activation for Skyler's gemm
  5905. if (N != 1) {
  5906. //how many extra elements beyond multiple of 8
  5907. int extra_elements = N % 8;
  5908. //how much padding to add
  5909. padding = 0;
  5910. if (extra_elements > 0){
  5911. padding = 8 - extra_elements;
  5912. }
  5913. // Specify the starting offset (in bytes)
  5914. region.origin = 0;
  5915. // Specify the size of the sub-buffer (divide by 2 for FP16)
  5916. region.size = K * (N + padding) * sizeof(float)/2;
  5917. B_d = clCreateSubBuffer(
  5918. backend_ctx->B_d_max,
  5919. 0,
  5920. CL_BUFFER_CREATE_TYPE_REGION,
  5921. &region,
  5922. &status);
  5923. CL_CHECK(status);
  5924. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  5925. cl_image_desc image_desc_B_d_input = {
  5926. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5927. static_cast<size_t>(K * N / 4),
  5928. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  5929. };
  5930. B_d_input_image = clCreateImage(
  5931. context,
  5932. 0,
  5933. &image_format_B_d_input,
  5934. &image_desc_B_d_input,
  5935. NULL,
  5936. &status);
  5937. CL_CHECK(status);
  5938. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  5939. cl_image_desc image_desc_B_d_output = {
  5940. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5941. static_cast<size_t>(K * (N + padding)/4),
  5942. 0, 0, 0, 0, 0, 0, 0, { B_d }
  5943. };
  5944. B_image1d = clCreateImage(
  5945. context,
  5946. 0,
  5947. &image_format_B_d_output,
  5948. &image_desc_B_d_output,
  5949. NULL,
  5950. &status);
  5951. CL_CHECK(status);
  5952. int height_B = N/4;
  5953. if (height_B == 0) {
  5954. height_B = 1;
  5955. }
  5956. int width_B = K/4;
  5957. int padded_height_B = (N + padding)/4;
  5958. kernel = backend_ctx->kernel_transpose_32_16;
  5959. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  5960. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  5961. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  5962. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  5963. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  5964. size_t local_size_t[2] = { 1, 16 };
  5965. //WGS tuning
  5966. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5967. local_size_t[0]=4;
  5968. local_size_t[1]=8;
  5969. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5970. local_size_t[0]=2;
  5971. local_size_t[1]=8;
  5972. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5973. local_size_t[0]=1;
  5974. local_size_t[1]=8;
  5975. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5976. local_size_t[0]=2;
  5977. local_size_t[1]=8;
  5978. }
  5979. size_t global_size_t[2] = {
  5980. static_cast<size_t>(width_B),
  5981. static_cast<size_t>(padded_height_B)
  5982. };
  5983. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  5984. } else {
  5985. // no need to transpose B in other cases
  5986. // create an image for B from sub_buffer
  5987. // <--------------------------------------------> //
  5988. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5989. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5990. img_desc_1d.image_width = K * N / 4;
  5991. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5992. img_desc_1d.buffer = B_sub_buffer;
  5993. B_image1d = clCreateImage(
  5994. context,
  5995. CL_MEM_READ_ONLY,
  5996. &img_fmt_1d,
  5997. &img_desc_1d,
  5998. NULL,
  5999. &status);
  6000. CL_CHECK(status);
  6001. // <--------------------------------------------> //
  6002. }
  6003. // choose gemm or gemv kernel
  6004. // <--------------------------------------------> //
  6005. if (N == 1) {
  6006. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  6007. if (M == 4096 && K == 4096) {
  6008. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  6009. } else if (M == 4096 && K == 11008) {
  6010. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  6011. } else if (M == 11008 && K == 4096) {
  6012. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  6013. } else if (M == 32000 && K == 4096) {
  6014. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  6015. }
  6016. } else {
  6017. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  6018. }
  6019. // <--------------------------------------------> //
  6020. // set kernel args
  6021. // <--------------------------------------------> //
  6022. cl_uint k_arg = 0;
  6023. if (N == 1) {
  6024. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  6025. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  6026. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  6027. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  6028. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  6029. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  6030. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  6031. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  6032. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  6033. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  6034. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  6035. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  6036. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  6037. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  6038. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  6039. } else {
  6040. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  6041. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  6042. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6043. CL_CHECK(status);
  6044. int padded_N = ne1 + padding;
  6045. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  6046. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  6047. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  6048. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  6049. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  6050. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  6051. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  6052. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  6053. }
  6054. // <--------------------------------------------> //
  6055. // choose workgroup size
  6056. // <--------------------------------------------> //
  6057. size_t global_work_size[3] = {
  6058. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  6059. size_t local_work_size[3] = {64, 2, 4};
  6060. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  6061. global_work_size[1] = (size_t)(ne01/4);
  6062. global_work_size[2] = (size_t)(1);
  6063. local_work_size[0] = (size_t)(1); //4x32 for FP32
  6064. local_work_size[1] = (size_t)(128);
  6065. local_work_size[2] = (size_t)(1);
  6066. //WGS tuning
  6067. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  6068. local_work_size[0] = 1;
  6069. local_work_size[1] = 128;
  6070. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  6071. local_work_size[0] = 2;
  6072. local_work_size[1] = 64;
  6073. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  6074. local_work_size[0] = 2;
  6075. local_work_size[1] = 64;
  6076. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  6077. local_work_size[0] = 2;
  6078. local_work_size[1] = 64;
  6079. }
  6080. if (N == 1) {
  6081. size_t wavesize = backend_ctx->adreno_wave_size;
  6082. local_work_size[0] = wavesize; // localsize
  6083. local_work_size[1] = 4; // reduce factor
  6084. local_work_size[2] = 1;
  6085. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  6086. global_work_size[1] = 4; // reduce factor
  6087. global_work_size[2] = 1;
  6088. }
  6089. // <--------------------------------------------> //
  6090. // enqueue kernel with profiling
  6091. // <--------------------------------------------> //
  6092. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6093. // <--------------------------------------------> //
  6094. // deallocate sub buffers and images
  6095. // <--------------------------------------------> //
  6096. CL_CHECK(clReleaseMemObject(A_image1d));
  6097. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  6098. CL_CHECK(clReleaseMemObject(B_image1d));
  6099. if (N != 1) {
  6100. CL_CHECK(clReleaseMemObject(B_d));
  6101. CL_CHECK(clReleaseMemObject(B_d_input_image));
  6102. CL_CHECK(clReleaseMemObject(C_d));
  6103. }
  6104. // <--------------------------------------------> //
  6105. return;
  6106. }
  6107. } // if (ne01 && ne1)
  6108. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6109. // GEMM using local memory
  6110. // Current BK = 16, so ne00 % 16 == 0
  6111. if (ggml_is_contiguous(src0) &&
  6112. ggml_is_contiguous(src1) &&
  6113. src1t == GGML_TYPE_F32 &&
  6114. ne00 % 16 == 0 &&
  6115. ne11 > 1) {
  6116. switch(src0t) {
  6117. case GGML_TYPE_F32: {
  6118. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  6119. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6120. int batch_stride_a = ne00*ne01;
  6121. int batch_stride_b = ne10*ne11;
  6122. int batch_stride_d = ne0*ne1;
  6123. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6124. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6125. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6126. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6127. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6128. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6129. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6130. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6131. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6132. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6133. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6134. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6135. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6136. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6137. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6138. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6139. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6140. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6141. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6142. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6143. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6144. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6145. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6146. return;
  6147. }
  6148. case GGML_TYPE_F16: {
  6149. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  6150. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6151. int batch_stride_a = ne00*ne01;
  6152. int batch_stride_b = ne10*ne11;
  6153. int batch_stride_d = ne0*ne1;
  6154. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6155. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6156. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6157. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6158. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6159. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6160. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6161. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6162. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6163. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6164. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6165. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6166. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6167. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6168. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6169. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6170. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6171. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6172. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6173. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6174. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6175. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6176. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6177. return;
  6178. }
  6179. case GGML_TYPE_Q8_0: {
  6180. if (ne11 < 32) {
  6181. break;
  6182. }
  6183. kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
  6184. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6185. int batch_stride_a = ne00*ne01;
  6186. int batch_stride_b = ne10*ne11;
  6187. int batch_stride_d = ne0*ne1;
  6188. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6189. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6190. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6191. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6192. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6193. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6194. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6195. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6196. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6197. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6198. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6199. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6200. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6201. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6202. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6203. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6204. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6205. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6206. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6207. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6208. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6209. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6210. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6211. return;
  6212. }
  6213. default:
  6214. break;
  6215. }
  6216. }
  6217. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  6218. src0->ne[1] > 32 && // M > 32
  6219. src1->ne[1] > 32 && // N > 32
  6220. src0->ne[0] > 32 && // K > 32
  6221. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  6222. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  6223. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  6224. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  6225. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  6226. return;
  6227. }
  6228. if (!ggml_is_transposed(src0) &&
  6229. !ggml_is_transposed(src1) &&
  6230. src1t == GGML_TYPE_F32 &&
  6231. ne00%32 == 0 &&
  6232. ne11 > 2) {
  6233. #ifdef GGML_OPENCL_SOA_Q
  6234. // Set up kernel.
  6235. switch(src0t) {
  6236. case GGML_TYPE_Q4_0:
  6237. // This should have been satisfied.
  6238. GGML_ASSERT(ne11 == ne1);
  6239. GGML_ASSERT(ne01 == ne0);
  6240. if (backend_ctx->gpu_family == INTEL) {
  6241. nth0 = 16;
  6242. nth1 = 1;
  6243. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  6244. } else if (backend_ctx->gpu_family == ADRENO) {
  6245. nth0 = 64;
  6246. nth1 = 1;
  6247. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  6248. } else {
  6249. GGML_ASSERT(false && "TODO: Unknown GPU");
  6250. }
  6251. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6252. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6253. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6254. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6255. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6256. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6257. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6258. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6259. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6260. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6261. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6262. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6263. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6264. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6265. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6266. break;
  6267. default:
  6268. break;
  6269. }
  6270. // Launch kernel.
  6271. if (src0t == GGML_TYPE_Q4_0) {
  6272. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6273. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6274. if (backend_ctx->gpu_family == INTEL) {
  6275. // Set global size for Intel. It uses 16x output values.
  6276. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  6277. global_work_size[1] = (size_t)ne11*nth1;
  6278. global_work_size[2] = (size_t)ne12*ne13;
  6279. }
  6280. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6281. return;
  6282. }
  6283. #else // GGML_OPENCL_SOA_Q
  6284. // TODO: add block_q4_0 variant.
  6285. #endif // GGML_OPENCL_SOA_Q
  6286. }
  6287. // use custom matrix x vector kernel
  6288. switch (src0t) {
  6289. case GGML_TYPE_F32:
  6290. //GGML_ASSERT(ne02 == ne12);
  6291. GGML_ASSERT(src1t == GGML_TYPE_F32);
  6292. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  6293. nrows = 4;
  6294. if (backend_ctx->gpu_family == INTEL) {
  6295. nth0 = 32;
  6296. nth1 = 1;
  6297. } else if (backend_ctx->gpu_family == ADRENO) {
  6298. nth0 = 64;
  6299. nth1 = 1;
  6300. } else {
  6301. GGML_ASSERT(false && "TODO: Unknown GPU");
  6302. }
  6303. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6304. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6305. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6306. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6307. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6308. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6309. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6310. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6311. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6312. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6313. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6314. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6315. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6316. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6317. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6318. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6319. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6320. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6321. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6322. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6323. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6324. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6325. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6326. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6327. break;
  6328. case GGML_TYPE_F16:
  6329. //GGML_ASSERT(ne02 == ne12);
  6330. if (backend_ctx->gpu_family == INTEL) {
  6331. nth0 = 32;
  6332. nth1 = 1;
  6333. } else if (backend_ctx->gpu_family == ADRENO) {
  6334. nth0 = 64;
  6335. nth1 = 1;
  6336. } else {
  6337. GGML_ASSERT(false && "TODO: Unknown GPU");
  6338. }
  6339. if (src1t == GGML_TYPE_F32) {
  6340. if (ne11 * ne12 < 4) {
  6341. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  6342. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  6343. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  6344. nrows = ne11;
  6345. } else {
  6346. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  6347. nrows = 4;
  6348. }
  6349. } else {
  6350. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  6351. nrows = 4;
  6352. }
  6353. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6354. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6355. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6356. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6357. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6358. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6359. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6360. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6361. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6362. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6363. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6364. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6365. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6366. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6367. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6368. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6369. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6370. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6371. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6372. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6373. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6374. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6375. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6376. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6377. break;
  6378. case GGML_TYPE_Q4_0:
  6379. // This should have been satisfied.
  6380. GGML_ASSERT(ne11 == ne1);
  6381. GGML_ASSERT(ne01 == ne0);
  6382. #ifdef GGML_OPENCL_SOA_Q
  6383. if (backend_ctx->gpu_family == INTEL) {
  6384. nth0 = 16;
  6385. nth1 = 1;
  6386. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6387. ndst = 8;
  6388. } else if (backend_ctx->gpu_family == ADRENO) {
  6389. nth0 = 64;
  6390. nth1 = 1;
  6391. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6392. ndst =8;
  6393. } else {
  6394. GGML_ASSERT(false && "TODO: Unknown GPU");
  6395. }
  6396. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6397. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6398. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6399. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6400. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6401. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6402. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6403. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6404. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6405. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6406. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6407. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6408. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6409. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6410. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6411. #else // GGML_OPENCL_SOA_Q
  6412. if (backend_ctx->gpu_family == INTEL) {
  6413. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  6414. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  6415. // The number of workgroups on dim 0 (the leading dimension) is
  6416. // the nearest multiple of 4 that covers ne0 (equals ne01).
  6417. nth0 = 16;
  6418. nth1 = 1;
  6419. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  6420. ndst = 4;
  6421. } else if (backend_ctx->gpu_family == ADRENO) {
  6422. nth0 = 64;
  6423. nth1 = 1;
  6424. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  6425. ndst = 4;
  6426. } else {
  6427. GGML_ASSERT(false && "TODO: Unknown GPU");
  6428. }
  6429. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6430. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6431. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6432. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6433. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6434. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6435. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6436. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6437. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6438. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6439. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6440. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6441. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6442. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6443. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6444. #endif // GGML_OPENCL_SOA_Q
  6445. break;
  6446. case GGML_TYPE_Q4_1:
  6447. case GGML_TYPE_Q8_0: {
  6448. #ifdef GGML_OPENCL_SOA_Q
  6449. kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
  6450. // nth0 - subgroup size
  6451. // nth1 - number of subgroups per workgroup
  6452. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6453. if (backend_ctx->gpu_family == INTEL) {
  6454. nth0 = 16;
  6455. nth1 = 2;
  6456. ndst = nth1*4;
  6457. } else if (backend_ctx->gpu_family == ADRENO) {
  6458. nth0 = 64;
  6459. nth1 = 2;
  6460. ndst = nth1*4;
  6461. } else {
  6462. GGML_ASSERT(false && "TODO: Unknown GPU");
  6463. }
  6464. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6465. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6466. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6467. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6468. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6469. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6470. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6471. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6472. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6473. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6474. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6475. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6476. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6477. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6478. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6479. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6480. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6481. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6482. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6483. #else
  6484. kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
  6485. // nth0 - subgroup size
  6486. // nth1 - number of subgroups per workgroup
  6487. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6488. if (backend_ctx->gpu_family == INTEL) {
  6489. nth0 = 16;
  6490. nth1 = 2;
  6491. ndst = nth1*4;
  6492. } else if (backend_ctx->gpu_family == ADRENO) {
  6493. nth0 = 64;
  6494. nth1 = 2;
  6495. ndst = nth1*4;
  6496. } else {
  6497. GGML_ASSERT(false && "TODO: Unknown GPU");
  6498. }
  6499. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6500. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6501. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6502. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6503. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6504. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6505. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6506. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6507. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6508. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6509. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6510. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6511. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6512. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6513. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6514. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6515. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6516. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6517. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6518. #endif // GGML_OPENCL_SOA_Q
  6519. break;
  6520. }
  6521. case GGML_TYPE_Q2_K:
  6522. case GGML_TYPE_Q3_K:
  6523. case GGML_TYPE_Q4_K:
  6524. case GGML_TYPE_Q5_K:
  6525. case GGML_TYPE_Q6_K:
  6526. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  6527. if (backend_ctx->gpu_family == INTEL) {
  6528. nth0 = 2;
  6529. nth1 = 16;
  6530. } else if (backend_ctx->gpu_family == ADRENO) {
  6531. nth0 = 2;
  6532. nth1 = 64;
  6533. } else {
  6534. GGML_ASSERT(false && "TODO: Unknown GPU");
  6535. }
  6536. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6537. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6538. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6539. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6540. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6541. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6542. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6543. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6544. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6545. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6546. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6547. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6548. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6549. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6550. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6551. break;
  6552. case GGML_TYPE_MXFP4: {
  6553. #ifdef GGML_OPENCL_SOA_Q
  6554. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
  6555. cl_mem q;
  6556. if (backend_ctx->gpu_family == INTEL) {
  6557. nth0 = 16;
  6558. nth1 = 2;
  6559. ndst = nth1*2;
  6560. q = extra0_mxfp4->q;
  6561. } else if (backend_ctx->gpu_family == ADRENO) {
  6562. nth0 = 64;
  6563. nth1 = 2;
  6564. ndst = nth1*2;
  6565. q = extra0_mxfp4->q_img;
  6566. } else {
  6567. GGML_ASSERT(false && "TODO: Unknown GPU");
  6568. }
  6569. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6570. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6571. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6572. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6573. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6574. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6575. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6576. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6577. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6578. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6579. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6580. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6581. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6582. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6583. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6584. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6585. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6586. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6587. #else
  6588. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  6589. if (backend_ctx->gpu_family == INTEL) {
  6590. nth0 = 16;
  6591. nth1 = 2;
  6592. ndst = nth1*2;
  6593. } else if (backend_ctx->gpu_family == ADRENO) {
  6594. nth0 = 64;
  6595. nth1 = 2;
  6596. ndst = nth1*2;
  6597. } else {
  6598. GGML_ASSERT(false && "TODO: Unknown GPU");
  6599. }
  6600. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6601. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6602. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6603. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6604. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6605. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6606. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6607. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6608. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6609. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6610. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6611. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6612. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6613. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6614. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6615. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6616. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6617. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6618. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  6619. #endif
  6620. break;
  6621. }
  6622. default:
  6623. GGML_ASSERT(false && "not implemented");
  6624. }
  6625. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  6626. src0t == GGML_TYPE_Q4_1 ||
  6627. src0t == GGML_TYPE_Q8_0 ||
  6628. src0t == GGML_TYPE_Q2_K) {
  6629. // Each SIMD group produces N_DST values in the result. Assuming each
  6630. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  6631. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  6632. // (number of workgroups) will be a nearest multiple of
  6633. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  6634. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  6635. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6636. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6637. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6638. } else if (src0t == GGML_TYPE_Q4_K) {
  6639. GGML_ASSERT(false && "not implemented");
  6640. } else if (src0t == GGML_TYPE_Q3_K) {
  6641. GGML_ASSERT(false && "not implemented");
  6642. } else if (src0t == GGML_TYPE_Q5_K) {
  6643. GGML_ASSERT(false && "not implemented");
  6644. } else if (src0t == GGML_TYPE_Q6_K) {
  6645. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6646. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6647. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6648. } else {
  6649. int64_t ny = (ne11 + nrows - 1)/nrows;
  6650. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  6651. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6652. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6653. }
  6654. }
  6655. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6656. GGML_ASSERT(src0);
  6657. GGML_ASSERT(src0->extra);
  6658. GGML_ASSERT(src1);
  6659. GGML_ASSERT(src1->extra);
  6660. GGML_ASSERT(dst);
  6661. GGML_ASSERT(dst->extra);
  6662. const ggml_tensor * src2 = dst->src[2];
  6663. GGML_ASSERT(src2);
  6664. GGML_ASSERT(src2->extra);
  6665. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6666. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6667. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6668. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  6669. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6670. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6671. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6672. cl_ulong offset2 = extra2->offset + src2->view_offs;
  6673. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6674. GGML_UNUSED(offset0);
  6675. #ifdef GGML_OPENCL_SOA_Q
  6676. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6677. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6678. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6679. #endif
  6680. const int ne00 = src0->ne[0];
  6681. const int ne01 = src0->ne[1];
  6682. const int ne02 = src0->ne[2];
  6683. const int ne03 = src0->ne[3];
  6684. const cl_ulong nb00 = src0->nb[0];
  6685. const cl_ulong nb01 = src0->nb[1];
  6686. const cl_ulong nb02 = src0->nb[2];
  6687. const cl_ulong nb03 = src0->nb[3];
  6688. const int ne10 = src1->ne[0];
  6689. const int ne11 = src1->ne[1];
  6690. const int ne12 = src1->ne[2];
  6691. const int ne13 = src1->ne[3];
  6692. const cl_ulong nb11 = src1->nb[1];
  6693. const cl_ulong nb12 = src1->nb[2];
  6694. const cl_ulong nb13 = src1->nb[3];
  6695. const int ne20 = src2->ne[0];
  6696. const int ne21 = src2->ne[1];
  6697. const cl_ulong nb21 = src2->nb[1];
  6698. const cl_ulong nb20 = src2->nb[0];
  6699. UNUSED(nb20);
  6700. const int ne0 = dst->ne[0];
  6701. const int ne1 = dst->ne[1];
  6702. const int r2 = ne12/ne02;
  6703. const int r3 = ne13/ne03;
  6704. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  6705. GGML_ASSERT(ne00 == ne10);
  6706. int sgs = 32; // subgroup size
  6707. int nsg = 1; // number of subgroups
  6708. int nrows = 1; // number of row in src1
  6709. int ndst = 4; // number of values produced by each subgroup
  6710. cl_kernel kernel;
  6711. // subgroup mat vec
  6712. switch (src0->type) {
  6713. case GGML_TYPE_Q4_0: {
  6714. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  6715. if (backend_ctx->gpu_family == INTEL) {
  6716. sgs = 16;
  6717. nsg = 1;
  6718. ndst = 8;
  6719. } else if (backend_ctx->gpu_family == ADRENO) {
  6720. sgs = 64;
  6721. nsg = 1;
  6722. ndst = 8;
  6723. } else {
  6724. GGML_ASSERT(false && "TODO: Unknown GPU");
  6725. }
  6726. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6727. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6728. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6729. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6730. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6731. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6732. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6733. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6734. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6735. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6736. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  6737. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  6738. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  6739. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6740. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6741. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6742. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  6743. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  6744. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  6745. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  6746. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  6747. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  6748. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  6749. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  6750. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  6751. break;
  6752. }
  6753. case GGML_TYPE_Q8_0: {
  6754. #ifdef GGML_OPENCL_SOA_Q
  6755. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
  6756. if (backend_ctx->gpu_family == INTEL) {
  6757. sgs = 16;
  6758. nsg = 2;
  6759. ndst = 4;
  6760. } else if (backend_ctx->gpu_family == ADRENO) {
  6761. sgs = 64;
  6762. nsg = 2;
  6763. ndst = 4;
  6764. } else {
  6765. GGML_ASSERT(false && "TODO: Unknown GPU");
  6766. }
  6767. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6768. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6769. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6770. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6771. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6772. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6773. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6774. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6775. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6776. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6777. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6778. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6779. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6780. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6781. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6782. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6783. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6784. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6785. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6786. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6787. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6788. #else
  6789. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
  6790. if (backend_ctx->gpu_family == INTEL) {
  6791. sgs = 16;
  6792. nsg = 2;
  6793. ndst = 4;
  6794. } else if (backend_ctx->gpu_family == ADRENO) {
  6795. sgs = 64;
  6796. nsg = 2;
  6797. ndst = 4;
  6798. } else {
  6799. GGML_ASSERT(false && "TODO: Unknown GPU");
  6800. }
  6801. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6802. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6803. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6804. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6805. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6806. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6807. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6808. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6809. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6810. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6811. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6812. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6813. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6814. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6815. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6816. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6817. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6818. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6819. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6820. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6821. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6822. #endif // GGML_OPENCL_SOA_Q
  6823. break;
  6824. }
  6825. case GGML_TYPE_MXFP4: {
  6826. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  6827. if (use_adreno_moe_kernels(backend_ctx, src0)) {
  6828. cl_int status;
  6829. size_t local_size[3] = {64, 2, 1};
  6830. size_t global_size[3] = {64, 2, 1};
  6831. cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
  6832. int tile_size = 320;
  6833. if (ne12 == 1) { // for gemv
  6834. kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
  6835. // create a sub_buffer for src2
  6836. cl_buffer_region region;
  6837. region.origin = offset2;
  6838. region.size = ne20 * ne21 * sizeof(int);
  6839. buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6840. CL_CHECK(status);
  6841. // set thread grid
  6842. global_size[0] = static_cast<size_t>(ne01);
  6843. global_size[1] = 4;
  6844. global_size[2] = static_cast<size_t>(ne20);
  6845. local_size[1] = 4;
  6846. } else { // for gemm
  6847. kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
  6848. // preprocess router table
  6849. int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
  6850. void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
  6851. void * host_src2 = malloc(ne21 * nb21);
  6852. CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
  6853. int total_experts = nb21 / nb20;
  6854. int out_idx = 0;
  6855. for (int i_expert = 0; i_expert < ne02; i_expert++) {
  6856. for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
  6857. for (int j = 0; j < ne21; j++) {
  6858. for (int i = 0; i < ne20; i++) {
  6859. int expert = ((int *)host_src2)[j * total_experts + i];
  6860. if (i_expert == expert) {
  6861. ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
  6862. ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
  6863. ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
  6864. ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
  6865. out_idx += 4;
  6866. }
  6867. }
  6868. }
  6869. }
  6870. }
  6871. buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
  6872. CL_CHECK(status);
  6873. // set thread grid
  6874. global_size[0] = static_cast<size_t>(tile_size);
  6875. global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
  6876. }
  6877. // create a sub_buffer for src1
  6878. cl_buffer_region region;
  6879. region.origin = offset1;
  6880. region.size = ne10 * ne11 * ne12 * sizeof(float);
  6881. src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6882. CL_CHECK(status);
  6883. // create image for src1
  6884. cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
  6885. cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
  6886. buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
  6887. CL_CHECK(status);
  6888. // Set kernel args
  6889. int arg_idx = 0;
  6890. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
  6891. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
  6892. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
  6893. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
  6894. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
  6895. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
  6896. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
  6897. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
  6898. if (ne12 == 1) {
  6899. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
  6900. } else {
  6901. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
  6902. }
  6903. // launch kernel
  6904. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
  6905. // deallocate sub buffers and images
  6906. CL_CHECK(clReleaseMemObject(src1_sub_buffer));
  6907. CL_CHECK(clReleaseMemObject(buf_src1_image));
  6908. CL_CHECK(clReleaseMemObject(buf_src2));
  6909. return;
  6910. } // else fallback to generic kernel
  6911. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6912. #ifdef GGML_OPENCL_SOA_Q
  6913. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
  6914. cl_mem q;
  6915. if (backend_ctx->gpu_family == INTEL) {
  6916. sgs = 16;
  6917. nsg = 2;
  6918. ndst = 2;
  6919. q = extra0_mxfp4->q;
  6920. } else if (backend_ctx->gpu_family == ADRENO) {
  6921. sgs = 64;
  6922. nsg = 1;
  6923. ndst = 4;
  6924. q = extra0_mxfp4->q_img;
  6925. } else {
  6926. GGML_ASSERT(false && "TODO: Unknown GPU");
  6927. }
  6928. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6929. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6930. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6931. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6932. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6933. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6934. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6935. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6936. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6937. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6938. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6939. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6940. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6941. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6942. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6943. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6944. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6945. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6946. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6947. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6948. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6949. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6950. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6951. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6952. #else // GGML_OPENCL_SOA_Q
  6953. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  6954. if (backend_ctx->gpu_family == INTEL) {
  6955. sgs = 16;
  6956. nsg = 2;
  6957. ndst = 2;
  6958. } else if (backend_ctx->gpu_family == ADRENO) {
  6959. sgs = 64;
  6960. nsg = 2;
  6961. ndst = 2;
  6962. } else {
  6963. GGML_ASSERT(false && "TODO: Unknown GPU");
  6964. }
  6965. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6966. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6967. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6968. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6969. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6970. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6971. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6972. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6973. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6974. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6975. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6976. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6977. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6978. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6979. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6980. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6981. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6982. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6983. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6984. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6985. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6986. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6987. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6988. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6989. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  6990. #endif // GGML_OPENCL_SOA_Q
  6991. break;
  6992. }
  6993. default:
  6994. GGML_ASSERT(false && "not implemented");;
  6995. }
  6996. int _ne1 = 1;
  6997. int ne123 = dst_rows;
  6998. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  6999. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  7000. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7001. }
  7002. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7003. GGML_ASSERT(src0);
  7004. GGML_ASSERT(src0->extra);
  7005. GGML_ASSERT(dst);
  7006. GGML_ASSERT(dst->extra);
  7007. GGML_UNUSED(src1);
  7008. GGML_ASSERT(ggml_is_contiguous(src0));
  7009. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7010. float scale;
  7011. float bias;
  7012. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  7013. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  7014. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7015. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7016. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7017. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7018. cl_kernel kernel = backend_ctx->kernel_scale;
  7019. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7020. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7021. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7022. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7023. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  7024. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  7025. int n = ggml_nelements(dst)/4;
  7026. size_t global_work_size[] = {(size_t)n, 1, 1};
  7027. size_t local_work_size[] = {64, 1, 1};
  7028. size_t * local_work_size_ptr = local_work_size;
  7029. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7030. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7031. }
  7032. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7033. }
  7034. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7035. GGML_ASSERT(src0);
  7036. GGML_ASSERT(src0->extra);
  7037. GGML_ASSERT(src1);
  7038. GGML_ASSERT(src1->extra);
  7039. // GGML_OP_CPY happens between src0 and src1.
  7040. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  7041. UNUSED(dst);
  7042. const int ne00 = src0 ? src0->ne[0] : 0;
  7043. const int ne01 = src0 ? src0->ne[1] : 0;
  7044. const int ne02 = src0 ? src0->ne[2] : 0;
  7045. const int ne03 = src0 ? src0->ne[3] : 0;
  7046. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7047. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7048. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7049. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7050. const int ne10 = src1 ? src1->ne[0] : 0;
  7051. const int ne11 = src1 ? src1->ne[1] : 0;
  7052. const int ne12 = src1 ? src1->ne[2] : 0;
  7053. const int ne13 = src1 ? src1->ne[3] : 0;
  7054. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  7055. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  7056. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  7057. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  7058. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  7059. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  7060. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7061. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7062. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7063. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7064. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7065. cl_kernel kernel;
  7066. switch (src0t) {
  7067. case GGML_TYPE_F32:
  7068. switch (src1t) {
  7069. case GGML_TYPE_F16:
  7070. kernel = backend_ctx->kernel_cpy_f32_f16;
  7071. break;
  7072. case GGML_TYPE_F32:
  7073. kernel = backend_ctx->kernel_cpy_f32_f32;
  7074. break;
  7075. default:
  7076. GGML_ASSERT(false && "not implemented");
  7077. }
  7078. break;
  7079. case GGML_TYPE_F16:
  7080. switch (src1t) {
  7081. case GGML_TYPE_F16:
  7082. kernel = backend_ctx->kernel_cpy_f16_f16;
  7083. break;
  7084. case GGML_TYPE_F32:
  7085. kernel = backend_ctx->kernel_cpy_f16_f32;
  7086. break;
  7087. default:
  7088. GGML_ASSERT(false && "not implemented");
  7089. }
  7090. break;
  7091. default:
  7092. GGML_ASSERT(false && "not implemented");
  7093. }
  7094. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7095. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7096. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7097. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7098. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7099. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7100. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7101. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7102. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  7103. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7104. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7105. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7106. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  7107. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  7108. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  7109. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  7110. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  7111. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  7112. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  7113. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  7114. const int nth = MIN(64, ne00);
  7115. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7116. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7117. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  7118. }
  7119. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7120. ggml_cl_cpy(backend, src0, dst, nullptr);
  7121. UNUSED(src1);
  7122. }
  7123. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7124. GGML_ASSERT(src0);
  7125. GGML_ASSERT(src0->extra);
  7126. GGML_ASSERT(dst);
  7127. GGML_ASSERT(dst->extra);
  7128. UNUSED(src1);
  7129. int n_past = ((int32_t *)(dst->op_params))[0];
  7130. const int ne00 = src0 ? src0->ne[0] : 0;
  7131. const int ne01 = src0 ? src0->ne[1] : 0;
  7132. const int ne02 = src0 ? src0->ne[2] : 0;
  7133. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7134. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7135. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7136. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7137. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7138. cl_kernel kernel;
  7139. if (ne00%8 == 0) {
  7140. kernel = backend_ctx->kernel_diag_mask_inf_8;
  7141. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7142. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7143. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7144. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7145. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7146. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7147. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7148. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  7149. size_t local_work_size[] = {64, 1, 1};
  7150. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7151. } else {
  7152. kernel = backend_ctx->kernel_diag_mask_inf;
  7153. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7154. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7155. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7156. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7157. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7158. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7159. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  7160. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  7161. size_t local_work_size[] = {64, 1, 1};
  7162. size_t * local_work_size_ptr = local_work_size;
  7163. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  7164. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  7165. }
  7166. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7167. }
  7168. }
  7169. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7170. GGML_ASSERT(src0);
  7171. GGML_ASSERT(src0->extra);
  7172. GGML_ASSERT(dst);
  7173. GGML_ASSERT(dst->extra);
  7174. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  7175. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  7176. // alibi is not used; however, for some other models, it is used.
  7177. // KQ_mask
  7178. if (src1) {
  7179. GGML_ASSERT(src1);
  7180. GGML_ASSERT(src1->extra);
  7181. }
  7182. const ggml_tensor * src2 = dst->src[2];
  7183. if (src2) {
  7184. GGML_ASSERT(src2->extra);
  7185. }
  7186. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7187. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7188. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7189. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7190. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7191. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7192. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7193. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7194. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7195. const int ne00 = src0->ne[0];
  7196. const int ne01 = src0->ne[1];
  7197. const int ne02 = src0->ne[2];
  7198. const int ne03 = src0->ne[3];
  7199. const cl_long nb01 = src0->nb[1];
  7200. const cl_long nb02 = src0->nb[2];
  7201. const cl_long nb03 = src0->nb[3];
  7202. const int ne12 = src1 ? src1->ne[2] : 0;
  7203. const int ne13 = src1 ? src1->ne[3] : 0;
  7204. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  7205. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  7206. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  7207. const cl_long nb1 = dst->nb[1];
  7208. const cl_long nb2 = dst->nb[2];
  7209. const cl_long nb3 = dst->nb[3];
  7210. float scale, max_bias;
  7211. memcpy(&scale, dst->op_params + 0, sizeof(float));
  7212. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  7213. const int n_head = src0->ne[2];
  7214. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  7215. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7216. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7217. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7218. // Local size must be wave size. Each workgroup is a wave, working on a row,
  7219. // where a row corresponds to leading dimension.
  7220. int nth = MIN(32, ne00);
  7221. if (backend_ctx->gpu_family == INTEL) {
  7222. // This is the same as the initial value.
  7223. nth = MIN(32, ne00);
  7224. }
  7225. else if (backend_ctx->gpu_family == ADRENO) {
  7226. nth = 64;
  7227. } else {
  7228. GGML_ASSERT(false && "TODO: Unknown GPU");
  7229. }
  7230. cl_kernel kernel;
  7231. if (ne00%4 == 0) {
  7232. if (use_f16) {
  7233. kernel = backend_ctx->kernel_soft_max_4_f16;
  7234. } else {
  7235. kernel = backend_ctx->kernel_soft_max_4;
  7236. }
  7237. } else {
  7238. if (use_f16) {
  7239. kernel = backend_ctx->kernel_soft_max_f16;
  7240. } else {
  7241. kernel = backend_ctx->kernel_soft_max;
  7242. }
  7243. }
  7244. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7245. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7246. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  7247. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7248. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7249. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7250. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7251. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7252. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7253. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7254. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7255. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7256. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  7257. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  7258. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7259. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7260. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7261. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  7262. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  7263. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  7264. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  7265. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  7266. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  7267. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  7268. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  7269. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7270. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7271. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7272. }
  7273. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7274. GGML_ASSERT(src0);
  7275. GGML_ASSERT(src0->extra);
  7276. GGML_ASSERT(src1);
  7277. GGML_ASSERT(src1->extra);
  7278. GGML_ASSERT(dst);
  7279. GGML_ASSERT(dst->extra);
  7280. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7281. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7282. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7283. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7284. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7285. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7286. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7287. ggml_tensor * src2 = dst->src[2];
  7288. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7289. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7290. const int ne00 = src0 ? src0->ne[0] : 0;
  7291. const int ne01 = src0 ? src0->ne[1] : 0;
  7292. const int ne02 = src0 ? src0->ne[2] : 0;
  7293. const int ne03 = src0 ? src0->ne[3] : 0;
  7294. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7295. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7296. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7297. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7298. const int ne10 = src1 ? src1->ne[0] : 0;
  7299. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  7300. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  7301. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  7302. const int ne0 = dst ? dst->ne[0] : 0;
  7303. const int ne1 = dst ? dst->ne[1] : 0;
  7304. const int ne2 = dst ? dst->ne[2] : 0;
  7305. const int ne3 = dst ? dst->ne[3] : 0;
  7306. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  7307. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  7308. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  7309. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  7310. GGML_ASSERT(ne10 % ne02 == 0);
  7311. GGML_ASSERT(ne10 >= ne02);
  7312. int nth = MIN(64, ne00);
  7313. const int n_past = ((int *) dst->op_params)[0];
  7314. const int n_dims = ((int *) dst->op_params)[1];
  7315. const int mode = ((int *) dst->op_params)[2];
  7316. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7317. float freq_base;
  7318. float freq_scale;
  7319. float ext_factor;
  7320. float attn_factor;
  7321. float beta_fast;
  7322. float beta_slow;
  7323. int32_t sections[4];
  7324. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7325. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7326. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7327. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7328. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7329. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7330. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  7331. const bool is_neox = mode & 2;
  7332. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  7333. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  7334. const int is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
  7335. if (is_mrope) {
  7336. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  7337. }
  7338. if (is_vision) {
  7339. GGML_ASSERT(n_dims == ne00/2);
  7340. }
  7341. cl_kernel kernel;
  7342. if (is_neox) {
  7343. switch (src0->type) {
  7344. case GGML_TYPE_F32:
  7345. kernel = backend_ctx->kernel_rope_neox_f32;
  7346. break;
  7347. case GGML_TYPE_F16:
  7348. kernel = backend_ctx->kernel_rope_neox_f16;
  7349. break;
  7350. default:
  7351. GGML_ASSERT(false);
  7352. };
  7353. } else if (is_mrope && !is_vision) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. kernel = backend_ctx->kernel_rope_multi_f32;
  7357. break;
  7358. case GGML_TYPE_F16:
  7359. kernel = backend_ctx->kernel_rope_multi_f16;
  7360. break;
  7361. default:
  7362. GGML_ASSERT(false);
  7363. };
  7364. } else if (is_vision) {
  7365. switch (src0->type) {
  7366. case GGML_TYPE_F32:
  7367. kernel = backend_ctx->kernel_rope_vision_f32;
  7368. break;
  7369. case GGML_TYPE_F16:
  7370. kernel = backend_ctx->kernel_rope_vision_f16;
  7371. break;
  7372. default:
  7373. GGML_ASSERT(false);
  7374. }
  7375. } else {
  7376. switch (src0->type) {
  7377. case GGML_TYPE_F32:
  7378. kernel = backend_ctx->kernel_rope_norm_f32;
  7379. break;
  7380. case GGML_TYPE_F16:
  7381. kernel = backend_ctx->kernel_rope_norm_f16;
  7382. break;
  7383. default:
  7384. GGML_ASSERT(false);
  7385. };
  7386. }
  7387. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7388. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7389. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7390. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7391. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7392. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7393. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7394. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7395. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7396. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7397. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7398. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  7399. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  7400. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  7401. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  7402. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  7403. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  7404. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  7405. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  7406. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  7407. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  7408. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  7409. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  7410. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  7411. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  7412. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  7413. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  7414. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  7415. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  7416. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  7417. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  7418. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  7419. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  7420. // both mrope and vision kernels have sections
  7421. if (is_mrope || is_vision) {
  7422. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  7423. }
  7424. // only mrope has is_imrope
  7425. if (is_mrope && !is_vision) {
  7426. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(int), &is_imrope));
  7427. }
  7428. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7429. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7430. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7431. }
  7432. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7433. GGML_ASSERT(src0);
  7434. GGML_ASSERT(src1);
  7435. GGML_ASSERT(src1->extra);
  7436. GGML_ASSERT(dst);
  7437. GGML_ASSERT(dst->extra);
  7438. // src0 - filter, src1 - input
  7439. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7440. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  7441. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7442. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7443. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7444. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7445. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7446. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7447. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  7448. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  7449. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  7450. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  7451. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  7452. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  7453. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  7454. const cl_long IH = is_2D ? src1->ne[1] : 1;
  7455. const cl_long IW = src1->ne[0];
  7456. const cl_long KH = is_2D ? src0->ne[1] : 1;
  7457. const cl_long KW = src0->ne[0];
  7458. const cl_long OH = is_2D ? dst->ne[2] : 1;
  7459. const cl_long OW = dst->ne[1];
  7460. // nb is byte offset, src is type float32
  7461. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  7462. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  7463. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  7464. const cl_long pelements = OW*KW*KH;
  7465. const cl_long CHW = IC*KH*KW;
  7466. cl_kernel kernel;
  7467. if(dst->type == GGML_TYPE_F16) {
  7468. kernel = backend_ctx->kernel_im2col_f16;
  7469. } else {
  7470. kernel = backend_ctx->kernel_im2col_f32;
  7471. }
  7472. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  7473. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  7474. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7475. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7476. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  7477. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  7478. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  7479. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  7480. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  7481. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  7482. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  7483. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  7484. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  7485. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  7486. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  7487. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  7488. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  7489. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  7490. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  7491. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  7492. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  7493. const int num_blocks = (pelements + 256 - 1) / 256;
  7494. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  7495. size_t local_work_size[] = {256, 1, 1};
  7496. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7497. }
  7498. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7499. GGML_ASSERT(src0);
  7500. GGML_ASSERT(src0->extra);
  7501. GGML_ASSERT(dst);
  7502. GGML_ASSERT(dst->extra);
  7503. GGML_UNUSED(src1);
  7504. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7505. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  7506. GGML_ASSERT(ggml_is_contiguous(src0));
  7507. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7508. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7509. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7510. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7511. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7512. const int ne00 = src0->ne[0];
  7513. const int nrows = ggml_nrows(src0);
  7514. int ne00_padded = 1;
  7515. while (ne00_padded < ne00) {
  7516. ne00_padded *= 2;
  7517. }
  7518. int order = (enum ggml_sort_order) dst->op_params[0];
  7519. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  7520. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7521. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7522. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7523. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7524. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7525. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  7526. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  7527. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  7528. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  7529. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  7530. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7531. }
  7532. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7533. GGML_ASSERT(src0);
  7534. GGML_ASSERT(src0->extra);
  7535. GGML_ASSERT(dst);
  7536. GGML_ASSERT(dst->extra);
  7537. GGML_UNUSED(src1);
  7538. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  7539. GGML_ASSERT(ggml_is_contiguous(src0));
  7540. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7541. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7542. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7543. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7544. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7545. const int ne00 = src0->ne[0];
  7546. const int ne01 = src0->ne[1];
  7547. const int ne02 = src0->ne[2];
  7548. const int ne03 = src0->ne[3];
  7549. const cl_ulong nb01 = src0->nb[1];
  7550. const cl_ulong nb02 = src0->nb[2];
  7551. const cl_ulong nb03 = src0->nb[3];
  7552. const cl_ulong nb1 = dst->nb[1];
  7553. const cl_ulong nb2 = dst->nb[2];
  7554. const cl_ulong nb3 = dst->nb[3];
  7555. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  7556. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7557. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7558. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7559. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7560. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7561. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7562. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7563. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7564. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  7565. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  7566. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  7567. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  7568. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  7569. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  7570. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  7571. size_t local_work_size[] = {(size_t)64, 1, 1};
  7572. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7573. }
  7574. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7575. GGML_ASSERT(src0);
  7576. GGML_ASSERT(src0->extra);
  7577. GGML_ASSERT(dst);
  7578. GGML_ASSERT(dst->extra);
  7579. GGML_ASSERT(ggml_is_contiguous_1(src0));
  7580. if (src1) {
  7581. GGML_ASSERT(src1);
  7582. GGML_ASSERT(src1->extra);
  7583. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  7584. }
  7585. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7586. cl_kernel kernel;
  7587. switch (ggml_get_glu_op(dst)) {
  7588. case GGML_GLU_OP_GEGLU:
  7589. if (dst->type == GGML_TYPE_F32) {
  7590. kernel = backend_ctx->kernel_geglu;
  7591. } else {
  7592. kernel = backend_ctx->kernel_geglu_f16;
  7593. }
  7594. break;
  7595. case GGML_GLU_OP_REGLU:
  7596. if (dst->type == GGML_TYPE_F32) {
  7597. kernel = backend_ctx->kernel_reglu;
  7598. } else {
  7599. kernel = backend_ctx->kernel_reglu_f16;
  7600. }
  7601. break;
  7602. case GGML_GLU_OP_SWIGLU:
  7603. if (dst->type == GGML_TYPE_F32) {
  7604. kernel = backend_ctx->kernel_swiglu;
  7605. } else {
  7606. kernel = backend_ctx->kernel_swiglu_f16;
  7607. }
  7608. break;
  7609. case GGML_GLU_OP_SWIGLU_OAI:
  7610. kernel = backend_ctx->kernel_swiglu_oai;
  7611. break;
  7612. case GGML_GLU_OP_GEGLU_ERF:
  7613. if (dst->type == GGML_TYPE_F32) {
  7614. kernel = backend_ctx->kernel_geglu_erf;
  7615. } else {
  7616. kernel = backend_ctx->kernel_geglu_erf_f16;
  7617. }
  7618. break;
  7619. case GGML_GLU_OP_GEGLU_QUICK:
  7620. if (dst->type == GGML_TYPE_F32) {
  7621. kernel = backend_ctx->kernel_geglu_quick;
  7622. } else {
  7623. kernel = backend_ctx->kernel_geglu_quick_f16;
  7624. }
  7625. break;
  7626. default:
  7627. GGML_ABORT("Unsupported glu op");
  7628. }
  7629. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7630. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7631. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7632. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7633. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7634. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7635. const int ne0 = dst->ne[0];
  7636. const cl_ulong nb01 = src0->nb[1];
  7637. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  7638. const cl_ulong nb1 = dst->nb[1];
  7639. const int swp = ggml_get_op_params_i32(dst, 1);
  7640. const float alpha = ggml_get_op_params_f32(dst, 2);
  7641. const float limit = ggml_get_op_params_f32(dst, 3);
  7642. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  7643. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  7644. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7645. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7646. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  7647. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7648. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  7649. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  7650. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  7651. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  7652. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  7653. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  7654. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  7655. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  7656. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  7657. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  7658. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  7659. }
  7660. const size_t nrows = ggml_nrows(src0);
  7661. size_t nth = 512;
  7662. size_t global_work_size[] = {nrows*nth, 1, 1};
  7663. size_t local_work_size[] = {nth, 1, 1};
  7664. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7665. }
  7666. //------------------------------------------------------------------------------
  7667. // Op offloading
  7668. //------------------------------------------------------------------------------
  7669. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  7670. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  7671. ggml_cl_func_t func = nullptr;
  7672. ggml_tensor * src0 = tensor->src[0];
  7673. ggml_tensor * src1 = tensor->src[1];
  7674. const bool any_on_device = tensor->extra
  7675. || (src0 != nullptr && src0->extra)
  7676. || (src1 != nullptr && src1->extra);
  7677. switch (tensor->op) {
  7678. case GGML_OP_GET_ROWS:
  7679. if (!any_on_device) {
  7680. return false;
  7681. }
  7682. func = ggml_cl_get_rows;
  7683. break;
  7684. case GGML_OP_SET_ROWS:
  7685. if (!any_on_device) {
  7686. return false;
  7687. }
  7688. func = ggml_cl_set_rows;
  7689. break;
  7690. case GGML_OP_CPY:
  7691. if (!any_on_device) {
  7692. return false;
  7693. }
  7694. func = ggml_cl_cpy;
  7695. break;
  7696. case GGML_OP_DUP:
  7697. case GGML_OP_CONT:
  7698. if (!any_on_device) {
  7699. return false;
  7700. }
  7701. func = ggml_cl_dup;
  7702. break;
  7703. case GGML_OP_ADD:
  7704. if (!any_on_device) {
  7705. return false;
  7706. }
  7707. func = ggml_cl_add;
  7708. break;
  7709. case GGML_OP_ADD_ID:
  7710. if (!any_on_device) {
  7711. return false;
  7712. }
  7713. func = ggml_cl_add_id;
  7714. break;
  7715. case GGML_OP_MUL:
  7716. if (!any_on_device) {
  7717. return false;
  7718. }
  7719. func = ggml_cl_mul;
  7720. break;
  7721. case GGML_OP_DIV:
  7722. if (!any_on_device) {
  7723. return false;
  7724. }
  7725. func = ggml_cl_div;
  7726. break;
  7727. case GGML_OP_SUB:
  7728. if (!any_on_device) {
  7729. return false;
  7730. }
  7731. func = ggml_cl_sub;
  7732. break;
  7733. case GGML_OP_UNARY:
  7734. switch (ggml_get_unary_op(tensor)) {
  7735. case GGML_UNARY_OP_GELU:
  7736. if (!any_on_device) {
  7737. return false;
  7738. }
  7739. func = ggml_cl_gelu;
  7740. break;
  7741. case GGML_UNARY_OP_GELU_ERF:
  7742. if (!any_on_device) {
  7743. return false;
  7744. }
  7745. func = ggml_cl_gelu_erf;
  7746. break;
  7747. case GGML_UNARY_OP_GELU_QUICK:
  7748. if (!any_on_device) {
  7749. return false;
  7750. }
  7751. func = ggml_cl_gelu_quick;
  7752. break;
  7753. case GGML_UNARY_OP_SILU:
  7754. if (!any_on_device) {
  7755. return false;
  7756. }
  7757. func = ggml_cl_silu;
  7758. break;
  7759. case GGML_UNARY_OP_RELU:
  7760. if (!any_on_device) {
  7761. return false;
  7762. }
  7763. func = ggml_cl_relu;
  7764. break;
  7765. case GGML_UNARY_OP_SIGMOID:
  7766. if (!any_on_device) {
  7767. return false;
  7768. }
  7769. func = ggml_cl_sigmoid;
  7770. break;
  7771. case GGML_UNARY_OP_TANH:
  7772. if (!any_on_device) {
  7773. return false;
  7774. }
  7775. func = ggml_cl_tanh;
  7776. break;
  7777. default:
  7778. return false;
  7779. } break;
  7780. case GGML_OP_GLU:
  7781. if (!any_on_device) {
  7782. return false;
  7783. }
  7784. func = ggml_cl_glu;
  7785. break;
  7786. case GGML_OP_CLAMP:
  7787. if (!any_on_device) {
  7788. return false;
  7789. }
  7790. func = ggml_cl_clamp;
  7791. break;
  7792. case GGML_OP_NORM:
  7793. if (!any_on_device) {
  7794. return false;
  7795. }
  7796. func = ggml_cl_norm;
  7797. break;
  7798. case GGML_OP_RMS_NORM:
  7799. if (!any_on_device) {
  7800. return false;
  7801. }
  7802. func = ggml_cl_rms_norm;
  7803. break;
  7804. case GGML_OP_GROUP_NORM:
  7805. if (!any_on_device) {
  7806. return false;
  7807. }
  7808. func = ggml_cl_group_norm;
  7809. break;
  7810. case GGML_OP_REPEAT:
  7811. if (!any_on_device) {
  7812. return false;
  7813. }
  7814. func = ggml_cl_repeat;
  7815. break;
  7816. case GGML_OP_PAD:
  7817. if (!any_on_device) {
  7818. return false;
  7819. }
  7820. ggml_cl_pad(backend, tensor->src[0], tensor);
  7821. return true;
  7822. case GGML_OP_UPSCALE:
  7823. if (!any_on_device) {
  7824. return false;
  7825. }
  7826. ggml_cl_upscale(backend, tensor->src[0], tensor);
  7827. return true;
  7828. case GGML_OP_CONV_2D:
  7829. if (!any_on_device) {
  7830. return false;
  7831. }
  7832. func = ggml_cl_conv_2d;
  7833. break;
  7834. case GGML_OP_CONCAT:
  7835. if (!any_on_device) {
  7836. return false;
  7837. }
  7838. func = ggml_cl_concat;
  7839. break;
  7840. case GGML_OP_TIMESTEP_EMBEDDING:
  7841. if (!any_on_device) {
  7842. return false;
  7843. }
  7844. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  7845. return true;
  7846. case GGML_OP_MUL_MAT:
  7847. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  7848. return false;
  7849. }
  7850. func = ggml_cl_mul_mat;
  7851. break;
  7852. case GGML_OP_MUL_MAT_ID:
  7853. if (!any_on_device) {
  7854. return false;
  7855. }
  7856. func = ggml_cl_mul_mat_id;
  7857. break;
  7858. case GGML_OP_SCALE:
  7859. if (!any_on_device) {
  7860. return false;
  7861. }
  7862. func = ggml_cl_scale;
  7863. break;
  7864. case GGML_OP_RESHAPE:
  7865. case GGML_OP_VIEW:
  7866. case GGML_OP_PERMUTE:
  7867. case GGML_OP_TRANSPOSE:
  7868. if (!any_on_device) {
  7869. return false;
  7870. }
  7871. func = ggml_cl_nop;
  7872. break;
  7873. case GGML_OP_DIAG_MASK_INF:
  7874. if (!any_on_device) {
  7875. return false;
  7876. }
  7877. func = ggml_cl_diag_mask_inf;
  7878. break;
  7879. case GGML_OP_SOFT_MAX:
  7880. if (!any_on_device) {
  7881. return false;
  7882. }
  7883. func = ggml_cl_soft_max;
  7884. break;
  7885. case GGML_OP_ROPE:
  7886. if (!any_on_device) {
  7887. return false;
  7888. }
  7889. func = ggml_cl_rope;
  7890. break;
  7891. case GGML_OP_IM2COL:
  7892. if (!any_on_device) {
  7893. return false;
  7894. }
  7895. func = ggml_cl_im2col;
  7896. break;
  7897. case GGML_OP_ARGSORT:
  7898. if (!any_on_device) {
  7899. return false;
  7900. }
  7901. func = ggml_cl_argsort;
  7902. break;
  7903. case GGML_OP_SUM_ROWS:
  7904. if (!any_on_device) {
  7905. return false;
  7906. }
  7907. func = ggml_cl_sum_rows;
  7908. break;
  7909. case GGML_OP_FLASH_ATTN_EXT:
  7910. if (!any_on_device) {
  7911. return false;
  7912. }
  7913. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  7914. return true;
  7915. default:
  7916. return false;
  7917. }
  7918. func(backend, tensor->src[0], tensor->src[1], tensor);
  7919. return true;
  7920. }