unicode.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. #include "unicode.h"
  2. #include "unicode-data.h"
  3. #include <cassert>
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <map>
  7. #include <regex>
  8. #include <stdexcept>
  9. #include <string>
  10. #include <unordered_map>
  11. #include <unordered_set>
  12. #include <utility>
  13. #include <vector>
  14. #include <locale>
  15. #include <codecvt>
  16. static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
  17. std::string result;
  18. for (size_t i = 0; i < cps.size(); ++i) {
  19. result.append(unicode_cpt_to_utf8(cps[i]));
  20. }
  21. return result;
  22. }
  23. static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
  24. assert(offset < utf8.size());
  25. if (!(utf8[offset + 0] & 0x80)) {
  26. auto result = utf8[offset + 0];
  27. offset += 1;
  28. return result;
  29. }
  30. if (!(utf8[offset + 0] & 0x40)) {
  31. throw std::invalid_argument("invalid character");
  32. }
  33. if (!(utf8[offset + 0] & 0x20)) {
  34. if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
  35. throw std::invalid_argument("invalid character");
  36. }
  37. auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
  38. offset += 2;
  39. return result;
  40. }
  41. if (!(utf8[offset + 0] & 0x10)) {
  42. if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
  43. throw std::invalid_argument("invalid character");
  44. }
  45. auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
  46. offset += 3;
  47. return result;
  48. }
  49. if (!(utf8[offset + 0] & 0x08)) {
  50. if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
  51. throw std::invalid_argument("invalid character");
  52. }
  53. auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
  54. offset += 4;
  55. return result;
  56. }
  57. throw std::invalid_argument("failed to convert utf8 to codepoint");
  58. }
  59. //static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
  60. // std::vector<uint16_t> result;
  61. // if (/* 0x0000 <= cp && */ cp <= 0xffff) {
  62. // result.emplace_back(cp);
  63. // return result;
  64. // }
  65. // if (0x10000 <= cp && cp <= 0x10ffff) {
  66. // result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
  67. // result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
  68. // return result;
  69. // }
  70. // throw std::invalid_argument("failed to convert codepoint to utf16");
  71. //}
  72. //static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
  73. // std::vector<uint16_t> result;
  74. // for (size_t i = 0; i < cps.size(); ++i) {
  75. // auto temp = unicode_cpt_to_utf16(cps[i]);
  76. // result.insert(result.end(), temp.begin(), temp.end());
  77. // }
  78. // return result;
  79. //}
  80. //static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
  81. // assert(offset < utf16.size());
  82. // if (((utf16[0] >> 10) << 10) != 0xd800) {
  83. // auto result = utf16[offset + 0];
  84. // offset += 1;
  85. // return result;
  86. // }
  87. //
  88. // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
  89. // throw std::invalid_argument("invalid character");
  90. // }
  91. //
  92. // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
  93. // offset += 2;
  94. // return result;
  95. //}
  96. //static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
  97. // std::vector<uint32_t> result;
  98. // size_t offset = 0;
  99. // while (offset < utf16.size()) {
  100. // result.push_back(unicode_cpt_from_utf16(utf16, offset));
  101. // }
  102. // return result;
  103. //}
  104. static std::vector<codepoint_flags> unicode_cpt_flags_array() {
  105. std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
  106. assert (unicode_ranges_flags.front().first == 0);
  107. assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS);
  108. for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
  109. const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags
  110. const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags
  111. for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
  112. cpt_flags[cpt] = range_ini.second;
  113. }
  114. }
  115. for (auto cpt : unicode_set_whitespace) {
  116. cpt_flags[cpt].is_whitespace = true;
  117. }
  118. for (auto p : unicode_map_lowercase) {
  119. cpt_flags[p.second].is_lowercase = true;
  120. }
  121. for (auto p : unicode_map_uppercase) {
  122. cpt_flags[p.second].is_uppercase = true;
  123. }
  124. for (auto &range : unicode_ranges_nfd) { // start, last, nfd
  125. cpt_flags[range.nfd].is_nfd = true;
  126. }
  127. return cpt_flags;
  128. }
  129. static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
  130. std::unordered_map<uint8_t, std::string> map;
  131. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  132. assert(0 <= ch && ch < 256);
  133. map[ch] = unicode_cpt_to_utf8(ch);
  134. }
  135. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  136. assert(0 <= ch && ch < 256);
  137. map[ch] = unicode_cpt_to_utf8(ch);
  138. }
  139. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  140. assert(0 <= ch && ch < 256);
  141. map[ch] = unicode_cpt_to_utf8(ch);
  142. }
  143. auto n = 0;
  144. for (int ch = 0; ch < 256; ++ch) {
  145. if (map.find(ch) == map.end()) {
  146. map[ch] = unicode_cpt_to_utf8(256 + n);
  147. ++n;
  148. }
  149. }
  150. return map;
  151. }
  152. static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
  153. std::unordered_map<std::string, uint8_t> map;
  154. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  155. assert(0 <= ch && ch < 256);
  156. map[unicode_cpt_to_utf8(ch)] = ch;
  157. }
  158. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  159. assert(0 <= ch && ch < 256);
  160. map[unicode_cpt_to_utf8(ch)] = ch;
  161. }
  162. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  163. assert(0 <= ch && ch < 256);
  164. map[unicode_cpt_to_utf8(ch)] = ch;
  165. }
  166. auto n = 0;
  167. for (int ch = 0; ch < 256; ++ch) {
  168. if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
  169. map[unicode_cpt_to_utf8(256 + n)] = ch;
  170. ++n;
  171. }
  172. }
  173. return map;
  174. }
  175. static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
  176. std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
  177. return conv.from_bytes(s);
  178. }
  179. static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
  180. std::vector<std::string> bpe_encoded_words;
  181. for (const auto & word : bpe_words) {
  182. std::string text_utf;
  183. auto utf_word = unicode_cpts_from_utf8(word);
  184. for (size_t i = 0; i < utf_word.size(); ++i) {
  185. text_utf += unicode_cpt_to_utf8(utf_word[i]);
  186. }
  187. std::string encoded_token;
  188. for (char & c : text_utf) {
  189. encoded_token += unicode_byte_to_utf8(c);
  190. }
  191. bpe_encoded_words.emplace_back(encoded_token);
  192. }
  193. return bpe_encoded_words;
  194. }
  195. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  196. static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
  197. std::vector<size_t> bpe_offsets; // store the offset of each word
  198. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  199. const auto cpts = unicode_cpts_from_utf8(text);
  200. size_t start = 0;
  201. for (auto offset : offsets) {
  202. const size_t offset_ini = start;
  203. const size_t offset_end = start + offset;
  204. assert(offset_end <= cpts.size());
  205. start = offset_end;
  206. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  207. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
  208. };
  209. auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
  210. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  211. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
  212. };
  213. size_t _prev_end = offset_ini;
  214. auto _add_token = [&] (const size_t end) -> size_t {
  215. assert(_prev_end <= end && end <= offset_end);
  216. size_t len = end - _prev_end;
  217. if (len > 0) {
  218. bpe_offsets.push_back(len);
  219. }
  220. _prev_end = end;
  221. //if (len > 0) {
  222. // std::string s = "";
  223. // for(size_t p = end-len; p < end; p++)
  224. // s += unicode_cpt_to_utf8(cpts[p]);
  225. // printf(">>> '%s'\n", s.c_str());
  226. //}
  227. return len;
  228. };
  229. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  230. const uint32_t cpt = _get_cpt(pos);
  231. const auto flags = _get_flags(pos);
  232. // regex: 's|'t|'re|'ve|'m|'ll|'d
  233. if (cpt == '\'' && pos+1 < offset_end) {
  234. uint32_t cpt_next = _get_cpt(pos+1);
  235. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  236. pos += _add_token(pos+2);
  237. continue;
  238. }
  239. if (pos+2 < offset_end) {
  240. uint32_t cpt_next_next = _get_cpt(pos+2);
  241. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  242. (cpt_next == 'v' && cpt_next_next == 'e') ||
  243. (cpt_next == 'l' && cpt_next_next == 'l')) {
  244. pos += _add_token(pos+3);
  245. continue;
  246. }
  247. }
  248. }
  249. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  250. // regex: <space>?\p{L}+
  251. if (flags2.is_letter) {
  252. pos += (cpt == ' ');
  253. while (flags2.is_letter) {
  254. flags2 = _get_flags(++pos);
  255. }
  256. _add_token(pos);
  257. continue;
  258. }
  259. // regex: <space>?\p{N}+
  260. if (flags2.is_number) {
  261. pos += (cpt == ' ');
  262. while (flags2.is_number) {
  263. flags2 = _get_flags(++pos);
  264. }
  265. _add_token(pos);
  266. continue;
  267. }
  268. // regex: <space>?[^\s\p{L}\p{N}]+
  269. if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
  270. pos += (cpt == ' ');
  271. while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
  272. flags2 = _get_flags(++pos);
  273. }
  274. _add_token(pos);
  275. continue;
  276. }
  277. size_t num_whitespaces = 0;
  278. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  279. num_whitespaces++;
  280. }
  281. // regex: \s+(?!\S)
  282. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
  283. pos += num_whitespaces - 1;
  284. _add_token(pos);
  285. continue;
  286. }
  287. // regex: \s+
  288. if (num_whitespaces > 0) {
  289. pos += num_whitespaces;
  290. _add_token(pos);
  291. continue;
  292. }
  293. // no matches
  294. _add_token(++pos);
  295. }
  296. }
  297. return bpe_offsets;
  298. }
  299. // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
  300. static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
  301. std::vector<size_t> bpe_offsets; // store the offset of each word
  302. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  303. const auto cpts = unicode_cpts_from_utf8(text);
  304. size_t start = 0;
  305. for (auto offset : offsets) {
  306. const size_t offset_ini = start;
  307. const size_t offset_end = start + offset;
  308. assert(offset_end <= cpts.size());
  309. start = offset_end;
  310. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  311. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
  312. };
  313. auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
  314. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  315. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
  316. };
  317. size_t _prev_end = offset_ini;
  318. auto _add_token = [&] (const size_t end) -> size_t {
  319. assert(_prev_end <= end && end <= offset_end);
  320. size_t len = end - _prev_end;
  321. if (len > 0) {
  322. bpe_offsets.push_back(len);
  323. }
  324. _prev_end = end;
  325. //if (len > 0) {
  326. // std::string s = "";
  327. // for(size_t p = end-len; p < end; p++)
  328. // s += unicode_cpt_to_utf8(cpts[p]);
  329. // printf(">>> '%s'\n", s.c_str());
  330. //}
  331. return len;
  332. };
  333. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  334. const uint32_t cpt = _get_cpt(pos);
  335. const auto flags = _get_flags(pos);
  336. // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
  337. if (cpt == '\'' && pos+1 < offset_end) {
  338. uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
  339. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  340. pos += _add_token(pos+2);
  341. continue;
  342. }
  343. if (pos+2 < offset_end) {
  344. uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
  345. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  346. (cpt_next == 'v' && cpt_next_next == 'e') ||
  347. (cpt_next == 'l' && cpt_next_next == 'l')) {
  348. pos += _add_token(pos+3);
  349. continue;
  350. }
  351. }
  352. }
  353. // regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct?
  354. if (!(cpt == '\r' || cpt == '\n' || /*flags.is_letter |*/ flags.is_number)) {
  355. if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
  356. pos++;
  357. while (_get_flags(pos).is_letter) {
  358. pos++;
  359. }
  360. _add_token(pos);
  361. continue;
  362. }
  363. }
  364. // regex: \p{N}{1,3}
  365. if (flags.is_number) {
  366. size_t ini = pos;
  367. while (_get_flags(pos).is_number) {
  368. if (++pos - ini >= 3 ) {
  369. _add_token(pos);
  370. ini = pos;
  371. }
  372. }
  373. _add_token(pos);
  374. continue;
  375. }
  376. // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
  377. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  378. if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
  379. pos += (cpt == ' ');
  380. while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) {
  381. flags2 = _get_flags(++pos);
  382. }
  383. uint32_t cpt2 = _get_cpt(pos);
  384. while (cpt2 == '\r' || cpt2 == '\n') {
  385. cpt2 = _get_cpt(++pos);
  386. }
  387. _add_token(pos);
  388. continue;
  389. }
  390. size_t num_whitespaces = 0;
  391. size_t last_end_r_or_n = 0;
  392. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  393. uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
  394. if (cpt2 == '\r' || cpt2 == '\n') {
  395. last_end_r_or_n = pos + num_whitespaces + 1;
  396. }
  397. num_whitespaces++;
  398. }
  399. // regex: \s*[\r\n]+
  400. if (last_end_r_or_n > 0) {
  401. pos = last_end_r_or_n;
  402. _add_token(pos);
  403. continue;
  404. }
  405. // regex: \s+(?!\S)
  406. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
  407. pos += num_whitespaces - 1;
  408. _add_token(pos);
  409. continue;
  410. }
  411. // regex: \s+
  412. if (num_whitespaces > 0) {
  413. pos += num_whitespaces;
  414. _add_token(pos);
  415. continue;
  416. }
  417. // no matches
  418. _add_token(++pos);
  419. }
  420. }
  421. return bpe_offsets;
  422. }
  423. // use std::wregex to split the text
  424. static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
  425. std::wregex expr(regex_expr);
  426. std::vector<size_t> bpe_offsets; // store the offset of each word
  427. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  428. size_t start = 0;
  429. for (auto offset : offsets) {
  430. std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
  431. std::wcregex_iterator end;
  432. int64_t start_idx = 0;
  433. while (it != end) {
  434. std::wcmatch match = *it;
  435. if (match.position() > start_idx) {
  436. bpe_offsets.emplace_back(match.position() - start_idx);
  437. }
  438. bpe_offsets.emplace_back(match.length());
  439. start_idx = match.position() + match.length();
  440. ++it;
  441. }
  442. if (start_idx < (int64_t) offset) {
  443. bpe_offsets.emplace_back(offset - start_idx);
  444. }
  445. start += offset;
  446. }
  447. return bpe_offsets;
  448. }
  449. // use std::regex to split the text
  450. static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  451. std::regex expr(regex_expr);
  452. std::vector<size_t> bpe_offsets; // store the offset of each word
  453. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  454. size_t start = 0;
  455. for (auto offset : offsets) {
  456. std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
  457. std::cregex_iterator end;
  458. int64_t start_idx = 0;
  459. while (it != end) {
  460. std::cmatch match = *it;
  461. if (match.position() > start_idx) {
  462. bpe_offsets.emplace_back(match.position() - start_idx);
  463. }
  464. bpe_offsets.emplace_back(match.length());
  465. start_idx = match.position() + match.length();
  466. ++it;
  467. }
  468. if (start_idx < (int64_t) offset) {
  469. bpe_offsets.emplace_back(offset - start_idx);
  470. }
  471. start += offset;
  472. }
  473. return bpe_offsets;
  474. }
  475. static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  476. std::vector<size_t> bpe_offsets;
  477. if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
  478. bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
  479. } else if (
  480. regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
  481. regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
  482. bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
  483. }
  484. return bpe_offsets;
  485. }
  486. //
  487. // interface
  488. //
  489. std::string unicode_cpt_to_utf8(uint32_t cp) {
  490. std::string result;
  491. if (/* 0x00 <= cp && */ cp <= 0x7f) {
  492. result.push_back(cp);
  493. return result;
  494. }
  495. if (0x80 <= cp && cp <= 0x7ff) {
  496. result.push_back(0xc0 | ((cp >> 6) & 0x1f));
  497. result.push_back(0x80 | (cp & 0x3f));
  498. return result;
  499. }
  500. if (0x800 <= cp && cp <= 0xffff) {
  501. result.push_back(0xe0 | ((cp >> 12) & 0x0f));
  502. result.push_back(0x80 | ((cp >> 6) & 0x3f));
  503. result.push_back(0x80 | (cp & 0x3f));
  504. return result;
  505. }
  506. if (0x10000 <= cp && cp <= 0x10ffff) {
  507. result.push_back(0xf0 | ((cp >> 18) & 0x07));
  508. result.push_back(0x80 | ((cp >> 12) & 0x3f));
  509. result.push_back(0x80 | ((cp >> 6) & 0x3f));
  510. result.push_back(0x80 | (cp & 0x3f));
  511. return result;
  512. }
  513. throw std::invalid_argument("invalid codepoint");
  514. }
  515. std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
  516. auto comp = [] (const uint32_t cpt, const range_nfd & range) {
  517. return cpt < range.first;
  518. };
  519. std::vector<uint32_t> result(cpts.size());
  520. for (size_t i = 0; i < cpts.size(); ++i) {
  521. const uint32_t cpt = cpts[i];
  522. auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1;
  523. result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
  524. }
  525. return result;
  526. }
  527. std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
  528. std::vector<uint32_t> result;
  529. size_t offset = 0;
  530. while (offset < utf8.size()) {
  531. result.push_back(unicode_cpt_from_utf8(utf8, offset));
  532. }
  533. return result;
  534. }
  535. codepoint_flags unicode_cpt_flags(const uint32_t cp) {
  536. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  537. static const auto cpt_flags = unicode_cpt_flags_array();
  538. return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
  539. }
  540. codepoint_flags unicode_cpt_flags(const std::string & utf8) {
  541. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  542. if (utf8.empty()) {
  543. return undef; // undefined
  544. }
  545. size_t offset = 0;
  546. return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
  547. }
  548. std::string unicode_byte_to_utf8(uint8_t byte) {
  549. static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
  550. return map.at(byte);
  551. }
  552. uint8_t unicode_utf8_to_byte(const std::string & utf8) {
  553. static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
  554. return map.at(utf8);
  555. }
  556. uint32_t unicode_tolower(uint32_t cp) {
  557. auto it = unicode_map_lowercase.find(cp);
  558. return it == unicode_map_lowercase.end() ? cp : it->second;
  559. }
  560. std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
  561. // unicode categories
  562. static const std::map<std::string, int> k_ucat_enum = {
  563. { "\\p{N}", codepoint_flags::NUMBER },
  564. { "\\p{L}", codepoint_flags::LETTER },
  565. { "\\p{P}", codepoint_flags::PUNCTUATION },
  566. };
  567. static const std::map<int, int> k_ucat_cpt = {
  568. { codepoint_flags::NUMBER, 0xD1 },
  569. { codepoint_flags::LETTER, 0xD2 },
  570. { codepoint_flags::PUNCTUATION, 0xD3 },
  571. };
  572. static const std::map<int, std::string> k_ucat_map = {
  573. { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
  574. { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
  575. { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
  576. };
  577. // compute collapsed codepoints only if needed by at least one regex
  578. bool need_collapse = false;
  579. for (auto & regex_expr : regex_exprs) {
  580. // search for unicode categories
  581. for (const auto & ucat : k_ucat_enum) {
  582. if (std::string::npos != regex_expr.find(ucat.first)) {
  583. need_collapse = true;
  584. break;
  585. }
  586. }
  587. }
  588. const auto cpts = unicode_cpts_from_utf8(text);
  589. // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
  590. // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
  591. std::string text_collapsed;
  592. if (need_collapse) {
  593. // collapse all unicode categories
  594. text_collapsed.resize(cpts.size());
  595. for (size_t i = 0; i < cpts.size(); ++i) {
  596. // keep single-byte codepoints as is
  597. if (cpts[i] < 128) {
  598. text_collapsed[i] = cpts[i];
  599. continue;
  600. }
  601. const int cpt_flag = unicode_cpt_flags(cpts[i]).category_flag();
  602. if (k_ucat_cpt.find(cpt_flag) != k_ucat_cpt.end()) {
  603. text_collapsed[i] = k_ucat_cpt.at(cpt_flag);
  604. } else {
  605. text_collapsed[i] = (char) 0xD0; // fallback
  606. }
  607. }
  608. }
  609. std::vector<size_t> bpe_offsets = { cpts.size() };
  610. for (auto & regex_expr : regex_exprs) {
  611. // first, see if we have an efficient custom regex implementation
  612. auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
  613. if (!tmp.empty()) {
  614. bpe_offsets = std::move(tmp);
  615. continue;
  616. }
  617. // fallback to general-purpose std::regex / std::wregex
  618. try {
  619. // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
  620. // with the corresponding collapsed representation
  621. bool use_collapsed = false;
  622. for (auto & ucat : k_ucat_enum) {
  623. if (std::string::npos != regex_expr.find(ucat.first)) {
  624. use_collapsed = true;
  625. break;
  626. }
  627. }
  628. if (use_collapsed) {
  629. // sanity-check that the original regex does not contain any non-ASCII characters
  630. const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
  631. for (size_t i = 0; i < cpts_regex.size(); ++i) {
  632. if (cpts_regex[i] >= 128) {
  633. throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
  634. }
  635. }
  636. // generate a collapsed representation of the regex
  637. std::string regex_expr_collapsed;
  638. // track if we are inside [], because nested [] are not allowed
  639. bool inside = false;
  640. for (size_t i = 0; i < regex_expr.size(); ++i) {
  641. if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
  642. regex_expr_collapsed += '[';
  643. inside = true;
  644. continue;
  645. }
  646. if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
  647. regex_expr_collapsed += ']';
  648. inside = false;
  649. continue;
  650. }
  651. if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
  652. regex_expr[i + 1] == 'p' &&
  653. regex_expr[i + 2] == '{' &&
  654. regex_expr[i + 4] == '}') {
  655. const std::string pat = regex_expr.substr(i, 5);
  656. if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
  657. if (!inside) {
  658. regex_expr_collapsed += '[';
  659. }
  660. regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
  661. regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
  662. if (!inside) {
  663. regex_expr_collapsed += ']';
  664. }
  665. i += 4;
  666. continue;
  667. }
  668. }
  669. regex_expr_collapsed += regex_expr[i];
  670. }
  671. //printf("text_collapsed: %s\n", text_collapsed.c_str());
  672. //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
  673. bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
  674. } else {
  675. // no unicode category used, we can use std::wregex directly
  676. const std::wstring wtext = unicode_wstring_from_utf8(text);
  677. const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
  678. //printf("text: %s\n", text.c_str());
  679. //printf("regex_expr: %s\n", regex_expr.c_str());
  680. bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
  681. }
  682. } catch (std::regex_error & e) {
  683. fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
  684. fprintf(stderr, "Regex error: %s\n", e.what());
  685. throw std::runtime_error("Failed to process regex");
  686. }
  687. }
  688. std::vector<std::string> bpe_words;
  689. bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
  690. size_t start = 0;
  691. for (size_t & offset : bpe_offsets) {
  692. bpe_words.emplace_back();
  693. for (size_t i = start; i < start + offset; ++i) {
  694. bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
  695. }
  696. start += offset;
  697. }
  698. return unicode_byte_encoding_process(bpe_words);
  699. }