llama.cpp 679 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 60
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_QWEN2MOE,
  188. LLM_ARCH_PHI2,
  189. LLM_ARCH_PLAMO,
  190. LLM_ARCH_CODESHELL,
  191. LLM_ARCH_ORION,
  192. LLM_ARCH_INTERNLM2,
  193. LLM_ARCH_MINICPM,
  194. LLM_ARCH_GEMMA,
  195. LLM_ARCH_STARCODER2,
  196. LLM_ARCH_MAMBA,
  197. LLM_ARCH_XVERSE,
  198. LLM_ARCH_COMMAND_R,
  199. LLM_ARCH_DBRX,
  200. LLM_ARCH_UNKNOWN,
  201. };
  202. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  203. { LLM_ARCH_LLAMA, "llama" },
  204. { LLM_ARCH_FALCON, "falcon" },
  205. { LLM_ARCH_GROK, "grok" },
  206. { LLM_ARCH_GPT2, "gpt2" },
  207. { LLM_ARCH_GPTJ, "gptj" },
  208. { LLM_ARCH_GPTNEOX, "gptneox" },
  209. { LLM_ARCH_MPT, "mpt" },
  210. { LLM_ARCH_BAICHUAN, "baichuan" },
  211. { LLM_ARCH_STARCODER, "starcoder" },
  212. { LLM_ARCH_PERSIMMON, "persimmon" },
  213. { LLM_ARCH_REFACT, "refact" },
  214. { LLM_ARCH_BERT, "bert" },
  215. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  216. { LLM_ARCH_BLOOM, "bloom" },
  217. { LLM_ARCH_STABLELM, "stablelm" },
  218. { LLM_ARCH_QWEN, "qwen" },
  219. { LLM_ARCH_QWEN2, "qwen2" },
  220. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  221. { LLM_ARCH_PHI2, "phi2" },
  222. { LLM_ARCH_PLAMO, "plamo" },
  223. { LLM_ARCH_CODESHELL, "codeshell" },
  224. { LLM_ARCH_ORION, "orion" },
  225. { LLM_ARCH_INTERNLM2, "internlm2" },
  226. { LLM_ARCH_MINICPM, "minicpm" },
  227. { LLM_ARCH_GEMMA, "gemma" },
  228. { LLM_ARCH_STARCODER2, "starcoder2" },
  229. { LLM_ARCH_MAMBA, "mamba" },
  230. { LLM_ARCH_XVERSE, "xverse" },
  231. { LLM_ARCH_COMMAND_R, "command-r" },
  232. { LLM_ARCH_DBRX, "dbrx" },
  233. { LLM_ARCH_UNKNOWN, "(unknown)" },
  234. };
  235. enum llm_kv {
  236. LLM_KV_GENERAL_ARCHITECTURE,
  237. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  238. LLM_KV_GENERAL_ALIGNMENT,
  239. LLM_KV_GENERAL_NAME,
  240. LLM_KV_GENERAL_AUTHOR,
  241. LLM_KV_GENERAL_VERSION,
  242. LLM_KV_GENERAL_URL,
  243. LLM_KV_GENERAL_DESCRIPTION,
  244. LLM_KV_GENERAL_LICENSE,
  245. LLM_KV_GENERAL_SOURCE_URL,
  246. LLM_KV_GENERAL_SOURCE_HF_REPO,
  247. LLM_KV_VOCAB_SIZE,
  248. LLM_KV_CONTEXT_LENGTH,
  249. LLM_KV_EMBEDDING_LENGTH,
  250. LLM_KV_BLOCK_COUNT,
  251. LLM_KV_FEED_FORWARD_LENGTH,
  252. LLM_KV_USE_PARALLEL_RESIDUAL,
  253. LLM_KV_TENSOR_DATA_LAYOUT,
  254. LLM_KV_EXPERT_COUNT,
  255. LLM_KV_EXPERT_USED_COUNT,
  256. LLM_KV_POOLING_TYPE,
  257. LLM_KV_LOGIT_SCALE,
  258. LLM_KV_ATTENTION_HEAD_COUNT,
  259. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  260. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  261. LLM_KV_ATTENTION_CLAMP_KQV,
  262. LLM_KV_ATTENTION_KEY_LENGTH,
  263. LLM_KV_ATTENTION_VALUE_LENGTH,
  264. LLM_KV_ATTENTION_LAYERNORM_EPS,
  265. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  266. LLM_KV_ATTENTION_CAUSAL,
  267. LLM_KV_ROPE_DIMENSION_COUNT,
  268. LLM_KV_ROPE_FREQ_BASE,
  269. LLM_KV_ROPE_SCALE_LINEAR,
  270. LLM_KV_ROPE_SCALING_TYPE,
  271. LLM_KV_ROPE_SCALING_FACTOR,
  272. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  273. LLM_KV_ROPE_SCALING_FINETUNED,
  274. LLM_KV_SPLIT_NO,
  275. LLM_KV_SPLIT_COUNT,
  276. LLM_KV_SPLIT_TENSORS_COUNT,
  277. LLM_KV_SSM_INNER_SIZE,
  278. LLM_KV_SSM_CONV_KERNEL,
  279. LLM_KV_SSM_STATE_SIZE,
  280. LLM_KV_SSM_TIME_STEP_RANK,
  281. LLM_KV_TOKENIZER_MODEL,
  282. LLM_KV_TOKENIZER_LIST,
  283. LLM_KV_TOKENIZER_TOKEN_TYPE,
  284. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  285. LLM_KV_TOKENIZER_SCORES,
  286. LLM_KV_TOKENIZER_MERGES,
  287. LLM_KV_TOKENIZER_BOS_ID,
  288. LLM_KV_TOKENIZER_EOS_ID,
  289. LLM_KV_TOKENIZER_UNK_ID,
  290. LLM_KV_TOKENIZER_SEP_ID,
  291. LLM_KV_TOKENIZER_PAD_ID,
  292. LLM_KV_TOKENIZER_CLS_ID,
  293. LLM_KV_TOKENIZER_MASK_ID,
  294. LLM_KV_TOKENIZER_ADD_BOS,
  295. LLM_KV_TOKENIZER_ADD_EOS,
  296. LLM_KV_TOKENIZER_ADD_PREFIX,
  297. LLM_KV_TOKENIZER_HF_JSON,
  298. LLM_KV_TOKENIZER_RWKV,
  299. LLM_KV_TOKENIZER_PREFIX_ID,
  300. LLM_KV_TOKENIZER_SUFFIX_ID,
  301. LLM_KV_TOKENIZER_MIDDLE_ID,
  302. LLM_KV_TOKENIZER_EOT_ID,
  303. };
  304. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  305. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  306. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  307. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  308. { LLM_KV_GENERAL_NAME, "general.name" },
  309. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  310. { LLM_KV_GENERAL_VERSION, "general.version" },
  311. { LLM_KV_GENERAL_URL, "general.url" },
  312. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  313. { LLM_KV_GENERAL_LICENSE, "general.license" },
  314. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  315. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  316. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  317. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  318. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  319. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  320. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  321. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  322. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  323. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  324. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  325. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  326. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  327. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  328. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  329. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  330. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  331. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  332. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  333. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  334. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  335. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  336. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  337. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  338. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  339. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  340. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  341. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  342. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  343. { LLM_KV_SPLIT_NO, "split.no" },
  344. { LLM_KV_SPLIT_COUNT, "split.count" },
  345. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  346. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  347. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  348. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  349. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  350. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  351. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  352. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  353. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  354. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  355. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  356. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  357. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  358. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  359. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  360. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  361. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  362. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  363. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  364. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  365. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  366. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  367. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  368. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  369. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  370. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  371. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  372. };
  373. struct LLM_KV {
  374. LLM_KV(llm_arch arch) : arch(arch) {}
  375. llm_arch arch;
  376. std::string operator()(llm_kv kv) const {
  377. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  378. }
  379. };
  380. enum llm_tensor {
  381. LLM_TENSOR_TOKEN_EMBD,
  382. LLM_TENSOR_TOKEN_EMBD_NORM,
  383. LLM_TENSOR_TOKEN_TYPES,
  384. LLM_TENSOR_POS_EMBD,
  385. LLM_TENSOR_OUTPUT,
  386. LLM_TENSOR_OUTPUT_NORM,
  387. LLM_TENSOR_ROPE_FREQS,
  388. LLM_TENSOR_ATTN_Q,
  389. LLM_TENSOR_ATTN_K,
  390. LLM_TENSOR_ATTN_V,
  391. LLM_TENSOR_ATTN_QKV,
  392. LLM_TENSOR_ATTN_OUT,
  393. LLM_TENSOR_ATTN_NORM,
  394. LLM_TENSOR_ATTN_NORM_2,
  395. LLM_TENSOR_ATTN_OUT_NORM,
  396. LLM_TENSOR_ATTN_ROT_EMBD,
  397. LLM_TENSOR_FFN_GATE_INP,
  398. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  399. LLM_TENSOR_FFN_NORM,
  400. LLM_TENSOR_FFN_GATE,
  401. LLM_TENSOR_FFN_DOWN,
  402. LLM_TENSOR_FFN_UP,
  403. LLM_TENSOR_FFN_ACT,
  404. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  405. LLM_TENSOR_FFN_GATE_EXP,
  406. LLM_TENSOR_FFN_UP_EXP,
  407. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  408. LLM_TENSOR_FFN_GATE_EXPS,
  409. LLM_TENSOR_FFN_UP_EXPS,
  410. LLM_TENSOR_FFN_DOWN_SHEXP,
  411. LLM_TENSOR_FFN_GATE_SHEXP,
  412. LLM_TENSOR_FFN_UP_SHEXP,
  413. LLM_TENSOR_ATTN_Q_NORM,
  414. LLM_TENSOR_ATTN_K_NORM,
  415. LLM_TENSOR_LAYER_OUT_NORM,
  416. LLM_TENSOR_SSM_IN,
  417. LLM_TENSOR_SSM_CONV1D,
  418. LLM_TENSOR_SSM_X,
  419. LLM_TENSOR_SSM_DT,
  420. LLM_TENSOR_SSM_A,
  421. LLM_TENSOR_SSM_D,
  422. LLM_TENSOR_SSM_OUT,
  423. };
  424. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  425. {
  426. LLM_ARCH_LLAMA,
  427. {
  428. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  429. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  430. { LLM_TENSOR_OUTPUT, "output" },
  431. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  432. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  433. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  434. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  435. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  436. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  437. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  438. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  439. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  440. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  441. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  442. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  443. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  444. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  445. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  446. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  447. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  448. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  449. },
  450. },
  451. {
  452. LLM_ARCH_BAICHUAN,
  453. {
  454. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  455. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  456. { LLM_TENSOR_OUTPUT, "output" },
  457. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  458. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  459. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  460. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  461. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  462. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  463. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  464. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  465. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  466. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  467. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  468. },
  469. },
  470. {
  471. LLM_ARCH_FALCON,
  472. {
  473. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  474. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  475. { LLM_TENSOR_OUTPUT, "output" },
  476. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  477. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  478. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  479. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  480. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  481. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  482. },
  483. },
  484. {
  485. LLM_ARCH_GROK,
  486. {
  487. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  488. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  489. { LLM_TENSOR_OUTPUT, "output" },
  490. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  491. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  492. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  493. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  494. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  495. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  496. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  497. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  498. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  499. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  500. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  501. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  502. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  503. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  504. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  505. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  506. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  507. },
  508. },
  509. {
  510. LLM_ARCH_GPT2,
  511. {
  512. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  513. { LLM_TENSOR_POS_EMBD, "position_embd" },
  514. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  515. { LLM_TENSOR_OUTPUT, "output" },
  516. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  517. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  518. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  519. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  520. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  521. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  522. },
  523. },
  524. {
  525. LLM_ARCH_GPTJ,
  526. {
  527. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  528. },
  529. },
  530. {
  531. LLM_ARCH_GPTNEOX,
  532. {
  533. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  534. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  535. { LLM_TENSOR_OUTPUT, "output" },
  536. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  537. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  538. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  539. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  540. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  541. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  542. },
  543. },
  544. {
  545. LLM_ARCH_PERSIMMON,
  546. {
  547. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  548. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  549. { LLM_TENSOR_OUTPUT, "output"},
  550. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  551. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  552. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  553. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  554. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  555. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  556. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  557. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  558. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  559. },
  560. },
  561. {
  562. LLM_ARCH_MPT,
  563. {
  564. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  565. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  566. { LLM_TENSOR_OUTPUT, "output"},
  567. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  568. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  569. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  570. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  571. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  572. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  573. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  574. { LLM_TENSOR_POS_EMBD, "position_embd" },
  575. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  576. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  577. },
  578. },
  579. {
  580. LLM_ARCH_STARCODER,
  581. {
  582. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  583. { LLM_TENSOR_POS_EMBD, "position_embd" },
  584. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  585. { LLM_TENSOR_OUTPUT, "output" },
  586. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  587. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  588. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  589. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  590. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  591. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  592. },
  593. },
  594. {
  595. LLM_ARCH_REFACT,
  596. {
  597. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  598. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  599. { LLM_TENSOR_OUTPUT, "output" },
  600. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  601. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  602. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  603. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  604. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  605. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  606. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  607. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  608. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  609. },
  610. },
  611. {
  612. LLM_ARCH_BERT,
  613. {
  614. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  615. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  616. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  617. { LLM_TENSOR_POS_EMBD, "position_embd" },
  618. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  619. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  620. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  621. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  622. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  623. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  624. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  625. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  626. },
  627. },
  628. {
  629. LLM_ARCH_NOMIC_BERT,
  630. {
  631. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  632. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  633. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  634. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  635. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  636. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  637. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  638. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  639. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  640. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  641. },
  642. },
  643. {
  644. LLM_ARCH_BLOOM,
  645. {
  646. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  647. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  648. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  649. { LLM_TENSOR_OUTPUT, "output" },
  650. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  651. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  652. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  653. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  654. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  655. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  656. },
  657. },
  658. {
  659. LLM_ARCH_STABLELM,
  660. {
  661. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  662. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  663. { LLM_TENSOR_OUTPUT, "output" },
  664. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  665. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  666. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  667. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  668. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  669. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  670. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  671. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  672. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  673. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  674. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  675. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  676. },
  677. },
  678. {
  679. LLM_ARCH_QWEN,
  680. {
  681. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  682. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  683. { LLM_TENSOR_OUTPUT, "output" },
  684. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  685. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  686. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  687. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  688. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  689. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  690. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  691. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  692. },
  693. },
  694. {
  695. LLM_ARCH_QWEN2,
  696. {
  697. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  698. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  699. { LLM_TENSOR_OUTPUT, "output" },
  700. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  701. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  702. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  703. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  704. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  705. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  706. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  707. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  708. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  709. },
  710. },
  711. {
  712. LLM_ARCH_QWEN2MOE,
  713. {
  714. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  715. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  716. { LLM_TENSOR_OUTPUT, "output" },
  717. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  718. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  719. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  720. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  721. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  722. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  723. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  724. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  725. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  726. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  727. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  728. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  729. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  730. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  731. },
  732. },
  733. {
  734. LLM_ARCH_PHI2,
  735. {
  736. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  737. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  738. { LLM_TENSOR_OUTPUT, "output" },
  739. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  740. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  741. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  742. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  743. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  744. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  745. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  746. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  747. },
  748. },
  749. {
  750. LLM_ARCH_PLAMO,
  751. {
  752. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  753. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  754. { LLM_TENSOR_OUTPUT, "output" },
  755. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  756. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  757. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  758. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  759. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  760. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  761. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  762. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  763. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  764. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  765. },
  766. },
  767. {
  768. LLM_ARCH_CODESHELL,
  769. {
  770. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  771. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  772. { LLM_TENSOR_OUTPUT, "output" },
  773. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  774. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  775. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  776. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  777. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  778. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  779. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  780. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  781. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  782. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  783. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  784. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  785. },
  786. },
  787. {
  788. LLM_ARCH_ORION,
  789. {
  790. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  791. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  792. { LLM_TENSOR_OUTPUT, "output" },
  793. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  794. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  795. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  796. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  797. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  798. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  799. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  800. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  801. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  802. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  803. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  804. },
  805. },
  806. {
  807. LLM_ARCH_INTERNLM2,
  808. {
  809. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  810. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  811. { LLM_TENSOR_OUTPUT, "output" },
  812. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  813. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  814. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  815. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  816. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  817. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  818. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  819. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  820. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  821. },
  822. },
  823. {
  824. LLM_ARCH_MINICPM,
  825. {
  826. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  827. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  828. { LLM_TENSOR_OUTPUT, "output" },
  829. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  830. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  831. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  832. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  833. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  834. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  835. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  836. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  837. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  838. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  839. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  840. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  841. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  842. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  843. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  844. },
  845. },
  846. {
  847. LLM_ARCH_GEMMA,
  848. {
  849. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  850. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  851. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  852. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  853. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  854. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  855. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  856. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  857. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  858. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  859. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  860. },
  861. },
  862. {
  863. LLM_ARCH_STARCODER2,
  864. {
  865. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  866. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  867. { LLM_TENSOR_OUTPUT, "output" },
  868. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  869. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  870. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  871. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  872. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  873. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  874. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  875. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  876. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  877. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  878. },
  879. },
  880. {
  881. LLM_ARCH_MAMBA,
  882. {
  883. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  884. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  885. { LLM_TENSOR_OUTPUT, "output" },
  886. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  887. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  888. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  889. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  890. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  891. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  892. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  893. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  894. },
  895. },
  896. {
  897. LLM_ARCH_XVERSE,
  898. {
  899. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  900. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  901. { LLM_TENSOR_OUTPUT, "output" },
  902. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  903. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  904. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  905. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  906. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  907. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  908. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  909. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  910. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  911. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  912. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  913. },
  914. },
  915. {
  916. LLM_ARCH_COMMAND_R,
  917. {
  918. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  919. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  920. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  921. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  922. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  923. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  924. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  925. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  926. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  927. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  928. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  929. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  930. },
  931. },
  932. {
  933. LLM_ARCH_DBRX,
  934. {
  935. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  936. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  937. { LLM_TENSOR_OUTPUT, "output" },
  938. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  939. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  940. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  941. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  942. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  943. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  944. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  945. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  946. },
  947. },
  948. {
  949. LLM_ARCH_UNKNOWN,
  950. {
  951. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  952. },
  953. },
  954. };
  955. static llm_arch llm_arch_from_string(const std::string & name) {
  956. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  957. if (kv.second == name) {
  958. return kv.first;
  959. }
  960. }
  961. return LLM_ARCH_UNKNOWN;
  962. }
  963. // helper to handle gguf constants
  964. // usage:
  965. //
  966. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  967. //
  968. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  969. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  970. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  971. //
  972. struct LLM_TN {
  973. LLM_TN(llm_arch arch) : arch(arch) {}
  974. llm_arch arch;
  975. std::string operator()(llm_tensor tensor) const {
  976. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  977. return "__missing__";
  978. }
  979. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  980. }
  981. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  982. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  983. return "__missing__";
  984. }
  985. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  986. }
  987. std::string operator()(llm_tensor tensor, int bid) const {
  988. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  989. return "__missing__";
  990. }
  991. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  992. }
  993. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  994. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  995. return "__missing__";
  996. }
  997. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  998. }
  999. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1000. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1001. return "__missing__";
  1002. }
  1003. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1004. }
  1005. };
  1006. //
  1007. // gguf helpers
  1008. //
  1009. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1010. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1011. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1012. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1013. };
  1014. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1015. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1016. if (kv.second == name) {
  1017. return (llama_rope_scaling_type) kv.first;
  1018. }
  1019. }
  1020. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1021. }
  1022. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1023. switch (type) {
  1024. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1025. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1026. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1027. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1028. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1029. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1030. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1031. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1032. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1033. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1034. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1035. default: return format("unknown type %d", type);
  1036. }
  1037. }
  1038. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1039. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1040. switch (type) {
  1041. case GGUF_TYPE_STRING:
  1042. return gguf_get_val_str(ctx_gguf, i);
  1043. case GGUF_TYPE_ARRAY:
  1044. {
  1045. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1046. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1047. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1048. std::stringstream ss;
  1049. ss << "[";
  1050. for (int j = 0; j < arr_n; j++) {
  1051. if (arr_type == GGUF_TYPE_STRING) {
  1052. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1053. // escape quotes
  1054. replace_all(val, "\\", "\\\\");
  1055. replace_all(val, "\"", "\\\"");
  1056. ss << '"' << val << '"';
  1057. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1058. ss << "???";
  1059. } else {
  1060. ss << gguf_data_to_str(arr_type, data, j);
  1061. }
  1062. if (j < arr_n - 1) {
  1063. ss << ", ";
  1064. }
  1065. }
  1066. ss << "]";
  1067. return ss.str();
  1068. }
  1069. default:
  1070. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1071. }
  1072. }
  1073. //
  1074. // llama helpers
  1075. //
  1076. #if defined(_WIN32)
  1077. static std::string llama_format_win_err(DWORD err) {
  1078. LPSTR buf;
  1079. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1080. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1081. if (!size) {
  1082. return "FormatMessageA failed";
  1083. }
  1084. std::string ret(buf, size);
  1085. LocalFree(buf);
  1086. return ret;
  1087. }
  1088. #endif
  1089. template <typename T>
  1090. struct no_init {
  1091. T value;
  1092. no_init() { /* do nothing */ }
  1093. };
  1094. struct llama_file {
  1095. // use FILE * so we don't have to re-open the file to mmap
  1096. FILE * fp;
  1097. size_t size;
  1098. llama_file(const char * fname, const char * mode) {
  1099. fp = ggml_fopen(fname, mode);
  1100. if (fp == NULL) {
  1101. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1102. }
  1103. seek(0, SEEK_END);
  1104. size = tell();
  1105. seek(0, SEEK_SET);
  1106. }
  1107. size_t tell() const {
  1108. #ifdef _WIN32
  1109. __int64 ret = _ftelli64(fp);
  1110. #else
  1111. long ret = std::ftell(fp);
  1112. #endif
  1113. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1114. return (size_t) ret;
  1115. }
  1116. void seek(size_t offset, int whence) const {
  1117. #ifdef _WIN32
  1118. int ret = _fseeki64(fp, (__int64) offset, whence);
  1119. #else
  1120. int ret = std::fseek(fp, (long) offset, whence);
  1121. #endif
  1122. GGML_ASSERT(ret == 0); // same
  1123. }
  1124. void read_raw(void * ptr, size_t len) const {
  1125. if (len == 0) {
  1126. return;
  1127. }
  1128. errno = 0;
  1129. std::size_t ret = std::fread(ptr, len, 1, fp);
  1130. if (ferror(fp)) {
  1131. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1132. }
  1133. if (ret != 1) {
  1134. throw std::runtime_error("unexpectedly reached end of file");
  1135. }
  1136. }
  1137. uint32_t read_u32() const {
  1138. uint32_t ret;
  1139. read_raw(&ret, sizeof(ret));
  1140. return ret;
  1141. }
  1142. void write_raw(const void * ptr, size_t len) const {
  1143. if (len == 0) {
  1144. return;
  1145. }
  1146. errno = 0;
  1147. size_t ret = std::fwrite(ptr, len, 1, fp);
  1148. if (ret != 1) {
  1149. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1150. }
  1151. }
  1152. void write_u32(std::uint32_t val) const {
  1153. write_raw(&val, sizeof(val));
  1154. }
  1155. ~llama_file() {
  1156. if (fp) {
  1157. std::fclose(fp);
  1158. }
  1159. }
  1160. };
  1161. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1162. struct llama_mmap {
  1163. void * addr;
  1164. size_t size;
  1165. llama_mmap(const llama_mmap &) = delete;
  1166. #ifdef _POSIX_MAPPED_FILES
  1167. static constexpr bool SUPPORTED = true;
  1168. // list of mapped fragments (first_offset, last_offset)
  1169. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1170. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1171. size = file->size;
  1172. int fd = fileno(file->fp);
  1173. int flags = MAP_SHARED;
  1174. // prefetch/readahead impairs performance on NUMA systems
  1175. if (numa) { prefetch = 0; }
  1176. #ifdef __linux__
  1177. // advise the kernel to read the file sequentially (increases readahead)
  1178. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1179. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1180. strerror(errno));
  1181. }
  1182. if (prefetch) { flags |= MAP_POPULATE; }
  1183. #endif
  1184. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1185. if (addr == MAP_FAILED) { // NOLINT
  1186. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1187. }
  1188. if (prefetch > 0) {
  1189. // advise the kernel to preload the mapped memory
  1190. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1191. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1192. strerror(errno));
  1193. }
  1194. }
  1195. if (numa) {
  1196. // advise the kernel not to use readahead
  1197. // (because the next page might not belong on the same node)
  1198. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1199. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1200. strerror(errno));
  1201. }
  1202. }
  1203. // initialize list of mapped_fragments
  1204. mapped_fragments.emplace_back(0, file->size);
  1205. }
  1206. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1207. // align first to the next page
  1208. size_t offset_in_page = *first & (page_size - 1);
  1209. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1210. *first += offset_to_page;
  1211. // align last to the previous page
  1212. *last = *last & ~(page_size - 1);
  1213. if (*last <= *first) {
  1214. *last = *first;
  1215. }
  1216. }
  1217. // partially unmap the file in the range [first, last)
  1218. void unmap_fragment(size_t first, size_t last) {
  1219. // note: this function must not be called multiple times with overlapping ranges
  1220. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1221. int page_size = sysconf(_SC_PAGESIZE);
  1222. align_range(&first, &last, page_size);
  1223. size_t len = last - first;
  1224. if (len == 0) {
  1225. return;
  1226. }
  1227. GGML_ASSERT(first % page_size == 0);
  1228. GGML_ASSERT(last % page_size == 0);
  1229. GGML_ASSERT(last > first);
  1230. void * next_page_start = (uint8_t *) addr + first;
  1231. // unmap the range
  1232. if (munmap(next_page_start, len)) {
  1233. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1234. }
  1235. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1236. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1237. for (const auto & frag : mapped_fragments) {
  1238. if (frag.first < first && frag.second > last) {
  1239. // the range is in the middle of the fragment, split it
  1240. new_mapped_fragments.emplace_back(frag.first, first);
  1241. new_mapped_fragments.emplace_back(last, frag.second);
  1242. } else if (frag.first < first && frag.second > first) {
  1243. // the range starts in the middle of the fragment
  1244. new_mapped_fragments.emplace_back(frag.first, first);
  1245. } else if (frag.first < last && frag.second > last) {
  1246. // the range ends in the middle of the fragment
  1247. new_mapped_fragments.emplace_back(last, frag.second);
  1248. } else if (frag.first >= first && frag.second <= last) {
  1249. // the range covers the entire fragment
  1250. } else {
  1251. // the range is outside the fragment
  1252. new_mapped_fragments.push_back(frag);
  1253. }
  1254. }
  1255. mapped_fragments = std::move(new_mapped_fragments);
  1256. }
  1257. ~llama_mmap() {
  1258. for (const auto & frag : mapped_fragments) {
  1259. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1260. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1261. }
  1262. }
  1263. }
  1264. #elif defined(_WIN32)
  1265. static constexpr bool SUPPORTED = true;
  1266. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1267. GGML_UNUSED(numa);
  1268. size = file->size;
  1269. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1270. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1271. if (hMapping == NULL) {
  1272. DWORD error = GetLastError();
  1273. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1274. }
  1275. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1276. DWORD error = GetLastError();
  1277. CloseHandle(hMapping);
  1278. if (addr == NULL) {
  1279. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1280. }
  1281. if (prefetch > 0) {
  1282. #if _WIN32_WINNT >= 0x602
  1283. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1284. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1285. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1286. // may fail on pre-Windows 8 systems
  1287. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1288. if (pPrefetchVirtualMemory) {
  1289. // advise the kernel to preload the mapped memory
  1290. WIN32_MEMORY_RANGE_ENTRY range;
  1291. range.VirtualAddress = addr;
  1292. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1293. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1294. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1295. llama_format_win_err(GetLastError()).c_str());
  1296. }
  1297. }
  1298. #else
  1299. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1300. #endif
  1301. }
  1302. }
  1303. void unmap_fragment(size_t first, size_t last) {
  1304. // not supported
  1305. GGML_UNUSED(first);
  1306. GGML_UNUSED(last);
  1307. }
  1308. ~llama_mmap() {
  1309. if (!UnmapViewOfFile(addr)) {
  1310. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1311. llama_format_win_err(GetLastError()).c_str());
  1312. }
  1313. }
  1314. #else
  1315. static constexpr bool SUPPORTED = false;
  1316. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1317. GGML_UNUSED(file);
  1318. GGML_UNUSED(prefetch);
  1319. GGML_UNUSED(numa);
  1320. throw std::runtime_error("mmap not supported");
  1321. }
  1322. void unmap_fragment(size_t first, size_t last) {
  1323. GGML_UNUSED(first);
  1324. GGML_UNUSED(last);
  1325. throw std::runtime_error("mmap not supported");
  1326. }
  1327. #endif
  1328. };
  1329. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1330. // Represents some region of memory being locked using mlock or VirtualLock;
  1331. // will automatically unlock on destruction.
  1332. struct llama_mlock {
  1333. void * addr = NULL;
  1334. size_t size = 0;
  1335. bool failed_already = false;
  1336. llama_mlock() {}
  1337. llama_mlock(const llama_mlock &) = delete;
  1338. ~llama_mlock() {
  1339. if (size) {
  1340. raw_unlock(addr, size);
  1341. }
  1342. }
  1343. void init(void * ptr) {
  1344. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1345. addr = ptr;
  1346. }
  1347. void grow_to(size_t target_size) {
  1348. GGML_ASSERT(addr);
  1349. if (failed_already) {
  1350. return;
  1351. }
  1352. size_t granularity = lock_granularity();
  1353. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1354. if (target_size > size) {
  1355. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1356. size = target_size;
  1357. } else {
  1358. failed_already = true;
  1359. }
  1360. }
  1361. }
  1362. #ifdef _POSIX_MEMLOCK_RANGE
  1363. static constexpr bool SUPPORTED = true;
  1364. static size_t lock_granularity() {
  1365. return (size_t) sysconf(_SC_PAGESIZE);
  1366. }
  1367. #ifdef __APPLE__
  1368. #define MLOCK_SUGGESTION \
  1369. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1370. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1371. #else
  1372. #define MLOCK_SUGGESTION \
  1373. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1374. #endif
  1375. bool raw_lock(const void * addr, size_t size) const {
  1376. if (!mlock(addr, size)) {
  1377. return true;
  1378. }
  1379. char* errmsg = std::strerror(errno);
  1380. bool suggest = (errno == ENOMEM);
  1381. // Check if the resource limit is fine after all
  1382. struct rlimit lock_limit;
  1383. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1384. suggest = false;
  1385. }
  1386. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1387. suggest = false;
  1388. }
  1389. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1390. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1391. return false;
  1392. }
  1393. #undef MLOCK_SUGGESTION
  1394. static void raw_unlock(void * addr, size_t size) {
  1395. if (munlock(addr, size)) {
  1396. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1397. }
  1398. }
  1399. #elif defined(_WIN32)
  1400. static constexpr bool SUPPORTED = true;
  1401. static size_t lock_granularity() {
  1402. SYSTEM_INFO si;
  1403. GetSystemInfo(&si);
  1404. return (size_t) si.dwPageSize;
  1405. }
  1406. bool raw_lock(void * ptr, size_t len) const {
  1407. for (int tries = 1; ; tries++) {
  1408. if (VirtualLock(ptr, len)) {
  1409. return true;
  1410. }
  1411. if (tries == 2) {
  1412. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1413. len, size, llama_format_win_err(GetLastError()).c_str());
  1414. return false;
  1415. }
  1416. // It failed but this was only the first try; increase the working
  1417. // set size and try again.
  1418. SIZE_T min_ws_size, max_ws_size;
  1419. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1420. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1421. llama_format_win_err(GetLastError()).c_str());
  1422. return false;
  1423. }
  1424. // Per MSDN: "The maximum number of pages that a process can lock
  1425. // is equal to the number of pages in its minimum working set minus
  1426. // a small overhead."
  1427. // Hopefully a megabyte is enough overhead:
  1428. size_t increment = len + 1048576;
  1429. // The minimum must be <= the maximum, so we need to increase both:
  1430. min_ws_size += increment;
  1431. max_ws_size += increment;
  1432. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1433. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1434. llama_format_win_err(GetLastError()).c_str());
  1435. return false;
  1436. }
  1437. }
  1438. }
  1439. static void raw_unlock(void * ptr, size_t len) {
  1440. if (!VirtualUnlock(ptr, len)) {
  1441. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1442. llama_format_win_err(GetLastError()).c_str());
  1443. }
  1444. }
  1445. #else
  1446. static constexpr bool SUPPORTED = false;
  1447. static size_t lock_granularity() {
  1448. return (size_t) 65536;
  1449. }
  1450. bool raw_lock(const void * addr, size_t len) const {
  1451. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1452. return false;
  1453. }
  1454. static void raw_unlock(const void * addr, size_t len) {}
  1455. #endif
  1456. };
  1457. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1458. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1459. std::vector<char> result(8, 0);
  1460. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1461. if (n_tokens < 0) {
  1462. result.resize(-n_tokens);
  1463. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1464. GGML_ASSERT(check == -n_tokens);
  1465. }
  1466. else {
  1467. result.resize(n_tokens);
  1468. }
  1469. return std::string(result.data(), result.size());
  1470. }
  1471. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1472. ggml_backend_buffer_type_t buft = nullptr;
  1473. #if defined(GGML_USE_CUDA)
  1474. // host buffers should only be used when data is expected to be copied to/from the GPU
  1475. if (host_buffer) {
  1476. buft = ggml_backend_cuda_host_buffer_type();
  1477. }
  1478. #elif defined(GGML_USE_SYCL)
  1479. if (host_buffer) {
  1480. buft = ggml_backend_sycl_host_buffer_type();
  1481. }
  1482. #elif defined(GGML_USE_CPU_HBM)
  1483. buft = ggml_backend_cpu_hbm_buffer_type();
  1484. #elif defined(GGML_USE_VULKAN)
  1485. if (host_buffer) {
  1486. buft = ggml_backend_vk_host_buffer_type();
  1487. }
  1488. #endif
  1489. if (buft == nullptr) {
  1490. buft = ggml_backend_cpu_buffer_type();
  1491. }
  1492. return buft;
  1493. GGML_UNUSED(host_buffer);
  1494. }
  1495. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1496. ggml_backend_buffer_type_t buft = nullptr;
  1497. #ifdef GGML_USE_METAL
  1498. buft = ggml_backend_metal_buffer_type();
  1499. #elif defined(GGML_USE_CUDA)
  1500. buft = ggml_backend_cuda_buffer_type(gpu);
  1501. #elif defined(GGML_USE_VULKAN)
  1502. buft = ggml_backend_vk_buffer_type(gpu);
  1503. #elif defined(GGML_USE_SYCL)
  1504. buft = ggml_backend_sycl_buffer_type(gpu);
  1505. #elif defined(GGML_USE_CLBLAST)
  1506. buft = ggml_backend_opencl_buffer_type();
  1507. #elif defined(GGML_USE_KOMPUTE)
  1508. buft = ggml_backend_kompute_buffer_type(gpu);
  1509. if (buft == nullptr) {
  1510. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1511. }
  1512. #endif
  1513. if (buft == nullptr) {
  1514. buft = llama_default_buffer_type_cpu(true);
  1515. }
  1516. return buft;
  1517. GGML_UNUSED(gpu);
  1518. }
  1519. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1520. ggml_backend_buffer_type_t buft = nullptr;
  1521. #ifdef GGML_USE_CUDA
  1522. if (ggml_backend_cuda_get_device_count() > 1) {
  1523. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1524. }
  1525. #endif
  1526. #ifdef GGML_USE_SYCL
  1527. if (ggml_backend_sycl_get_device_count() > 1) {
  1528. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1529. }
  1530. #endif
  1531. if (buft == nullptr) {
  1532. buft = llama_default_buffer_type_offload(fallback_gpu);
  1533. }
  1534. return buft;
  1535. GGML_UNUSED(tensor_split);
  1536. }
  1537. static size_t llama_get_device_count() {
  1538. #if defined(GGML_USE_CUDA)
  1539. return ggml_backend_cuda_get_device_count();
  1540. #elif defined(GGML_USE_SYCL)
  1541. return ggml_backend_sycl_get_device_count();
  1542. #elif defined(GGML_USE_VULKAN)
  1543. return ggml_backend_vk_get_device_count();
  1544. #else
  1545. return 1;
  1546. #endif
  1547. }
  1548. static size_t llama_get_device_memory(int device) {
  1549. #if defined(GGML_USE_CUDA)
  1550. size_t total;
  1551. size_t free;
  1552. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1553. return free;
  1554. #elif defined(GGML_USE_SYCL)
  1555. size_t total;
  1556. size_t free;
  1557. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1558. return free;
  1559. #elif defined(GGML_USE_VULKAN)
  1560. size_t total;
  1561. size_t free;
  1562. ggml_backend_vk_get_device_memory(device, &free, &total);
  1563. return free;
  1564. #else
  1565. return 1;
  1566. GGML_UNUSED(device);
  1567. #endif
  1568. }
  1569. //
  1570. // globals
  1571. //
  1572. struct llama_state {
  1573. llama_state() {
  1574. #ifdef GGML_USE_METAL
  1575. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1576. #endif
  1577. }
  1578. // We save the log callback globally
  1579. ggml_log_callback log_callback = llama_log_callback_default;
  1580. void * log_callback_user_data = nullptr;
  1581. };
  1582. static llama_state g_state;
  1583. // available llama models
  1584. enum e_model {
  1585. MODEL_UNKNOWN,
  1586. MODEL_17M,
  1587. MODEL_22M,
  1588. MODEL_33M,
  1589. MODEL_109M,
  1590. MODEL_137M,
  1591. MODEL_335M,
  1592. MODEL_0_5B,
  1593. MODEL_1B,
  1594. MODEL_2B,
  1595. MODEL_3B,
  1596. MODEL_4B,
  1597. MODEL_7B,
  1598. MODEL_8B,
  1599. MODEL_12B,
  1600. MODEL_13B,
  1601. MODEL_14B,
  1602. MODEL_15B,
  1603. MODEL_20B,
  1604. MODEL_30B,
  1605. MODEL_34B,
  1606. MODEL_35B,
  1607. MODEL_40B,
  1608. MODEL_65B,
  1609. MODEL_70B,
  1610. MODEL_314B,
  1611. MODEL_SMALL,
  1612. MODEL_MEDIUM,
  1613. MODEL_LARGE,
  1614. MODEL_XL,
  1615. MODEL_A2_7B,
  1616. MODEL_8x7B,
  1617. MODEL_8x22B,
  1618. MODEL_16x12B,
  1619. };
  1620. static const size_t kiB = 1024;
  1621. static const size_t MiB = 1024*kiB;
  1622. static const size_t GiB = 1024*MiB;
  1623. struct llama_hparams {
  1624. bool vocab_only;
  1625. bool rope_finetuned;
  1626. uint32_t n_vocab;
  1627. uint32_t n_ctx_train; // context size the model was trained on
  1628. uint32_t n_embd;
  1629. uint32_t n_head;
  1630. uint32_t n_head_kv;
  1631. uint32_t n_layer;
  1632. uint32_t n_rot;
  1633. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1634. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1635. uint32_t n_ff;
  1636. uint32_t n_expert = 0;
  1637. uint32_t n_expert_used = 0;
  1638. uint32_t n_vocab_type = 0; // for BERT-style token types
  1639. float f_norm_eps;
  1640. float f_norm_rms_eps;
  1641. float rope_freq_base_train;
  1642. float rope_freq_scale_train;
  1643. uint32_t n_yarn_orig_ctx;
  1644. // for State Space Models
  1645. uint32_t ssm_d_conv = 0;
  1646. uint32_t ssm_d_inner = 0;
  1647. uint32_t ssm_d_state = 0;
  1648. uint32_t ssm_dt_rank = 0;
  1649. float f_clamp_kqv = 0.0f;
  1650. float f_max_alibi_bias = 0.0f;
  1651. float f_logit_scale = 0.0f;
  1652. bool causal_attn = true;
  1653. bool need_kq_pos = false;
  1654. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1655. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1656. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1657. bool operator!=(const llama_hparams & other) const {
  1658. if (this->vocab_only != other.vocab_only) return true;
  1659. if (this->n_vocab != other.n_vocab) return true;
  1660. if (this->n_ctx_train != other.n_ctx_train) return true;
  1661. if (this->n_embd != other.n_embd) return true;
  1662. if (this->n_head != other.n_head) return true;
  1663. if (this->n_head_kv != other.n_head_kv) return true;
  1664. if (this->n_layer != other.n_layer) return true;
  1665. if (this->n_rot != other.n_rot) return true;
  1666. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1667. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1668. if (this->n_ff != other.n_ff) return true;
  1669. if (this->n_expert != other.n_expert) return true;
  1670. if (this->n_expert_used != other.n_expert_used) return true;
  1671. if (this->rope_finetuned != other.rope_finetuned) return true;
  1672. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1673. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1674. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1675. if (this->ssm_d_state != other.ssm_d_state) return true;
  1676. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1677. const float EPSILON = 1e-9f;
  1678. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1679. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1680. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1681. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1682. return false;
  1683. }
  1684. uint32_t n_gqa() const {
  1685. if (n_head_kv == 0) {
  1686. return 0;
  1687. }
  1688. return n_head/n_head_kv;
  1689. }
  1690. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1691. return n_embd_head_k * n_head_kv;
  1692. }
  1693. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1694. return n_embd_head_v * n_head_kv;
  1695. }
  1696. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1697. // corresponds to Mamba's conv_states size
  1698. // TODO: maybe support other convolution strides than 1
  1699. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1700. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1701. }
  1702. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1703. // corresponds to Mamba's ssm_states size
  1704. return ssm_d_state * ssm_d_inner;
  1705. }
  1706. };
  1707. struct llama_cparams {
  1708. uint32_t n_ctx; // context size used during inference
  1709. uint32_t n_batch;
  1710. uint32_t n_ubatch;
  1711. uint32_t n_seq_max;
  1712. uint32_t n_threads; // number of threads to use for generation
  1713. uint32_t n_threads_batch; // number of threads to use for batch processing
  1714. float rope_freq_base;
  1715. float rope_freq_scale;
  1716. uint32_t n_yarn_orig_ctx;
  1717. // These hyperparameters are not exposed in GGUF, because all
  1718. // existing YaRN models use the same values for them.
  1719. float yarn_ext_factor;
  1720. float yarn_attn_factor;
  1721. float yarn_beta_fast;
  1722. float yarn_beta_slow;
  1723. float defrag_thold;
  1724. bool embeddings;
  1725. bool causal_attn;
  1726. bool offload_kqv;
  1727. enum llama_pooling_type pooling_type;
  1728. ggml_backend_sched_eval_callback cb_eval;
  1729. void * cb_eval_user_data;
  1730. };
  1731. struct llama_layer {
  1732. // normalization
  1733. struct ggml_tensor * attn_norm;
  1734. struct ggml_tensor * attn_norm_b;
  1735. struct ggml_tensor * attn_norm_2;
  1736. struct ggml_tensor * attn_norm_2_b;
  1737. struct ggml_tensor * attn_q_norm;
  1738. struct ggml_tensor * attn_q_norm_b;
  1739. struct ggml_tensor * attn_k_norm;
  1740. struct ggml_tensor * attn_k_norm_b;
  1741. struct ggml_tensor * attn_out_norm;
  1742. struct ggml_tensor * attn_out_norm_b;
  1743. // attention
  1744. struct ggml_tensor * wq;
  1745. struct ggml_tensor * wk;
  1746. struct ggml_tensor * wv;
  1747. struct ggml_tensor * wo;
  1748. struct ggml_tensor * wqkv;
  1749. // attention bias
  1750. struct ggml_tensor * bq;
  1751. struct ggml_tensor * bk;
  1752. struct ggml_tensor * bv;
  1753. struct ggml_tensor * bo;
  1754. struct ggml_tensor * bqkv;
  1755. // normalization
  1756. struct ggml_tensor * ffn_norm;
  1757. struct ggml_tensor * ffn_norm_b;
  1758. struct ggml_tensor * layer_out_norm;
  1759. struct ggml_tensor * layer_out_norm_b;
  1760. // ff
  1761. struct ggml_tensor * ffn_gate; // w1
  1762. struct ggml_tensor * ffn_down; // w2
  1763. struct ggml_tensor * ffn_up; // w3
  1764. // ff MoE
  1765. struct ggml_tensor * ffn_gate_inp;
  1766. struct ggml_tensor * ffn_gate_exps;
  1767. struct ggml_tensor * ffn_down_exps;
  1768. struct ggml_tensor * ffn_up_exps ;
  1769. // ff shared expert (shexp)
  1770. struct ggml_tensor * ffn_gate_inp_shexp;
  1771. struct ggml_tensor * ffn_gate_shexp;
  1772. struct ggml_tensor * ffn_down_shexp;
  1773. struct ggml_tensor * ffn_up_shexp;
  1774. // ff bias
  1775. struct ggml_tensor * ffn_down_b; // b2
  1776. struct ggml_tensor * ffn_up_b; // b3
  1777. struct ggml_tensor * ffn_act;
  1778. // mamba proj
  1779. struct ggml_tensor * ssm_in;
  1780. struct ggml_tensor * ssm_x;
  1781. struct ggml_tensor * ssm_dt;
  1782. struct ggml_tensor * ssm_out;
  1783. // mamba
  1784. struct ggml_tensor * ssm_conv1d;
  1785. struct ggml_tensor * ssm_a;
  1786. struct ggml_tensor * ssm_d;
  1787. // mamba bias
  1788. struct ggml_tensor * ssm_conv1d_b;
  1789. struct ggml_tensor * ssm_dt_b;
  1790. };
  1791. struct llama_kv_cell {
  1792. llama_pos pos = -1;
  1793. llama_pos delta = 0;
  1794. int32_t src = 0; // used by recurrent state models to copy states
  1795. std::set<llama_seq_id> seq_id;
  1796. bool has_seq_id(const llama_seq_id & id) const {
  1797. return seq_id.find(id) != seq_id.end();
  1798. }
  1799. bool is_empty() const {
  1800. return seq_id.empty();
  1801. }
  1802. bool is_same_seq(const llama_kv_cell & other) const {
  1803. return seq_id == other.seq_id;
  1804. }
  1805. };
  1806. // ring-buffer of cached KV data
  1807. struct llama_kv_cache {
  1808. bool has_shift = false;
  1809. bool do_defrag = false;
  1810. bool do_copy = false;
  1811. // with recurrent state models, a cell can hold the state for more than one past token
  1812. bool recurrent = false;
  1813. // Note: The value of head isn't only used to optimize searching
  1814. // for a free KV slot. llama_decode_internal also uses it, so it
  1815. // cannot be freely changed after a slot has been allocated.
  1816. uint32_t head = 0;
  1817. uint32_t size = 0;
  1818. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1819. // computed before each graph build
  1820. uint32_t n = 0;
  1821. ggml_type type_k = GGML_TYPE_F16;
  1822. ggml_type type_v = GGML_TYPE_F16;
  1823. std::vector<llama_kv_cell> cells;
  1824. std::vector<struct ggml_tensor *> k_l; // per layer
  1825. std::vector<struct ggml_tensor *> v_l;
  1826. std::vector<struct ggml_context *> ctxs;
  1827. std::vector<ggml_backend_buffer_t> bufs;
  1828. size_t total_size() const {
  1829. size_t size = 0;
  1830. for (ggml_backend_buffer_t buf : bufs) {
  1831. size += ggml_backend_buffer_get_size(buf);
  1832. }
  1833. return size;
  1834. }
  1835. ~llama_kv_cache() {
  1836. for (struct ggml_context * ctx : ctxs) {
  1837. ggml_free(ctx);
  1838. }
  1839. for (ggml_backend_buffer_t buf : bufs) {
  1840. ggml_backend_buffer_free(buf);
  1841. }
  1842. }
  1843. };
  1844. struct llama_control_vector {
  1845. std::vector<struct ggml_tensor *> tensors; // per layer
  1846. std::vector<struct ggml_context *> ctxs;
  1847. std::vector<ggml_backend_buffer_t> bufs;
  1848. int32_t layer_start = -1;
  1849. int32_t layer_end = -1;
  1850. ggml_tensor * tensor_for(int il) const {
  1851. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1852. return nullptr;
  1853. }
  1854. return tensors[il];
  1855. }
  1856. ~llama_control_vector() {
  1857. for (struct ggml_context * ctx : ctxs) {
  1858. ggml_free(ctx);
  1859. }
  1860. for (ggml_backend_buffer_t buf : bufs) {
  1861. ggml_backend_buffer_free(buf);
  1862. }
  1863. }
  1864. };
  1865. struct llama_vocab {
  1866. using id = int32_t;
  1867. using token = std::string;
  1868. using ttype = llama_token_type;
  1869. struct token_data {
  1870. token text;
  1871. float score;
  1872. ttype type;
  1873. };
  1874. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1875. std::unordered_map<token, id> token_to_id;
  1876. std::vector<token_data> id_to_token;
  1877. std::unordered_map<token, id> special_tokens_cache;
  1878. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1879. // default LLaMA special tokens
  1880. id special_bos_id = 1;
  1881. id special_eos_id = 2;
  1882. id special_unk_id = 0;
  1883. id special_sep_id = -1;
  1884. id special_pad_id = -1;
  1885. id special_cls_id = -1;
  1886. id special_mask_id = -1;
  1887. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1888. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1889. id linefeed_id = 13;
  1890. id special_prefix_id = -1;
  1891. id special_suffix_id = -1;
  1892. id special_middle_id = -1;
  1893. id special_eot_id = -1;
  1894. bool add_space_prefix = true;
  1895. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1896. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1897. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1898. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1899. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1900. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1901. if (it == bpe_ranks.end()) {
  1902. return -1;
  1903. }
  1904. return it->second;
  1905. }
  1906. };
  1907. struct llama_model {
  1908. e_model type = MODEL_UNKNOWN;
  1909. llm_arch arch = LLM_ARCH_UNKNOWN;
  1910. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1911. std::string name = "n/a";
  1912. llama_hparams hparams = {};
  1913. llama_vocab vocab;
  1914. struct ggml_tensor * tok_embd;
  1915. struct ggml_tensor * type_embd;
  1916. struct ggml_tensor * pos_embd;
  1917. struct ggml_tensor * tok_norm;
  1918. struct ggml_tensor * tok_norm_b;
  1919. struct ggml_tensor * output_norm;
  1920. struct ggml_tensor * output_norm_b;
  1921. struct ggml_tensor * output;
  1922. struct ggml_tensor * output_b;
  1923. std::vector<llama_layer> layers;
  1924. llama_split_mode split_mode;
  1925. int main_gpu;
  1926. int n_gpu_layers;
  1927. // gguf metadata
  1928. std::unordered_map<std::string, std::string> gguf_kv;
  1929. // layer -> buffer type mapping
  1930. struct layer_buft {
  1931. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1932. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1933. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1934. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1935. ggml_backend_buffer_type_t buft; // everything else
  1936. };
  1937. layer_buft buft_input;
  1938. layer_buft buft_output;
  1939. std::vector<layer_buft> buft_layer;
  1940. // contexts where the model tensors metadata is stored
  1941. std::vector<struct ggml_context *> ctxs;
  1942. // the model memory buffers for the tensor data
  1943. std::vector<ggml_backend_buffer_t> bufs;
  1944. // model memory mapped files
  1945. llama_mmaps mappings;
  1946. // objects representing data potentially being locked in memory
  1947. llama_mlocks mlock_bufs;
  1948. llama_mlocks mlock_mmaps;
  1949. // for quantize-stats only
  1950. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1951. int64_t t_load_us = 0;
  1952. int64_t t_start_us = 0;
  1953. ~llama_model() {
  1954. for (struct ggml_context * ctx : ctxs) {
  1955. ggml_free(ctx);
  1956. }
  1957. for (ggml_backend_buffer_t buf : bufs) {
  1958. #ifdef GGML_USE_CUDA
  1959. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1960. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1961. }
  1962. #endif
  1963. ggml_backend_buffer_free(buf);
  1964. }
  1965. }
  1966. };
  1967. struct llama_context {
  1968. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1969. ~llama_context() {
  1970. ggml_backend_sched_free(sched);
  1971. for (ggml_backend_t backend : backends) {
  1972. ggml_backend_free(backend);
  1973. }
  1974. ggml_backend_buffer_free(buf_output);
  1975. }
  1976. llama_cparams cparams;
  1977. std::vector<ggml_backend_t> backends;
  1978. #ifdef GGML_USE_METAL
  1979. ggml_backend_t backend_metal = nullptr;
  1980. #endif
  1981. ggml_backend_t backend_cpu = nullptr;
  1982. const llama_model & model;
  1983. // key + value cache for the self attention
  1984. struct llama_kv_cache kv_self;
  1985. std::mt19937 rng;
  1986. bool has_evaluated_once = false;
  1987. int64_t t_start_us;
  1988. int64_t t_load_us;
  1989. int64_t t_sample_us = 0;
  1990. int64_t t_p_eval_us = 0;
  1991. int64_t t_eval_us = 0;
  1992. int64_t t_compute_start_us = 0;
  1993. int64_t n_queued_tokens = 0;
  1994. int32_t n_sample = 0; // number of tokens sampled
  1995. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1996. int32_t n_eval = 0; // number of eval calls
  1997. // host buffer for the model output (logits and embeddings)
  1998. ggml_backend_buffer_t buf_output = nullptr;
  1999. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2000. size_t logits_size = 0; // capacity (of floats) for logits
  2001. float * logits = nullptr;
  2002. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2003. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2004. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2005. bool logits_all = false;
  2006. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2007. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2008. size_t embd_size = 0; // capacity (of floats) for embeddings
  2009. float * embd = nullptr;
  2010. // sequence embeddings output (map of [n_embd] vectors)
  2011. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2012. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2013. // memory buffers used to evaluate the model
  2014. std::vector<uint8_t> buf_compute_meta;
  2015. ggml_backend_sched_t sched = nullptr;
  2016. ggml_abort_callback abort_callback = nullptr;
  2017. void * abort_callback_data = nullptr;
  2018. // input tensors
  2019. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2020. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2021. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2022. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2023. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2024. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2025. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2026. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2027. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2028. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2029. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2030. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2031. // control vectors
  2032. struct llama_control_vector cvec;
  2033. #ifdef GGML_USE_MPI
  2034. ggml_mpi_context * ctx_mpi = NULL;
  2035. #endif
  2036. };
  2037. //
  2038. // kv cache helpers
  2039. //
  2040. static bool llama_kv_cache_init(
  2041. struct llama_kv_cache & cache,
  2042. const llama_model & model,
  2043. ggml_type type_k,
  2044. ggml_type type_v,
  2045. uint32_t kv_size,
  2046. bool offload) {
  2047. const struct llama_hparams & hparams = model.hparams;
  2048. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2049. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2050. const int64_t n_layer = hparams.n_layer;
  2051. cache.has_shift = false;
  2052. // TODO: find a nicer way to add other recurrent model architectures
  2053. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2054. // TODO: support mixed reccurent Transformer architectues
  2055. // NOTE: (!a || b) is a logical implication (a -> b)
  2056. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2057. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2058. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2059. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2060. cache.head = 0;
  2061. cache.size = kv_size;
  2062. cache.used = 0;
  2063. cache.type_k = type_k;
  2064. cache.type_v = type_v;
  2065. cache.cells.clear();
  2066. cache.cells.resize(kv_size);
  2067. if (cache.recurrent) {
  2068. // init state copy sources
  2069. for (uint32_t i = 0; i < cache.size; ++i) {
  2070. cache.cells[i].src = i;
  2071. }
  2072. }
  2073. #ifdef GGML_USE_CLBLAST
  2074. offload = false;
  2075. #endif
  2076. // count used buffer types
  2077. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2078. if (offload) {
  2079. for (int64_t i = 0; i < n_layer; ++i) {
  2080. buft_layer_count[model.buft_layer[i].buft]++;
  2081. }
  2082. } else {
  2083. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2084. }
  2085. // create a context for each buffer type
  2086. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2087. for (auto & it : buft_layer_count) {
  2088. int n_layers = it.second;
  2089. struct ggml_init_params params = {
  2090. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2091. /*.mem_buffer =*/ NULL,
  2092. /*.no_alloc =*/ true,
  2093. };
  2094. ggml_context * ctx = ggml_init(params);
  2095. if (!ctx) {
  2096. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2097. return false;
  2098. }
  2099. ctx_map[it.first] = ctx;
  2100. cache.ctxs.push_back(ctx);
  2101. }
  2102. cache.k_l.reserve(n_layer);
  2103. cache.v_l.reserve(n_layer);
  2104. for (int i = 0; i < (int) n_layer; i++) {
  2105. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2106. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2107. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2108. ggml_format_name(k, "cache_k_l%d", i);
  2109. ggml_format_name(v, "cache_v_l%d", i);
  2110. cache.k_l.push_back(k);
  2111. cache.v_l.push_back(v);
  2112. }
  2113. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2114. for (auto it : ctx_map) {
  2115. ggml_backend_buffer_type_t buft = it.first;
  2116. ggml_context * ctx = it.second;
  2117. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2118. if (!buf) {
  2119. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2120. return false;
  2121. }
  2122. ggml_backend_buffer_clear(buf, 0);
  2123. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2124. cache.bufs.push_back(buf);
  2125. }
  2126. return true;
  2127. }
  2128. // find an empty slot of size "n_tokens" in the cache
  2129. // updates the cache head
  2130. // Note: On success, it's important that cache.head points
  2131. // to the first cell of the slot.
  2132. static bool llama_kv_cache_find_slot(
  2133. struct llama_kv_cache & cache,
  2134. const struct llama_batch & batch) {
  2135. const uint32_t n_ctx = cache.size;
  2136. const uint32_t n_tokens = batch.n_tokens;
  2137. if (cache.recurrent) {
  2138. // For recurrent state architectures (like Mamba),
  2139. // each KV cache cell can store the state for a whole sequence.
  2140. llama_seq_id min = cache.size - 1;
  2141. llama_seq_id max = 0;
  2142. for (uint32_t i = 0; i < n_tokens; ++i) {
  2143. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2144. llama_seq_id seq_id = batch.seq_id[i][j];
  2145. // make sure it's a valid seq_id
  2146. if ((uint32_t) seq_id < cache.size) {
  2147. if (seq_id > max) {
  2148. max = seq_id;
  2149. }
  2150. if (seq_id < min) {
  2151. min = seq_id;
  2152. }
  2153. // Assuming the tokens are in-order
  2154. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2155. // What should happen when the pos backtracks or skips a value?
  2156. // Clearing the state mid-batch would require special-casing which isn't done.
  2157. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2158. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2159. }
  2160. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2161. cache.used += 1;
  2162. }
  2163. cache.cells[seq_id].pos = batch.pos[i];
  2164. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2165. } else {
  2166. // too big seq_id
  2167. // TODO: would it be possible to resize the KV cache size instead?
  2168. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2169. return false;
  2170. }
  2171. }
  2172. }
  2173. // allow getting the range of used cells, from head to head + n
  2174. cache.head = min;
  2175. cache.n = max - min + 1;
  2176. // sanity check
  2177. return max >= min;
  2178. }
  2179. // otherwise, one cell per token.
  2180. if (n_tokens > n_ctx) {
  2181. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2182. return false;
  2183. }
  2184. uint32_t n_tested = 0;
  2185. while (true) {
  2186. if (cache.head + n_tokens > n_ctx) {
  2187. n_tested += n_ctx - cache.head;
  2188. cache.head = 0;
  2189. continue;
  2190. }
  2191. bool found = true;
  2192. for (uint32_t i = 0; i < n_tokens; i++) {
  2193. if (cache.cells[cache.head + i].pos >= 0) {
  2194. found = false;
  2195. cache.head += i + 1;
  2196. n_tested += i + 1;
  2197. break;
  2198. }
  2199. }
  2200. if (found) {
  2201. break;
  2202. }
  2203. if (n_tested >= n_ctx) {
  2204. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2205. return false;
  2206. }
  2207. }
  2208. for (uint32_t i = 0; i < n_tokens; i++) {
  2209. cache.cells[cache.head + i].pos = batch.pos[i];
  2210. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2211. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2212. }
  2213. }
  2214. cache.used += n_tokens;
  2215. return true;
  2216. }
  2217. // find how many cells are currently in use
  2218. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2219. for (uint32_t i = cache.size; i > 0; --i) {
  2220. const llama_kv_cell & cell = cache.cells[i - 1];
  2221. if (cell.pos >= 0 && !cell.is_empty()) {
  2222. return i;
  2223. }
  2224. }
  2225. return 0;
  2226. }
  2227. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2228. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2229. cache.cells[i].pos = -1;
  2230. cache.cells[i].seq_id.clear();
  2231. }
  2232. cache.head = 0;
  2233. cache.used = 0;
  2234. }
  2235. static bool llama_kv_cache_seq_rm(
  2236. struct llama_kv_cache & cache,
  2237. llama_seq_id seq_id,
  2238. llama_pos p0,
  2239. llama_pos p1) {
  2240. uint32_t new_head = cache.size;
  2241. if (p0 < 0) p0 = 0;
  2242. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2243. // models like Mamba can't have a state partially erased
  2244. if (cache.recurrent) {
  2245. if (seq_id >= (int64_t) cache.size) {
  2246. // could be fatal
  2247. return false;
  2248. }
  2249. if (0 <= seq_id) {
  2250. // partial intersection is invalid
  2251. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2252. return false;
  2253. }
  2254. } else {
  2255. // seq_id is negative, then the range should include everything or nothing
  2256. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2257. return false;
  2258. }
  2259. }
  2260. }
  2261. for (uint32_t i = 0; i < cache.size; ++i) {
  2262. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2263. if (seq_id < 0) {
  2264. cache.cells[i].seq_id.clear();
  2265. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2266. cache.cells[i].seq_id.erase(seq_id);
  2267. } else {
  2268. continue;
  2269. }
  2270. if (cache.cells[i].is_empty()) {
  2271. // keep count of the number of used cells
  2272. if (cache.cells[i].pos >= 0) cache.used--;
  2273. cache.cells[i].pos = -1;
  2274. if (new_head == cache.size) new_head = i;
  2275. }
  2276. }
  2277. }
  2278. // If we freed up a slot, set head to it so searching can start there.
  2279. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2280. return true;
  2281. }
  2282. static void llama_kv_cache_seq_cp(
  2283. struct llama_kv_cache & cache,
  2284. llama_seq_id seq_id_src,
  2285. llama_seq_id seq_id_dst,
  2286. llama_pos p0,
  2287. llama_pos p1) {
  2288. if (p0 < 0) p0 = 0;
  2289. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2290. if (cache.recurrent) {
  2291. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2292. seq_id_src = cache.cells[seq_id_src].src;
  2293. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2294. // intent to "copy from"
  2295. // supports copy chains thanks to taking the source of the source
  2296. cache.cells[seq_id_dst].src = seq_id_src;
  2297. // preserve the "keep or clear" status of the copied sequence
  2298. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2299. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2300. } else {
  2301. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2302. }
  2303. cache.do_copy = true;
  2304. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2305. }
  2306. return;
  2307. }
  2308. // otherwise, this is the KV cache of a Transformer-like model
  2309. cache.head = 0;
  2310. for (uint32_t i = 0; i < cache.size; ++i) {
  2311. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2312. cache.cells[i].seq_id.insert(seq_id_dst);
  2313. }
  2314. }
  2315. }
  2316. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2317. uint32_t new_head = cache.size;
  2318. for (uint32_t i = 0; i < cache.size; ++i) {
  2319. if (!cache.cells[i].has_seq_id(seq_id)) {
  2320. if (cache.cells[i].pos >= 0) cache.used--;
  2321. cache.cells[i].pos = -1;
  2322. cache.cells[i].seq_id.clear();
  2323. if (new_head == cache.size) new_head = i;
  2324. } else {
  2325. cache.cells[i].seq_id.clear();
  2326. cache.cells[i].seq_id.insert(seq_id);
  2327. }
  2328. }
  2329. // If we freed up a slot, set head to it so searching can start there.
  2330. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2331. }
  2332. static void llama_kv_cache_seq_add(
  2333. struct llama_kv_cache & cache,
  2334. llama_seq_id seq_id,
  2335. llama_pos p0,
  2336. llama_pos p1,
  2337. llama_pos delta) {
  2338. uint32_t new_head = cache.size;
  2339. if (p0 < 0) p0 = 0;
  2340. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2341. if (cache.recurrent) {
  2342. // for Mamba-like models, only the pos needs to be shifted
  2343. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2344. llama_kv_cell & cell = cache.cells[seq_id];
  2345. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2346. cell.pos += delta;
  2347. }
  2348. }
  2349. return;
  2350. }
  2351. for (uint32_t i = 0; i < cache.size; ++i) {
  2352. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2353. cache.has_shift = true;
  2354. cache.cells[i].pos += delta;
  2355. cache.cells[i].delta += delta;
  2356. if (cache.cells[i].pos < 0) {
  2357. if (!cache.cells[i].is_empty()) {
  2358. cache.used--;
  2359. }
  2360. cache.cells[i].pos = -1;
  2361. cache.cells[i].seq_id.clear();
  2362. if (new_head == cache.size) {
  2363. new_head = i;
  2364. }
  2365. }
  2366. }
  2367. }
  2368. // If we freed up a slot, set head to it so searching can start there.
  2369. // Otherwise we just start the next search from the beginning.
  2370. cache.head = new_head != cache.size ? new_head : 0;
  2371. }
  2372. static void llama_kv_cache_seq_div(
  2373. struct llama_kv_cache & cache,
  2374. llama_seq_id seq_id,
  2375. llama_pos p0,
  2376. llama_pos p1,
  2377. int d) {
  2378. if (p0 < 0) p0 = 0;
  2379. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2380. if (cache.recurrent) {
  2381. // for Mamba-like models, only the pos needs to be changed
  2382. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2383. llama_kv_cell & cell = cache.cells[seq_id];
  2384. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2385. cell.pos /= d;
  2386. }
  2387. }
  2388. return;
  2389. }
  2390. for (uint32_t i = 0; i < cache.size; ++i) {
  2391. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2392. cache.has_shift = true;
  2393. {
  2394. llama_pos p_old = cache.cells[i].pos;
  2395. cache.cells[i].pos /= d;
  2396. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2397. }
  2398. }
  2399. }
  2400. }
  2401. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2402. llama_pos result = 0;
  2403. for (uint32_t i = 0; i < cache.size; ++i) {
  2404. if (cache.cells[i].has_seq_id(seq_id)) {
  2405. result = std::max(result, cache.cells[i].pos);
  2406. }
  2407. }
  2408. return result;
  2409. }
  2410. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2411. cache.do_defrag = true;
  2412. }
  2413. //
  2414. // model loading and saving
  2415. //
  2416. enum llama_fver {
  2417. GGUF_FILE_VERSION_V1 = 1,
  2418. GGUF_FILE_VERSION_V2 = 2,
  2419. GGUF_FILE_VERSION_V3 = 3,
  2420. };
  2421. static const char * llama_file_version_name(llama_fver version) {
  2422. switch (version) {
  2423. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2424. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2425. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2426. }
  2427. return "unknown";
  2428. }
  2429. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2430. char buf[256];
  2431. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2432. for (size_t i = 1; i < ne.size(); i++) {
  2433. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2434. }
  2435. return buf;
  2436. }
  2437. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2438. char buf[256];
  2439. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2440. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2441. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2442. }
  2443. return buf;
  2444. }
  2445. namespace GGUFMeta {
  2446. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2447. struct GKV_Base_Type {
  2448. static constexpr gguf_type gt = gt_;
  2449. static T getter(const gguf_context * ctx, const int kid) {
  2450. return gfun(ctx, kid);
  2451. }
  2452. };
  2453. template<typename T> struct GKV_Base;
  2454. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2455. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2456. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2457. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2458. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2459. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2460. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2461. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2462. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2463. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2464. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2465. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2466. template<> struct GKV_Base<std::string> {
  2467. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2468. static std::string getter(const gguf_context * ctx, const int kid) {
  2469. return gguf_get_val_str(ctx, kid);
  2470. }
  2471. };
  2472. struct ArrayInfo {
  2473. const gguf_type gt;
  2474. const size_t length;
  2475. const void * data;
  2476. };
  2477. template<> struct GKV_Base<ArrayInfo> {
  2478. public:
  2479. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2480. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2481. return ArrayInfo {
  2482. gguf_get_arr_type(ctx, k),
  2483. size_t(gguf_get_arr_n(ctx, k)),
  2484. gguf_get_arr_data(ctx, k),
  2485. };
  2486. }
  2487. };
  2488. template<typename T>
  2489. class GKV : public GKV_Base<T> {
  2490. GKV() = delete;
  2491. public:
  2492. static T get_kv(const gguf_context * ctx, const int k) {
  2493. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2494. if (kt != GKV::gt) {
  2495. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2496. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2497. }
  2498. return GKV::getter(ctx, k);
  2499. }
  2500. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2501. switch (ty) {
  2502. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2503. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2504. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2505. }
  2506. return "unknown";
  2507. }
  2508. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2509. if (!ovrd) { return false; }
  2510. if (ovrd->tag == expected_type) {
  2511. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2512. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2513. switch (ovrd->tag) {
  2514. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2515. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2516. } break;
  2517. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2518. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2519. } break;
  2520. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2521. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2522. } break;
  2523. default:
  2524. // Shouldn't be possible to end up here, but just in case...
  2525. throw std::runtime_error(
  2526. format("Unsupported attempt to override %s type for metadata key %s\n",
  2527. override_type_to_str(ovrd->tag), ovrd->key));
  2528. }
  2529. return true;
  2530. }
  2531. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2532. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2533. return false;
  2534. }
  2535. template<typename OT>
  2536. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2537. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2538. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2539. target = ovrd->bool_value;
  2540. return true;
  2541. }
  2542. return false;
  2543. }
  2544. template<typename OT>
  2545. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2546. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2547. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2548. target = ovrd->int_value;
  2549. return true;
  2550. }
  2551. return false;
  2552. }
  2553. template<typename OT>
  2554. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2555. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2556. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2557. target = ovrd->float_value;
  2558. return true;
  2559. }
  2560. return false;
  2561. }
  2562. template<typename OT>
  2563. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2564. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2565. (void)target;
  2566. (void)ovrd;
  2567. if (!ovrd) { return false; }
  2568. // Currently, we should never end up here so it would be a bug if we do.
  2569. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2570. ovrd ? ovrd->key : "NULL"));
  2571. }
  2572. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2573. if (try_override<T>(target, ovrd)) {
  2574. return true;
  2575. }
  2576. if (k < 0) { return false; }
  2577. target = get_kv(ctx, k);
  2578. return true;
  2579. }
  2580. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2581. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2582. }
  2583. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2584. return set(ctx, key.c_str(), target, ovrd);
  2585. }
  2586. };
  2587. }
  2588. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2589. struct llama_model_loader {
  2590. int n_kv = 0;
  2591. int n_tensors = 0;
  2592. int n_created = 0;
  2593. int64_t n_elements = 0;
  2594. size_t n_bytes = 0;
  2595. bool use_mmap = false;
  2596. llama_files files;
  2597. llama_ftype ftype;
  2598. llama_fver fver;
  2599. llama_mmaps mappings;
  2600. // Holds information on a model weight
  2601. struct llama_tensor_weight {
  2602. uint16_t idx; // source file index
  2603. size_t offs; // tensor data offset in the original file
  2604. ggml_tensor * tensor;
  2605. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2606. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2607. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2608. }
  2609. };
  2610. std::vector<llama_tensor_weight> weights;
  2611. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2612. struct gguf_context * meta = NULL;
  2613. std::vector<ggml_context *> contexts;
  2614. std::string arch_name;
  2615. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2616. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2617. int trace = 0;
  2618. if (getenv("LLAMA_TRACE")) {
  2619. trace = atoi(getenv("LLAMA_TRACE"));
  2620. }
  2621. if (param_overrides_p != nullptr) {
  2622. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2623. kv_overrides.insert({std::string(p->key), *p});
  2624. }
  2625. }
  2626. struct ggml_context * ctx = NULL;
  2627. struct gguf_init_params params = {
  2628. /*.no_alloc = */ true,
  2629. /*.ctx = */ &ctx,
  2630. };
  2631. meta = gguf_init_from_file(fname.c_str(), params);
  2632. if (!meta) {
  2633. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2634. }
  2635. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2636. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2637. // Save tensors data offset of the main file.
  2638. // For subsidiary files, `meta` tensor data offset must not be used,
  2639. // so we build a unified tensors index for weights.
  2640. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2641. weights.emplace_back(0, cur->name, meta, cur);
  2642. }
  2643. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2644. contexts.emplace_back(ctx);
  2645. uint16_t n_split = 0;
  2646. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2647. // Load additional GGML contexts
  2648. if (n_split > 1) {
  2649. uint16_t idx = 0;
  2650. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2651. if (idx != 0) {
  2652. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2653. }
  2654. char split_prefix[PATH_MAX] = {0};
  2655. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2656. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2657. }
  2658. if (trace > 0) {
  2659. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2660. }
  2661. char split_path[PATH_MAX] = {0};
  2662. for (idx = 1; idx < n_split; idx++) {
  2663. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2664. struct gguf_init_params split_params = {
  2665. /*.no_alloc = */ true,
  2666. /*.ctx = */ &ctx,
  2667. };
  2668. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2669. if (!ctx_gguf) {
  2670. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2671. }
  2672. // Save tensors data offset info of the shard.
  2673. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2674. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2675. }
  2676. files.emplace_back(new llama_file(split_path, "rb"));
  2677. contexts.emplace_back(ctx);
  2678. gguf_free(ctx_gguf);
  2679. }
  2680. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2681. // sanity check
  2682. {
  2683. const int n_tensors_loaded = (int) weights.size();
  2684. if (n_tensors != n_tensors_loaded) {
  2685. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2686. }
  2687. }
  2688. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2689. }
  2690. n_kv = gguf_get_n_kv(meta);
  2691. n_tensors = weights.size();
  2692. fver = (enum llama_fver) gguf_get_version(meta);
  2693. for (auto & w : weights) {
  2694. n_elements += ggml_nelements(w.tensor);
  2695. n_bytes += ggml_nbytes(w.tensor);
  2696. }
  2697. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2698. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2699. // determine file type based on the number of tensors for each quantization and print meta data
  2700. // TODO: make optional
  2701. {
  2702. std::map<enum ggml_type, uint32_t> n_type;
  2703. uint32_t n_type_max = 0;
  2704. enum ggml_type type_max = GGML_TYPE_F32;
  2705. for (int i = 0; i < n_tensors; i++) {
  2706. const ggml_tensor * tensor = weights.at(i).tensor;
  2707. enum ggml_type type = tensor->type;
  2708. n_type[type]++;
  2709. if (n_type_max < n_type[type]) {
  2710. n_type_max = n_type[type];
  2711. type_max = type;
  2712. }
  2713. if (trace > 0) {
  2714. const uint16_t sid = weights.at(i).idx;
  2715. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2716. }
  2717. }
  2718. switch (type_max) {
  2719. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2720. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2721. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2722. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2723. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2724. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2725. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2726. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2727. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2728. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2729. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2730. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2731. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2732. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2733. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2734. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2735. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2736. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2737. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2738. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2739. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2740. default:
  2741. {
  2742. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2743. ftype = LLAMA_FTYPE_ALL_F32;
  2744. } break;
  2745. }
  2746. // this is a way to mark that we have "guessed" the file type
  2747. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2748. {
  2749. const int kid = gguf_find_key(meta, "general.file_type");
  2750. if (kid >= 0) {
  2751. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2752. }
  2753. }
  2754. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2755. for (int i = 0; i < n_kv; i++) {
  2756. const char * name = gguf_get_key(meta, i);
  2757. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2758. const std::string type_name =
  2759. type == GGUF_TYPE_ARRAY
  2760. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2761. : gguf_type_name(type);
  2762. std::string value = gguf_kv_to_str(meta, i);
  2763. const size_t MAX_VALUE_LEN = 40;
  2764. if (value.size() > MAX_VALUE_LEN) {
  2765. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2766. }
  2767. replace_all(value, "\n", "\\n");
  2768. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2769. }
  2770. // print type counts
  2771. for (auto & kv : n_type) {
  2772. if (kv.second == 0) {
  2773. continue;
  2774. }
  2775. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2776. }
  2777. }
  2778. if (!llama_mmap::SUPPORTED) {
  2779. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2780. use_mmap = false;
  2781. }
  2782. this->use_mmap = use_mmap;
  2783. }
  2784. ~llama_model_loader() {
  2785. if (meta) {
  2786. gguf_free(meta);
  2787. }
  2788. for (auto * ctx : contexts) {
  2789. ggml_free(ctx);
  2790. }
  2791. }
  2792. template<typename T>
  2793. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2794. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2795. const int kid = gguf_find_key(meta, key.c_str());
  2796. if (kid < 0) {
  2797. if (required) {
  2798. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2799. }
  2800. return false;
  2801. }
  2802. struct GGUFMeta::ArrayInfo arr_info =
  2803. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2804. result = arr_info.length;
  2805. return true;
  2806. }
  2807. template<typename T>
  2808. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2809. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2810. return get_arr_n(llm_kv(kid), result, required);
  2811. }
  2812. template<typename T>
  2813. bool get_key(const std::string & key, T & result, const bool required = true) {
  2814. auto it = kv_overrides.find(key);
  2815. const struct llama_model_kv_override * override =
  2816. it != kv_overrides.end() ? &it->second : nullptr;
  2817. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2818. if (required && !found) {
  2819. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2820. }
  2821. return found;
  2822. }
  2823. template<typename T>
  2824. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2825. return get_key(llm_kv(kid), result, required);
  2826. }
  2827. std::string get_arch_name() const {
  2828. return arch_name;
  2829. }
  2830. enum llm_arch get_arch() const {
  2831. return llm_kv.arch;
  2832. }
  2833. const char * get_tensor_name(int i) const {
  2834. return weights.at(i).tensor->name;
  2835. }
  2836. const llama_tensor_weight * get_weight(const char * name) const {
  2837. for (const auto & weight : weights) {
  2838. if (strcmp(name, weight.tensor->name) == 0) {
  2839. return &weight;
  2840. }
  2841. }
  2842. return nullptr;
  2843. }
  2844. const llama_tensor_weight & require_weight(const char * name) const {
  2845. const llama_tensor_weight * weight = get_weight(name);
  2846. if (!weight) {
  2847. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2848. }
  2849. return *weight;
  2850. }
  2851. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2852. const auto * weight = get_weight(name);
  2853. if (!weight) {
  2854. return nullptr;
  2855. }
  2856. return weight->tensor;
  2857. }
  2858. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2859. struct ggml_tensor * tensor = get_tensor_meta(name);
  2860. if (!tensor) {
  2861. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2862. }
  2863. return tensor;
  2864. }
  2865. struct ggml_tensor * get_tensor_meta(int i) const {
  2866. return get_tensor_meta(get_tensor_name(i));
  2867. }
  2868. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2869. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2870. ggml_set_name(tensor, ggml_get_name(cur));
  2871. n_created++;
  2872. return tensor;
  2873. }
  2874. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2875. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2876. if (cur == NULL) {
  2877. if (!required) {
  2878. return NULL;
  2879. }
  2880. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2881. }
  2882. {
  2883. bool is_ok = true;
  2884. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2885. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2886. is_ok = false;
  2887. break;
  2888. }
  2889. }
  2890. if (!is_ok) {
  2891. throw std::runtime_error(
  2892. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2893. __func__, name.c_str(),
  2894. llama_format_tensor_shape(ne).c_str(),
  2895. llama_format_tensor_shape(cur).c_str()));
  2896. }
  2897. }
  2898. return cur;
  2899. }
  2900. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2901. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2902. if (cur == NULL) {
  2903. return NULL;
  2904. }
  2905. return create_tensor_for(ctx, cur);
  2906. }
  2907. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2908. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2909. if (cur == NULL) {
  2910. return NULL;
  2911. }
  2912. if (cur->type != base->type) {
  2913. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2914. }
  2915. std::array<int64_t, GGML_MAX_DIMS> dims;
  2916. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2917. dims[i] = i < ne.size() ? ne[i] : 1;
  2918. }
  2919. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2920. dims[0], dims[1], dims[2], dims[3],
  2921. cur->nb[1], cur->nb[2], cur->nb[3],
  2922. offset);
  2923. ggml_set_name(tensor, name.c_str());
  2924. n_created++;
  2925. return tensor;
  2926. }
  2927. void done_getting_tensors() const {
  2928. if (n_created != n_tensors) {
  2929. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2930. }
  2931. }
  2932. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2933. if (use_mmap) {
  2934. mappings.reserve(files.size());
  2935. mmaps_used.reserve(files.size());
  2936. for (const auto & file : files) {
  2937. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2938. mmaps_used.emplace_back(mapping->size, 0);
  2939. if (mlock_mmaps) {
  2940. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2941. mlock_mmap->init(mapping->addr);
  2942. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2943. }
  2944. mappings.emplace_back(std::move(mapping));
  2945. }
  2946. }
  2947. // compute the total size of all tensors for progress reporting
  2948. for (auto & w : weights) {
  2949. size_data += ggml_nbytes(w.tensor);
  2950. }
  2951. }
  2952. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2953. GGML_ASSERT(!mappings.empty());
  2954. const auto & mapping = mappings.at(idx);
  2955. *first = mapping->size;
  2956. *last = 0;
  2957. *addr = mapping->addr;
  2958. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2959. try {
  2960. const auto * weight = get_weight(ggml_get_name(tensor));
  2961. if (!weight) {
  2962. continue;
  2963. }
  2964. if (weight->idx != idx) {
  2965. continue;
  2966. }
  2967. *first = std::min(*first, weight->offs);
  2968. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  2969. } catch(...) {
  2970. // the tensor is not in the model
  2971. }
  2972. }
  2973. }
  2974. // for backwards compatibility, does not support ggml-backend
  2975. void load_data_for(struct ggml_tensor * cur) const {
  2976. const auto & w = require_weight(ggml_get_name(cur));
  2977. if (use_mmap) {
  2978. const auto & mapping = mappings.at(w.idx);
  2979. if (cur->data == nullptr) {
  2980. cur->data = (uint8_t *)mapping->addr + w.offs;
  2981. } else {
  2982. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  2983. }
  2984. } else {
  2985. GGML_ASSERT(cur->data != nullptr);
  2986. GGML_ASSERT(w.idx < files.size());
  2987. const auto & file = files.at(w.idx);
  2988. file->seek(w.offs, SEEK_SET);
  2989. file->read_raw(cur->data, ggml_nbytes(cur));
  2990. }
  2991. }
  2992. size_t size_done = 0;
  2993. size_t size_data = 0;
  2994. std::vector<std::pair<size_t, size_t>> mmaps_used;
  2995. // Returns false if cancelled by progress_callback
  2996. bool load_all_data(
  2997. struct ggml_context * ctx,
  2998. llama_buf_map & bufs_mmap,
  2999. llama_mlocks * lmlocks,
  3000. llama_progress_callback progress_callback,
  3001. void * progress_callback_user_data) {
  3002. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3003. std::vector<no_init<uint8_t>> read_buf;
  3004. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3005. const auto * weight = get_weight(ggml_get_name(cur));
  3006. if (weight == nullptr) {
  3007. // this can happen with split experts models
  3008. continue;
  3009. }
  3010. if (progress_callback) {
  3011. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3012. return false;
  3013. }
  3014. }
  3015. size_t n_size = ggml_nbytes(cur);
  3016. if (use_mmap) {
  3017. const auto & mapping = mappings.at(weight->idx);
  3018. ggml_backend_buffer_t buf_mmap = nullptr;
  3019. if (bufs_mmap.count(weight->idx)) {
  3020. buf_mmap = bufs_mmap.at(weight->idx);
  3021. }
  3022. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3023. if (buf_mmap && cur->data == nullptr) {
  3024. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  3025. if (lmlocks) {
  3026. const auto & lmlock = lmlocks->at(weight->idx);
  3027. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  3028. }
  3029. auto & mmap_used = mmaps_used[weight->idx];
  3030. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3031. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3032. } else {
  3033. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  3034. }
  3035. } else {
  3036. GGML_ASSERT(weight->idx < files.size());
  3037. const auto & file = files.at(weight->idx);
  3038. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3039. file->seek(weight->offs, SEEK_SET);
  3040. file->read_raw(cur->data, ggml_nbytes(cur));
  3041. } else {
  3042. read_buf.resize(ggml_nbytes(cur));
  3043. file->seek(weight->offs, SEEK_SET);
  3044. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  3045. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3046. }
  3047. }
  3048. size_done += n_size;
  3049. }
  3050. // check if this is the last call and do final cleanup
  3051. if (size_done >= size_data) {
  3052. // unmap offloaded tensors and metadata
  3053. if (use_mmap) {
  3054. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3055. const auto & mmap_used = mmaps_used.at(idx);
  3056. auto & mapping = mappings.at(idx);
  3057. mapping->unmap_fragment(0, mmap_used.first);
  3058. if (mmap_used.second != 0) {
  3059. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3060. }
  3061. }
  3062. }
  3063. if (progress_callback) {
  3064. // Even though the model is done loading, we still honor
  3065. // cancellation since we need to free allocations.
  3066. return progress_callback(1.0f, progress_callback_user_data);
  3067. }
  3068. }
  3069. return true;
  3070. }
  3071. };
  3072. template<>
  3073. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3074. uint32_t tmp;
  3075. const bool found = get_key(kid, tmp, required);
  3076. if (found) {
  3077. result = (enum llama_pooling_type) tmp;
  3078. } else {
  3079. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3080. }
  3081. return found;
  3082. }
  3083. //
  3084. // load LLaMA models
  3085. //
  3086. static const char * llama_model_arch_name(llm_arch arch) {
  3087. auto it = LLM_ARCH_NAMES.find(arch);
  3088. if (it == LLM_ARCH_NAMES.end()) {
  3089. return "unknown";
  3090. }
  3091. return it->second;
  3092. }
  3093. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3094. if (ftype & LLAMA_FTYPE_GUESSED) {
  3095. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3096. }
  3097. switch (ftype) {
  3098. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3099. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3100. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3101. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3102. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3103. return "Q4_1, some F16";
  3104. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3105. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3106. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3107. // K-quants
  3108. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3109. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3110. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3111. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3112. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3113. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3114. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3115. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3116. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3117. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3118. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3119. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3120. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3121. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3122. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3123. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3124. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3125. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3126. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3127. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3128. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3129. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3130. default: return "unknown, may not work";
  3131. }
  3132. }
  3133. static const char * llama_model_type_name(e_model type) {
  3134. switch (type) {
  3135. case MODEL_22M: return "22M";
  3136. case MODEL_33M: return "33M";
  3137. case MODEL_109M: return "109M";
  3138. case MODEL_137M: return "137M";
  3139. case MODEL_0_5B: return "0.5B";
  3140. case MODEL_1B: return "1B";
  3141. case MODEL_2B: return "2B";
  3142. case MODEL_3B: return "3B";
  3143. case MODEL_7B: return "7B";
  3144. case MODEL_8B: return "8B";
  3145. case MODEL_12B: return "12B";
  3146. case MODEL_13B: return "13B";
  3147. case MODEL_14B: return "14B";
  3148. case MODEL_15B: return "15B";
  3149. case MODEL_20B: return "20B";
  3150. case MODEL_30B: return "30B";
  3151. case MODEL_34B: return "34B";
  3152. case MODEL_35B: return "35B";
  3153. case MODEL_40B: return "40B";
  3154. case MODEL_65B: return "65B";
  3155. case MODEL_70B: return "70B";
  3156. case MODEL_314B: return "314B";
  3157. case MODEL_SMALL: return "0.1B";
  3158. case MODEL_MEDIUM: return "0.4B";
  3159. case MODEL_LARGE: return "0.8B";
  3160. case MODEL_XL: return "1.5B";
  3161. case MODEL_A2_7B: return "A2.7B";
  3162. case MODEL_8x7B: return "8x7B";
  3163. case MODEL_8x22B: return "8x22B";
  3164. case MODEL_16x12B: return "16x12B";
  3165. default: return "?B";
  3166. }
  3167. }
  3168. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3169. switch (type) {
  3170. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3171. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3172. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3173. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3174. default: return "unknown";
  3175. }
  3176. }
  3177. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3178. model.arch = ml.get_arch();
  3179. if (model.arch == LLM_ARCH_UNKNOWN) {
  3180. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3181. }
  3182. }
  3183. static void llm_load_hparams(
  3184. llama_model_loader & ml,
  3185. llama_model & model) {
  3186. auto & hparams = model.hparams;
  3187. const gguf_context * ctx = ml.meta;
  3188. // get metadata as string
  3189. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3190. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3191. if (type == GGUF_TYPE_ARRAY) {
  3192. continue;
  3193. }
  3194. const char * name = gguf_get_key(ctx, i);
  3195. const std::string value = gguf_kv_to_str(ctx, i);
  3196. model.gguf_kv.emplace(name, value);
  3197. }
  3198. // get general kv
  3199. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3200. // get hparams kv
  3201. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3202. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3203. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3204. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3205. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3206. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3207. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3208. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3209. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3210. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3211. if (hparams.n_expert > 0) {
  3212. GGML_ASSERT(hparams.n_expert_used > 0);
  3213. } else {
  3214. GGML_ASSERT(hparams.n_expert_used == 0);
  3215. }
  3216. // n_head_kv is optional, default to n_head
  3217. hparams.n_head_kv = hparams.n_head;
  3218. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3219. bool rope_finetuned = false;
  3220. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3221. hparams.rope_finetuned = rope_finetuned;
  3222. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3223. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3224. // rope_freq_base (optional)
  3225. hparams.rope_freq_base_train = 10000.0f;
  3226. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3227. std::string rope_scaling("linear");
  3228. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3229. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3230. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3231. // rope_freq_scale (inverse of the kv) is optional
  3232. float ropescale = 0.0f;
  3233. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3234. // try the old key name
  3235. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3236. }
  3237. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3238. // sanity check for n_rot (optional)
  3239. {
  3240. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3241. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3242. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3243. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3244. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3245. }
  3246. }
  3247. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3248. // gpt-j n_rot = rotary_dim
  3249. }
  3250. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3251. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3252. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3253. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3254. // arch-specific KVs
  3255. switch (model.arch) {
  3256. case LLM_ARCH_LLAMA:
  3257. {
  3258. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3259. if (hparams.n_expert == 8) {
  3260. switch (hparams.n_layer) {
  3261. case 32: model.type = e_model::MODEL_8x7B; break;
  3262. case 56: model.type = e_model::MODEL_8x22B; break;
  3263. default: model.type = e_model::MODEL_UNKNOWN;
  3264. }
  3265. } else {
  3266. switch (hparams.n_layer) {
  3267. case 22: model.type = e_model::MODEL_1B; break;
  3268. case 26: model.type = e_model::MODEL_3B; break;
  3269. case 32: model.type = e_model::MODEL_7B; break;
  3270. case 40: model.type = e_model::MODEL_13B; break;
  3271. case 48: model.type = e_model::MODEL_34B; break;
  3272. case 60: model.type = e_model::MODEL_30B; break;
  3273. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3274. default: model.type = e_model::MODEL_UNKNOWN;
  3275. }
  3276. }
  3277. } break;
  3278. case LLM_ARCH_MINICPM:
  3279. {
  3280. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3281. switch (hparams.n_layer) {
  3282. case 40: model.type = e_model::MODEL_2B; break;
  3283. default: model.type = e_model::MODEL_UNKNOWN;
  3284. }
  3285. } break;
  3286. case LLM_ARCH_GROK:
  3287. {
  3288. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3289. switch (hparams.n_layer) {
  3290. case 64: model.type = e_model::MODEL_314B; break;
  3291. default: model.type = e_model::MODEL_UNKNOWN;
  3292. }
  3293. } break;
  3294. case LLM_ARCH_FALCON:
  3295. {
  3296. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3297. switch (hparams.n_layer) {
  3298. case 32: model.type = e_model::MODEL_7B; break;
  3299. case 60: model.type = e_model::MODEL_40B; break;
  3300. default: model.type = e_model::MODEL_UNKNOWN;
  3301. }
  3302. } break;
  3303. case LLM_ARCH_BAICHUAN:
  3304. {
  3305. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3306. switch (hparams.n_layer) {
  3307. case 32: model.type = e_model::MODEL_7B; break;
  3308. case 40: model.type = e_model::MODEL_13B; break;
  3309. default: model.type = e_model::MODEL_UNKNOWN;
  3310. }
  3311. if (model.type == e_model::MODEL_13B) {
  3312. // TODO: become GGUF KV parameter
  3313. hparams.f_max_alibi_bias = 8.0f;
  3314. }
  3315. } break;
  3316. case LLM_ARCH_STARCODER:
  3317. {
  3318. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3319. switch (hparams.n_layer) {
  3320. case 24: model.type = e_model::MODEL_1B; break;
  3321. case 36: model.type = e_model::MODEL_3B; break;
  3322. case 42: model.type = e_model::MODEL_7B; break;
  3323. case 40: model.type = e_model::MODEL_15B; break;
  3324. default: model.type = e_model::MODEL_UNKNOWN;
  3325. }
  3326. } break;
  3327. case LLM_ARCH_PERSIMMON:
  3328. {
  3329. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3330. switch (hparams.n_layer) {
  3331. case 36: model.type = e_model::MODEL_8B; break;
  3332. default: model.type = e_model::MODEL_UNKNOWN;
  3333. }
  3334. } break;
  3335. case LLM_ARCH_REFACT:
  3336. {
  3337. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3338. switch (hparams.n_layer) {
  3339. case 32: model.type = e_model::MODEL_1B; break;
  3340. default: model.type = e_model::MODEL_UNKNOWN;
  3341. }
  3342. // TODO: become GGUF KV parameter
  3343. hparams.f_max_alibi_bias = 8.0f;
  3344. } break;
  3345. case LLM_ARCH_BERT:
  3346. {
  3347. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3348. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3349. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3350. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3351. switch (hparams.n_layer) {
  3352. case 3:
  3353. model.type = e_model::MODEL_17M; break; // bge-micro
  3354. case 6:
  3355. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3356. case 12:
  3357. switch (hparams.n_embd) {
  3358. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3359. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3360. } break;
  3361. case 24:
  3362. model.type = e_model::MODEL_335M; break; // bge-large
  3363. }
  3364. } break;
  3365. case LLM_ARCH_NOMIC_BERT:
  3366. {
  3367. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3368. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3369. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3370. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3371. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3372. model.type = e_model::MODEL_137M;
  3373. }
  3374. } break;
  3375. case LLM_ARCH_BLOOM:
  3376. {
  3377. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3378. switch (hparams.n_layer) {
  3379. case 24: model.type = e_model::MODEL_1B; break;
  3380. case 30:
  3381. switch (hparams.n_embd) {
  3382. case 2560: model.type = e_model::MODEL_3B; break;
  3383. case 4096: model.type = e_model::MODEL_7B; break;
  3384. } break;
  3385. }
  3386. // TODO: become GGUF KV parameter
  3387. hparams.f_max_alibi_bias = 8.0f;
  3388. } break;
  3389. case LLM_ARCH_MPT:
  3390. {
  3391. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3392. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3393. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3394. switch (hparams.n_layer) {
  3395. case 32: model.type = e_model::MODEL_7B; break;
  3396. case 48: model.type = e_model::MODEL_30B; break;
  3397. default: model.type = e_model::MODEL_UNKNOWN;
  3398. }
  3399. } break;
  3400. case LLM_ARCH_STABLELM:
  3401. {
  3402. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3403. switch (hparams.n_layer) {
  3404. case 24: model.type = e_model::MODEL_1B; break;
  3405. case 32: model.type = e_model::MODEL_3B; break;
  3406. case 40: model.type = e_model::MODEL_12B; break;
  3407. default: model.type = e_model::MODEL_UNKNOWN;
  3408. }
  3409. } break;
  3410. case LLM_ARCH_QWEN:
  3411. {
  3412. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3413. switch (hparams.n_layer) {
  3414. case 32: model.type = e_model::MODEL_7B; break;
  3415. case 40: model.type = e_model::MODEL_13B; break;
  3416. default: model.type = e_model::MODEL_UNKNOWN;
  3417. }
  3418. } break;
  3419. case LLM_ARCH_QWEN2:
  3420. {
  3421. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3422. switch (hparams.n_layer) {
  3423. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3424. case 32: model.type = e_model::MODEL_7B; break;
  3425. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3426. case 80: model.type = e_model::MODEL_70B; break;
  3427. default: model.type = e_model::MODEL_UNKNOWN;
  3428. }
  3429. } break;
  3430. case LLM_ARCH_QWEN2MOE:
  3431. {
  3432. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3433. switch (hparams.n_layer) {
  3434. case 24: model.type = e_model::MODEL_A2_7B; break;
  3435. default: model.type = e_model::MODEL_UNKNOWN;
  3436. }
  3437. } break;
  3438. case LLM_ARCH_PHI2:
  3439. {
  3440. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3441. switch (hparams.n_layer) {
  3442. case 24: model.type = e_model::MODEL_1B; break;
  3443. case 32: model.type = e_model::MODEL_3B; break;
  3444. default: model.type = e_model::MODEL_UNKNOWN;
  3445. }
  3446. } break;
  3447. case LLM_ARCH_PLAMO:
  3448. {
  3449. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3450. switch (hparams.n_layer) {
  3451. case 40: model.type = e_model::MODEL_13B; break;
  3452. default: model.type = e_model::MODEL_UNKNOWN;
  3453. }
  3454. } break;
  3455. case LLM_ARCH_GPT2:
  3456. {
  3457. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3458. switch (hparams.n_layer) {
  3459. case 12: model.type = e_model::MODEL_SMALL; break;
  3460. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3461. case 36: model.type = e_model::MODEL_LARGE; break;
  3462. case 48: model.type = e_model::MODEL_XL; break;
  3463. default: model.type = e_model::MODEL_UNKNOWN;
  3464. }
  3465. } break;
  3466. case LLM_ARCH_CODESHELL:
  3467. {
  3468. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3469. switch (hparams.n_layer) {
  3470. case 42: model.type = e_model::MODEL_SMALL; break;
  3471. default: model.type = e_model::MODEL_UNKNOWN;
  3472. }
  3473. } break;
  3474. case LLM_ARCH_ORION:
  3475. {
  3476. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3477. switch (hparams.n_layer) {
  3478. case 40: model.type = e_model::MODEL_14B; break;
  3479. default: model.type = e_model::MODEL_UNKNOWN;
  3480. }
  3481. } break;
  3482. case LLM_ARCH_INTERNLM2:
  3483. {
  3484. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3485. switch (hparams.n_layer) {
  3486. case 32: model.type = e_model::MODEL_7B; break;
  3487. case 48: model.type = e_model::MODEL_20B; break;
  3488. default: model.type = e_model::MODEL_UNKNOWN;
  3489. }
  3490. } break;
  3491. case LLM_ARCH_GEMMA:
  3492. {
  3493. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3494. switch (hparams.n_layer) {
  3495. case 18: model.type = e_model::MODEL_2B; break;
  3496. case 28: model.type = e_model::MODEL_7B; break;
  3497. default: model.type = e_model::MODEL_UNKNOWN;
  3498. }
  3499. } break;
  3500. case LLM_ARCH_STARCODER2:
  3501. {
  3502. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3503. switch (hparams.n_layer) {
  3504. case 30: model.type = e_model::MODEL_3B; break;
  3505. case 32: model.type = e_model::MODEL_7B; break;
  3506. case 40: model.type = e_model::MODEL_15B; break;
  3507. default: model.type = e_model::MODEL_UNKNOWN;
  3508. }
  3509. } break;
  3510. case LLM_ARCH_MAMBA:
  3511. {
  3512. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3513. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3514. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3515. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3516. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3517. switch (hparams.n_layer) {
  3518. case 24:
  3519. switch (hparams.n_embd) {
  3520. case 768: model.type = e_model::MODEL_SMALL; break;
  3521. default: model.type = e_model::MODEL_UNKNOWN;
  3522. } break;
  3523. case 48:
  3524. switch (hparams.n_embd) {
  3525. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3526. case 1536: model.type = e_model::MODEL_LARGE; break;
  3527. case 2048: model.type = e_model::MODEL_XL; break;
  3528. default: model.type = e_model::MODEL_UNKNOWN;
  3529. } break;
  3530. case 64:
  3531. switch (hparams.n_embd) {
  3532. case 2560: model.type = e_model::MODEL_3B; break;
  3533. default: model.type = e_model::MODEL_UNKNOWN;
  3534. } break;
  3535. default: model.type = e_model::MODEL_UNKNOWN;
  3536. }
  3537. } break;
  3538. case LLM_ARCH_XVERSE:
  3539. {
  3540. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3541. switch (hparams.n_layer) {
  3542. case 32: model.type = e_model::MODEL_7B; break;
  3543. case 40: model.type = e_model::MODEL_13B; break;
  3544. case 80: model.type = e_model::MODEL_65B; break;
  3545. default: model.type = e_model::MODEL_UNKNOWN;
  3546. }
  3547. } break;
  3548. case LLM_ARCH_COMMAND_R:
  3549. {
  3550. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3551. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3552. switch (hparams.n_layer) {
  3553. case 40: model.type = e_model::MODEL_35B; break;
  3554. default: model.type = e_model::MODEL_UNKNOWN;
  3555. }
  3556. } break;
  3557. case LLM_ARCH_DBRX:
  3558. {
  3559. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3560. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3561. switch (hparams.n_layer) {
  3562. case 40: model.type = e_model::MODEL_16x12B; break;
  3563. default: model.type = e_model::MODEL_UNKNOWN;
  3564. }
  3565. } break;
  3566. default: (void)0;
  3567. }
  3568. model.ftype = ml.ftype;
  3569. if (hparams.f_max_alibi_bias > 0.0f) {
  3570. hparams.need_kq_pos = true;
  3571. }
  3572. hparams.rope_type = llama_rope_type(&model);
  3573. }
  3574. // TODO: This should probably be in llama.h
  3575. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3576. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3577. );
  3578. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3579. static void llm_load_vocab(
  3580. llama_model_loader & ml,
  3581. llama_model & model) {
  3582. auto & vocab = model.vocab;
  3583. struct gguf_context * ctx = ml.meta;
  3584. const auto kv = LLM_KV(model.arch);
  3585. // determine vocab type
  3586. {
  3587. std::string tokenizer_name;
  3588. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3589. if (tokenizer_name == "no_vocab") {
  3590. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3591. // default special tokens
  3592. vocab.special_bos_id = -1;
  3593. vocab.special_eos_id = -1;
  3594. vocab.special_unk_id = -1;
  3595. vocab.special_sep_id = -1;
  3596. vocab.special_pad_id = -1;
  3597. vocab.special_cls_id = -1;
  3598. vocab.special_mask_id = -1;
  3599. vocab.linefeed_id = -1;
  3600. return;
  3601. } else if (tokenizer_name == "llama") {
  3602. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3603. // default special tokens
  3604. vocab.special_bos_id = 1;
  3605. vocab.special_eos_id = 2;
  3606. vocab.special_unk_id = 0;
  3607. vocab.special_sep_id = -1;
  3608. vocab.special_pad_id = -1;
  3609. vocab.special_cls_id = -1;
  3610. vocab.special_mask_id = -1;
  3611. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3612. // prior to support of FIM special tokens in GGUF, the following
  3613. // will allow those models to continue to work. The general names
  3614. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3615. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3616. // new versions of these models have been published.
  3617. std::string gen_name;
  3618. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3619. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3620. [](unsigned char c){ return std::tolower(c); });
  3621. if (gen_name.find("code") != std::string::npos) {
  3622. if (model.arch == LLM_ARCH_LLAMA) {
  3623. vocab.special_prefix_id = 32007;
  3624. vocab.special_suffix_id = 32008;
  3625. vocab.special_middle_id = 32009;
  3626. vocab.special_eot_id = 32010;
  3627. } else if (model.arch == LLM_ARCH_GEMMA) {
  3628. vocab.special_prefix_id = 67;
  3629. vocab.special_suffix_id = 69;
  3630. vocab.special_middle_id = 68;
  3631. vocab.special_eot_id = 70;
  3632. }
  3633. }
  3634. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3635. if (add_space_prefix_keyidx != -1) {
  3636. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3637. } // The default value of add_space_prefix is true.
  3638. } else if (tokenizer_name == "gpt2") {
  3639. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3640. // read bpe merges and populate bpe ranks
  3641. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3642. if (merges_keyidx == -1) {
  3643. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3644. }
  3645. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3646. for (int i = 0; i < n_merges; i++) {
  3647. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3648. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3649. std::string first;
  3650. std::string second;
  3651. const size_t pos = word.find(' ', 1);
  3652. if (pos != std::string::npos) {
  3653. first = word.substr(0, pos);
  3654. second = word.substr(pos + 1);
  3655. }
  3656. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3657. }
  3658. // default special tokens
  3659. vocab.special_bos_id = 11;
  3660. vocab.special_eos_id = 11;
  3661. vocab.special_unk_id = -1;
  3662. vocab.special_sep_id = -1;
  3663. vocab.special_pad_id = -1;
  3664. vocab.special_cls_id = -1;
  3665. vocab.special_mask_id = -1;
  3666. } else if (tokenizer_name == "bert") {
  3667. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3668. // default special tokens
  3669. vocab.special_bos_id = -1;
  3670. vocab.special_eos_id = -1;
  3671. vocab.special_unk_id = 100;
  3672. vocab.special_sep_id = 102;
  3673. vocab.special_pad_id = 0;
  3674. vocab.special_cls_id = 101;
  3675. vocab.special_mask_id = 103;
  3676. vocab.add_space_prefix = false;
  3677. } else {
  3678. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3679. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3680. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3681. }
  3682. }
  3683. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3684. if (token_idx == -1) {
  3685. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3686. }
  3687. const float * scores = nullptr;
  3688. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3689. if (score_idx != -1) {
  3690. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3691. }
  3692. const int * toktypes = nullptr;
  3693. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3694. if (toktype_idx != -1) {
  3695. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3696. }
  3697. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3698. vocab.id_to_token.resize(n_vocab);
  3699. for (uint32_t i = 0; i < n_vocab; i++) {
  3700. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3701. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3702. vocab.token_to_id[word] = i;
  3703. auto & token_data = vocab.id_to_token[i];
  3704. token_data.text = std::move(word);
  3705. token_data.score = scores ? scores[i] : 0.0f;
  3706. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3707. }
  3708. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3709. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3710. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3711. try {
  3712. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3713. } catch (const std::exception & e) {
  3714. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3715. vocab.linefeed_id = vocab.special_pad_id;
  3716. }
  3717. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3718. vocab.linefeed_id = vocab.special_pad_id;
  3719. } else {
  3720. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3721. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3722. vocab.linefeed_id = ids[0];
  3723. }
  3724. // special tokens
  3725. {
  3726. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3727. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3728. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3729. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3730. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3731. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3732. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3733. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3734. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3735. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3736. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3737. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3738. };
  3739. for (const auto & it : special_token_types) {
  3740. const std::string & key = kv(std::get<0>(it));
  3741. int32_t & id = std::get<1>(it);
  3742. uint32_t new_id;
  3743. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3744. continue;
  3745. }
  3746. if (new_id >= vocab.id_to_token.size()) {
  3747. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3748. __func__, key.c_str(), new_id, id);
  3749. } else {
  3750. id = new_id;
  3751. }
  3752. }
  3753. // Handle add_bos_token and add_eos_token
  3754. {
  3755. bool temp = true;
  3756. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3757. vocab.special_add_bos = int(temp);
  3758. }
  3759. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3760. vocab.special_add_eos = int(temp);
  3761. }
  3762. }
  3763. }
  3764. // build special tokens cache
  3765. {
  3766. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3767. // and will always be correctly labeled in 'added_tokens.json' etc.
  3768. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3769. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3770. // are special tokens.
  3771. // From testing, this appears to correlate 1:1 with special tokens.
  3772. //
  3773. // Counting special tokens and verifying in only one direction
  3774. // is sufficient to detect difference in those two sets.
  3775. //
  3776. uint32_t special_tokens_count_by_type = 0;
  3777. uint32_t special_tokens_count_from_verification = 0;
  3778. bool special_tokens_definition_mismatch = false;
  3779. for (const auto & t : vocab.token_to_id) {
  3780. const auto & token = t.first;
  3781. const auto & id = t.second;
  3782. // Count all non-normal tokens in the vocab while iterating
  3783. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3784. special_tokens_count_by_type++;
  3785. }
  3786. // Skip single character tokens
  3787. if (token.length() > 1) {
  3788. bool is_tokenizable = false;
  3789. // Split token string representation in two, in all possible ways
  3790. // and check if both halves can be matched to a valid token
  3791. for (unsigned i = 1; i < token.length();) {
  3792. const auto left = token.substr(0, i);
  3793. const auto right = token.substr(i);
  3794. // check if we didnt partition in the middle of a utf sequence
  3795. auto utf = utf8_len(left.at(left.length() - 1));
  3796. if (utf == 1) {
  3797. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3798. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3799. is_tokenizable = true;
  3800. break;
  3801. }
  3802. i++;
  3803. } else {
  3804. // skip over the rest of multibyte utf sequence
  3805. i += utf - 1;
  3806. }
  3807. }
  3808. if (!is_tokenizable) {
  3809. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3810. // it's faster to re-filter them here, since there are way less candidates now
  3811. // Calculate a total "utf" length of a token string representation
  3812. size_t utf8_str_len = 0;
  3813. for (unsigned i = 0; i < token.length();) {
  3814. utf8_str_len++;
  3815. i += utf8_len(token.at(i));
  3816. }
  3817. // And skip the ones which are one character
  3818. if (utf8_str_len > 1) {
  3819. // At this point what we have left are special tokens only
  3820. vocab.special_tokens_cache[token] = id;
  3821. // Count manually found special tokens
  3822. special_tokens_count_from_verification++;
  3823. // If this manually found special token is not marked as such, flag a mismatch
  3824. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3825. special_tokens_definition_mismatch = true;
  3826. }
  3827. }
  3828. }
  3829. }
  3830. }
  3831. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3832. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3833. __func__,
  3834. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3835. special_tokens_count_by_type, vocab.id_to_token.size()
  3836. );
  3837. } else {
  3838. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3839. __func__,
  3840. special_tokens_count_from_verification, vocab.id_to_token.size()
  3841. );
  3842. }
  3843. }
  3844. }
  3845. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3846. const auto & hparams = model.hparams;
  3847. const auto & vocab = model.vocab;
  3848. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3849. // hparams
  3850. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3851. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3852. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3853. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3854. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3855. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3856. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3857. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3858. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3859. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3860. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3861. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3862. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3863. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3864. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3865. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3866. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3867. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3868. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3869. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3870. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3871. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3872. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3873. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3874. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3875. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3876. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3877. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3878. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3879. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3880. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3881. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3882. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3883. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3884. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3885. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3886. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3887. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3888. if (ml.n_elements >= 1e12) {
  3889. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3890. } else if (ml.n_elements >= 1e9) {
  3891. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3892. } else if (ml.n_elements >= 1e6) {
  3893. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3894. } else {
  3895. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3896. }
  3897. if (ml.n_bytes < GiB) {
  3898. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3899. } else {
  3900. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3901. }
  3902. // general kv
  3903. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3904. // special tokens
  3905. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3906. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3907. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3908. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3909. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3910. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  3911. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  3912. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3913. }
  3914. // Returns false if cancelled by progress_callback
  3915. static bool llm_load_tensors(
  3916. llama_model_loader & ml,
  3917. llama_model & model,
  3918. int n_gpu_layers,
  3919. enum llama_split_mode split_mode,
  3920. int main_gpu,
  3921. const float * tensor_split,
  3922. bool use_mlock,
  3923. llama_progress_callback progress_callback,
  3924. void * progress_callback_user_data) {
  3925. model.t_start_us = ggml_time_us();
  3926. auto & hparams = model.hparams;
  3927. model.split_mode = split_mode;
  3928. model.main_gpu = main_gpu;
  3929. model.n_gpu_layers = n_gpu_layers;
  3930. const int64_t n_layer = hparams.n_layer;
  3931. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3932. bool use_mmap_buffer = true;
  3933. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3934. model.buft_input = llama_default_buffer_type_cpu(true);
  3935. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  3936. model.buft_layer.resize(n_layer);
  3937. // assign cpu layers
  3938. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3939. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3940. }
  3941. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3942. // calculate the split points
  3943. int device_count = llama_get_device_count();
  3944. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3945. std::vector<float> splits(device_count);
  3946. if (all_zero) {
  3947. // default split, by free memory
  3948. for (int i = 0; i < device_count; ++i) {
  3949. splits[i] = llama_get_device_memory(i);
  3950. }
  3951. } else {
  3952. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3953. }
  3954. // sum and normalize the splits to get the split points
  3955. float split_sum = 0.0f;
  3956. for (int i = 0; i < device_count; ++i) {
  3957. split_sum += splits[i];
  3958. splits[i] = split_sum;
  3959. }
  3960. for (int i = 0; i < device_count; ++i) {
  3961. splits[i] /= split_sum;
  3962. }
  3963. // assign the repeating layers to the devices according to the splits
  3964. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3965. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3966. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  3967. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  3968. }
  3969. // assign the output layer
  3970. if (n_gpu_layers > n_layer) {
  3971. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  3972. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  3973. } else {
  3974. model.buft_output = llama_default_buffer_type_cpu(true);
  3975. }
  3976. } else {
  3977. ggml_backend_buffer_type_t split_buft;
  3978. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  3979. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  3980. } else {
  3981. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  3982. split_buft = llama_default_buffer_type_offload(main_gpu);
  3983. }
  3984. // assign the repeating layers
  3985. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3986. model.buft_layer[i] = {
  3987. split_buft,
  3988. llama_default_buffer_type_offload(main_gpu)
  3989. };
  3990. }
  3991. // assign the output layer
  3992. if (n_gpu_layers > n_layer) {
  3993. model.buft_output = {
  3994. split_buft,
  3995. llama_default_buffer_type_offload(main_gpu)
  3996. };
  3997. } else {
  3998. model.buft_output = llama_default_buffer_type_cpu(true);
  3999. }
  4000. }
  4001. // count used buffer types
  4002. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4003. buft_layer_count[model.buft_input.buft]++;
  4004. buft_layer_count[model.buft_input.buft_matrix]++;
  4005. buft_layer_count[model.buft_output.buft]++;
  4006. buft_layer_count[model.buft_output.buft_matrix]++;
  4007. for (int64_t i = 0; i < n_layer; ++i) {
  4008. buft_layer_count[model.buft_layer[i].buft]++;
  4009. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4010. }
  4011. // create one context per buffer type
  4012. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4013. // for moe merged tensors
  4014. ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer;
  4015. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4016. for (auto & it : buft_layer_count) {
  4017. struct ggml_init_params params = {
  4018. /*.mem_size =*/ ctx_size,
  4019. /*.mem_buffer =*/ NULL,
  4020. /*.no_alloc =*/ true,
  4021. };
  4022. ggml_context * ctx = ggml_init(params);
  4023. if (!ctx) {
  4024. throw std::runtime_error(format("failed to create context"));
  4025. }
  4026. ctx_map[it.first] = ctx;
  4027. model.ctxs.push_back(ctx);
  4028. }
  4029. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4030. // create tensors for the weights
  4031. {
  4032. const int64_t n_embd = hparams.n_embd;
  4033. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4034. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4035. const int64_t n_embd_gqa = n_embd_v_gqa;
  4036. const int64_t n_vocab = hparams.n_vocab;
  4037. const int64_t n_vocab_type = hparams.n_vocab_type;
  4038. const int64_t n_ff = hparams.n_ff;
  4039. const int64_t n_expert = hparams.n_expert;
  4040. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4041. throw std::runtime_error("model has expert layers but no expert layers are used");
  4042. }
  4043. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4044. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4045. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4046. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4047. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4048. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4049. model.layers.resize(n_layer);
  4050. const auto tn = LLM_TN(model.arch);
  4051. switch (model.arch) {
  4052. case LLM_ARCH_LLAMA:
  4053. case LLM_ARCH_REFACT:
  4054. case LLM_ARCH_MINICPM:
  4055. {
  4056. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4057. // output
  4058. {
  4059. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4060. if (model.arch != LLM_ARCH_MINICPM){
  4061. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4062. // if output is NULL, init from the input tok embed
  4063. if (model.output == NULL) {
  4064. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4065. ml.n_created--; // artificial tensor
  4066. ml.size_data += ggml_nbytes(model.output);
  4067. }
  4068. }
  4069. }
  4070. for (int i = 0; i < n_layer; ++i) {
  4071. ggml_context * ctx_layer = ctx_for_layer(i);
  4072. ggml_context * ctx_split = ctx_for_layer_split(i);
  4073. auto & layer = model.layers[i];
  4074. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4075. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4076. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4077. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4078. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4079. // optional bias tensors
  4080. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4081. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4082. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4083. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4084. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4085. if (n_expert == 0) {
  4086. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4087. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4088. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4089. } else {
  4090. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4091. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4092. if (layer.ffn_gate_exps) {
  4093. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4094. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4095. } else {
  4096. // merge split expert into a single tensor for compatibility with older models
  4097. // requires disabling mmap
  4098. use_mmap_buffer = false;
  4099. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4100. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4101. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4102. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4103. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4104. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4105. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4106. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4107. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4108. for (uint32_t x = 0; x < n_expert; ++x) {
  4109. // the individual experts are loaded into a view of the merged tensor
  4110. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4111. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4112. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4113. }
  4114. }
  4115. }
  4116. }
  4117. } break;
  4118. case LLM_ARCH_GROK:
  4119. {
  4120. if (n_expert == 0) {
  4121. throw std::runtime_error("Grok model cannot have zero experts");
  4122. }
  4123. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4124. // output
  4125. {
  4126. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4127. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4128. // if output is NULL, init from the input tok embed
  4129. if (model.output == NULL) {
  4130. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4131. ml.n_created--; // artificial tensor
  4132. ml.size_data += ggml_nbytes(model.output);
  4133. }
  4134. }
  4135. for (int i = 0; i < n_layer; ++i) {
  4136. ggml_context * ctx_layer = ctx_for_layer(i);
  4137. ggml_context * ctx_split = ctx_for_layer_split(i);
  4138. auto & layer = model.layers[i];
  4139. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4140. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4141. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4142. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4143. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4144. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4145. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4146. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4147. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4148. if (layer.ffn_gate_exps) {
  4149. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4150. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4151. } else {
  4152. // merge split expert into a single tensor for compatibility with older models
  4153. // requires disabling mmap
  4154. use_mmap_buffer = false;
  4155. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4156. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4157. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4158. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4159. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4160. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4161. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4162. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4163. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4164. for (uint32_t x = 0; x < n_expert; ++x) {
  4165. // the individual experts are loaded into a view of the merged tensor
  4166. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4167. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4168. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4169. }
  4170. }
  4171. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4172. }
  4173. } break;
  4174. case LLM_ARCH_DBRX:
  4175. {
  4176. if (n_expert == 0) {
  4177. throw std::runtime_error("DBRX model cannot have zero experts");
  4178. }
  4179. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4180. // output
  4181. {
  4182. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4183. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4184. }
  4185. for (int i = 0; i < n_layer; ++i) {
  4186. ggml_context * ctx_layer = ctx_for_layer(i);
  4187. ggml_context * ctx_split = ctx_for_layer_split(i);
  4188. auto & layer = model.layers[i];
  4189. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4190. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4191. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4192. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4193. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4194. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4195. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4196. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4197. }
  4198. } break;
  4199. case LLM_ARCH_BAICHUAN:
  4200. {
  4201. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4202. {
  4203. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4204. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4205. }
  4206. for (int i = 0; i < n_layer; ++i) {
  4207. ggml_context * ctx_layer = ctx_for_layer(i);
  4208. ggml_context * ctx_split = ctx_for_layer_split(i);
  4209. auto & layer = model.layers[i];
  4210. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4211. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4212. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4213. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4214. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4215. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4216. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4217. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4218. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4219. }
  4220. } break;
  4221. case LLM_ARCH_FALCON:
  4222. {
  4223. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4224. // output
  4225. {
  4226. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4227. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4228. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4229. if (!model.output) {
  4230. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4231. ml.n_created--; // artificial tensor
  4232. ml.size_data += ggml_nbytes(model.output);
  4233. }
  4234. }
  4235. for (int i = 0; i < n_layer; ++i) {
  4236. ggml_context * ctx_layer = ctx_for_layer(i);
  4237. ggml_context * ctx_split = ctx_for_layer_split(i);
  4238. auto & layer = model.layers[i];
  4239. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4240. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4241. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4242. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4243. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4244. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4245. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4246. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4247. }
  4248. } break;
  4249. case LLM_ARCH_STARCODER:
  4250. {
  4251. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4252. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4253. // output
  4254. {
  4255. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4256. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4257. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4258. }
  4259. for (int i = 0; i < n_layer; ++i) {
  4260. ggml_context * ctx_layer = ctx_for_layer(i);
  4261. ggml_context * ctx_split = ctx_for_layer_split(i);
  4262. auto & layer = model.layers[i];
  4263. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4264. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4265. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4266. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4267. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4268. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4269. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4270. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4271. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4272. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4273. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4274. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4275. }
  4276. } break;
  4277. case LLM_ARCH_PERSIMMON:
  4278. {
  4279. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4280. {
  4281. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4282. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4283. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4284. }
  4285. for (int i = 0; i < n_layer; ++i) {
  4286. ggml_context * ctx_layer = ctx_for_layer(i);
  4287. ggml_context * ctx_split = ctx_for_layer_split(i);
  4288. auto & layer = model.layers[i];
  4289. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4290. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4291. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4292. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4293. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4294. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4295. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4296. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4297. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4298. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4299. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4300. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4301. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4302. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4303. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4304. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4305. }
  4306. } break;
  4307. case LLM_ARCH_BERT:
  4308. case LLM_ARCH_NOMIC_BERT:
  4309. {
  4310. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4311. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4312. if (model.arch == LLM_ARCH_BERT) {
  4313. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4314. }
  4315. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4316. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4317. for (int i = 0; i < n_layer; ++i) {
  4318. ggml_context * ctx_layer = ctx_for_layer(i);
  4319. ggml_context * ctx_split = ctx_for_layer_split(i);
  4320. auto & layer = model.layers[i];
  4321. if (model.arch == LLM_ARCH_BERT) {
  4322. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4323. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4324. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4325. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4326. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4327. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4328. } else {
  4329. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4330. }
  4331. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4332. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4333. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4334. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4335. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4336. if (model.arch == LLM_ARCH_BERT) {
  4337. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4338. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4339. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4340. } else {
  4341. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4342. }
  4343. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4344. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4345. }
  4346. } break;
  4347. case LLM_ARCH_BLOOM:
  4348. {
  4349. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4350. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4351. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4352. // output
  4353. {
  4354. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4355. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4356. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4357. }
  4358. for (int i = 0; i < n_layer; ++i) {
  4359. ggml_context * ctx_layer = ctx_for_layer(i);
  4360. ggml_context * ctx_split = ctx_for_layer_split(i);
  4361. auto & layer = model.layers[i];
  4362. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4363. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4364. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4365. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4366. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4367. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4368. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4369. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4370. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4371. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4372. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4373. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4374. }
  4375. } break;
  4376. case LLM_ARCH_MPT:
  4377. {
  4378. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4379. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4380. // output
  4381. {
  4382. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4383. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4384. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4385. if (!model.output) {
  4386. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4387. ml.n_created--; // artificial tensor
  4388. ml.size_data += ggml_nbytes(model.output);
  4389. }
  4390. }
  4391. for (int i = 0; i < n_layer; ++i) {
  4392. ggml_context * ctx_layer = ctx_for_layer(i);
  4393. ggml_context * ctx_split = ctx_for_layer_split(i);
  4394. auto & layer = model.layers[i];
  4395. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4396. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4397. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4398. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4399. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4400. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4401. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4402. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4403. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4404. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4405. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4406. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4407. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4408. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4409. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4410. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4411. // AWQ ScaleActivation layer
  4412. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4413. }
  4414. } break;
  4415. case LLM_ARCH_STABLELM:
  4416. {
  4417. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4418. // output
  4419. {
  4420. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4421. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4422. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4423. }
  4424. for (int i = 0; i < n_layer; ++i) {
  4425. ggml_context * ctx_layer = ctx_for_layer(i);
  4426. ggml_context * ctx_split = ctx_for_layer_split(i);
  4427. auto & layer = model.layers[i];
  4428. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4429. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4430. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4431. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4432. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4433. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4434. // optional bias tensors, present in Stable LM 2 1.6B
  4435. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4436. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4437. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4438. // optional q and k layernorms, present in StableLM 2 12B
  4439. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4440. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4441. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4442. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4443. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4444. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4445. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4446. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4447. }
  4448. } break;
  4449. case LLM_ARCH_QWEN:
  4450. {
  4451. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4452. // output
  4453. {
  4454. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4455. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4456. }
  4457. for (int i = 0; i < n_layer; ++i) {
  4458. ggml_context * ctx_layer = ctx_for_layer(i);
  4459. ggml_context * ctx_split = ctx_for_layer_split(i);
  4460. auto & layer = model.layers[i];
  4461. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4462. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4463. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4464. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4465. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4466. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4467. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4468. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4469. }
  4470. } break;
  4471. case LLM_ARCH_QWEN2:
  4472. {
  4473. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4474. // output
  4475. {
  4476. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4477. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4478. }
  4479. for (int i = 0; i < n_layer; ++i) {
  4480. ggml_context * ctx_layer = ctx_for_layer(i);
  4481. ggml_context * ctx_split = ctx_for_layer_split(i);
  4482. auto & layer = model.layers[i];
  4483. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4484. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4485. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4486. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4487. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4488. // optional bias tensors
  4489. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4490. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4491. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4492. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4493. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4494. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4495. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4496. }
  4497. } break;
  4498. case LLM_ARCH_QWEN2MOE:
  4499. {
  4500. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4501. // output
  4502. {
  4503. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4504. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4505. }
  4506. for (int i = 0; i < n_layer; ++i) {
  4507. ggml_context * ctx_layer = ctx_for_layer(i);
  4508. ggml_context * ctx_split = ctx_for_layer_split(i);
  4509. auto & layer = model.layers[i];
  4510. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4511. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4512. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4513. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4514. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4515. // optional bias tensors
  4516. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4517. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4518. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4519. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4520. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4521. GGML_ASSERT(hparams.n_expert > 0);
  4522. GGML_ASSERT(hparams.n_expert_used > 0);
  4523. // MoE branch
  4524. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4525. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4526. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4527. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4528. // Shared expert branch
  4529. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4530. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4531. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4532. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4533. }
  4534. } break;
  4535. case LLM_ARCH_PHI2:
  4536. {
  4537. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4538. // output
  4539. {
  4540. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4541. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4542. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4543. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4544. }
  4545. for (int i = 0; i < n_layer; ++i) {
  4546. ggml_context * ctx_layer = ctx_for_layer(i);
  4547. ggml_context * ctx_split = ctx_for_layer_split(i);
  4548. auto & layer = model.layers[i];
  4549. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4550. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4551. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4552. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4553. if (layer.wqkv == nullptr) {
  4554. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4555. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4556. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4557. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4558. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4559. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4560. }
  4561. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4562. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4563. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4564. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4565. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4566. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4567. }
  4568. } break;
  4569. case LLM_ARCH_PLAMO:
  4570. {
  4571. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4572. // output
  4573. {
  4574. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4575. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4576. }
  4577. for (int i = 0; i < n_layer; ++i) {
  4578. ggml_context * ctx_layer = ctx_for_layer(i);
  4579. ggml_context * ctx_split = ctx_for_layer_split(i);
  4580. auto & layer = model.layers[i];
  4581. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4582. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4583. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4584. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4585. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4586. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4587. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4588. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4589. }
  4590. } break;
  4591. case LLM_ARCH_GPT2:
  4592. {
  4593. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4594. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4595. // output
  4596. {
  4597. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4598. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4599. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4600. }
  4601. for (int i = 0; i < n_layer; ++i) {
  4602. ggml_context * ctx_layer = ctx_for_layer(i);
  4603. ggml_context * ctx_split = ctx_for_layer_split(i);
  4604. auto & layer = model.layers[i];
  4605. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4606. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4607. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4608. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4609. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4610. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4611. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4612. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4613. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4614. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4615. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4616. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4617. }
  4618. } break;
  4619. case LLM_ARCH_CODESHELL:
  4620. {
  4621. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4622. // output
  4623. {
  4624. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4625. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4626. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4627. }
  4628. for (int i = 0; i < n_layer; ++i) {
  4629. ggml_context * ctx_layer = ctx_for_layer(i);
  4630. ggml_context * ctx_split = ctx_for_layer_split(i);
  4631. auto & layer = model.layers[i];
  4632. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4633. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4634. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4635. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4636. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4637. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4638. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4639. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4640. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4641. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4642. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4643. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4644. }
  4645. } break;
  4646. case LLM_ARCH_ORION:
  4647. {
  4648. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4649. {
  4650. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4651. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4652. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4653. }
  4654. for (int i = 0; i < n_layer; ++i) {
  4655. ggml_context * ctx_layer = ctx_for_layer(i);
  4656. ggml_context * ctx_split = ctx_for_layer_split(i);
  4657. auto & layer = model.layers[i];
  4658. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4659. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4660. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4661. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4662. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4663. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4664. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4665. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4666. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4667. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4668. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4669. }
  4670. } break;
  4671. case LLM_ARCH_INTERNLM2:
  4672. {
  4673. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4674. // output
  4675. {
  4676. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4677. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4678. }
  4679. for (int i = 0; i < n_layer; ++i) {
  4680. ggml_context * ctx_layer = ctx_for_layer(i);
  4681. ggml_context * ctx_split = ctx_for_layer_split(i);
  4682. auto & layer = model.layers[i];
  4683. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4684. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4685. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4686. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4687. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4688. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4689. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4690. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4691. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4692. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4693. }
  4694. } break;
  4695. case LLM_ARCH_GEMMA:
  4696. {
  4697. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4698. // output
  4699. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4700. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4701. ml.n_created--; // artificial tensor
  4702. ml.size_data += ggml_nbytes(model.output);
  4703. const int64_t n_ff = hparams.n_ff;
  4704. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4705. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4706. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4707. for (uint32_t i = 0; i < n_layer; ++i) {
  4708. ggml_context * ctx_layer = ctx_for_layer(i);
  4709. ggml_context * ctx_split = ctx_for_layer_split(i);
  4710. auto & layer = model.layers[i];
  4711. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4712. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4713. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4714. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4715. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4716. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4717. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4718. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4719. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4720. }
  4721. } break;
  4722. case LLM_ARCH_STARCODER2:
  4723. {
  4724. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4725. // output
  4726. {
  4727. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4728. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4729. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4730. // if output is NULL, init from the input tok embed
  4731. if (model.output == NULL) {
  4732. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4733. ml.n_created--; // artificial tensor
  4734. ml.size_data += ggml_nbytes(model.output);
  4735. }
  4736. }
  4737. for (int i = 0; i < n_layer; ++i) {
  4738. ggml_context * ctx_layer = ctx_for_layer(i);
  4739. ggml_context * ctx_split = ctx_for_layer_split(i);
  4740. auto & layer = model.layers[i];
  4741. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4742. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4743. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4744. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4745. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4746. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4747. // optional bias tensors
  4748. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4749. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4750. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4751. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4752. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4753. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4754. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4755. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4756. // optional bias tensors
  4757. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4758. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4759. }
  4760. } break;
  4761. case LLM_ARCH_MAMBA:
  4762. {
  4763. const int64_t d_conv = hparams.ssm_d_conv;
  4764. const int64_t d_inner = hparams.ssm_d_inner;
  4765. const int64_t d_state = hparams.ssm_d_state;
  4766. const int64_t dt_rank = hparams.ssm_dt_rank;
  4767. // only an expansion factor of 2 is supported for now
  4768. GGML_ASSERT(2 * n_embd == d_inner);
  4769. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4770. // output
  4771. {
  4772. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4773. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4774. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4775. if (model.output == NULL) {
  4776. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4777. ml.n_created--; // artificial tensor
  4778. ml.size_data += ggml_nbytes(model.output);
  4779. }
  4780. }
  4781. for (int i = 0; i < n_layer; ++i) {
  4782. ggml_context * ctx_layer = ctx_for_layer(i);
  4783. ggml_context * ctx_split = ctx_for_layer_split(i);
  4784. auto & layer = model.layers[i];
  4785. // norm
  4786. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4787. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4788. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4789. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4790. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4791. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4792. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4793. // no "weight" suffix for these
  4794. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4795. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4796. // out_proj
  4797. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4798. }
  4799. } break;
  4800. case LLM_ARCH_XVERSE:
  4801. {
  4802. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4803. {
  4804. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4805. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4806. }
  4807. for (int i = 0; i < n_layer; ++i) {
  4808. ggml_context * ctx_layer = ctx_for_layer(i);
  4809. ggml_context * ctx_split = ctx_for_layer_split(i);
  4810. auto & layer = model.layers[i];
  4811. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4812. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4813. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4814. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4815. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4816. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4817. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4818. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4819. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4820. }
  4821. } break;
  4822. case LLM_ARCH_COMMAND_R:
  4823. {
  4824. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4825. // output
  4826. {
  4827. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4828. // init output from the input tok embed
  4829. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4830. ml.n_created--; // artificial tensor
  4831. ml.size_data += ggml_nbytes(model.output);
  4832. }
  4833. for (int i = 0; i < n_layer; ++i) {
  4834. ggml_context * ctx_layer = ctx_for_layer(i);
  4835. ggml_context * ctx_split = ctx_for_layer_split(i);
  4836. auto & layer = model.layers[i];
  4837. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4838. if (n_layer >= 64){
  4839. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  4840. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  4841. }
  4842. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4843. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4844. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4845. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4846. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4847. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4848. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4849. }
  4850. } break;
  4851. default:
  4852. throw std::runtime_error("unknown architecture");
  4853. }
  4854. }
  4855. ml.done_getting_tensors();
  4856. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  4857. model.mappings.reserve(ml.mappings.size());
  4858. // create the backend buffers
  4859. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  4860. ctx_bufs.reserve(ctx_map.size());
  4861. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  4862. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  4863. model.bufs.reserve(n_max_backend_buffer);
  4864. for (auto & it : ctx_map) {
  4865. ggml_backend_buffer_type_t buft = it.first;
  4866. ggml_context * ctx = it.second;
  4867. llama_buf_map bufs;
  4868. bufs.reserve(n_max_backend_buffer);
  4869. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  4870. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  4871. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  4872. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  4873. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4874. void * addr = nullptr;
  4875. size_t first, last;
  4876. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4877. if (first >= last) {
  4878. continue;
  4879. }
  4880. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  4881. if (buf == nullptr) {
  4882. throw std::runtime_error("unable to allocate backend CPU buffer");
  4883. }
  4884. model.bufs.push_back(buf);
  4885. bufs.emplace(idx, buf);
  4886. #ifdef GGML_USE_CUDA
  4887. if (n_layer >= n_gpu_layers) {
  4888. ggml_backend_cuda_register_host_buffer(
  4889. ggml_backend_buffer_get_base(buf),
  4890. ggml_backend_buffer_get_size(buf));
  4891. }
  4892. #endif
  4893. }
  4894. }
  4895. #ifdef GGML_USE_METAL
  4896. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  4897. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4898. const size_t max_size = ggml_get_max_tensor_size(ctx);
  4899. void * addr = nullptr;
  4900. size_t first, last;
  4901. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4902. if (first >= last) {
  4903. continue;
  4904. }
  4905. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  4906. if (buf == nullptr) {
  4907. throw std::runtime_error("unable to allocate backend metal buffer");
  4908. }
  4909. model.bufs.push_back(buf);
  4910. bufs.emplace(idx, buf);
  4911. }
  4912. }
  4913. #endif
  4914. else {
  4915. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  4916. if (buf == nullptr) {
  4917. throw std::runtime_error("unable to allocate backend buffer");
  4918. }
  4919. model.bufs.push_back(buf);
  4920. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  4921. model.mlock_bufs.emplace_back(new llama_mlock);
  4922. auto & mlock_buf = model.mlock_bufs.back();
  4923. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  4924. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  4925. }
  4926. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4927. bufs.emplace(idx, buf);
  4928. }
  4929. }
  4930. if (bufs.empty()) {
  4931. throw std::runtime_error("failed to allocate buffer");
  4932. }
  4933. for (auto & buf : bufs) {
  4934. // indicate that this buffer contains weights
  4935. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  4936. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  4937. }
  4938. ctx_bufs.emplace_back(ctx, bufs);
  4939. }
  4940. if (llama_supports_gpu_offload()) {
  4941. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  4942. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  4943. if (n_gpu_layers > (int) hparams.n_layer) {
  4944. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  4945. }
  4946. const int max_backend_supported_layers = hparams.n_layer + 1;
  4947. const int max_offloadable_layers = hparams.n_layer + 1;
  4948. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  4949. }
  4950. // print memory requirements
  4951. for (ggml_backend_buffer_t buf : model.bufs) {
  4952. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  4953. }
  4954. // populate tensors_by_name
  4955. for (ggml_context * ctx : model.ctxs) {
  4956. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  4957. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  4958. }
  4959. }
  4960. // load tensor data
  4961. for (auto & it : ctx_bufs) {
  4962. ggml_context * ctx = it.first;
  4963. auto & bufs = it.second;
  4964. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  4965. return false;
  4966. }
  4967. }
  4968. if (use_mmap_buffer) {
  4969. for (auto & mapping : ml.mappings) {
  4970. model.mappings.emplace_back(std::move(mapping));
  4971. }
  4972. }
  4973. // loading time will be recalculate after the first eval, so
  4974. // we take page faults deferred by mmap() into consideration
  4975. model.t_load_us = ggml_time_us() - model.t_start_us;
  4976. return true;
  4977. }
  4978. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  4979. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  4980. try {
  4981. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  4982. model.hparams.vocab_only = params.vocab_only;
  4983. try {
  4984. llm_load_arch(ml, model);
  4985. } catch(const std::exception & e) {
  4986. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  4987. }
  4988. try {
  4989. llm_load_hparams(ml, model);
  4990. } catch(const std::exception & e) {
  4991. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  4992. }
  4993. try {
  4994. llm_load_vocab(ml, model);
  4995. } catch(const std::exception & e) {
  4996. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  4997. }
  4998. llm_load_print_meta(ml, model);
  4999. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5000. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5001. throw std::runtime_error("vocab size mismatch");
  5002. }
  5003. if (params.vocab_only) {
  5004. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5005. return 0;
  5006. }
  5007. #ifdef GGML_USE_KOMPUTE
  5008. if (params.n_gpu_layers > 0 && (
  5009. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5010. || !(
  5011. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5012. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5013. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5014. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5015. )
  5016. )) {
  5017. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5018. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5019. params.n_gpu_layers = 0;
  5020. }
  5021. #endif
  5022. #ifdef GGML_USE_SYCL
  5023. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5024. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5025. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5026. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5027. } else {
  5028. ggml_backend_sycl_set_mul_device_mode();
  5029. }
  5030. #endif
  5031. if (!llm_load_tensors(
  5032. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5033. params.progress_callback, params.progress_callback_user_data
  5034. )) {
  5035. return -2;
  5036. }
  5037. } catch (const std::exception & err) {
  5038. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5039. return -1;
  5040. }
  5041. return 0;
  5042. }
  5043. //
  5044. // llm_build
  5045. //
  5046. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5047. enum llm_ffn_op_type {
  5048. LLM_FFN_SILU,
  5049. LLM_FFN_GELU,
  5050. LLM_FFN_RELU,
  5051. LLM_FFN_RELU_SQR,
  5052. };
  5053. enum llm_ffn_gate_type {
  5054. LLM_FFN_SEQ,
  5055. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5056. };
  5057. enum llm_norm_type {
  5058. LLM_NORM,
  5059. LLM_NORM_RMS,
  5060. };
  5061. static struct ggml_tensor * llm_build_inp_embd(
  5062. struct ggml_context * ctx,
  5063. struct llama_context & lctx,
  5064. const llama_hparams & hparams,
  5065. const llama_batch & batch,
  5066. struct ggml_tensor * tok_embd,
  5067. const llm_build_cb & cb) {
  5068. const int64_t n_embd = hparams.n_embd;
  5069. struct ggml_tensor * inpL;
  5070. if (batch.token) {
  5071. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5072. cb(lctx.inp_tokens, "inp_tokens", -1);
  5073. ggml_set_input(lctx.inp_tokens);
  5074. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5075. } else {
  5076. #ifdef GGML_USE_MPI
  5077. GGML_ASSERT(false && "not implemented");
  5078. #endif
  5079. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5080. inpL = lctx.inp_embd;
  5081. ggml_set_input(lctx.inp_embd);
  5082. }
  5083. cb(inpL, "inp_embd", -1);
  5084. return inpL;
  5085. }
  5086. static void llm_build_kv_store(
  5087. struct ggml_context * ctx,
  5088. const llama_hparams & hparams,
  5089. const llama_kv_cache & kv,
  5090. struct ggml_cgraph * graph,
  5091. struct ggml_tensor * k_cur,
  5092. struct ggml_tensor * v_cur,
  5093. int64_t n_ctx,
  5094. int32_t n_tokens,
  5095. int32_t kv_head,
  5096. const llm_build_cb & cb,
  5097. int64_t il) {
  5098. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5099. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5100. GGML_ASSERT(kv.size == n_ctx);
  5101. // compute the transposed [n_tokens, n_embd] V matrix
  5102. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5103. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5104. cb(v_cur_t, "v_cur_t", il);
  5105. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5106. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5107. cb(k_cache_view, "k_cache_view", il);
  5108. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5109. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5110. (kv_head)*ggml_element_size(kv.v_l[il]));
  5111. cb(v_cache_view, "v_cache_view", il);
  5112. // important: storing RoPE-ed version of K in the KV cache!
  5113. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5114. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5115. }
  5116. static struct ggml_tensor * llm_build_norm(
  5117. struct ggml_context * ctx,
  5118. struct ggml_tensor * cur,
  5119. const llama_hparams & hparams,
  5120. struct ggml_tensor * mw,
  5121. struct ggml_tensor * mb,
  5122. llm_norm_type type,
  5123. const llm_build_cb & cb,
  5124. int il) {
  5125. switch (type) {
  5126. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5127. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5128. }
  5129. if (mw || mb) {
  5130. cb(cur, "norm", il);
  5131. }
  5132. if (mw) {
  5133. cur = ggml_mul(ctx, cur, mw);
  5134. if (mb) {
  5135. cb(cur, "norm_w", il);
  5136. }
  5137. }
  5138. if (mb) {
  5139. cur = ggml_add(ctx, cur, mb);
  5140. }
  5141. return cur;
  5142. }
  5143. static struct ggml_tensor * llm_build_ffn(
  5144. struct ggml_context * ctx,
  5145. struct ggml_tensor * cur,
  5146. struct ggml_tensor * up,
  5147. struct ggml_tensor * up_b,
  5148. struct ggml_tensor * gate,
  5149. struct ggml_tensor * gate_b,
  5150. struct ggml_tensor * down,
  5151. struct ggml_tensor * down_b,
  5152. struct ggml_tensor * act_scales,
  5153. llm_ffn_op_type type_op,
  5154. llm_ffn_gate_type type_gate,
  5155. const llm_build_cb & cb,
  5156. int il) {
  5157. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5158. cb(tmp, "ffn_up", il);
  5159. if (up_b) {
  5160. tmp = ggml_add(ctx, tmp, up_b);
  5161. cb(tmp, "ffn_up_b", il);
  5162. }
  5163. if (gate) {
  5164. switch (type_gate) {
  5165. case LLM_FFN_SEQ:
  5166. {
  5167. cur = ggml_mul_mat(ctx, gate, tmp);
  5168. cb(cur, "ffn_gate", il);
  5169. } break;
  5170. case LLM_FFN_PAR:
  5171. {
  5172. cur = ggml_mul_mat(ctx, gate, cur);
  5173. cb(cur, "ffn_gate", il);
  5174. } break;
  5175. }
  5176. if (gate_b) {
  5177. cur = ggml_add(ctx, cur, gate_b);
  5178. cb(cur, "ffn_gate_b", il);
  5179. }
  5180. } else {
  5181. cur = tmp;
  5182. }
  5183. switch (type_op) {
  5184. case LLM_FFN_SILU:
  5185. {
  5186. cur = ggml_silu(ctx, cur);
  5187. cb(cur, "ffn_silu", il);
  5188. } break;
  5189. case LLM_FFN_GELU:
  5190. {
  5191. cur = ggml_gelu(ctx, cur);
  5192. cb(cur, "ffn_gelu", il);
  5193. if (act_scales != NULL) {
  5194. cur = ggml_div(ctx, cur, act_scales);
  5195. cb(cur, "ffn_act", il);
  5196. }
  5197. } break;
  5198. case LLM_FFN_RELU:
  5199. {
  5200. cur = ggml_relu(ctx, cur);
  5201. cb(cur, "ffn_relu", il);
  5202. } break;
  5203. case LLM_FFN_RELU_SQR:
  5204. {
  5205. cur = ggml_relu(ctx, cur);
  5206. cb(cur, "ffn_relu", il);
  5207. cur = ggml_sqr(ctx, cur);
  5208. cb(cur, "ffn_sqr(relu)", il);
  5209. } break;
  5210. }
  5211. if (type_gate == LLM_FFN_PAR) {
  5212. cur = ggml_mul(ctx, cur, tmp);
  5213. cb(cur, "ffn_gate_par", il);
  5214. }
  5215. cur = ggml_mul_mat(ctx, down, cur);
  5216. if (down_b) {
  5217. cb(cur, "ffn_down", il);
  5218. }
  5219. if (down_b) {
  5220. cur = ggml_add(ctx, cur, down_b);
  5221. }
  5222. return cur;
  5223. }
  5224. // if max_alibi_bias > 0 then apply ALiBi
  5225. static struct ggml_tensor * llm_build_kqv(
  5226. struct ggml_context * ctx,
  5227. const llama_model & model,
  5228. const llama_hparams & hparams,
  5229. const llama_kv_cache & kv,
  5230. struct ggml_cgraph * graph,
  5231. struct ggml_tensor * wo,
  5232. struct ggml_tensor * wo_b,
  5233. struct ggml_tensor * q_cur,
  5234. struct ggml_tensor * kq_mask,
  5235. struct ggml_tensor * kq_pos,
  5236. int64_t n_ctx,
  5237. int32_t n_tokens,
  5238. int32_t n_kv,
  5239. float kq_scale,
  5240. const llm_build_cb & cb,
  5241. int il) {
  5242. const int64_t n_head = hparams.n_head;
  5243. const int64_t n_head_kv = hparams.n_head_kv;
  5244. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5245. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5246. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5247. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5248. cb(q, "q", il);
  5249. struct ggml_tensor * k =
  5250. ggml_view_3d(ctx, kv.k_l[il],
  5251. n_embd_head_k, n_kv, n_head_kv,
  5252. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5253. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5254. 0);
  5255. cb(k, "k", il);
  5256. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5257. cb(kq, "kq", il);
  5258. if (model.arch == LLM_ARCH_PHI2) {
  5259. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5260. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5261. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5262. }
  5263. if (model.arch == LLM_ARCH_GROK) {
  5264. // need to do the following:
  5265. // multiply by attn_output_multiplyer of 0.08838834764831845
  5266. // and then :
  5267. // kq = 30 * tanh(kq / 30)
  5268. // before the softmax below
  5269. //try from phi2
  5270. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5271. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5272. kq = ggml_scale(ctx, kq, 30);
  5273. }
  5274. #if defined(GGML_USE_KOMPUTE)
  5275. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5276. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5277. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5278. if (hparams.f_max_alibi_bias > 0.0f) {
  5279. kq = ggml_scale(ctx, kq, kq_scale);
  5280. cb(kq, "kq_scaled", il);
  5281. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5282. cb(kq, "kq_scaled_alibi", il);
  5283. kq = ggml_add(ctx, kq, kq_mask);
  5284. cb(kq, "kq_masked", il);
  5285. kq = ggml_soft_max(ctx, kq);
  5286. cb(kq, "kq_soft_max", il);
  5287. } else
  5288. #endif
  5289. {
  5290. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5291. cb(kq, "kq_soft_max_ext", il);
  5292. }
  5293. GGML_ASSERT(kv.size == n_ctx);
  5294. // split cached v into n_head heads
  5295. struct ggml_tensor * v =
  5296. ggml_view_3d(ctx, kv.v_l[il],
  5297. n_kv, n_embd_head_v, n_head_kv,
  5298. ggml_element_size(kv.v_l[il])*n_ctx,
  5299. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5300. 0);
  5301. cb(v, "v", il);
  5302. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5303. cb(kqv, "kqv", il);
  5304. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5305. cb(kqv_merged, "kqv_merged", il);
  5306. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5307. cb(cur, "kqv_merged_cont", il);
  5308. ggml_build_forward_expand(graph, cur);
  5309. cur = ggml_mul_mat(ctx, wo, cur);
  5310. if (wo_b) {
  5311. cb(cur, "kqv_wo", il);
  5312. }
  5313. if (wo_b) {
  5314. cur = ggml_add(ctx, cur, wo_b);
  5315. }
  5316. return cur;
  5317. }
  5318. static struct ggml_tensor * llm_build_kv(
  5319. struct ggml_context * ctx,
  5320. const llama_model & model,
  5321. const llama_hparams & hparams,
  5322. const llama_kv_cache & kv,
  5323. struct ggml_cgraph * graph,
  5324. struct ggml_tensor * wo,
  5325. struct ggml_tensor * wo_b,
  5326. struct ggml_tensor * k_cur,
  5327. struct ggml_tensor * v_cur,
  5328. struct ggml_tensor * q_cur,
  5329. struct ggml_tensor * kq_mask,
  5330. struct ggml_tensor * kq_pos,
  5331. int64_t n_ctx,
  5332. int32_t n_tokens,
  5333. int32_t kv_head,
  5334. int32_t n_kv,
  5335. float kq_scale,
  5336. const llm_build_cb & cb,
  5337. int il) {
  5338. // these nodes are added to the graph together so that they are not reordered
  5339. // by doing so, the number of splits in the graph is reduced
  5340. ggml_build_forward_expand(graph, q_cur);
  5341. ggml_build_forward_expand(graph, k_cur);
  5342. ggml_build_forward_expand(graph, v_cur);
  5343. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5344. struct ggml_tensor * cur;
  5345. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5346. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5347. cb(cur, "kqv_out", il);
  5348. return cur;
  5349. }
  5350. struct llm_build_context {
  5351. const llama_model & model;
  5352. llama_context & lctx;
  5353. const llama_hparams & hparams;
  5354. const llama_cparams & cparams;
  5355. const llama_batch & batch;
  5356. const llama_kv_cache & kv_self;
  5357. const int64_t n_embd;
  5358. const int64_t n_layer;
  5359. const int64_t n_rot;
  5360. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5361. const int64_t n_head;
  5362. const int64_t n_head_kv;
  5363. const int64_t n_embd_head_k;
  5364. const int64_t n_embd_k_gqa;
  5365. const int64_t n_embd_head_v;
  5366. const int64_t n_embd_v_gqa;
  5367. const int64_t n_expert;
  5368. const int64_t n_expert_used;
  5369. const float freq_base;
  5370. const float freq_scale;
  5371. const float ext_factor;
  5372. const float attn_factor;
  5373. const float beta_fast;
  5374. const float beta_slow;
  5375. const float norm_eps;
  5376. const float norm_rms_eps;
  5377. const int32_t n_tokens;
  5378. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5379. const int32_t n_outputs;
  5380. const int32_t kv_head; // index of where we store new KV data in the cache
  5381. const int32_t n_orig_ctx;
  5382. const enum llama_pooling_type pooling_type;
  5383. const enum llama_rope_type rope_type;
  5384. const llm_build_cb & cb;
  5385. std::vector<uint8_t> & buf_compute_meta;
  5386. struct ggml_context * ctx0 = nullptr;
  5387. // TODO: consider making the entire interface noexcept
  5388. llm_build_context(
  5389. llama_context & lctx,
  5390. const llama_batch & batch,
  5391. const llm_build_cb & cb,
  5392. bool worst_case) :
  5393. model (lctx.model),
  5394. lctx (lctx),
  5395. hparams (model.hparams),
  5396. cparams (lctx.cparams),
  5397. batch (batch),
  5398. kv_self (lctx.kv_self),
  5399. n_embd (hparams.n_embd),
  5400. n_layer (hparams.n_layer),
  5401. n_rot (hparams.n_rot),
  5402. n_ctx (cparams.n_ctx),
  5403. n_head (hparams.n_head),
  5404. n_head_kv (hparams.n_head_kv),
  5405. n_embd_head_k (hparams.n_embd_head_k),
  5406. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5407. n_embd_head_v (hparams.n_embd_head_v),
  5408. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5409. n_expert (hparams.n_expert),
  5410. n_expert_used (hparams.n_expert_used),
  5411. freq_base (cparams.rope_freq_base),
  5412. freq_scale (cparams.rope_freq_scale),
  5413. ext_factor (cparams.yarn_ext_factor),
  5414. attn_factor (cparams.yarn_attn_factor),
  5415. beta_fast (cparams.yarn_beta_fast),
  5416. beta_slow (cparams.yarn_beta_slow),
  5417. norm_eps (hparams.f_norm_eps),
  5418. norm_rms_eps (hparams.f_norm_rms_eps),
  5419. n_tokens (batch.n_tokens),
  5420. n_kv (worst_case ? kv_self.size : kv_self.n),
  5421. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5422. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5423. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5424. pooling_type (cparams.pooling_type),
  5425. rope_type (hparams.rope_type),
  5426. cb (cb),
  5427. buf_compute_meta (lctx.buf_compute_meta) {
  5428. // all initializations should be done in init()
  5429. }
  5430. void init() {
  5431. struct ggml_init_params params = {
  5432. /*.mem_size =*/ buf_compute_meta.size(),
  5433. /*.mem_buffer =*/ buf_compute_meta.data(),
  5434. /*.no_alloc =*/ true,
  5435. };
  5436. ctx0 = ggml_init(params);
  5437. lctx.inp_tokens = nullptr;
  5438. lctx.inp_embd = nullptr;
  5439. lctx.inp_pos = nullptr;
  5440. lctx.inp_out_ids = nullptr;
  5441. lctx.inp_KQ_mask = nullptr;
  5442. lctx.inp_KQ_pos = nullptr;
  5443. lctx.inp_K_shift = nullptr;
  5444. lctx.inp_mean = nullptr;
  5445. lctx.inp_cls = nullptr;
  5446. lctx.inp_s_copy = nullptr;
  5447. lctx.inp_s_mask = nullptr;
  5448. lctx.inp_s_seq = nullptr;
  5449. }
  5450. void free() {
  5451. if (ctx0) {
  5452. ggml_free(ctx0);
  5453. ctx0 = nullptr;
  5454. }
  5455. }
  5456. struct ggml_cgraph * build_k_shift() {
  5457. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5458. GGML_ASSERT(kv_self.size == n_ctx);
  5459. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5460. cb(lctx.inp_K_shift, "K_shift", -1);
  5461. ggml_set_input(lctx.inp_K_shift);
  5462. for (int il = 0; il < n_layer; ++il) {
  5463. struct ggml_tensor * tmp =
  5464. // we rotate only the first n_rot dimensions
  5465. ggml_rope_custom_inplace(ctx0,
  5466. ggml_view_3d(ctx0, kv_self.k_l[il],
  5467. n_embd_head_k, n_head_kv, n_ctx,
  5468. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5469. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5470. 0),
  5471. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5472. ext_factor, attn_factor, beta_fast, beta_slow);
  5473. cb(tmp, "K_shifted", il);
  5474. ggml_build_forward_expand(gf, tmp);
  5475. }
  5476. return gf;
  5477. }
  5478. struct ggml_cgraph * build_s_copy() {
  5479. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5480. GGML_ASSERT(kv_self.recurrent);
  5481. struct ggml_tensor * state_copy = build_inp_s_copy();
  5482. for (int il = 0; il < n_layer; ++il) {
  5483. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5484. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5485. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5486. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5487. // TODO: name the intermediate tensors with cb()
  5488. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5489. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5490. }
  5491. return gf;
  5492. }
  5493. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5494. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5495. for (uint32_t i = 0; i < ids.size(); ++i) {
  5496. const uint32_t id = ids[i];
  5497. if (i == id || id == ids.size()) {
  5498. continue;
  5499. }
  5500. uint32_t nm = 1;
  5501. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5502. nm++;
  5503. }
  5504. for (int il = 0; il < n_layer; ++il) {
  5505. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5506. n_embd_k_gqa, nm,
  5507. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5508. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5509. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5510. n_embd_k_gqa, nm,
  5511. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5512. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5513. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5514. nm, n_embd_v_gqa,
  5515. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5516. ggml_row_size(kv_self.v_l[il]->type, i));
  5517. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5518. nm, n_embd_v_gqa,
  5519. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5520. ggml_row_size(kv_self.v_l[il]->type, id));
  5521. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5522. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5523. }
  5524. i += nm - 1;
  5525. }
  5526. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5527. return gf;
  5528. }
  5529. struct ggml_tensor * build_inp_pos() {
  5530. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5531. cb(lctx.inp_pos, "inp_pos", -1);
  5532. ggml_set_input(lctx.inp_pos);
  5533. return lctx.inp_pos;
  5534. }
  5535. struct ggml_tensor * build_inp_out_ids() {
  5536. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5537. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5538. ggml_set_input(lctx.inp_out_ids);
  5539. return lctx.inp_out_ids;
  5540. }
  5541. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5542. if (causal) {
  5543. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5544. } else {
  5545. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5546. }
  5547. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5548. ggml_set_input(lctx.inp_KQ_mask);
  5549. return lctx.inp_KQ_mask;
  5550. }
  5551. struct ggml_tensor * build_inp_KQ_pos() {
  5552. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5553. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5554. ggml_set_input(lctx.inp_KQ_pos);
  5555. return lctx.inp_KQ_pos;
  5556. }
  5557. struct ggml_tensor * build_inp_mean() {
  5558. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5559. cb(lctx.inp_mean, "inp_mean", -1);
  5560. ggml_set_input(lctx.inp_mean);
  5561. return lctx.inp_mean;
  5562. }
  5563. struct ggml_tensor * build_inp_cls() {
  5564. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5565. cb(lctx.inp_cls, "inp_cls", -1);
  5566. ggml_set_input(lctx.inp_cls);
  5567. return lctx.inp_cls;
  5568. }
  5569. struct ggml_tensor * build_inp_s_copy() {
  5570. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5571. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5572. ggml_set_input(lctx.inp_s_copy);
  5573. return lctx.inp_s_copy;
  5574. }
  5575. struct ggml_tensor * build_inp_s_mask() {
  5576. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5577. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5578. ggml_set_input(lctx.inp_s_mask);
  5579. return lctx.inp_s_mask;
  5580. }
  5581. struct ggml_tensor * build_inp_s_seq() {
  5582. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5583. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5584. ggml_set_input(lctx.inp_s_seq);
  5585. return lctx.inp_s_seq;
  5586. }
  5587. struct ggml_cgraph * build_llama() {
  5588. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5589. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5590. int32_t n_tokens = this->n_tokens;
  5591. const int64_t n_embd_head = hparams.n_embd_head_v;
  5592. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5593. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5594. struct ggml_tensor * cur;
  5595. struct ggml_tensor * inpL;
  5596. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5597. // inp_pos - contains the positions
  5598. struct ggml_tensor * inp_pos = build_inp_pos();
  5599. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5600. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5601. for (int il = 0; il < n_layer; ++il) {
  5602. struct ggml_tensor * inpSA = inpL;
  5603. // norm
  5604. cur = llm_build_norm(ctx0, inpL, hparams,
  5605. model.layers[il].attn_norm, NULL,
  5606. LLM_NORM_RMS, cb, il);
  5607. cb(cur, "attn_norm", il);
  5608. // self-attention
  5609. {
  5610. // compute Q and K and RoPE them
  5611. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5612. cb(Qcur, "Qcur", il);
  5613. if (model.layers[il].bq) {
  5614. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5615. cb(Qcur, "Qcur", il);
  5616. }
  5617. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5618. cb(Kcur, "Kcur", il);
  5619. if (model.layers[il].bk) {
  5620. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5621. cb(Kcur, "Kcur", il);
  5622. }
  5623. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5624. cb(Vcur, "Vcur", il);
  5625. if (model.layers[il].bv) {
  5626. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5627. cb(Vcur, "Vcur", il);
  5628. }
  5629. Qcur = ggml_rope_custom(
  5630. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5631. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5632. ext_factor, attn_factor, beta_fast, beta_slow
  5633. );
  5634. cb(Qcur, "Qcur", il);
  5635. Kcur = ggml_rope_custom(
  5636. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5637. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5638. ext_factor, attn_factor, beta_fast, beta_slow
  5639. );
  5640. cb(Kcur, "Kcur", il);
  5641. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5642. model.layers[il].wo, model.layers[il].bo,
  5643. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5644. }
  5645. if (il == n_layer - 1) {
  5646. // skip computing output for unused tokens
  5647. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5648. n_tokens = n_outputs;
  5649. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5650. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5651. }
  5652. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5653. cb(ffn_inp, "ffn_inp", il);
  5654. // feed-forward network
  5655. if (model.layers[il].ffn_gate_inp == nullptr) {
  5656. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5657. model.layers[il].ffn_norm, NULL,
  5658. LLM_NORM_RMS, cb, il);
  5659. cb(cur, "ffn_norm", il);
  5660. cur = llm_build_ffn(ctx0, cur,
  5661. model.layers[il].ffn_up, NULL,
  5662. model.layers[il].ffn_gate, NULL,
  5663. model.layers[il].ffn_down, NULL,
  5664. NULL,
  5665. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5666. cb(cur, "ffn_out", il);
  5667. } else {
  5668. // MoE branch
  5669. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5670. model.layers[il].ffn_norm, NULL,
  5671. LLM_NORM_RMS, cb, il);
  5672. cb(cur, "ffn_norm", il);
  5673. cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
  5674. }
  5675. cur = ggml_add(ctx0, cur, ffn_inp);
  5676. cb(cur, "ffn_out", il);
  5677. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5678. if (layer_dir != nullptr) {
  5679. cur = ggml_add(ctx0, cur, layer_dir);
  5680. }
  5681. cb(cur, "l_out", il);
  5682. // input for next layer
  5683. inpL = cur;
  5684. }
  5685. cur = inpL;
  5686. cur = llm_build_norm(ctx0, cur, hparams,
  5687. model.output_norm, NULL,
  5688. LLM_NORM_RMS, cb, -1);
  5689. cb(cur, "result_norm", -1);
  5690. // lm_head
  5691. cur = ggml_mul_mat(ctx0, model.output, cur);
  5692. cb(cur, "result_output", -1);
  5693. ggml_build_forward_expand(gf, cur);
  5694. return gf;
  5695. }
  5696. // REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505
  5697. ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) {
  5698. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  5699. cb(logits, "ffn_moe_logits", il);
  5700. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  5701. cb(probs, "ffn_moe_probs", il);
  5702. // select experts
  5703. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  5704. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5705. ggml_tensor * weights = ggml_get_rows(ctx0,
  5706. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  5707. cb(weights, "ffn_moe_weights", il);
  5708. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  5709. if (norm_w) {
  5710. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  5711. cb(weights_sum, "ffn_moe_weights_sum", il);
  5712. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  5713. cb(weights, "ffn_moe_weights_norm", il);
  5714. }
  5715. // compute expert outputs
  5716. ggml_tensor * moe_out = nullptr;
  5717. for (int i = 0; i < n_expert_used; ++i) {
  5718. ggml_tensor * cur_expert;
  5719. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
  5720. cb(cur_up, "ffn_moe_up", il);
  5721. ggml_tensor * gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
  5722. cb(gate, "ffn_moe_gate", il);
  5723. switch (type_op) {
  5724. case LLM_FFN_SILU:
  5725. {
  5726. gate = ggml_silu(ctx0, gate);
  5727. cb(gate, "ffn_moe_silu", il);
  5728. } break;
  5729. case LLM_FFN_GELU:
  5730. {
  5731. gate = ggml_gelu(ctx0, gate);
  5732. cb(gate, "ffn_moe_gelu", il);
  5733. } break;
  5734. default:
  5735. GGML_ASSERT(false);
  5736. }
  5737. cur_expert = ggml_mul(ctx0, cur_up, gate);
  5738. cb(cur_expert, "ffn_moe_gate_par", il);
  5739. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  5740. cb(cur_expert, "ffn_moe_down", il);
  5741. cur_expert = ggml_mul(ctx0, cur_expert,
  5742. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  5743. cb(cur_expert, "ffn_moe_weighted", il);
  5744. if (i == 0) {
  5745. moe_out = cur_expert;
  5746. } else {
  5747. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  5748. cb(moe_out, "ffn_moe_out", il);
  5749. }
  5750. }
  5751. return moe_out;
  5752. }
  5753. struct ggml_cgraph * build_baichuan() {
  5754. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5755. const int64_t n_embd_head = hparams.n_embd_head_v;
  5756. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5757. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5758. struct ggml_tensor * cur;
  5759. struct ggml_tensor * inpL;
  5760. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5761. // inp_pos - contains the positions
  5762. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5763. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5764. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5765. // positions of the tokens in the KV cache
  5766. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5767. for (int il = 0; il < n_layer; ++il) {
  5768. struct ggml_tensor * inpSA = inpL;
  5769. cur = llm_build_norm(ctx0, inpL, hparams,
  5770. model.layers[il].attn_norm, NULL,
  5771. LLM_NORM_RMS, cb, il);
  5772. cb(cur, "attn_norm", il);
  5773. // self-attention
  5774. {
  5775. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5776. cb(Qcur, "Qcur", il);
  5777. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5778. cb(Kcur, "Kcur", il);
  5779. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5780. cb(Vcur, "Vcur", il);
  5781. switch (model.type) {
  5782. case MODEL_7B:
  5783. Qcur = ggml_rope_custom(
  5784. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5785. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5786. ext_factor, attn_factor, beta_fast, beta_slow
  5787. );
  5788. Kcur = ggml_rope_custom(
  5789. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5790. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5791. ext_factor, attn_factor, beta_fast, beta_slow
  5792. );
  5793. break;
  5794. case MODEL_13B:
  5795. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5796. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5797. break;
  5798. default:
  5799. GGML_ASSERT(false);
  5800. }
  5801. cb(Qcur, "Qcur", il);
  5802. cb(Kcur, "Kcur", il);
  5803. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5804. model.layers[il].wo, NULL,
  5805. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5806. }
  5807. if (il == n_layer - 1) {
  5808. // skip computing output for unused tokens
  5809. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5810. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5811. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5812. }
  5813. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5814. cb(ffn_inp, "ffn_inp", il);
  5815. // feed-forward network
  5816. {
  5817. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5818. model.layers[il].ffn_norm, NULL,
  5819. LLM_NORM_RMS, cb, il);
  5820. cb(cur, "ffn_norm", il);
  5821. cur = llm_build_ffn(ctx0, cur,
  5822. model.layers[il].ffn_up, NULL,
  5823. model.layers[il].ffn_gate, NULL,
  5824. model.layers[il].ffn_down, NULL,
  5825. NULL,
  5826. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5827. cb(cur, "ffn_out", il);
  5828. }
  5829. cur = ggml_add(ctx0, cur, ffn_inp);
  5830. cb(cur, "l_out", il);
  5831. // input for next layer
  5832. inpL = cur;
  5833. }
  5834. cur = inpL;
  5835. cur = llm_build_norm(ctx0, cur, hparams,
  5836. model.output_norm, NULL,
  5837. LLM_NORM_RMS, cb, -1);
  5838. cb(cur, "result_norm", -1);
  5839. // lm_head
  5840. cur = ggml_mul_mat(ctx0, model.output, cur);
  5841. cb(cur, "result_output", -1);
  5842. ggml_build_forward_expand(gf, cur);
  5843. return gf;
  5844. }
  5845. struct ggml_cgraph * build_xverse() {
  5846. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5847. const int64_t n_embd_head = hparams.n_embd_head_v;
  5848. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5849. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5850. struct ggml_tensor * cur;
  5851. struct ggml_tensor * inpL;
  5852. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5853. // inp_pos - contains the positions
  5854. struct ggml_tensor * inp_pos = build_inp_pos();
  5855. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5856. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5857. // positions of the tokens in the KV cache
  5858. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5859. for (int il = 0; il < n_layer; ++il) {
  5860. struct ggml_tensor * inpSA = inpL;
  5861. cur = llm_build_norm(ctx0, inpL, hparams,
  5862. model.layers[il].attn_norm, NULL,
  5863. LLM_NORM_RMS, cb, il);
  5864. cb(cur, "attn_norm", il);
  5865. // self-attention
  5866. {
  5867. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5868. cb(Qcur, "Qcur", il);
  5869. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5870. cb(Kcur, "Kcur", il);
  5871. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5872. cb(Vcur, "Vcur", il);
  5873. Qcur = ggml_rope_custom(
  5874. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5875. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5876. ext_factor, attn_factor, beta_fast, beta_slow
  5877. );
  5878. cb(Qcur, "Qcur", il);
  5879. Kcur = ggml_rope_custom(
  5880. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5881. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5882. ext_factor, attn_factor, beta_fast, beta_slow
  5883. );
  5884. cb(Kcur, "Kcur", il);
  5885. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5886. model.layers[il].wo, NULL,
  5887. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5888. }
  5889. if (il == n_layer - 1) {
  5890. // skip computing output for unused tokens
  5891. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5892. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5893. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5894. }
  5895. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5896. cb(ffn_inp, "ffn_inp", il);
  5897. // feed-forward network
  5898. {
  5899. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5900. model.layers[il].ffn_norm, NULL,
  5901. LLM_NORM_RMS, cb, il);
  5902. cb(cur, "ffn_norm", il);
  5903. cur = llm_build_ffn(ctx0, cur,
  5904. model.layers[il].ffn_up, NULL,
  5905. model.layers[il].ffn_gate, NULL,
  5906. model.layers[il].ffn_down, NULL,
  5907. NULL,
  5908. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5909. cb(cur, "ffn_out", il);
  5910. }
  5911. cur = ggml_add(ctx0, cur, ffn_inp);
  5912. cb(cur, "l_out", il);
  5913. // input for next layer
  5914. inpL = cur;
  5915. }
  5916. cur = inpL;
  5917. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  5918. cb(cur, "result_norm", -1);
  5919. // lm_head
  5920. cur = ggml_mul_mat(ctx0, model.output, cur);
  5921. cb(cur, "result_output", -1);
  5922. ggml_build_forward_expand(gf, cur);
  5923. return gf;
  5924. }
  5925. struct ggml_cgraph * build_falcon() {
  5926. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5927. const int64_t n_embd_head = hparams.n_embd_head_v;
  5928. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5929. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5930. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5931. struct ggml_tensor * cur;
  5932. struct ggml_tensor * inpL;
  5933. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5934. // inp_pos - contains the positions
  5935. struct ggml_tensor * inp_pos = build_inp_pos();
  5936. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5937. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5938. for (int il = 0; il < n_layer; ++il) {
  5939. struct ggml_tensor * attn_norm;
  5940. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5941. model.layers[il].attn_norm,
  5942. model.layers[il].attn_norm_b,
  5943. LLM_NORM, cb, il);
  5944. cb(attn_norm, "attn_norm", il);
  5945. // self-attention
  5946. {
  5947. if (model.layers[il].attn_norm_2) {
  5948. // Falcon-40B
  5949. cur = llm_build_norm(ctx0, inpL, hparams,
  5950. model.layers[il].attn_norm_2,
  5951. model.layers[il].attn_norm_2_b,
  5952. LLM_NORM, cb, il);
  5953. cb(cur, "attn_norm_2", il);
  5954. } else {
  5955. cur = attn_norm;
  5956. }
  5957. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5958. cb(cur, "wqkv", il);
  5959. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5960. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5961. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5962. cb(Qcur, "Qcur", il);
  5963. cb(Kcur, "Kcur", il);
  5964. cb(Vcur, "Vcur", il);
  5965. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5966. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5967. // using mode = 2 for neox mode
  5968. Qcur = ggml_rope_custom(
  5969. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5970. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5971. );
  5972. cb(Qcur, "Qcur", il);
  5973. Kcur = ggml_rope_custom(
  5974. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5975. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5976. );
  5977. cb(Kcur, "Kcur", il);
  5978. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5979. model.layers[il].wo, NULL,
  5980. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5981. }
  5982. if (il == n_layer - 1) {
  5983. // skip computing output for unused tokens
  5984. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5985. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5986. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5987. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  5988. }
  5989. struct ggml_tensor * ffn_inp = cur;
  5990. // feed forward
  5991. {
  5992. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  5993. model.layers[il].ffn_up, NULL,
  5994. NULL, NULL,
  5995. model.layers[il].ffn_down, NULL,
  5996. NULL,
  5997. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5998. cb(cur, "ffn_out", il);
  5999. }
  6000. cur = ggml_add(ctx0, cur, ffn_inp);
  6001. cb(cur, "l_out", il);
  6002. cur = ggml_add(ctx0, cur, inpL);
  6003. cb(cur, "l_out", il);
  6004. // input for next layer
  6005. inpL = cur;
  6006. }
  6007. cur = inpL;
  6008. // norm
  6009. cur = llm_build_norm(ctx0, cur, hparams,
  6010. model.output_norm,
  6011. model.output_norm_b,
  6012. LLM_NORM, cb, -1);
  6013. cb(cur, "result_norm", -1);
  6014. cur = ggml_mul_mat(ctx0, model.output, cur);
  6015. cb(cur, "result_output", -1);
  6016. ggml_build_forward_expand(gf, cur);
  6017. return gf;
  6018. }
  6019. struct ggml_cgraph * build_grok() {
  6020. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6021. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6022. int32_t n_tokens = this->n_tokens;
  6023. const int64_t n_embd_head = hparams.n_embd_head_v;
  6024. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6025. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6026. struct ggml_tensor * cur;
  6027. struct ggml_tensor * inpL;
  6028. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6029. // multiply by embedding_multiplier_scale of 78.38367176906169
  6030. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6031. // inp_pos - contains the positions
  6032. struct ggml_tensor * inp_pos = build_inp_pos();
  6033. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6034. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6035. for (int il = 0; il < n_layer; ++il) {
  6036. struct ggml_tensor * inpSA = inpL;
  6037. // norm
  6038. cur = llm_build_norm(ctx0, inpL, hparams,
  6039. model.layers[il].attn_norm, NULL,
  6040. LLM_NORM_RMS, cb, il);
  6041. cb(cur, "attn_norm", il);
  6042. // self-attention
  6043. {
  6044. // compute Q and K and RoPE them
  6045. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6046. cb(Qcur, "Qcur", il);
  6047. if (model.layers[il].bq) {
  6048. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6049. cb(Qcur, "Qcur", il);
  6050. }
  6051. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6052. cb(Kcur, "Kcur", il);
  6053. if (model.layers[il].bk) {
  6054. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6055. cb(Kcur, "Kcur", il);
  6056. }
  6057. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6058. cb(Vcur, "Vcur", il);
  6059. if (model.layers[il].bv) {
  6060. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6061. cb(Vcur, "Vcur", il);
  6062. }
  6063. Qcur = ggml_rope_custom(
  6064. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6065. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6066. ext_factor, attn_factor, beta_fast, beta_slow
  6067. );
  6068. cb(Qcur, "Qcur", il);
  6069. Kcur = ggml_rope_custom(
  6070. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6071. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6072. ext_factor, attn_factor, beta_fast, beta_slow
  6073. );
  6074. cb(Kcur, "Kcur", il);
  6075. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6076. model.layers[il].wo, model.layers[il].bo,
  6077. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6078. }
  6079. if (il == n_layer - 1) {
  6080. // skip computing output for unused tokens
  6081. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6082. n_tokens = n_outputs;
  6083. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6084. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6085. }
  6086. // Grok
  6087. // if attn_out_norm is present then apply it before adding the input
  6088. if (model.layers[il].attn_out_norm) {
  6089. cur = llm_build_norm(ctx0, cur, hparams,
  6090. model.layers[il].attn_out_norm, NULL,
  6091. LLM_NORM_RMS, cb, il);
  6092. cb(cur, "attn_out_norm", il);
  6093. }
  6094. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6095. cb(ffn_inp, "ffn_inp", il);
  6096. // feed-forward network
  6097. // MoE branch
  6098. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6099. model.layers[il].ffn_norm, NULL,
  6100. LLM_NORM_RMS, cb, il);
  6101. cb(cur, "ffn_norm", il);
  6102. cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il);
  6103. // Grok
  6104. // if layer_out_norm is present then apply it before adding the input
  6105. // Idea: maybe ffn_out_norm is a better name
  6106. if (model.layers[il].layer_out_norm) {
  6107. cur = llm_build_norm(ctx0, cur, hparams,
  6108. model.layers[il].layer_out_norm, NULL,
  6109. LLM_NORM_RMS, cb, il);
  6110. cb(cur, "layer_out_norm", il);
  6111. }
  6112. cur = ggml_add(ctx0, cur, ffn_inp);
  6113. cb(cur, "ffn_out", il);
  6114. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6115. if (layer_dir != nullptr) {
  6116. cur = ggml_add(ctx0, cur, layer_dir);
  6117. }
  6118. cb(cur, "l_out", il);
  6119. // input for next layer
  6120. inpL = cur;
  6121. }
  6122. cur = inpL;
  6123. cur = llm_build_norm(ctx0, cur, hparams,
  6124. model.output_norm, NULL,
  6125. LLM_NORM_RMS, cb, -1);
  6126. cb(cur, "result_norm", -1);
  6127. // lm_head
  6128. cur = ggml_mul_mat(ctx0, model.output, cur);
  6129. // Grok
  6130. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6131. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6132. cb(cur, "result_output", -1);
  6133. ggml_build_forward_expand(gf, cur);
  6134. return gf;
  6135. }
  6136. struct ggml_cgraph * build_dbrx() {
  6137. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6138. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6139. int32_t n_tokens = this->n_tokens;
  6140. const int64_t n_embd_head = hparams.n_embd_head_v;
  6141. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6142. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6143. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6144. struct ggml_tensor * cur;
  6145. struct ggml_tensor * inpL;
  6146. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6147. // inp_pos - contains the positions
  6148. struct ggml_tensor * inp_pos = build_inp_pos();
  6149. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6150. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6151. for (int il = 0; il < n_layer; ++il) {
  6152. struct ggml_tensor * inpSA = inpL;
  6153. // norm
  6154. cur = llm_build_norm(ctx0, inpL, hparams,
  6155. model.layers[il].attn_norm, NULL,
  6156. LLM_NORM, cb, il);
  6157. cb(cur, "attn_norm", il);
  6158. // self-attention
  6159. {
  6160. struct ggml_tensor * Qcur = nullptr;
  6161. struct ggml_tensor * Kcur = nullptr;
  6162. struct ggml_tensor * Vcur = nullptr;
  6163. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6164. cb(cur, "wqkv", il);
  6165. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6166. cb(cur, "wqkv_clamped", il);
  6167. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6168. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6169. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6170. cb(Qcur, "Qcur", il);
  6171. cb(Kcur, "Kcur", il);
  6172. cb(Vcur, "Vcur", il);
  6173. Qcur = ggml_rope_custom(
  6174. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6175. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6176. ext_factor, attn_factor, beta_fast, beta_slow
  6177. );
  6178. cb(Qcur, "Qcur", il);
  6179. Kcur = ggml_rope_custom(
  6180. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6181. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6182. ext_factor, attn_factor, beta_fast, beta_slow
  6183. );
  6184. cb(Kcur, "Kcur", il);
  6185. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6186. model.layers[il].wo, NULL,
  6187. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6188. }
  6189. if (il == n_layer - 1) {
  6190. // skip computing output for unused tokens
  6191. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6192. n_tokens = n_outputs;
  6193. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6194. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6195. }
  6196. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6197. cb(ffn_inp, "ffn_inp", il);
  6198. // feed-forward network
  6199. // MoE branch
  6200. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6201. model.layers[il].attn_out_norm, NULL,
  6202. LLM_NORM, cb, il);
  6203. cb(cur, "attn_out_norm", il);
  6204. cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
  6205. cur = ggml_add(ctx0, cur, ffn_inp);
  6206. cb(cur, "ffn_out", il);
  6207. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6208. if (layer_dir != nullptr) {
  6209. cur = ggml_add(ctx0, cur, layer_dir);
  6210. }
  6211. cb(cur, "l_out", il);
  6212. // input for next layer
  6213. inpL = cur;
  6214. }
  6215. cur = inpL;
  6216. cur = llm_build_norm(ctx0, cur, hparams,
  6217. model.output_norm, NULL,
  6218. LLM_NORM, cb, -1);
  6219. cb(cur, "result_norm", -1);
  6220. // lm_head
  6221. cur = ggml_mul_mat(ctx0, model.output, cur);
  6222. cb(cur, "result_output", -1);
  6223. ggml_build_forward_expand(gf, cur);
  6224. return gf;
  6225. }
  6226. struct ggml_cgraph * build_starcoder() {
  6227. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6228. const int64_t n_embd_head = hparams.n_embd_head_v;
  6229. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6230. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6231. struct ggml_tensor * cur;
  6232. struct ggml_tensor * inpL;
  6233. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6234. // inp_pos - contains the positions
  6235. struct ggml_tensor * inp_pos = build_inp_pos();
  6236. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6237. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6238. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6239. cb(pos, "pos_embd", -1);
  6240. inpL = ggml_add(ctx0, inpL, pos);
  6241. cb(inpL, "inpL", -1);
  6242. for (int il = 0; il < n_layer; ++il) {
  6243. cur = llm_build_norm(ctx0, inpL, hparams,
  6244. model.layers[il].attn_norm,
  6245. model.layers[il].attn_norm_b,
  6246. LLM_NORM, cb, il);
  6247. cb(cur, "attn_norm", il);
  6248. // self-attention
  6249. {
  6250. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6251. cb(cur, "wqkv", il);
  6252. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6253. cb(cur, "bqkv", il);
  6254. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6255. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6256. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6257. cb(Qcur, "Qcur", il);
  6258. cb(Kcur, "Kcur", il);
  6259. cb(Vcur, "Vcur", il);
  6260. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6261. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6262. model.layers[il].wo, model.layers[il].bo,
  6263. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6264. }
  6265. if (il == n_layer - 1) {
  6266. // skip computing output for unused tokens
  6267. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6268. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6269. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6270. }
  6271. // add the input
  6272. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6273. cb(ffn_inp, "ffn_inp", il);
  6274. // FF
  6275. {
  6276. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6277. model.layers[il].ffn_norm,
  6278. model.layers[il].ffn_norm_b,
  6279. LLM_NORM, cb, il);
  6280. cb(cur, "ffn_norm", il);
  6281. cur = llm_build_ffn(ctx0, cur,
  6282. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6283. NULL, NULL,
  6284. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6285. NULL,
  6286. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6287. cb(cur, "ffn_out", il);
  6288. }
  6289. inpL = ggml_add(ctx0, cur, ffn_inp);
  6290. cb(inpL, "l_out", il);
  6291. }
  6292. cur = llm_build_norm(ctx0, inpL, hparams,
  6293. model.output_norm,
  6294. model.output_norm_b,
  6295. LLM_NORM, cb, -1);
  6296. cb(cur, "result_norm", -1);
  6297. cur = ggml_mul_mat(ctx0, model.output, cur);
  6298. cb(cur, "result_output", -1);
  6299. ggml_build_forward_expand(gf, cur);
  6300. return gf;
  6301. }
  6302. struct ggml_cgraph * build_persimmon() {
  6303. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6304. const int64_t n_embd_head = hparams.n_embd_head_v;
  6305. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6306. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6307. struct ggml_tensor * cur;
  6308. struct ggml_tensor * inpL;
  6309. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6310. // inp_pos - contains the positions
  6311. struct ggml_tensor * inp_pos = build_inp_pos();
  6312. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6313. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6314. for (int il = 0; il < n_layer; ++il) {
  6315. struct ggml_tensor * residual = inpL;
  6316. cur = llm_build_norm(ctx0, inpL, hparams,
  6317. model.layers[il].attn_norm,
  6318. model.layers[il].attn_norm_b,
  6319. LLM_NORM, cb, il);
  6320. cb(cur, "attn_norm", il);
  6321. // self attention
  6322. {
  6323. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6324. cb(cur, "wqkv", il);
  6325. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6326. cb(cur, "bqkv", il);
  6327. // split qkv
  6328. GGML_ASSERT(n_head_kv == n_head);
  6329. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6330. cb(tmpqkv, "tmpqkv", il);
  6331. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6332. cb(tmpqkv_perm, "tmpqkv", il);
  6333. struct ggml_tensor * tmpq = ggml_view_3d(
  6334. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6335. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6336. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6337. 0
  6338. );
  6339. cb(tmpq, "tmpq", il);
  6340. struct ggml_tensor * tmpk = ggml_view_3d(
  6341. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6342. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6343. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6344. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6345. );
  6346. cb(tmpk, "tmpk", il);
  6347. // Q/K Layernorm
  6348. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6349. model.layers[il].attn_q_norm,
  6350. model.layers[il].attn_q_norm_b,
  6351. LLM_NORM, cb, il);
  6352. cb(tmpq, "tmpq", il);
  6353. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6354. model.layers[il].attn_k_norm,
  6355. model.layers[il].attn_k_norm_b,
  6356. LLM_NORM, cb, il);
  6357. cb(tmpk, "tmpk", il);
  6358. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6359. struct ggml_tensor * qrot = ggml_view_3d(
  6360. ctx0, tmpq, n_rot, n_head, n_tokens,
  6361. ggml_element_size(tmpq) * n_embd_head,
  6362. ggml_element_size(tmpq) * n_embd_head * n_head,
  6363. 0
  6364. );
  6365. cb(qrot, "qrot", il);
  6366. struct ggml_tensor * krot = ggml_view_3d(
  6367. ctx0, tmpk, n_rot, n_head, n_tokens,
  6368. ggml_element_size(tmpk) * n_embd_head,
  6369. ggml_element_size(tmpk) * n_embd_head * n_head,
  6370. 0
  6371. );
  6372. cb(krot, "krot", il);
  6373. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6374. struct ggml_tensor * qpass = ggml_view_3d(
  6375. ctx0, tmpq, n_rot, n_head, n_tokens,
  6376. ggml_element_size(tmpq) * n_embd_head,
  6377. ggml_element_size(tmpq) * n_embd_head * n_head,
  6378. ggml_element_size(tmpq) * n_rot
  6379. );
  6380. cb(qpass, "qpass", il);
  6381. struct ggml_tensor * kpass = ggml_view_3d(
  6382. ctx0, tmpk, n_rot, n_head, n_tokens,
  6383. ggml_element_size(tmpk) * n_embd_head,
  6384. ggml_element_size(tmpk) * n_embd_head * n_head,
  6385. ggml_element_size(tmpk) * n_rot
  6386. );
  6387. cb(kpass, "kpass", il);
  6388. struct ggml_tensor * qrotated = ggml_rope_custom(
  6389. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6390. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6391. );
  6392. cb(qrotated, "qrotated", il);
  6393. struct ggml_tensor * krotated = ggml_rope_custom(
  6394. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6395. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6396. );
  6397. cb(krotated, "krotated", il);
  6398. // ggml currently only supports concatenation on dim=2
  6399. // so we need to permute qrot, qpass, concat, then permute back.
  6400. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6401. cb(qrotated, "qrotated", il);
  6402. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6403. cb(krotated, "krotated", il);
  6404. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6405. cb(qpass, "qpass", il);
  6406. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6407. cb(kpass, "kpass", il);
  6408. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6409. cb(Qcur, "Qcur", il);
  6410. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6411. cb(Kcur, "Kcur", il);
  6412. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6413. cb(Q, "Q", il);
  6414. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6415. cb(Kcur, "Kcur", il);
  6416. struct ggml_tensor * Vcur = ggml_view_3d(
  6417. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6418. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6419. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6420. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6421. );
  6422. cb(Vcur, "Vcur", il);
  6423. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6424. model.layers[il].wo, model.layers[il].bo,
  6425. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6426. }
  6427. if (il == n_layer - 1) {
  6428. // skip computing output for unused tokens
  6429. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6430. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6431. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6432. }
  6433. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6434. cb(ffn_inp, "ffn_inp", il);
  6435. // feed-forward network
  6436. {
  6437. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6438. model.layers[il].ffn_norm,
  6439. model.layers[il].ffn_norm_b,
  6440. LLM_NORM, cb, il);
  6441. cb(cur, "ffn_norm", il);
  6442. cur = llm_build_ffn(ctx0, cur,
  6443. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6444. NULL, NULL,
  6445. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6446. NULL,
  6447. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6448. cb(cur, "ffn_out", il);
  6449. }
  6450. cur = ggml_add(ctx0, cur, ffn_inp);
  6451. cb(cur, "l_out", il);
  6452. inpL = cur;
  6453. }
  6454. cur = inpL;
  6455. cur = llm_build_norm(ctx0, cur, hparams,
  6456. model.output_norm,
  6457. model.output_norm_b,
  6458. LLM_NORM, cb, -1);
  6459. cb(cur, "result_norm", -1);
  6460. cur = ggml_mul_mat(ctx0, model.output, cur);
  6461. cb(cur, "result_output", -1);
  6462. ggml_build_forward_expand(gf, cur);
  6463. return gf;
  6464. }
  6465. struct ggml_cgraph * build_refact() {
  6466. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6467. const int64_t n_embd_head = hparams.n_embd_head_v;
  6468. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6469. struct ggml_tensor * cur;
  6470. struct ggml_tensor * inpL;
  6471. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6472. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6473. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6474. // positions of the tokens in the KV cache
  6475. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6476. for (int il = 0; il < n_layer; ++il) {
  6477. struct ggml_tensor * inpSA = inpL;
  6478. cur = llm_build_norm(ctx0, inpL, hparams,
  6479. model.layers[il].attn_norm, NULL,
  6480. LLM_NORM_RMS, cb, il);
  6481. cb(cur, "attn_norm", il);
  6482. // self-attention
  6483. {
  6484. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6485. cb(Qcur, "Qcur", il);
  6486. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6487. cb(Kcur, "Kcur", il);
  6488. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6489. cb(Vcur, "Vcur", il);
  6490. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6491. cb(Kcur, "Kcur", il);
  6492. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6493. cb(Qcur, "Qcur", il);
  6494. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6495. model.layers[il].wo, NULL,
  6496. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6497. }
  6498. if (il == n_layer - 1) {
  6499. // skip computing output for unused tokens
  6500. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6501. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6502. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6503. }
  6504. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6505. cb(ffn_inp, "ffn_inp", il);
  6506. // feed-forward network
  6507. {
  6508. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6509. model.layers[il].ffn_norm, NULL,
  6510. LLM_NORM_RMS, cb, il);
  6511. cb(cur, "ffn_norm", il);
  6512. cur = llm_build_ffn(ctx0, cur,
  6513. model.layers[il].ffn_up, NULL,
  6514. model.layers[il].ffn_gate, NULL,
  6515. model.layers[il].ffn_down, NULL,
  6516. NULL,
  6517. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6518. cb(cur, "ffn_out", il);
  6519. }
  6520. cur = ggml_add(ctx0, cur, ffn_inp);
  6521. cb(cur, "l_out", il);
  6522. // input for next layer
  6523. inpL = cur;
  6524. }
  6525. cur = inpL;
  6526. cur = llm_build_norm(ctx0, cur, hparams,
  6527. model.output_norm, NULL,
  6528. LLM_NORM_RMS, cb, -1);
  6529. cb(cur, "result_norm", -1);
  6530. // lm_head
  6531. cur = ggml_mul_mat(ctx0, model.output, cur);
  6532. cb(cur, "result_output", -1);
  6533. ggml_build_forward_expand(gf, cur);
  6534. return gf;
  6535. }
  6536. struct ggml_cgraph * build_bert() {
  6537. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6538. const int64_t n_embd_head = hparams.n_embd_head_v;
  6539. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6540. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6541. struct ggml_tensor * cur;
  6542. struct ggml_tensor * inpL;
  6543. struct ggml_tensor * inp_pos = build_inp_pos();
  6544. struct ggml_tensor * inp_mean = build_inp_mean();
  6545. struct ggml_tensor * inp_cls = build_inp_cls();
  6546. // construct input embeddings (token, type, position)
  6547. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6548. // token types are hardcoded to zero ("Sentence A")
  6549. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6550. inpL = ggml_add(ctx0, inpL, type_row0);
  6551. if (model.arch == LLM_ARCH_BERT) {
  6552. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6553. }
  6554. cb(inpL, "inp_embd", -1);
  6555. // embed layer norm
  6556. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6557. cb(inpL, "inp_norm", -1);
  6558. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6559. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6560. // iterate layers
  6561. for (int il = 0; il < n_layer; ++il) {
  6562. struct ggml_tensor * cur = inpL;
  6563. struct ggml_tensor * Qcur;
  6564. struct ggml_tensor * Kcur;
  6565. struct ggml_tensor * Vcur;
  6566. // self-attention
  6567. if (model.arch == LLM_ARCH_BERT) {
  6568. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6569. cb(Qcur, "Qcur", il);
  6570. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6571. cb(Kcur, "Kcur", il);
  6572. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6573. cb(Vcur, "Vcur", il);
  6574. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6575. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6576. } else {
  6577. // compute Q and K and RoPE them
  6578. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6579. cb(cur, "wqkv", il);
  6580. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6581. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6582. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6583. cb(Qcur, "Qcur", il);
  6584. cb(Kcur, "Kcur", il);
  6585. cb(Vcur, "Vcur", il);
  6586. Qcur = ggml_rope_custom(
  6587. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6588. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6589. ext_factor, attn_factor, beta_fast, beta_slow
  6590. );
  6591. cb(Qcur, "Qcur", il);
  6592. Kcur = ggml_rope_custom(
  6593. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6594. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6595. ext_factor, attn_factor, beta_fast, beta_slow
  6596. );
  6597. cb(Kcur, "Kcur", il);
  6598. }
  6599. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6600. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6601. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6602. cb(kq, "kq", il);
  6603. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6604. cb(kq, "kq_soft_max_ext", il);
  6605. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6606. cb(v, "v", il);
  6607. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6608. cb(kqv, "kqv", il);
  6609. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6610. cb(kqv_merged, "kqv_merged", il);
  6611. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6612. cb(cur, "kqv_merged_cont", il);
  6613. ggml_build_forward_expand(gf, cur);
  6614. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6615. if (model.layers[il].bo) {
  6616. cb(cur, "kqv_wo", il);
  6617. }
  6618. if (model.layers[il].bo) {
  6619. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6620. }
  6621. cb(cur, "kqv_out", il);
  6622. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6623. // skip computing output for unused tokens
  6624. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6625. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6626. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6627. }
  6628. // re-add the layer input
  6629. cur = ggml_add(ctx0, cur, inpL);
  6630. // attention layer norm
  6631. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6632. struct ggml_tensor * ffn_inp = cur;
  6633. cb(ffn_inp, "ffn_inp", il);
  6634. // feed-forward network
  6635. if (model.arch == LLM_ARCH_BERT) {
  6636. cur = llm_build_ffn(ctx0, cur,
  6637. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6638. NULL, NULL,
  6639. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6640. NULL,
  6641. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6642. } else {
  6643. cur = llm_build_ffn(ctx0, cur,
  6644. model.layers[il].ffn_up, NULL,
  6645. model.layers[il].ffn_gate, NULL,
  6646. model.layers[il].ffn_down, NULL,
  6647. NULL,
  6648. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6649. }
  6650. cb(cur, "ffn_out", il);
  6651. // attentions bypass the intermediate layer
  6652. cur = ggml_add(ctx0, cur, ffn_inp);
  6653. // output layer norm
  6654. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6655. // input for next layer
  6656. inpL = cur;
  6657. }
  6658. // final output
  6659. cur = inpL;
  6660. cb(cur, "result_embd", -1);
  6661. // pooling layer
  6662. switch (pooling_type) {
  6663. case LLAMA_POOLING_TYPE_NONE:
  6664. {
  6665. // nop
  6666. } break;
  6667. case LLAMA_POOLING_TYPE_MEAN:
  6668. {
  6669. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6670. cb(cur, "result_embd_pooled", -1);
  6671. } break;
  6672. case LLAMA_POOLING_TYPE_CLS:
  6673. {
  6674. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6675. cb(cur, "result_embd_pooled", -1);
  6676. } break;
  6677. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6678. {
  6679. GGML_ASSERT(false && "Invalid pooling type");
  6680. } break;
  6681. }
  6682. ggml_build_forward_expand(gf, cur);
  6683. return gf;
  6684. }
  6685. struct ggml_cgraph * build_bloom() {
  6686. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6687. const int64_t n_embd_head = hparams.n_embd_head_v;
  6688. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6689. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6690. struct ggml_tensor * cur;
  6691. struct ggml_tensor * inpL;
  6692. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6693. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6694. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6695. // positions of the tokens in the KV cache
  6696. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6697. inpL = llm_build_norm(ctx0, inpL, hparams,
  6698. model.tok_norm,
  6699. model.tok_norm_b,
  6700. LLM_NORM, cb, -1);
  6701. cb(inpL, "inp_norm", -1);
  6702. for (int il = 0; il < n_layer; ++il) {
  6703. cur = llm_build_norm(ctx0, inpL, hparams,
  6704. model.layers[il].attn_norm,
  6705. model.layers[il].attn_norm_b,
  6706. LLM_NORM, cb, il);
  6707. cb(cur, "attn_norm", il);
  6708. // self-attention
  6709. {
  6710. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6711. cb(cur, "wqkv", il);
  6712. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6713. cb(cur, "bqkv", il);
  6714. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6715. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6716. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6717. cb(Qcur, "Qcur", il);
  6718. cb(Kcur, "Kcur", il);
  6719. cb(Vcur, "Vcur", il);
  6720. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6721. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6722. model.layers[il].wo, model.layers[il].bo,
  6723. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6724. }
  6725. if (il == n_layer - 1) {
  6726. // skip computing output for unused tokens
  6727. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6728. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6729. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6730. }
  6731. // Add the input
  6732. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6733. cb(ffn_inp, "ffn_inp", il);
  6734. // FF
  6735. {
  6736. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6737. model.layers[il].ffn_norm,
  6738. model.layers[il].ffn_norm_b,
  6739. LLM_NORM, cb, il);
  6740. cb(cur, "ffn_norm", il);
  6741. cur = llm_build_ffn(ctx0, cur,
  6742. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6743. NULL, NULL,
  6744. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6745. NULL,
  6746. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6747. cb(cur, "ffn_out", il);
  6748. }
  6749. inpL = ggml_add(ctx0, cur, ffn_inp);
  6750. cb(inpL, "l_out", il);
  6751. }
  6752. cur = llm_build_norm(ctx0, inpL, hparams,
  6753. model.output_norm,
  6754. model.output_norm_b,
  6755. LLM_NORM, cb, -1);
  6756. cb(cur, "result_norm", -1);
  6757. cur = ggml_mul_mat(ctx0, model.output, cur);
  6758. cb(cur, "result_output", -1);
  6759. ggml_build_forward_expand(gf, cur);
  6760. return gf;
  6761. }
  6762. struct ggml_cgraph * build_mpt() {
  6763. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6764. const int64_t n_embd_head = hparams.n_embd_head_v;
  6765. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6766. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6767. struct ggml_tensor * cur;
  6768. struct ggml_tensor * pos;
  6769. struct ggml_tensor * inpL;
  6770. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6771. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6772. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6773. // positions of the tokens in the KV cache
  6774. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6775. if (model.pos_embd) {
  6776. // inp_pos - contains the positions
  6777. struct ggml_tensor * inp_pos = build_inp_pos();
  6778. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6779. cb(pos, "pos_embd", -1);
  6780. inpL = ggml_add(ctx0, inpL, pos);
  6781. cb(inpL, "inpL", -1);
  6782. }
  6783. for (int il = 0; il < n_layer; ++il) {
  6784. struct ggml_tensor * attn_norm;
  6785. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6786. model.layers[il].attn_norm,
  6787. model.layers[il].attn_norm_b,
  6788. LLM_NORM, cb, il);
  6789. cb(attn_norm, "attn_norm", il);
  6790. // self-attention
  6791. {
  6792. cur = attn_norm;
  6793. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6794. cb(cur, "wqkv", il);
  6795. if (model.layers[il].bqkv){
  6796. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6797. cb(cur, "bqkv", il);
  6798. }
  6799. if (hparams.f_clamp_kqv > 0.0f) {
  6800. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6801. cb(cur, "wqkv_clamped", il);
  6802. }
  6803. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6804. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6805. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6806. cb(Qcur, "Qcur", il);
  6807. cb(Kcur, "Kcur", il);
  6808. cb(Vcur, "Vcur", il);
  6809. // Q/K Layernorm
  6810. if (model.layers[il].attn_q_norm) {
  6811. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6812. model.layers[il].attn_q_norm,
  6813. model.layers[il].attn_q_norm_b,
  6814. LLM_NORM, cb, il);
  6815. cb(Qcur, "Qcur", il);
  6816. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6817. model.layers[il].attn_k_norm,
  6818. model.layers[il].attn_k_norm_b,
  6819. LLM_NORM, cb, il);
  6820. cb(Kcur, "Kcur", il);
  6821. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6822. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6823. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6824. model.layers[il].wo, model.layers[il].bo,
  6825. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6826. } else {
  6827. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6828. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6829. model.layers[il].wo, model.layers[il].bo,
  6830. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6831. }
  6832. }
  6833. if (il == n_layer - 1) {
  6834. // skip computing output for unused tokens
  6835. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6836. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6837. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6838. }
  6839. // Add the input
  6840. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6841. cb(ffn_inp, "ffn_inp", il);
  6842. // feed forward
  6843. {
  6844. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6845. model.layers[il].ffn_norm,
  6846. model.layers[il].ffn_norm_b,
  6847. LLM_NORM, cb, il);
  6848. cb(cur, "ffn_norm", il);
  6849. cur = llm_build_ffn(ctx0, cur,
  6850. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6851. NULL, NULL,
  6852. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6853. model.layers[il].ffn_act,
  6854. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6855. cb(cur, "ffn_out", il);
  6856. }
  6857. cur = ggml_add(ctx0, cur, ffn_inp);
  6858. cb(cur, "l_out", il);
  6859. // input for next layer
  6860. inpL = cur;
  6861. }
  6862. cur = inpL;
  6863. cur = llm_build_norm(ctx0, cur, hparams,
  6864. model.output_norm,
  6865. model.output_norm_b,
  6866. LLM_NORM, cb, -1);
  6867. cb(cur, "result_norm", -1);
  6868. cur = ggml_mul_mat(ctx0, model.output, cur);
  6869. cb(cur, "result_output", -1);
  6870. ggml_build_forward_expand(gf, cur);
  6871. return gf;
  6872. }
  6873. struct ggml_cgraph * build_stablelm() {
  6874. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6875. const int64_t n_embd_head = hparams.n_embd_head_v;
  6876. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6877. struct ggml_tensor * cur;
  6878. struct ggml_tensor * inpL;
  6879. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6880. // inp_pos - contains the positions
  6881. struct ggml_tensor * inp_pos = build_inp_pos();
  6882. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6883. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6884. for (int il = 0; il < n_layer; ++il) {
  6885. // norm
  6886. cur = llm_build_norm(ctx0, inpL, hparams,
  6887. model.layers[il].attn_norm,
  6888. model.layers[il].attn_norm_b,
  6889. LLM_NORM, cb, il);
  6890. cb(cur, "attn_norm", il);
  6891. struct ggml_tensor * inpSA = cur;
  6892. // self-attention
  6893. {
  6894. // compute Q and K and RoPE them
  6895. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6896. cb(Qcur, "Qcur", il);
  6897. if (model.layers[il].bq) {
  6898. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6899. cb(Qcur, "Qcur", il);
  6900. }
  6901. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6902. cb(Kcur, "Kcur", il);
  6903. if (model.layers[il].bk) {
  6904. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6905. cb(Kcur, "Kcur", il);
  6906. }
  6907. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6908. cb(Vcur, "Vcur", il);
  6909. if (model.layers[il].bv) {
  6910. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6911. cb(Vcur, "Vcur", il);
  6912. }
  6913. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6914. cb(Qcur, "Qcur", il);
  6915. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6916. cb(Kcur, "Kcur", il);
  6917. if (model.layers[il].attn_q_norm) {
  6918. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6919. model.layers[il].attn_q_norm,
  6920. NULL,
  6921. LLM_NORM, cb, il);
  6922. cb(Qcur, "Qcur", il);
  6923. }
  6924. if (model.layers[il].attn_k_norm) {
  6925. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6926. model.layers[il].attn_k_norm,
  6927. NULL,
  6928. LLM_NORM, cb, il);
  6929. cb(Kcur, "Kcur", il);
  6930. }
  6931. Qcur = ggml_rope_custom(
  6932. ctx0, Qcur, inp_pos,
  6933. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6934. ext_factor, attn_factor, beta_fast, beta_slow
  6935. );
  6936. cb(Qcur, "Qcur", il);
  6937. Kcur = ggml_rope_custom(
  6938. ctx0, Kcur, inp_pos,
  6939. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6940. ext_factor, attn_factor, beta_fast, beta_slow
  6941. );
  6942. cb(Kcur, "Kcur", il);
  6943. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6944. model.layers[il].wo, NULL,
  6945. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6946. }
  6947. if (il == n_layer - 1) {
  6948. // skip computing output for unused tokens
  6949. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6950. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6951. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6952. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6953. }
  6954. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6955. cb(ffn_inp, "ffn_inp", il);
  6956. // feed-forward network
  6957. {
  6958. if (model.layers[il].ffn_norm) {
  6959. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6960. model.layers[il].ffn_norm,
  6961. model.layers[il].ffn_norm_b,
  6962. LLM_NORM, cb, il);
  6963. cb(cur, "ffn_norm", il);
  6964. } else {
  6965. // parallel residual
  6966. cur = inpSA;
  6967. }
  6968. cur = llm_build_ffn(ctx0, cur,
  6969. model.layers[il].ffn_up, NULL,
  6970. model.layers[il].ffn_gate, NULL,
  6971. model.layers[il].ffn_down, NULL,
  6972. NULL,
  6973. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6974. cb(cur, "ffn_out", il);
  6975. }
  6976. cur = ggml_add(ctx0, cur, ffn_inp);
  6977. cb(cur, "l_out", il);
  6978. // input for next layer
  6979. inpL = cur;
  6980. }
  6981. cur = inpL;
  6982. cur = llm_build_norm(ctx0, cur, hparams,
  6983. model.output_norm,
  6984. model.output_norm_b,
  6985. LLM_NORM, cb, -1);
  6986. cb(cur, "result_norm", -1);
  6987. // lm_head
  6988. cur = ggml_mul_mat(ctx0, model.output, cur);
  6989. cb(cur, "result_output", -1);
  6990. ggml_build_forward_expand(gf, cur);
  6991. return gf;
  6992. }
  6993. struct ggml_cgraph * build_qwen() {
  6994. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6995. const int64_t n_embd_head = hparams.n_embd_head_v;
  6996. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6997. struct ggml_tensor * cur;
  6998. struct ggml_tensor * inpL;
  6999. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7000. // inp_pos - contains the positions
  7001. struct ggml_tensor * inp_pos = build_inp_pos();
  7002. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7003. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7004. for (int il = 0; il < n_layer; ++il) {
  7005. struct ggml_tensor * inpSA = inpL;
  7006. cur = llm_build_norm(ctx0, inpL, hparams,
  7007. model.layers[il].attn_norm, NULL,
  7008. LLM_NORM_RMS, cb, il);
  7009. cb(cur, "attn_norm", il);
  7010. // self-attention
  7011. {
  7012. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7013. cb(cur, "wqkv", il);
  7014. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7015. cb(cur, "bqkv", il);
  7016. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7017. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7018. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7019. cb(Qcur, "Qcur", il);
  7020. cb(Kcur, "Kcur", il);
  7021. cb(Vcur, "Vcur", il);
  7022. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7023. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7024. // using mode = 2 for neox mode
  7025. Qcur = ggml_rope_custom(
  7026. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7027. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7028. );
  7029. cb(Qcur, "Qcur", il);
  7030. Kcur = ggml_rope_custom(
  7031. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7032. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7033. );
  7034. cb(Kcur, "Kcur", il);
  7035. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7036. model.layers[il].wo, NULL,
  7037. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7038. }
  7039. if (il == n_layer - 1) {
  7040. // skip computing output for unused tokens
  7041. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7042. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7043. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7044. }
  7045. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7046. cb(ffn_inp, "ffn_inp", il);
  7047. // feed-forward forward
  7048. {
  7049. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7050. model.layers[il].ffn_norm, NULL,
  7051. LLM_NORM_RMS, cb, il);
  7052. cb(cur, "ffn_norm", il);
  7053. cur = llm_build_ffn(ctx0, cur,
  7054. model.layers[il].ffn_up, NULL,
  7055. model.layers[il].ffn_gate, NULL,
  7056. model.layers[il].ffn_down, NULL,
  7057. NULL,
  7058. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7059. cb(cur, "ffn_out", il);
  7060. }
  7061. cur = ggml_add(ctx0, cur, ffn_inp);
  7062. cb(cur, "l_out", il);
  7063. // input for next layer
  7064. inpL = cur;
  7065. }
  7066. cur = inpL;
  7067. cur = llm_build_norm(ctx0, cur, hparams,
  7068. model.output_norm, NULL,
  7069. LLM_NORM_RMS, cb, -1);
  7070. cb(cur, "result_norm", -1);
  7071. // lm_head
  7072. cur = ggml_mul_mat(ctx0, model.output, cur);
  7073. cb(cur, "result_output", -1);
  7074. ggml_build_forward_expand(gf, cur);
  7075. return gf;
  7076. }
  7077. struct ggml_cgraph * build_qwen2() {
  7078. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7079. const int64_t n_embd_head = hparams.n_embd_head_v;
  7080. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7081. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7082. struct ggml_tensor * cur;
  7083. struct ggml_tensor * inpL;
  7084. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7085. // inp_pos - contains the positions
  7086. struct ggml_tensor * inp_pos = build_inp_pos();
  7087. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7088. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7089. for (int il = 0; il < n_layer; ++il) {
  7090. struct ggml_tensor * inpSA = inpL;
  7091. // norm
  7092. cur = llm_build_norm(ctx0, inpL, hparams,
  7093. model.layers[il].attn_norm, NULL,
  7094. LLM_NORM_RMS, cb, il);
  7095. cb(cur, "attn_norm", il);
  7096. // self-attention
  7097. {
  7098. // compute Q and K and RoPE them
  7099. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7100. cb(Qcur, "Qcur", il);
  7101. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7102. cb(Qcur, "Qcur", il);
  7103. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7104. cb(Kcur, "Kcur", il);
  7105. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7106. cb(Kcur, "Kcur", il);
  7107. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7108. cb(Vcur, "Vcur", il);
  7109. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7110. cb(Vcur, "Vcur", il);
  7111. // these nodes are added to the graph together so that they are not reordered
  7112. // by doing so, the number of splits in the graph is reduced
  7113. ggml_build_forward_expand(gf, Qcur);
  7114. ggml_build_forward_expand(gf, Kcur);
  7115. ggml_build_forward_expand(gf, Vcur);
  7116. Qcur = ggml_rope_custom(
  7117. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7118. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7119. ext_factor, attn_factor, beta_fast, beta_slow
  7120. );
  7121. cb(Qcur, "Qcur", il);
  7122. Kcur = ggml_rope_custom(
  7123. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7124. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7125. ext_factor, attn_factor, beta_fast, beta_slow
  7126. );
  7127. cb(Kcur, "Kcur", il);
  7128. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7129. model.layers[il].wo, model.layers[il].bo,
  7130. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7131. }
  7132. if (il == n_layer - 1) {
  7133. // skip computing output for unused tokens
  7134. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7135. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7136. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7137. }
  7138. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7139. cb(ffn_inp, "ffn_inp", il);
  7140. // feed-forward network
  7141. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7142. model.layers[il].ffn_norm, NULL,
  7143. LLM_NORM_RMS, cb, il);
  7144. cb(cur, "ffn_norm", il);
  7145. cur = llm_build_ffn(ctx0, cur,
  7146. model.layers[il].ffn_up, NULL,
  7147. model.layers[il].ffn_gate, NULL,
  7148. model.layers[il].ffn_down, NULL,
  7149. NULL,
  7150. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7151. cb(cur, "ffn_out", il);
  7152. cur = ggml_add(ctx0, cur, ffn_inp);
  7153. cb(cur, "l_out", il);
  7154. // input for next layer
  7155. inpL = cur;
  7156. }
  7157. cur = inpL;
  7158. cur = llm_build_norm(ctx0, cur, hparams,
  7159. model.output_norm, NULL,
  7160. LLM_NORM_RMS, cb, -1);
  7161. cb(cur, "result_norm", -1);
  7162. // lm_head
  7163. cur = ggml_mul_mat(ctx0, model.output, cur);
  7164. cb(cur, "result_output", -1);
  7165. ggml_build_forward_expand(gf, cur);
  7166. return gf;
  7167. }
  7168. struct ggml_cgraph * build_qwen2moe() {
  7169. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7170. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7171. int32_t n_tokens = this->n_tokens;
  7172. const int64_t n_embd_head = hparams.n_embd_head_v;
  7173. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7174. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7175. struct ggml_tensor * cur;
  7176. struct ggml_tensor * inpL;
  7177. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7178. // inp_pos - contains the positions
  7179. struct ggml_tensor * inp_pos = build_inp_pos();
  7180. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7181. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7182. for (int il = 0; il < n_layer; ++il) {
  7183. struct ggml_tensor * inpSA = inpL;
  7184. // norm
  7185. cur = llm_build_norm(ctx0, inpL, hparams,
  7186. model.layers[il].attn_norm, NULL,
  7187. LLM_NORM_RMS, cb, il);
  7188. cb(cur, "attn_norm", il);
  7189. // self_attention
  7190. {
  7191. // compute Q and K and RoPE them
  7192. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7193. cb(Qcur, "Qcur", il);
  7194. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7195. cb(Qcur, "Qcur", il);
  7196. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7197. cb(Kcur, "Kcur", il);
  7198. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7199. cb(Kcur, "Kcur", il);
  7200. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7201. cb(Vcur, "Vcur", il);
  7202. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7203. cb(Vcur, "Vcur", il);
  7204. Qcur = ggml_rope_custom(
  7205. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7206. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7207. ext_factor, attn_factor, beta_fast, beta_slow
  7208. );
  7209. cb(Qcur, "Qcur", il);
  7210. Kcur = ggml_rope_custom(
  7211. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7212. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7213. ext_factor, attn_factor, beta_fast, beta_slow
  7214. );
  7215. cb(Kcur, "Kcur", il);
  7216. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7217. model.layers[il].wo, model.layers[il].bo,
  7218. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7219. }
  7220. if (il == n_layer - 1) {
  7221. // skip computing output for unused tokens
  7222. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7223. n_tokens = n_outputs;
  7224. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7225. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7226. }
  7227. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7228. cb(ffn_inp, "ffn_inp", il);
  7229. // MoE branch
  7230. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7231. model.layers[il].ffn_norm, NULL,
  7232. LLM_NORM_RMS, cb, il);
  7233. cb(cur, "ffn_norm", il);
  7234. ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il);
  7235. // FFN shared expert
  7236. {
  7237. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7238. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7239. // sigmoid
  7240. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7241. cb(cur_gate, "ffn_shexp_gate", il);
  7242. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7243. model.layers[il].ffn_up_shexp, NULL,
  7244. model.layers[il].ffn_gate_shexp, NULL,
  7245. model.layers[il].ffn_down_shexp, NULL,
  7246. NULL,
  7247. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7248. cb(cur_ffn, "ffn_shexp", il);
  7249. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7250. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7251. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7252. cb(moe_out, "ffn_out", il);
  7253. cur = moe_out;
  7254. }
  7255. cur = ggml_add(ctx0, cur, ffn_inp);
  7256. cb(cur, "l_out", il);
  7257. // input for next layer
  7258. inpL = cur;
  7259. }
  7260. cur = inpL;
  7261. cur = llm_build_norm(ctx0, cur, hparams,
  7262. model.output_norm, NULL,
  7263. LLM_NORM_RMS, cb, -1);
  7264. cb(cur, "result_norm", -1);
  7265. // lm_head
  7266. cur = ggml_mul_mat(ctx0, model.output, cur);
  7267. cb(cur, "result_output", -1);
  7268. ggml_build_forward_expand(gf, cur);
  7269. return gf;
  7270. }
  7271. struct ggml_cgraph * build_phi2() {
  7272. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7273. const int64_t n_embd_head = hparams.n_embd_head_v;
  7274. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7275. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7276. struct ggml_tensor * cur;
  7277. struct ggml_tensor * attn_norm_output;
  7278. struct ggml_tensor * ffn_output;
  7279. struct ggml_tensor * inpL;
  7280. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7281. // inp_pos - contains the positions
  7282. struct ggml_tensor * inp_pos = build_inp_pos();
  7283. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7284. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7285. for (int il = 0; il < n_layer; ++il) {
  7286. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7287. model.layers[il].attn_norm,
  7288. model.layers[il].attn_norm_b,
  7289. LLM_NORM, cb, il);
  7290. cb(attn_norm_output, "attn_norm", il);
  7291. // self-attention
  7292. {
  7293. struct ggml_tensor * Qcur = nullptr;
  7294. struct ggml_tensor * Kcur = nullptr;
  7295. struct ggml_tensor * Vcur = nullptr;
  7296. if (model.layers[il].wqkv) {
  7297. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7298. cb(cur, "wqkv", il);
  7299. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7300. cb(cur, "bqkv", il);
  7301. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7302. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7303. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7304. } else {
  7305. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7306. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7307. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7308. }
  7309. cb(Qcur, "Qcur", il);
  7310. cb(Kcur, "Kcur", il);
  7311. cb(Vcur, "Vcur", il);
  7312. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7313. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7314. Qcur = ggml_rope_custom(
  7315. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7316. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7317. );
  7318. cb(Qcur, "Qcur", il);
  7319. // with phi2, we scale the Q to avoid precision issues
  7320. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7321. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7322. cb(Qcur, "Qcur", il);
  7323. Kcur = ggml_rope_custom(
  7324. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7325. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7326. );
  7327. cb(Kcur, "Kcur", il);
  7328. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7329. model.layers[il].wo, model.layers[il].bo,
  7330. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7331. }
  7332. if (il == n_layer - 1) {
  7333. // skip computing output for unused tokens
  7334. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7335. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7336. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7337. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7338. }
  7339. // FF
  7340. {
  7341. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7342. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7343. NULL, NULL,
  7344. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7345. NULL,
  7346. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7347. cb(ffn_output, "ffn_out", il);
  7348. }
  7349. cur = ggml_add(ctx0, cur, ffn_output);
  7350. cb(cur, "l_out", il);
  7351. cur = ggml_add(ctx0, cur, inpL);
  7352. cb(cur, "l_out", il);
  7353. inpL = cur;
  7354. }
  7355. cur = llm_build_norm(ctx0, inpL, hparams,
  7356. model.output_norm,
  7357. model.output_norm_b,
  7358. LLM_NORM, cb, -1);
  7359. cb(cur, "result_norm", -1);
  7360. cur = ggml_mul_mat(ctx0, model.output, cur);
  7361. cb(cur, "result_output_no_bias", -1);
  7362. cur = ggml_add(ctx0, cur, model.output_b);
  7363. cb(cur, "result_output", -1);
  7364. ggml_build_forward_expand(gf, cur);
  7365. return gf;
  7366. }
  7367. struct ggml_cgraph * build_plamo() {
  7368. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7369. const int64_t n_embd_head = hparams.n_embd_head_v;
  7370. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7371. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7372. struct ggml_tensor * cur;
  7373. struct ggml_tensor * inpL;
  7374. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7375. // inp_pos - contains the positions
  7376. struct ggml_tensor * inp_pos = build_inp_pos();
  7377. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7378. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7379. for (int il = 0; il < n_layer; ++il) {
  7380. // norm
  7381. cur = llm_build_norm(ctx0, inpL, hparams,
  7382. model.layers[il].attn_norm, NULL,
  7383. LLM_NORM_RMS, cb, il);
  7384. cb(cur, "attn_norm", il);
  7385. struct ggml_tensor * attention_norm = cur;
  7386. // self-attention
  7387. {
  7388. // compute Q and K and RoPE them
  7389. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7390. cb(Qcur, "Qcur", il);
  7391. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7392. cb(Kcur, "Kcur", il);
  7393. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7394. cb(Vcur, "Vcur", il);
  7395. Qcur = ggml_rope_custom(
  7396. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7397. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7398. ext_factor, attn_factor, beta_fast, beta_slow);
  7399. cb(Qcur, "Qcur", il);
  7400. Kcur = ggml_rope_custom(
  7401. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7402. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7403. ext_factor, attn_factor, beta_fast, beta_slow);
  7404. cb(Kcur, "Kcur", il);
  7405. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7406. model.layers[il].wo, NULL,
  7407. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7408. }
  7409. struct ggml_tensor * sa_out = cur;
  7410. cur = attention_norm;
  7411. if (il == n_layer - 1) {
  7412. // skip computing output for unused tokens
  7413. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7414. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7415. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7416. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7417. }
  7418. // feed-forward network
  7419. {
  7420. cur = llm_build_ffn(ctx0, cur,
  7421. model.layers[il].ffn_up, NULL,
  7422. model.layers[il].ffn_gate, NULL,
  7423. model.layers[il].ffn_down, NULL,
  7424. NULL,
  7425. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7426. cb(cur, "ffn_out", il);
  7427. }
  7428. cur = ggml_add(ctx0, cur, sa_out);
  7429. cb(cur, "l_out", il);
  7430. cur = ggml_add(ctx0, cur, inpL);
  7431. cb(cur, "l_out", il);
  7432. // input for next layer
  7433. inpL = cur;
  7434. }
  7435. cur = inpL;
  7436. cur = llm_build_norm(ctx0, cur, hparams,
  7437. model.output_norm, NULL,
  7438. LLM_NORM_RMS, cb, -1);
  7439. cb(cur, "result_norm", -1);
  7440. // lm_head
  7441. cur = ggml_mul_mat(ctx0, model.output, cur);
  7442. cb(cur, "result_output", -1);
  7443. ggml_build_forward_expand(gf, cur);
  7444. return gf;
  7445. }
  7446. struct ggml_cgraph * build_gpt2() {
  7447. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7448. const int64_t n_embd_head = hparams.n_embd_head_v;
  7449. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7450. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7451. struct ggml_tensor * cur;
  7452. struct ggml_tensor * pos;
  7453. struct ggml_tensor * inpL;
  7454. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7455. // inp_pos - contains the positions
  7456. struct ggml_tensor * inp_pos = build_inp_pos();
  7457. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7458. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7459. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7460. cb(pos, "pos_embd", -1);
  7461. inpL = ggml_add(ctx0, inpL, pos);
  7462. cb(inpL, "inpL", -1);
  7463. for (int il = 0; il < n_layer; ++il) {
  7464. cur = llm_build_norm(ctx0, inpL, hparams,
  7465. model.layers[il].attn_norm,
  7466. model.layers[il].attn_norm_b,
  7467. LLM_NORM, cb, il);
  7468. cb(cur, "attn_norm", il);
  7469. // self-attention
  7470. {
  7471. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7472. cb(cur, "wqkv", il);
  7473. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7474. cb(cur, "bqkv", il);
  7475. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7476. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7477. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7478. cb(Qcur, "Qcur", il);
  7479. cb(Kcur, "Kcur", il);
  7480. cb(Vcur, "Vcur", il);
  7481. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7482. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7483. model.layers[il].wo, model.layers[il].bo,
  7484. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7485. }
  7486. if (il == n_layer - 1) {
  7487. // skip computing output for unused tokens
  7488. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7489. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7490. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7491. }
  7492. // add the input
  7493. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7494. cb(ffn_inp, "ffn_inp", il);
  7495. // FF
  7496. {
  7497. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7498. model.layers[il].ffn_norm,
  7499. model.layers[il].ffn_norm_b,
  7500. LLM_NORM, cb, il);
  7501. cb(cur, "ffn_norm", il);
  7502. cur = llm_build_ffn(ctx0, cur,
  7503. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7504. NULL, NULL,
  7505. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7506. NULL,
  7507. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7508. cb(cur, "ffn_out", il);
  7509. }
  7510. inpL = ggml_add(ctx0, cur, ffn_inp);
  7511. cb(inpL, "l_out", il);
  7512. }
  7513. cur = llm_build_norm(ctx0, inpL, hparams,
  7514. model.output_norm,
  7515. model.output_norm_b,
  7516. LLM_NORM, cb, -1);
  7517. cb(cur, "result_norm", -1);
  7518. cur = ggml_mul_mat(ctx0, model.output, cur);
  7519. cb(cur, "result_output", -1);
  7520. ggml_build_forward_expand(gf, cur);
  7521. return gf;
  7522. }
  7523. struct ggml_cgraph * build_codeshell() {
  7524. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7525. const int64_t n_embd_head = hparams.n_embd_head_v;
  7526. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7527. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7528. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7529. struct ggml_tensor * cur;
  7530. struct ggml_tensor * inpL;
  7531. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7532. // inp_pos - contains the positions
  7533. struct ggml_tensor * inp_pos = build_inp_pos();
  7534. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7535. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7536. for (int il = 0; il < n_layer; ++il) {
  7537. cur = llm_build_norm(ctx0, inpL, hparams,
  7538. model.layers[il].attn_norm,
  7539. model.layers[il].attn_norm_b,
  7540. LLM_NORM, cb, il);
  7541. cb(cur, "attn_norm", il);
  7542. // self-attention
  7543. {
  7544. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7545. cb(cur, "wqkv", il);
  7546. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7547. cb(cur, "bqkv", il);
  7548. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7549. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7550. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7551. cb(tmpq, "tmpq", il);
  7552. cb(tmpk, "tmpk", il);
  7553. cb(Vcur, "Vcur", il);
  7554. struct ggml_tensor * Qcur = ggml_rope_custom(
  7555. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7556. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7557. ext_factor, attn_factor, beta_fast, beta_slow
  7558. );
  7559. cb(Qcur, "Qcur", il);
  7560. struct ggml_tensor * Kcur = ggml_rope_custom(
  7561. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7562. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7563. ext_factor, attn_factor, beta_fast, beta_slow
  7564. );
  7565. cb(Kcur, "Kcur", il);
  7566. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7567. model.layers[il].wo, model.layers[il].bo,
  7568. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7569. }
  7570. if (il == n_layer - 1) {
  7571. // skip computing output for unused tokens
  7572. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7573. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7574. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7575. }
  7576. // add the input
  7577. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7578. cb(ffn_inp, "ffn_inp", il);
  7579. // FF
  7580. {
  7581. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7582. model.layers[il].ffn_norm,
  7583. model.layers[il].ffn_norm_b,
  7584. LLM_NORM, cb, il);
  7585. cb(cur, "ffn_norm", il);
  7586. cur = llm_build_ffn(ctx0, cur,
  7587. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7588. NULL, NULL,
  7589. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7590. NULL,
  7591. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7592. cb(cur, "ffn_out", il);
  7593. }
  7594. inpL = ggml_add(ctx0, cur, ffn_inp);
  7595. cb(inpL, "l_out", il);
  7596. }
  7597. cur = llm_build_norm(ctx0, inpL, hparams,
  7598. model.output_norm,
  7599. model.output_norm_b,
  7600. LLM_NORM, cb, -1);
  7601. cb(cur, "result_norm", -1);
  7602. cur = ggml_mul_mat(ctx0, model.output, cur);
  7603. cb(cur, "result_output", -1);
  7604. ggml_build_forward_expand(gf, cur);
  7605. return gf;
  7606. }
  7607. struct ggml_cgraph * build_orion() {
  7608. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7609. const int64_t n_embd_head = hparams.n_embd_head_v;
  7610. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7611. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7612. struct ggml_tensor * cur;
  7613. struct ggml_tensor * inpL;
  7614. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7615. // inp_pos - contains the positions
  7616. struct ggml_tensor * inp_pos = build_inp_pos();
  7617. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7618. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7619. for (int il = 0; il < n_layer; ++il) {
  7620. struct ggml_tensor * inpSA = inpL;
  7621. // norm
  7622. cur = llm_build_norm(ctx0, inpL, hparams,
  7623. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7624. LLM_NORM, cb, il);
  7625. cb(cur, "attn_norm", il);
  7626. // self-attention
  7627. {
  7628. // compute Q and K and RoPE them
  7629. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7630. cb(Qcur, "Qcur", il);
  7631. // if (model.layers[il].bq) {
  7632. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7633. // cb(Qcur, "Qcur", il);
  7634. // }
  7635. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7636. cb(Kcur, "Kcur", il);
  7637. // if (model.layers[il].bk) {
  7638. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7639. // cb(Kcur, "Kcur", il);
  7640. // }
  7641. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7642. cb(Vcur, "Vcur", il);
  7643. // if (model.layers[il].bv) {
  7644. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7645. // cb(Vcur, "Vcur", il);
  7646. // }
  7647. Qcur = ggml_rope_custom(
  7648. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7649. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7650. ext_factor, attn_factor, beta_fast, beta_slow
  7651. );
  7652. cb(Qcur, "Qcur", il);
  7653. Kcur = ggml_rope_custom(
  7654. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7655. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7656. ext_factor, attn_factor, beta_fast, beta_slow
  7657. );
  7658. cb(Kcur, "Kcur", il);
  7659. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7660. model.layers[il].wo, NULL,
  7661. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7662. }
  7663. if (il == n_layer - 1) {
  7664. // skip computing output for unused tokens
  7665. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7666. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7667. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7668. }
  7669. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7670. cb(ffn_inp, "ffn_inp", il);
  7671. // feed-forward network
  7672. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7673. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7674. LLM_NORM, cb, il);
  7675. cb(cur, "ffn_norm", il);
  7676. cur = llm_build_ffn(ctx0, cur,
  7677. model.layers[il].ffn_up, NULL,
  7678. model.layers[il].ffn_gate, NULL,
  7679. model.layers[il].ffn_down, NULL,
  7680. NULL,
  7681. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7682. cb(cur, "ffn_out", il);
  7683. cur = ggml_add(ctx0, cur, ffn_inp);
  7684. cb(cur, "l_out", il);
  7685. // input for next layer
  7686. inpL = cur;
  7687. }
  7688. cur = inpL;
  7689. cur = llm_build_norm(ctx0, cur, hparams,
  7690. model.output_norm, model.output_norm_b,
  7691. LLM_NORM, cb, -1);
  7692. cb(cur, "result_norm", -1);
  7693. // lm_head
  7694. cur = ggml_mul_mat(ctx0, model.output, cur);
  7695. cb(cur, "result_output", -1);
  7696. ggml_build_forward_expand(gf, cur);
  7697. return gf;
  7698. }
  7699. struct ggml_cgraph * build_internlm2() {
  7700. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7701. const int64_t n_embd_head = hparams.n_embd_head_v;
  7702. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7703. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7704. struct ggml_tensor * cur;
  7705. struct ggml_tensor * inpL;
  7706. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7707. // inp_pos - contains the positions
  7708. struct ggml_tensor * inp_pos = build_inp_pos();
  7709. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7710. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7711. for (int il = 0; il < n_layer; ++il) {
  7712. struct ggml_tensor * inpSA = inpL;
  7713. // norm
  7714. cur = llm_build_norm(ctx0, inpL, hparams,
  7715. model.layers[il].attn_norm, NULL,
  7716. LLM_NORM_RMS, cb, il);
  7717. cb(cur, "attn_norm", il);
  7718. // self-attention
  7719. {
  7720. // compute Q and K and RoPE them
  7721. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7722. cb(Qcur, "Qcur", il);
  7723. if (model.layers[il].bq) {
  7724. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7725. cb(Qcur, "Qcur", il);
  7726. }
  7727. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7728. cb(Kcur, "Kcur", il);
  7729. if (model.layers[il].bk) {
  7730. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7731. cb(Kcur, "Kcur", il);
  7732. }
  7733. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7734. cb(Vcur, "Vcur", il);
  7735. if (model.layers[il].bv) {
  7736. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7737. cb(Vcur, "Vcur", il);
  7738. }
  7739. Qcur = ggml_rope_custom(
  7740. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7741. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7742. ext_factor, attn_factor, beta_fast, beta_slow
  7743. );
  7744. cb(Qcur, "Qcur", il);
  7745. Kcur = ggml_rope_custom(
  7746. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7747. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7748. ext_factor, attn_factor, beta_fast, beta_slow
  7749. );
  7750. cb(Kcur, "Kcur", il);
  7751. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7752. model.layers[il].wo, model.layers[il].bo,
  7753. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7754. }
  7755. if (il == n_layer - 1) {
  7756. // skip computing output for unused tokens
  7757. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7758. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7759. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7760. }
  7761. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7762. cb(ffn_inp, "ffn_inp", il);
  7763. // feed-forward network
  7764. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7765. model.layers[il].ffn_norm, NULL,
  7766. LLM_NORM_RMS, cb, il);
  7767. cb(cur, "ffn_norm", il);
  7768. cur = llm_build_ffn(ctx0, cur,
  7769. model.layers[il].ffn_up, NULL,
  7770. model.layers[il].ffn_gate, NULL,
  7771. model.layers[il].ffn_down, NULL,
  7772. NULL,
  7773. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7774. cb(cur, "ffn_out", il);
  7775. cur = ggml_add(ctx0, cur, ffn_inp);
  7776. cb(cur, "l_out", il);
  7777. // input for next layer
  7778. inpL = cur;
  7779. }
  7780. cur = inpL;
  7781. cur = llm_build_norm(ctx0, cur, hparams,
  7782. model.output_norm, NULL,
  7783. LLM_NORM_RMS, cb, -1);
  7784. cb(cur, "result_norm", -1);
  7785. // lm_head
  7786. cur = ggml_mul_mat(ctx0, model.output, cur);
  7787. cb(cur, "result_output", -1);
  7788. ggml_build_forward_expand(gf, cur);
  7789. return gf;
  7790. }
  7791. // ref: https://arxiv.org/abs/2203.03466
  7792. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  7793. // based on the original build_llama() function
  7794. struct ggml_cgraph * build_minicpm() {
  7795. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7796. const int64_t n_embd_head = hparams.n_embd_head_v;
  7797. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7798. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7799. const int64_t n_embd = hparams.n_embd;
  7800. //TODO: if the model varies, these parameters need to be read from the model
  7801. const int64_t n_embd_base = 256;
  7802. const float scale_embd = 12.0f;
  7803. const float scale_depth = 1.4f;
  7804. struct ggml_tensor * cur;
  7805. struct ggml_tensor * inpL;
  7806. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7807. // scale the input embeddings
  7808. inpL = ggml_scale(ctx0, inpL, scale_embd);
  7809. cb(inpL, "inp_scaled", -1);
  7810. // inp_pos - contains the positions
  7811. struct ggml_tensor * inp_pos = build_inp_pos();
  7812. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7813. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7814. for (int il = 0; il < n_layer; ++il) {
  7815. struct ggml_tensor * inpSA = inpL;
  7816. // norm
  7817. cur = llm_build_norm(ctx0, inpL, hparams,
  7818. model.layers[il].attn_norm, NULL,
  7819. LLM_NORM_RMS, cb, il);
  7820. cb(cur, "attn_norm", il);
  7821. // self-attention
  7822. {
  7823. // compute Q and K and RoPE them
  7824. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7825. cb(Qcur, "Qcur", il);
  7826. if (model.layers[il].bq) {
  7827. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7828. cb(Qcur, "Qcur", il);
  7829. }
  7830. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7831. cb(Kcur, "Kcur", il);
  7832. if (model.layers[il].bk) {
  7833. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7834. cb(Kcur, "Kcur", il);
  7835. }
  7836. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7837. cb(Vcur, "Vcur", il);
  7838. if (model.layers[il].bv) {
  7839. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7840. cb(Vcur, "Vcur", il);
  7841. }
  7842. Qcur = ggml_rope_custom(
  7843. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7844. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7845. ext_factor, attn_factor, beta_fast, beta_slow
  7846. );
  7847. cb(Qcur, "Qcur", il);
  7848. Kcur = ggml_rope_custom(
  7849. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7850. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7851. ext_factor, attn_factor, beta_fast, beta_slow
  7852. );
  7853. cb(Kcur, "Kcur", il);
  7854. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7855. model.layers[il].wo, model.layers[il].bo,
  7856. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7857. }
  7858. if (il == n_layer - 1) {
  7859. // skip computing output for unused tokens
  7860. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7861. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7862. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7863. }
  7864. // scale_res - scale the hidden states for residual connection
  7865. const float scale_res = scale_depth/sqrtf(float(n_layer));
  7866. cur = ggml_scale(ctx0, cur, scale_res);
  7867. cb(cur, "hidden_scaled", -1);
  7868. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7869. cb(ffn_inp, "ffn_inp", il);
  7870. // feed-forward network
  7871. {
  7872. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7873. model.layers[il].ffn_norm, NULL,
  7874. LLM_NORM_RMS, cb, il);
  7875. cb(cur, "ffn_norm", il);
  7876. cur = llm_build_ffn(ctx0, cur,
  7877. model.layers[il].ffn_up, NULL,
  7878. model.layers[il].ffn_gate, NULL,
  7879. model.layers[il].ffn_down, NULL,
  7880. NULL,
  7881. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7882. cb(cur, "ffn_out", il);
  7883. }
  7884. // scale the hidden states for residual connection
  7885. cur = ggml_scale(ctx0, cur, scale_res);
  7886. cb(cur, "hidden_scaled_ffn", -1);
  7887. cur = ggml_add(ctx0, cur, ffn_inp);
  7888. cb(cur, "l_out", il);
  7889. // input for next layer
  7890. inpL = cur;
  7891. }
  7892. cur = inpL;
  7893. cur = llm_build_norm(ctx0, cur, hparams,
  7894. model.output_norm, NULL,
  7895. LLM_NORM_RMS, cb, -1);
  7896. cb(cur, "result_norm", -1);
  7897. // lm_head scaling
  7898. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  7899. cur = ggml_scale(ctx0, cur, scale_lmhead);
  7900. cb(cur, "lmhead_scaling", -1);
  7901. // lm_head
  7902. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  7903. cb(cur, "result_output", -1);
  7904. ggml_build_forward_expand(gf, cur);
  7905. return gf;
  7906. }
  7907. struct ggml_cgraph * build_gemma() {
  7908. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7909. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  7910. struct ggml_tensor * cur;
  7911. struct ggml_tensor * inpL;
  7912. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7913. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  7914. cb(inpL, "inp_scaled", -1);
  7915. // inp_pos - contains the positions
  7916. struct ggml_tensor * inp_pos = build_inp_pos();
  7917. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7918. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7919. for (int il = 0; il < n_layer; ++il) {
  7920. // norm
  7921. cur = llm_build_norm(ctx0, inpL, hparams,
  7922. model.layers[il].attn_norm, NULL,
  7923. LLM_NORM_RMS, cb, il);
  7924. cb(cur, "attn_norm", il);
  7925. // self-attention
  7926. {
  7927. // compute Q and K and RoPE them
  7928. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7929. cb(Qcur, "Qcur", il);
  7930. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7931. cb(Kcur, "Kcur", il);
  7932. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7933. cb(Vcur, "Vcur", il);
  7934. Qcur = ggml_rope_custom(
  7935. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  7936. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7937. ext_factor, attn_factor, beta_fast, beta_slow);
  7938. cb(Qcur, "Qcur", il);
  7939. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  7940. cb(Qcur, "Qcur_scaled", il);
  7941. Kcur = ggml_rope_custom(
  7942. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  7943. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7944. ext_factor, attn_factor, beta_fast, beta_slow);
  7945. cb(Kcur, "Kcur", il);
  7946. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7947. model.layers[il].wo, NULL,
  7948. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7949. }
  7950. if (il == n_layer - 1) {
  7951. // skip computing output for unused tokens
  7952. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7953. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7954. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7955. }
  7956. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  7957. cb(sa_out, "sa_out", il);
  7958. cur = llm_build_norm(ctx0, sa_out, hparams,
  7959. model.layers[il].ffn_norm, NULL,
  7960. LLM_NORM_RMS, cb, il);
  7961. cb(cur, "ffn_norm", il);
  7962. // feed-forward network
  7963. {
  7964. cur = llm_build_ffn(ctx0, cur,
  7965. model.layers[il].ffn_up, NULL,
  7966. model.layers[il].ffn_gate, NULL,
  7967. model.layers[il].ffn_down, NULL,
  7968. NULL,
  7969. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7970. cb(cur, "ffn_out", il);
  7971. }
  7972. cur = ggml_add(ctx0, cur, sa_out);
  7973. cb(cur, "l_out", il);
  7974. // input for next layer
  7975. inpL = cur;
  7976. }
  7977. cur = inpL;
  7978. cur = llm_build_norm(ctx0, cur, hparams,
  7979. model.output_norm, NULL,
  7980. LLM_NORM_RMS, cb, -1);
  7981. cb(cur, "result_norm", -1);
  7982. // lm_head
  7983. cur = ggml_mul_mat(ctx0, model.output, cur);
  7984. cb(cur, "result_output", -1);
  7985. ggml_build_forward_expand(gf, cur);
  7986. return gf;
  7987. }
  7988. struct ggml_cgraph * build_starcoder2() {
  7989. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7990. const int64_t n_embd_head = hparams.n_embd_head_v;
  7991. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7992. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7993. struct ggml_tensor * cur;
  7994. struct ggml_tensor * inpL;
  7995. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7996. // inp_pos - contains the positions
  7997. struct ggml_tensor * inp_pos = build_inp_pos();
  7998. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7999. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8000. for (int il = 0; il < n_layer; ++il) {
  8001. struct ggml_tensor * inpSA = inpL;
  8002. // norm
  8003. cur = llm_build_norm(ctx0, inpL, hparams,
  8004. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8005. LLM_NORM, cb, il);
  8006. cb(cur, "attn_norm", il);
  8007. // self-attention
  8008. {
  8009. // compute Q and K and RoPE them
  8010. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8011. cb(Qcur, "Qcur", il);
  8012. if (model.layers[il].bq) {
  8013. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8014. cb(Qcur, "Qcur", il);
  8015. }
  8016. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8017. cb(Kcur, "Kcur", il);
  8018. if (model.layers[il].bk) {
  8019. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8020. cb(Kcur, "Kcur", il);
  8021. }
  8022. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8023. cb(Vcur, "Vcur", il);
  8024. if (model.layers[il].bv) {
  8025. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8026. cb(Vcur, "Vcur", il);
  8027. }
  8028. Qcur = ggml_rope_custom(
  8029. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8030. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8031. ext_factor, attn_factor, beta_fast, beta_slow
  8032. );
  8033. cb(Qcur, "Qcur", il);
  8034. Kcur = ggml_rope_custom(
  8035. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8036. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8037. ext_factor, attn_factor, beta_fast, beta_slow
  8038. );
  8039. cb(Kcur, "Kcur", il);
  8040. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8041. model.layers[il].wo, model.layers[il].bo,
  8042. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8043. }
  8044. if (il == n_layer - 1) {
  8045. // skip computing output for unused tokens
  8046. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8047. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8048. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8049. }
  8050. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8051. cb(ffn_inp, "ffn_inp", il);
  8052. // feed-forward network
  8053. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8054. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8055. LLM_NORM, cb, il);
  8056. cb(cur, "ffn_norm", il);
  8057. cur = llm_build_ffn(ctx0, cur,
  8058. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8059. NULL, NULL,
  8060. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8061. NULL,
  8062. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8063. cb(cur, "ffn_out", il);
  8064. cur = ggml_add(ctx0, cur, ffn_inp);
  8065. cb(cur, "l_out", il);
  8066. // input for next layer
  8067. inpL = cur;
  8068. }
  8069. cur = inpL;
  8070. cur = llm_build_norm(ctx0, cur, hparams,
  8071. model.output_norm, model.output_norm_b,
  8072. LLM_NORM, cb, -1);
  8073. cb(cur, "result_norm", -1);
  8074. // lm_head
  8075. cur = ggml_mul_mat(ctx0, model.output, cur);
  8076. cb(cur, "result_output", -1);
  8077. ggml_build_forward_expand(gf, cur);
  8078. return gf;
  8079. }
  8080. struct ggml_cgraph * build_mamba() {
  8081. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8082. const int64_t d_model = n_embd;
  8083. const int64_t d_conv = hparams.ssm_d_conv;
  8084. const int64_t d_inner = hparams.ssm_d_inner;
  8085. GGML_ASSERT(2 * d_model == d_inner);
  8086. const int64_t d_state = hparams.ssm_d_state;
  8087. const int64_t dt_rank = hparams.ssm_dt_rank;
  8088. struct ggml_tensor * cur;
  8089. struct ggml_tensor * inpL;
  8090. // {n_embd, n_tokens}
  8091. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8092. struct ggml_tensor * state_mask = build_inp_s_mask();
  8093. struct ggml_tensor * state_seq = build_inp_s_seq();
  8094. for (int il = 0; il < n_layer; ++il) {
  8095. // (ab)using the KV cache to store the states
  8096. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8097. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8098. // clear states of sequences which are starting at the beginning of this batch
  8099. {
  8100. conv_states = ggml_mul(ctx0,
  8101. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8102. state_mask);
  8103. ssm_states = ggml_mul(ctx0,
  8104. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8105. state_mask);
  8106. }
  8107. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8108. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8109. // norm
  8110. cur = llm_build_norm(ctx0, inpL, hparams,
  8111. model.layers[il].attn_norm, NULL,
  8112. LLM_NORM_RMS, cb, il);
  8113. cb(cur, "attn_norm", il);
  8114. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8115. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8116. // split the above in two
  8117. // => {d_inner, n_tokens}
  8118. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8119. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8120. // conv
  8121. {
  8122. // Custom operator which is needed only to ease simultaneous sequence processing.
  8123. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8124. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8125. // then element-wise multiply that with the conv1d weigth,
  8126. // then sum the elements of each row,
  8127. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8128. // then permute away the ne[0] dimension,
  8129. // and then you're left with the resulting x tensor.
  8130. // The new conv_states is the last (d_conv - 1) columns
  8131. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8132. // For simultaneous sequences, it's more complicated.
  8133. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8134. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8135. ggml_build_forward_expand(gf,
  8136. ggml_cpy(ctx0,
  8137. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8138. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8139. // extract x from x_conv
  8140. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8141. // bias
  8142. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8143. x = ggml_silu(ctx0, x);
  8144. }
  8145. // ssm
  8146. {
  8147. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8148. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8149. // split
  8150. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8151. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8152. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8153. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8154. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8155. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8156. // Custom operator to optimize the parallel associative scan
  8157. // as described in the Annex D of the Mamba paper.
  8158. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8159. // because only a single tensor can be returned.
  8160. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8161. // store last states (the second part of y_ssm_states)
  8162. ggml_build_forward_expand(gf,
  8163. ggml_cpy(ctx0,
  8164. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8165. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8166. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8167. if (il == n_layer - 1) {
  8168. // skip computing output for unused tokens
  8169. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8170. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8171. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8172. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8173. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8174. }
  8175. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8176. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8177. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8178. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8179. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8180. }
  8181. // residual
  8182. cur = ggml_add(ctx0, cur, inpL);
  8183. cb(cur, "l_out", il);
  8184. // input for next layer
  8185. inpL = cur;
  8186. }
  8187. // final rmsnorm
  8188. cur = llm_build_norm(ctx0, inpL, hparams,
  8189. model.output_norm, NULL,
  8190. LLM_NORM_RMS, cb, -1);
  8191. cb(cur, "result_norm", -1);
  8192. // lm_head
  8193. cur = ggml_mul_mat(ctx0, model.output, cur);
  8194. cb(cur, "result_output", -1);
  8195. ggml_build_forward_expand(gf, cur);
  8196. return gf;
  8197. }
  8198. struct ggml_cgraph * build_command_r() {
  8199. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8200. const int64_t n_embd_head = hparams.n_embd_head_v;
  8201. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8202. const float f_logit_scale = hparams.f_logit_scale;
  8203. struct ggml_tensor * cur;
  8204. struct ggml_tensor * inpL;
  8205. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8206. // inp_pos - contains the positions
  8207. struct ggml_tensor * inp_pos = build_inp_pos();
  8208. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8209. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8210. for (int il = 0; il < n_layer; ++il) {
  8211. // norm
  8212. cur = llm_build_norm(ctx0, inpL, hparams,
  8213. model.layers[il].attn_norm, NULL,
  8214. LLM_NORM, cb, il);
  8215. cb(cur, "attn_norm", il);
  8216. struct ggml_tensor * ffn_inp = cur;
  8217. // self-attention
  8218. {
  8219. // compute Q and K and RoPE them
  8220. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8221. cb(Qcur, "Qcur", il);
  8222. if (model.layers[il].bq) {
  8223. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8224. cb(Qcur, "Qcur", il);
  8225. }
  8226. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8227. cb(Kcur, "Kcur", il);
  8228. if (model.layers[il].bk) {
  8229. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8230. cb(Kcur, "Kcur", il);
  8231. }
  8232. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8233. cb(Vcur, "Vcur", il);
  8234. if (model.layers[il].bv) {
  8235. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8236. cb(Vcur, "Vcur", il);
  8237. }
  8238. if (model.layers[il].attn_q_norm) {
  8239. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8240. ggml_element_size(Qcur) * n_embd_head,
  8241. ggml_element_size(Qcur) * n_embd_head * n_head,
  8242. 0);
  8243. cb(Qcur, "Qcur", il);
  8244. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8245. ggml_element_size(Kcur) * n_embd_head,
  8246. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8247. 0);
  8248. cb(Kcur, "Kcur", il);
  8249. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8250. model.layers[il].attn_q_norm,
  8251. NULL,
  8252. LLM_NORM, cb, il);
  8253. cb(Qcur, "Qcur", il);
  8254. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8255. model.layers[il].attn_k_norm,
  8256. NULL,
  8257. LLM_NORM, cb, il);
  8258. cb(Kcur, "Kcur", il);
  8259. }
  8260. Qcur = ggml_rope_custom(
  8261. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8262. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8263. ext_factor, attn_factor, beta_fast, beta_slow
  8264. );
  8265. cb(Qcur, "Qcur", il);
  8266. Kcur = ggml_rope_custom(
  8267. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8268. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8269. ext_factor, attn_factor, beta_fast, beta_slow
  8270. );
  8271. cb(Kcur, "Kcur", il);
  8272. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8273. model.layers[il].wo, model.layers[il].bo,
  8274. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8275. }
  8276. if (il == n_layer - 1) {
  8277. // skip computing output for unused tokens
  8278. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8279. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8280. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8281. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8282. }
  8283. struct ggml_tensor * attn_out = cur;
  8284. // feed-forward network
  8285. {
  8286. cur = llm_build_ffn(ctx0, ffn_inp,
  8287. model.layers[il].ffn_up, NULL,
  8288. model.layers[il].ffn_gate, NULL,
  8289. model.layers[il].ffn_down, NULL,
  8290. NULL,
  8291. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8292. cb(cur, "ffn_out", il);
  8293. }
  8294. // add together residual + FFN + self-attention
  8295. cur = ggml_add(ctx0, cur, inpL);
  8296. cur = ggml_add(ctx0, cur, attn_out);
  8297. cb(cur, "l_out", il);
  8298. // input for next layer
  8299. inpL = cur;
  8300. }
  8301. cur = inpL;
  8302. cur = llm_build_norm(ctx0, cur, hparams,
  8303. model.output_norm, NULL,
  8304. LLM_NORM, cb, -1);
  8305. cb(cur, "result_norm", -1);
  8306. // lm_head
  8307. cur = ggml_mul_mat(ctx0, model.output, cur);
  8308. if (f_logit_scale) {
  8309. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8310. }
  8311. cb(cur, "result_output", -1);
  8312. ggml_build_forward_expand(gf, cur);
  8313. return gf;
  8314. }
  8315. };
  8316. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8317. llama_batch dummy;
  8318. dummy.n_tokens = 0;
  8319. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8320. struct llm_build_context llm(lctx, dummy, cb, false);
  8321. llm.init();
  8322. struct ggml_cgraph * result = llm.build_defrag(ids);
  8323. llm.free();
  8324. return result;
  8325. }
  8326. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8327. llama_batch dummy;
  8328. dummy.n_tokens = 0;
  8329. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8330. struct llm_build_context llm(lctx, dummy, cb, false);
  8331. llm.init();
  8332. struct ggml_cgraph * result = llm.build_k_shift();
  8333. llm.free();
  8334. return result;
  8335. }
  8336. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8337. llama_batch dummy;
  8338. dummy.n_tokens = 0;
  8339. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8340. struct llm_build_context llm(lctx, dummy, cb, false);
  8341. llm.init();
  8342. struct ggml_cgraph * result = llm.build_s_copy();
  8343. llm.free();
  8344. return result;
  8345. }
  8346. static struct ggml_cgraph * llama_build_graph(
  8347. llama_context & lctx,
  8348. const llama_batch & batch,
  8349. bool worst_case) {
  8350. const auto & model = lctx.model;
  8351. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8352. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8353. if (il >= 0) {
  8354. ggml_format_name(cur, "%s-%d", name, il);
  8355. } else {
  8356. ggml_set_name(cur, name);
  8357. }
  8358. if (!lctx.cparams.offload_kqv) {
  8359. if (strcmp(name, "kqv_merged_cont") == 0) {
  8360. // all nodes between the KV store and the attention output are run on the CPU
  8361. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8362. }
  8363. }
  8364. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8365. // FIXME: fix in ggml_backend_sched
  8366. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8367. if (batch.n_tokens < 32 || full_offload) {
  8368. if (il != -1 && strcmp(name, "norm") == 0) {
  8369. for (auto * backend : lctx.backends) {
  8370. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8371. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8372. break;
  8373. }
  8374. }
  8375. }
  8376. }
  8377. };
  8378. struct ggml_cgraph * result = NULL;
  8379. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8380. llm.init();
  8381. switch (model.arch) {
  8382. case LLM_ARCH_LLAMA:
  8383. {
  8384. result = llm.build_llama();
  8385. } break;
  8386. case LLM_ARCH_BAICHUAN:
  8387. {
  8388. result = llm.build_baichuan();
  8389. } break;
  8390. case LLM_ARCH_FALCON:
  8391. {
  8392. result = llm.build_falcon();
  8393. } break;
  8394. case LLM_ARCH_GROK:
  8395. {
  8396. result = llm.build_grok();
  8397. } break;
  8398. case LLM_ARCH_STARCODER:
  8399. {
  8400. result = llm.build_starcoder();
  8401. } break;
  8402. case LLM_ARCH_PERSIMMON:
  8403. {
  8404. result = llm.build_persimmon();
  8405. } break;
  8406. case LLM_ARCH_REFACT:
  8407. {
  8408. result = llm.build_refact();
  8409. } break;
  8410. case LLM_ARCH_BERT:
  8411. case LLM_ARCH_NOMIC_BERT:
  8412. {
  8413. result = llm.build_bert();
  8414. } break;
  8415. case LLM_ARCH_BLOOM:
  8416. {
  8417. result = llm.build_bloom();
  8418. } break;
  8419. case LLM_ARCH_MPT:
  8420. {
  8421. result = llm.build_mpt();
  8422. } break;
  8423. case LLM_ARCH_STABLELM:
  8424. {
  8425. result = llm.build_stablelm();
  8426. } break;
  8427. case LLM_ARCH_QWEN:
  8428. {
  8429. result = llm.build_qwen();
  8430. } break;
  8431. case LLM_ARCH_QWEN2:
  8432. {
  8433. result = llm.build_qwen2();
  8434. } break;
  8435. case LLM_ARCH_QWEN2MOE:
  8436. {
  8437. result = llm.build_qwen2moe();
  8438. } break;
  8439. case LLM_ARCH_PHI2:
  8440. {
  8441. result = llm.build_phi2();
  8442. } break;
  8443. case LLM_ARCH_PLAMO:
  8444. {
  8445. result = llm.build_plamo();
  8446. } break;
  8447. case LLM_ARCH_GPT2:
  8448. {
  8449. result = llm.build_gpt2();
  8450. } break;
  8451. case LLM_ARCH_CODESHELL:
  8452. {
  8453. result = llm.build_codeshell();
  8454. } break;
  8455. case LLM_ARCH_ORION:
  8456. {
  8457. result = llm.build_orion();
  8458. } break;
  8459. case LLM_ARCH_INTERNLM2:
  8460. {
  8461. result = llm.build_internlm2();
  8462. } break;
  8463. case LLM_ARCH_MINICPM:
  8464. {
  8465. result = llm.build_minicpm();
  8466. } break;
  8467. case LLM_ARCH_GEMMA:
  8468. {
  8469. result = llm.build_gemma();
  8470. } break;
  8471. case LLM_ARCH_STARCODER2:
  8472. {
  8473. result = llm.build_starcoder2();
  8474. } break;
  8475. case LLM_ARCH_MAMBA:
  8476. {
  8477. result = llm.build_mamba();
  8478. } break;
  8479. case LLM_ARCH_XVERSE:
  8480. {
  8481. result = llm.build_xverse();
  8482. } break;
  8483. case LLM_ARCH_COMMAND_R:
  8484. {
  8485. result = llm.build_command_r();
  8486. } break;
  8487. case LLM_ARCH_DBRX:
  8488. {
  8489. result = llm.build_dbrx();
  8490. } break;
  8491. default:
  8492. GGML_ASSERT(false);
  8493. }
  8494. llm.free();
  8495. return result;
  8496. }
  8497. static void llama_set_k_shift(llama_context & lctx) {
  8498. const int64_t kv_size = lctx.kv_self.size;
  8499. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8500. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8501. for (int i = 0; i < kv_size; ++i) {
  8502. data[i] = lctx.kv_self.cells[i].delta;
  8503. }
  8504. }
  8505. static void llama_set_s_copy(llama_context & lctx) {
  8506. const int64_t kv_size = lctx.kv_self.size;
  8507. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8508. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8509. for (int i = 0; i < kv_size; ++i) {
  8510. data[i] = lctx.kv_self.cells[i].src;
  8511. }
  8512. }
  8513. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8514. //
  8515. // set input data
  8516. //
  8517. const auto & hparams = lctx.model.hparams;
  8518. const auto & cparams = lctx.cparams;
  8519. const auto & kv_self = lctx.kv_self;
  8520. if (batch.token) {
  8521. const int64_t n_tokens = batch.n_tokens;
  8522. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8523. }
  8524. if (batch.embd) {
  8525. const int64_t n_embd = hparams.n_embd;
  8526. const int64_t n_tokens = batch.n_tokens;
  8527. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8528. }
  8529. if (batch.pos && lctx.inp_pos) {
  8530. const int64_t n_tokens = batch.n_tokens;
  8531. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8532. }
  8533. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8534. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8535. const int64_t n_tokens = batch.n_tokens;
  8536. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8537. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8538. if (lctx.n_outputs == n_tokens) {
  8539. for (int i = 0; i < n_tokens; ++i) {
  8540. data[i] = i;
  8541. }
  8542. } else if (batch.logits) {
  8543. int32_t n_outputs = 0;
  8544. for (int i = 0; i < n_tokens; ++i) {
  8545. if (batch.logits[i]) {
  8546. data[n_outputs++] = i;
  8547. }
  8548. }
  8549. // the graph needs to have been passed the correct number of outputs
  8550. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8551. } else if (lctx.n_outputs == 1) {
  8552. // only keep last output
  8553. data[0] = n_tokens - 1;
  8554. } else {
  8555. GGML_ASSERT(lctx.n_outputs == 0);
  8556. }
  8557. }
  8558. GGML_ASSERT(
  8559. // (!a || b) is a logical implication (a -> b)
  8560. // !hparams.causal_attn -> !cparams.causal_attn
  8561. (hparams.causal_attn || !cparams.causal_attn) &&
  8562. "causal attention with embedding models is not supported"
  8563. );
  8564. if (lctx.inp_KQ_mask) {
  8565. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8566. if (cparams.causal_attn) {
  8567. const int64_t n_kv = kv_self.n;
  8568. const int64_t n_tokens = batch.n_tokens;
  8569. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8570. float * data = (float *) lctx.inp_KQ_mask->data;
  8571. // For causal attention, use only the previous KV cells
  8572. // of the correct sequence for each token of the batch.
  8573. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8574. for (int h = 0; h < 1; ++h) {
  8575. for (int j = 0; j < n_tokens; ++j) {
  8576. const llama_pos pos = batch.pos[j];
  8577. const llama_seq_id seq_id = batch.seq_id[j][0];
  8578. for (int i = 0; i < n_kv; ++i) {
  8579. float f;
  8580. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8581. f = -INFINITY;
  8582. } else {
  8583. f = 0.0f;
  8584. }
  8585. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8586. }
  8587. }
  8588. }
  8589. } else {
  8590. // when using kv cache, the mask needs to match the kv cache size
  8591. const int64_t n_tokens = batch.n_tokens;
  8592. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8593. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8594. float * data = (float *) lctx.inp_KQ_mask->data;
  8595. for (int h = 0; h < 1; ++h) {
  8596. for (int j = 0; j < n_tokens; ++j) {
  8597. const llama_seq_id seq_id = batch.seq_id[j][0];
  8598. for (int i = 0; i < n_tokens; ++i) {
  8599. float f = -INFINITY;
  8600. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  8601. if (batch.seq_id[i][s] == seq_id) {
  8602. f = 0.0f;
  8603. break;
  8604. }
  8605. }
  8606. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  8607. }
  8608. for (int i = n_tokens; i < n_stride; ++i) {
  8609. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  8610. }
  8611. }
  8612. }
  8613. }
  8614. }
  8615. if (hparams.need_kq_pos) {
  8616. const int64_t n_kv = kv_self.n;
  8617. GGML_ASSERT(lctx.inp_KQ_pos);
  8618. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  8619. float * data = (float *) lctx.inp_KQ_pos->data;
  8620. for (int i = 0; i < n_kv; ++i) {
  8621. data[i] = float(lctx.kv_self.cells[i].pos);
  8622. }
  8623. }
  8624. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  8625. const int64_t n_tokens = batch.n_tokens;
  8626. GGML_ASSERT(lctx.inp_mean);
  8627. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  8628. float * data = (float *) lctx.inp_mean->data;
  8629. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  8630. std::vector<uint64_t> sum(n_tokens, 0);
  8631. for (int i = 0; i < n_tokens; ++i) {
  8632. const llama_seq_id seq_id = batch.seq_id[i][0];
  8633. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  8634. sum[seq_id] += 1;
  8635. }
  8636. std::vector<float> div(n_tokens, 0.0f);
  8637. for (int i = 0; i < n_tokens; ++i) {
  8638. const uint64_t s = sum[i];
  8639. if (s > 0) {
  8640. div[i] = 1.0f/float(s);
  8641. }
  8642. }
  8643. for (int i = 0; i < n_tokens; ++i) {
  8644. const llama_seq_id seq_id = batch.seq_id[i][0];
  8645. data[seq_id*n_tokens + i] = div[seq_id];
  8646. }
  8647. }
  8648. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  8649. const int64_t n_tokens = batch.n_tokens;
  8650. GGML_ASSERT(lctx.inp_cls);
  8651. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  8652. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  8653. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  8654. for (int i = 0; i < n_tokens; ++i) {
  8655. const llama_seq_id seq_id = batch.seq_id[i][0];
  8656. const llama_pos pos = batch.pos[i];
  8657. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  8658. if (pos == 0) {
  8659. data[seq_id] = i;
  8660. }
  8661. }
  8662. }
  8663. if (kv_self.recurrent) {
  8664. const int64_t n_kv = kv_self.n;
  8665. if (lctx.inp_s_mask) {
  8666. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  8667. float * data = (float *) lctx.inp_s_mask->data;
  8668. // states which are not affected by the current batch are left untouched
  8669. for (int i = 0; i < n_kv; ++i) {
  8670. llama_seq_id seq_id = i + lctx.kv_self.head;
  8671. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  8672. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  8673. data[i] = (float) has_self_seq;
  8674. // ensure current sequences will be kept
  8675. if (!has_self_seq && kv_cell.pos >= 0) {
  8676. kv_cell.seq_id.insert(seq_id);
  8677. }
  8678. }
  8679. }
  8680. // For Mamba (and other recurrent architectures),
  8681. // update the correct state(s)/sequence(s) for each token of the batch.
  8682. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  8683. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  8684. if (lctx.inp_s_seq) {
  8685. const int64_t n_tokens = batch.n_tokens;
  8686. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  8687. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  8688. for (int j = 0; j < n_tokens; ++j) {
  8689. const int32_t n_seq = batch.n_seq_id[j];
  8690. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  8691. for (int i = 0; i < n_kv; ++i) {
  8692. if (i < n_seq) {
  8693. // for this type of model, the head is the minimum seq_id of the batch
  8694. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  8695. } else {
  8696. data[j*n_kv + i] = -1;
  8697. }
  8698. }
  8699. }
  8700. }
  8701. }
  8702. }
  8703. // Make sure enough space is available for outputs.
  8704. // Returns max number of outputs for which space was reserved.
  8705. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  8706. const auto & cparams = lctx.cparams;
  8707. const auto & hparams = lctx.model.hparams;
  8708. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  8709. const auto n_batch = cparams.n_batch;
  8710. const auto n_vocab = hparams.n_vocab;
  8711. const auto n_embd = hparams.n_embd;
  8712. // TODO: use a per-batch flag for logits presence instead
  8713. const bool has_logits = cparams.causal_attn;
  8714. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  8715. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  8716. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  8717. if (lctx.output_ids.empty()) {
  8718. // init, never resized afterwards
  8719. lctx.output_ids.resize(n_batch);
  8720. }
  8721. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  8722. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  8723. // alloc only when more than the current capacity is required
  8724. // TODO: also consider shrinking the buffer
  8725. if (!lctx.buf_output || prev_size < new_size) {
  8726. if (lctx.buf_output) {
  8727. #ifndef NDEBUG
  8728. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  8729. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  8730. #endif
  8731. ggml_backend_buffer_free(lctx.buf_output);
  8732. lctx.buf_output = nullptr;
  8733. lctx.logits = nullptr;
  8734. lctx.embd = nullptr;
  8735. }
  8736. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  8737. if (lctx.buf_output == nullptr) {
  8738. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  8739. return 0;
  8740. }
  8741. }
  8742. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  8743. lctx.logits = has_logits ? output_base : nullptr;
  8744. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  8745. lctx.output_size = n_outputs_max;
  8746. lctx.logits_size = logits_size;
  8747. lctx.embd_size = embd_size;
  8748. // set all ids as invalid (negative)
  8749. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  8750. ggml_backend_buffer_clear(lctx.buf_output, 0);
  8751. lctx.n_outputs = 0;
  8752. return n_outputs_max;
  8753. }
  8754. static void llama_graph_compute(
  8755. llama_context & lctx,
  8756. ggml_cgraph * gf,
  8757. int n_threads) {
  8758. #ifdef GGML_USE_MPI
  8759. const int64_t n_layer = lctx.model.hparams.n_layer;
  8760. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  8761. #endif
  8762. #ifdef GGML_USE_METAL
  8763. if (ggml_backend_is_metal(lctx.backend_metal)) {
  8764. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  8765. }
  8766. #endif
  8767. if (lctx.backend_cpu != nullptr) {
  8768. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  8769. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  8770. }
  8771. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  8772. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  8773. #ifdef GGML_USE_MPI
  8774. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  8775. #endif
  8776. }
  8777. // decode a batch of tokens by evaluating the transformer
  8778. //
  8779. // - lctx: llama context
  8780. // - batch: batch to evaluate
  8781. //
  8782. // return 0 on success
  8783. // return positive int on warning
  8784. // return negative int on error
  8785. //
  8786. static int llama_decode_internal(
  8787. llama_context & lctx,
  8788. llama_batch batch_all) { // TODO: rename back to batch
  8789. const uint32_t n_tokens_all = batch_all.n_tokens;
  8790. if (n_tokens_all == 0) {
  8791. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  8792. return -1;
  8793. }
  8794. const auto & model = lctx.model;
  8795. const auto & hparams = model.hparams;
  8796. const auto & cparams = lctx.cparams;
  8797. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  8798. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  8799. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  8800. if (lctx.t_compute_start_us == 0) {
  8801. lctx.t_compute_start_us = ggml_time_us();
  8802. }
  8803. lctx.n_queued_tokens += n_tokens_all;
  8804. #ifdef GGML_USE_MPI
  8805. // TODO: needs fix after #3228
  8806. GGML_ASSERT(false && "not implemented");
  8807. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  8808. #endif
  8809. auto & kv_self = lctx.kv_self;
  8810. const int64_t n_embd = hparams.n_embd;
  8811. const int64_t n_vocab = hparams.n_vocab;
  8812. uint32_t n_outputs = 0;
  8813. uint32_t n_outputs_prev = 0;
  8814. const auto n_ubatch = cparams.n_ubatch;
  8815. std::vector<llama_pos> pos;
  8816. std::vector<int32_t> n_seq_id;
  8817. std::vector<llama_seq_id *> seq_id_arr;
  8818. std::vector<std::vector<llama_seq_id>> seq_id;
  8819. // count outputs
  8820. if (batch_all.logits) {
  8821. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8822. n_outputs += batch_all.logits[i] != 0;
  8823. }
  8824. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  8825. n_outputs = n_tokens_all;
  8826. } else {
  8827. // keep last output only
  8828. n_outputs = 1;
  8829. }
  8830. // reserve output buffer
  8831. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  8832. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  8833. return -2;
  8834. };
  8835. // set output mappings
  8836. if (batch_all.logits) {
  8837. int32_t i_logits = 0;
  8838. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8839. if (batch_all.logits[i]) {
  8840. lctx.output_ids[i] = i_logits++;
  8841. }
  8842. }
  8843. } else {
  8844. for (uint32_t i = 0; i < n_outputs; ++i) {
  8845. lctx.output_ids[i] = i;
  8846. }
  8847. }
  8848. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  8849. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  8850. llama_batch u_batch = {
  8851. /* .n_tokens = */ (int32_t) n_tokens,
  8852. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  8853. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  8854. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  8855. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  8856. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  8857. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  8858. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  8859. /* .all_pos_1 = */ batch_all.all_pos_1,
  8860. /* .all_seq_id = */ batch_all.all_seq_id,
  8861. };
  8862. // count the outputs in this u_batch
  8863. {
  8864. int32_t n_outputs_new = 0;
  8865. if (u_batch.logits) {
  8866. for (uint32_t i = 0; i < n_tokens; i++) {
  8867. n_outputs_new += u_batch.logits[i] != 0;
  8868. }
  8869. } else if (n_outputs == n_tokens_all) {
  8870. n_outputs_new = n_tokens;
  8871. } else {
  8872. // keep last output only
  8873. if (cur_token + n_tokens >= n_tokens_all) {
  8874. n_outputs_new = 1;
  8875. }
  8876. }
  8877. // needs to happen before the graph is built
  8878. lctx.n_outputs = n_outputs_new;
  8879. }
  8880. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  8881. GGML_ASSERT(n_threads > 0);
  8882. // helpers for smoother batch API transition
  8883. // after deprecating the llama_eval calls, these will be removed
  8884. if (u_batch.pos == nullptr) {
  8885. pos.resize(n_tokens);
  8886. for (uint32_t i = 0; i < n_tokens; i++) {
  8887. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  8888. }
  8889. u_batch.pos = pos.data();
  8890. }
  8891. if (u_batch.seq_id == nullptr) {
  8892. n_seq_id.resize(n_tokens);
  8893. seq_id.resize(n_tokens);
  8894. seq_id_arr.resize(n_tokens);
  8895. for (uint32_t i = 0; i < n_tokens; i++) {
  8896. n_seq_id[i] = 1;
  8897. seq_id[i].resize(1);
  8898. seq_id[i][0] = u_batch.all_seq_id;
  8899. seq_id_arr[i] = seq_id[i].data();
  8900. }
  8901. u_batch.n_seq_id = n_seq_id.data();
  8902. u_batch.seq_id = seq_id_arr.data();
  8903. }
  8904. // non-causal masks do not use the KV cache
  8905. if (hparams.causal_attn) {
  8906. llama_kv_cache_update(&lctx);
  8907. // if we have enough unused cells before the current head ->
  8908. // better to start searching from the beginning of the cache, hoping to fill it
  8909. if (kv_self.head > kv_self.used + 2*n_tokens) {
  8910. kv_self.head = 0;
  8911. }
  8912. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  8913. return 1;
  8914. }
  8915. if (!kv_self.recurrent) {
  8916. // a heuristic, to avoid attending the full cache if it is not yet utilized
  8917. // after enough generations, the benefit from this heuristic disappears
  8918. // if we start defragmenting the cache, the benefit from this will be more important
  8919. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  8920. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  8921. }
  8922. }
  8923. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  8924. ggml_backend_sched_reset(lctx.sched);
  8925. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  8926. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  8927. // the output is always the last tensor in the graph
  8928. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  8929. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  8930. if (lctx.n_outputs == 0) {
  8931. // no output
  8932. res = nullptr;
  8933. embd = nullptr;
  8934. } else if (!hparams.causal_attn) {
  8935. res = nullptr; // do not extract logits for embedding models such as BERT
  8936. // token or sequence embeddings
  8937. embd = gf->nodes[gf->n_nodes - 1];
  8938. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  8939. } else if (cparams.embeddings) {
  8940. // the embeddings could be in the second to last tensor, or any of the previous tensors
  8941. int i_embd = gf->n_nodes - 2;
  8942. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  8943. i_embd = gf->n_nodes - i;
  8944. if (i_embd < 0) { break; }
  8945. embd = gf->nodes[i_embd];
  8946. }
  8947. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  8948. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  8949. if (!cparams.causal_attn) {
  8950. res = nullptr; // do not extract logits when not needed
  8951. // skip computing logits
  8952. // TODO: is this safe?
  8953. gf->n_nodes = i_embd + 1;
  8954. }
  8955. } else {
  8956. embd = nullptr; // do not extract embeddings when not needed
  8957. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  8958. }
  8959. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  8960. // for big prompts, if BLAS is enabled, it is better to use only one thread
  8961. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  8962. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  8963. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  8964. // with the BLAS calls. need a better solution
  8965. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  8966. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  8967. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  8968. n_threads = std::min(4, n_threads);
  8969. }
  8970. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8971. llama_set_inputs(lctx, u_batch);
  8972. llama_graph_compute(lctx, gf, n_threads);
  8973. // update the kv ring buffer
  8974. {
  8975. kv_self.head += n_tokens;
  8976. // Ensure kv cache head points to a valid index.
  8977. if (kv_self.head >= kv_self.size) {
  8978. kv_self.head = 0;
  8979. }
  8980. }
  8981. #ifdef GGML_PERF
  8982. // print timing information per ggml operation (for debugging purposes)
  8983. // requires GGML_PERF to be defined
  8984. ggml_graph_print(gf);
  8985. #endif
  8986. // plot the computation graph in dot format (for debugging purposes)
  8987. //if (n_past%100 == 0) {
  8988. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  8989. //}
  8990. // extract logits
  8991. if (res) {
  8992. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  8993. GGML_ASSERT(backend_res != nullptr);
  8994. GGML_ASSERT(lctx.logits != nullptr);
  8995. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  8996. const int32_t n_outputs_new = lctx.n_outputs;
  8997. if (n_outputs_new) {
  8998. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  8999. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9000. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9001. }
  9002. }
  9003. // extract embeddings
  9004. if (embd) {
  9005. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9006. GGML_ASSERT(backend_embd != nullptr);
  9007. switch (cparams.pooling_type) {
  9008. case LLAMA_POOLING_TYPE_NONE:
  9009. {
  9010. // extract token embeddings
  9011. GGML_ASSERT(lctx.embd != nullptr);
  9012. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9013. const int32_t n_outputs_new = lctx.n_outputs;
  9014. if (n_outputs_new) {
  9015. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9016. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9017. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9018. }
  9019. } break;
  9020. case LLAMA_POOLING_TYPE_CLS:
  9021. case LLAMA_POOLING_TYPE_MEAN:
  9022. {
  9023. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9024. // extract sequence embeddings
  9025. auto & embd_seq_out = lctx.embd_seq;
  9026. embd_seq_out.clear();
  9027. for (uint32_t i = 0; i < n_tokens; i++) {
  9028. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9029. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9030. continue;
  9031. }
  9032. embd_seq_out[seq_id].resize(n_embd);
  9033. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9034. }
  9035. } break;
  9036. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9037. {
  9038. GGML_ASSERT(false && "unknown pooling type");
  9039. } break;
  9040. }
  9041. }
  9042. n_outputs_prev += lctx.n_outputs;
  9043. }
  9044. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9045. lctx.n_outputs = n_outputs;
  9046. // wait for the computation to finish (automatically done when obtaining the model output)
  9047. //llama_synchronize(&lctx);
  9048. // decide if we need to defrag the kv cache
  9049. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9050. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9051. // queue defragmentation for next llama_kv_cache_update
  9052. if (fragmentation > cparams.defrag_thold) {
  9053. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9054. llama_kv_cache_defrag(kv_self);
  9055. }
  9056. }
  9057. return 0;
  9058. }
  9059. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9060. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9061. auto & kv_self = lctx.kv_self;
  9062. const auto & hparams = lctx.model.hparams;
  9063. const uint32_t n_layer = hparams.n_layer;
  9064. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9065. const uint32_t n_used = kv_self.used;
  9066. assert(n_used <= n_kv);
  9067. //const int64_t t_start = ggml_time_us();
  9068. // number of cells moved
  9069. uint32_t n_moves = 0;
  9070. // each move requires 6*n_layer tensors (see build_defrag)
  9071. // - source view, destination view, copy operation
  9072. // - x2 for keys and values
  9073. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9074. // determine which KV cells to move where
  9075. //
  9076. // cell i moves to ids[i]
  9077. //
  9078. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9079. //
  9080. std::vector<uint32_t> ids(n_kv, n_kv);
  9081. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9082. const auto & cell0 = kv_self.cells[i0];
  9083. if (!cell0.is_empty()) {
  9084. ids[i0] = i0;
  9085. continue;
  9086. }
  9087. // found a hole - fill it with data from the end of the cache
  9088. uint32_t nh = 1;
  9089. // determine the size of the hole
  9090. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9091. nh++;
  9092. }
  9093. uint32_t nf = 0;
  9094. uint32_t is = n_kv - 1;
  9095. // starting from the end, find nh non-empty cells
  9096. for (; is > i0; --is) {
  9097. const auto & cell1 = kv_self.cells[is];
  9098. if (cell1.is_empty() || ids[is] != n_kv) {
  9099. continue;
  9100. }
  9101. // non-empty cell which is not yet moved
  9102. nf++;
  9103. if (nf == nh) {
  9104. break;
  9105. }
  9106. }
  9107. // this can only happen if `n_used` is not accurate, which would be a bug
  9108. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9109. nf = 0;
  9110. uint32_t i1 = is;
  9111. // are we moving a continuous block of memory?
  9112. bool cont = false;
  9113. // should we stop searching for the next move?
  9114. bool stop = false;
  9115. // go back and move the nf cells to the hole
  9116. for (; i1 < n_kv; ++i1) {
  9117. auto & cell1 = kv_self.cells[i1];
  9118. if (cell1.is_empty() || ids[i1] != n_kv) {
  9119. if (n_moves == max_moves) {
  9120. stop = true;
  9121. break;
  9122. }
  9123. cont = false;
  9124. continue;
  9125. }
  9126. // this cell goes to (i0 + nf)
  9127. ids[i1] = i0 + nf;
  9128. // move the cell meta data
  9129. kv_self.cells[i0 + nf] = cell1;
  9130. // clear the old cell and move the head there
  9131. cell1 = llama_kv_cell();
  9132. kv_self.head = n_used;
  9133. if (!cont) {
  9134. n_moves++;
  9135. cont = true;
  9136. }
  9137. nf++;
  9138. if (nf == nh) {
  9139. break;
  9140. }
  9141. }
  9142. if (stop || n_moves == max_moves) {
  9143. break;
  9144. }
  9145. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9146. i0 += nh - 1;
  9147. }
  9148. if (n_moves == 0) {
  9149. return;
  9150. }
  9151. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9152. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9153. #if 0
  9154. // CPU defrag
  9155. //
  9156. // TODO: optimizations are possible:
  9157. // - multiple threads
  9158. // - avoid copying to the host memory when already there
  9159. //
  9160. // likely not worth the effort, as we have ggml_graph based defrag
  9161. //
  9162. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9163. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9164. const uint32_t kv_size = kv_self.size;
  9165. std::vector<uint8_t> buf_k;
  9166. std::vector<uint8_t> buf_v;
  9167. for (uint32_t il = 0; il < n_layer; ++il) {
  9168. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9169. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9170. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9171. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9172. buf_k.resize(k_size);
  9173. buf_v.resize(v_size);
  9174. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9175. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9176. // batch move [i, i+nm) to [id, id+nm)
  9177. // note: cells can move only to a lower index
  9178. for (uint32_t i = 0; i < n_kv; ++i) {
  9179. const uint32_t id = ids[i];
  9180. if (i == id || id == n_kv) {
  9181. continue;
  9182. }
  9183. uint32_t nm = 1;
  9184. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9185. nm++;
  9186. }
  9187. // move keys
  9188. {
  9189. const int64_t os = i*k_size_row;
  9190. const int64_t od = id*k_size_row;
  9191. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9192. }
  9193. // move values (note: they are transposed)
  9194. {
  9195. const int64_t os = i;
  9196. const int64_t od = id;
  9197. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9198. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9199. }
  9200. }
  9201. i += nm - 1;
  9202. }
  9203. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9204. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9205. }
  9206. #else
  9207. // ggml_graph defrag
  9208. ggml_backend_sched_reset(lctx.sched);
  9209. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9210. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9211. #endif
  9212. //const int64_t t_end = ggml_time_us();
  9213. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9214. }
  9215. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9216. bool need_reserve = false;
  9217. // apply K-shift if needed
  9218. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9219. {
  9220. ggml_backend_sched_reset(lctx.sched);
  9221. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9222. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9223. llama_set_k_shift(lctx);
  9224. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9225. need_reserve = true;
  9226. }
  9227. {
  9228. auto & kv_self = lctx.kv_self;
  9229. kv_self.has_shift = false;
  9230. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9231. kv_self.cells[i].delta = 0;
  9232. }
  9233. }
  9234. }
  9235. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9236. {
  9237. ggml_backend_sched_reset(lctx.sched);
  9238. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9239. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9240. llama_set_s_copy(lctx);
  9241. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9242. need_reserve = true;
  9243. }
  9244. {
  9245. auto & kv_self = lctx.kv_self;
  9246. kv_self.do_copy = false;
  9247. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9248. kv_self.cells[i].src = i;
  9249. }
  9250. }
  9251. }
  9252. // defragment the KV cache if needed
  9253. if (lctx.kv_self.do_defrag) {
  9254. llama_kv_cache_defrag_internal(lctx);
  9255. need_reserve = true;
  9256. lctx.kv_self.do_defrag = false;
  9257. }
  9258. // reserve a worst case graph again
  9259. if (need_reserve) {
  9260. // TODO: extract to a function
  9261. // build worst-case graph
  9262. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9263. int n_past = lctx.cparams.n_ctx - n_tokens;
  9264. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9265. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9266. // initialize scheduler with the worst-case graph
  9267. ggml_backend_sched_reset(lctx.sched);
  9268. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9269. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9270. }
  9271. }
  9272. }
  9273. //
  9274. // tokenizer
  9275. //
  9276. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9277. return vocab.type;
  9278. }
  9279. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9280. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9281. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9282. }
  9283. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9284. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9285. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9286. }
  9287. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9288. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9289. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9290. }
  9291. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9292. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9293. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9294. }
  9295. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9296. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9297. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9298. }
  9299. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9300. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9301. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9302. const auto& token_data = vocab.id_to_token.at(id);
  9303. switch (llama_vocab_get_type(vocab)) {
  9304. case LLAMA_VOCAB_TYPE_SPM: {
  9305. auto buf = token_data.text.substr(3, 2);
  9306. return strtol(buf.c_str(), NULL, 16);
  9307. }
  9308. case LLAMA_VOCAB_TYPE_BPE: {
  9309. GGML_ASSERT(false);
  9310. return unicode_utf8_to_byte(token_data.text);
  9311. }
  9312. case LLAMA_VOCAB_TYPE_WPM: {
  9313. GGML_ASSERT(false);
  9314. }
  9315. default:
  9316. GGML_ASSERT(false);
  9317. }
  9318. }
  9319. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9320. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9321. static const char * hex = "0123456789ABCDEF";
  9322. switch (llama_vocab_get_type(vocab)) {
  9323. case LLAMA_VOCAB_TYPE_SPM: {
  9324. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9325. auto token = vocab.token_to_id.find(buf);
  9326. if (token != vocab.token_to_id.end()) {
  9327. return (*token).second;
  9328. }
  9329. // Try to fall back to just the byte as a string
  9330. const char buf2[2] = { (char)ch, 0 };
  9331. return vocab.token_to_id.at(buf2);
  9332. }
  9333. case LLAMA_VOCAB_TYPE_WPM:
  9334. case LLAMA_VOCAB_TYPE_BPE: {
  9335. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9336. }
  9337. default:
  9338. GGML_ASSERT(false);
  9339. }
  9340. }
  9341. static void llama_escape_whitespace(std::string & text) {
  9342. replace_all(text, " ", "\xe2\x96\x81");
  9343. }
  9344. static void llama_unescape_whitespace(std::string & word) {
  9345. replace_all(word, "\xe2\x96\x81", " ");
  9346. }
  9347. struct llm_symbol {
  9348. using index = int;
  9349. index prev;
  9350. index next;
  9351. const char * text;
  9352. size_t n;
  9353. };
  9354. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9355. // SPM tokenizer
  9356. // original implementation:
  9357. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9358. struct llm_bigram_spm {
  9359. struct comparator {
  9360. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9361. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9362. }
  9363. };
  9364. using queue_storage = std::vector<llm_bigram_spm>;
  9365. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9366. llm_symbol::index left;
  9367. llm_symbol::index right;
  9368. float score;
  9369. size_t size;
  9370. };
  9371. struct llm_tokenizer_spm {
  9372. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9373. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9374. // split string into utf8 chars
  9375. int index = 0;
  9376. size_t offs = 0;
  9377. while (offs < text.size()) {
  9378. llm_symbol sym;
  9379. size_t len = utf8_len(text[offs]);
  9380. sym.text = text.c_str() + offs;
  9381. sym.n = std::min(len, text.size() - offs);
  9382. offs += sym.n;
  9383. sym.prev = index - 1;
  9384. sym.next = offs == text.size() ? -1 : index + 1;
  9385. index++;
  9386. symbols.emplace_back(sym);
  9387. }
  9388. // seed the work queue with all possible 2-character tokens.
  9389. for (size_t i = 1; i < symbols.size(); ++i) {
  9390. try_add_bigram(i - 1, i);
  9391. }
  9392. // keep substituting the highest frequency pairs for as long as we can.
  9393. while (!work_queue.empty()) {
  9394. auto bigram = work_queue.top();
  9395. work_queue.pop();
  9396. auto & left_sym = symbols[bigram.left];
  9397. auto & right_sym = symbols[bigram.right];
  9398. // if one of the symbols already got merged, skip it.
  9399. if (left_sym.n == 0 || right_sym.n == 0 ||
  9400. left_sym.n + right_sym.n != bigram.size) {
  9401. continue;
  9402. }
  9403. // merge the right sym into the left one
  9404. left_sym.n += right_sym.n;
  9405. right_sym.n = 0;
  9406. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9407. // remove the right sym from the chain
  9408. left_sym.next = right_sym.next;
  9409. if (right_sym.next >= 0) {
  9410. symbols[right_sym.next].prev = bigram.left;
  9411. }
  9412. // find more substitutions
  9413. try_add_bigram(left_sym.prev, bigram.left);
  9414. try_add_bigram(bigram.left, left_sym.next);
  9415. }
  9416. for (int i = 0; i != -1; i = symbols[i].next) {
  9417. auto & symbol = symbols[i];
  9418. resegment(symbol, output);
  9419. }
  9420. }
  9421. private:
  9422. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9423. auto text = std::string(symbol.text, symbol.n);
  9424. auto token = vocab.token_to_id.find(text);
  9425. // Do we need to support is_unused?
  9426. if (token != vocab.token_to_id.end()) {
  9427. output.push_back((*token).second);
  9428. return;
  9429. }
  9430. const auto p = rev_merge.find(text);
  9431. if (p == rev_merge.end()) {
  9432. // output any symbols that did not form tokens as bytes.
  9433. output.reserve(output.size() + symbol.n);
  9434. for (int j = 0; j < (int)symbol.n; ++j) {
  9435. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9436. output.push_back(token_id);
  9437. }
  9438. return;
  9439. }
  9440. resegment(symbols[p->second.first], output);
  9441. resegment(symbols[p->second.second], output);
  9442. }
  9443. void try_add_bigram(int left, int right) {
  9444. if (left == -1 || right == -1) {
  9445. return;
  9446. }
  9447. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9448. auto token = vocab.token_to_id.find(text);
  9449. if (token == vocab.token_to_id.end()) {
  9450. return;
  9451. }
  9452. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9453. return;
  9454. }
  9455. const auto & tok_data = vocab.id_to_token[(*token).second];
  9456. llm_bigram_spm bigram;
  9457. bigram.left = left;
  9458. bigram.right = right;
  9459. bigram.score = tok_data.score;
  9460. bigram.size = text.size();
  9461. work_queue.push(bigram);
  9462. // Do we need to support is_unused?
  9463. rev_merge[text] = std::make_pair(left, right);
  9464. }
  9465. const llama_vocab & vocab;
  9466. std::vector<llm_symbol> symbols;
  9467. llm_bigram_spm::queue work_queue;
  9468. std::map<std::string, std::pair<int, int>> rev_merge;
  9469. };
  9470. // BPE tokenizer
  9471. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9472. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9473. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9474. struct llm_bigram_bpe {
  9475. struct comparator {
  9476. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9477. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9478. }
  9479. };
  9480. using queue_storage = std::vector<llm_bigram_bpe>;
  9481. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9482. llm_symbol::index left;
  9483. llm_symbol::index right;
  9484. std::string text;
  9485. int rank;
  9486. size_t size;
  9487. };
  9488. struct llm_tokenizer_bpe {
  9489. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9490. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9491. int final_prev_index = -1;
  9492. auto word_collection = bpe_gpt2_preprocess(text);
  9493. symbols_final.clear();
  9494. for (auto & word : word_collection) {
  9495. work_queue = llm_bigram_bpe::queue();
  9496. symbols.clear();
  9497. int index = 0;
  9498. size_t offset = 0;
  9499. while (offset < word.size()) {
  9500. llm_symbol sym;
  9501. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9502. sym.text = word.c_str() + offset;
  9503. sym.n = char_len;
  9504. offset += sym.n;
  9505. sym.prev = index - 1;
  9506. sym.next = offset == word.size() ? -1 : index + 1;
  9507. index++;
  9508. symbols.emplace_back(sym);
  9509. }
  9510. for (size_t i = 1; i < symbols.size(); ++i) {
  9511. add_new_bigram(i - 1, i);
  9512. }
  9513. // build token(s)
  9514. while (!work_queue.empty()) {
  9515. auto bigram = work_queue.top();
  9516. work_queue.pop();
  9517. auto & left_symbol = symbols[bigram.left];
  9518. auto & right_symbol = symbols[bigram.right];
  9519. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9520. continue;
  9521. }
  9522. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9523. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9524. if (left_token + right_token != bigram.text) {
  9525. continue; // Skip this bigram if it's outdated
  9526. }
  9527. // merge the right sym into the left one
  9528. left_symbol.n += right_symbol.n;
  9529. right_symbol.n = 0;
  9530. // remove the right sym from the chain
  9531. left_symbol.next = right_symbol.next;
  9532. if (right_symbol.next >= 0) {
  9533. symbols[right_symbol.next].prev = bigram.left;
  9534. }
  9535. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9536. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9537. }
  9538. // add the finished tokens to the final list keeping correct order for next and prev
  9539. for (auto & sym : symbols) {
  9540. if (sym.n > 0) {
  9541. sym.prev = final_prev_index;
  9542. sym.next = -1;
  9543. if (final_prev_index != -1) {
  9544. symbols_final[final_prev_index].next = symbols_final.size();
  9545. }
  9546. symbols_final.emplace_back(sym);
  9547. final_prev_index = symbols_final.size() - 1;
  9548. }
  9549. }
  9550. }
  9551. symbols = symbols_final;
  9552. if (!symbols.empty()) {
  9553. for (int i = 0; i != -1; i = symbols[i].next) {
  9554. auto & symbol = symbols[i];
  9555. if (symbol.n == 0) {
  9556. continue;
  9557. }
  9558. const std::string str = std::string(symbol.text, symbol.n);
  9559. const auto token = vocab.token_to_id.find(str);
  9560. if (token == vocab.token_to_id.end()) {
  9561. for (auto j = str.begin(); j != str.end(); ++j) {
  9562. std::string byte_str(1, *j);
  9563. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9564. if (token_multibyte == vocab.token_to_id.end()) {
  9565. throw std::runtime_error("ERROR: byte not found in vocab");
  9566. }
  9567. output.push_back((*token_multibyte).second);
  9568. }
  9569. } else {
  9570. output.push_back((*token).second);
  9571. }
  9572. }
  9573. }
  9574. }
  9575. private:
  9576. void add_new_bigram(int left, int right) {
  9577. if (left == -1 || right == -1) {
  9578. return;
  9579. }
  9580. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9581. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9582. int rank_found = -1;
  9583. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9584. if (rank_found < 0) {
  9585. return;
  9586. }
  9587. llm_bigram_bpe bigram;
  9588. bigram.left = left;
  9589. bigram.right = right;
  9590. bigram.text = left_token + right_token;
  9591. bigram.size = left_token.size() + right_token.size();
  9592. bigram.rank = rank_found;
  9593. work_queue.push(bigram);
  9594. }
  9595. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9596. std::vector<std::string> bpe_words;
  9597. std::vector<std::string> bpe_encoded_words;
  9598. std::string token = "";
  9599. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  9600. bool collecting_numeric = false;
  9601. bool collecting_letter = false;
  9602. bool collecting_special = false;
  9603. bool collecting_whitespace_lookahead = false;
  9604. bool collecting = false;
  9605. std::vector<std::string> text_utf;
  9606. text_utf.reserve(text.size());
  9607. bpe_words.reserve(text.size());
  9608. bpe_encoded_words.reserve(text.size());
  9609. const auto cpts = unicode_cpts_from_utf8(text);
  9610. for (size_t i = 0; i < cpts.size(); ++i)
  9611. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  9612. for (int i = 0; i < (int)text_utf.size(); i++) {
  9613. const std::string & utf_char = text_utf[i];
  9614. bool split_condition = false;
  9615. int bytes_remain = text_utf.size() - i;
  9616. // forward backward lookups
  9617. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  9618. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  9619. // handling contractions
  9620. if (!split_condition && bytes_remain >= 2) {
  9621. // 's|'t|'m|'d
  9622. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  9623. split_condition = true;
  9624. }
  9625. if (split_condition) {
  9626. if (token.size()) {
  9627. bpe_words.emplace_back(token); // push previous content as token
  9628. }
  9629. token = utf_char + utf_char_next;
  9630. bpe_words.emplace_back(token);
  9631. token = "";
  9632. i++;
  9633. continue;
  9634. }
  9635. }
  9636. if (!split_condition && bytes_remain >= 3) {
  9637. // 're|'ve|'ll
  9638. if (utf_char == "\'" && (
  9639. (utf_char_next == "r" && utf_char_next_next == "e") ||
  9640. (utf_char_next == "v" && utf_char_next_next == "e") ||
  9641. (utf_char_next == "l" && utf_char_next_next == "l"))
  9642. ) {
  9643. split_condition = true;
  9644. }
  9645. if (split_condition) {
  9646. // current token + next token can be defined
  9647. if (token.size()) {
  9648. bpe_words.emplace_back(token); // push previous content as token
  9649. }
  9650. token = utf_char + utf_char_next + utf_char_next_next;
  9651. bpe_words.emplace_back(token); // the contraction
  9652. token = "";
  9653. i += 2;
  9654. continue;
  9655. }
  9656. }
  9657. if (!split_condition && !collecting) {
  9658. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  9659. collecting_letter = true;
  9660. collecting = true;
  9661. }
  9662. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9663. collecting_numeric = true;
  9664. collecting = true;
  9665. }
  9666. else if (
  9667. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  9668. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  9669. ) {
  9670. collecting_special = true;
  9671. collecting = true;
  9672. }
  9673. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  9674. collecting_whitespace_lookahead = true;
  9675. collecting = true;
  9676. }
  9677. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  9678. split_condition = true;
  9679. }
  9680. }
  9681. else if (!split_condition && collecting) {
  9682. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  9683. split_condition = true;
  9684. }
  9685. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  9686. split_condition = true;
  9687. }
  9688. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  9689. split_condition = true;
  9690. }
  9691. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9692. split_condition = true;
  9693. }
  9694. }
  9695. if (utf_char_next == "") {
  9696. split_condition = true; // final
  9697. token += utf_char;
  9698. }
  9699. if (split_condition) {
  9700. if (token.size()) {
  9701. bpe_words.emplace_back(token);
  9702. }
  9703. token = utf_char;
  9704. collecting = false;
  9705. collecting_letter = false;
  9706. collecting_numeric = false;
  9707. collecting_special = false;
  9708. collecting_whitespace_lookahead = false;
  9709. }
  9710. else {
  9711. token += utf_char;
  9712. }
  9713. }
  9714. for (std::string & word : bpe_words) {
  9715. std::string encoded_token = "";
  9716. for (char & c : word) {
  9717. encoded_token += unicode_byte_to_utf8(c);
  9718. }
  9719. bpe_encoded_words.emplace_back(encoded_token);
  9720. }
  9721. return bpe_encoded_words;
  9722. }
  9723. const llama_vocab & vocab;
  9724. std::vector<llm_symbol> symbols;
  9725. std::vector<llm_symbol> symbols_final;
  9726. llm_bigram_bpe::queue work_queue;
  9727. };
  9728. struct llm_tokenizer_wpm {
  9729. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  9730. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9731. auto * token_map = &vocab.token_to_id;
  9732. // normalize and split by whitespace
  9733. std::vector<std::string> words = preprocess(text);
  9734. // bos token prepended already
  9735. // find the longest tokens that form the words
  9736. for (const std::string &word : words) {
  9737. // skip empty words
  9738. if (word.size() == 0) {
  9739. continue;
  9740. }
  9741. // prepend phantom space
  9742. std::string word1 = "\xe2\x96\x81" + word;
  9743. int n = word1.size();
  9744. // we're at the start of a new word
  9745. int i = 0;
  9746. bool match_any = false;
  9747. // move through character position in word
  9748. while (i < n) {
  9749. // loop through possible match length
  9750. bool match = false;
  9751. for (int j = n; j > i; j--) {
  9752. auto it = token_map->find(word1.substr(i, j - i));
  9753. if (it != token_map->end()) {
  9754. output.push_back(it->second);
  9755. match = true;
  9756. match_any = true;
  9757. i = j;
  9758. break;
  9759. }
  9760. }
  9761. // must be an unknown character
  9762. if (!match) {
  9763. i++;
  9764. }
  9765. }
  9766. // we didn't find any matches for this word
  9767. if (!match_any) {
  9768. output.push_back(vocab.special_unk_id);
  9769. }
  9770. }
  9771. }
  9772. std::vector<std::string> preprocess(const std::string & text) {
  9773. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  9774. // strip accents, strip control, uniformize whitespace,
  9775. // to lowercase, pad chinese characters, pad punctuation
  9776. std::string new_str = "";
  9777. for (uint32_t code : cpts_nfd) {
  9778. int type = unicode_cpt_type(code);
  9779. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  9780. continue;
  9781. }
  9782. code = unicode_tolower(code);
  9783. if (type == CODEPOINT_TYPE_WHITESPACE) {
  9784. code = ' ';
  9785. }
  9786. std::string s = unicode_cpt_to_utf8(code);
  9787. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  9788. new_str += " ";
  9789. new_str += s;
  9790. new_str += " ";
  9791. } else {
  9792. new_str += s;
  9793. }
  9794. }
  9795. // split by whitespace
  9796. uint64_t l = 0;
  9797. uint64_t r = 0;
  9798. std::vector<std::string> words;
  9799. while (r < new_str.size()) {
  9800. // if is whitespace
  9801. if (isspace(new_str[r], std::locale::classic())) {
  9802. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  9803. l = r + 1;
  9804. r = l;
  9805. } else {
  9806. r += 1;
  9807. }
  9808. }
  9809. if (r > l) {
  9810. words.push_back(new_str.substr(l, (r - l)));
  9811. }
  9812. return words;
  9813. }
  9814. bool is_ascii_punct(uint32_t code) {
  9815. if (code > 0xFF) {
  9816. return false;
  9817. }
  9818. auto c = char(static_cast<unsigned char>(code));
  9819. return ispunct(c, std::locale::classic());
  9820. }
  9821. bool is_chinese_char(uint32_t cpt) {
  9822. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  9823. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  9824. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  9825. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  9826. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  9827. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  9828. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  9829. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  9830. (cpt >= 0x3000 && cpt <= 0x303F) ||
  9831. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  9832. return true; // NOLINT
  9833. }
  9834. return false;
  9835. }
  9836. const llama_vocab & vocab;
  9837. };
  9838. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  9839. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  9840. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  9841. } FRAGMENT_BUFFER_VARIANT_TYPE;
  9842. struct fragment_buffer_variant {
  9843. fragment_buffer_variant(llama_vocab::id _token)
  9844. :
  9845. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  9846. token(_token),
  9847. raw_text(_dummy),
  9848. offset(0),
  9849. length(0) {}
  9850. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  9851. :
  9852. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  9853. token((llama_vocab::id) - 1),
  9854. raw_text(_raw_text),
  9855. offset(_offset),
  9856. length(_length){
  9857. GGML_ASSERT(_offset >= 0);
  9858. GGML_ASSERT(_length >= 1);
  9859. GGML_ASSERT(offset + length <= raw_text.length());
  9860. }
  9861. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  9862. const llama_vocab::id token;
  9863. const std::string _dummy;
  9864. const std::string & raw_text;
  9865. const uint64_t offset;
  9866. const uint64_t length;
  9867. };
  9868. // #define PRETOKENIZERDEBUG
  9869. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  9870. // for each special token
  9871. for (const auto & st: vocab.special_tokens_cache) {
  9872. const auto & special_token = st.first;
  9873. const auto & special_id = st.second;
  9874. // for each text fragment
  9875. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  9876. while (it != buffer.end()) {
  9877. auto & fragment = (*it);
  9878. // if a fragment is text ( not yet processed )
  9879. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9880. auto * raw_text = &(fragment.raw_text);
  9881. auto raw_text_base_offset = fragment.offset;
  9882. auto raw_text_base_length = fragment.length;
  9883. // loop over the text
  9884. while (true) {
  9885. // find the first occurrence of a given special token in this fragment
  9886. // passing offset argument only limit the "search area" but match coordinates
  9887. // are still relative to the source full raw_text
  9888. auto match = raw_text->find(special_token, raw_text_base_offset);
  9889. // no occurrences found, stop processing this fragment for a given special token
  9890. if (match == std::string::npos) break;
  9891. // check if match is within bounds of offset <-> length
  9892. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  9893. #ifdef PRETOKENIZERDEBUG
  9894. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9895. #endif
  9896. auto source = std::distance(buffer.begin(), it);
  9897. // if match is further than base offset
  9898. // then we have some text to the left of it
  9899. if (match > raw_text_base_offset) {
  9900. // left
  9901. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  9902. const int64_t left_reminder_length = match - raw_text_base_offset;
  9903. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  9904. #ifdef PRETOKENIZERDEBUG
  9905. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  9906. #endif
  9907. it++;
  9908. }
  9909. // special token
  9910. buffer.emplace_after(it, special_id);
  9911. it++;
  9912. // right
  9913. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  9914. const int64_t right_reminder_offset = match + special_token.length();
  9915. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  9916. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  9917. #ifdef PRETOKENIZERDEBUG
  9918. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  9919. #endif
  9920. it++;
  9921. if (source == 0) {
  9922. buffer.erase_after(buffer.before_begin());
  9923. } else {
  9924. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9925. }
  9926. // repeat for the right side
  9927. raw_text_base_offset = right_reminder_offset;
  9928. raw_text_base_length = right_reminder_length;
  9929. #ifdef PRETOKENIZERDEBUG
  9930. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9931. #endif
  9932. } else {
  9933. if (source == 0) {
  9934. buffer.erase_after(buffer.before_begin());
  9935. } else {
  9936. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9937. }
  9938. break;
  9939. }
  9940. }
  9941. }
  9942. it++;
  9943. }
  9944. }
  9945. }
  9946. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  9947. std::vector<llama_vocab::id> output;
  9948. std::forward_list<fragment_buffer_variant> fragment_buffer;
  9949. if (!raw_text.empty()) {
  9950. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  9951. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  9952. }
  9953. switch (vocab.type) {
  9954. case LLAMA_VOCAB_TYPE_SPM:
  9955. {
  9956. // OG tokenizer behavior:
  9957. //
  9958. // tokenizer.encode('', add_special_tokens=True) returns [1]
  9959. // tokenizer.encode('', add_special_tokens=False) returns []
  9960. if (add_special && vocab.special_add_bos != 0) {
  9961. GGML_ASSERT(vocab.special_bos_id != -1);
  9962. output.push_back(vocab.special_bos_id);
  9963. }
  9964. for (const auto & fragment : fragment_buffer) {
  9965. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9966. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  9967. // TODO: It's likely possible to get rid of this string copy entirely
  9968. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  9969. // and passing 'add space prefix' as bool argument
  9970. //
  9971. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9972. if (&fragment == &fragment_buffer.front()) {
  9973. if (vocab.add_space_prefix) {
  9974. raw_text = " " + raw_text; // prefix with space if the first token is not special
  9975. }
  9976. }
  9977. #ifdef PRETOKENIZERDEBUG
  9978. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9979. #endif
  9980. llm_tokenizer_spm tokenizer(vocab);
  9981. llama_escape_whitespace(raw_text);
  9982. tokenizer.tokenize(raw_text, output);
  9983. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9984. output.push_back(fragment.token);
  9985. }
  9986. }
  9987. if (add_special && vocab.special_add_eos == 1) {
  9988. GGML_ASSERT(vocab.special_eos_id != -1);
  9989. output.push_back(vocab.special_eos_id);
  9990. }
  9991. } break;
  9992. case LLAMA_VOCAB_TYPE_BPE:
  9993. {
  9994. if (add_special && vocab.special_add_bos == 1) {
  9995. GGML_ASSERT(vocab.special_bos_id != -1);
  9996. output.push_back(vocab.special_bos_id);
  9997. }
  9998. for (const auto & fragment : fragment_buffer) {
  9999. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10000. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10001. #ifdef PRETOKENIZERDEBUG
  10002. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10003. #endif
  10004. llm_tokenizer_bpe tokenizer(vocab);
  10005. tokenizer.tokenize(raw_text, output);
  10006. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10007. output.push_back(fragment.token);
  10008. }
  10009. }
  10010. GGML_ASSERT(vocab.special_add_eos != 1);
  10011. } break;
  10012. case LLAMA_VOCAB_TYPE_WPM:
  10013. {
  10014. if (add_special) {
  10015. GGML_ASSERT(vocab.special_cls_id != -1);
  10016. output.push_back(vocab.special_cls_id);
  10017. }
  10018. for (const auto & fragment : fragment_buffer) {
  10019. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10020. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10021. #ifdef PRETOKENIZERDEBUG
  10022. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10023. #endif
  10024. llm_tokenizer_wpm tokenizer(vocab);
  10025. tokenizer.tokenize(raw_text, output);
  10026. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10027. output.push_back(fragment.token);
  10028. }
  10029. }
  10030. if (add_special) {
  10031. GGML_ASSERT(vocab.special_sep_id != -1);
  10032. output.push_back(vocab.special_sep_id);
  10033. }
  10034. } break;
  10035. case LLAMA_VOCAB_TYPE_NONE:
  10036. GGML_ASSERT(false);
  10037. }
  10038. return output;
  10039. }
  10040. //
  10041. // grammar - internal
  10042. //
  10043. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10044. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10045. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10046. const std::string & src,
  10047. llama_partial_utf8 partial_start) {
  10048. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10049. const char * pos = src.c_str();
  10050. std::vector<uint32_t> code_points;
  10051. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10052. code_points.reserve(src.size() + 1);
  10053. uint32_t value = partial_start.value;
  10054. int n_remain = partial_start.n_remain;
  10055. // continue previous decode, if applicable
  10056. while (*pos != 0 && n_remain > 0) {
  10057. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10058. if ((next_byte >> 6) != 2) {
  10059. // invalid sequence, abort
  10060. code_points.push_back(0);
  10061. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10062. }
  10063. value = (value << 6) + (next_byte & 0x3F);
  10064. ++pos;
  10065. --n_remain;
  10066. }
  10067. if (partial_start.n_remain > 0 && n_remain == 0) {
  10068. code_points.push_back(value);
  10069. }
  10070. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10071. while (*pos != 0) {
  10072. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10073. uint8_t highbits = first_byte >> 4;
  10074. n_remain = lookup[highbits] - 1;
  10075. if (n_remain < 0) {
  10076. // invalid sequence, abort
  10077. code_points.clear();
  10078. code_points.push_back(0);
  10079. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10080. }
  10081. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10082. value = first_byte & mask;
  10083. ++pos;
  10084. while (*pos != 0 && n_remain > 0) {
  10085. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10086. ++pos;
  10087. --n_remain;
  10088. }
  10089. if (n_remain == 0) {
  10090. code_points.push_back(value);
  10091. }
  10092. }
  10093. code_points.push_back(0);
  10094. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10095. }
  10096. // returns true iff pos points to the end of one of the definitions of a rule
  10097. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10098. switch (pos->type) {
  10099. case LLAMA_GRETYPE_END: return true; // NOLINT
  10100. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10101. default: return false;
  10102. }
  10103. }
  10104. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10105. // asserts that pos is pointing to a char range element
  10106. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10107. const llama_grammar_element * pos,
  10108. const uint32_t chr) {
  10109. bool found = false;
  10110. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10111. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10112. do {
  10113. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10114. // inclusive range, e.g. [a-z]
  10115. found = found || (pos->value <= chr && chr <= pos[1].value);
  10116. pos += 2;
  10117. } else {
  10118. // exact char match, e.g. [a] or "a"
  10119. found = found || pos->value == chr;
  10120. pos += 1;
  10121. }
  10122. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10123. return std::make_pair(found == is_positive_char, pos);
  10124. }
  10125. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10126. // range at pos (regular or inverse range)
  10127. // asserts that pos is pointing to a char range element
  10128. static bool llama_grammar_match_partial_char(
  10129. const llama_grammar_element * pos,
  10130. const llama_partial_utf8 partial_utf8) {
  10131. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10132. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10133. uint32_t partial_value = partial_utf8.value;
  10134. int n_remain = partial_utf8.n_remain;
  10135. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10136. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10137. return false;
  10138. }
  10139. // range of possible code points this partial UTF-8 sequence could complete to
  10140. uint32_t low = partial_value << (n_remain * 6);
  10141. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10142. if (low == 0) {
  10143. if (n_remain == 2) {
  10144. low = 1 << 11;
  10145. } else if (n_remain == 3) {
  10146. low = 1 << 16;
  10147. }
  10148. }
  10149. do {
  10150. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10151. // inclusive range, e.g. [a-z]
  10152. if (pos->value <= high && low <= pos[1].value) {
  10153. return is_positive_char;
  10154. }
  10155. pos += 2;
  10156. } else {
  10157. // exact char match, e.g. [a] or "a"
  10158. if (low <= pos->value && pos->value <= high) {
  10159. return is_positive_char;
  10160. }
  10161. pos += 1;
  10162. }
  10163. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10164. return !is_positive_char;
  10165. }
  10166. // transforms a grammar pushdown stack into N possible stacks, all ending
  10167. // at a character range (terminal element)
  10168. static void llama_grammar_advance_stack(
  10169. const std::vector<std::vector<llama_grammar_element>> & rules,
  10170. const std::vector<const llama_grammar_element *> & stack,
  10171. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10172. if (stack.empty()) {
  10173. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10174. new_stacks.emplace_back(stack);
  10175. }
  10176. return;
  10177. }
  10178. const llama_grammar_element * pos = stack.back();
  10179. switch (pos->type) {
  10180. case LLAMA_GRETYPE_RULE_REF: {
  10181. const size_t rule_id = static_cast<size_t>(pos->value);
  10182. const llama_grammar_element * subpos = rules[rule_id].data();
  10183. do {
  10184. // init new stack without the top (pos)
  10185. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10186. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10187. // if this rule ref is followed by another element, add that to stack
  10188. new_stack.push_back(pos + 1);
  10189. }
  10190. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10191. // if alternate is nonempty, add to stack
  10192. new_stack.push_back(subpos);
  10193. }
  10194. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10195. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10196. // scan to end of alternate def
  10197. subpos++;
  10198. }
  10199. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10200. // there's another alternate def of this rule to process
  10201. subpos++;
  10202. } else {
  10203. break;
  10204. }
  10205. } while (true);
  10206. break;
  10207. }
  10208. case LLAMA_GRETYPE_CHAR:
  10209. case LLAMA_GRETYPE_CHAR_NOT:
  10210. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10211. // only add the stack if it's not a duplicate of one we already have
  10212. new_stacks.emplace_back(stack);
  10213. }
  10214. break;
  10215. default:
  10216. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10217. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10218. // those
  10219. GGML_ASSERT(false);
  10220. }
  10221. }
  10222. // takes a set of possible pushdown stacks on a grammar, which are required to
  10223. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10224. // produces the N possible stacks if the given char is accepted at those
  10225. // positions
  10226. void llama_grammar_accept(
  10227. const std::vector<std::vector<llama_grammar_element>> & rules,
  10228. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10229. const uint32_t chr,
  10230. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10231. new_stacks.clear();
  10232. for (const auto & stack : stacks) {
  10233. if (stack.empty()) {
  10234. continue;
  10235. }
  10236. auto match = llama_grammar_match_char(stack.back(), chr);
  10237. if (match.first) {
  10238. const llama_grammar_element * pos = match.second;
  10239. // update top of stack to next element, if any
  10240. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10241. if (!llama_grammar_is_end_of_sequence(pos)) {
  10242. new_stack.push_back(pos);
  10243. }
  10244. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10245. }
  10246. }
  10247. }
  10248. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10249. const std::vector<std::vector<llama_grammar_element>> & rules,
  10250. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10251. const std::vector<llama_grammar_candidate> & candidates);
  10252. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10253. const std::vector<std::vector<llama_grammar_element>> & rules,
  10254. const std::vector<const llama_grammar_element *> & stack,
  10255. const std::vector<llama_grammar_candidate> & candidates) {
  10256. std::vector<llama_grammar_candidate> rejects;
  10257. rejects.reserve(candidates.size());
  10258. if (stack.empty()) {
  10259. for (const auto & tok : candidates) {
  10260. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10261. rejects.push_back(tok);
  10262. }
  10263. }
  10264. return rejects;
  10265. }
  10266. const llama_grammar_element * stack_pos = stack.back();
  10267. std::vector<llama_grammar_candidate> next_candidates;
  10268. next_candidates.reserve(candidates.size());
  10269. for (const auto & tok : candidates) {
  10270. if (*tok.code_points == 0) {
  10271. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10272. // that cannot satisfy this position in grammar
  10273. if (tok.partial_utf8.n_remain != 0 &&
  10274. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10275. rejects.push_back(tok);
  10276. }
  10277. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10278. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10279. } else {
  10280. rejects.push_back(tok);
  10281. }
  10282. }
  10283. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10284. // update top of stack to next element, if any
  10285. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10286. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10287. stack_after.push_back(stack_pos_after);
  10288. }
  10289. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10290. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10291. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10292. for (const auto & tok : next_rejects) {
  10293. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10294. }
  10295. return rejects;
  10296. }
  10297. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10298. const std::vector<std::vector<llama_grammar_element>> & rules,
  10299. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10300. const std::vector<llama_grammar_candidate> & candidates) {
  10301. GGML_ASSERT(!stacks.empty()); // REVIEW
  10302. if (candidates.empty()) {
  10303. return std::vector<llama_grammar_candidate>();
  10304. }
  10305. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10306. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10307. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10308. }
  10309. return rejects;
  10310. }
  10311. //
  10312. // grammar - external
  10313. //
  10314. struct llama_grammar * llama_grammar_init(
  10315. const llama_grammar_element ** rules,
  10316. size_t n_rules,
  10317. size_t start_rule_index) {
  10318. const llama_grammar_element * pos;
  10319. // copy rule definitions into vectors
  10320. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10321. for (size_t i = 0; i < n_rules; i++) {
  10322. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10323. vec_rules[i].push_back(*pos);
  10324. }
  10325. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10326. }
  10327. // loop over alternates of start rule to build initial stacks
  10328. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10329. pos = vec_rules[start_rule_index].data();
  10330. do {
  10331. std::vector<const llama_grammar_element *> stack;
  10332. if (!llama_grammar_is_end_of_sequence(pos)) {
  10333. // if alternate is nonempty, add to stack
  10334. stack.push_back(pos);
  10335. }
  10336. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10337. while (!llama_grammar_is_end_of_sequence(pos)) {
  10338. // scan to end of alternate def
  10339. pos++;
  10340. }
  10341. if (pos->type == LLAMA_GRETYPE_ALT) {
  10342. // there's another alternate def of this rule to process
  10343. pos++;
  10344. } else {
  10345. break;
  10346. }
  10347. } while (true);
  10348. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10349. }
  10350. void llama_grammar_free(struct llama_grammar * grammar) {
  10351. delete grammar;
  10352. }
  10353. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10354. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10355. // redirect elements in stacks to point to new rules
  10356. for (size_t is = 0; is < result->stacks.size(); is++) {
  10357. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10358. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10359. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10360. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10361. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10362. }
  10363. }
  10364. }
  10365. }
  10366. }
  10367. return result;
  10368. }
  10369. //
  10370. // sampling
  10371. //
  10372. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10373. if (seed == LLAMA_DEFAULT_SEED) {
  10374. seed = time(NULL);
  10375. }
  10376. ctx->rng.seed(seed);
  10377. }
  10378. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10379. GGML_ASSERT(candidates->size > 0);
  10380. const int64_t t_start_sample_us = ggml_time_us();
  10381. // Sort the logits in descending order
  10382. if (!candidates->sorted) {
  10383. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10384. return a.logit > b.logit;
  10385. });
  10386. candidates->sorted = true;
  10387. }
  10388. float max_l = candidates->data[0].logit;
  10389. float cum_sum = 0.0f;
  10390. for (size_t i = 0; i < candidates->size; ++i) {
  10391. float p = expf(candidates->data[i].logit - max_l);
  10392. candidates->data[i].p = p;
  10393. cum_sum += p;
  10394. }
  10395. for (size_t i = 0; i < candidates->size; ++i) {
  10396. candidates->data[i].p /= cum_sum;
  10397. }
  10398. if (ctx) {
  10399. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10400. }
  10401. }
  10402. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10403. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10404. // if (k >= (int32_t)candidates->size) {
  10405. // return;
  10406. // }
  10407. const int64_t t_start_sample_us = ggml_time_us();
  10408. if (k <= 0) {
  10409. k = candidates->size;
  10410. }
  10411. k = std::max(k, (int) min_keep);
  10412. k = std::min(k, (int) candidates->size);
  10413. // Sort scores in descending order
  10414. if (!candidates->sorted) {
  10415. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10416. return a.logit > b.logit;
  10417. };
  10418. if (k <= 128) {
  10419. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10420. } else {
  10421. constexpr int nbuckets = 128;
  10422. constexpr float bucket_low = -10.0f;
  10423. constexpr float bucket_high = 10.0f;
  10424. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10425. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10426. std::vector<int> bucket_idx(candidates->size);
  10427. std::vector<int> histo(nbuckets, 0);
  10428. for (int i = 0; i < (int)candidates->size; ++i) {
  10429. const float val = candidates->data[i].logit;
  10430. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10431. ib = std::max(0, std::min(nbuckets-1, ib));
  10432. bucket_idx[i] = ib;
  10433. ++histo[ib];
  10434. }
  10435. int nhave = 0;
  10436. int ib = nbuckets - 1;
  10437. for ( ; ib >= 0; --ib) {
  10438. nhave += histo[ib];
  10439. if (nhave >= k) break;
  10440. }
  10441. std::vector<llama_token_data> tmp_tokens(nhave);
  10442. auto ptr = tmp_tokens.data();
  10443. std::vector<llama_token_data*> bucket_ptrs;
  10444. bucket_ptrs.reserve(nbuckets - ib);
  10445. for (int j = nbuckets - 1; j >= ib; --j) {
  10446. bucket_ptrs.push_back(ptr);
  10447. ptr += histo[j];
  10448. }
  10449. for (int i = 0; i < (int)candidates->size; ++i) {
  10450. int j = bucket_idx[i];
  10451. if (j >= ib) {
  10452. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10453. }
  10454. }
  10455. ptr = tmp_tokens.data();
  10456. int ndone = 0;
  10457. for (int j = nbuckets-1; j > ib; --j) {
  10458. std::sort(ptr, ptr + histo[j], comp);
  10459. ptr += histo[j];
  10460. ndone += histo[j];
  10461. }
  10462. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10463. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10464. }
  10465. candidates->sorted = true;
  10466. }
  10467. candidates->size = k;
  10468. if (ctx) {
  10469. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10470. }
  10471. }
  10472. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10473. if (p >= 1.0f) {
  10474. return;
  10475. }
  10476. llama_sample_softmax(ctx, candidates);
  10477. const int64_t t_start_sample_us = ggml_time_us();
  10478. // Compute the cumulative probabilities
  10479. float cum_sum = 0.0f;
  10480. size_t last_idx = candidates->size;
  10481. for (size_t i = 0; i < candidates->size; ++i) {
  10482. cum_sum += candidates->data[i].p;
  10483. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10484. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10485. if (cum_sum >= p && i + 1 >= min_keep) {
  10486. last_idx = i + 1;
  10487. break;
  10488. }
  10489. }
  10490. // Resize the output vector to keep only the top-p tokens
  10491. candidates->size = last_idx;
  10492. if (ctx) {
  10493. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10494. }
  10495. }
  10496. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10497. if (p <= 0.0f || !candidates->size) {
  10498. return;
  10499. }
  10500. const int64_t t_start_sample_us = ggml_time_us();
  10501. bool min_p_applied = false;
  10502. // if the candidates aren't sorted, try the unsorted implementation first
  10503. if (!candidates->sorted) {
  10504. std::vector<llama_token_data> filtered_tokens;
  10505. float max_logit = -FLT_MAX;
  10506. for (size_t i = 0; i < candidates->size; ++i) {
  10507. max_logit = std::max(max_logit, candidates->data[i].logit);
  10508. }
  10509. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10510. for (size_t i = 0; i < candidates->size; ++i) {
  10511. if (candidates->data[i].logit >= min_logit) {
  10512. filtered_tokens.push_back(candidates->data[i]);
  10513. }
  10514. }
  10515. // if we have enough values the operation was a success
  10516. if (filtered_tokens.size() >= min_keep) {
  10517. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10518. candidates->size = filtered_tokens.size();
  10519. min_p_applied = true;
  10520. }
  10521. }
  10522. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10523. if (!min_p_applied) {
  10524. // Sort the logits in descending order
  10525. if (!candidates->sorted) {
  10526. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10527. return a.logit > b.logit;
  10528. });
  10529. candidates->sorted = true;
  10530. }
  10531. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10532. size_t i = 1; // first token always matches
  10533. for (; i < candidates->size; ++i) {
  10534. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10535. break; // prob too small
  10536. }
  10537. }
  10538. // Resize the output vector to keep only the matching tokens
  10539. candidates->size = i;
  10540. }
  10541. if (ctx) {
  10542. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10543. }
  10544. }
  10545. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10546. if (z >= 1.0f || candidates->size <= 2) {
  10547. return;
  10548. }
  10549. llama_sample_softmax(nullptr, candidates);
  10550. const int64_t t_start_sample_us = ggml_time_us();
  10551. // Compute the first and second derivatives
  10552. std::vector<float> first_derivatives(candidates->size - 1);
  10553. std::vector<float> second_derivatives(candidates->size - 2);
  10554. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10555. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10556. }
  10557. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10558. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10559. }
  10560. // Calculate absolute value of second derivatives
  10561. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10562. second_derivatives[i] = std::abs(second_derivatives[i]);
  10563. }
  10564. // Normalize the second derivatives
  10565. {
  10566. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10567. if (second_derivatives_sum > 1e-6f) {
  10568. for (float & value : second_derivatives) {
  10569. value /= second_derivatives_sum;
  10570. }
  10571. } else {
  10572. for (float & value : second_derivatives) {
  10573. value = 1.0f / second_derivatives.size();
  10574. }
  10575. }
  10576. }
  10577. float cum_sum = 0.0f;
  10578. size_t last_idx = candidates->size;
  10579. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10580. cum_sum += second_derivatives[i];
  10581. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10582. if (cum_sum > z && i >= min_keep) {
  10583. last_idx = i;
  10584. break;
  10585. }
  10586. }
  10587. // Resize the output vector to keep only the tokens above the tail location
  10588. candidates->size = last_idx;
  10589. if (ctx) {
  10590. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10591. }
  10592. }
  10593. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10594. // Reference implementation:
  10595. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10596. if (p >= 1.0f) {
  10597. return;
  10598. }
  10599. // Compute the softmax of logits and calculate entropy
  10600. llama_sample_softmax(nullptr, candidates);
  10601. const int64_t t_start_sample_us = ggml_time_us();
  10602. float entropy = 0.0f;
  10603. for (size_t i = 0; i < candidates->size; ++i) {
  10604. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  10605. }
  10606. // Compute the absolute difference between negative log probability and entropy for each candidate
  10607. std::vector<float> shifted_scores;
  10608. for (size_t i = 0; i < candidates->size; ++i) {
  10609. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  10610. shifted_scores.push_back(shifted_score);
  10611. }
  10612. // Sort tokens based on the shifted_scores and their corresponding indices
  10613. std::vector<size_t> indices(candidates->size);
  10614. std::iota(indices.begin(), indices.end(), 0);
  10615. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  10616. return shifted_scores[a] < shifted_scores[b];
  10617. });
  10618. // Compute the cumulative probabilities
  10619. float cum_sum = 0.0f;
  10620. size_t last_idx = indices.size();
  10621. for (size_t i = 0; i < indices.size(); ++i) {
  10622. size_t idx = indices[i];
  10623. cum_sum += candidates->data[idx].p;
  10624. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  10625. if (cum_sum > p && i >= min_keep - 1) {
  10626. last_idx = i + 1;
  10627. break;
  10628. }
  10629. }
  10630. // Resize the output vector to keep only the locally typical tokens
  10631. std::vector<llama_token_data> new_candidates;
  10632. for (size_t i = 0; i < last_idx; ++i) {
  10633. size_t idx = indices[i];
  10634. new_candidates.push_back(candidates->data[idx]);
  10635. }
  10636. // Replace the data in candidates with the new_candidates data
  10637. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  10638. candidates->size = new_candidates.size();
  10639. candidates->sorted = false;
  10640. if (ctx) {
  10641. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10642. }
  10643. }
  10644. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  10645. const int64_t t_start_sample_us = ggml_time_us();
  10646. // no need to do anything if there is only one (or zero) candidates
  10647. if(candidates_p->size <= 1) {
  10648. return;
  10649. }
  10650. // Calculate maximum possible entropy
  10651. float max_entropy = -logf(1.0f / candidates_p->size);
  10652. llama_sample_softmax(nullptr, candidates_p);
  10653. // Calculate entropy of the softmax probabilities
  10654. float entropy = 0.0f;
  10655. for (size_t i = 0; i < candidates_p->size; ++i) {
  10656. float prob = candidates_p->data[i].p;
  10657. if (prob > 0.0f) { // Ensure no log(0)
  10658. entropy -= prob * logf(prob);
  10659. }
  10660. }
  10661. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  10662. float normalized_entropy = entropy / max_entropy;
  10663. // Map the normalized entropy to the desired temperature range using the power function
  10664. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  10665. #ifdef DEBUG
  10666. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  10667. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  10668. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  10669. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  10670. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  10671. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  10672. #endif
  10673. // Apply the dynamically calculated temperature scaling
  10674. for (size_t i = 0; i < candidates_p->size; ++i) {
  10675. candidates_p->data[i].logit /= dyn_temp;
  10676. }
  10677. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  10678. double max_l_double = candidates_p->data[0].logit;
  10679. double cum_sum_double = 0.0;
  10680. for (size_t i = 0; i < candidates_p->size; ++i) {
  10681. double p = exp(candidates_p->data[i].logit - max_l_double);
  10682. candidates_p->data[i].p = p; // Store the scaled probability
  10683. cum_sum_double += p;
  10684. }
  10685. for (size_t i = 0; i < candidates_p->size; ++i) {
  10686. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  10687. }
  10688. #ifdef DEBUG
  10689. // Print the updated top 25 probabilities after temperature scaling
  10690. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  10691. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  10692. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  10693. }
  10694. #endif
  10695. if (ctx) {
  10696. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10697. }
  10698. }
  10699. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  10700. const int64_t t_start_sample_us = ggml_time_us();
  10701. for (size_t i = 0; i < candidates_p->size; ++i) {
  10702. candidates_p->data[i].logit /= temp;
  10703. }
  10704. if (ctx) {
  10705. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10706. }
  10707. }
  10708. void llama_sample_repetition_penalties(
  10709. struct llama_context * ctx,
  10710. llama_token_data_array * candidates,
  10711. const llama_token * last_tokens,
  10712. size_t penalty_last_n,
  10713. float penalty_repeat,
  10714. float penalty_freq,
  10715. float penalty_present) {
  10716. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  10717. return;
  10718. }
  10719. const int64_t t_start_sample_us = ggml_time_us();
  10720. // Create a frequency map to count occurrences of each token in last_tokens
  10721. std::unordered_map<llama_token, int> token_count;
  10722. for (size_t i = 0; i < penalty_last_n; ++i) {
  10723. token_count[last_tokens[i]]++;
  10724. }
  10725. // Apply frequency and presence penalties to the candidates
  10726. for (size_t i = 0; i < candidates->size; ++i) {
  10727. const auto token_iter = token_count.find(candidates->data[i].id);
  10728. if (token_iter == token_count.end()) {
  10729. continue;
  10730. }
  10731. const int count = token_iter->second;
  10732. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  10733. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  10734. if (candidates->data[i].logit <= 0) {
  10735. candidates->data[i].logit *= penalty_repeat;
  10736. } else {
  10737. candidates->data[i].logit /= penalty_repeat;
  10738. }
  10739. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  10740. }
  10741. candidates->sorted = false;
  10742. if (ctx) {
  10743. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10744. }
  10745. }
  10746. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  10747. GGML_ASSERT(ctx);
  10748. const int64_t t_start_sample_us = ggml_time_us();
  10749. bool allow_eos = false;
  10750. for (const auto & stack : grammar->stacks) {
  10751. if (stack.empty()) {
  10752. allow_eos = true;
  10753. break;
  10754. }
  10755. }
  10756. const llama_token eos = llama_token_eos(&ctx->model);
  10757. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  10758. candidates_decoded.reserve(candidates->size);
  10759. std::vector<llama_grammar_candidate> candidates_grammar;
  10760. candidates_grammar.reserve(candidates->size);
  10761. for (size_t i = 0; i < candidates->size; ++i) {
  10762. const llama_token id = candidates->data[i].id;
  10763. const std::string piece = llama_token_to_piece(ctx, id);
  10764. if (id == eos) {
  10765. if (!allow_eos) {
  10766. candidates->data[i].logit = -INFINITY;
  10767. }
  10768. } else if (piece.empty() || piece[0] == 0) {
  10769. candidates->data[i].logit = -INFINITY;
  10770. } else {
  10771. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  10772. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  10773. }
  10774. }
  10775. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  10776. for (const auto & reject : rejects) {
  10777. candidates->data[reject.index].logit = -INFINITY;
  10778. }
  10779. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10780. }
  10781. static void llama_log_softmax(float * array, size_t size) {
  10782. float max_l = *std::max_element(array, array + size);
  10783. float sum = 0.f;
  10784. for (size_t i = 0; i < size; ++i) {
  10785. float p = expf(array[i] - max_l);
  10786. sum += p;
  10787. array[i] = p;
  10788. }
  10789. for (size_t i = 0; i < size; ++i) {
  10790. array[i] = logf(array[i] / sum);
  10791. }
  10792. }
  10793. void llama_sample_apply_guidance(
  10794. struct llama_context * ctx,
  10795. float * logits,
  10796. float * logits_guidance,
  10797. float scale) {
  10798. GGML_ASSERT(ctx);
  10799. const auto t_start_sample_us = ggml_time_us();
  10800. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  10801. llama_log_softmax(logits, n_vocab);
  10802. llama_log_softmax(logits_guidance, n_vocab);
  10803. for (int i = 0; i < n_vocab; ++i) {
  10804. auto & l = logits[i];
  10805. const auto & g = logits_guidance[i];
  10806. l = scale * (l - g) + g;
  10807. }
  10808. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10809. }
  10810. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  10811. GGML_ASSERT(ctx);
  10812. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  10813. int64_t t_start_sample_us;
  10814. t_start_sample_us = ggml_time_us();
  10815. llama_sample_softmax(nullptr, candidates);
  10816. // Estimate s_hat using the most probable m tokens
  10817. float s_hat = 0.0;
  10818. float sum_ti_bi = 0.0;
  10819. float sum_ti_sq = 0.0;
  10820. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  10821. float t_i = logf(float(i + 2) / float(i + 1));
  10822. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  10823. sum_ti_bi += t_i * b_i;
  10824. sum_ti_sq += t_i * t_i;
  10825. }
  10826. s_hat = sum_ti_bi / sum_ti_sq;
  10827. // Compute k from the estimated s_hat and target surprise value
  10828. float epsilon_hat = s_hat - 1;
  10829. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  10830. // Sample the next word X using top-k sampling
  10831. llama_sample_top_k(nullptr, candidates, int(k), 1);
  10832. if (ctx) {
  10833. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10834. }
  10835. llama_token X = llama_sample_token(ctx, candidates);
  10836. t_start_sample_us = ggml_time_us();
  10837. // Compute error as the difference between observed surprise and target surprise value
  10838. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10839. return candidate.id == X;
  10840. }));
  10841. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10842. float e = observed_surprise - tau;
  10843. // Update mu using the learning rate and error
  10844. *mu = *mu - eta * e;
  10845. if (ctx) {
  10846. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10847. }
  10848. return X;
  10849. }
  10850. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  10851. int64_t t_start_sample_us;
  10852. t_start_sample_us = ggml_time_us();
  10853. llama_sample_softmax(ctx, candidates);
  10854. // Truncate the words with surprise values greater than mu
  10855. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10856. return -log2f(candidate.p) > *mu;
  10857. }));
  10858. if (candidates->size == 0) {
  10859. candidates->size = 1;
  10860. }
  10861. if (ctx) {
  10862. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10863. }
  10864. // Normalize the probabilities of the remaining words
  10865. llama_sample_softmax(ctx, candidates);
  10866. // Sample the next word X from the remaining words
  10867. llama_token X = llama_sample_token(ctx, candidates);
  10868. t_start_sample_us = ggml_time_us();
  10869. // Compute error as the difference between observed surprise and target surprise value
  10870. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10871. return candidate.id == X;
  10872. }));
  10873. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10874. float e = observed_surprise - tau;
  10875. // Update mu using the learning rate and error
  10876. *mu = *mu - eta * e;
  10877. if (ctx) {
  10878. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10879. }
  10880. return X;
  10881. }
  10882. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  10883. const int64_t t_start_sample_us = ggml_time_us();
  10884. // Find max element
  10885. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10886. return a.logit < b.logit;
  10887. });
  10888. llama_token result = max_iter->id;
  10889. if (ctx) {
  10890. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10891. ctx->n_sample++;
  10892. }
  10893. return result;
  10894. }
  10895. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  10896. GGML_ASSERT(ctx);
  10897. const int64_t t_start_sample_us = ggml_time_us();
  10898. llama_sample_softmax(nullptr, candidates);
  10899. std::vector<float> probs;
  10900. probs.reserve(candidates->size);
  10901. for (size_t i = 0; i < candidates->size; ++i) {
  10902. probs.push_back(candidates->data[i].p);
  10903. }
  10904. std::discrete_distribution<> dist(probs.begin(), probs.end());
  10905. auto & rng = ctx->rng;
  10906. int idx = dist(rng);
  10907. llama_token result = candidates->data[idx].id;
  10908. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10909. ctx->n_sample++;
  10910. return result;
  10911. }
  10912. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  10913. const int64_t t_start_sample_us = ggml_time_us();
  10914. if (token == llama_token_eos(&ctx->model)) {
  10915. for (const auto & stack : grammar->stacks) {
  10916. if (stack.empty()) {
  10917. return;
  10918. }
  10919. }
  10920. GGML_ASSERT(false);
  10921. }
  10922. const std::string piece = llama_token_to_piece(ctx, token);
  10923. // Note terminating 0 in decoded string
  10924. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  10925. const auto & code_points = decoded.first;
  10926. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  10927. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  10928. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  10929. grammar->stacks = tmp_new_stacks;
  10930. }
  10931. grammar->partial_utf8 = decoded.second;
  10932. GGML_ASSERT(!grammar->stacks.empty());
  10933. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10934. }
  10935. //
  10936. // Beam search
  10937. //
  10938. struct llama_beam {
  10939. std::vector<llama_token> tokens;
  10940. float p; // Cumulative beam probability (renormalized relative to all beams)
  10941. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  10942. // Sort beams by probability. In case of ties, prefer beams at eob.
  10943. bool operator<(const llama_beam & rhs) const {
  10944. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  10945. }
  10946. // Shift off first n tokens and discard them.
  10947. void shift_tokens(const size_t n) {
  10948. if (n) {
  10949. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  10950. tokens.resize(tokens.size() - n);
  10951. }
  10952. }
  10953. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  10954. };
  10955. // A struct for calculating logit-related info.
  10956. struct llama_logit_info {
  10957. const float * const logits;
  10958. const int n_vocab;
  10959. const float max_l;
  10960. const float normalizer;
  10961. struct sum_exp {
  10962. float max_l;
  10963. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  10964. };
  10965. llama_logit_info(llama_context * ctx)
  10966. : logits(llama_get_logits(ctx))
  10967. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  10968. , max_l(*std::max_element(logits, logits + n_vocab))
  10969. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  10970. { }
  10971. llama_token_data get_token_data(const llama_token token_id) const {
  10972. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  10973. return {token_id, logits[token_id], p};
  10974. }
  10975. // Return top k token_data by logit.
  10976. std::vector<llama_token_data> top_k(size_t k) {
  10977. std::vector<llama_token_data> min_heap; // min-heap by logit
  10978. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  10979. min_heap.reserve(k_min);
  10980. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  10981. min_heap.push_back(get_token_data(token_id));
  10982. }
  10983. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  10984. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  10985. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  10986. if (min_heap.front().logit < logits[token_id]) {
  10987. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  10988. min_heap.back().id = token_id;
  10989. min_heap.back().logit = logits[token_id];
  10990. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  10991. }
  10992. }
  10993. return min_heap;
  10994. }
  10995. float probability_from_logit(float logit) const {
  10996. return normalizer * std::exp(logit - max_l);
  10997. }
  10998. };
  10999. struct llama_beam_search_data {
  11000. llama_context * ctx;
  11001. size_t n_beams;
  11002. int n_past;
  11003. int n_predict;
  11004. std::vector<llama_beam> beams;
  11005. std::vector<llama_beam> next_beams;
  11006. // Re-calculated on each loop iteration
  11007. size_t common_prefix_length;
  11008. // Used to communicate to/from callback on beams state.
  11009. std::vector<llama_beam_view> beam_views;
  11010. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11011. : ctx(ctx)
  11012. , n_beams(n_beams)
  11013. , n_past(n_past)
  11014. , n_predict(n_predict)
  11015. , beam_views(n_beams) {
  11016. beams.reserve(n_beams);
  11017. next_beams.reserve(n_beams);
  11018. }
  11019. // Collapse beams to a single beam given by index.
  11020. void collapse_beams(const size_t beam_idx) {
  11021. if (0u < beam_idx) {
  11022. std::swap(beams[0], beams[beam_idx]);
  11023. }
  11024. beams.resize(1);
  11025. }
  11026. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11027. // The repetitive patterns below reflect the 2 stages of heaps:
  11028. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11029. // * If the heap is full and a new element is found that should be included, pop the
  11030. // least element to the back(), replace it with the new, then push it into the heap.
  11031. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11032. // Min-heaps use a greater-than comparator.
  11033. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11034. if (beam.eob) {
  11035. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11036. if (next_beams.size() < n_beams) {
  11037. next_beams.push_back(std::move(beam));
  11038. if (next_beams.size() == n_beams) {
  11039. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11040. }
  11041. } else if (next_beams.front().p < beam.p) {
  11042. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11043. next_beams.back() = std::move(beam);
  11044. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11045. }
  11046. } else {
  11047. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11048. if (!beam.tokens.empty()) {
  11049. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11050. }
  11051. llama_logit_info logit_info(ctx);
  11052. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11053. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11054. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11055. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11056. size_t i=0;
  11057. if (next_beams.size() < n_beams) {
  11058. for (; next_beams.size() < n_beams ; ++i) {
  11059. llama_beam next_beam = beam;
  11060. next_beam.tokens.push_back(next_tokens[i].id);
  11061. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11062. next_beams.push_back(std::move(next_beam));
  11063. }
  11064. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11065. } else {
  11066. for (; next_beams.front().p == 0.0f ; ++i) {
  11067. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11068. next_beams.back() = beam;
  11069. next_beams.back().tokens.push_back(next_tokens[i].id);
  11070. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11071. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11072. }
  11073. }
  11074. for (; i < n_beams ; ++i) {
  11075. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11076. if (next_beams.front().p < next_p) {
  11077. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11078. next_beams.back() = beam;
  11079. next_beams.back().tokens.push_back(next_tokens[i].id);
  11080. next_beams.back().p = next_p;
  11081. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11082. }
  11083. }
  11084. }
  11085. }
  11086. // Find common_prefix_length based on beams.
  11087. // Requires beams is not empty.
  11088. size_t find_common_prefix_length() {
  11089. size_t common_prefix_length = beams[0].tokens.size();
  11090. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11091. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11092. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11093. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11094. common_prefix_length = j;
  11095. break;
  11096. }
  11097. }
  11098. }
  11099. return common_prefix_length;
  11100. }
  11101. // Construct beams_state to send back to caller via the callback function.
  11102. // Side effect: set common_prefix_length = find_common_prefix_length();
  11103. llama_beams_state get_beams_state(const bool last_call) {
  11104. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11105. beam_views[i] = beams[i].view();
  11106. }
  11107. common_prefix_length = find_common_prefix_length();
  11108. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11109. }
  11110. // Loop:
  11111. // * while i < n_predict, AND
  11112. // * any of the beams have not yet reached end-of-beam (eob), AND
  11113. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11114. // (since all other beam probabilities can only decrease)
  11115. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11116. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11117. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11118. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11119. !beams[top_beam_index()].eob ; ++i) {
  11120. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11121. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11122. if (common_prefix_length) {
  11123. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11124. n_past += common_prefix_length;
  11125. }
  11126. // Zero-out next_beam probabilities to place them last in following min-heap.
  11127. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11128. for (llama_beam & beam : beams) {
  11129. beam.shift_tokens(common_prefix_length);
  11130. fill_next_beams_by_top_probabilities(beam);
  11131. }
  11132. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11133. beams.swap(next_beams);
  11134. renormalize_beam_probabilities(beams);
  11135. }
  11136. collapse_beams(top_beam_index());
  11137. callback(callback_data, get_beams_state(true));
  11138. }
  11139. // As beams grow, the cumulative probabilities decrease.
  11140. // Renormalize them to avoid floating point underflow.
  11141. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11142. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11143. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11144. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11145. }
  11146. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11147. size_t top_beam_index() {
  11148. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11149. }
  11150. // Copy (p,eob) for each beam which may have been changed by the callback.
  11151. void update_beams_from_beam_views() {
  11152. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11153. beams[i].p = beam_views[i].p;
  11154. beams[i].eob = beam_views[i].eob;
  11155. }
  11156. }
  11157. };
  11158. void llama_beam_search(llama_context * ctx,
  11159. llama_beam_search_callback_fn_t callback, void * callback_data,
  11160. size_t n_beams, int n_past, int n_predict) {
  11161. assert(ctx);
  11162. const int64_t t_start_sample_us = ggml_time_us();
  11163. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11164. beam_search_data.loop(callback, callback_data);
  11165. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11166. ctx->n_sample++;
  11167. }
  11168. //
  11169. // quantization
  11170. //
  11171. struct quantize_state_internal {
  11172. const llama_model & model;
  11173. const llama_model_quantize_params * params;
  11174. int n_attention_wv = 0;
  11175. int n_ffn_down = 0;
  11176. int n_ffn_gate = 0;
  11177. int n_ffn_up = 0;
  11178. int i_attention_wv = 0;
  11179. int i_ffn_down = 0;
  11180. int i_ffn_gate = 0;
  11181. int i_ffn_up = 0;
  11182. int n_k_quantized = 0;
  11183. int n_fallback = 0;
  11184. bool has_imatrix = false;
  11185. // used to figure out if a model shares tok_embd with the output weight
  11186. bool has_output = false;
  11187. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11188. : model(model)
  11189. , params(params)
  11190. {}
  11191. };
  11192. static void llama_tensor_dequantize_internal(
  11193. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11194. const size_t nelements, const int nthread
  11195. ) {
  11196. if (output.size() < nelements) {
  11197. output.resize(nelements);
  11198. }
  11199. float * f32_output = (float *) output.data();
  11200. ggml_type_traits_t qtype;
  11201. if (ggml_is_quantized(tensor->type)) {
  11202. qtype = ggml_internal_get_type_traits(tensor->type);
  11203. if (qtype.to_float == NULL) {
  11204. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11205. }
  11206. } else if (tensor->type != GGML_TYPE_F16) {
  11207. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11208. }
  11209. if (nthread < 2) {
  11210. if (tensor->type == GGML_TYPE_F16) {
  11211. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11212. } else if (ggml_is_quantized(tensor->type)) {
  11213. qtype.to_float(tensor->data, f32_output, nelements);
  11214. } else {
  11215. GGML_ASSERT(false); // unreachable
  11216. }
  11217. return;
  11218. }
  11219. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11220. size_t block_size_bytes = ggml_type_size(tensor->type);
  11221. GGML_ASSERT(nelements % block_size == 0);
  11222. size_t nblocks = nelements / block_size;
  11223. size_t blocks_per_thread = nblocks / nthread;
  11224. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11225. size_t in_buff_offs = 0;
  11226. size_t out_buff_offs = 0;
  11227. for (int tnum = 0; tnum < nthread; tnum++) {
  11228. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11229. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11230. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11231. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11232. if (typ == GGML_TYPE_F16) {
  11233. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11234. } else {
  11235. qtype.to_float(inbuf, outbuf, nels);
  11236. }
  11237. };
  11238. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11239. in_buff_offs += thr_block_bytes;
  11240. out_buff_offs += thr_elems;
  11241. }
  11242. for (auto & w : workers) { w.join(); }
  11243. workers.clear();
  11244. }
  11245. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11246. const std::string name = ggml_get_name(tensor);
  11247. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11248. const llm_arch arch = qs.model.arch;
  11249. const auto tn = LLM_TN(arch);
  11250. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11251. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11252. };
  11253. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11254. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11255. if (n_expert > 1) {
  11256. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11257. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11258. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11259. // tensor name.
  11260. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11261. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11262. }
  11263. if (i_layer < 0 || i_layer >= n_layer) {
  11264. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11265. }
  11266. }
  11267. return std::make_pair(i_layer, n_layer);
  11268. };
  11269. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11270. // with the quantization of the output tensor
  11271. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11272. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11273. new_type = qs.params->output_tensor_type;
  11274. } else {
  11275. int nx = tensor->ne[0];
  11276. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11277. new_type = GGML_TYPE_Q8_0;
  11278. }
  11279. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11280. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11281. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11282. new_type = GGML_TYPE_Q5_K;
  11283. }
  11284. else if (new_type != GGML_TYPE_Q8_0) {
  11285. new_type = GGML_TYPE_Q6_K;
  11286. }
  11287. }
  11288. } else if (name == "token_embd.weight") {
  11289. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11290. new_type = qs.params->token_embedding_type;
  11291. } else {
  11292. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11293. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11294. new_type = GGML_TYPE_Q2_K;
  11295. }
  11296. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11297. new_type = GGML_TYPE_IQ3_S;
  11298. }
  11299. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11300. new_type = GGML_TYPE_IQ3_S;
  11301. }
  11302. }
  11303. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11304. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11305. if (name.find("attn_v.weight") != std::string::npos) {
  11306. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11307. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11308. ++qs.i_attention_wv;
  11309. }
  11310. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11311. new_type = GGML_TYPE_Q4_K;
  11312. }
  11313. else if (name.find("ffn_down") != std::string::npos) {
  11314. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11315. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11316. }
  11317. ++qs.i_ffn_down;
  11318. }
  11319. else if (name.find("attn_output.weight") != std::string::npos) {
  11320. if (qs.model.hparams.n_expert == 8) {
  11321. new_type = GGML_TYPE_Q5_K;
  11322. } else {
  11323. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11324. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11325. }
  11326. }
  11327. } else if (name.find("attn_v.weight") != std::string::npos) {
  11328. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11329. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11330. }
  11331. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11332. new_type = GGML_TYPE_Q4_K;
  11333. }
  11334. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11335. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11336. }
  11337. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11338. new_type = GGML_TYPE_Q4_K;
  11339. }
  11340. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11341. new_type = GGML_TYPE_Q4_K;
  11342. }
  11343. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11344. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11345. }
  11346. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11347. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11348. new_type = GGML_TYPE_Q5_K;
  11349. }
  11350. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11351. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11352. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11353. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11354. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11355. if (qs.model.type == MODEL_70B) {
  11356. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11357. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11358. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11359. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11360. }
  11361. if (qs.model.hparams.n_expert == 8) {
  11362. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11363. // TODO: explore better strategies
  11364. new_type = GGML_TYPE_Q8_0;
  11365. }
  11366. ++qs.i_attention_wv;
  11367. } else if (name.find("attn_k.weight") != std::string::npos) {
  11368. if (qs.model.hparams.n_expert == 8) {
  11369. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11370. // TODO: explore better strategies
  11371. new_type = GGML_TYPE_Q8_0;
  11372. }
  11373. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11374. new_type = GGML_TYPE_IQ3_XXS;
  11375. }
  11376. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11377. new_type = GGML_TYPE_IQ2_S;
  11378. }
  11379. } else if (name.find("attn_q.weight") != std::string::npos) {
  11380. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11381. new_type = GGML_TYPE_IQ3_XXS;
  11382. }
  11383. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11384. new_type = GGML_TYPE_IQ2_S;
  11385. }
  11386. } else if (name.find("ffn_down") != std::string::npos) {
  11387. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11388. int i_layer = info.first, n_layer = info.second;
  11389. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11390. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11391. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11392. }
  11393. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11394. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11395. }
  11396. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11397. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11398. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11399. : GGML_TYPE_Q3_K;
  11400. }
  11401. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11402. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11403. new_type = GGML_TYPE_Q4_K;
  11404. }
  11405. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11406. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11407. }
  11408. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11409. if (arch == LLM_ARCH_FALCON) {
  11410. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11411. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11412. } else {
  11413. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11414. }
  11415. }
  11416. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11417. new_type = GGML_TYPE_Q5_K;
  11418. }
  11419. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11420. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11421. new_type = GGML_TYPE_Q5_K;
  11422. }
  11423. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11424. && qs.has_imatrix && i_layer < n_layer/8) {
  11425. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11426. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11427. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11428. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11429. }
  11430. ++qs.i_ffn_down;
  11431. } else if (name.find("attn_output.weight") != std::string::npos) {
  11432. if (arch != LLM_ARCH_FALCON) {
  11433. if (qs.model.hparams.n_expert == 8) {
  11434. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11435. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11436. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11437. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11438. new_type = GGML_TYPE_Q5_K;
  11439. }
  11440. } else {
  11441. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11442. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11443. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11444. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11445. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11446. }
  11447. } else {
  11448. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11449. }
  11450. }
  11451. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11452. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11453. new_type = GGML_TYPE_Q4_K;
  11454. }
  11455. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11456. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11457. }
  11458. else if (name.find("ffn_gate") != std::string::npos) {
  11459. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11460. int i_layer = info.first, n_layer = info.second;
  11461. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11462. new_type = GGML_TYPE_IQ3_XXS;
  11463. }
  11464. ++qs.i_ffn_gate;
  11465. }
  11466. else if (name.find("ffn_up") != std::string::npos) {
  11467. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11468. int i_layer = info.first, n_layer = info.second;
  11469. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11470. new_type = GGML_TYPE_IQ3_XXS;
  11471. }
  11472. ++qs.i_ffn_up;
  11473. }
  11474. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11475. //}
  11476. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11477. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11478. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11479. //}
  11480. // This can be used to reduce the size of the Q5_K_S model.
  11481. // The associated PPL increase is fully in line with the size reduction
  11482. //else {
  11483. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11484. //}
  11485. bool convert_incompatible_tensor = false;
  11486. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11487. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11488. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11489. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11490. new_type == GGML_TYPE_IQ1_M) {
  11491. int nx = tensor->ne[0];
  11492. int ny = tensor->ne[1];
  11493. if (nx % QK_K != 0) {
  11494. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11495. convert_incompatible_tensor = true;
  11496. } else {
  11497. ++qs.n_k_quantized;
  11498. }
  11499. }
  11500. if (convert_incompatible_tensor) {
  11501. switch (new_type) {
  11502. case GGML_TYPE_IQ2_XXS:
  11503. case GGML_TYPE_IQ2_XS:
  11504. case GGML_TYPE_IQ2_S:
  11505. case GGML_TYPE_IQ3_XXS:
  11506. case GGML_TYPE_IQ3_S:
  11507. case GGML_TYPE_IQ1_S:
  11508. case GGML_TYPE_IQ1_M:
  11509. case GGML_TYPE_Q2_K:
  11510. case GGML_TYPE_Q3_K:
  11511. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11512. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11513. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11514. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11515. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11516. }
  11517. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11518. ++qs.n_fallback;
  11519. }
  11520. return new_type;
  11521. }
  11522. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11523. std::mutex mutex;
  11524. int64_t counter = 0;
  11525. size_t new_size = 0;
  11526. if (nthread < 2) {
  11527. // single-thread
  11528. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11529. }
  11530. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11531. nrows, n_per_row, imatrix]() {
  11532. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11533. size_t local_size = 0;
  11534. while (true) {
  11535. std::unique_lock<std::mutex> lock(mutex);
  11536. int64_t first_row = counter; counter += nrows_per_chunk;
  11537. if (first_row >= nrows) {
  11538. if (local_size > 0) {
  11539. new_size += local_size;
  11540. }
  11541. break;
  11542. }
  11543. lock.unlock();
  11544. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11545. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11546. }
  11547. };
  11548. for (int it = 0; it < nthread - 1; ++it) {
  11549. workers.emplace_back(compute);
  11550. }
  11551. compute();
  11552. for (auto & w : workers) { w.join(); }
  11553. workers.clear();
  11554. return new_size;
  11555. }
  11556. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11557. ggml_type default_type;
  11558. llama_ftype ftype = params->ftype;
  11559. switch (params->ftype) {
  11560. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11561. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11562. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11563. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11564. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11565. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11566. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11567. // K-quants
  11568. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11569. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11570. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11571. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11572. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11573. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11574. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11575. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11576. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11577. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11578. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11579. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11580. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11581. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11582. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11583. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11584. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11585. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11586. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11587. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11588. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11589. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11590. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11591. }
  11592. int nthread = params->nthread;
  11593. if (nthread <= 0) {
  11594. nthread = std::thread::hardware_concurrency();
  11595. }
  11596. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11597. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  11598. #if defined(__linux__) || defined(_WIN32)
  11599. constexpr bool use_mmap = true;
  11600. #else
  11601. constexpr bool use_mmap = false;
  11602. #endif
  11603. llama_model_kv_override * kv_overrides = nullptr;
  11604. if (params->kv_overrides) {
  11605. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  11606. kv_overrides = v->data();
  11607. }
  11608. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  11609. ml.init_mappings(false); // no prefetching
  11610. llama_model model;
  11611. llm_load_arch(ml, model);
  11612. llm_load_hparams(ml, model);
  11613. struct quantize_state_internal qs(model, params);
  11614. if (params->only_copy) {
  11615. ftype = model.ftype;
  11616. }
  11617. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  11618. if (params->imatrix) {
  11619. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  11620. if (imatrix_data) {
  11621. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  11622. qs.has_imatrix = true;
  11623. }
  11624. }
  11625. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  11626. struct gguf_context * ctx_out = gguf_init_empty();
  11627. // copy the KV pairs from the input file
  11628. gguf_set_kv (ctx_out, ml.meta);
  11629. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  11630. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  11631. // Remove split metadata
  11632. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  11633. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  11634. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  11635. if (params->kv_overrides) {
  11636. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  11637. for (auto & o : overrides) {
  11638. if (o.key[0] == 0) break;
  11639. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  11640. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  11641. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  11642. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  11643. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  11644. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  11645. } else {
  11646. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  11647. }
  11648. }
  11649. }
  11650. for (int i = 0; i < ml.n_tensors; ++i) {
  11651. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11652. const std::string name = ggml_get_name(meta);
  11653. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11654. if (name.find("attn_v.weight") != std::string::npos ||
  11655. name.find("attn_qkv.weight") != std::string::npos) {
  11656. ++qs.n_attention_wv;
  11657. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  11658. qs.has_output = true;
  11659. }
  11660. }
  11661. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  11662. // sanity checks
  11663. //
  11664. // - qs.n_attention_wv == 0 for Mamba models
  11665. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  11666. //
  11667. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  11668. size_t total_size_org = 0;
  11669. size_t total_size_new = 0;
  11670. std::vector<std::thread> workers;
  11671. workers.reserve(nthread);
  11672. int idx = 0;
  11673. std::vector<no_init<uint8_t>> read_data;
  11674. std::vector<no_init<uint8_t>> work;
  11675. std::vector<no_init<float>> f32_conv_buf;
  11676. // populate the original tensors so we get an initial meta data
  11677. for (int i = 0; i < ml.n_tensors; ++i) {
  11678. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11679. gguf_add_tensor(ctx_out, meta);
  11680. }
  11681. std::ofstream fout(fname_out, std::ios::binary);
  11682. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  11683. const size_t meta_size = gguf_get_meta_size(ctx_out);
  11684. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  11685. // placeholder for the meta data
  11686. ::zeros(fout, meta_size);
  11687. const auto tn = LLM_TN(model.arch);
  11688. for (int i = 0; i < ml.n_tensors; ++i) {
  11689. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  11690. const std::string name = ggml_get_name(tensor);
  11691. if (!ml.use_mmap) {
  11692. if (read_data.size() < ggml_nbytes(tensor)) {
  11693. read_data.resize(ggml_nbytes(tensor));
  11694. }
  11695. tensor->data = read_data.data();
  11696. }
  11697. ml.load_data_for(tensor);
  11698. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  11699. ++idx, ml.n_tensors,
  11700. ggml_get_name(tensor),
  11701. llama_format_tensor_shape(tensor).c_str(),
  11702. ggml_type_name(tensor->type));
  11703. // This used to be a regex, but <regex> has an extreme cost to compile times.
  11704. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  11705. // quantize only 2D and 3D tensors (experts)
  11706. quantize &= (ggml_n_dims(tensor) >= 2);
  11707. // do not quantize norm tensors
  11708. quantize &= name.find("_norm.weight") == std::string::npos;
  11709. quantize &= params->quantize_output_tensor || name != "output.weight";
  11710. quantize &= !params->only_copy;
  11711. // do not quantize expert gating tensors
  11712. // NOTE: can't use LLM_TN here because the layer number is not known
  11713. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  11714. // do not quantize positional embeddings and token types (BERT)
  11715. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  11716. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  11717. // do not quantize Mamba's small yet 2D weights
  11718. // NOTE: can't use LLM_TN here because the layer number is not known
  11719. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  11720. quantize &= name.find("ssm_x.weight") == std::string::npos;
  11721. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  11722. enum ggml_type new_type;
  11723. void * new_data;
  11724. size_t new_size;
  11725. if (quantize) {
  11726. new_type = default_type;
  11727. // get more optimal quantization type based on the tensor shape, layer, etc.
  11728. if (!params->pure && ggml_is_quantized(default_type)) {
  11729. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  11730. }
  11731. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  11732. new_type = params->token_embedding_type;
  11733. }
  11734. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  11735. new_type = params->output_tensor_type;
  11736. }
  11737. // If we've decided to quantize to the same type the tensor is already
  11738. // in then there's nothing to do.
  11739. quantize = tensor->type != new_type;
  11740. }
  11741. if (!quantize) {
  11742. new_type = tensor->type;
  11743. new_data = tensor->data;
  11744. new_size = ggml_nbytes(tensor);
  11745. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  11746. } else {
  11747. const int64_t nelements = ggml_nelements(tensor);
  11748. const float * imatrix = nullptr;
  11749. if (imatrix_data) {
  11750. auto it = imatrix_data->find(tensor->name);
  11751. if (it == imatrix_data->end()) {
  11752. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  11753. } else {
  11754. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  11755. imatrix = it->second.data();
  11756. } else {
  11757. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  11758. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  11759. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  11760. // this is a significant error and it may be good idea to abort the process if this happens,
  11761. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  11762. // tok_embd should be ignored in this case, since it always causes this warning
  11763. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  11764. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  11765. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  11766. }
  11767. }
  11768. }
  11769. }
  11770. if ((new_type == GGML_TYPE_IQ2_XXS ||
  11771. new_type == GGML_TYPE_IQ2_XS ||
  11772. new_type == GGML_TYPE_IQ2_S ||
  11773. new_type == GGML_TYPE_IQ1_S ||
  11774. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  11775. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  11776. LLAMA_LOG_ERROR("\n\n============================================================\n");
  11777. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  11778. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  11779. LLAMA_LOG_ERROR("============================================================\n\n");
  11780. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  11781. }
  11782. float * f32_data;
  11783. if (tensor->type == GGML_TYPE_F32) {
  11784. f32_data = (float *) tensor->data;
  11785. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  11786. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  11787. } else {
  11788. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  11789. f32_data = (float *) f32_conv_buf.data();
  11790. }
  11791. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  11792. fflush(stdout);
  11793. if (work.size() < (size_t)nelements * 4) {
  11794. work.resize(nelements * 4); // upper bound on size
  11795. }
  11796. new_data = work.data();
  11797. const int64_t n_per_row = tensor->ne[0];
  11798. const int64_t nrows = tensor->ne[1];
  11799. static const int64_t min_chunk_size = 32 * 512;
  11800. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  11801. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  11802. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  11803. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  11804. // quantize each expert separately since they have different importance matrices
  11805. new_size = 0;
  11806. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  11807. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  11808. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  11809. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  11810. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  11811. }
  11812. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  11813. }
  11814. total_size_org += ggml_nbytes(tensor);
  11815. total_size_new += new_size;
  11816. // update the gguf meta data as we go
  11817. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  11818. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  11819. // write tensor data + padding
  11820. fout.write((const char *) new_data, new_size);
  11821. zeros(fout, GGML_PAD(new_size, align) - new_size);
  11822. }
  11823. // go back to beginning of file and write the updated meta data
  11824. {
  11825. fout.seekp(0);
  11826. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  11827. gguf_get_meta_data(ctx_out, data.data());
  11828. fout.write((const char *) data.data(), data.size());
  11829. }
  11830. fout.close();
  11831. gguf_free(ctx_out);
  11832. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  11833. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  11834. if (qs.n_fallback > 0) {
  11835. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  11836. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  11837. }
  11838. }
  11839. static int llama_apply_lora_from_file_internal(
  11840. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  11841. ) {
  11842. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  11843. const int64_t t_start_lora_us = ggml_time_us();
  11844. llama_file fin(path_lora, "rb");
  11845. // verify magic and version
  11846. {
  11847. uint32_t magic = fin.read_u32();
  11848. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  11849. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  11850. return 1;
  11851. }
  11852. uint32_t format_version = fin.read_u32();
  11853. if (format_version != 1) {
  11854. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  11855. return 1;
  11856. }
  11857. }
  11858. int32_t lora_r = fin.read_u32();
  11859. int32_t lora_alpha = fin.read_u32();
  11860. float scaling = scale * (float)lora_alpha / (float)lora_r;
  11861. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  11862. // load base model
  11863. std::unique_ptr<llama_model_loader> ml;
  11864. if (path_base_model) {
  11865. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  11866. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  11867. ml->init_mappings(/*prefetch*/ false); // no prefetching
  11868. }
  11869. struct tensor_meta {
  11870. std::string name;
  11871. ggml_type type;
  11872. int32_t ne[2];
  11873. size_t offset;
  11874. };
  11875. std::map<std::string, tensor_meta> tensor_meta_map;
  11876. // load all tensor meta
  11877. while (true) {
  11878. if (fin.tell() == fin.size) {
  11879. // eof
  11880. break;
  11881. }
  11882. int32_t n_dims;
  11883. int32_t name_len;
  11884. int32_t ftype;
  11885. fin.read_raw(&n_dims, sizeof(n_dims));
  11886. fin.read_raw(&name_len, sizeof(name_len));
  11887. fin.read_raw(&ftype, sizeof(ftype));
  11888. if (n_dims != 1 && n_dims != 2) {
  11889. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  11890. return 1;
  11891. }
  11892. int32_t ne[2] = { 1, 1 };
  11893. for (int i = 0; i < n_dims; ++i) {
  11894. fin.read_raw(&ne[i], sizeof(ne[i]));
  11895. }
  11896. std::string name;
  11897. {
  11898. GGML_ASSERT(name_len < GGML_MAX_NAME);
  11899. char buf[GGML_MAX_NAME];
  11900. fin.read_raw(buf, name_len);
  11901. name = std::string(buf, name_len);
  11902. }
  11903. // check for lora suffix
  11904. std::string lora_suffix;
  11905. if (name.length() > 6) {
  11906. lora_suffix = name.substr(name.length() - 6);
  11907. }
  11908. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  11909. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  11910. return 1;
  11911. }
  11912. // tensor type
  11913. ggml_type wtype;
  11914. switch (ftype) {
  11915. case 0: wtype = GGML_TYPE_F32; break;
  11916. case 1: wtype = GGML_TYPE_F16; break;
  11917. default:
  11918. {
  11919. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  11920. __func__, ftype);
  11921. return 1;
  11922. }
  11923. }
  11924. // data offset
  11925. size_t offset = fin.tell();
  11926. offset = (offset + 31) & -32;
  11927. // skip tensor data
  11928. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  11929. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  11930. }
  11931. bool warned = false;
  11932. int n_tensors = 0;
  11933. // apply
  11934. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  11935. if (backend_cpu == nullptr) {
  11936. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  11937. return 1;
  11938. }
  11939. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  11940. std::vector<no_init<uint8_t>> read_buf;
  11941. for (const auto & it : model.tensors_by_name) {
  11942. const std::string & base_name = it.first;
  11943. ggml_tensor * model_t = it.second;
  11944. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  11945. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  11946. continue;
  11947. }
  11948. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  11949. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  11950. ggml_init_params lora_init_params = {
  11951. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  11952. /* .mem_buffer */ nullptr,
  11953. /* .no_alloc */ true,
  11954. };
  11955. ggml_context * lora_ctx = ggml_init(lora_init_params);
  11956. if (lora_ctx == nullptr) {
  11957. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  11958. ggml_backend_free(backend_cpu);
  11959. return 1;
  11960. }
  11961. // create tensors
  11962. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  11963. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  11964. ggml_set_name(loraA, metaA.name.c_str());
  11965. ggml_set_name(loraB, metaB.name.c_str());
  11966. ggml_tensor * base_t;
  11967. if (ml) {
  11968. if (!ml->get_tensor_meta(base_name.c_str())) {
  11969. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  11970. return 1;
  11971. }
  11972. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  11973. } else {
  11974. base_t = ggml_dup_tensor(lora_ctx, model_t);
  11975. }
  11976. ggml_set_name(base_t, base_name.c_str());
  11977. // allocate in backend buffer
  11978. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  11979. if (lora_buf == nullptr) {
  11980. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  11981. return 1;
  11982. }
  11983. // load tensor data
  11984. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  11985. read_buf.resize(ggml_nbytes(tensor));
  11986. fin.seek(tensor_meta.offset, SEEK_SET);
  11987. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  11988. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  11989. };
  11990. load_tensor(metaA, loraA);
  11991. load_tensor(metaB, loraB);
  11992. // load base model tensor data
  11993. if (ml) {
  11994. ml->load_data_for(base_t);
  11995. } else {
  11996. ggml_backend_tensor_copy(model_t, base_t);
  11997. }
  11998. if (ggml_is_quantized(base_t->type) && !warned) {
  11999. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12000. "use a f16 or f32 base model with --lora-base\n", __func__);
  12001. warned = true;
  12002. }
  12003. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12004. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12005. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12006. ggml_free(lora_ctx);
  12007. ggml_backend_buffer_free(lora_buf);
  12008. ggml_backend_free(backend_cpu);
  12009. return 1;
  12010. }
  12011. auto build_lora_graph = [&]() {
  12012. // w = w + BA*s
  12013. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12014. ggml_set_name(BA, "BA");
  12015. if (scaling != 1.0f) {
  12016. BA = ggml_scale(lora_ctx, BA, scaling);
  12017. ggml_set_name(BA, "BA_scaled");
  12018. }
  12019. ggml_tensor * r;
  12020. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12021. ggml_set_name(r, "r_add");
  12022. if (base_t->type != model_t->type) {
  12023. // convert the result to the model type
  12024. r = ggml_cast(lora_ctx, r, model_t->type);
  12025. ggml_set_name(r, "r_cast");
  12026. }
  12027. return r;
  12028. };
  12029. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12030. ggml_tensor * r = build_lora_graph();
  12031. ggml_build_forward_expand(gf, r);
  12032. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12033. if (graph_buf == nullptr) {
  12034. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12035. ggml_free(lora_ctx);
  12036. ggml_backend_buffer_free(lora_buf);
  12037. ggml_backend_free(backend_cpu);
  12038. return 1;
  12039. }
  12040. ggml_backend_graph_compute(backend_cpu, gf);
  12041. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12042. #if 0
  12043. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12044. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12045. // sched compute
  12046. ggml_build_forward_expand(gf, build_graph());
  12047. ggml_backend_sched_init_measure(sched, gf);
  12048. // create the graph again, since the previous one was destroyed by the measure
  12049. ggml_graph_clear(gf);
  12050. ggml_build_forward_expand(gf, build_graph());
  12051. ggml_backend_sched_graph_compute(sched, gf);
  12052. ggml_backend_sched_free(sched);
  12053. #endif
  12054. ggml_backend_buffer_free(lora_buf);
  12055. ggml_backend_buffer_free(graph_buf);
  12056. ggml_free(lora_ctx);
  12057. n_tensors++;
  12058. if (n_tensors % 4 == 0) {
  12059. LLAMA_LOG_INFO(".");
  12060. }
  12061. }
  12062. ggml_backend_free(backend_cpu);
  12063. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12064. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12065. return 0;
  12066. }
  12067. //
  12068. // interface implementation
  12069. //
  12070. struct llama_model_params llama_model_default_params() {
  12071. struct llama_model_params result = {
  12072. /*.n_gpu_layers =*/ 0,
  12073. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12074. /*.main_gpu =*/ 0,
  12075. /*.tensor_split =*/ nullptr,
  12076. /*.progress_callback =*/ nullptr,
  12077. /*.progress_callback_user_data =*/ nullptr,
  12078. /*.kv_overrides =*/ nullptr,
  12079. /*.vocab_only =*/ false,
  12080. /*.use_mmap =*/ true,
  12081. /*.use_mlock =*/ false,
  12082. };
  12083. #ifdef GGML_USE_METAL
  12084. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12085. result.n_gpu_layers = 999;
  12086. #endif
  12087. return result;
  12088. }
  12089. struct llama_context_params llama_context_default_params() {
  12090. struct llama_context_params result = {
  12091. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12092. /*.n_ctx =*/ 512,
  12093. /*.n_batch =*/ 2048,
  12094. /*.n_ubatch =*/ 512,
  12095. /*.n_seq_max =*/ 1,
  12096. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12097. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12098. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12099. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12100. /*.rope_freq_base =*/ 0.0f,
  12101. /*.rope_freq_scale =*/ 0.0f,
  12102. /*.yarn_ext_factor =*/ -1.0f,
  12103. /*.yarn_attn_factor =*/ 1.0f,
  12104. /*.yarn_beta_fast =*/ 32.0f,
  12105. /*.yarn_beta_slow =*/ 1.0f,
  12106. /*.yarn_orig_ctx =*/ 0,
  12107. /*.defrag_thold =*/ -1.0f,
  12108. /*.cb_eval =*/ nullptr,
  12109. /*.cb_eval_user_data =*/ nullptr,
  12110. /*.type_k =*/ GGML_TYPE_F16,
  12111. /*.type_v =*/ GGML_TYPE_F16,
  12112. /*.logits_all =*/ false,
  12113. /*.embeddings =*/ false,
  12114. /*.offload_kqv =*/ true,
  12115. /*.abort_callback =*/ nullptr,
  12116. /*.abort_callback_data =*/ nullptr,
  12117. };
  12118. return result;
  12119. }
  12120. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12121. struct llama_model_quantize_params result = {
  12122. /*.nthread =*/ 0,
  12123. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12124. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12125. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12126. /*.allow_requantize =*/ false,
  12127. /*.quantize_output_tensor =*/ true,
  12128. /*.only_copy =*/ false,
  12129. /*.pure =*/ false,
  12130. /*.imatrix =*/ nullptr,
  12131. /*.kv_overrides =*/ nullptr,
  12132. };
  12133. return result;
  12134. }
  12135. size_t llama_max_devices(void) {
  12136. #if defined(GGML_USE_METAL)
  12137. return 1;
  12138. #elif defined(GGML_USE_CUDA)
  12139. return GGML_CUDA_MAX_DEVICES;
  12140. #elif defined(GGML_USE_SYCL)
  12141. return GGML_SYCL_MAX_DEVICES;
  12142. #elif defined(GGML_USE_VULKAN)
  12143. return GGML_VK_MAX_DEVICES;
  12144. #else
  12145. return 1;
  12146. #endif
  12147. }
  12148. bool llama_supports_mmap(void) {
  12149. return llama_mmap::SUPPORTED;
  12150. }
  12151. bool llama_supports_mlock(void) {
  12152. return llama_mlock::SUPPORTED;
  12153. }
  12154. bool llama_supports_gpu_offload(void) {
  12155. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12156. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12157. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12158. return true;
  12159. #else
  12160. return false;
  12161. #endif
  12162. }
  12163. void llama_backend_init(void) {
  12164. ggml_time_init();
  12165. // needed to initialize f16 tables
  12166. {
  12167. struct ggml_init_params params = { 0, NULL, false };
  12168. struct ggml_context * ctx = ggml_init(params);
  12169. ggml_free(ctx);
  12170. }
  12171. #ifdef GGML_USE_MPI
  12172. ggml_mpi_backend_init();
  12173. #endif
  12174. }
  12175. void llama_numa_init(enum ggml_numa_strategy numa) {
  12176. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12177. ggml_numa_init(numa);
  12178. }
  12179. }
  12180. void llama_backend_free(void) {
  12181. #ifdef GGML_USE_MPI
  12182. ggml_mpi_backend_free();
  12183. #endif
  12184. ggml_quantize_free();
  12185. }
  12186. int64_t llama_time_us(void) {
  12187. return ggml_time_us();
  12188. }
  12189. struct llama_model * llama_load_model_from_file(
  12190. const char * path_model,
  12191. struct llama_model_params params) {
  12192. ggml_time_init();
  12193. llama_model * model = new llama_model;
  12194. unsigned cur_percentage = 0;
  12195. if (params.progress_callback == NULL) {
  12196. params.progress_callback_user_data = &cur_percentage;
  12197. params.progress_callback = [](float progress, void * ctx) {
  12198. unsigned * cur_percentage_p = (unsigned *) ctx;
  12199. unsigned percentage = (unsigned) (100 * progress);
  12200. while (percentage > *cur_percentage_p) {
  12201. *cur_percentage_p = percentage;
  12202. LLAMA_LOG_INFO(".");
  12203. if (percentage >= 100) {
  12204. LLAMA_LOG_INFO("\n");
  12205. }
  12206. }
  12207. return true;
  12208. };
  12209. }
  12210. int status = llama_model_load(path_model, *model, params);
  12211. GGML_ASSERT(status <= 0);
  12212. if (status < 0) {
  12213. if (status == -1) {
  12214. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12215. } else if (status == -2) {
  12216. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12217. }
  12218. delete model;
  12219. return nullptr;
  12220. }
  12221. return model;
  12222. }
  12223. void llama_free_model(struct llama_model * model) {
  12224. delete model;
  12225. }
  12226. struct llama_context * llama_new_context_with_model(
  12227. struct llama_model * model,
  12228. struct llama_context_params params) {
  12229. if (!model) {
  12230. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12231. return nullptr;
  12232. }
  12233. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12234. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12235. return nullptr;
  12236. }
  12237. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12238. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12239. return nullptr;
  12240. }
  12241. llama_context * ctx = new llama_context(*model);
  12242. const auto & hparams = model->hparams;
  12243. auto & cparams = ctx->cparams;
  12244. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12245. cparams.n_threads = params.n_threads;
  12246. cparams.n_threads_batch = params.n_threads_batch;
  12247. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12248. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12249. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12250. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12251. cparams.defrag_thold = params.defrag_thold;
  12252. cparams.embeddings = params.embeddings;
  12253. cparams.offload_kqv = params.offload_kqv;
  12254. cparams.pooling_type = params.pooling_type;
  12255. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12256. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12257. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12258. // this is necessary due to kv_self.n being padded later during inference
  12259. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12260. // with causal attention, the batch size is limited by the context size
  12261. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12262. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12263. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12264. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12265. hparams.n_ctx_train;
  12266. cparams.cb_eval = params.cb_eval;
  12267. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12268. auto rope_scaling_type = params.rope_scaling_type;
  12269. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12270. rope_scaling_type = hparams.rope_scaling_type_train;
  12271. }
  12272. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12273. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12274. }
  12275. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12276. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12277. }
  12278. cparams.causal_attn = hparams.causal_attn;
  12279. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12280. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12281. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12282. } else {
  12283. cparams.pooling_type = hparams.pooling_type;
  12284. }
  12285. }
  12286. if (params.seed == LLAMA_DEFAULT_SEED) {
  12287. params.seed = time(NULL);
  12288. }
  12289. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12290. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12291. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12292. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12293. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12294. ctx->abort_callback = params.abort_callback;
  12295. ctx->abort_callback_data = params.abort_callback_data;
  12296. ctx->rng = std::mt19937(params.seed);
  12297. ctx->logits_all = params.logits_all;
  12298. uint32_t kv_size = cparams.n_ctx;
  12299. ggml_type type_k = params.type_k;
  12300. ggml_type type_v = params.type_v;
  12301. // Mamba only needs a constant number of KV cache cells per sequence
  12302. if (model->arch == LLM_ARCH_MAMBA) {
  12303. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12304. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12305. // it's probably best to keep as much precision as possible for the states
  12306. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12307. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12308. }
  12309. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12310. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12311. if (!hparams.vocab_only) {
  12312. // initialize backends
  12313. #ifdef GGML_USE_METAL
  12314. if (model->n_gpu_layers > 0) {
  12315. ctx->backend_metal = ggml_backend_metal_init();
  12316. if (ctx->backend_metal == nullptr) {
  12317. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12318. llama_free(ctx);
  12319. return nullptr;
  12320. }
  12321. ctx->backends.push_back(ctx->backend_metal);
  12322. }
  12323. #elif defined(GGML_USE_CUDA)
  12324. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12325. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12326. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12327. if (backend == nullptr) {
  12328. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12329. llama_free(ctx);
  12330. return nullptr;
  12331. }
  12332. ctx->backends.push_back(backend);
  12333. } else {
  12334. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12335. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12336. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12337. if (backend == nullptr) {
  12338. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12339. llama_free(ctx);
  12340. return nullptr;
  12341. }
  12342. ctx->backends.push_back(backend);
  12343. }
  12344. }
  12345. #elif defined(GGML_USE_VULKAN)
  12346. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12347. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12348. llama_free(ctx);
  12349. return nullptr;
  12350. }
  12351. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12352. ggml_backend_t backend = ggml_backend_vk_init(0);
  12353. if (backend == nullptr) {
  12354. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12355. llama_free(ctx);
  12356. return nullptr;
  12357. }
  12358. ctx->backends.push_back(backend);
  12359. } else {
  12360. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12361. ggml_backend_t backend = ggml_backend_vk_init(device);
  12362. if (backend == nullptr) {
  12363. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12364. llama_free(ctx);
  12365. return nullptr;
  12366. }
  12367. ctx->backends.push_back(backend);
  12368. }
  12369. }
  12370. #elif defined(GGML_USE_SYCL)
  12371. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12372. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12373. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12374. if (backend == nullptr) {
  12375. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12376. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12377. llama_free(ctx);
  12378. return nullptr;
  12379. }
  12380. ctx->backends.push_back(backend);
  12381. } else {
  12382. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12383. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12384. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12385. if (backend == nullptr) {
  12386. int id_list[GGML_SYCL_MAX_DEVICES];
  12387. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12388. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12389. llama_free(ctx);
  12390. return nullptr;
  12391. }
  12392. ctx->backends.push_back(backend);
  12393. }
  12394. }
  12395. #elif defined(GGML_USE_KOMPUTE)
  12396. if (model->n_gpu_layers > 0) {
  12397. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12398. if (backend == nullptr) {
  12399. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12400. llama_free(ctx);
  12401. return nullptr;
  12402. }
  12403. ctx->backends.push_back(backend);
  12404. }
  12405. #endif
  12406. ctx->backend_cpu = ggml_backend_cpu_init();
  12407. if (ctx->backend_cpu == nullptr) {
  12408. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12409. llama_free(ctx);
  12410. return nullptr;
  12411. }
  12412. ctx->backends.push_back(ctx->backend_cpu);
  12413. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12414. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12415. llama_free(ctx);
  12416. return nullptr;
  12417. }
  12418. {
  12419. size_t memory_size_k = 0;
  12420. size_t memory_size_v = 0;
  12421. for (auto & k : ctx->kv_self.k_l) {
  12422. memory_size_k += ggml_nbytes(k);
  12423. }
  12424. for (auto & v : ctx->kv_self.v_l) {
  12425. memory_size_v += ggml_nbytes(v);
  12426. }
  12427. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12428. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12429. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12430. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12431. }
  12432. // graph outputs buffer
  12433. {
  12434. // resized during inference when a batch uses more outputs
  12435. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12436. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12437. llama_free(ctx);
  12438. return nullptr;
  12439. }
  12440. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12441. ggml_backend_buffer_name(ctx->buf_output),
  12442. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12443. }
  12444. // scheduler and compute buffers
  12445. {
  12446. // buffer types used for the compute buffer of each backend
  12447. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12448. for (auto * backend : ctx->backends) {
  12449. if (ggml_backend_is_cpu(backend)) {
  12450. // use host buffers for the CPU backend compute buffer
  12451. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12452. } else {
  12453. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12454. }
  12455. }
  12456. // buffer used to store the computation graph and the tensor meta data
  12457. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12458. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12459. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12460. #ifndef GGML_USE_CUDA
  12461. // pipeline parallelism requires support for async compute and events
  12462. // currently this is only implemented in the CUDA backend
  12463. pipeline_parallel = false;
  12464. #endif
  12465. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12466. if (pipeline_parallel) {
  12467. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12468. }
  12469. // build worst-case graph
  12470. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12471. int n_past = cparams.n_ctx - n_tokens;
  12472. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12473. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12474. // initialize scheduler with the worst-case graph
  12475. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12476. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12477. llama_free(ctx);
  12478. return nullptr;
  12479. }
  12480. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12481. ggml_backend_t backend = ctx->backends[i];
  12482. ggml_backend_buffer_type_t buft = backend_buft[i];
  12483. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12484. if (size > 1) {
  12485. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12486. ggml_backend_buft_name(buft),
  12487. size / 1024.0 / 1024.0);
  12488. }
  12489. }
  12490. // note: the number of splits during measure is higher than during inference due to the kv shift
  12491. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12492. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12493. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12494. }
  12495. }
  12496. #ifdef GGML_USE_MPI
  12497. ctx->ctx_mpi = ggml_mpi_init();
  12498. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12499. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12500. // TODO: needs fix after #3228
  12501. GGML_ASSERT(false && "not implemented");
  12502. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12503. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12504. llama_backend_free();
  12505. exit(1);
  12506. }
  12507. #endif
  12508. return ctx;
  12509. }
  12510. void llama_free(struct llama_context * ctx) {
  12511. delete ctx;
  12512. }
  12513. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12514. return &ctx->model;
  12515. }
  12516. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12517. return ctx->cparams.n_ctx;
  12518. }
  12519. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12520. return ctx->cparams.n_batch;
  12521. }
  12522. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12523. return ctx->cparams.n_ubatch;
  12524. }
  12525. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12526. return ctx->kv_self.size;
  12527. }
  12528. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12529. return model->vocab.type;
  12530. }
  12531. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12532. switch (model->arch) {
  12533. // these models do not use RoPE
  12534. case LLM_ARCH_GPT2:
  12535. case LLM_ARCH_GPTJ:
  12536. case LLM_ARCH_GPTNEOX:
  12537. case LLM_ARCH_MPT:
  12538. case LLM_ARCH_REFACT:
  12539. case LLM_ARCH_BLOOM:
  12540. case LLM_ARCH_MAMBA:
  12541. return LLAMA_ROPE_TYPE_NONE;
  12542. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12543. case LLM_ARCH_LLAMA:
  12544. case LLM_ARCH_BAICHUAN:
  12545. case LLM_ARCH_STARCODER:
  12546. case LLM_ARCH_PLAMO:
  12547. case LLM_ARCH_CODESHELL:
  12548. case LLM_ARCH_ORION:
  12549. case LLM_ARCH_INTERNLM2:
  12550. case LLM_ARCH_MINICPM:
  12551. case LLM_ARCH_XVERSE:
  12552. case LLM_ARCH_COMMAND_R:
  12553. return LLAMA_ROPE_TYPE_NORM;
  12554. // the pairs of head values are offset by n_rot/2
  12555. case LLM_ARCH_FALCON:
  12556. case LLM_ARCH_GROK:
  12557. case LLM_ARCH_DBRX:
  12558. case LLM_ARCH_PERSIMMON:
  12559. case LLM_ARCH_BERT:
  12560. case LLM_ARCH_NOMIC_BERT:
  12561. case LLM_ARCH_STABLELM:
  12562. case LLM_ARCH_QWEN:
  12563. case LLM_ARCH_QWEN2:
  12564. case LLM_ARCH_QWEN2MOE:
  12565. case LLM_ARCH_PHI2:
  12566. case LLM_ARCH_GEMMA:
  12567. case LLM_ARCH_STARCODER2:
  12568. return LLAMA_ROPE_TYPE_NEOX;
  12569. // all model arches should be listed explicitly here
  12570. case LLM_ARCH_UNKNOWN:
  12571. GGML_ASSERT(false && "unknown architecture");
  12572. break;
  12573. }
  12574. return LLAMA_ROPE_TYPE_NONE;
  12575. }
  12576. int32_t llama_n_vocab(const struct llama_model * model) {
  12577. return model->hparams.n_vocab;
  12578. }
  12579. int32_t llama_n_ctx_train(const struct llama_model * model) {
  12580. return model->hparams.n_ctx_train;
  12581. }
  12582. int32_t llama_n_embd(const struct llama_model * model) {
  12583. return model->hparams.n_embd;
  12584. }
  12585. int32_t llama_n_layer(const struct llama_model * model) {
  12586. return model->hparams.n_layer;
  12587. }
  12588. float llama_rope_freq_scale_train(const struct llama_model * model) {
  12589. return model->hparams.rope_freq_scale_train;
  12590. }
  12591. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  12592. const auto & it = model->gguf_kv.find(key);
  12593. if (it == model->gguf_kv.end()) {
  12594. if (buf_size > 0) {
  12595. buf[0] = '\0';
  12596. }
  12597. return -1;
  12598. }
  12599. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12600. }
  12601. int32_t llama_model_meta_count(const struct llama_model * model) {
  12602. return (int)model->gguf_kv.size();
  12603. }
  12604. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  12605. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12606. if (buf_size > 0) {
  12607. buf[0] = '\0';
  12608. }
  12609. return -1;
  12610. }
  12611. auto it = model->gguf_kv.begin();
  12612. std::advance(it, i);
  12613. return snprintf(buf, buf_size, "%s", it->first.c_str());
  12614. }
  12615. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  12616. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12617. if (buf_size > 0) {
  12618. buf[0] = '\0';
  12619. }
  12620. return -1;
  12621. }
  12622. auto it = model->gguf_kv.begin();
  12623. std::advance(it, i);
  12624. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12625. }
  12626. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  12627. return snprintf(buf, buf_size, "%s %s %s",
  12628. llama_model_arch_name(model->arch),
  12629. llama_model_type_name(model->type),
  12630. llama_model_ftype_name(model->ftype).c_str());
  12631. }
  12632. uint64_t llama_model_size(const struct llama_model * model) {
  12633. uint64_t size = 0;
  12634. for (const auto & it : model->tensors_by_name) {
  12635. size += ggml_nbytes(it.second);
  12636. }
  12637. return size;
  12638. }
  12639. uint64_t llama_model_n_params(const struct llama_model * model) {
  12640. uint64_t nparams = 0;
  12641. for (const auto & it : model->tensors_by_name) {
  12642. nparams += ggml_nelements(it.second);
  12643. }
  12644. return nparams;
  12645. }
  12646. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  12647. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  12648. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  12649. return it.first == name;
  12650. });
  12651. if (it == model->tensors_by_name.end()) {
  12652. return nullptr;
  12653. }
  12654. return it->second;
  12655. }
  12656. uint32_t llama_model_quantize(
  12657. const char * fname_inp,
  12658. const char * fname_out,
  12659. const llama_model_quantize_params * params) {
  12660. try {
  12661. llama_model_quantize_internal(fname_inp, fname_out, params);
  12662. return 0;
  12663. } catch (const std::exception & err) {
  12664. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  12665. return 1;
  12666. }
  12667. }
  12668. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  12669. try {
  12670. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  12671. } catch (const std::exception & err) {
  12672. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  12673. return 1;
  12674. }
  12675. }
  12676. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  12677. GGML_ASSERT(cvec.tensors.empty());
  12678. GGML_ASSERT(cvec.ctxs.empty());
  12679. GGML_ASSERT(cvec.bufs.empty());
  12680. // count layer buffer types
  12681. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  12682. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  12683. buft_layer_count[model.buft_layer[i].buft]++;
  12684. }
  12685. // allocate contexts
  12686. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  12687. for (auto & it : buft_layer_count) {
  12688. int n_layers = it.second;
  12689. struct ggml_init_params params = {
  12690. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  12691. /*.mem_buffer =*/ NULL,
  12692. /*.no_alloc =*/ true,
  12693. };
  12694. ggml_context * ctx = ggml_init(params);
  12695. if (!ctx) {
  12696. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  12697. return 1;
  12698. }
  12699. ctx_map[it.first] = ctx;
  12700. }
  12701. // make tensors
  12702. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  12703. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12704. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  12705. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  12706. cvec.tensors.push_back(tensor);
  12707. }
  12708. // allocate tensors / buffers and zero
  12709. for (auto it : ctx_map) {
  12710. ggml_backend_buffer_type_t buft = it.first;
  12711. ggml_context * ctx = it.second;
  12712. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  12713. if (!buf) {
  12714. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  12715. return false;
  12716. }
  12717. ggml_backend_buffer_clear(buf, 0);
  12718. cvec.ctxs.push_back(ctx);
  12719. cvec.bufs.push_back(buf);
  12720. }
  12721. return true;
  12722. }
  12723. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  12724. const llama_model & model = lctx->model;
  12725. llama_control_vector & cvec = lctx->cvec;
  12726. if (data == nullptr) {
  12727. // disable the current control vector (but leave allocated for later)
  12728. cvec.layer_start = -1;
  12729. cvec.layer_end = -1;
  12730. return 0;
  12731. }
  12732. if (n_embd != (int) model.hparams.n_embd) {
  12733. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  12734. return 1;
  12735. }
  12736. if (cvec.tensors.empty()) {
  12737. if (!llama_control_vector_init(cvec, model)) {
  12738. return 1;
  12739. }
  12740. }
  12741. cvec.layer_start = il_start;
  12742. cvec.layer_end = il_end;
  12743. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12744. assert(cvec.tensors[il] != nullptr);
  12745. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  12746. if (off + n_embd <= len) {
  12747. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  12748. }
  12749. }
  12750. return 0;
  12751. }
  12752. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  12753. struct llama_kv_cache_view result = {
  12754. /*.n_cells = */ 0,
  12755. /*.n_seq_max = */ n_seq_max,
  12756. /*.token_count = */ 0,
  12757. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  12758. /*.max_contiguous = */ 0,
  12759. /*.max_contiguous_idx = */ -1,
  12760. /*.cells = */ nullptr,
  12761. /*.cells_sequences = */ nullptr,
  12762. };
  12763. return result;
  12764. }
  12765. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  12766. if (view->cells != nullptr) {
  12767. free(view->cells);
  12768. view->cells = nullptr;
  12769. }
  12770. if (view->cells_sequences != nullptr) {
  12771. free(view->cells_sequences);
  12772. view->cells_sequences = nullptr;
  12773. }
  12774. }
  12775. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  12776. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  12777. view->n_cells = int32_t(ctx->kv_self.size);
  12778. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  12779. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  12780. view->cells = (struct llama_kv_cache_view_cell *)p;
  12781. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  12782. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  12783. view->cells_sequences = (llama_seq_id *)p;
  12784. }
  12785. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  12786. llama_kv_cache_view_cell * c_curr = view->cells;
  12787. llama_seq_id * cs_curr = view->cells_sequences;
  12788. int32_t used_cells = 0;
  12789. int32_t token_count = 0;
  12790. int32_t curr_contig_idx = -1;
  12791. uint32_t max_contig = 0;
  12792. int32_t max_contig_idx = -1;
  12793. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  12794. const size_t curr_size = kv_cells[i].seq_id.size();
  12795. token_count += curr_size;
  12796. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  12797. if (curr_size > 0) {
  12798. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  12799. max_contig = i - curr_contig_idx;
  12800. max_contig_idx = curr_contig_idx;
  12801. }
  12802. curr_contig_idx = -1;
  12803. } else if (curr_contig_idx < 0) {
  12804. curr_contig_idx = i;
  12805. }
  12806. int seq_idx = 0;
  12807. for (const llama_seq_id it : kv_cells[i].seq_id) {
  12808. if (seq_idx >= view->n_seq_max) {
  12809. break;
  12810. }
  12811. cs_curr[seq_idx] = it;
  12812. seq_idx++;
  12813. }
  12814. if (seq_idx != 0) {
  12815. used_cells++;
  12816. }
  12817. for (; seq_idx < view->n_seq_max; seq_idx++) {
  12818. cs_curr[seq_idx] = -1;
  12819. }
  12820. }
  12821. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  12822. max_contig_idx = curr_contig_idx;
  12823. max_contig = kv_cells.size() - curr_contig_idx;
  12824. }
  12825. view->max_contiguous = max_contig;
  12826. view->max_contiguous_idx = max_contig_idx;
  12827. view->token_count = token_count;
  12828. view->used_cells = used_cells;
  12829. if (uint32_t(used_cells) != ctx->kv_self.used) {
  12830. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  12831. __func__, ctx->kv_self.used, used_cells);
  12832. }
  12833. }
  12834. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  12835. int result = 0;
  12836. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  12837. result += ctx->kv_self.cells[i].seq_id.size();
  12838. }
  12839. return result;
  12840. }
  12841. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  12842. return ctx->kv_self.used;
  12843. }
  12844. void llama_kv_cache_clear(struct llama_context * ctx) {
  12845. llama_kv_cache_clear(ctx->kv_self);
  12846. }
  12847. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  12848. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  12849. }
  12850. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  12851. if (seq_id_src == seq_id_dst) {
  12852. return;
  12853. }
  12854. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  12855. }
  12856. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  12857. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  12858. }
  12859. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  12860. if (delta == 0) {
  12861. return;
  12862. }
  12863. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  12864. }
  12865. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  12866. if (d == 1) {
  12867. return;
  12868. }
  12869. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  12870. }
  12871. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  12872. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  12873. }
  12874. void llama_kv_cache_defrag(struct llama_context * ctx) {
  12875. llama_kv_cache_defrag(ctx->kv_self);
  12876. }
  12877. void llama_kv_cache_update(struct llama_context * ctx) {
  12878. llama_kv_cache_update_internal(*ctx);
  12879. }
  12880. // deprecated
  12881. size_t llama_get_state_size(const struct llama_context * ctx) {
  12882. return llama_state_get_size(ctx);
  12883. }
  12884. // deprecated
  12885. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  12886. return llama_state_get_data(ctx, dst);
  12887. }
  12888. // deprecated
  12889. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  12890. return llama_state_set_data(ctx, src);
  12891. }
  12892. // deprecated
  12893. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  12894. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  12895. }
  12896. // deprecated
  12897. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  12898. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  12899. }
  12900. // Returns the *maximum* size of the state
  12901. size_t llama_state_get_size(const struct llama_context * ctx) {
  12902. const auto & cparams = ctx->cparams;
  12903. const auto & hparams = ctx->model.hparams;
  12904. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  12905. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  12906. const size_t s_rng_size = sizeof(size_t);
  12907. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  12908. const size_t s_n_outputs = sizeof(size_t);
  12909. // assume worst case for outputs although only currently set ones are serialized
  12910. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  12911. const size_t s_logits_size = sizeof(size_t);
  12912. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  12913. const size_t s_embedding_size = sizeof(size_t);
  12914. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  12915. const size_t s_kv_buf_size = sizeof(size_t);
  12916. const size_t s_kv_head = sizeof(uint32_t);
  12917. const size_t s_kv_size = sizeof(uint32_t);
  12918. const size_t s_kv_used = sizeof(uint32_t);
  12919. const size_t s_kv = ctx->kv_self.total_size();
  12920. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  12921. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  12922. const size_t s_total = (
  12923. + s_rng_size
  12924. + s_rng
  12925. + s_n_outputs
  12926. + s_output_pos
  12927. + s_logits_size
  12928. + s_logits
  12929. + s_embedding_size
  12930. + s_embedding
  12931. + s_kv_buf_size
  12932. + s_kv_head
  12933. + s_kv_size
  12934. + s_kv_used
  12935. + s_kv
  12936. + s_kv_cells
  12937. );
  12938. return s_total;
  12939. }
  12940. // llama_context_data
  12941. struct llama_data_context {
  12942. virtual void write(const void * src, size_t size) = 0;
  12943. virtual size_t get_size_written() = 0;
  12944. virtual ~llama_data_context() = default;
  12945. };
  12946. struct llama_data_buffer_context : llama_data_context {
  12947. uint8_t * ptr;
  12948. size_t size_written = 0;
  12949. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  12950. void write(const void * src, size_t size) override {
  12951. memcpy(ptr, src, size);
  12952. ptr += size;
  12953. size_written += size;
  12954. }
  12955. size_t get_size_written() override {
  12956. return size_written;
  12957. }
  12958. };
  12959. struct llama_data_file_context : llama_data_context {
  12960. llama_file * file;
  12961. size_t size_written = 0;
  12962. llama_data_file_context(llama_file * f) : file(f) {}
  12963. void write(const void * src, size_t size) override {
  12964. file->write_raw(src, size);
  12965. size_written += size;
  12966. }
  12967. size_t get_size_written() override {
  12968. return size_written;
  12969. }
  12970. };
  12971. /** copy state data into either a buffer or file depending on the passed in context
  12972. *
  12973. * file context:
  12974. * llama_file file("/path", "wb");
  12975. * llama_data_file_context data_ctx(&file);
  12976. * llama_state_get_data(ctx, &data_ctx);
  12977. *
  12978. * buffer context:
  12979. * std::vector<uint8_t> buf(max_size, 0);
  12980. * llama_data_buffer_context data_ctx(&buf.data());
  12981. * llama_state_get_data(ctx, &data_ctx);
  12982. *
  12983. */
  12984. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  12985. // copy rng
  12986. {
  12987. std::ostringstream rng_ss;
  12988. rng_ss << ctx->rng;
  12989. const std::string & rng_str = rng_ss.str();
  12990. const size_t rng_size = rng_str.size();
  12991. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  12992. data_ctx->write(&rng_size, sizeof(rng_size));
  12993. data_ctx->write(rng_str.data(), rng_size);
  12994. }
  12995. // copy outputs
  12996. {
  12997. // Can't use ctx->n_outputs because it's not for the
  12998. // entire last batch when n_ubatch is smaller than n_batch
  12999. size_t n_outputs = 0;
  13000. // copy output ids
  13001. {
  13002. std::vector<int32_t> output_pos;
  13003. const size_t n_batch = ctx->cparams.n_batch;
  13004. const auto & output_ids = ctx->output_ids;
  13005. output_pos.resize(ctx->output_size);
  13006. // build a more compact representation of the output ids
  13007. for (size_t i = 0; i < n_batch; ++i) {
  13008. // map an output id to a position in the batch
  13009. int32_t pos = output_ids[i];
  13010. if (pos >= 0) {
  13011. if ((size_t) pos >= n_outputs) {
  13012. n_outputs = pos + 1;
  13013. }
  13014. GGML_ASSERT((size_t) pos < ctx->output_size);
  13015. output_pos[pos] = i;
  13016. }
  13017. }
  13018. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13019. if (n_outputs) {
  13020. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13021. }
  13022. }
  13023. // copy logits
  13024. {
  13025. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13026. data_ctx->write(&logits_size, sizeof(logits_size));
  13027. if (logits_size) {
  13028. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13029. }
  13030. }
  13031. // copy embeddings
  13032. {
  13033. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13034. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13035. if (embeddings_size) {
  13036. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13037. }
  13038. }
  13039. }
  13040. // copy kv cache
  13041. {
  13042. const auto & kv_self = ctx->kv_self;
  13043. const auto & hparams = ctx->model.hparams;
  13044. const uint32_t n_layer = hparams.n_layer;
  13045. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13046. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13047. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13048. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13049. const uint32_t kv_size = kv_self.size;
  13050. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13051. const uint32_t kv_used = kv_self.used;
  13052. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13053. data_ctx->write(&kv_head, sizeof(kv_head));
  13054. data_ctx->write(&kv_size, sizeof(kv_size));
  13055. data_ctx->write(&kv_used, sizeof(kv_used));
  13056. if (kv_buf_size) {
  13057. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13058. std::vector<uint8_t> tmp_buf;
  13059. for (int il = 0; il < (int) n_layer; ++il) {
  13060. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13061. tmp_buf.resize(k_size);
  13062. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13063. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13064. if (kv_self.recurrent) {
  13065. // v is contiguous for recurrent models
  13066. // TODO: use other tensors for state models than k and v
  13067. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13068. tmp_buf.resize(v_size);
  13069. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13070. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13071. continue;
  13072. }
  13073. // v is not contiguous, copy row by row
  13074. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13075. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13076. tmp_buf.resize(v_row_size);
  13077. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13078. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13079. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13080. }
  13081. }
  13082. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13083. }
  13084. for (uint32_t i = 0; i < kv_head; ++i) {
  13085. const auto & cell = kv_self.cells[i];
  13086. const llama_pos pos = cell.pos;
  13087. const size_t seq_id_size = cell.seq_id.size();
  13088. data_ctx->write(&pos, sizeof(pos));
  13089. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13090. for (auto seq_id : cell.seq_id) {
  13091. data_ctx->write(&seq_id, sizeof(seq_id));
  13092. }
  13093. }
  13094. }
  13095. }
  13096. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13097. llama_data_buffer_context data_ctx(dst);
  13098. llama_state_get_data_internal(ctx, &data_ctx);
  13099. return data_ctx.get_size_written();
  13100. }
  13101. // Sets the state reading from the specified source address
  13102. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13103. const uint8_t * inp = src;
  13104. // set rng
  13105. {
  13106. size_t rng_size;
  13107. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13108. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13109. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13110. std::istringstream rng_ss(rng_str);
  13111. rng_ss >> ctx->rng;
  13112. GGML_ASSERT(!rng_ss.fail());
  13113. }
  13114. // set output ids
  13115. {
  13116. size_t n_outputs;
  13117. std::vector<int32_t> output_pos;
  13118. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13119. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13120. if (n_outputs) {
  13121. output_pos.resize(n_outputs);
  13122. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13123. inp += n_outputs * sizeof(int32_t);
  13124. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13125. int32_t id = output_pos[i];
  13126. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13127. ctx->output_ids[id] = i;
  13128. }
  13129. ctx->n_outputs = n_outputs;
  13130. }
  13131. }
  13132. // set logits
  13133. {
  13134. size_t logits_size;
  13135. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13136. GGML_ASSERT(ctx->logits_size >= logits_size);
  13137. if (logits_size) {
  13138. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13139. inp += logits_size * sizeof(float);
  13140. }
  13141. }
  13142. // set embeddings
  13143. {
  13144. size_t embeddings_size;
  13145. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13146. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13147. if (embeddings_size) {
  13148. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13149. inp += embeddings_size * sizeof(float);
  13150. }
  13151. }
  13152. // set kv cache
  13153. {
  13154. const auto & kv_self = ctx->kv_self;
  13155. const auto & hparams = ctx->model.hparams;
  13156. const uint32_t n_layer = hparams.n_layer;
  13157. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13158. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13159. size_t kv_buf_size;
  13160. uint32_t kv_head;
  13161. uint32_t kv_size;
  13162. uint32_t kv_used;
  13163. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13164. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13165. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13166. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13167. if (kv_self.size != kv_size) {
  13168. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13169. GGML_ASSERT(kv_self.size >= kv_head);
  13170. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13171. __func__, kv_head, kv_size, kv_self.size);
  13172. }
  13173. if (kv_buf_size) {
  13174. const size_t pre_kv_buf_size = inp - src;
  13175. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13176. for (int il = 0; il < (int) n_layer; ++il) {
  13177. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13178. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13179. inp += k_size;
  13180. if (kv_self.recurrent) {
  13181. // v is contiguous for recurrent models
  13182. // TODO: use other tensors for state models than k and v
  13183. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13184. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13185. inp += v_size;
  13186. continue;
  13187. }
  13188. // v is not contiguous, copy row by row
  13189. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13190. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13191. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13192. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13193. inp += v_row_size;
  13194. }
  13195. }
  13196. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13197. }
  13198. llama_kv_cache_clear(ctx);
  13199. ctx->kv_self.head = kv_head;
  13200. ctx->kv_self.used = kv_used;
  13201. for (uint32_t i = 0; i < kv_head; ++i) {
  13202. llama_pos pos;
  13203. size_t seq_id_size;
  13204. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13205. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13206. ctx->kv_self.cells[i].pos = pos;
  13207. llama_seq_id seq_id;
  13208. for (size_t j = 0; j < seq_id_size; ++j) {
  13209. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13210. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13211. }
  13212. }
  13213. }
  13214. const size_t nread = inp - src;
  13215. const size_t max_size = llama_state_get_size(ctx);
  13216. GGML_ASSERT(nread <= max_size);
  13217. return nread;
  13218. }
  13219. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13220. llama_file file(path_session, "rb");
  13221. // sanity checks
  13222. {
  13223. const uint32_t magic = file.read_u32();
  13224. const uint32_t version = file.read_u32();
  13225. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13226. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13227. return false;
  13228. }
  13229. llama_hparams session_hparams;
  13230. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13231. if (session_hparams != ctx->model.hparams) {
  13232. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13233. return false;
  13234. }
  13235. }
  13236. // load the prompt
  13237. {
  13238. const uint32_t n_token_count = file.read_u32();
  13239. if (n_token_count > n_token_capacity) {
  13240. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13241. return false;
  13242. }
  13243. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13244. *n_token_count_out = n_token_count;
  13245. }
  13246. // restore the context state
  13247. {
  13248. const size_t n_state_size_cur = file.size - file.tell();
  13249. const size_t n_state_size_max = llama_state_get_size(ctx);
  13250. if (n_state_size_cur > n_state_size_max) {
  13251. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13252. return false;
  13253. }
  13254. std::vector<uint8_t> state_data(n_state_size_max);
  13255. file.read_raw(state_data.data(), n_state_size_cur);
  13256. llama_state_set_data(ctx, state_data.data());
  13257. }
  13258. return true;
  13259. }
  13260. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13261. try {
  13262. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13263. } catch (const std::exception & err) {
  13264. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13265. return false;
  13266. }
  13267. }
  13268. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13269. llama_file file(path_session, "wb");
  13270. file.write_u32(LLAMA_SESSION_MAGIC);
  13271. file.write_u32(LLAMA_SESSION_VERSION);
  13272. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13273. // save the prompt
  13274. file.write_u32((uint32_t) n_token_count);
  13275. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13276. // save the context state using stream saving
  13277. llama_data_file_context data_ctx(&file);
  13278. llama_state_get_data_internal(ctx, &data_ctx);
  13279. return true;
  13280. }
  13281. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13282. try {
  13283. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13284. } catch (const std::exception & err) {
  13285. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13286. return false;
  13287. }
  13288. }
  13289. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13290. // save the size of size_t as a uint32_t for safety check
  13291. const size_t size_t_size_size = sizeof(uint32_t);
  13292. // other values
  13293. const size_t s_cell_count_size = sizeof(uint32_t);
  13294. const size_t s_layer_count_size = sizeof(uint32_t);
  13295. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13296. size_t s_cell_count = 0;
  13297. size_t s_cell_data_size = 0;
  13298. const auto & kv_self = ctx->kv_self;
  13299. const auto & hparams = ctx->model.hparams;
  13300. const uint32_t n_layer = hparams.n_layer;
  13301. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13302. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13303. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13304. const auto & cell = kv_self.cells[i];
  13305. if (cell.seq_id.count(seq_id) > 0) {
  13306. ++s_cell_count;
  13307. s_cell_data_size += sizeof(llama_pos);
  13308. }
  13309. }
  13310. for (int il = 0; il < (int)n_layer; ++il) {
  13311. // types of keys and values
  13312. s_cell_data_size += sizeof(int32_t) * 2;
  13313. // k_size_row and v_size_el values of layer
  13314. s_cell_data_size += sizeof(size_t) * 2;
  13315. // keys
  13316. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13317. s_cell_data_size += k_size_row * s_cell_count;
  13318. // values (transposed)
  13319. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13320. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13321. }
  13322. const size_t s_total = (
  13323. size_t_size_size +
  13324. s_cell_count_size +
  13325. s_layer_count_size +
  13326. n_embd_v_gqa_size +
  13327. s_cell_data_size
  13328. );
  13329. return s_total;
  13330. }
  13331. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13332. const auto & kv_self = ctx->kv_self;
  13333. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13334. // Save the size of size_t as a uint32_t for safety check
  13335. const uint32_t size_t_size = sizeof(size_t);
  13336. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13337. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13338. uint32_t cell_count = 0;
  13339. // Count the number of cells with the specified seq_id
  13340. // Find all the ranges of cells with this seq id
  13341. {
  13342. uint32_t cell_range_begin = kv_self.size;
  13343. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13344. const auto & cell = kv_self.cells[i];
  13345. if (cell.has_seq_id(seq_id)) {
  13346. ++cell_count;
  13347. if (cell_range_begin == kv_self.size) {
  13348. cell_range_begin = i;
  13349. }
  13350. }
  13351. else {
  13352. if (cell_range_begin != kv_self.size) {
  13353. cell_ranges.push_back({ cell_range_begin, i });
  13354. cell_range_begin = kv_self.size;
  13355. }
  13356. }
  13357. }
  13358. if (cell_range_begin != kv_self.size) {
  13359. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13360. }
  13361. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13362. uint32_t cell_count_check = 0;
  13363. for (const auto & range : cell_ranges) {
  13364. cell_count_check += range.second - range.first;
  13365. }
  13366. GGML_ASSERT(cell_count == cell_count_check);
  13367. }
  13368. // Write the cell count
  13369. data_ctx.write(&cell_count, sizeof(cell_count));
  13370. const auto & hparams = ctx->model.hparams;
  13371. const uint32_t n_layer = hparams.n_layer;
  13372. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13373. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13374. // Write the layer count
  13375. data_ctx.write(&n_layer, sizeof(n_layer));
  13376. // Write n_embd_v_gqa
  13377. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13378. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13379. for (const auto & range : cell_ranges) {
  13380. for (uint32_t i = range.first; i < range.second; ++i) {
  13381. const auto & cell = kv_self.cells[i];
  13382. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13383. }
  13384. }
  13385. // Iterate and write all the keys first, each row is a cell
  13386. // Get whole range at a time
  13387. std::vector<uint8_t> tmp_buf;
  13388. for (int il = 0; il < (int)n_layer; ++il) {
  13389. // Write key type
  13390. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13391. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13392. // Write row size of key
  13393. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13394. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13395. // Read each range of cells of k_size length each into tmp_buf and write out
  13396. for (const auto & range : cell_ranges) {
  13397. const size_t range_size = range.second - range.first;
  13398. tmp_buf.resize(range_size * k_size_row);
  13399. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13400. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13401. }
  13402. }
  13403. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13404. const uint32_t kv_size = kv_self.size;
  13405. for (int il = 0; il < (int)n_layer; ++il) {
  13406. // Write value type
  13407. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13408. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13409. // Write element size
  13410. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13411. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13412. // For each row, we get the element values of each cell
  13413. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13414. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13415. for (const auto & range : cell_ranges) {
  13416. const size_t range_size = range.second - range.first;
  13417. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13418. tmp_buf.resize(range_size * v_size_el);
  13419. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13420. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13421. }
  13422. }
  13423. }
  13424. return data_ctx.get_size_written();
  13425. }
  13426. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13427. llama_data_buffer_context data_ctx(dst);
  13428. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13429. }
  13430. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13431. auto & kv_self = ctx->kv_self;
  13432. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13433. // Wipe the slot
  13434. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13435. const uint8_t * inp = src;
  13436. // Read size of size_t
  13437. uint32_t size_t_size;
  13438. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13439. inp += sizeof(size_t_size);
  13440. if (size_t_size != sizeof(size_t)) {
  13441. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13442. return 0;
  13443. }
  13444. // Read the cell count
  13445. uint32_t cell_count;
  13446. memcpy(&cell_count, inp, sizeof(cell_count));
  13447. inp += sizeof(cell_count);
  13448. // Read the layer count
  13449. uint32_t n_layer_ref;
  13450. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13451. inp += sizeof(n_layer_ref);
  13452. // Read n_embd_v_gqa
  13453. uint32_t n_embd_v_gqa_ref;
  13454. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13455. inp += sizeof(n_embd_v_gqa_ref);
  13456. // Sanity check model compatibility
  13457. const auto & hparams = ctx->model.hparams;
  13458. const uint32_t n_layer = hparams.n_layer;
  13459. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13460. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13461. if (n_layer != n_layer_ref) {
  13462. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13463. return 0;
  13464. }
  13465. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13466. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13467. return 0;
  13468. }
  13469. // Allocate the new cells for the slot
  13470. if (cell_count) {
  13471. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13472. batch.n_tokens = cell_count;
  13473. for (uint32_t i = 0; i < cell_count; ++i) {
  13474. llama_pos pos;
  13475. memcpy(&pos, inp, sizeof(pos));
  13476. inp += sizeof(pos);
  13477. batch.pos[i] = pos;
  13478. batch.n_seq_id[i] = 1;
  13479. batch.seq_id[i][0] = dest_seq_id;
  13480. }
  13481. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  13482. llama_batch_free(batch);
  13483. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  13484. return 0;
  13485. }
  13486. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  13487. // Assume that this is one contiguous block of cells
  13488. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  13489. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  13490. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  13491. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  13492. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  13493. // Cleanup
  13494. llama_batch_free(batch);
  13495. }
  13496. const uint32_t kv_size = kv_self.size;
  13497. const uint32_t kv_head = kv_self.head;
  13498. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  13499. for (int il = 0; il < (int)n_layer; ++il) {
  13500. // Read type of key
  13501. int32_t k_type_i_ref;
  13502. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  13503. inp += sizeof(k_type_i_ref);
  13504. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13505. if (k_type_i != k_type_i_ref) {
  13506. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13507. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  13508. return 0;
  13509. }
  13510. // Read row size of key
  13511. size_t k_size_row_ref;
  13512. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  13513. inp += sizeof(k_size_row_ref);
  13514. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13515. if (k_size_row != k_size_row_ref) {
  13516. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13517. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  13518. return 0;
  13519. }
  13520. if (cell_count) {
  13521. // Read and set the keys for the whole cell range
  13522. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  13523. inp += cell_count * k_size_row;
  13524. }
  13525. }
  13526. // For each layer, read the values for each cell (transposed)
  13527. for (int il = 0; il < (int)n_layer; ++il) {
  13528. // Read type of value
  13529. int32_t v_type_i_ref;
  13530. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  13531. inp += sizeof(v_type_i_ref);
  13532. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13533. if (v_type_i != v_type_i_ref) {
  13534. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13535. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  13536. return 0;
  13537. }
  13538. // Read element size of value
  13539. size_t v_size_el_ref;
  13540. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  13541. inp += sizeof(v_size_el_ref);
  13542. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13543. if (v_size_el != v_size_el_ref) {
  13544. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13545. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  13546. return 0;
  13547. }
  13548. if (cell_count) {
  13549. // For each row in the transposed matrix, read the values for the whole cell range
  13550. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13551. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  13552. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  13553. inp += cell_count * v_size_el;
  13554. }
  13555. }
  13556. }
  13557. const size_t nread = inp - src;
  13558. return nread;
  13559. }
  13560. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  13561. llama_file file(filepath, "wb");
  13562. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  13563. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  13564. // save the prompt
  13565. file.write_u32((uint32_t)n_token_count);
  13566. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13567. // save the context state using stream saving
  13568. llama_data_file_context data_ctx(&file);
  13569. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13570. const size_t res = file.tell();
  13571. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  13572. return res;
  13573. }
  13574. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13575. llama_file file(filepath, "rb");
  13576. // version checks
  13577. {
  13578. const uint32_t magic = file.read_u32();
  13579. const uint32_t version = file.read_u32();
  13580. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  13581. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  13582. return 0;
  13583. }
  13584. }
  13585. // load the prompt
  13586. {
  13587. const uint32_t n_token_count = file.read_u32();
  13588. if (n_token_count > n_token_capacity) {
  13589. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13590. return 0;
  13591. }
  13592. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13593. *n_token_count_out = n_token_count;
  13594. }
  13595. // restore the context state
  13596. {
  13597. const size_t state_size = file.size - file.tell();
  13598. std::vector<uint8_t> state_data(state_size);
  13599. file.read_raw(state_data.data(), state_size);
  13600. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  13601. if (!nread) {
  13602. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  13603. return 0;
  13604. }
  13605. GGML_ASSERT(nread <= state_size);
  13606. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  13607. }
  13608. return file.tell();
  13609. }
  13610. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  13611. try {
  13612. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  13613. } catch (const std::exception & err) {
  13614. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  13615. return 0;
  13616. }
  13617. }
  13618. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13619. try {
  13620. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  13621. } catch (const std::exception & err) {
  13622. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  13623. return 0;
  13624. }
  13625. }
  13626. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  13627. ctx->cparams.n_threads = n_threads;
  13628. ctx->cparams.n_threads_batch = n_threads_batch;
  13629. }
  13630. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  13631. ctx->abort_callback = abort_callback;
  13632. ctx->abort_callback_data = abort_callback_data;
  13633. }
  13634. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  13635. ctx->cparams.causal_attn = causal_attn;
  13636. }
  13637. struct llama_batch llama_batch_get_one(
  13638. llama_token * tokens,
  13639. int32_t n_tokens,
  13640. llama_pos pos_0,
  13641. llama_seq_id seq_id) {
  13642. return {
  13643. /*n_tokens =*/ n_tokens,
  13644. /*tokens =*/ tokens,
  13645. /*embd =*/ nullptr,
  13646. /*pos =*/ nullptr,
  13647. /*n_seq_id =*/ nullptr,
  13648. /*seq_id =*/ nullptr,
  13649. /*logits =*/ nullptr,
  13650. /*all_pos_0 =*/ pos_0,
  13651. /*all_pos_1 =*/ 1,
  13652. /*all_seq_id =*/ seq_id,
  13653. };
  13654. }
  13655. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  13656. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  13657. if (embd) {
  13658. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  13659. } else {
  13660. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  13661. }
  13662. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  13663. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  13664. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  13665. for (int i = 0; i < n_tokens_alloc; ++i) {
  13666. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  13667. }
  13668. batch.seq_id[n_tokens_alloc] = nullptr;
  13669. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  13670. return batch;
  13671. }
  13672. void llama_batch_free(struct llama_batch batch) {
  13673. if (batch.token) free(batch.token);
  13674. if (batch.embd) free(batch.embd);
  13675. if (batch.pos) free(batch.pos);
  13676. if (batch.n_seq_id) free(batch.n_seq_id);
  13677. if (batch.seq_id) {
  13678. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  13679. free(batch.seq_id[i]);
  13680. }
  13681. free(batch.seq_id);
  13682. }
  13683. if (batch.logits) free(batch.logits);
  13684. }
  13685. int32_t llama_decode(
  13686. struct llama_context * ctx,
  13687. struct llama_batch batch) {
  13688. const int ret = llama_decode_internal(*ctx, batch);
  13689. if (ret < 0) {
  13690. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  13691. }
  13692. return ret;
  13693. }
  13694. void llama_synchronize(struct llama_context * ctx) {
  13695. ggml_backend_sched_synchronize(ctx->sched);
  13696. // FIXME: if multiple single tokens are evaluated without a synchronization,
  13697. // the stats will be added to the prompt evaluation stats
  13698. // this should only happen when using batch size 1 to evaluate a batch
  13699. // add the evaluation to the stats
  13700. if (ctx->n_queued_tokens == 1) {
  13701. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  13702. ctx->n_eval++;
  13703. } else if (ctx->n_queued_tokens > 1) {
  13704. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  13705. ctx->n_p_eval += ctx->n_queued_tokens;
  13706. }
  13707. // get a more accurate load time, upon first eval
  13708. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  13709. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  13710. ctx->has_evaluated_once = true;
  13711. }
  13712. ctx->n_queued_tokens = 0;
  13713. ctx->t_compute_start_us = 0;
  13714. }
  13715. float * llama_get_logits(struct llama_context * ctx) {
  13716. llama_synchronize(ctx);
  13717. return ctx->logits;
  13718. }
  13719. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  13720. int32_t j = -1;
  13721. llama_synchronize(ctx);
  13722. try {
  13723. if (ctx->logits == nullptr) {
  13724. throw std::runtime_error("no logits");
  13725. }
  13726. if (i < 0) {
  13727. j = ctx->n_outputs + i;
  13728. if (j < 0) {
  13729. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  13730. }
  13731. } else if ((size_t) i >= ctx->output_ids.size()) {
  13732. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  13733. } else {
  13734. j = ctx->output_ids[i];
  13735. }
  13736. if (j < 0) {
  13737. throw std::runtime_error(format("batch.logits[%d] != true", i));
  13738. }
  13739. if (j >= ctx->n_outputs) {
  13740. // This should not happen
  13741. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  13742. }
  13743. return ctx->logits + j*ctx->model.hparams.n_vocab;
  13744. } catch (const std::exception & err) {
  13745. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  13746. #ifndef NDEBUG
  13747. GGML_ASSERT(false);
  13748. #endif
  13749. return nullptr;
  13750. }
  13751. }
  13752. float * llama_get_embeddings(struct llama_context * ctx) {
  13753. llama_synchronize(ctx);
  13754. return ctx->embd;
  13755. }
  13756. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  13757. int32_t j = -1;
  13758. llama_synchronize(ctx);
  13759. try {
  13760. if (ctx->embd == nullptr) {
  13761. throw std::runtime_error("no embeddings");
  13762. }
  13763. if (i < 0) {
  13764. j = ctx->n_outputs + i;
  13765. if (j < 0) {
  13766. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  13767. }
  13768. } else if ((size_t) i >= ctx->output_ids.size()) {
  13769. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  13770. } else {
  13771. j = ctx->output_ids[i];
  13772. }
  13773. if (j < 0) {
  13774. throw std::runtime_error(format("batch.logits[%d] != true", i));
  13775. }
  13776. if (j >= ctx->n_outputs) {
  13777. // This should not happen
  13778. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  13779. }
  13780. return ctx->embd + j*ctx->model.hparams.n_embd;
  13781. } catch (const std::exception & err) {
  13782. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  13783. #ifndef NDEBUG
  13784. GGML_ASSERT(false);
  13785. #endif
  13786. return nullptr;
  13787. }
  13788. }
  13789. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  13790. llama_synchronize(ctx);
  13791. auto it = ctx->embd_seq.find(seq_id);
  13792. if (it == ctx->embd_seq.end()) {
  13793. return nullptr;
  13794. }
  13795. return it->second.data();
  13796. }
  13797. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  13798. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  13799. return model->vocab.id_to_token[token].text.c_str();
  13800. }
  13801. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  13802. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  13803. return model->vocab.id_to_token[token].score;
  13804. }
  13805. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  13806. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  13807. return model->vocab.id_to_token[token].type;
  13808. }
  13809. llama_token llama_token_bos(const struct llama_model * model) {
  13810. return model->vocab.special_bos_id;
  13811. }
  13812. llama_token llama_token_eos(const struct llama_model * model) {
  13813. return model->vocab.special_eos_id;
  13814. }
  13815. llama_token llama_token_cls(const struct llama_model * model) {
  13816. return model->vocab.special_cls_id;
  13817. }
  13818. llama_token llama_token_sep(const struct llama_model * model) {
  13819. return model->vocab.special_sep_id;
  13820. }
  13821. llama_token llama_token_nl(const struct llama_model * model) {
  13822. return model->vocab.linefeed_id;
  13823. }
  13824. int32_t llama_add_bos_token(const struct llama_model * model) {
  13825. return model->vocab.special_add_bos;
  13826. }
  13827. int32_t llama_add_eos_token(const struct llama_model * model) {
  13828. return model->vocab.special_add_eos;
  13829. }
  13830. llama_token llama_token_prefix(const struct llama_model * model) {
  13831. return model->vocab.special_prefix_id;
  13832. }
  13833. llama_token llama_token_middle(const struct llama_model * model) {
  13834. return model->vocab.special_middle_id;
  13835. }
  13836. llama_token llama_token_suffix(const struct llama_model * model) {
  13837. return model->vocab.special_suffix_id;
  13838. }
  13839. llama_token llama_token_eot(const struct llama_model * model) {
  13840. return model->vocab.special_eot_id;
  13841. }
  13842. int32_t llama_tokenize(
  13843. const struct llama_model * model,
  13844. const char * text,
  13845. int32_t text_len,
  13846. llama_token * tokens,
  13847. int32_t n_tokens_max,
  13848. bool add_special,
  13849. bool parse_special) {
  13850. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  13851. if (n_tokens_max < (int) res.size()) {
  13852. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  13853. return -((int) res.size());
  13854. }
  13855. for (size_t i = 0; i < res.size(); i++) {
  13856. tokens[i] = res[i];
  13857. }
  13858. return res.size();
  13859. }
  13860. static std::string llama_decode_text(const std::string & text) {
  13861. std::string decoded_text;
  13862. auto unicode_sequences = unicode_cpts_from_utf8(text);
  13863. for (auto & unicode_sequence : unicode_sequences) {
  13864. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  13865. }
  13866. return decoded_text;
  13867. }
  13868. // does not write null-terminator to buf
  13869. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  13870. if (0 <= token && token < llama_n_vocab(model)) {
  13871. switch (llama_vocab_get_type(model->vocab)) {
  13872. case LLAMA_VOCAB_TYPE_WPM:
  13873. case LLAMA_VOCAB_TYPE_SPM: {
  13874. // NOTE: we accept all unsupported token types,
  13875. // suppressing them like CONTROL tokens.
  13876. if (llama_is_normal_token(model->vocab, token)) {
  13877. std::string result = model->vocab.id_to_token[token].text;
  13878. llama_unescape_whitespace(result);
  13879. if (length < (int) result.length()) {
  13880. return -(int) result.length();
  13881. }
  13882. memcpy(buf, result.c_str(), result.length());
  13883. return result.length();
  13884. } else if (llama_is_user_defined_token(model->vocab, token)) {
  13885. std::string result = model->vocab.id_to_token[token].text;
  13886. if (length < (int) result.length()) {
  13887. return -(int) result.length();
  13888. }
  13889. memcpy(buf, result.c_str(), result.length());
  13890. return result.length();
  13891. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  13892. if (length < 3) {
  13893. return -3;
  13894. }
  13895. memcpy(buf, "\xe2\x96\x85", 3);
  13896. return 3;
  13897. } else if (llama_is_control_token(model->vocab, token)) {
  13898. ;
  13899. } else if (llama_is_byte_token(model->vocab, token)) {
  13900. if (length < 1) {
  13901. return -1;
  13902. }
  13903. buf[0] = llama_token_to_byte(model->vocab, token);
  13904. return 1;
  13905. }
  13906. break;
  13907. }
  13908. case LLAMA_VOCAB_TYPE_BPE: {
  13909. // NOTE: we accept all unsupported token types,
  13910. // suppressing them like CONTROL tokens.
  13911. if (llama_is_normal_token(model->vocab, token)) {
  13912. std::string result = model->vocab.id_to_token[token].text;
  13913. result = llama_decode_text(result);
  13914. if (length < (int) result.length()) {
  13915. return -(int) result.length();
  13916. }
  13917. memcpy(buf, result.c_str(), result.length());
  13918. return result.length();
  13919. } else if (llama_is_user_defined_token(model->vocab, token)) {
  13920. std::string result = model->vocab.id_to_token[token].text;
  13921. if (length < (int) result.length()) {
  13922. return -(int) result.length();
  13923. }
  13924. memcpy(buf, result.c_str(), result.length());
  13925. return result.length();
  13926. } else if (llama_is_control_token(model->vocab, token)) {
  13927. ;
  13928. }
  13929. break;
  13930. }
  13931. default:
  13932. GGML_ASSERT(false);
  13933. }
  13934. }
  13935. return 0;
  13936. }
  13937. // trim whitespace from the beginning and end of a string
  13938. static std::string trim(const std::string & str) {
  13939. size_t start = 0;
  13940. size_t end = str.size();
  13941. while (start < end && isspace(str[start])) {
  13942. start += 1;
  13943. }
  13944. while (end > start && isspace(str[end - 1])) {
  13945. end -= 1;
  13946. }
  13947. return str.substr(start, end - start);
  13948. }
  13949. // Simple version of "llama_apply_chat_template" that only works with strings
  13950. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  13951. static int32_t llama_chat_apply_template_internal(
  13952. const std::string & tmpl,
  13953. const std::vector<const llama_chat_message *> & chat,
  13954. std::string & dest, bool add_ass) {
  13955. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  13956. std::stringstream ss;
  13957. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  13958. // chatml template
  13959. for (auto message : chat) {
  13960. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  13961. }
  13962. if (add_ass) {
  13963. ss << "<|im_start|>assistant\n";
  13964. }
  13965. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  13966. // llama2 template and its variants
  13967. // [variant] support system message
  13968. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  13969. // [variant] space before + after response
  13970. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  13971. // [variant] add BOS inside history
  13972. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  13973. // [variant] trim spaces from the input message
  13974. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  13975. // construct the prompt
  13976. bool is_inside_turn = true; // skip BOS at the beginning
  13977. ss << "[INST] ";
  13978. for (auto message : chat) {
  13979. std::string content = strip_message ? trim(message->content) : message->content;
  13980. std::string role(message->role);
  13981. if (!is_inside_turn) {
  13982. is_inside_turn = true;
  13983. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  13984. }
  13985. if (role == "system") {
  13986. if (support_system_message) {
  13987. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  13988. } else {
  13989. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  13990. ss << content << "\n";
  13991. }
  13992. } else if (role == "user") {
  13993. ss << content << " [/INST]";
  13994. } else {
  13995. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  13996. is_inside_turn = false;
  13997. }
  13998. }
  13999. // llama2 templates seem to not care about "add_generation_prompt"
  14000. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14001. // zephyr template
  14002. for (auto message : chat) {
  14003. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14004. }
  14005. if (add_ass) {
  14006. ss << "<|assistant|>\n";
  14007. }
  14008. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14009. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14010. for (auto message : chat) {
  14011. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14012. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14013. }
  14014. if (add_ass) {
  14015. ss << "<s>assistant\n";
  14016. }
  14017. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14018. // google/gemma-7b-it
  14019. std::string system_prompt = "";
  14020. for (auto message : chat) {
  14021. std::string role(message->role);
  14022. if (role == "system") {
  14023. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14024. system_prompt = trim(message->content);
  14025. continue;
  14026. }
  14027. // in gemma, "assistant" is "model"
  14028. role = role == "assistant" ? "model" : message->role;
  14029. ss << "<start_of_turn>" << role << "\n";
  14030. if (!system_prompt.empty() && role != "model") {
  14031. ss << system_prompt << "\n\n";
  14032. system_prompt = "";
  14033. }
  14034. ss << trim(message->content) << "<end_of_turn>\n";
  14035. }
  14036. if (add_ass) {
  14037. ss << "<start_of_turn>model\n";
  14038. }
  14039. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14040. // OrionStarAI/Orion-14B-Chat
  14041. std::string system_prompt = "";
  14042. for (auto message : chat) {
  14043. std::string role(message->role);
  14044. if (role == "system") {
  14045. // there is no system message support, we will merge it with user prompt
  14046. system_prompt = message->content;
  14047. continue;
  14048. } else if (role == "user") {
  14049. ss << "Human: ";
  14050. if (!system_prompt.empty()) {
  14051. ss << system_prompt << "\n\n";
  14052. system_prompt = "";
  14053. }
  14054. ss << message->content << "\n\nAssistant: </s>";
  14055. } else {
  14056. ss << message->content << "</s>";
  14057. }
  14058. }
  14059. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14060. // openchat/openchat-3.5-0106,
  14061. for (auto message : chat) {
  14062. std::string role(message->role);
  14063. if (role == "system") {
  14064. ss << message->content << "<|end_of_turn|>";
  14065. } else {
  14066. role[0] = toupper(role[0]);
  14067. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14068. }
  14069. }
  14070. if (add_ass) {
  14071. ss << "GPT4 Correct Assistant:";
  14072. }
  14073. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14074. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14075. for (auto message : chat) {
  14076. std::string role(message->role);
  14077. if (role == "system") {
  14078. // Orca-Vicuna variant uses a system prefix
  14079. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14080. ss << "SYSTEM: " << message->content << "\n";
  14081. } else {
  14082. ss << message->content << "\n\n";
  14083. }
  14084. } else if (role == "user") {
  14085. ss << "USER: " << message->content << "\n";
  14086. } else if (role == "assistant") {
  14087. ss << "ASSISTANT: " << message->content << "</s>\n";
  14088. }
  14089. }
  14090. if (add_ass) {
  14091. ss << "ASSISTANT:";
  14092. }
  14093. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14094. // deepseek-ai/deepseek-coder-33b-instruct
  14095. for (auto message : chat) {
  14096. std::string role(message->role);
  14097. if (role == "system") {
  14098. ss << message->content;
  14099. } else if (role == "user") {
  14100. ss << "### Instruction:\n" << message->content << "\n";
  14101. } else if (role == "assistant") {
  14102. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14103. }
  14104. }
  14105. if (add_ass) {
  14106. ss << "### Response:\n";
  14107. }
  14108. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14109. // CohereForAI/c4ai-command-r-plus
  14110. for (auto message : chat) {
  14111. std::string role(message->role);
  14112. if (role == "system") {
  14113. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14114. } else if (role == "user") {
  14115. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14116. } else if (role == "assistant") {
  14117. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14118. }
  14119. }
  14120. if (add_ass) {
  14121. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14122. }
  14123. } else {
  14124. // template not supported
  14125. return -1;
  14126. }
  14127. dest = ss.str();
  14128. return dest.size();
  14129. }
  14130. LLAMA_API int32_t llama_chat_apply_template(
  14131. const struct llama_model * model,
  14132. const char * tmpl,
  14133. const struct llama_chat_message * chat,
  14134. size_t n_msg,
  14135. bool add_ass,
  14136. char * buf,
  14137. int32_t length) {
  14138. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14139. if (tmpl == nullptr) {
  14140. GGML_ASSERT(model != nullptr);
  14141. // load template from model
  14142. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14143. std::string template_key = "tokenizer.chat_template";
  14144. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14145. if (res < 0) {
  14146. // worst case: there is no information about template, we will use chatml by default
  14147. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14148. } else {
  14149. curr_tmpl = std::string(model_template.data(), model_template.size());
  14150. }
  14151. }
  14152. // format the chat to string
  14153. std::vector<const llama_chat_message *> chat_vec;
  14154. chat_vec.resize(n_msg);
  14155. for (size_t i = 0; i < n_msg; i++) {
  14156. chat_vec[i] = &chat[i];
  14157. }
  14158. std::string formatted_chat;
  14159. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14160. if (res < 0) {
  14161. return res;
  14162. }
  14163. if (buf && length > 0) {
  14164. strncpy(buf, formatted_chat.c_str(), length);
  14165. }
  14166. return res;
  14167. }
  14168. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14169. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14170. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14171. return strlen(split_path);
  14172. }
  14173. return 0;
  14174. }
  14175. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14176. std::string str_split_path(split_path);
  14177. char postfix[32];
  14178. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14179. std::string str_postfix(postfix);
  14180. // check if dest ends with postfix
  14181. int size_prefix = str_split_path.size() - str_postfix.size();
  14182. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14183. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14184. return size_prefix;
  14185. }
  14186. return 0;
  14187. }
  14188. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14189. struct llama_timings result = {
  14190. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14191. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14192. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14193. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14194. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14195. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14196. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14197. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14198. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14199. };
  14200. return result;
  14201. }
  14202. void llama_print_timings(struct llama_context * ctx) {
  14203. const llama_timings timings = llama_get_timings(ctx);
  14204. LLAMA_LOG_INFO("\n");
  14205. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14206. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14207. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14208. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14209. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14210. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14211. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14212. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14213. }
  14214. void llama_reset_timings(struct llama_context * ctx) {
  14215. ctx->t_start_us = ggml_time_us();
  14216. ctx->t_sample_us = ctx->n_sample = 0;
  14217. ctx->t_eval_us = ctx->n_eval = 0;
  14218. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14219. }
  14220. const char * llama_print_system_info(void) {
  14221. static std::string s;
  14222. s = "";
  14223. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14224. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14225. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14226. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14227. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14228. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14229. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14230. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14231. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14232. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14233. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14234. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14235. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14236. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14237. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14238. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14239. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14240. return s.c_str();
  14241. }
  14242. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14243. fprintf(stream, "\n");
  14244. fprintf(stream, "###########\n");
  14245. fprintf(stream, "# Timings #\n");
  14246. fprintf(stream, "###########\n");
  14247. fprintf(stream, "\n");
  14248. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14249. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14250. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14251. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14252. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14253. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14254. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14255. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14256. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14257. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14258. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14259. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14260. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14261. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14262. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14263. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14264. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14265. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14266. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14267. }
  14268. // For internal test use
  14269. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14270. struct llama_context * ctx
  14271. ) {
  14272. return ctx->model.tensors_by_name;
  14273. }
  14274. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14275. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14276. g_state.log_callback_user_data = user_data;
  14277. #ifdef GGML_USE_METAL
  14278. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14279. #endif
  14280. }
  14281. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14282. va_list args_copy;
  14283. va_copy(args_copy, args);
  14284. char buffer[128];
  14285. int len = vsnprintf(buffer, 128, format, args);
  14286. if (len < 128) {
  14287. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14288. } else {
  14289. char* buffer2 = new char[len+1];
  14290. vsnprintf(buffer2, len+1, format, args_copy);
  14291. buffer2[len] = 0;
  14292. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14293. delete[] buffer2;
  14294. }
  14295. va_end(args_copy);
  14296. }
  14297. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14298. va_list args;
  14299. va_start(args, format);
  14300. llama_log_internal_v(level, format, args);
  14301. va_end(args);
  14302. }
  14303. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14304. (void) level;
  14305. (void) user_data;
  14306. fputs(text, stderr);
  14307. fflush(stderr);
  14308. }