server.cpp 199 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json() const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. auto grammar_triggers = json::array();
  132. for (const auto & trigger : sampling.grammar_triggers) {
  133. server_grammar_trigger ct(std::move(trigger));
  134. grammar_triggers.push_back(ct.to_json());
  135. }
  136. return json {
  137. {"n_predict", n_predict}, // Server configured n_predict
  138. {"seed", sampling.seed},
  139. {"temperature", sampling.temp},
  140. {"dynatemp_range", sampling.dynatemp_range},
  141. {"dynatemp_exponent", sampling.dynatemp_exponent},
  142. {"top_k", sampling.top_k},
  143. {"top_p", sampling.top_p},
  144. {"min_p", sampling.min_p},
  145. {"top_n_sigma", sampling.top_n_sigma},
  146. {"xtc_probability", sampling.xtc_probability},
  147. {"xtc_threshold", sampling.xtc_threshold},
  148. {"typical_p", sampling.typ_p},
  149. {"repeat_last_n", sampling.penalty_last_n},
  150. {"repeat_penalty", sampling.penalty_repeat},
  151. {"presence_penalty", sampling.penalty_present},
  152. {"frequency_penalty", sampling.penalty_freq},
  153. {"dry_multiplier", sampling.dry_multiplier},
  154. {"dry_base", sampling.dry_base},
  155. {"dry_allowed_length", sampling.dry_allowed_length},
  156. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  157. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  158. {"mirostat", sampling.mirostat},
  159. {"mirostat_tau", sampling.mirostat_tau},
  160. {"mirostat_eta", sampling.mirostat_eta},
  161. {"stop", antiprompt},
  162. {"max_tokens", n_predict}, // User configured n_predict
  163. {"n_keep", n_keep},
  164. {"n_discard", n_discard},
  165. {"ignore_eos", sampling.ignore_eos},
  166. {"stream", stream},
  167. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"grammar", sampling.grammar},
  171. {"grammar_lazy", sampling.grammar_lazy},
  172. {"grammar_triggers", grammar_triggers},
  173. {"preserved_tokens", sampling.preserved_tokens},
  174. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  175. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  176. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  177. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  178. {"samplers", samplers},
  179. {"speculative.n_max", speculative.n_max},
  180. {"speculative.n_min", speculative.n_min},
  181. {"speculative.p_min", speculative.p_min},
  182. {"timings_per_token", timings_per_token},
  183. {"post_sampling_probs", post_sampling_probs},
  184. {"lora", lora},
  185. };
  186. }
  187. };
  188. struct server_task {
  189. int id = -1; // to be filled by server_queue
  190. int index = -1; // used when there are multiple prompts (batch request)
  191. server_task_type type;
  192. // used by SERVER_TASK_TYPE_CANCEL
  193. int id_target = -1;
  194. // used by SERVER_TASK_TYPE_INFERENCE
  195. slot_params params;
  196. server_tokens prompt_tokens;
  197. int id_selected_slot = -1;
  198. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  199. struct slot_action {
  200. int slot_id;
  201. std::string filename;
  202. std::string filepath;
  203. };
  204. slot_action slot_action;
  205. // used by SERVER_TASK_TYPE_METRICS
  206. bool metrics_reset_bucket = false;
  207. // used by SERVER_TASK_TYPE_SET_LORA
  208. std::vector<common_adapter_lora_info> set_lora;
  209. server_task(server_task_type type) : type(type) {}
  210. static slot_params params_from_json_cmpl(
  211. const llama_context * ctx,
  212. const common_params & params_base,
  213. const json & data) {
  214. const llama_model * model = llama_get_model(ctx);
  215. const llama_vocab * vocab = llama_model_get_vocab(model);
  216. slot_params params;
  217. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  218. slot_params defaults;
  219. defaults.sampling = params_base.sampling;
  220. defaults.speculative = params_base.speculative;
  221. defaults.n_keep = params_base.n_keep;
  222. defaults.antiprompt = params_base.antiprompt;
  223. // enabling this will output extra debug information in the HTTP responses from the server
  224. params.verbose = params_base.verbosity > 9;
  225. params.timings_per_token = json_value(data, "timings_per_token", false);
  226. params.stream = json_value(data, "stream", false);
  227. params.cache_prompt = json_value(data, "cache_prompt", true);
  228. params.return_tokens = json_value(data, "return_tokens", false);
  229. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  230. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  231. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  232. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  233. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  234. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  235. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  236. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  237. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  238. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  239. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  240. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  241. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  242. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  243. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  244. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  245. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  246. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  247. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  248. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  249. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  250. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  251. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  252. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  253. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  254. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  255. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  256. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  257. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  258. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  259. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  260. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  261. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  262. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  263. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  264. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  265. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  266. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  267. // Use OpenAI API logprobs only if n_probs wasn't provided
  268. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  269. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  270. }
  271. if (data.contains("lora")) {
  272. if (data.at("lora").is_array()) {
  273. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  274. } else {
  275. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  276. }
  277. } else {
  278. params.lora = params_base.lora_adapters;
  279. }
  280. // TODO: add more sanity checks for the input parameters
  281. if (params.sampling.penalty_last_n < -1) {
  282. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  283. }
  284. if (params.sampling.dry_penalty_last_n < -1) {
  285. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  286. }
  287. if (params.sampling.penalty_last_n == -1) {
  288. // note: should be the slot's context and not the full context, but it's ok
  289. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  290. }
  291. if (params.sampling.dry_penalty_last_n == -1) {
  292. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  293. }
  294. if (params.sampling.dry_base < 1.0f) {
  295. params.sampling.dry_base = defaults.sampling.dry_base;
  296. }
  297. // sequence breakers for DRY
  298. {
  299. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  300. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  301. if (data.contains("dry_sequence_breakers")) {
  302. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  303. if (params.sampling.dry_sequence_breakers.empty()) {
  304. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  305. }
  306. }
  307. }
  308. // process "json_schema" and "grammar"
  309. if (data.contains("json_schema") && !data.contains("grammar")) {
  310. try {
  311. auto schema = json_value(data, "json_schema", json::object());
  312. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  313. params.sampling.grammar = json_schema_to_grammar(schema);
  314. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  315. } catch (const std::exception & e) {
  316. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  317. }
  318. } else {
  319. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  320. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  321. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  322. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  323. }
  324. {
  325. auto it = data.find("chat_format");
  326. if (it != data.end()) {
  327. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  328. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  329. } else {
  330. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  331. }
  332. common_reasoning_format reasoning_format = params_base.reasoning_format;
  333. if (data.contains("reasoning_format")) {
  334. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  335. }
  336. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  337. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  338. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  339. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  340. }
  341. {
  342. const auto preserved_tokens = data.find("preserved_tokens");
  343. if (preserved_tokens != data.end()) {
  344. for (const auto & t : *preserved_tokens) {
  345. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  346. if (ids.size() == 1) {
  347. SRV_DBG("Preserved token: %d\n", ids[0]);
  348. params.sampling.preserved_tokens.insert(ids[0]);
  349. } else {
  350. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  351. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  352. }
  353. }
  354. }
  355. const auto grammar_triggers = data.find("grammar_triggers");
  356. if (grammar_triggers != data.end()) {
  357. for (const auto & t : *grammar_triggers) {
  358. server_grammar_trigger ct(t);
  359. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  360. const auto & word = ct.value.value;
  361. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  362. if (ids.size() == 1) {
  363. auto token = ids[0];
  364. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  365. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  366. }
  367. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  368. common_grammar_trigger trigger;
  369. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  370. trigger.value = word;
  371. trigger.token = token;
  372. params.sampling.grammar_triggers.push_back(std::move(trigger));
  373. } else {
  374. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  375. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  376. }
  377. } else {
  378. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  379. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  380. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  381. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  382. } else {
  383. throw std::runtime_error("Unknown grammar trigger type");
  384. }
  385. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  386. }
  387. }
  388. }
  389. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  390. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  391. }
  392. }
  393. {
  394. params.sampling.logit_bias.clear();
  395. const auto & logit_bias = data.find("logit_bias");
  396. if (logit_bias != data.end() && logit_bias->is_array()) {
  397. const int n_vocab = llama_vocab_n_tokens(vocab);
  398. for (const auto & el : *logit_bias) {
  399. // TODO: we may want to throw errors here, in case "el" is incorrect
  400. if (el.is_array() && el.size() == 2) {
  401. float bias;
  402. if (el[1].is_number()) {
  403. bias = el[1].get<float>();
  404. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  405. bias = -INFINITY;
  406. } else {
  407. continue;
  408. }
  409. if (el[0].is_number_integer()) {
  410. llama_token tok = el[0].get<llama_token>();
  411. if (tok >= 0 && tok < n_vocab) {
  412. params.sampling.logit_bias.push_back({tok, bias});
  413. }
  414. } else if (el[0].is_string()) {
  415. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  416. for (auto tok : toks) {
  417. params.sampling.logit_bias.push_back({tok, bias});
  418. }
  419. }
  420. }
  421. }
  422. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  423. const int n_vocab = llama_vocab_n_tokens(vocab);
  424. for (const auto & el : logit_bias->items()) {
  425. float bias;
  426. const auto & key = el.key();
  427. const auto & value = el.value();
  428. if (value.is_number()) {
  429. bias = value.get<float>();
  430. } else if (value.is_boolean() && !value.get<bool>()) {
  431. bias = -INFINITY;
  432. } else {
  433. continue;
  434. }
  435. char *end;
  436. llama_token tok = strtol(key.c_str(), &end, 10);
  437. if (*end == 0) {
  438. if (tok >= 0 && tok < n_vocab) {
  439. params.sampling.logit_bias.push_back({tok, bias});
  440. }
  441. } else {
  442. auto toks = common_tokenize(vocab, key, false);
  443. for (auto tok : toks) {
  444. params.sampling.logit_bias.push_back({tok, bias});
  445. }
  446. }
  447. }
  448. }
  449. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  450. if (params.sampling.ignore_eos) {
  451. params.sampling.logit_bias.insert(
  452. params.sampling.logit_bias.end(),
  453. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  454. }
  455. }
  456. {
  457. params.antiprompt.clear();
  458. const auto & stop = data.find("stop");
  459. if (stop != data.end() && stop->is_array()) {
  460. for (const auto & word : *stop) {
  461. if (!word.empty()) {
  462. params.antiprompt.push_back(word);
  463. }
  464. }
  465. }
  466. // set reverse prompt from cli args if not set in the request
  467. if (params.antiprompt.empty()) {
  468. params.antiprompt = defaults.antiprompt;
  469. }
  470. }
  471. {
  472. const auto samplers = data.find("samplers");
  473. if (samplers != data.end()) {
  474. if (samplers->is_array()) {
  475. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  476. } else if (samplers->is_string()){
  477. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  478. }
  479. } else {
  480. params.sampling.samplers = defaults.sampling.samplers;
  481. }
  482. }
  483. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  484. params.oaicompat_model = json_value(data, "model", model_name);
  485. return params;
  486. }
  487. // utility function
  488. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  489. std::unordered_set<int> ids(tasks.size());
  490. for (size_t i = 0; i < tasks.size(); i++) {
  491. ids.insert(tasks[i].id);
  492. }
  493. return ids;
  494. }
  495. };
  496. struct result_timings {
  497. int32_t prompt_n = -1;
  498. double prompt_ms;
  499. double prompt_per_token_ms;
  500. double prompt_per_second;
  501. int32_t predicted_n = -1;
  502. double predicted_ms;
  503. double predicted_per_token_ms;
  504. double predicted_per_second;
  505. // Optional speculative metrics - only included when > 0
  506. int32_t draft_n = 0;
  507. int32_t draft_n_accepted = 0;
  508. json to_json() const {
  509. json base = {
  510. {"prompt_n", prompt_n},
  511. {"prompt_ms", prompt_ms},
  512. {"prompt_per_token_ms", prompt_per_token_ms},
  513. {"prompt_per_second", prompt_per_second},
  514. {"predicted_n", predicted_n},
  515. {"predicted_ms", predicted_ms},
  516. {"predicted_per_token_ms", predicted_per_token_ms},
  517. {"predicted_per_second", predicted_per_second},
  518. };
  519. if (draft_n > 0) {
  520. base["draft_n"] = draft_n;
  521. base["draft_n_accepted"] = draft_n_accepted;
  522. }
  523. return base;
  524. }
  525. };
  526. struct server_task_result {
  527. int id = -1;
  528. int id_slot = -1;
  529. virtual bool is_error() {
  530. // only used by server_task_result_error
  531. return false;
  532. }
  533. virtual bool is_stop() {
  534. // only used by server_task_result_cmpl_*
  535. return false;
  536. }
  537. virtual int get_index() {
  538. return -1;
  539. }
  540. virtual json to_json() = 0;
  541. virtual ~server_task_result() = default;
  542. };
  543. // using shared_ptr for polymorphism of server_task_result
  544. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  545. inline std::string stop_type_to_str(stop_type type) {
  546. switch (type) {
  547. case STOP_TYPE_EOS: return "eos";
  548. case STOP_TYPE_WORD: return "word";
  549. case STOP_TYPE_LIMIT: return "limit";
  550. default: return "none";
  551. }
  552. }
  553. struct completion_token_output {
  554. llama_token tok;
  555. float prob;
  556. std::string text_to_send;
  557. struct prob_info {
  558. llama_token tok;
  559. std::string txt;
  560. float prob;
  561. };
  562. std::vector<prob_info> probs;
  563. json to_json(bool post_sampling_probs) const {
  564. json probs_for_token = json::array();
  565. for (const auto & p : probs) {
  566. std::string txt(p.txt);
  567. txt.resize(validate_utf8(txt));
  568. probs_for_token.push_back(json {
  569. {"id", p.tok},
  570. {"token", txt},
  571. {"bytes", str_to_bytes(p.txt)},
  572. {
  573. post_sampling_probs ? "prob" : "logprob",
  574. post_sampling_probs ? p.prob : logarithm(p.prob)
  575. },
  576. });
  577. }
  578. return probs_for_token;
  579. }
  580. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  581. json out = json::array();
  582. for (const auto & p : probs) {
  583. std::string txt(p.text_to_send);
  584. txt.resize(validate_utf8(txt));
  585. out.push_back(json {
  586. {"id", p.tok},
  587. {"token", txt},
  588. {"bytes", str_to_bytes(p.text_to_send)},
  589. {
  590. post_sampling_probs ? "prob" : "logprob",
  591. post_sampling_probs ? p.prob : logarithm(p.prob)
  592. },
  593. {
  594. post_sampling_probs ? "top_probs" : "top_logprobs",
  595. p.to_json(post_sampling_probs)
  596. },
  597. });
  598. }
  599. return out;
  600. }
  601. static float logarithm(float x) {
  602. // nlohmann::json converts -inf to null, so we need to prevent that
  603. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  604. }
  605. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  606. std::vector<unsigned char> bytes;
  607. for (unsigned char c : str) {
  608. bytes.push_back(c);
  609. }
  610. return bytes;
  611. }
  612. };
  613. struct server_task_result_cmpl_final : server_task_result {
  614. int index = 0;
  615. std::string content;
  616. llama_tokens tokens;
  617. bool stream;
  618. result_timings timings;
  619. std::string prompt;
  620. bool truncated;
  621. int32_t n_decoded;
  622. int32_t n_prompt_tokens;
  623. int32_t n_tokens_cached;
  624. bool has_new_line;
  625. std::string stopping_word;
  626. stop_type stop = STOP_TYPE_NONE;
  627. bool post_sampling_probs;
  628. std::vector<completion_token_output> probs_output;
  629. std::vector<std::string> response_fields;
  630. slot_params generation_params;
  631. // OAI-compat fields
  632. bool verbose = false;
  633. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  634. std::string oaicompat_model;
  635. std::string oaicompat_cmpl_id;
  636. common_chat_msg oaicompat_msg;
  637. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  638. virtual int get_index() override {
  639. return index;
  640. }
  641. virtual bool is_stop() override {
  642. return true; // in stream mode, final responses are considered stop
  643. }
  644. virtual json to_json() override {
  645. switch (oaicompat) {
  646. case OAICOMPAT_TYPE_NONE:
  647. return to_json_non_oaicompat();
  648. case OAICOMPAT_TYPE_COMPLETION:
  649. return to_json_oaicompat();
  650. case OAICOMPAT_TYPE_CHAT:
  651. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  652. default:
  653. GGML_ASSERT(false && "Invalid oaicompat_type");
  654. }
  655. }
  656. json to_json_non_oaicompat() {
  657. json res = json {
  658. {"index", index},
  659. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  660. {"tokens", stream ? llama_tokens {} : tokens},
  661. {"id_slot", id_slot},
  662. {"stop", true},
  663. {"model", oaicompat_model},
  664. {"tokens_predicted", n_decoded},
  665. {"tokens_evaluated", n_prompt_tokens},
  666. {"generation_settings", generation_params.to_json()},
  667. {"prompt", prompt},
  668. {"has_new_line", has_new_line},
  669. {"truncated", truncated},
  670. {"stop_type", stop_type_to_str(stop)},
  671. {"stopping_word", stopping_word},
  672. {"tokens_cached", n_tokens_cached},
  673. {"timings", timings.to_json()},
  674. };
  675. if (!stream && !probs_output.empty()) {
  676. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  677. }
  678. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  679. }
  680. json to_json_oaicompat() {
  681. std::time_t t = std::time(0);
  682. json logprobs = json(nullptr); // OAI default to null
  683. if (!stream && probs_output.size() > 0) {
  684. logprobs = json{
  685. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  686. };
  687. }
  688. json finish_reason = "length";
  689. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  690. finish_reason = "stop";
  691. }
  692. json res = json {
  693. {"choices", json::array({
  694. json{
  695. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  696. {"index", index},
  697. {"logprobs", logprobs},
  698. {"finish_reason", finish_reason},
  699. }
  700. })},
  701. {"created", t},
  702. {"model", oaicompat_model},
  703. {"system_fingerprint", build_info},
  704. {"object", "text_completion"},
  705. {"usage", json {
  706. {"completion_tokens", n_decoded},
  707. {"prompt_tokens", n_prompt_tokens},
  708. {"total_tokens", n_decoded + n_prompt_tokens}
  709. }},
  710. {"id", oaicompat_cmpl_id}
  711. };
  712. // extra fields for debugging purposes
  713. if (verbose) {
  714. res["__verbose"] = to_json_non_oaicompat();
  715. }
  716. if (timings.prompt_n >= 0) {
  717. res.push_back({"timings", timings.to_json()});
  718. }
  719. return res;
  720. }
  721. json to_json_oaicompat_chat() {
  722. std::string finish_reason = "length";
  723. common_chat_msg msg;
  724. if (!oaicompat_msg.empty()) {
  725. msg = oaicompat_msg;
  726. } else {
  727. msg.role = "assistant";
  728. msg.content = content;
  729. }
  730. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  731. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  732. }
  733. json choice {
  734. {"finish_reason", finish_reason},
  735. {"index", 0},
  736. {"message", msg.to_json_oaicompat<json>()},
  737. };
  738. if (!stream && probs_output.size() > 0) {
  739. choice["logprobs"] = json{
  740. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  741. };
  742. }
  743. std::time_t t = std::time(0);
  744. json res = json {
  745. {"choices", json::array({choice})},
  746. {"created", t},
  747. {"model", oaicompat_model},
  748. {"system_fingerprint", build_info},
  749. {"object", "chat.completion"},
  750. {"usage", json {
  751. {"completion_tokens", n_decoded},
  752. {"prompt_tokens", n_prompt_tokens},
  753. {"total_tokens", n_decoded + n_prompt_tokens}
  754. }},
  755. {"id", oaicompat_cmpl_id}
  756. };
  757. // extra fields for debugging purposes
  758. if (verbose) {
  759. res["__verbose"] = to_json_non_oaicompat();
  760. }
  761. if (timings.prompt_n >= 0) {
  762. res.push_back({"timings", timings.to_json()});
  763. }
  764. return res;
  765. }
  766. json to_json_oaicompat_chat_stream() {
  767. std::time_t t = std::time(0);
  768. std::string finish_reason = "length";
  769. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  770. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  771. }
  772. json deltas = json::array();
  773. for (const auto & diff : oaicompat_msg_diffs) {
  774. deltas.push_back({
  775. {"choices", json::array({
  776. json {
  777. {"finish_reason", nullptr},
  778. {"index", 0},
  779. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  780. },
  781. })},
  782. {"created", t},
  783. {"id", oaicompat_cmpl_id},
  784. {"model", oaicompat_model},
  785. {"system_fingerprint", build_info},
  786. {"object", "chat.completion.chunk"},
  787. });
  788. }
  789. deltas.push_back({
  790. {"choices", json::array({
  791. json {
  792. {"finish_reason", finish_reason},
  793. {"index", 0},
  794. {"delta", json::object()},
  795. },
  796. })},
  797. {"created", t},
  798. {"id", oaicompat_cmpl_id},
  799. {"model", oaicompat_model},
  800. {"system_fingerprint", build_info},
  801. {"object", "chat.completion.chunk"},
  802. {"usage", json {
  803. {"completion_tokens", n_decoded},
  804. {"prompt_tokens", n_prompt_tokens},
  805. {"total_tokens", n_decoded + n_prompt_tokens},
  806. }},
  807. });
  808. if (timings.prompt_n >= 0) {
  809. deltas.back().push_back({"timings", timings.to_json()});
  810. }
  811. // extra fields for debugging purposes
  812. if (verbose && !deltas.empty()) {
  813. deltas.front()["__verbose"] = to_json_non_oaicompat();
  814. }
  815. return deltas;
  816. }
  817. };
  818. struct server_task_result_cmpl_partial : server_task_result {
  819. int index = 0;
  820. std::string content;
  821. llama_tokens tokens;
  822. int32_t n_decoded;
  823. int32_t n_prompt_tokens;
  824. bool post_sampling_probs;
  825. completion_token_output prob_output;
  826. result_timings timings;
  827. // OAI-compat fields
  828. bool verbose = false;
  829. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  830. std::string oaicompat_model;
  831. std::string oaicompat_cmpl_id;
  832. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  833. virtual int get_index() override {
  834. return index;
  835. }
  836. virtual bool is_stop() override {
  837. return false; // in stream mode, partial responses are not considered stop
  838. }
  839. virtual json to_json() override {
  840. switch (oaicompat) {
  841. case OAICOMPAT_TYPE_NONE:
  842. return to_json_non_oaicompat();
  843. case OAICOMPAT_TYPE_COMPLETION:
  844. return to_json_oaicompat();
  845. case OAICOMPAT_TYPE_CHAT:
  846. return to_json_oaicompat_chat();
  847. default:
  848. GGML_ASSERT(false && "Invalid oaicompat_type");
  849. }
  850. }
  851. json to_json_non_oaicompat() {
  852. // non-OAI-compat JSON
  853. json res = json {
  854. {"index", index},
  855. {"content", content},
  856. {"tokens", tokens},
  857. {"stop", false},
  858. {"id_slot", id_slot},
  859. {"tokens_predicted", n_decoded},
  860. {"tokens_evaluated", n_prompt_tokens},
  861. };
  862. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  863. if (timings.prompt_n > 0) {
  864. res.push_back({"timings", timings.to_json()});
  865. }
  866. if (!prob_output.probs.empty()) {
  867. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  868. }
  869. return res;
  870. }
  871. json to_json_oaicompat() {
  872. std::time_t t = std::time(0);
  873. json logprobs = json(nullptr); // OAI default to null
  874. if (prob_output.probs.size() > 0) {
  875. logprobs = json{
  876. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  877. };
  878. }
  879. json res = json {
  880. {"choices", json::array({
  881. json{
  882. {"text", content},
  883. {"index", index},
  884. {"logprobs", logprobs},
  885. {"finish_reason", nullptr},
  886. }
  887. })},
  888. {"created", t},
  889. {"model", oaicompat_model},
  890. {"system_fingerprint", build_info},
  891. {"object", "text_completion"},
  892. {"id", oaicompat_cmpl_id}
  893. };
  894. // extra fields for debugging purposes
  895. if (verbose) {
  896. res["__verbose"] = to_json_non_oaicompat();
  897. }
  898. if (timings.prompt_n >= 0) {
  899. res.push_back({"timings", timings.to_json()});
  900. }
  901. return res;
  902. }
  903. json to_json_oaicompat_chat() {
  904. bool first = n_decoded == 1;
  905. std::time_t t = std::time(0);
  906. json choices;
  907. std::vector<json> deltas;
  908. auto add_delta = [&](const json & delta) {
  909. deltas.push_back({
  910. {"choices", json::array({
  911. json {
  912. {"finish_reason", nullptr},
  913. {"index", 0},
  914. {"delta", delta},
  915. },
  916. })},
  917. {"created", t},
  918. {"id", oaicompat_cmpl_id},
  919. {"model", oaicompat_model},
  920. {"system_fingerprint", build_info},
  921. {"object", "chat.completion.chunk"},
  922. });
  923. };
  924. // We have to send an initial update to conform to openai behavior
  925. if (first) {
  926. add_delta({
  927. {"role", "assistant"},
  928. {"content", nullptr},
  929. });
  930. }
  931. for (const auto & diff : oaicompat_msg_diffs) {
  932. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  933. }
  934. if (!deltas.empty()) {
  935. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  936. if (prob_output.probs.size() > 0) {
  937. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  938. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  939. };
  940. }
  941. if (timings.prompt_n >= 0) {
  942. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  943. }
  944. }
  945. return deltas;
  946. }
  947. };
  948. struct server_task_result_embd : server_task_result {
  949. int index = 0;
  950. std::vector<std::vector<float>> embedding;
  951. int32_t n_tokens;
  952. // OAI-compat fields
  953. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  954. virtual int get_index() override {
  955. return index;
  956. }
  957. virtual json to_json() override {
  958. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  959. ? to_json_oaicompat()
  960. : to_json_non_oaicompat();
  961. }
  962. json to_json_non_oaicompat() {
  963. return json {
  964. {"index", index},
  965. {"embedding", embedding},
  966. };
  967. }
  968. json to_json_oaicompat() {
  969. return json {
  970. {"index", index},
  971. {"embedding", embedding[0]},
  972. {"tokens_evaluated", n_tokens},
  973. };
  974. }
  975. };
  976. struct server_task_result_rerank : server_task_result {
  977. int index = 0;
  978. float score = -1e6;
  979. int32_t n_tokens;
  980. virtual int get_index() override {
  981. return index;
  982. }
  983. virtual json to_json() override {
  984. return json {
  985. {"index", index},
  986. {"score", score},
  987. {"tokens_evaluated", n_tokens},
  988. };
  989. }
  990. };
  991. // this function maybe used outside of server_task_result_error
  992. static json format_error_response(const std::string & message, const enum error_type type) {
  993. std::string type_str;
  994. int code = 500;
  995. switch (type) {
  996. case ERROR_TYPE_INVALID_REQUEST:
  997. type_str = "invalid_request_error";
  998. code = 400;
  999. break;
  1000. case ERROR_TYPE_AUTHENTICATION:
  1001. type_str = "authentication_error";
  1002. code = 401;
  1003. break;
  1004. case ERROR_TYPE_NOT_FOUND:
  1005. type_str = "not_found_error";
  1006. code = 404;
  1007. break;
  1008. case ERROR_TYPE_SERVER:
  1009. type_str = "server_error";
  1010. code = 500;
  1011. break;
  1012. case ERROR_TYPE_PERMISSION:
  1013. type_str = "permission_error";
  1014. code = 403;
  1015. break;
  1016. case ERROR_TYPE_NOT_SUPPORTED:
  1017. type_str = "not_supported_error";
  1018. code = 501;
  1019. break;
  1020. case ERROR_TYPE_UNAVAILABLE:
  1021. type_str = "unavailable_error";
  1022. code = 503;
  1023. break;
  1024. }
  1025. return json {
  1026. {"code", code},
  1027. {"message", message},
  1028. {"type", type_str},
  1029. };
  1030. }
  1031. struct server_task_result_error : server_task_result {
  1032. int index = 0;
  1033. error_type err_type = ERROR_TYPE_SERVER;
  1034. std::string err_msg;
  1035. virtual bool is_error() override {
  1036. return true;
  1037. }
  1038. virtual json to_json() override {
  1039. return format_error_response(err_msg, err_type);
  1040. }
  1041. };
  1042. struct server_task_result_metrics : server_task_result {
  1043. int n_idle_slots;
  1044. int n_processing_slots;
  1045. int n_tasks_deferred;
  1046. int64_t t_start;
  1047. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1048. uint64_t n_prompt_tokens_processed_total = 0;
  1049. uint64_t t_prompt_processing_total = 0;
  1050. uint64_t n_tokens_predicted_total = 0;
  1051. uint64_t t_tokens_generation_total = 0;
  1052. uint64_t n_prompt_tokens_processed = 0;
  1053. uint64_t t_prompt_processing = 0;
  1054. uint64_t n_tokens_predicted = 0;
  1055. uint64_t t_tokens_generation = 0;
  1056. uint64_t n_decode_total = 0;
  1057. uint64_t n_busy_slots_total = 0;
  1058. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1059. // therefore, we use json to temporarily store the slot.to_json() result
  1060. json slots_data = json::array();
  1061. virtual json to_json() override {
  1062. return json {
  1063. { "idle", n_idle_slots },
  1064. { "processing", n_processing_slots },
  1065. { "deferred", n_tasks_deferred },
  1066. { "t_start", t_start },
  1067. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1068. { "t_tokens_generation_total", t_tokens_generation_total },
  1069. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1070. { "t_prompt_processing_total", t_prompt_processing_total },
  1071. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1072. { "t_prompt_processing", t_prompt_processing },
  1073. { "n_tokens_predicted", n_tokens_predicted },
  1074. { "t_tokens_generation", t_tokens_generation },
  1075. { "n_decode_total", n_decode_total },
  1076. { "n_busy_slots_total", n_busy_slots_total },
  1077. { "slots", slots_data },
  1078. };
  1079. }
  1080. };
  1081. struct server_task_result_slot_save_load : server_task_result {
  1082. std::string filename;
  1083. bool is_save; // true = save, false = load
  1084. size_t n_tokens;
  1085. size_t n_bytes;
  1086. double t_ms;
  1087. virtual json to_json() override {
  1088. if (is_save) {
  1089. return json {
  1090. { "id_slot", id_slot },
  1091. { "filename", filename },
  1092. { "n_saved", n_tokens },
  1093. { "n_written", n_bytes },
  1094. { "timings", {
  1095. { "save_ms", t_ms }
  1096. }},
  1097. };
  1098. } else {
  1099. return json {
  1100. { "id_slot", id_slot },
  1101. { "filename", filename },
  1102. { "n_restored", n_tokens },
  1103. { "n_read", n_bytes },
  1104. { "timings", {
  1105. { "restore_ms", t_ms }
  1106. }},
  1107. };
  1108. }
  1109. }
  1110. };
  1111. struct server_task_result_slot_erase : server_task_result {
  1112. size_t n_erased;
  1113. virtual json to_json() override {
  1114. return json {
  1115. { "id_slot", id_slot },
  1116. { "n_erased", n_erased },
  1117. };
  1118. }
  1119. };
  1120. struct server_task_result_apply_lora : server_task_result {
  1121. virtual json to_json() override {
  1122. return json {{ "success", true }};
  1123. }
  1124. };
  1125. struct server_slot {
  1126. int id;
  1127. int id_task = -1;
  1128. // only used for completion/embedding/infill/rerank
  1129. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1130. llama_batch batch_spec = {};
  1131. llama_context * ctx = nullptr;
  1132. llama_context * ctx_dft = nullptr;
  1133. // multimodal
  1134. mtmd_context * mctx = nullptr;
  1135. common_speculative * spec = nullptr;
  1136. std::vector<common_adapter_lora_info> lora;
  1137. // the index relative to completion multi-task request
  1138. size_t index = 0;
  1139. struct slot_params params;
  1140. slot_state state = SLOT_STATE_IDLE;
  1141. // used to determine the slot that has been used the longest
  1142. int64_t t_last_used = -1;
  1143. // generation props
  1144. int32_t n_ctx = 0; // context size per slot
  1145. int32_t n_past = 0;
  1146. int32_t n_decoded = 0;
  1147. int32_t n_remaining = -1;
  1148. int32_t i_batch = -1;
  1149. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1150. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1151. int32_t n_prompt_tokens = 0;
  1152. int32_t n_prompt_tokens_processed = 0;
  1153. // input prompt tokens
  1154. server_tokens prompt_tokens;
  1155. size_t last_nl_pos = 0;
  1156. std::string generated_text;
  1157. llama_tokens generated_tokens;
  1158. common_chat_msg chat_msg;
  1159. server_tokens cache_tokens;
  1160. std::vector<completion_token_output> generated_token_probs;
  1161. bool has_next_token = true;
  1162. bool has_new_line = false;
  1163. bool truncated = false;
  1164. stop_type stop;
  1165. std::string stopping_word;
  1166. // sampling
  1167. json json_schema;
  1168. struct common_sampler * smpl = nullptr;
  1169. llama_token sampled;
  1170. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1171. std::vector<std::string> generated_tool_call_ids;
  1172. // stats
  1173. size_t n_sent_text = 0; // number of sent text character
  1174. int64_t t_start_process_prompt;
  1175. int64_t t_start_generation;
  1176. double t_prompt_processing; // ms
  1177. double t_token_generation; // ms
  1178. std::function<void(int)> callback_on_release;
  1179. // Speculative decoding stats
  1180. int32_t n_draft_total = 0; // Total draft tokens generated
  1181. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1182. void reset() {
  1183. SLT_DBG(*this, "%s", "\n");
  1184. n_prompt_tokens = 0;
  1185. last_nl_pos = 0;
  1186. generated_text = "";
  1187. has_new_line = false;
  1188. truncated = false;
  1189. stop = STOP_TYPE_NONE;
  1190. stopping_word = "";
  1191. n_past = 0;
  1192. n_sent_text = 0;
  1193. task_type = SERVER_TASK_TYPE_COMPLETION;
  1194. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1195. generated_tokens.clear();
  1196. generated_token_probs.clear();
  1197. chat_msg = {};
  1198. json_schema = json();
  1199. generated_tool_call_ids.clear();
  1200. // clear speculative decoding stats
  1201. n_draft_total = 0;
  1202. n_draft_accepted = 0;
  1203. }
  1204. bool need_embd() const {
  1205. return server_task_type_need_embd(task_type);
  1206. }
  1207. bool need_logits() const {
  1208. return server_task_type_need_logits(task_type);
  1209. }
  1210. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1211. // also we cannot split if the pooling would require any past tokens
  1212. bool can_split() const {
  1213. return
  1214. !need_embd() ||
  1215. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1216. }
  1217. bool can_batch_with(server_slot & other_slot) const {
  1218. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1219. }
  1220. bool has_budget(const common_params & global_params) {
  1221. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1222. return true; // limitless
  1223. }
  1224. n_remaining = -1;
  1225. if (params.n_predict != -1) {
  1226. n_remaining = params.n_predict - n_decoded;
  1227. } else if (global_params.n_predict != -1) {
  1228. n_remaining = global_params.n_predict - n_decoded;
  1229. }
  1230. return n_remaining > 0; // no budget
  1231. }
  1232. bool is_processing() const {
  1233. return state != SLOT_STATE_IDLE;
  1234. }
  1235. bool can_speculate() const {
  1236. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1237. }
  1238. void add_token(const completion_token_output & token) {
  1239. if (!is_processing()) {
  1240. SLT_WRN(*this, "%s", "slot is not processing\n");
  1241. return;
  1242. }
  1243. generated_token_probs.push_back(token);
  1244. }
  1245. void release() {
  1246. if (is_processing()) {
  1247. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1248. t_last_used = ggml_time_us();
  1249. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1250. state = SLOT_STATE_IDLE;
  1251. callback_on_release(id);
  1252. }
  1253. }
  1254. result_timings get_timings() const {
  1255. result_timings timings;
  1256. timings.prompt_n = n_prompt_tokens_processed;
  1257. timings.prompt_ms = t_prompt_processing;
  1258. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1259. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1260. timings.predicted_n = n_decoded;
  1261. timings.predicted_ms = t_token_generation;
  1262. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1263. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1264. // Add speculative metrics
  1265. if (n_draft_total > 0) {
  1266. timings.draft_n = n_draft_total;
  1267. timings.draft_n_accepted = n_draft_accepted;
  1268. }
  1269. return timings;
  1270. }
  1271. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1272. auto previous_msg = chat_msg;
  1273. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1274. auto new_msg = common_chat_parse(
  1275. generated_text,
  1276. /* is_partial= */ stop != STOP_TYPE_EOS,
  1277. params.oaicompat_chat_syntax);
  1278. if (!new_msg.empty()) {
  1279. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1280. chat_msg = new_msg;
  1281. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1282. }
  1283. return chat_msg;
  1284. }
  1285. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1286. size_t stop_pos = std::string::npos;
  1287. for (const std::string & word : params.antiprompt) {
  1288. size_t pos;
  1289. if (is_full_stop) {
  1290. const size_t tmp = word.size() + last_token_size;
  1291. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1292. pos = text.find(word, from_pos);
  1293. } else {
  1294. // otherwise, partial stop
  1295. pos = string_find_partial_stop(text, word);
  1296. }
  1297. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1298. if (is_full_stop) {
  1299. stop = STOP_TYPE_WORD;
  1300. stopping_word = word;
  1301. has_next_token = false;
  1302. }
  1303. stop_pos = pos;
  1304. }
  1305. }
  1306. return stop_pos;
  1307. }
  1308. void print_timings() const {
  1309. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1310. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1311. const double t_gen = t_token_generation / n_decoded;
  1312. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1313. SLT_INF(*this,
  1314. "\n"
  1315. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1316. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1317. " total time = %10.2f ms / %5d tokens\n",
  1318. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1319. t_token_generation, n_decoded, t_gen, n_gen_second,
  1320. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1321. if (n_draft_total > 0) {
  1322. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1323. SLT_INF(*this,
  1324. "\n"
  1325. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1326. draft_ratio, n_draft_accepted, n_draft_total
  1327. );
  1328. }
  1329. }
  1330. json to_json() const {
  1331. return json {
  1332. {"id", id},
  1333. {"id_task", id_task},
  1334. {"n_ctx", n_ctx},
  1335. {"speculative", can_speculate()},
  1336. {"is_processing", is_processing()},
  1337. {"params", params.to_json()},
  1338. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1339. {"next_token",
  1340. {
  1341. {"has_next_token", has_next_token},
  1342. {"has_new_line", has_new_line},
  1343. {"n_remain", n_remaining},
  1344. {"n_decoded", n_decoded},
  1345. {"stopping_word", stopping_word},
  1346. }
  1347. },
  1348. };
  1349. }
  1350. };
  1351. struct server_metrics {
  1352. int64_t t_start = 0;
  1353. uint64_t n_prompt_tokens_processed_total = 0;
  1354. uint64_t t_prompt_processing_total = 0;
  1355. uint64_t n_tokens_predicted_total = 0;
  1356. uint64_t t_tokens_generation_total = 0;
  1357. uint64_t n_prompt_tokens_processed = 0;
  1358. uint64_t t_prompt_processing = 0;
  1359. uint64_t n_tokens_predicted = 0;
  1360. uint64_t t_tokens_generation = 0;
  1361. uint64_t n_decode_total = 0;
  1362. uint64_t n_busy_slots_total = 0;
  1363. void init() {
  1364. t_start = ggml_time_us();
  1365. }
  1366. void on_prompt_eval(const server_slot & slot) {
  1367. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1368. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1369. t_prompt_processing += slot.t_prompt_processing;
  1370. t_prompt_processing_total += slot.t_prompt_processing;
  1371. }
  1372. void on_prediction(const server_slot & slot) {
  1373. n_tokens_predicted_total += slot.n_decoded;
  1374. n_tokens_predicted += slot.n_decoded;
  1375. t_tokens_generation += slot.t_token_generation;
  1376. t_tokens_generation_total += slot.t_token_generation;
  1377. }
  1378. void on_decoded(const std::vector<server_slot> & slots) {
  1379. n_decode_total++;
  1380. for (const auto & slot : slots) {
  1381. if (slot.is_processing()) {
  1382. n_busy_slots_total++;
  1383. }
  1384. }
  1385. }
  1386. void reset_bucket() {
  1387. n_prompt_tokens_processed = 0;
  1388. t_prompt_processing = 0;
  1389. n_tokens_predicted = 0;
  1390. t_tokens_generation = 0;
  1391. }
  1392. };
  1393. struct server_queue {
  1394. int id = 0;
  1395. bool running;
  1396. // queues
  1397. std::deque<server_task> queue_tasks;
  1398. std::deque<server_task> queue_tasks_deferred;
  1399. std::mutex mutex_tasks;
  1400. std::condition_variable condition_tasks;
  1401. // callback functions
  1402. std::function<void(server_task &&)> callback_new_task;
  1403. std::function<void(void)> callback_update_slots;
  1404. // Add a new task to the end of the queue
  1405. int post(server_task && task, bool front = false) {
  1406. std::unique_lock<std::mutex> lock(mutex_tasks);
  1407. GGML_ASSERT(task.id != -1);
  1408. // if this is cancel task make sure to clean up pending tasks
  1409. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1410. cleanup_pending_task(task.id_target);
  1411. }
  1412. const int task_id = task.id;
  1413. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1414. if (front) {
  1415. queue_tasks.push_front(std::move(task));
  1416. } else {
  1417. queue_tasks.push_back(std::move(task));
  1418. }
  1419. condition_tasks.notify_one();
  1420. return task_id;
  1421. }
  1422. // multi-task version of post()
  1423. int post(std::vector<server_task> && tasks, bool front = false) {
  1424. std::unique_lock<std::mutex> lock(mutex_tasks);
  1425. for (auto & task : tasks) {
  1426. if (task.id == -1) {
  1427. task.id = id++;
  1428. }
  1429. // if this is cancel task make sure to clean up pending tasks
  1430. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1431. cleanup_pending_task(task.id_target);
  1432. }
  1433. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1434. if (front) {
  1435. queue_tasks.push_front(std::move(task));
  1436. } else {
  1437. queue_tasks.push_back(std::move(task));
  1438. }
  1439. }
  1440. condition_tasks.notify_one();
  1441. return 0;
  1442. }
  1443. // Add a new task, but defer until one slot is available
  1444. void defer(server_task && task) {
  1445. std::unique_lock<std::mutex> lock(mutex_tasks);
  1446. QUE_DBG("defer task, id = %d\n", task.id);
  1447. queue_tasks_deferred.push_back(std::move(task));
  1448. condition_tasks.notify_one();
  1449. }
  1450. // Get the next id for creating a new task
  1451. int get_new_id() {
  1452. std::unique_lock<std::mutex> lock(mutex_tasks);
  1453. int new_id = id++;
  1454. return new_id;
  1455. }
  1456. // Register function to process a new task
  1457. void on_new_task(std::function<void(server_task &&)> callback) {
  1458. callback_new_task = std::move(callback);
  1459. }
  1460. // Register the function to be called when all slots data is ready to be processed
  1461. void on_update_slots(std::function<void(void)> callback) {
  1462. callback_update_slots = std::move(callback);
  1463. }
  1464. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1465. void pop_deferred_task() {
  1466. std::unique_lock<std::mutex> lock(mutex_tasks);
  1467. if (!queue_tasks_deferred.empty()) {
  1468. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1469. queue_tasks_deferred.pop_front();
  1470. }
  1471. condition_tasks.notify_one();
  1472. }
  1473. // end the start_loop routine
  1474. void terminate() {
  1475. std::unique_lock<std::mutex> lock(mutex_tasks);
  1476. running = false;
  1477. condition_tasks.notify_all();
  1478. }
  1479. /**
  1480. * Main loop consists of these steps:
  1481. * - Wait until a new task arrives
  1482. * - Process the task (i.e. maybe copy data into slot)
  1483. * - Check if multitask is finished
  1484. * - Update all slots
  1485. */
  1486. void start_loop() {
  1487. running = true;
  1488. while (true) {
  1489. QUE_DBG("%s", "processing new tasks\n");
  1490. while (true) {
  1491. std::unique_lock<std::mutex> lock(mutex_tasks);
  1492. if (!running) {
  1493. QUE_DBG("%s", "terminate\n");
  1494. return;
  1495. }
  1496. if (queue_tasks.empty()) {
  1497. lock.unlock();
  1498. break;
  1499. }
  1500. server_task task = std::move(queue_tasks.front());
  1501. queue_tasks.pop_front();
  1502. lock.unlock();
  1503. QUE_DBG("processing task, id = %d\n", task.id);
  1504. callback_new_task(std::move(task));
  1505. }
  1506. // all tasks in the current loop is processed, slots data is now ready
  1507. QUE_DBG("%s", "update slots\n");
  1508. callback_update_slots();
  1509. QUE_DBG("%s", "waiting for new tasks\n");
  1510. {
  1511. std::unique_lock<std::mutex> lock(mutex_tasks);
  1512. if (!running) {
  1513. QUE_DBG("%s", "terminate\n");
  1514. return;
  1515. }
  1516. if (queue_tasks.empty()) {
  1517. condition_tasks.wait(lock, [&]{
  1518. return (!queue_tasks.empty() || !running);
  1519. });
  1520. }
  1521. }
  1522. }
  1523. }
  1524. private:
  1525. void cleanup_pending_task(int id_target) {
  1526. // no need lock because this is called exclusively by post()
  1527. auto rm_func = [id_target](const server_task & task) {
  1528. return task.id_target == id_target;
  1529. };
  1530. queue_tasks.erase(
  1531. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1532. queue_tasks.end());
  1533. queue_tasks_deferred.erase(
  1534. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1535. queue_tasks_deferred.end());
  1536. }
  1537. };
  1538. struct server_response {
  1539. bool running = true;
  1540. // for keeping track of all tasks waiting for the result
  1541. std::unordered_set<int> waiting_task_ids;
  1542. // the main result queue (using ptr for polymorphism)
  1543. std::vector<server_task_result_ptr> queue_results;
  1544. std::mutex mutex_results;
  1545. std::condition_variable condition_results;
  1546. // add the id_task to the list of tasks waiting for response
  1547. void add_waiting_task_id(int id_task) {
  1548. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1549. std::unique_lock<std::mutex> lock(mutex_results);
  1550. waiting_task_ids.insert(id_task);
  1551. }
  1552. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1553. std::unique_lock<std::mutex> lock(mutex_results);
  1554. for (const auto & task : tasks) {
  1555. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1556. waiting_task_ids.insert(task.id);
  1557. }
  1558. }
  1559. // when the request is finished, we can remove task associated with it
  1560. void remove_waiting_task_id(int id_task) {
  1561. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1562. std::unique_lock<std::mutex> lock(mutex_results);
  1563. waiting_task_ids.erase(id_task);
  1564. // make sure to clean up all pending results
  1565. queue_results.erase(
  1566. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1567. return res->id == id_task;
  1568. }),
  1569. queue_results.end());
  1570. }
  1571. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1572. std::unique_lock<std::mutex> lock(mutex_results);
  1573. for (const auto & id_task : id_tasks) {
  1574. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1575. waiting_task_ids.erase(id_task);
  1576. }
  1577. }
  1578. // This function blocks the thread until there is a response for one of the id_tasks
  1579. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1580. while (true) {
  1581. std::unique_lock<std::mutex> lock(mutex_results);
  1582. condition_results.wait(lock, [&]{
  1583. if (!running) {
  1584. SRV_DBG("%s : queue result stop\n", __func__);
  1585. std::terminate(); // we cannot return here since the caller is HTTP code
  1586. }
  1587. return !queue_results.empty();
  1588. });
  1589. for (size_t i = 0; i < queue_results.size(); i++) {
  1590. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1591. server_task_result_ptr res = std::move(queue_results[i]);
  1592. queue_results.erase(queue_results.begin() + i);
  1593. return res;
  1594. }
  1595. }
  1596. }
  1597. // should never reach here
  1598. }
  1599. // same as recv(), but have timeout in seconds
  1600. // if timeout is reached, nullptr is returned
  1601. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1602. while (true) {
  1603. std::unique_lock<std::mutex> lock(mutex_results);
  1604. for (int i = 0; i < (int) queue_results.size(); i++) {
  1605. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1606. server_task_result_ptr res = std::move(queue_results[i]);
  1607. queue_results.erase(queue_results.begin() + i);
  1608. return res;
  1609. }
  1610. }
  1611. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1612. if (!running) {
  1613. SRV_DBG("%s : queue result stop\n", __func__);
  1614. std::terminate(); // we cannot return here since the caller is HTTP code
  1615. }
  1616. if (cr_res == std::cv_status::timeout) {
  1617. return nullptr;
  1618. }
  1619. }
  1620. // should never reach here
  1621. }
  1622. // single-task version of recv()
  1623. server_task_result_ptr recv(int id_task) {
  1624. std::unordered_set<int> id_tasks = {id_task};
  1625. return recv(id_tasks);
  1626. }
  1627. // Send a new result to a waiting id_task
  1628. void send(server_task_result_ptr && result) {
  1629. SRV_DBG("sending result for task id = %d\n", result->id);
  1630. std::unique_lock<std::mutex> lock(mutex_results);
  1631. for (const auto & id_task : waiting_task_ids) {
  1632. if (result->id == id_task) {
  1633. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1634. queue_results.emplace_back(std::move(result));
  1635. condition_results.notify_all();
  1636. return;
  1637. }
  1638. }
  1639. }
  1640. // terminate the waiting loop
  1641. void terminate() {
  1642. running = false;
  1643. condition_results.notify_all();
  1644. }
  1645. };
  1646. struct server_context {
  1647. common_params params_base;
  1648. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1649. common_init_result llama_init;
  1650. common_init_result llama_init_dft;
  1651. llama_model * model = nullptr;
  1652. llama_context * ctx = nullptr;
  1653. // multimodal
  1654. mtmd_context * mctx = nullptr;
  1655. const llama_vocab * vocab = nullptr;
  1656. bool vocab_dft_compatible = true;
  1657. llama_model * model_dft = nullptr;
  1658. llama_context_params cparams_dft;
  1659. llama_batch batch {};
  1660. bool clean_kv_cache = true;
  1661. bool add_bos_token = true;
  1662. int32_t n_ctx; // total context for all clients / slots
  1663. // slots / clients
  1664. std::vector<server_slot> slots;
  1665. json default_generation_settings_for_props;
  1666. server_queue queue_tasks;
  1667. server_response queue_results;
  1668. server_metrics metrics;
  1669. // Necessary similarity of prompt for slot selection
  1670. float slot_prompt_similarity = 0.0f;
  1671. common_chat_templates_ptr chat_templates;
  1672. oaicompat_parser_options oai_parser_opt;
  1673. ~server_context() {
  1674. mtmd_free(mctx);
  1675. // Clear any sampling context
  1676. for (server_slot & slot : slots) {
  1677. common_sampler_free(slot.smpl);
  1678. slot.smpl = nullptr;
  1679. llama_free(slot.ctx_dft);
  1680. slot.ctx_dft = nullptr;
  1681. common_speculative_free(slot.spec);
  1682. slot.spec = nullptr;
  1683. llama_batch_free(slot.batch_spec);
  1684. }
  1685. llama_batch_free(batch);
  1686. }
  1687. bool load_model(const common_params & params) {
  1688. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1689. params_base = params;
  1690. llama_init = common_init_from_params(params_base);
  1691. model = llama_init.model.get();
  1692. ctx = llama_init.context.get();
  1693. if (model == nullptr) {
  1694. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1695. return false;
  1696. }
  1697. vocab = llama_model_get_vocab(model);
  1698. n_ctx = llama_n_ctx(ctx);
  1699. add_bos_token = llama_vocab_get_add_bos(vocab);
  1700. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1701. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1702. auto params_dft = params_base;
  1703. params_dft.devices = params_base.speculative.devices;
  1704. params_dft.model = params_base.speculative.model;
  1705. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1706. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1707. params_dft.n_parallel = 1;
  1708. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1709. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1710. llama_init_dft = common_init_from_params(params_dft);
  1711. model_dft = llama_init_dft.model.get();
  1712. if (model_dft == nullptr) {
  1713. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1714. return false;
  1715. }
  1716. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1717. if (!vocab_dft_compatible) {
  1718. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1719. }
  1720. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1721. cparams_dft = common_context_params_to_llama(params_dft);
  1722. cparams_dft.n_batch = n_ctx_dft;
  1723. // the context is not needed - we will create one for each slot
  1724. llama_init_dft.context.reset();
  1725. }
  1726. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1727. try {
  1728. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1729. } catch (const std::exception & e) {
  1730. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1731. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1732. chat_templates = common_chat_templates_init(model, "chatml");
  1733. }
  1734. std::string & mmproj_path = params_base.mmproj.path;
  1735. if (!mmproj_path.empty()) {
  1736. mtmd_context_params mparams = mtmd_context_params_default();
  1737. mparams.use_gpu = params_base.mmproj_use_gpu;
  1738. mparams.print_timings = false;
  1739. mparams.n_threads = params_base.cpuparams.n_threads;
  1740. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1741. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1742. if (mctx == nullptr) {
  1743. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1744. return false;
  1745. }
  1746. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1747. if (params_base.ctx_shift) {
  1748. params_base.ctx_shift = false;
  1749. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1750. }
  1751. if (params_base.n_cache_reuse) {
  1752. params_base.n_cache_reuse = 0;
  1753. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1754. }
  1755. if (!params_base.speculative.model.path.empty()) {
  1756. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1757. return false;
  1758. }
  1759. }
  1760. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1761. if (params_base.ctx_shift) {
  1762. params_base.ctx_shift = false;
  1763. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1764. }
  1765. if (params_base.n_cache_reuse) {
  1766. params_base.n_cache_reuse = 0;
  1767. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1768. }
  1769. }
  1770. return true;
  1771. }
  1772. void init() {
  1773. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1774. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1775. for (int i = 0; i < params_base.n_parallel; i++) {
  1776. server_slot slot;
  1777. slot.id = i;
  1778. slot.ctx = ctx;
  1779. slot.n_ctx = n_ctx_slot;
  1780. slot.n_predict = params_base.n_predict;
  1781. slot.mctx = mctx;
  1782. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1783. if (model_dft) {
  1784. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1785. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1786. if (slot.ctx_dft == nullptr) {
  1787. SRV_ERR("%s", "failed to create draft context\n");
  1788. return;
  1789. }
  1790. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1791. if (slot.spec == nullptr) {
  1792. SRV_ERR("%s", "failed to create speculator\n");
  1793. return;
  1794. }
  1795. for (auto &pair : params_base.speculative.replacements) {
  1796. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1797. }
  1798. }
  1799. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1800. slot.params.sampling = params_base.sampling;
  1801. slot.params.n_keep = params_base.n_keep;
  1802. slot.callback_on_release = [this](int) {
  1803. queue_tasks.pop_deferred_task();
  1804. };
  1805. slot.reset();
  1806. slots.push_back(std::move(slot));
  1807. }
  1808. default_generation_settings_for_props = slots[0].to_json();
  1809. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1810. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1811. {
  1812. const int32_t n_batch = llama_n_batch(ctx);
  1813. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1814. }
  1815. metrics.init();
  1816. oai_parser_opt = {
  1817. /* use_jinja */ params_base.use_jinja,
  1818. /* prefill_assistant */ params_base.prefill_assistant,
  1819. /* reasoning_format */ params_base.reasoning_format,
  1820. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1821. /* common_chat_templates */ chat_templates.get(),
  1822. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1823. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1824. /* enable_thinking */ params_base.reasoning_budget != 0,
  1825. };
  1826. }
  1827. server_slot * get_slot_by_id(int id) {
  1828. for (server_slot & slot : slots) {
  1829. if (slot.id == id) {
  1830. return &slot;
  1831. }
  1832. }
  1833. return nullptr;
  1834. }
  1835. server_slot * get_available_slot(const server_task & task) {
  1836. server_slot * ret = nullptr;
  1837. // find the slot that has at least n% prompt similarity
  1838. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1839. int lcs_len = 0;
  1840. float similarity = 0;
  1841. for (server_slot & slot : slots) {
  1842. // skip the slot if it is not available
  1843. if (slot.is_processing()) {
  1844. continue;
  1845. }
  1846. // skip the slot if it does not contains cached tokens
  1847. if (slot.cache_tokens.empty()) {
  1848. continue;
  1849. }
  1850. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1851. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1852. // fraction of the common subsequence length compared to the current slot's prompt length
  1853. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1854. // select the current slot if the criteria match
  1855. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1856. lcs_len = cur_lcs_len;
  1857. similarity = cur_similarity;
  1858. ret = &slot;
  1859. }
  1860. }
  1861. if (ret != nullptr) {
  1862. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1863. }
  1864. }
  1865. // find the slot that has been least recently used
  1866. if (ret == nullptr) {
  1867. int64_t t_last = -1;
  1868. for (server_slot & slot : slots) {
  1869. // skip the slot if it is not available
  1870. if (slot.is_processing()) {
  1871. continue;
  1872. }
  1873. // select the current slot if the criteria match
  1874. if (!ret || slot.t_last_used <= t_last) {
  1875. t_last = slot.t_last_used;
  1876. ret = &slot;
  1877. }
  1878. }
  1879. if (ret != nullptr) {
  1880. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1881. }
  1882. }
  1883. return ret;
  1884. }
  1885. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1886. slot.reset();
  1887. slot.id_task = task.id;
  1888. slot.index = task.index;
  1889. slot.task_type = task.type;
  1890. slot.params = std::move(task.params);
  1891. slot.prompt_tokens = std::move(task.prompt_tokens);
  1892. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1893. // if lora is changed, we cannot reuse cached tokens
  1894. slot.cache_tokens.clear();
  1895. slot.lora = slot.params.lora;
  1896. }
  1897. if (!slot.prompt_tokens.validate(ctx)) {
  1898. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1899. return false;
  1900. }
  1901. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1902. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1903. // Might be better to reject the request with a 400 ?
  1904. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1905. slot.params.n_predict = slot.n_predict;
  1906. }
  1907. {
  1908. if (slot.smpl != nullptr) {
  1909. common_sampler_free(slot.smpl);
  1910. }
  1911. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1912. if (slot.smpl == nullptr) {
  1913. // for now, the only error that may happen here is invalid grammar
  1914. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1915. return false;
  1916. }
  1917. }
  1918. if (slot.ctx_dft) {
  1919. llama_batch_free(slot.batch_spec);
  1920. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1921. }
  1922. slot.state = SLOT_STATE_STARTED;
  1923. SLT_INF(slot, "%s", "processing task\n");
  1924. return true;
  1925. }
  1926. void kv_cache_clear() {
  1927. SRV_DBG("%s", "clearing KV cache\n");
  1928. // clear the entire KV cache
  1929. llama_memory_clear(llama_get_memory(ctx), true);
  1930. clean_kv_cache = false;
  1931. }
  1932. bool process_token(completion_token_output & result, server_slot & slot) {
  1933. // remember which tokens were sampled - used for repetition penalties during sampling
  1934. const std::string token_str = result.text_to_send;
  1935. slot.sampled = result.tok;
  1936. slot.generated_text += token_str;
  1937. if (slot.params.return_tokens) {
  1938. slot.generated_tokens.push_back(result.tok);
  1939. }
  1940. slot.has_next_token = true;
  1941. // check if there is incomplete UTF-8 character at the end
  1942. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1943. // search stop word and delete it
  1944. if (!incomplete) {
  1945. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1946. const std::string str_test = slot.generated_text.substr(pos);
  1947. bool send_text = true;
  1948. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1949. if (stop_pos != std::string::npos) {
  1950. slot.generated_text.erase(
  1951. slot.generated_text.begin() + pos + stop_pos,
  1952. slot.generated_text.end());
  1953. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1954. } else if (slot.has_next_token) {
  1955. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1956. send_text = stop_pos == std::string::npos;
  1957. }
  1958. // check if there is any token to predict
  1959. if (send_text) {
  1960. // no send the stop word in the response
  1961. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1962. slot.n_sent_text += result.text_to_send.size();
  1963. // add the token to slot queue and cache
  1964. } else {
  1965. result.text_to_send = "";
  1966. }
  1967. slot.add_token(result);
  1968. if (slot.params.stream) {
  1969. send_partial_response(slot, result);
  1970. }
  1971. }
  1972. if (incomplete) {
  1973. slot.has_next_token = true;
  1974. }
  1975. // if context shifting is disabled, make sure that we don't run out of context
  1976. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1977. slot.stop = STOP_TYPE_LIMIT;
  1978. slot.has_next_token = false;
  1979. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1980. }
  1981. // check the limits
  1982. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1983. slot.stop = STOP_TYPE_LIMIT;
  1984. slot.has_next_token = false;
  1985. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1986. }
  1987. if (slot.has_new_line) {
  1988. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1989. if (slot.params.n_indent > 0) {
  1990. // check the current indentation
  1991. // TODO: improve by not doing it more than once for each new line
  1992. if (slot.last_nl_pos > 0) {
  1993. size_t pos = slot.last_nl_pos;
  1994. int n_indent = 0;
  1995. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1996. n_indent++;
  1997. pos++;
  1998. }
  1999. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2000. slot.stop = STOP_TYPE_LIMIT;
  2001. slot.has_next_token = false;
  2002. // cut the last line
  2003. slot.generated_text.erase(pos, std::string::npos);
  2004. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2005. }
  2006. }
  2007. // find the next new line
  2008. {
  2009. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2010. if (pos != std::string::npos) {
  2011. slot.last_nl_pos = pos + 1;
  2012. }
  2013. }
  2014. }
  2015. }
  2016. // check if there is a new line in the generated text
  2017. if (result.text_to_send.find('\n') != std::string::npos) {
  2018. slot.has_new_line = true;
  2019. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2020. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2021. slot.stop = STOP_TYPE_LIMIT;
  2022. slot.has_next_token = false;
  2023. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2024. }
  2025. }
  2026. // if context shift is disabled, we stop when it reaches the context limit
  2027. if (slot.n_past >= slot.n_ctx) {
  2028. slot.truncated = true;
  2029. slot.stop = STOP_TYPE_LIMIT;
  2030. slot.has_next_token = false;
  2031. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2032. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2033. }
  2034. if (llama_vocab_is_eog(vocab, result.tok)) {
  2035. slot.stop = STOP_TYPE_EOS;
  2036. slot.has_next_token = false;
  2037. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2038. }
  2039. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2040. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2041. slot.truncated = true;
  2042. slot.stop = STOP_TYPE_LIMIT;
  2043. slot.has_next_token = false; // stop prediction
  2044. SLT_WRN(slot,
  2045. "n_predict (%d) is set for infinite generation. "
  2046. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2047. slot.params.n_predict, n_ctx_train);
  2048. }
  2049. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2050. return slot.has_next_token; // continue
  2051. }
  2052. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  2053. size_t n_probs = slot.params.sampling.n_probs;
  2054. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2055. if (post_sampling) {
  2056. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2057. const size_t max_probs = cur_p->size;
  2058. // set probability for sampled token
  2059. for (size_t i = 0; i < max_probs; i++) {
  2060. if (cur_p->data[i].id == result.tok) {
  2061. result.prob = cur_p->data[i].p;
  2062. break;
  2063. }
  2064. }
  2065. // set probability for top n_probs tokens
  2066. result.probs.reserve(max_probs);
  2067. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2068. result.probs.push_back({
  2069. cur_p->data[i].id,
  2070. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2071. cur_p->data[i].p
  2072. });
  2073. }
  2074. } else {
  2075. // TODO: optimize this with min-p optimization
  2076. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2077. // set probability for sampled token
  2078. for (size_t i = 0; i < n_vocab; i++) {
  2079. // set probability for sampled token
  2080. if (cur[i].id == result.tok) {
  2081. result.prob = cur[i].p;
  2082. break;
  2083. }
  2084. }
  2085. // set probability for top n_probs tokens
  2086. result.probs.reserve(n_probs);
  2087. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2088. result.probs.push_back({
  2089. cur[i].id,
  2090. common_token_to_piece(ctx, cur[i].id, special),
  2091. cur[i].p
  2092. });
  2093. }
  2094. }
  2095. }
  2096. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2097. send_error(task.id, error, type);
  2098. }
  2099. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2100. send_error(slot.id_task, error, type);
  2101. }
  2102. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2103. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2104. auto res = std::make_unique<server_task_result_error>();
  2105. res->id = id_task;
  2106. res->err_type = type;
  2107. res->err_msg = error;
  2108. queue_results.send(std::move(res));
  2109. }
  2110. // if multimodal is enabled, send an error and return false
  2111. bool ensure_no_mtmd(const int id_task) {
  2112. if (mctx) {
  2113. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2114. return false;
  2115. }
  2116. return true;
  2117. }
  2118. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2119. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2120. res->id = slot.id_task;
  2121. res->index = slot.index;
  2122. res->content = tkn.text_to_send;
  2123. res->tokens = { tkn.tok };
  2124. res->n_decoded = slot.n_decoded;
  2125. res->n_prompt_tokens = slot.n_prompt_tokens;
  2126. res->post_sampling_probs = slot.params.post_sampling_probs;
  2127. res->verbose = slot.params.verbose;
  2128. res->oaicompat = slot.params.oaicompat;
  2129. res->oaicompat_model = slot.params.oaicompat_model;
  2130. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2131. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2132. // populate res.probs_output
  2133. if (slot.params.sampling.n_probs > 0) {
  2134. res->prob_output = tkn; // copy the token probs
  2135. }
  2136. // populate timings if this is final response or timings_per_token is enabled
  2137. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2138. res->timings = slot.get_timings();
  2139. }
  2140. queue_results.send(std::move(res));
  2141. }
  2142. void send_final_response(server_slot & slot) {
  2143. auto res = std::make_unique<server_task_result_cmpl_final>();
  2144. res->id = slot.id_task;
  2145. res->id_slot = slot.id;
  2146. res->index = slot.index;
  2147. res->content = slot.generated_text;
  2148. res->tokens = std::move(slot.generated_tokens);
  2149. res->timings = slot.get_timings();
  2150. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2151. res->response_fields = std::move(slot.params.response_fields);
  2152. res->truncated = slot.truncated;
  2153. res->n_decoded = slot.n_decoded;
  2154. res->n_prompt_tokens = slot.n_prompt_tokens;
  2155. res->n_tokens_cached = slot.n_past;
  2156. res->has_new_line = slot.has_new_line;
  2157. res->stopping_word = slot.stopping_word;
  2158. res->stop = slot.stop;
  2159. res->post_sampling_probs = slot.params.post_sampling_probs;
  2160. res->verbose = slot.params.verbose;
  2161. res->stream = slot.params.stream;
  2162. res->oaicompat = slot.params.oaicompat;
  2163. res->oaicompat_model = slot.params.oaicompat_model;
  2164. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2165. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2166. // populate res.probs_output
  2167. if (slot.params.sampling.n_probs > 0) {
  2168. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2169. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2170. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2171. res->probs_output = std::vector<completion_token_output>(
  2172. slot.generated_token_probs.begin(),
  2173. slot.generated_token_probs.end() - safe_offset);
  2174. } else {
  2175. res->probs_output = std::vector<completion_token_output>(
  2176. slot.generated_token_probs.begin(),
  2177. slot.generated_token_probs.end());
  2178. }
  2179. }
  2180. res->generation_params = slot.params; // copy the parameters
  2181. queue_results.send(std::move(res));
  2182. }
  2183. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2184. auto res = std::make_unique<server_task_result_embd>();
  2185. res->id = slot.id_task;
  2186. res->index = slot.index;
  2187. res->n_tokens = slot.n_prompt_tokens;
  2188. res->oaicompat = slot.params.oaicompat;
  2189. const int n_embd = llama_model_n_embd(model);
  2190. std::vector<float> embd_res(n_embd, 0.0f);
  2191. for (int i = 0; i < batch.n_tokens; ++i) {
  2192. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2193. continue;
  2194. }
  2195. const float * embd = nullptr;
  2196. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2197. embd = llama_get_embeddings_ith(ctx, i);
  2198. } else {
  2199. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2200. }
  2201. if (embd == nullptr) {
  2202. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2203. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2204. continue;
  2205. }
  2206. // normalize only when there is pooling
  2207. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2208. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2209. res->embedding.push_back(embd_res);
  2210. break;
  2211. } else {
  2212. res->embedding.emplace_back(embd, embd + n_embd);
  2213. }
  2214. }
  2215. SLT_DBG(slot, "%s", "sending embeddings\n");
  2216. queue_results.send(std::move(res));
  2217. }
  2218. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2219. auto res = std::make_unique<server_task_result_rerank>();
  2220. res->id = slot.id_task;
  2221. res->index = slot.index;
  2222. res->n_tokens = slot.n_prompt_tokens;
  2223. for (int i = 0; i < batch.n_tokens; ++i) {
  2224. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2225. continue;
  2226. }
  2227. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2228. if (embd == NULL) {
  2229. embd = llama_get_embeddings_ith(ctx, i);
  2230. }
  2231. if (embd == NULL) {
  2232. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2233. res->score = -1e6;
  2234. continue;
  2235. }
  2236. res->score = embd[0];
  2237. }
  2238. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2239. queue_results.send(std::move(res));
  2240. }
  2241. //
  2242. // Functions to create new task(s) and receive result(s)
  2243. //
  2244. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2245. std::vector<server_task> cancel_tasks;
  2246. cancel_tasks.reserve(id_tasks.size());
  2247. for (const auto & id_task : id_tasks) {
  2248. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2249. server_task task(SERVER_TASK_TYPE_CANCEL);
  2250. task.id_target = id_task;
  2251. queue_results.remove_waiting_task_id(id_task);
  2252. cancel_tasks.push_back(std::move(task));
  2253. }
  2254. // push to beginning of the queue, so it has highest priority
  2255. queue_tasks.post(std::move(cancel_tasks), true);
  2256. }
  2257. // receive the results from task(s)
  2258. void receive_multi_results(
  2259. const std::unordered_set<int> & id_tasks,
  2260. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2261. const std::function<void(json)> & error_handler,
  2262. const std::function<bool()> & is_connection_closed) {
  2263. std::vector<server_task_result_ptr> results(id_tasks.size());
  2264. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2265. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2266. if (is_connection_closed()) {
  2267. cancel_tasks(id_tasks);
  2268. return;
  2269. }
  2270. if (result == nullptr) {
  2271. i--; // retry
  2272. continue;
  2273. }
  2274. if (result->is_error()) {
  2275. error_handler(result->to_json());
  2276. cancel_tasks(id_tasks);
  2277. return;
  2278. }
  2279. GGML_ASSERT(
  2280. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2281. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2282. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2283. );
  2284. const size_t idx = result->get_index();
  2285. GGML_ASSERT(idx < results.size() && "index out of range");
  2286. results[idx] = std::move(result);
  2287. }
  2288. result_handler(results);
  2289. }
  2290. // receive the results from task(s), in stream mode
  2291. void receive_cmpl_results_stream(
  2292. const std::unordered_set<int> & id_tasks,
  2293. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2294. const std::function<void(json)> & error_handler,
  2295. const std::function<bool()> & is_connection_closed) {
  2296. size_t n_finished = 0;
  2297. while (true) {
  2298. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2299. if (is_connection_closed()) {
  2300. cancel_tasks(id_tasks);
  2301. return;
  2302. }
  2303. if (result == nullptr) {
  2304. continue; // retry
  2305. }
  2306. if (result->is_error()) {
  2307. error_handler(result->to_json());
  2308. cancel_tasks(id_tasks);
  2309. return;
  2310. }
  2311. GGML_ASSERT(
  2312. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2313. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2314. );
  2315. if (!result_handler(result)) {
  2316. cancel_tasks(id_tasks);
  2317. break;
  2318. }
  2319. if (result->is_stop()) {
  2320. if (++n_finished == id_tasks.size()) {
  2321. break;
  2322. }
  2323. }
  2324. }
  2325. }
  2326. //
  2327. // Functions to process the task
  2328. //
  2329. void process_single_task(server_task && task) {
  2330. switch (task.type) {
  2331. case SERVER_TASK_TYPE_COMPLETION:
  2332. case SERVER_TASK_TYPE_INFILL:
  2333. case SERVER_TASK_TYPE_EMBEDDING:
  2334. case SERVER_TASK_TYPE_RERANK:
  2335. {
  2336. const int id_slot = task.id_selected_slot;
  2337. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2338. if (slot == nullptr) {
  2339. // if no slot is available, we defer this task for processing later
  2340. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2341. queue_tasks.defer(std::move(task));
  2342. break;
  2343. }
  2344. if (slot->is_processing()) {
  2345. // if requested slot is unavailable, we defer this task for processing later
  2346. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2347. queue_tasks.defer(std::move(task));
  2348. break;
  2349. }
  2350. if (!launch_slot_with_task(*slot, std::move(task))) {
  2351. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2352. break;
  2353. }
  2354. } break;
  2355. case SERVER_TASK_TYPE_CANCEL:
  2356. {
  2357. // release slot linked with the task id
  2358. for (auto & slot : slots) {
  2359. if (slot.id_task == task.id_target) {
  2360. slot.release();
  2361. break;
  2362. }
  2363. }
  2364. } break;
  2365. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2366. {
  2367. // do nothing
  2368. } break;
  2369. case SERVER_TASK_TYPE_METRICS:
  2370. {
  2371. json slots_data = json::array();
  2372. int n_idle_slots = 0;
  2373. int n_processing_slots = 0;
  2374. for (server_slot & slot : slots) {
  2375. json slot_data = slot.to_json();
  2376. if (slot.is_processing()) {
  2377. n_processing_slots++;
  2378. } else {
  2379. n_idle_slots++;
  2380. }
  2381. slots_data.push_back(slot_data);
  2382. }
  2383. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2384. auto res = std::make_unique<server_task_result_metrics>();
  2385. res->id = task.id;
  2386. res->slots_data = std::move(slots_data);
  2387. res->n_idle_slots = n_idle_slots;
  2388. res->n_processing_slots = n_processing_slots;
  2389. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2390. res->t_start = metrics.t_start;
  2391. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2392. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2393. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2394. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2395. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2396. res->t_prompt_processing = metrics.t_prompt_processing;
  2397. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2398. res->t_tokens_generation = metrics.t_tokens_generation;
  2399. res->n_decode_total = metrics.n_decode_total;
  2400. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2401. if (task.metrics_reset_bucket) {
  2402. metrics.reset_bucket();
  2403. }
  2404. queue_results.send(std::move(res));
  2405. } break;
  2406. case SERVER_TASK_TYPE_SLOT_SAVE:
  2407. {
  2408. if (!ensure_no_mtmd(task.id)) {
  2409. break;
  2410. }
  2411. int id_slot = task.slot_action.slot_id;
  2412. server_slot * slot = get_slot_by_id(id_slot);
  2413. if (slot == nullptr) {
  2414. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2415. break;
  2416. }
  2417. if (slot->is_processing()) {
  2418. // if requested slot is unavailable, we defer this task for processing later
  2419. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2420. queue_tasks.defer(std::move(task));
  2421. break;
  2422. }
  2423. const size_t token_count = slot->cache_tokens.size();
  2424. const int64_t t_start = ggml_time_us();
  2425. std::string filename = task.slot_action.filename;
  2426. std::string filepath = task.slot_action.filepath;
  2427. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2428. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2429. const int64_t t_end = ggml_time_us();
  2430. const double t_save_ms = (t_end - t_start) / 1000.0;
  2431. auto res = std::make_unique<server_task_result_slot_save_load>();
  2432. res->id = task.id;
  2433. res->id_slot = id_slot;
  2434. res->filename = filename;
  2435. res->is_save = true;
  2436. res->n_tokens = token_count;
  2437. res->n_bytes = nwrite;
  2438. res->t_ms = t_save_ms;
  2439. queue_results.send(std::move(res));
  2440. } break;
  2441. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2442. {
  2443. if (!ensure_no_mtmd(task.id)) break;
  2444. int id_slot = task.slot_action.slot_id;
  2445. server_slot * slot = get_slot_by_id(id_slot);
  2446. if (slot == nullptr) {
  2447. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2448. break;
  2449. }
  2450. if (slot->is_processing()) {
  2451. // if requested slot is unavailable, we defer this task for processing later
  2452. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2453. queue_tasks.defer(std::move(task));
  2454. break;
  2455. }
  2456. const int64_t t_start = ggml_time_us();
  2457. std::string filename = task.slot_action.filename;
  2458. std::string filepath = task.slot_action.filepath;
  2459. llama_tokens tokens;
  2460. tokens.resize(slot->n_ctx);
  2461. size_t token_count = 0;
  2462. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2463. if (nread == 0) {
  2464. slot->cache_tokens.clear(); // KV may already been invalidated?
  2465. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2466. break;
  2467. }
  2468. tokens.resize(token_count);
  2469. slot->cache_tokens.clear();
  2470. slot->cache_tokens.insert(tokens);
  2471. const int64_t t_end = ggml_time_us();
  2472. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2473. auto res = std::make_unique<server_task_result_slot_save_load>();
  2474. res->id = task.id;
  2475. res->id_slot = id_slot;
  2476. res->filename = filename;
  2477. res->is_save = false;
  2478. res->n_tokens = token_count;
  2479. res->n_bytes = nread;
  2480. res->t_ms = t_restore_ms;
  2481. queue_results.send(std::move(res));
  2482. } break;
  2483. case SERVER_TASK_TYPE_SLOT_ERASE:
  2484. {
  2485. if (!ensure_no_mtmd(task.id)) break;
  2486. int id_slot = task.slot_action.slot_id;
  2487. server_slot * slot = get_slot_by_id(id_slot);
  2488. if (slot == nullptr) {
  2489. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2490. break;
  2491. }
  2492. if (slot->is_processing()) {
  2493. // if requested slot is unavailable, we defer this task for processing later
  2494. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2495. queue_tasks.defer(std::move(task));
  2496. break;
  2497. }
  2498. // Erase token cache
  2499. const size_t n_erased = slot->cache_tokens.size();
  2500. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2501. slot->cache_tokens.clear();
  2502. auto res = std::make_unique<server_task_result_slot_erase>();
  2503. res->id = task.id;
  2504. res->id_slot = id_slot;
  2505. res->n_erased = n_erased;
  2506. queue_results.send(std::move(res));
  2507. } break;
  2508. case SERVER_TASK_TYPE_SET_LORA:
  2509. {
  2510. params_base.lora_adapters = std::move(task.set_lora);
  2511. auto res = std::make_unique<server_task_result_apply_lora>();
  2512. res->id = task.id;
  2513. queue_results.send(std::move(res));
  2514. } break;
  2515. }
  2516. }
  2517. void update_slots() {
  2518. // check if all slots are idle
  2519. {
  2520. bool all_idle = true;
  2521. for (auto & slot : slots) {
  2522. if (slot.is_processing()) {
  2523. all_idle = false;
  2524. break;
  2525. }
  2526. }
  2527. if (all_idle) {
  2528. SRV_INF("%s", "all slots are idle\n");
  2529. if (clean_kv_cache) {
  2530. kv_cache_clear();
  2531. }
  2532. return;
  2533. }
  2534. }
  2535. {
  2536. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2537. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2538. task.id = queue_tasks.get_new_id();
  2539. queue_tasks.post(std::move(task));
  2540. }
  2541. // apply context-shift if needed
  2542. // TODO: simplify and improve
  2543. for (server_slot & slot : slots) {
  2544. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2545. if (!params_base.ctx_shift) {
  2546. // this check is redundant (for good)
  2547. // we should never get here, because generation should already stopped in process_token()
  2548. slot.release();
  2549. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2550. continue;
  2551. }
  2552. if (mctx) {
  2553. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2554. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2555. GGML_ABORT("not supported by multimodal");
  2556. }
  2557. // Shift context
  2558. const int n_keep = slot.params.n_keep + add_bos_token;
  2559. const int n_left = slot.n_past - n_keep;
  2560. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2561. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2562. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2563. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2564. // add generated tokens to cache
  2565. {
  2566. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2567. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2568. new_tokens[i - n_discard] = new_tokens[i];
  2569. }
  2570. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2571. slot.cache_tokens.clear();
  2572. slot.cache_tokens.insert(new_tokens);
  2573. }
  2574. slot.n_past -= n_discard;
  2575. slot.truncated = true;
  2576. }
  2577. }
  2578. // start populating the batch for this iteration
  2579. common_batch_clear(batch);
  2580. // track if given slot can be batched with slots already in the batch
  2581. server_slot * slot_batched = nullptr;
  2582. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2583. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2584. };
  2585. // frist, add sampled tokens from any ongoing sequences
  2586. for (auto & slot : slots) {
  2587. if (slot.state != SLOT_STATE_GENERATING) {
  2588. continue;
  2589. }
  2590. // check if we can batch this slot with the previous one
  2591. if (!slot_batched) {
  2592. slot_batched = &slot;
  2593. } else if (!slot_batched->can_batch_with(slot)) {
  2594. continue;
  2595. }
  2596. slot.i_batch = batch.n_tokens;
  2597. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2598. slot.n_past += 1;
  2599. slot.cache_tokens.push_back(slot.sampled);
  2600. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2601. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2602. }
  2603. // process in chunks of params.n_batch
  2604. int32_t n_batch = llama_n_batch(ctx);
  2605. int32_t n_ubatch = llama_n_ubatch(ctx);
  2606. // next, batch any pending prompts without exceeding n_batch
  2607. if (params_base.cont_batching || batch.n_tokens == 0) {
  2608. for (auto & slot : slots) {
  2609. // check if we can batch this slot with the previous one
  2610. if (slot.is_processing()) {
  2611. if (!slot_batched) {
  2612. slot_batched = &slot;
  2613. } else if (!slot_batched->can_batch_with(slot)) {
  2614. continue;
  2615. }
  2616. }
  2617. // this slot still has a prompt to be processed
  2618. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2619. auto & prompt_tokens = slot.prompt_tokens;
  2620. // TODO: maybe move branch to outside of this loop in the future
  2621. if (slot.state == SLOT_STATE_STARTED) {
  2622. slot.t_start_process_prompt = ggml_time_us();
  2623. slot.t_start_generation = 0;
  2624. slot.n_past = 0;
  2625. slot.n_prompt_tokens = prompt_tokens.size();
  2626. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2627. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2628. // print prompt tokens (for debugging)
  2629. /*if (1) {
  2630. // first 16 tokens (avoid flooding logs)
  2631. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2632. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2633. }
  2634. } else {
  2635. // all
  2636. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2637. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2638. }
  2639. }*/
  2640. // empty prompt passed -> release the slot and send empty response
  2641. if (prompt_tokens.empty()) {
  2642. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2643. slot.release();
  2644. slot.print_timings();
  2645. send_final_response(slot);
  2646. continue;
  2647. }
  2648. // TODO: support memory-less logits computation
  2649. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2650. slot.release();
  2651. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2652. continue;
  2653. }
  2654. if (!slot.can_split()) {
  2655. if (slot.n_prompt_tokens > n_ubatch) {
  2656. slot.release();
  2657. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2658. continue;
  2659. }
  2660. if (slot.n_prompt_tokens > slot.n_ctx) {
  2661. slot.release();
  2662. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2663. continue;
  2664. }
  2665. } else {
  2666. if (!params_base.ctx_shift) {
  2667. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2668. // TODO: there should be a separate parameter that control prompt truncation
  2669. // context shift should be applied only during the generation phase
  2670. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2671. slot.release();
  2672. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2673. continue;
  2674. }
  2675. }
  2676. if (slot.params.n_keep < 0) {
  2677. slot.params.n_keep = slot.n_prompt_tokens;
  2678. }
  2679. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2680. // if input prompt is too big, truncate it
  2681. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2682. if (mctx) {
  2683. // we should never reach this
  2684. GGML_ABORT("not supported by multimodal");
  2685. }
  2686. const int n_left = slot.n_ctx - slot.params.n_keep;
  2687. const int n_block_size = n_left / 2;
  2688. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2689. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2690. llama_tokens new_tokens(
  2691. curr_tokens.begin(),
  2692. curr_tokens.begin() + slot.params.n_keep);
  2693. new_tokens.insert(
  2694. new_tokens.end(),
  2695. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2696. curr_tokens.end());
  2697. prompt_tokens.clear();
  2698. prompt_tokens.insert(new_tokens);
  2699. slot.truncated = true;
  2700. slot.n_prompt_tokens = prompt_tokens.size();
  2701. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2702. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2703. }
  2704. if (slot.params.cache_prompt) {
  2705. // reuse any previously computed tokens that are common with the new prompt
  2706. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2707. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2708. if (params_base.n_cache_reuse > 0) {
  2709. size_t head_c = slot.n_past; // cache
  2710. size_t head_p = slot.n_past; // current prompt
  2711. if (mctx) {
  2712. // we should never reach this
  2713. GGML_ABORT("not supported by multimodal");
  2714. }
  2715. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2716. while (head_c < slot.cache_tokens.size() &&
  2717. head_p < prompt_tokens.size()) {
  2718. size_t n_match = 0;
  2719. while (head_c + n_match < slot.cache_tokens.size() &&
  2720. head_p + n_match < prompt_tokens.size() &&
  2721. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2722. n_match++;
  2723. }
  2724. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2725. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2726. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2727. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2728. //}
  2729. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2730. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2731. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2732. for (size_t i = 0; i < n_match; i++) {
  2733. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2734. slot.n_past++;
  2735. }
  2736. head_c += n_match;
  2737. head_p += n_match;
  2738. } else {
  2739. head_c += 1;
  2740. }
  2741. }
  2742. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2743. }
  2744. } else {
  2745. // if we don't cache the prompt, we have to remove the entire KV cache
  2746. slot.n_past = 0;
  2747. }
  2748. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2749. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2750. if (pos_min == -1) {
  2751. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2752. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2753. }
  2754. const auto n_swa = llama_model_n_swa(model);
  2755. if (pos_min > std::max(0, slot.n_past - n_swa)) {
  2756. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2757. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2758. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2759. slot.n_past = 0;
  2760. }
  2761. }
  2762. }
  2763. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2764. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2765. slot.n_past--;
  2766. }
  2767. slot.n_prompt_tokens_processed = 0;
  2768. }
  2769. if (!slot.can_split()) {
  2770. // cannot fit the prompt in the current batch - will try next iter
  2771. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2772. continue;
  2773. }
  2774. }
  2775. // keep only the common part
  2776. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2777. // could not partially delete (likely using a non-Transformer model)
  2778. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2779. // there is no common part left
  2780. slot.n_past = 0;
  2781. }
  2782. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2783. // remove the non-common part from the cache
  2784. slot.cache_tokens.keep_first(slot.n_past);
  2785. // check if we should process the image
  2786. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2787. // process the image
  2788. int32_t new_n_past;
  2789. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2790. int32_t n_pos = new_n_past - slot.n_past;
  2791. if (res != 0) {
  2792. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2793. slot.release();
  2794. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2795. continue;
  2796. }
  2797. // add the image chunk to cache
  2798. {
  2799. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2800. slot.cache_tokens.push_back(chunk.get()); // copy
  2801. }
  2802. slot.n_past += n_pos;
  2803. slot.n_prompt_tokens_processed += n_pos;
  2804. }
  2805. // add prompt tokens for processing in the current batch
  2806. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2807. // get next token to process
  2808. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2809. if (cur_tok == LLAMA_TOKEN_NULL) {
  2810. break; // end of text chunk
  2811. }
  2812. // embedding requires all tokens in the batch to be output
  2813. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2814. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2815. slot.cache_tokens.push_back(cur_tok);
  2816. slot.n_prompt_tokens_processed++;
  2817. slot.n_past++;
  2818. }
  2819. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2820. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2821. // entire prompt has been processed
  2822. if (slot.n_past == slot.n_prompt_tokens) {
  2823. slot.state = SLOT_STATE_DONE_PROMPT;
  2824. GGML_ASSERT(batch.n_tokens > 0);
  2825. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2826. common_sampler_reset(slot.smpl);
  2827. // Process all prompt tokens through sampler system
  2828. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2829. llama_token id = slot.prompt_tokens[i];
  2830. if (id != LLAMA_TOKEN_NULL) {
  2831. common_sampler_accept(slot.smpl, id, false);
  2832. }
  2833. }
  2834. // extract the logits only for the last token
  2835. batch.logits[batch.n_tokens - 1] = true;
  2836. slot.n_decoded = 0;
  2837. slot.i_batch = batch.n_tokens - 1;
  2838. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2839. }
  2840. }
  2841. if (batch.n_tokens >= n_batch) {
  2842. break;
  2843. }
  2844. }
  2845. }
  2846. if (batch.n_tokens == 0) {
  2847. SRV_WRN("%s", "no tokens to decode\n");
  2848. return;
  2849. }
  2850. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2851. if (slot_batched) {
  2852. // apply lora, only need to do it once per batch
  2853. common_set_adapter_lora(ctx, slot_batched->lora);
  2854. llama_set_embeddings(ctx, slot_batched->need_embd());
  2855. }
  2856. int32_t i_next = 0;
  2857. // process the created batch of tokens
  2858. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2859. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2860. llama_batch batch_view = {
  2861. n_tokens,
  2862. batch.token + i,
  2863. nullptr,
  2864. batch.pos + i,
  2865. batch.n_seq_id + i,
  2866. batch.seq_id + i,
  2867. batch.logits + i,
  2868. };
  2869. const int ret = llama_decode(ctx, batch_view);
  2870. metrics.on_decoded(slots);
  2871. if (ret != 0) {
  2872. {
  2873. std::string err;
  2874. if (n_batch == 1 && ret == 1) {
  2875. err = "Context size has been exceeded.";
  2876. }
  2877. if (ret == -1) {
  2878. err = "Invalid input batch.";
  2879. }
  2880. if (ret < -1) {
  2881. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2882. err = "Compute error.";
  2883. }
  2884. // TODO: handle ret == 2 (abort) when we start aborting
  2885. if (!err.empty()) {
  2886. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2887. for (auto & slot : slots) {
  2888. slot.release();
  2889. send_error(slot, err);
  2890. }
  2891. break;
  2892. }
  2893. }
  2894. // retry with half the batch size to try to find a free slot in the KV cache
  2895. n_batch /= 2;
  2896. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2897. continue; // continue loop of n_batch
  2898. }
  2899. // move the head of the batch forward with the number of tokens we just processed
  2900. i_next = i + n_tokens;
  2901. // on successful decode, restore the original batch size
  2902. n_batch = llama_n_batch(ctx);
  2903. for (auto & slot : slots) {
  2904. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2905. continue; // continue loop of slots
  2906. }
  2907. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2908. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2909. // prompt evaluated for embedding
  2910. send_embedding(slot, batch_view);
  2911. slot.release();
  2912. slot.i_batch = -1;
  2913. continue; // continue loop of slots
  2914. }
  2915. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2916. send_rerank(slot, batch_view);
  2917. slot.release();
  2918. slot.i_batch = -1;
  2919. continue; // continue loop of slots
  2920. }
  2921. // prompt evaluated for next-token prediction
  2922. slot.state = SLOT_STATE_GENERATING;
  2923. } else if (slot.state != SLOT_STATE_GENERATING) {
  2924. continue; // continue loop of slots
  2925. }
  2926. const int tok_idx = slot.i_batch - i;
  2927. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2928. slot.i_batch = -1;
  2929. common_sampler_accept(slot.smpl, id, true);
  2930. slot.n_decoded += 1;
  2931. const int64_t t_current = ggml_time_us();
  2932. if (slot.n_decoded == 1) {
  2933. slot.t_start_generation = t_current;
  2934. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2935. metrics.on_prompt_eval(slot);
  2936. }
  2937. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2938. completion_token_output result;
  2939. result.tok = id;
  2940. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2941. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2942. if (slot.params.sampling.n_probs > 0) {
  2943. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2944. }
  2945. if (!process_token(result, slot)) {
  2946. // release slot because of stop condition
  2947. slot.release();
  2948. slot.print_timings();
  2949. send_final_response(slot);
  2950. metrics.on_prediction(slot);
  2951. continue;
  2952. }
  2953. }
  2954. // do speculative decoding
  2955. for (auto & slot : slots) {
  2956. if (!slot.is_processing() || !slot.can_speculate()) {
  2957. continue;
  2958. }
  2959. if (slot.state != SLOT_STATE_GENERATING) {
  2960. continue;
  2961. }
  2962. if (mctx) {
  2963. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2964. GGML_ABORT("not supported by multimodal");
  2965. }
  2966. // determine the max draft that fits the current slot state
  2967. int n_draft_max = slot.params.speculative.n_max;
  2968. // note: n_past is not yet increased for the `id` token sampled above
  2969. // also, need to leave space for 1 extra token to allow context shifts
  2970. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2971. if (slot.n_remaining > 0) {
  2972. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2973. }
  2974. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2975. if (n_draft_max < slot.params.speculative.n_min) {
  2976. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2977. continue;
  2978. }
  2979. llama_token id = slot.sampled;
  2980. struct common_speculative_params params_spec;
  2981. params_spec.n_draft = n_draft_max;
  2982. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2983. params_spec.p_min = slot.params.speculative.p_min;
  2984. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2985. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2986. // ignore small drafts
  2987. if (slot.params.speculative.n_min > (int) draft.size()) {
  2988. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2989. continue;
  2990. }
  2991. // keep track of total number of drafted tokens tested
  2992. slot.n_draft_total += draft.size();
  2993. // construct the speculation batch
  2994. common_batch_clear(slot.batch_spec);
  2995. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2996. for (size_t i = 0; i < draft.size(); ++i) {
  2997. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2998. }
  2999. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3000. llama_decode(ctx, slot.batch_spec);
  3001. // the accepted tokens from the speculation
  3002. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3003. slot.n_past += ids.size();
  3004. slot.n_decoded += ids.size();
  3005. // update how many tokens out of those tested were accepted
  3006. slot.n_draft_accepted += ids.size() - 1;
  3007. slot.cache_tokens.push_back(id);
  3008. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3009. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3010. for (size_t i = 0; i < ids.size(); ++i) {
  3011. completion_token_output result;
  3012. result.tok = ids[i];
  3013. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3014. result.prob = 1.0f; // set later
  3015. // TODO: set result.probs
  3016. if (!process_token(result, slot)) {
  3017. // release slot because of stop condition
  3018. slot.release();
  3019. slot.print_timings();
  3020. send_final_response(slot);
  3021. metrics.on_prediction(slot);
  3022. break;
  3023. }
  3024. }
  3025. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3026. }
  3027. }
  3028. SRV_DBG("%s", "run slots completed\n");
  3029. }
  3030. json model_meta() const {
  3031. return json {
  3032. {"vocab_type", llama_vocab_type (vocab)},
  3033. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3034. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3035. {"n_embd", llama_model_n_embd (model)},
  3036. {"n_params", llama_model_n_params (model)},
  3037. {"size", llama_model_size (model)},
  3038. };
  3039. }
  3040. };
  3041. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3042. // skip GH copilot requests when using default port
  3043. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3044. return;
  3045. }
  3046. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3047. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3048. SRV_DBG("request: %s\n", req.body.c_str());
  3049. SRV_DBG("response: %s\n", res.body.c_str());
  3050. }
  3051. std::function<void(int)> shutdown_handler;
  3052. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3053. inline void signal_handler(int signal) {
  3054. if (is_terminating.test_and_set()) {
  3055. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3056. // this is for better developer experience, we can remove when the server is stable enough
  3057. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3058. exit(1);
  3059. }
  3060. shutdown_handler(signal);
  3061. }
  3062. int main(int argc, char ** argv) {
  3063. // own arguments required by this example
  3064. common_params params;
  3065. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3066. return 1;
  3067. }
  3068. common_init();
  3069. // struct that contains llama context and inference
  3070. server_context ctx_server;
  3071. llama_backend_init();
  3072. llama_numa_init(params.numa);
  3073. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3074. LOG_INF("\n");
  3075. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3076. LOG_INF("\n");
  3077. std::unique_ptr<httplib::Server> svr;
  3078. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3079. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3080. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3081. svr.reset(
  3082. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3083. );
  3084. } else {
  3085. LOG_INF("Running without SSL\n");
  3086. svr.reset(new httplib::Server());
  3087. }
  3088. #else
  3089. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3090. LOG_ERR("Server is built without SSL support\n");
  3091. return 1;
  3092. }
  3093. svr.reset(new httplib::Server());
  3094. #endif
  3095. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3096. svr->set_default_headers({{"Server", "llama.cpp"}});
  3097. svr->set_logger(log_server_request);
  3098. auto res_error = [](httplib::Response & res, const json & error_data) {
  3099. json final_response {{"error", error_data}};
  3100. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3101. res.status = json_value(error_data, "code", 500);
  3102. };
  3103. auto res_ok = [](httplib::Response & res, const json & data) {
  3104. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3105. res.status = 200;
  3106. };
  3107. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3108. std::string message;
  3109. try {
  3110. std::rethrow_exception(ep);
  3111. } catch (const std::exception & e) {
  3112. message = e.what();
  3113. } catch (...) {
  3114. message = "Unknown Exception";
  3115. }
  3116. try {
  3117. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3118. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3119. res_error(res, formatted_error);
  3120. } catch (const std::exception & e) {
  3121. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3122. }
  3123. });
  3124. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3125. if (res.status == 404) {
  3126. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3127. }
  3128. // for other error codes, we skip processing here because it's already done by res_error()
  3129. });
  3130. // set timeouts and change hostname and port
  3131. svr->set_read_timeout (params.timeout_read);
  3132. svr->set_write_timeout(params.timeout_write);
  3133. std::unordered_map<std::string, std::string> log_data;
  3134. log_data["hostname"] = params.hostname;
  3135. log_data["port"] = std::to_string(params.port);
  3136. if (params.api_keys.size() == 1) {
  3137. auto key = params.api_keys[0];
  3138. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3139. } else if (params.api_keys.size() > 1) {
  3140. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3141. }
  3142. // Necessary similarity of prompt for slot selection
  3143. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3144. //
  3145. // Middlewares
  3146. //
  3147. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3148. static const std::unordered_set<std::string> public_endpoints = {
  3149. "/health",
  3150. "/models",
  3151. "/v1/models",
  3152. "/api/tags"
  3153. };
  3154. // If API key is not set, skip validation
  3155. if (params.api_keys.empty()) {
  3156. return true;
  3157. }
  3158. // If path is public or is static file, skip validation
  3159. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3160. return true;
  3161. }
  3162. // Check for API key in the header
  3163. auto auth_header = req.get_header_value("Authorization");
  3164. std::string prefix = "Bearer ";
  3165. if (auth_header.substr(0, prefix.size()) == prefix) {
  3166. std::string received_api_key = auth_header.substr(prefix.size());
  3167. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3168. return true; // API key is valid
  3169. }
  3170. }
  3171. // API key is invalid or not provided
  3172. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3173. LOG_WRN("Unauthorized: Invalid API Key\n");
  3174. return false;
  3175. };
  3176. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3177. server_state current_state = state.load();
  3178. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3179. auto tmp = string_split<std::string>(req.path, '.');
  3180. if (req.path == "/" || tmp.back() == "html") {
  3181. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3182. res.status = 503;
  3183. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3184. // allow the models endpoint to be accessed during loading
  3185. return true;
  3186. } else {
  3187. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3188. }
  3189. return false;
  3190. }
  3191. return true;
  3192. };
  3193. // register server middlewares
  3194. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3195. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3196. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3197. if (req.method == "OPTIONS") {
  3198. res.set_header("Access-Control-Allow-Credentials", "true");
  3199. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3200. res.set_header("Access-Control-Allow-Headers", "*");
  3201. res.set_content("", "text/html"); // blank response, no data
  3202. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3203. }
  3204. if (!middleware_server_state(req, res)) {
  3205. return httplib::Server::HandlerResponse::Handled;
  3206. }
  3207. if (!middleware_validate_api_key(req, res)) {
  3208. return httplib::Server::HandlerResponse::Handled;
  3209. }
  3210. return httplib::Server::HandlerResponse::Unhandled;
  3211. });
  3212. //
  3213. // Route handlers (or controllers)
  3214. //
  3215. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3216. // error and loading states are handled by middleware
  3217. json health = {{"status", "ok"}};
  3218. res_ok(res, health);
  3219. };
  3220. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3221. if (!params.endpoint_slots) {
  3222. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3223. return;
  3224. }
  3225. // request slots data using task queue
  3226. int task_id = ctx_server.queue_tasks.get_new_id();
  3227. {
  3228. server_task task(SERVER_TASK_TYPE_METRICS);
  3229. task.id = task_id;
  3230. ctx_server.queue_results.add_waiting_task_id(task_id);
  3231. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3232. }
  3233. // get the result
  3234. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3235. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3236. if (result->is_error()) {
  3237. res_error(res, result->to_json());
  3238. return;
  3239. }
  3240. // TODO: get rid of this dynamic_cast
  3241. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3242. GGML_ASSERT(res_metrics != nullptr);
  3243. // optionally return "fail_on_no_slot" error
  3244. if (req.has_param("fail_on_no_slot")) {
  3245. if (res_metrics->n_idle_slots == 0) {
  3246. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3247. return;
  3248. }
  3249. }
  3250. res_ok(res, res_metrics->slots_data);
  3251. };
  3252. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3253. if (!params.endpoint_metrics) {
  3254. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3255. return;
  3256. }
  3257. // request slots data using task queue
  3258. int task_id = ctx_server.queue_tasks.get_new_id();
  3259. {
  3260. server_task task(SERVER_TASK_TYPE_METRICS);
  3261. task.id = task_id;
  3262. ctx_server.queue_results.add_waiting_task_id(task_id);
  3263. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3264. }
  3265. // get the result
  3266. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3267. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3268. if (result->is_error()) {
  3269. res_error(res, result->to_json());
  3270. return;
  3271. }
  3272. // TODO: get rid of this dynamic_cast
  3273. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3274. GGML_ASSERT(res_metrics != nullptr);
  3275. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3276. json all_metrics_def = json {
  3277. {"counter", {{
  3278. {"name", "prompt_tokens_total"},
  3279. {"help", "Number of prompt tokens processed."},
  3280. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3281. }, {
  3282. {"name", "prompt_seconds_total"},
  3283. {"help", "Prompt process time"},
  3284. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3285. }, {
  3286. {"name", "tokens_predicted_total"},
  3287. {"help", "Number of generation tokens processed."},
  3288. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3289. }, {
  3290. {"name", "tokens_predicted_seconds_total"},
  3291. {"help", "Predict process time"},
  3292. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3293. }, {
  3294. {"name", "n_decode_total"},
  3295. {"help", "Total number of llama_decode() calls"},
  3296. {"value", res_metrics->n_decode_total}
  3297. }, {
  3298. {"name", "n_busy_slots_per_decode"},
  3299. {"help", "Average number of busy slots per llama_decode() call"},
  3300. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3301. }}},
  3302. {"gauge", {{
  3303. {"name", "prompt_tokens_seconds"},
  3304. {"help", "Average prompt throughput in tokens/s."},
  3305. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3306. },{
  3307. {"name", "predicted_tokens_seconds"},
  3308. {"help", "Average generation throughput in tokens/s."},
  3309. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3310. },{
  3311. {"name", "requests_processing"},
  3312. {"help", "Number of requests processing."},
  3313. {"value", (uint64_t) res_metrics->n_processing_slots}
  3314. },{
  3315. {"name", "requests_deferred"},
  3316. {"help", "Number of requests deferred."},
  3317. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3318. }}}
  3319. };
  3320. std::stringstream prometheus;
  3321. for (const auto & el : all_metrics_def.items()) {
  3322. const auto & type = el.key();
  3323. const auto & metrics_def = el.value();
  3324. for (const auto & metric_def : metrics_def) {
  3325. const std::string name = metric_def.at("name");
  3326. const std::string help = metric_def.at("help");
  3327. auto value = json_value(metric_def, "value", 0.);
  3328. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3329. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3330. << "llamacpp:" << name << " " << value << "\n";
  3331. }
  3332. }
  3333. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3334. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3335. res.status = 200; // HTTP OK
  3336. };
  3337. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3338. json request_data = json::parse(req.body);
  3339. std::string filename = request_data.at("filename");
  3340. if (!fs_validate_filename(filename)) {
  3341. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3342. return;
  3343. }
  3344. std::string filepath = params.slot_save_path + filename;
  3345. int task_id = ctx_server.queue_tasks.get_new_id();
  3346. {
  3347. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3348. task.id = task_id;
  3349. task.slot_action.slot_id = id_slot;
  3350. task.slot_action.filename = filename;
  3351. task.slot_action.filepath = filepath;
  3352. ctx_server.queue_results.add_waiting_task_id(task_id);
  3353. ctx_server.queue_tasks.post(std::move(task));
  3354. }
  3355. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3356. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3357. if (result->is_error()) {
  3358. res_error(res, result->to_json());
  3359. return;
  3360. }
  3361. res_ok(res, result->to_json());
  3362. };
  3363. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3364. json request_data = json::parse(req.body);
  3365. std::string filename = request_data.at("filename");
  3366. if (!fs_validate_filename(filename)) {
  3367. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3368. return;
  3369. }
  3370. std::string filepath = params.slot_save_path + filename;
  3371. int task_id = ctx_server.queue_tasks.get_new_id();
  3372. {
  3373. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3374. task.id = task_id;
  3375. task.slot_action.slot_id = id_slot;
  3376. task.slot_action.filename = filename;
  3377. task.slot_action.filepath = filepath;
  3378. ctx_server.queue_results.add_waiting_task_id(task_id);
  3379. ctx_server.queue_tasks.post(std::move(task));
  3380. }
  3381. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3382. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3383. if (result->is_error()) {
  3384. res_error(res, result->to_json());
  3385. return;
  3386. }
  3387. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3388. res_ok(res, result->to_json());
  3389. };
  3390. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3391. int task_id = ctx_server.queue_tasks.get_new_id();
  3392. {
  3393. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3394. task.id = task_id;
  3395. task.slot_action.slot_id = id_slot;
  3396. ctx_server.queue_results.add_waiting_task_id(task_id);
  3397. ctx_server.queue_tasks.post(std::move(task));
  3398. }
  3399. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3400. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3401. if (result->is_error()) {
  3402. res_error(res, result->to_json());
  3403. return;
  3404. }
  3405. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3406. res_ok(res, result->to_json());
  3407. };
  3408. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3409. if (params.slot_save_path.empty()) {
  3410. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3411. return;
  3412. }
  3413. std::string id_slot_str = req.path_params.at("id_slot");
  3414. int id_slot;
  3415. try {
  3416. id_slot = std::stoi(id_slot_str);
  3417. } catch (const std::exception &) {
  3418. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3419. return;
  3420. }
  3421. std::string action = req.get_param_value("action");
  3422. if (action == "save") {
  3423. handle_slots_save(req, res, id_slot);
  3424. } else if (action == "restore") {
  3425. handle_slots_restore(req, res, id_slot);
  3426. } else if (action == "erase") {
  3427. handle_slots_erase(req, res, id_slot);
  3428. } else {
  3429. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3430. }
  3431. };
  3432. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3433. // this endpoint is publicly available, please only return what is safe to be exposed
  3434. json data = {
  3435. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3436. { "total_slots", ctx_server.params_base.n_parallel },
  3437. { "model_path", ctx_server.params_base.model.path },
  3438. { "modalities", json{
  3439. {"vision", ctx_server.oai_parser_opt.allow_image},
  3440. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3441. } },
  3442. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3443. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3444. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3445. { "build_info", build_info },
  3446. };
  3447. if (ctx_server.params_base.use_jinja) {
  3448. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3449. data["chat_template_tool_use"] = tool_use_src;
  3450. }
  3451. }
  3452. res_ok(res, data);
  3453. };
  3454. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3455. if (!ctx_server.params_base.endpoint_props) {
  3456. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3457. return;
  3458. }
  3459. json data = json::parse(req.body);
  3460. // update any props here
  3461. res_ok(res, {{ "success", true }});
  3462. };
  3463. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3464. json data = {
  3465. {
  3466. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3467. },
  3468. {
  3469. "model_info", {
  3470. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3471. }
  3472. },
  3473. {"modelfile", ""},
  3474. {"parameters", ""},
  3475. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3476. {"details", {
  3477. {"parent_model", ""},
  3478. {"format", "gguf"},
  3479. {"family", ""},
  3480. {"families", {""}},
  3481. {"parameter_size", ""},
  3482. {"quantization_level", ""}
  3483. }},
  3484. {"model_info", ""},
  3485. {"capabilities", {"completion"}}
  3486. };
  3487. res_ok(res, data);
  3488. };
  3489. // handle completion-like requests (completion, chat, infill)
  3490. // we can optionally provide a custom format for partial results and final results
  3491. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3492. server_task_type type,
  3493. json & data,
  3494. const std::vector<raw_buffer> & files,
  3495. const std::function<bool()> & is_connection_closed,
  3496. httplib::Response & res,
  3497. oaicompat_type oaicompat) -> void {
  3498. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3499. auto completion_id = gen_chatcmplid();
  3500. std::unordered_set<int> task_ids;
  3501. try {
  3502. std::vector<server_task> tasks;
  3503. const auto & prompt = data.at("prompt");
  3504. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3505. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3506. // process files
  3507. mtmd::bitmaps bitmaps;
  3508. const bool has_mtmd = ctx_server.mctx != nullptr;
  3509. {
  3510. if (!has_mtmd && !files.empty()) {
  3511. throw std::runtime_error("This server does not support multimodal");
  3512. }
  3513. for (auto & file : files) {
  3514. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3515. if (!bmp.ptr) {
  3516. throw std::runtime_error("Failed to load image or audio file");
  3517. }
  3518. // calculate bitmap hash (for KV caching)
  3519. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3520. bmp.set_id(hash.c_str());
  3521. bitmaps.entries.push_back(std::move(bmp));
  3522. }
  3523. }
  3524. // process prompt
  3525. std::vector<server_tokens> inputs;
  3526. if (oaicompat && has_mtmd) {
  3527. // multimodal
  3528. std::string prompt_str = prompt.get<std::string>();
  3529. mtmd_input_text inp_txt = {
  3530. prompt_str.c_str(),
  3531. /* add_special */ true,
  3532. /* parse_special */ true,
  3533. };
  3534. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3535. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3536. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3537. chunks.ptr.get(),
  3538. &inp_txt,
  3539. bitmaps_c_ptr.data(),
  3540. bitmaps_c_ptr.size());
  3541. if (tokenized != 0) {
  3542. throw std::runtime_error("Failed to tokenize prompt");
  3543. }
  3544. server_tokens tmp(chunks, true);
  3545. inputs.push_back(std::move(tmp));
  3546. } else {
  3547. // non-multimodal version
  3548. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3549. for (auto & p : tokenized_prompts) {
  3550. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3551. inputs.push_back(std::move(tmp));
  3552. }
  3553. }
  3554. tasks.reserve(inputs.size());
  3555. for (size_t i = 0; i < inputs.size(); i++) {
  3556. server_task task = server_task(type);
  3557. task.id = ctx_server.queue_tasks.get_new_id();
  3558. task.index = i;
  3559. task.prompt_tokens = std::move(inputs[i]);
  3560. task.params = server_task::params_from_json_cmpl(
  3561. ctx_server.ctx,
  3562. ctx_server.params_base,
  3563. data);
  3564. task.id_selected_slot = json_value(data, "id_slot", -1);
  3565. // OAI-compat
  3566. task.params.oaicompat = oaicompat;
  3567. task.params.oaicompat_cmpl_id = completion_id;
  3568. // oaicompat_model is already populated by params_from_json_cmpl
  3569. tasks.push_back(std::move(task));
  3570. }
  3571. task_ids = server_task::get_list_id(tasks);
  3572. ctx_server.queue_results.add_waiting_tasks(tasks);
  3573. ctx_server.queue_tasks.post(std::move(tasks));
  3574. } catch (const std::exception & e) {
  3575. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3576. return;
  3577. }
  3578. bool stream = json_value(data, "stream", false);
  3579. if (!stream) {
  3580. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3581. if (results.size() == 1) {
  3582. // single result
  3583. res_ok(res, results[0]->to_json());
  3584. } else {
  3585. // multiple results (multitask)
  3586. json arr = json::array();
  3587. for (auto & res : results) {
  3588. arr.push_back(res->to_json());
  3589. }
  3590. res_ok(res, arr);
  3591. }
  3592. }, [&](const json & error_data) {
  3593. res_error(res, error_data);
  3594. }, is_connection_closed);
  3595. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3596. } else {
  3597. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3598. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3599. json res_json = result->to_json();
  3600. if (res_json.is_array()) {
  3601. for (const auto & res : res_json) {
  3602. if (!server_sent_event(sink, "data", res)) {
  3603. // sending failed (HTTP connection closed), cancel the generation
  3604. return false;
  3605. }
  3606. }
  3607. return true;
  3608. } else {
  3609. return server_sent_event(sink, "data", res_json);
  3610. }
  3611. }, [&](const json & error_data) {
  3612. server_sent_event(sink, "error", error_data);
  3613. }, [&sink]() {
  3614. // note: do not use req.is_connection_closed here because req is already destroyed
  3615. return !sink.is_writable();
  3616. });
  3617. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3618. static const std::string ev_done = "data: [DONE]\n\n";
  3619. sink.write(ev_done.data(), ev_done.size());
  3620. }
  3621. sink.done();
  3622. return false;
  3623. };
  3624. auto on_complete = [task_ids, &ctx_server] (bool) {
  3625. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3626. };
  3627. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3628. }
  3629. };
  3630. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3631. json data = json::parse(req.body);
  3632. std::vector<raw_buffer> files; // dummy
  3633. handle_completions_impl(
  3634. SERVER_TASK_TYPE_COMPLETION,
  3635. data,
  3636. files,
  3637. req.is_connection_closed,
  3638. res,
  3639. OAICOMPAT_TYPE_NONE);
  3640. };
  3641. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3642. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3643. std::vector<raw_buffer> files; // dummy
  3644. handle_completions_impl(
  3645. SERVER_TASK_TYPE_COMPLETION,
  3646. data,
  3647. files,
  3648. req.is_connection_closed,
  3649. res,
  3650. OAICOMPAT_TYPE_COMPLETION);
  3651. };
  3652. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3653. // check model compatibility
  3654. std::string err;
  3655. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3656. err += "prefix token is missing. ";
  3657. }
  3658. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3659. err += "suffix token is missing. ";
  3660. }
  3661. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3662. err += "middle token is missing. ";
  3663. }
  3664. if (!err.empty()) {
  3665. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3666. return;
  3667. }
  3668. json data = json::parse(req.body);
  3669. // validate input
  3670. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3671. // prompt is optional
  3672. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3673. }
  3674. if (!data.contains("input_prefix")) {
  3675. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3676. }
  3677. if (!data.contains("input_suffix")) {
  3678. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3679. }
  3680. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3681. // input_extra is optional
  3682. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3683. return;
  3684. }
  3685. json input_extra = json_value(data, "input_extra", json::array());
  3686. for (const auto & chunk : input_extra) {
  3687. // { "text": string, "filename": string }
  3688. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3689. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3690. return;
  3691. }
  3692. // filename is optional
  3693. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3694. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3695. return;
  3696. }
  3697. }
  3698. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3699. std::string prompt = json_value(data, "prompt", std::string());
  3700. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3701. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3702. data["prompt"] = format_infill(
  3703. ctx_server.vocab,
  3704. data.at("input_prefix"),
  3705. data.at("input_suffix"),
  3706. data.at("input_extra"),
  3707. ctx_server.params_base.n_batch,
  3708. ctx_server.params_base.n_predict,
  3709. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3710. ctx_server.params_base.spm_infill,
  3711. tokenized_prompts[0]
  3712. );
  3713. std::vector<raw_buffer> files; // dummy
  3714. handle_completions_impl(
  3715. SERVER_TASK_TYPE_INFILL,
  3716. data,
  3717. files,
  3718. req.is_connection_closed,
  3719. res,
  3720. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3721. };
  3722. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3723. LOG_DBG("request: %s\n", req.body.c_str());
  3724. auto body = json::parse(req.body);
  3725. std::vector<raw_buffer> files;
  3726. json data = oaicompat_chat_params_parse(
  3727. body,
  3728. ctx_server.oai_parser_opt,
  3729. files);
  3730. handle_completions_impl(
  3731. SERVER_TASK_TYPE_COMPLETION,
  3732. data,
  3733. files,
  3734. req.is_connection_closed,
  3735. res,
  3736. OAICOMPAT_TYPE_CHAT);
  3737. };
  3738. // same with handle_chat_completions, but without inference part
  3739. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3740. auto body = json::parse(req.body);
  3741. std::vector<raw_buffer> files; // dummy, unused
  3742. json data = oaicompat_chat_params_parse(
  3743. body,
  3744. ctx_server.oai_parser_opt,
  3745. files);
  3746. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3747. };
  3748. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3749. server_state current_state = state.load();
  3750. json model_meta = nullptr;
  3751. if (current_state == SERVER_STATE_READY) {
  3752. model_meta = ctx_server.model_meta();
  3753. }
  3754. json models = {
  3755. {"models", {
  3756. {
  3757. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3758. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3759. {"modified_at", ""},
  3760. {"size", ""},
  3761. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3762. {"type", "model"},
  3763. {"description", ""},
  3764. {"tags", {""}},
  3765. {"capabilities", {"completion"}},
  3766. {"parameters", ""},
  3767. {"details", {
  3768. {"parent_model", ""},
  3769. {"format", "gguf"},
  3770. {"family", ""},
  3771. {"families", {""}},
  3772. {"parameter_size", ""},
  3773. {"quantization_level", ""}
  3774. }}
  3775. }
  3776. }},
  3777. {"object", "list"},
  3778. {"data", {
  3779. {
  3780. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3781. {"object", "model"},
  3782. {"created", std::time(0)},
  3783. {"owned_by", "llamacpp"},
  3784. {"meta", model_meta},
  3785. },
  3786. }}
  3787. };
  3788. res_ok(res, models);
  3789. };
  3790. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3791. const json body = json::parse(req.body);
  3792. json tokens_response = json::array();
  3793. if (body.count("content") != 0) {
  3794. const bool add_special = json_value(body, "add_special", false);
  3795. const bool parse_special = json_value(body, "parse_special", true);
  3796. const bool with_pieces = json_value(body, "with_pieces", false);
  3797. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3798. if (with_pieces) {
  3799. for (const auto& token : tokens) {
  3800. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3801. json piece_json;
  3802. // Check if the piece is valid UTF-8
  3803. if (is_valid_utf8(piece)) {
  3804. piece_json = piece;
  3805. } else {
  3806. // If not valid UTF-8, store as array of byte values
  3807. piece_json = json::array();
  3808. for (unsigned char c : piece) {
  3809. piece_json.push_back(static_cast<int>(c));
  3810. }
  3811. }
  3812. tokens_response.push_back({
  3813. {"id", token},
  3814. {"piece", piece_json}
  3815. });
  3816. }
  3817. } else {
  3818. tokens_response = tokens;
  3819. }
  3820. }
  3821. const json data = format_tokenizer_response(tokens_response);
  3822. res_ok(res, data);
  3823. };
  3824. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3825. const json body = json::parse(req.body);
  3826. std::string content;
  3827. if (body.count("tokens") != 0) {
  3828. const llama_tokens tokens = body.at("tokens");
  3829. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3830. }
  3831. const json data = format_detokenized_response(content);
  3832. res_ok(res, data);
  3833. };
  3834. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3835. if (!ctx_server.params_base.embedding) {
  3836. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3837. return;
  3838. }
  3839. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3840. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3841. return;
  3842. }
  3843. const json body = json::parse(req.body);
  3844. // for the shape of input/content, see tokenize_input_prompts()
  3845. json prompt;
  3846. if (body.count("input") != 0) {
  3847. prompt = body.at("input");
  3848. } else if (body.contains("content")) {
  3849. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3850. prompt = body.at("content");
  3851. } else {
  3852. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3853. return;
  3854. }
  3855. bool use_base64 = false;
  3856. if (body.count("encoding_format") != 0) {
  3857. const std::string& format = body.at("encoding_format");
  3858. if (format == "base64") {
  3859. use_base64 = true;
  3860. } else if (format != "float") {
  3861. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3862. return;
  3863. }
  3864. }
  3865. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3866. for (const auto & tokens : tokenized_prompts) {
  3867. // this check is necessary for models that do not add BOS token to the input
  3868. if (tokens.empty()) {
  3869. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3870. return;
  3871. }
  3872. }
  3873. int embd_normalize = 2; // default to Euclidean/L2 norm
  3874. if (body.count("embd_normalize") != 0) {
  3875. embd_normalize = body.at("embd_normalize");
  3876. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3877. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  3878. }
  3879. }
  3880. // create and queue the task
  3881. json responses = json::array();
  3882. bool error = false;
  3883. std::unordered_set<int> task_ids;
  3884. {
  3885. std::vector<server_task> tasks;
  3886. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3887. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3888. task.id = ctx_server.queue_tasks.get_new_id();
  3889. task.index = i;
  3890. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3891. // OAI-compat
  3892. task.params.oaicompat = oaicompat;
  3893. task.params.embd_normalize = embd_normalize;
  3894. tasks.push_back(std::move(task));
  3895. }
  3896. task_ids = server_task::get_list_id(tasks);
  3897. ctx_server.queue_results.add_waiting_tasks(tasks);
  3898. ctx_server.queue_tasks.post(std::move(tasks));
  3899. }
  3900. // get the result
  3901. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3902. for (auto & res : results) {
  3903. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3904. responses.push_back(res->to_json());
  3905. }
  3906. }, [&](const json & error_data) {
  3907. res_error(res, error_data);
  3908. error = true;
  3909. }, req.is_connection_closed);
  3910. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3911. if (error) {
  3912. return;
  3913. }
  3914. // write JSON response
  3915. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3916. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3917. : json(responses);
  3918. res_ok(res, root);
  3919. };
  3920. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3921. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3922. };
  3923. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3924. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3925. };
  3926. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3927. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  3928. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  3929. return;
  3930. }
  3931. const json body = json::parse(req.body);
  3932. // TODO: implement
  3933. //int top_n = 1;
  3934. //if (body.count("top_n") != 1) {
  3935. // top_n = body.at("top_n");
  3936. //} else {
  3937. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3938. // return;
  3939. //}
  3940. // if true, use TEI API format, otherwise use Jina API format
  3941. // Jina: https://jina.ai/reranker/
  3942. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3943. bool is_tei_format = body.contains("texts");
  3944. json query;
  3945. if (body.count("query") == 1) {
  3946. query = body.at("query");
  3947. if (!query.is_string()) {
  3948. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3949. return;
  3950. }
  3951. } else {
  3952. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3953. return;
  3954. }
  3955. std::vector<std::string> documents = json_value(body, "documents",
  3956. json_value(body, "texts", std::vector<std::string>()));
  3957. if (documents.empty()) {
  3958. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3959. return;
  3960. }
  3961. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3962. // create and queue the task
  3963. json responses = json::array();
  3964. bool error = false;
  3965. std::unordered_set<int> task_ids;
  3966. {
  3967. std::vector<server_task> tasks;
  3968. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3969. tasks.reserve(tokenized_docs.size());
  3970. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3971. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3972. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3973. task.id = ctx_server.queue_tasks.get_new_id();
  3974. task.index = i;
  3975. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3976. tasks.push_back(std::move(task));
  3977. }
  3978. task_ids = server_task::get_list_id(tasks);
  3979. ctx_server.queue_results.add_waiting_tasks(tasks);
  3980. ctx_server.queue_tasks.post(std::move(tasks));
  3981. }
  3982. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3983. for (auto & res : results) {
  3984. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3985. responses.push_back(res->to_json());
  3986. }
  3987. }, [&](const json & error_data) {
  3988. res_error(res, error_data);
  3989. error = true;
  3990. }, req.is_connection_closed);
  3991. if (error) {
  3992. return;
  3993. }
  3994. // write JSON response
  3995. json root = format_response_rerank(
  3996. body,
  3997. responses,
  3998. is_tei_format,
  3999. documents);
  4000. res_ok(res, root);
  4001. };
  4002. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4003. json result = json::array();
  4004. const auto & loras = ctx_server.params_base.lora_adapters;
  4005. for (size_t i = 0; i < loras.size(); ++i) {
  4006. auto & lora = loras[i];
  4007. result.push_back({
  4008. {"id", i},
  4009. {"path", lora.path},
  4010. {"scale", lora.scale},
  4011. });
  4012. }
  4013. res_ok(res, result);
  4014. res.status = 200; // HTTP OK
  4015. };
  4016. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4017. const json body = json::parse(req.body);
  4018. if (!body.is_array()) {
  4019. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4020. return;
  4021. }
  4022. int task_id = ctx_server.queue_tasks.get_new_id();
  4023. {
  4024. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4025. task.id = task_id;
  4026. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4027. ctx_server.queue_results.add_waiting_task_id(task_id);
  4028. ctx_server.queue_tasks.post(std::move(task));
  4029. }
  4030. // get the result
  4031. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4032. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4033. if (result->is_error()) {
  4034. res_error(res, result->to_json());
  4035. return;
  4036. }
  4037. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4038. res_ok(res, result->to_json());
  4039. };
  4040. //
  4041. // Router
  4042. //
  4043. if (!params.webui) {
  4044. LOG_INF("Web UI is disabled\n");
  4045. } else {
  4046. // register static assets routes
  4047. if (!params.public_path.empty()) {
  4048. // Set the base directory for serving static files
  4049. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4050. if (!is_found) {
  4051. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4052. return 1;
  4053. }
  4054. } else {
  4055. // using embedded static index.html
  4056. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4057. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4058. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4059. } else {
  4060. res.set_header("Content-Encoding", "gzip");
  4061. // COEP and COOP headers, required by pyodide (python interpreter)
  4062. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4063. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4064. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4065. }
  4066. return false;
  4067. });
  4068. }
  4069. }
  4070. // register API routes
  4071. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4072. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4073. svr->Get (params.api_prefix + "/props", handle_props);
  4074. svr->Post(params.api_prefix + "/props", handle_props_change);
  4075. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4076. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4077. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4078. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4079. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4080. svr->Post(params.api_prefix + "/completions", handle_completions);
  4081. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4082. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4083. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4084. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4085. svr->Post(params.api_prefix + "/infill", handle_infill);
  4086. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4087. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4088. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4089. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4090. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4091. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4092. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4093. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4094. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4095. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4096. // LoRA adapters hotswap
  4097. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4098. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4099. // Save & load slots
  4100. svr->Get (params.api_prefix + "/slots", handle_slots);
  4101. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4102. //
  4103. // Start the server
  4104. //
  4105. if (params.n_threads_http < 1) {
  4106. // +2 threads for monitoring endpoints
  4107. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4108. }
  4109. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4110. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4111. // clean up function, to be called before exit
  4112. auto clean_up = [&svr, &ctx_server]() {
  4113. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4114. svr->stop();
  4115. ctx_server.queue_results.terminate();
  4116. llama_backend_free();
  4117. };
  4118. bool was_bound = false;
  4119. bool is_sock = false;
  4120. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4121. is_sock = true;
  4122. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4123. svr->set_address_family(AF_UNIX);
  4124. // bind_to_port requires a second arg, any value other than 0 should
  4125. // simply get ignored
  4126. was_bound = svr->bind_to_port(params.hostname, 8080);
  4127. } else {
  4128. LOG_INF("%s: binding port with default address family\n", __func__);
  4129. // bind HTTP listen port
  4130. if (params.port == 0) {
  4131. int bound_port = svr->bind_to_any_port(params.hostname);
  4132. if ((was_bound = (bound_port >= 0))) {
  4133. params.port = bound_port;
  4134. }
  4135. } else {
  4136. was_bound = svr->bind_to_port(params.hostname, params.port);
  4137. }
  4138. }
  4139. if (!was_bound) {
  4140. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4141. clean_up();
  4142. return 1;
  4143. }
  4144. // run the HTTP server in a thread
  4145. std::thread t([&]() { svr->listen_after_bind(); });
  4146. svr->wait_until_ready();
  4147. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4148. // load the model
  4149. LOG_INF("%s: loading model\n", __func__);
  4150. if (!ctx_server.load_model(params)) {
  4151. clean_up();
  4152. t.join();
  4153. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4154. return 1;
  4155. }
  4156. ctx_server.init();
  4157. state.store(SERVER_STATE_READY);
  4158. LOG_INF("%s: model loaded\n", __func__);
  4159. // print sample chat example to make it clear which template is used
  4160. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4161. common_chat_templates_source(ctx_server.chat_templates.get()),
  4162. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4163. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4164. ctx_server.process_single_task(std::move(task));
  4165. });
  4166. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4167. ctx_server.update_slots();
  4168. });
  4169. shutdown_handler = [&](int) {
  4170. // this will unblock start_loop()
  4171. ctx_server.queue_tasks.terminate();
  4172. };
  4173. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4174. struct sigaction sigint_action;
  4175. sigint_action.sa_handler = signal_handler;
  4176. sigemptyset (&sigint_action.sa_mask);
  4177. sigint_action.sa_flags = 0;
  4178. sigaction(SIGINT, &sigint_action, NULL);
  4179. sigaction(SIGTERM, &sigint_action, NULL);
  4180. #elif defined (_WIN32)
  4181. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4182. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4183. };
  4184. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4185. #endif
  4186. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4187. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4188. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4189. // this call blocks the main thread until queue_tasks.terminate() is called
  4190. ctx_server.queue_tasks.start_loop();
  4191. clean_up();
  4192. t.join();
  4193. return 0;
  4194. }