server.cpp 195 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_syntax oaicompat_chat_syntax;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. auto grammar_triggers = json::array();
  113. for (const auto & trigger : sampling.grammar_triggers) {
  114. server_grammar_trigger ct(std::move(trigger));
  115. grammar_triggers.push_back(ct.to_json());
  116. }
  117. return json {
  118. {"n_predict", n_predict}, // Server configured n_predict
  119. {"seed", sampling.seed},
  120. {"temperature", sampling.temp},
  121. {"dynatemp_range", sampling.dynatemp_range},
  122. {"dynatemp_exponent", sampling.dynatemp_exponent},
  123. {"top_k", sampling.top_k},
  124. {"top_p", sampling.top_p},
  125. {"min_p", sampling.min_p},
  126. {"top_n_sigma", sampling.top_n_sigma},
  127. {"xtc_probability", sampling.xtc_probability},
  128. {"xtc_threshold", sampling.xtc_threshold},
  129. {"typical_p", sampling.typ_p},
  130. {"repeat_last_n", sampling.penalty_last_n},
  131. {"repeat_penalty", sampling.penalty_repeat},
  132. {"presence_penalty", sampling.penalty_present},
  133. {"frequency_penalty", sampling.penalty_freq},
  134. {"dry_multiplier", sampling.dry_multiplier},
  135. {"dry_base", sampling.dry_base},
  136. {"dry_allowed_length", sampling.dry_allowed_length},
  137. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  138. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  139. {"mirostat", sampling.mirostat},
  140. {"mirostat_tau", sampling.mirostat_tau},
  141. {"mirostat_eta", sampling.mirostat_eta},
  142. {"stop", antiprompt},
  143. {"max_tokens", n_predict}, // User configured n_predict
  144. {"n_keep", n_keep},
  145. {"n_discard", n_discard},
  146. {"ignore_eos", sampling.ignore_eos},
  147. {"stream", stream},
  148. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  149. {"n_probs", sampling.n_probs},
  150. {"min_keep", sampling.min_keep},
  151. {"grammar", sampling.grammar},
  152. {"grammar_lazy", sampling.grammar_lazy},
  153. {"grammar_triggers", grammar_triggers},
  154. {"preserved_tokens", sampling.preserved_tokens},
  155. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  156. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  157. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  158. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  159. {"samplers", samplers},
  160. {"speculative.n_max", speculative.n_max},
  161. {"speculative.n_min", speculative.n_min},
  162. {"speculative.p_min", speculative.p_min},
  163. {"timings_per_token", timings_per_token},
  164. {"post_sampling_probs", post_sampling_probs},
  165. {"lora", lora},
  166. };
  167. }
  168. };
  169. struct server_task {
  170. int id = -1; // to be filled by server_queue
  171. int index = -1; // used when there are multiple prompts (batch request)
  172. server_task_type type;
  173. // used by SERVER_TASK_TYPE_CANCEL
  174. int id_target = -1;
  175. // used by SERVER_TASK_TYPE_INFERENCE
  176. slot_params params;
  177. server_tokens prompt_tokens;
  178. int id_selected_slot = -1;
  179. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  180. struct slot_action {
  181. int slot_id;
  182. std::string filename;
  183. std::string filepath;
  184. };
  185. slot_action slot_action;
  186. // used by SERVER_TASK_TYPE_METRICS
  187. bool metrics_reset_bucket = false;
  188. // used by SERVER_TASK_TYPE_SET_LORA
  189. std::vector<common_adapter_lora_info> set_lora;
  190. server_task(server_task_type type) : type(type) {}
  191. static slot_params params_from_json_cmpl(
  192. const llama_context * ctx,
  193. const common_params & params_base,
  194. const json & data) {
  195. const llama_model * model = llama_get_model(ctx);
  196. const llama_vocab * vocab = llama_model_get_vocab(model);
  197. slot_params params;
  198. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  199. slot_params defaults;
  200. defaults.sampling = params_base.sampling;
  201. defaults.speculative = params_base.speculative;
  202. // enabling this will output extra debug information in the HTTP responses from the server
  203. params.verbose = params_base.verbosity > 9;
  204. params.timings_per_token = json_value(data, "timings_per_token", false);
  205. params.stream = json_value(data, "stream", false);
  206. params.cache_prompt = json_value(data, "cache_prompt", true);
  207. params.return_tokens = json_value(data, "return_tokens", false);
  208. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  209. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  210. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  211. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  212. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  213. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  214. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  215. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  216. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  217. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  218. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  219. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  220. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  221. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  222. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  223. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  224. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  225. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  226. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  227. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  228. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  229. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  230. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  231. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  232. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  233. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  234. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  235. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  236. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  237. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  238. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  239. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  240. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  241. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  242. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  243. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  244. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  245. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  246. // Use OpenAI API logprobs only if n_probs wasn't provided
  247. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  248. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  249. }
  250. if (data.contains("lora")) {
  251. if (data.at("lora").is_array()) {
  252. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  253. } else {
  254. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  255. }
  256. } else {
  257. params.lora = params_base.lora_adapters;
  258. }
  259. // TODO: add more sanity checks for the input parameters
  260. if (params.sampling.penalty_last_n < -1) {
  261. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  262. }
  263. if (params.sampling.dry_penalty_last_n < -1) {
  264. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  265. }
  266. if (params.sampling.penalty_last_n == -1) {
  267. // note: should be the slot's context and not the full context, but it's ok
  268. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  269. }
  270. if (params.sampling.dry_penalty_last_n == -1) {
  271. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  272. }
  273. if (params.sampling.dry_base < 1.0f) {
  274. params.sampling.dry_base = defaults.sampling.dry_base;
  275. }
  276. // sequence breakers for DRY
  277. {
  278. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  279. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  280. if (data.contains("dry_sequence_breakers")) {
  281. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  282. if (params.sampling.dry_sequence_breakers.empty()) {
  283. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  284. }
  285. }
  286. }
  287. // process "json_schema" and "grammar"
  288. if (data.contains("json_schema") && !data.contains("grammar")) {
  289. try {
  290. auto schema = json_value(data, "json_schema", json::object());
  291. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  292. params.sampling.grammar = json_schema_to_grammar(schema);
  293. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  294. } catch (const std::exception & e) {
  295. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  296. }
  297. } else {
  298. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  299. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  300. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  301. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  302. }
  303. {
  304. auto it = data.find("chat_format");
  305. if (it != data.end()) {
  306. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  307. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  308. } else {
  309. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  310. }
  311. params.oaicompat_chat_syntax.reasoning_format = params_base.reasoning_format;
  312. params.oaicompat_chat_syntax.reasoning_in_content = params.stream;
  313. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  314. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  315. }
  316. {
  317. const auto preserved_tokens = data.find("preserved_tokens");
  318. if (preserved_tokens != data.end()) {
  319. for (const auto & t : *preserved_tokens) {
  320. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  321. if (ids.size() == 1) {
  322. SRV_DBG("Preserved token: %d\n", ids[0]);
  323. params.sampling.preserved_tokens.insert(ids[0]);
  324. } else {
  325. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  326. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  327. }
  328. }
  329. }
  330. const auto grammar_triggers = data.find("grammar_triggers");
  331. if (grammar_triggers != data.end()) {
  332. for (const auto & t : *grammar_triggers) {
  333. server_grammar_trigger ct(t);
  334. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  335. const auto & word = ct.value.value;
  336. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  337. if (ids.size() == 1) {
  338. auto token = ids[0];
  339. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  340. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  341. }
  342. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  343. common_grammar_trigger trigger;
  344. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  345. trigger.value = word;
  346. trigger.token = token;
  347. params.sampling.grammar_triggers.push_back(std::move(trigger));
  348. } else {
  349. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  350. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  351. }
  352. } else {
  353. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  354. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  355. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  356. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  357. } else {
  358. throw std::runtime_error("Unknown grammar trigger type");
  359. }
  360. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  361. }
  362. }
  363. }
  364. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  365. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  366. }
  367. }
  368. {
  369. params.sampling.logit_bias.clear();
  370. params.ignore_eos = json_value(data, "ignore_eos", false);
  371. const auto & logit_bias = data.find("logit_bias");
  372. if (logit_bias != data.end() && logit_bias->is_array()) {
  373. const int n_vocab = llama_vocab_n_tokens(vocab);
  374. for (const auto & el : *logit_bias) {
  375. // TODO: we may want to throw errors here, in case "el" is incorrect
  376. if (el.is_array() && el.size() == 2) {
  377. float bias;
  378. if (el[1].is_number()) {
  379. bias = el[1].get<float>();
  380. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  381. bias = -INFINITY;
  382. } else {
  383. continue;
  384. }
  385. if (el[0].is_number_integer()) {
  386. llama_token tok = el[0].get<llama_token>();
  387. if (tok >= 0 && tok < n_vocab) {
  388. params.sampling.logit_bias.push_back({tok, bias});
  389. }
  390. } else if (el[0].is_string()) {
  391. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  392. for (auto tok : toks) {
  393. params.sampling.logit_bias.push_back({tok, bias});
  394. }
  395. }
  396. }
  397. }
  398. }
  399. }
  400. {
  401. params.antiprompt.clear();
  402. const auto & stop = data.find("stop");
  403. if (stop != data.end() && stop->is_array()) {
  404. for (const auto & word : *stop) {
  405. if (!word.empty()) {
  406. params.antiprompt.push_back(word);
  407. }
  408. }
  409. }
  410. }
  411. {
  412. const auto samplers = data.find("samplers");
  413. if (samplers != data.end()) {
  414. if (samplers->is_array()) {
  415. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  416. } else if (samplers->is_string()){
  417. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  418. }
  419. } else {
  420. params.sampling.samplers = defaults.sampling.samplers;
  421. }
  422. }
  423. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  424. params.oaicompat_model = json_value(data, "model", model_name);
  425. return params;
  426. }
  427. // utility function
  428. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  429. std::unordered_set<int> ids(tasks.size());
  430. for (size_t i = 0; i < tasks.size(); i++) {
  431. ids.insert(tasks[i].id);
  432. }
  433. return ids;
  434. }
  435. };
  436. struct result_timings {
  437. int32_t prompt_n = -1;
  438. double prompt_ms;
  439. double prompt_per_token_ms;
  440. double prompt_per_second;
  441. int32_t predicted_n = -1;
  442. double predicted_ms;
  443. double predicted_per_token_ms;
  444. double predicted_per_second;
  445. // Optional speculative metrics - only included when > 0
  446. int32_t draft_n = 0;
  447. int32_t draft_n_accepted = 0;
  448. json to_json() const {
  449. json base = {
  450. {"prompt_n", prompt_n},
  451. {"prompt_ms", prompt_ms},
  452. {"prompt_per_token_ms", prompt_per_token_ms},
  453. {"prompt_per_second", prompt_per_second},
  454. {"predicted_n", predicted_n},
  455. {"predicted_ms", predicted_ms},
  456. {"predicted_per_token_ms", predicted_per_token_ms},
  457. {"predicted_per_second", predicted_per_second},
  458. };
  459. if (draft_n > 0) {
  460. base["draft_n"] = draft_n;
  461. base["draft_n_accepted"] = draft_n_accepted;
  462. }
  463. return base;
  464. }
  465. };
  466. struct server_task_result {
  467. int id = -1;
  468. int id_slot = -1;
  469. virtual bool is_error() {
  470. // only used by server_task_result_error
  471. return false;
  472. }
  473. virtual bool is_stop() {
  474. // only used by server_task_result_cmpl_*
  475. return false;
  476. }
  477. virtual int get_index() {
  478. return -1;
  479. }
  480. virtual json to_json() = 0;
  481. virtual ~server_task_result() = default;
  482. };
  483. // using shared_ptr for polymorphism of server_task_result
  484. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  485. inline std::string stop_type_to_str(stop_type type) {
  486. switch (type) {
  487. case STOP_TYPE_EOS: return "eos";
  488. case STOP_TYPE_WORD: return "word";
  489. case STOP_TYPE_LIMIT: return "limit";
  490. default: return "none";
  491. }
  492. }
  493. struct completion_token_output {
  494. llama_token tok;
  495. float prob;
  496. std::string text_to_send;
  497. struct prob_info {
  498. llama_token tok;
  499. std::string txt;
  500. float prob;
  501. };
  502. std::vector<prob_info> probs;
  503. json to_json(bool post_sampling_probs) const {
  504. json probs_for_token = json::array();
  505. for (const auto & p : probs) {
  506. std::string txt(p.txt);
  507. txt.resize(validate_utf8(txt));
  508. probs_for_token.push_back(json {
  509. {"id", p.tok},
  510. {"token", txt},
  511. {"bytes", str_to_bytes(p.txt)},
  512. {
  513. post_sampling_probs ? "prob" : "logprob",
  514. post_sampling_probs ? p.prob : logarithm(p.prob)
  515. },
  516. });
  517. }
  518. return probs_for_token;
  519. }
  520. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  521. json out = json::array();
  522. for (const auto & p : probs) {
  523. std::string txt(p.text_to_send);
  524. txt.resize(validate_utf8(txt));
  525. out.push_back(json {
  526. {"id", p.tok},
  527. {"token", txt},
  528. {"bytes", str_to_bytes(p.text_to_send)},
  529. {
  530. post_sampling_probs ? "prob" : "logprob",
  531. post_sampling_probs ? p.prob : logarithm(p.prob)
  532. },
  533. {
  534. post_sampling_probs ? "top_probs" : "top_logprobs",
  535. p.to_json(post_sampling_probs)
  536. },
  537. });
  538. }
  539. return out;
  540. }
  541. static float logarithm(float x) {
  542. // nlohmann::json converts -inf to null, so we need to prevent that
  543. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  544. }
  545. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  546. std::vector<unsigned char> bytes;
  547. for (unsigned char c : str) {
  548. bytes.push_back(c);
  549. }
  550. return bytes;
  551. }
  552. };
  553. struct server_task_result_cmpl_final : server_task_result {
  554. int index = 0;
  555. std::string content;
  556. llama_tokens tokens;
  557. bool stream;
  558. result_timings timings;
  559. std::string prompt;
  560. bool truncated;
  561. int32_t n_decoded;
  562. int32_t n_prompt_tokens;
  563. int32_t n_tokens_cached;
  564. bool has_new_line;
  565. std::string stopping_word;
  566. stop_type stop = STOP_TYPE_NONE;
  567. bool post_sampling_probs;
  568. std::vector<completion_token_output> probs_output;
  569. std::vector<std::string> response_fields;
  570. slot_params generation_params;
  571. // OAI-compat fields
  572. bool verbose = false;
  573. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  574. std::string oaicompat_model;
  575. std::string oaicompat_cmpl_id;
  576. common_chat_msg oaicompat_msg;
  577. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  578. virtual int get_index() override {
  579. return index;
  580. }
  581. virtual bool is_stop() override {
  582. return true; // in stream mode, final responses are considered stop
  583. }
  584. virtual json to_json() override {
  585. switch (oaicompat) {
  586. case OAICOMPAT_TYPE_NONE:
  587. return to_json_non_oaicompat();
  588. case OAICOMPAT_TYPE_COMPLETION:
  589. return to_json_oaicompat();
  590. case OAICOMPAT_TYPE_CHAT:
  591. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  592. default:
  593. GGML_ASSERT(false && "Invalid oaicompat_type");
  594. }
  595. }
  596. json to_json_non_oaicompat() {
  597. json res = json {
  598. {"index", index},
  599. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  600. {"tokens", stream ? llama_tokens {} : tokens},
  601. {"id_slot", id_slot},
  602. {"stop", true},
  603. {"model", oaicompat_model},
  604. {"tokens_predicted", n_decoded},
  605. {"tokens_evaluated", n_prompt_tokens},
  606. {"generation_settings", generation_params.to_json()},
  607. {"prompt", prompt},
  608. {"has_new_line", has_new_line},
  609. {"truncated", truncated},
  610. {"stop_type", stop_type_to_str(stop)},
  611. {"stopping_word", stopping_word},
  612. {"tokens_cached", n_tokens_cached},
  613. {"timings", timings.to_json()},
  614. };
  615. if (!stream && !probs_output.empty()) {
  616. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  617. }
  618. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  619. }
  620. json to_json_oaicompat() {
  621. std::time_t t = std::time(0);
  622. json logprobs = json(nullptr); // OAI default to null
  623. if (!stream && probs_output.size() > 0) {
  624. logprobs = json{
  625. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  626. };
  627. }
  628. json finish_reason = "length";
  629. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  630. finish_reason = "stop";
  631. }
  632. json res = json {
  633. {"choices", json::array({
  634. json{
  635. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  636. {"index", index},
  637. {"logprobs", logprobs},
  638. {"finish_reason", finish_reason},
  639. }
  640. })},
  641. {"created", t},
  642. {"model", oaicompat_model},
  643. {"system_fingerprint", build_info},
  644. {"object", "text_completion"},
  645. {"usage", json {
  646. {"completion_tokens", n_decoded},
  647. {"prompt_tokens", n_prompt_tokens},
  648. {"total_tokens", n_decoded + n_prompt_tokens}
  649. }},
  650. {"id", oaicompat_cmpl_id}
  651. };
  652. // extra fields for debugging purposes
  653. if (verbose) {
  654. res["__verbose"] = to_json_non_oaicompat();
  655. }
  656. if (timings.prompt_n >= 0) {
  657. res.push_back({"timings", timings.to_json()});
  658. }
  659. return res;
  660. }
  661. json to_json_oaicompat_chat() {
  662. std::string finish_reason = "length";
  663. common_chat_msg msg;
  664. if (!oaicompat_msg.empty()) {
  665. msg = oaicompat_msg;
  666. } else {
  667. msg.role = "assistant";
  668. msg.content = content;
  669. }
  670. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  671. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  672. }
  673. json choice {
  674. {"finish_reason", finish_reason},
  675. {"index", 0},
  676. {"message", msg.to_json_oaicompat<json>()},
  677. };
  678. if (!stream && probs_output.size() > 0) {
  679. choice["logprobs"] = json{
  680. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  681. };
  682. }
  683. std::time_t t = std::time(0);
  684. json res = json {
  685. {"choices", json::array({choice})},
  686. {"created", t},
  687. {"model", oaicompat_model},
  688. {"system_fingerprint", build_info},
  689. {"object", "chat.completion"},
  690. {"usage", json {
  691. {"completion_tokens", n_decoded},
  692. {"prompt_tokens", n_prompt_tokens},
  693. {"total_tokens", n_decoded + n_prompt_tokens}
  694. }},
  695. {"id", oaicompat_cmpl_id}
  696. };
  697. // extra fields for debugging purposes
  698. if (verbose) {
  699. res["__verbose"] = to_json_non_oaicompat();
  700. }
  701. if (timings.prompt_n >= 0) {
  702. res.push_back({"timings", timings.to_json()});
  703. }
  704. return res;
  705. }
  706. json to_json_oaicompat_chat_stream() {
  707. std::time_t t = std::time(0);
  708. std::string finish_reason = "length";
  709. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  710. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  711. }
  712. json deltas = json::array();
  713. for (const auto & diff : oaicompat_msg_diffs) {
  714. deltas.push_back({
  715. {"choices", json::array({
  716. json {
  717. {"finish_reason", nullptr},
  718. {"index", 0},
  719. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  720. },
  721. })},
  722. {"created", t},
  723. {"id", oaicompat_cmpl_id},
  724. {"model", oaicompat_model},
  725. {"system_fingerprint", build_info},
  726. {"object", "chat.completion.chunk"},
  727. });
  728. }
  729. deltas.push_back({
  730. {"choices", json::array({
  731. json {
  732. {"finish_reason", finish_reason},
  733. {"index", 0},
  734. {"delta", json::object()},
  735. },
  736. })},
  737. {"created", t},
  738. {"id", oaicompat_cmpl_id},
  739. {"model", oaicompat_model},
  740. {"system_fingerprint", build_info},
  741. {"object", "chat.completion.chunk"},
  742. {"usage", json {
  743. {"completion_tokens", n_decoded},
  744. {"prompt_tokens", n_prompt_tokens},
  745. {"total_tokens", n_decoded + n_prompt_tokens},
  746. }},
  747. });
  748. if (timings.prompt_n >= 0) {
  749. deltas.back().push_back({"timings", timings.to_json()});
  750. }
  751. // extra fields for debugging purposes
  752. if (verbose && !deltas.empty()) {
  753. deltas.front()["__verbose"] = to_json_non_oaicompat();
  754. }
  755. return deltas;
  756. }
  757. };
  758. struct server_task_result_cmpl_partial : server_task_result {
  759. int index = 0;
  760. std::string content;
  761. llama_tokens tokens;
  762. int32_t n_decoded;
  763. int32_t n_prompt_tokens;
  764. bool post_sampling_probs;
  765. completion_token_output prob_output;
  766. result_timings timings;
  767. // OAI-compat fields
  768. bool verbose = false;
  769. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  770. std::string oaicompat_model;
  771. std::string oaicompat_cmpl_id;
  772. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  773. virtual int get_index() override {
  774. return index;
  775. }
  776. virtual bool is_stop() override {
  777. return false; // in stream mode, partial responses are not considered stop
  778. }
  779. virtual json to_json() override {
  780. switch (oaicompat) {
  781. case OAICOMPAT_TYPE_NONE:
  782. return to_json_non_oaicompat();
  783. case OAICOMPAT_TYPE_COMPLETION:
  784. return to_json_oaicompat();
  785. case OAICOMPAT_TYPE_CHAT:
  786. return to_json_oaicompat_chat();
  787. default:
  788. GGML_ASSERT(false && "Invalid oaicompat_type");
  789. }
  790. }
  791. json to_json_non_oaicompat() {
  792. // non-OAI-compat JSON
  793. json res = json {
  794. {"index", index},
  795. {"content", content},
  796. {"tokens", tokens},
  797. {"stop", false},
  798. {"id_slot", id_slot},
  799. {"tokens_predicted", n_decoded},
  800. {"tokens_evaluated", n_prompt_tokens},
  801. };
  802. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  803. if (timings.prompt_n > 0) {
  804. res.push_back({"timings", timings.to_json()});
  805. }
  806. if (!prob_output.probs.empty()) {
  807. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  808. }
  809. return res;
  810. }
  811. json to_json_oaicompat() {
  812. std::time_t t = std::time(0);
  813. json logprobs = json(nullptr); // OAI default to null
  814. if (prob_output.probs.size() > 0) {
  815. logprobs = json{
  816. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  817. };
  818. }
  819. json res = json {
  820. {"choices", json::array({
  821. json{
  822. {"text", content},
  823. {"index", index},
  824. {"logprobs", logprobs},
  825. {"finish_reason", nullptr},
  826. }
  827. })},
  828. {"created", t},
  829. {"model", oaicompat_model},
  830. {"system_fingerprint", build_info},
  831. {"object", "text_completion"},
  832. {"id", oaicompat_cmpl_id}
  833. };
  834. // extra fields for debugging purposes
  835. if (verbose) {
  836. res["__verbose"] = to_json_non_oaicompat();
  837. }
  838. if (timings.prompt_n >= 0) {
  839. res.push_back({"timings", timings.to_json()});
  840. }
  841. return res;
  842. }
  843. json to_json_oaicompat_chat() {
  844. bool first = n_decoded == 1;
  845. std::time_t t = std::time(0);
  846. json choices;
  847. std::vector<json> deltas;
  848. auto add_delta = [&](const json & delta) {
  849. deltas.push_back({
  850. {"choices", json::array({
  851. json {
  852. {"finish_reason", nullptr},
  853. {"index", 0},
  854. {"delta", delta},
  855. },
  856. })},
  857. {"created", t},
  858. {"id", oaicompat_cmpl_id},
  859. {"model", oaicompat_model},
  860. {"system_fingerprint", build_info},
  861. {"object", "chat.completion.chunk"},
  862. });
  863. };
  864. // We have to send an initial update to conform to openai behavior
  865. if (first) {
  866. add_delta({
  867. {"role", "assistant"},
  868. {"content", nullptr},
  869. });
  870. }
  871. for (const auto & diff : oaicompat_msg_diffs) {
  872. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  873. }
  874. if (!deltas.empty()) {
  875. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  876. if (prob_output.probs.size() > 0) {
  877. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  878. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  879. };
  880. }
  881. if (timings.prompt_n >= 0) {
  882. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  883. }
  884. }
  885. return deltas;
  886. }
  887. };
  888. struct server_task_result_embd : server_task_result {
  889. int index = 0;
  890. std::vector<std::vector<float>> embedding;
  891. int32_t n_tokens;
  892. // OAI-compat fields
  893. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  894. virtual int get_index() override {
  895. return index;
  896. }
  897. virtual json to_json() override {
  898. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  899. ? to_json_oaicompat()
  900. : to_json_non_oaicompat();
  901. }
  902. json to_json_non_oaicompat() {
  903. return json {
  904. {"index", index},
  905. {"embedding", embedding},
  906. };
  907. }
  908. json to_json_oaicompat() {
  909. return json {
  910. {"index", index},
  911. {"embedding", embedding[0]},
  912. {"tokens_evaluated", n_tokens},
  913. };
  914. }
  915. };
  916. struct server_task_result_rerank : server_task_result {
  917. int index = 0;
  918. float score = -1e6;
  919. int32_t n_tokens;
  920. virtual int get_index() override {
  921. return index;
  922. }
  923. virtual json to_json() override {
  924. return json {
  925. {"index", index},
  926. {"score", score},
  927. {"tokens_evaluated", n_tokens},
  928. };
  929. }
  930. };
  931. // this function maybe used outside of server_task_result_error
  932. static json format_error_response(const std::string & message, const enum error_type type) {
  933. std::string type_str;
  934. int code = 500;
  935. switch (type) {
  936. case ERROR_TYPE_INVALID_REQUEST:
  937. type_str = "invalid_request_error";
  938. code = 400;
  939. break;
  940. case ERROR_TYPE_AUTHENTICATION:
  941. type_str = "authentication_error";
  942. code = 401;
  943. break;
  944. case ERROR_TYPE_NOT_FOUND:
  945. type_str = "not_found_error";
  946. code = 404;
  947. break;
  948. case ERROR_TYPE_SERVER:
  949. type_str = "server_error";
  950. code = 500;
  951. break;
  952. case ERROR_TYPE_PERMISSION:
  953. type_str = "permission_error";
  954. code = 403;
  955. break;
  956. case ERROR_TYPE_NOT_SUPPORTED:
  957. type_str = "not_supported_error";
  958. code = 501;
  959. break;
  960. case ERROR_TYPE_UNAVAILABLE:
  961. type_str = "unavailable_error";
  962. code = 503;
  963. break;
  964. }
  965. return json {
  966. {"code", code},
  967. {"message", message},
  968. {"type", type_str},
  969. };
  970. }
  971. struct server_task_result_error : server_task_result {
  972. int index = 0;
  973. error_type err_type = ERROR_TYPE_SERVER;
  974. std::string err_msg;
  975. virtual bool is_error() override {
  976. return true;
  977. }
  978. virtual json to_json() override {
  979. return format_error_response(err_msg, err_type);
  980. }
  981. };
  982. struct server_task_result_metrics : server_task_result {
  983. int n_idle_slots;
  984. int n_processing_slots;
  985. int n_tasks_deferred;
  986. int64_t t_start;
  987. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  988. uint64_t n_prompt_tokens_processed_total = 0;
  989. uint64_t t_prompt_processing_total = 0;
  990. uint64_t n_tokens_predicted_total = 0;
  991. uint64_t t_tokens_generation_total = 0;
  992. uint64_t n_prompt_tokens_processed = 0;
  993. uint64_t t_prompt_processing = 0;
  994. uint64_t n_tokens_predicted = 0;
  995. uint64_t t_tokens_generation = 0;
  996. uint64_t n_decode_total = 0;
  997. uint64_t n_busy_slots_total = 0;
  998. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  999. // therefore, we use json to temporarily store the slot.to_json() result
  1000. json slots_data = json::array();
  1001. virtual json to_json() override {
  1002. return json {
  1003. { "idle", n_idle_slots },
  1004. { "processing", n_processing_slots },
  1005. { "deferred", n_tasks_deferred },
  1006. { "t_start", t_start },
  1007. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1008. { "t_tokens_generation_total", t_tokens_generation_total },
  1009. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1010. { "t_prompt_processing_total", t_prompt_processing_total },
  1011. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1012. { "t_prompt_processing", t_prompt_processing },
  1013. { "n_tokens_predicted", n_tokens_predicted },
  1014. { "t_tokens_generation", t_tokens_generation },
  1015. { "n_decode_total", n_decode_total },
  1016. { "n_busy_slots_total", n_busy_slots_total },
  1017. { "slots", slots_data },
  1018. };
  1019. }
  1020. };
  1021. struct server_task_result_slot_save_load : server_task_result {
  1022. std::string filename;
  1023. bool is_save; // true = save, false = load
  1024. size_t n_tokens;
  1025. size_t n_bytes;
  1026. double t_ms;
  1027. virtual json to_json() override {
  1028. if (is_save) {
  1029. return json {
  1030. { "id_slot", id_slot },
  1031. { "filename", filename },
  1032. { "n_saved", n_tokens },
  1033. { "n_written", n_bytes },
  1034. { "timings", {
  1035. { "save_ms", t_ms }
  1036. }},
  1037. };
  1038. } else {
  1039. return json {
  1040. { "id_slot", id_slot },
  1041. { "filename", filename },
  1042. { "n_restored", n_tokens },
  1043. { "n_read", n_bytes },
  1044. { "timings", {
  1045. { "restore_ms", t_ms }
  1046. }},
  1047. };
  1048. }
  1049. }
  1050. };
  1051. struct server_task_result_slot_erase : server_task_result {
  1052. size_t n_erased;
  1053. virtual json to_json() override {
  1054. return json {
  1055. { "id_slot", id_slot },
  1056. { "n_erased", n_erased },
  1057. };
  1058. }
  1059. };
  1060. struct server_task_result_apply_lora : server_task_result {
  1061. virtual json to_json() override {
  1062. return json {{ "success", true }};
  1063. }
  1064. };
  1065. struct server_slot {
  1066. int id;
  1067. int id_task = -1;
  1068. // only used for completion/embedding/infill/rerank
  1069. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1070. llama_batch batch_spec = {};
  1071. llama_context * ctx = nullptr;
  1072. llama_context * ctx_dft = nullptr;
  1073. // multimodal
  1074. mtmd_context * mctx = nullptr;
  1075. common_speculative * spec = nullptr;
  1076. std::vector<common_adapter_lora_info> lora;
  1077. // the index relative to completion multi-task request
  1078. size_t index = 0;
  1079. struct slot_params params;
  1080. slot_state state = SLOT_STATE_IDLE;
  1081. // used to determine the slot that has been used the longest
  1082. int64_t t_last_used = -1;
  1083. // generation props
  1084. int32_t n_ctx = 0; // context size per slot
  1085. int32_t n_past = 0;
  1086. int32_t n_decoded = 0;
  1087. int32_t n_remaining = -1;
  1088. int32_t i_batch = -1;
  1089. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1090. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1091. int32_t n_prompt_tokens = 0;
  1092. int32_t n_prompt_tokens_processed = 0;
  1093. // input prompt tokens
  1094. server_tokens prompt_tokens;
  1095. size_t last_nl_pos = 0;
  1096. std::string generated_text;
  1097. llama_tokens generated_tokens;
  1098. common_chat_msg chat_msg;
  1099. server_tokens cache_tokens;
  1100. std::vector<completion_token_output> generated_token_probs;
  1101. bool has_next_token = true;
  1102. bool has_new_line = false;
  1103. bool truncated = false;
  1104. stop_type stop;
  1105. std::string stopping_word;
  1106. // sampling
  1107. json json_schema;
  1108. struct common_sampler * smpl = nullptr;
  1109. llama_token sampled;
  1110. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1111. std::vector<std::string> generated_tool_call_ids;
  1112. // stats
  1113. size_t n_sent_text = 0; // number of sent text character
  1114. int64_t t_start_process_prompt;
  1115. int64_t t_start_generation;
  1116. double t_prompt_processing; // ms
  1117. double t_token_generation; // ms
  1118. std::function<void(int)> callback_on_release;
  1119. // Speculative decoding stats
  1120. int32_t n_draft_total = 0; // Total draft tokens generated
  1121. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1122. void reset() {
  1123. SLT_DBG(*this, "%s", "\n");
  1124. n_prompt_tokens = 0;
  1125. last_nl_pos = 0;
  1126. generated_text = "";
  1127. has_new_line = false;
  1128. truncated = false;
  1129. stop = STOP_TYPE_NONE;
  1130. stopping_word = "";
  1131. n_past = 0;
  1132. n_sent_text = 0;
  1133. task_type = SERVER_TASK_TYPE_COMPLETION;
  1134. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1135. generated_tokens.clear();
  1136. generated_token_probs.clear();
  1137. chat_msg = {};
  1138. json_schema = json();
  1139. generated_tool_call_ids.clear();
  1140. // clear speculative decoding stats
  1141. n_draft_total = 0;
  1142. n_draft_accepted = 0;
  1143. }
  1144. bool is_non_causal() const {
  1145. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1146. }
  1147. bool can_batch_with(server_slot & other_slot) const {
  1148. return is_non_causal() == other_slot.is_non_causal()
  1149. && are_lora_equal(lora, other_slot.lora);
  1150. }
  1151. bool has_budget(const common_params & global_params) {
  1152. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1153. return true; // limitless
  1154. }
  1155. n_remaining = -1;
  1156. if (params.n_predict != -1) {
  1157. n_remaining = params.n_predict - n_decoded;
  1158. } else if (global_params.n_predict != -1) {
  1159. n_remaining = global_params.n_predict - n_decoded;
  1160. }
  1161. return n_remaining > 0; // no budget
  1162. }
  1163. bool is_processing() const {
  1164. return state != SLOT_STATE_IDLE;
  1165. }
  1166. bool can_speculate() const {
  1167. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1168. }
  1169. void add_token(const completion_token_output & token) {
  1170. if (!is_processing()) {
  1171. SLT_WRN(*this, "%s", "slot is not processing\n");
  1172. return;
  1173. }
  1174. generated_token_probs.push_back(token);
  1175. }
  1176. void release() {
  1177. if (is_processing()) {
  1178. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1179. t_last_used = ggml_time_us();
  1180. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1181. state = SLOT_STATE_IDLE;
  1182. callback_on_release(id);
  1183. }
  1184. }
  1185. result_timings get_timings() const {
  1186. result_timings timings;
  1187. timings.prompt_n = n_prompt_tokens_processed;
  1188. timings.prompt_ms = t_prompt_processing;
  1189. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1190. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1191. timings.predicted_n = n_decoded;
  1192. timings.predicted_ms = t_token_generation;
  1193. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1194. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1195. // Add speculative metrics
  1196. if (n_draft_total > 0) {
  1197. timings.draft_n = n_draft_total;
  1198. timings.draft_n_accepted = n_draft_accepted;
  1199. }
  1200. return timings;
  1201. }
  1202. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1203. auto previous_msg = chat_msg;
  1204. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1205. auto new_msg = common_chat_parse(
  1206. generated_text,
  1207. /* is_partial= */ stop != STOP_TYPE_EOS,
  1208. params.oaicompat_chat_syntax);
  1209. if (!new_msg.empty()) {
  1210. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1211. chat_msg = new_msg;
  1212. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1213. }
  1214. return chat_msg;
  1215. }
  1216. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1217. size_t stop_pos = std::string::npos;
  1218. for (const std::string & word : params.antiprompt) {
  1219. size_t pos;
  1220. if (is_full_stop) {
  1221. const size_t tmp = word.size() + last_token_size;
  1222. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1223. pos = text.find(word, from_pos);
  1224. } else {
  1225. // otherwise, partial stop
  1226. pos = string_find_partial_stop(text, word);
  1227. }
  1228. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1229. if (is_full_stop) {
  1230. stop = STOP_TYPE_WORD;
  1231. stopping_word = word;
  1232. has_next_token = false;
  1233. }
  1234. stop_pos = pos;
  1235. }
  1236. }
  1237. return stop_pos;
  1238. }
  1239. void print_timings() const {
  1240. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1241. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1242. const double t_gen = t_token_generation / n_decoded;
  1243. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1244. SLT_INF(*this,
  1245. "\n"
  1246. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1247. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1248. " total time = %10.2f ms / %5d tokens\n",
  1249. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1250. t_token_generation, n_decoded, t_gen, n_gen_second,
  1251. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1252. if (n_draft_total > 0) {
  1253. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1254. SLT_INF(*this,
  1255. "\n"
  1256. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1257. draft_ratio, n_draft_accepted, n_draft_total
  1258. );
  1259. }
  1260. }
  1261. json to_json() const {
  1262. return json {
  1263. {"id", id},
  1264. {"id_task", id_task},
  1265. {"n_ctx", n_ctx},
  1266. {"speculative", can_speculate()},
  1267. {"is_processing", is_processing()},
  1268. {"non_causal", is_non_causal()},
  1269. {"params", params.to_json()},
  1270. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1271. {"next_token",
  1272. {
  1273. {"has_next_token", has_next_token},
  1274. {"has_new_line", has_new_line},
  1275. {"n_remain", n_remaining},
  1276. {"n_decoded", n_decoded},
  1277. {"stopping_word", stopping_word},
  1278. }
  1279. },
  1280. };
  1281. }
  1282. };
  1283. struct server_metrics {
  1284. int64_t t_start = 0;
  1285. uint64_t n_prompt_tokens_processed_total = 0;
  1286. uint64_t t_prompt_processing_total = 0;
  1287. uint64_t n_tokens_predicted_total = 0;
  1288. uint64_t t_tokens_generation_total = 0;
  1289. uint64_t n_prompt_tokens_processed = 0;
  1290. uint64_t t_prompt_processing = 0;
  1291. uint64_t n_tokens_predicted = 0;
  1292. uint64_t t_tokens_generation = 0;
  1293. uint64_t n_decode_total = 0;
  1294. uint64_t n_busy_slots_total = 0;
  1295. void init() {
  1296. t_start = ggml_time_us();
  1297. }
  1298. void on_prompt_eval(const server_slot & slot) {
  1299. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1300. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1301. t_prompt_processing += slot.t_prompt_processing;
  1302. t_prompt_processing_total += slot.t_prompt_processing;
  1303. }
  1304. void on_prediction(const server_slot & slot) {
  1305. n_tokens_predicted_total += slot.n_decoded;
  1306. n_tokens_predicted += slot.n_decoded;
  1307. t_tokens_generation += slot.t_token_generation;
  1308. t_tokens_generation_total += slot.t_token_generation;
  1309. }
  1310. void on_decoded(const std::vector<server_slot> & slots) {
  1311. n_decode_total++;
  1312. for (const auto & slot : slots) {
  1313. if (slot.is_processing()) {
  1314. n_busy_slots_total++;
  1315. }
  1316. }
  1317. }
  1318. void reset_bucket() {
  1319. n_prompt_tokens_processed = 0;
  1320. t_prompt_processing = 0;
  1321. n_tokens_predicted = 0;
  1322. t_tokens_generation = 0;
  1323. }
  1324. };
  1325. struct server_queue {
  1326. int id = 0;
  1327. bool running;
  1328. // queues
  1329. std::deque<server_task> queue_tasks;
  1330. std::deque<server_task> queue_tasks_deferred;
  1331. std::mutex mutex_tasks;
  1332. std::condition_variable condition_tasks;
  1333. // callback functions
  1334. std::function<void(server_task &&)> callback_new_task;
  1335. std::function<void(void)> callback_update_slots;
  1336. // Add a new task to the end of the queue
  1337. int post(server_task && task, bool front = false) {
  1338. std::unique_lock<std::mutex> lock(mutex_tasks);
  1339. GGML_ASSERT(task.id != -1);
  1340. // if this is cancel task make sure to clean up pending tasks
  1341. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1342. cleanup_pending_task(task.id_target);
  1343. }
  1344. const int task_id = task.id;
  1345. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1346. if (front) {
  1347. queue_tasks.push_front(std::move(task));
  1348. } else {
  1349. queue_tasks.push_back(std::move(task));
  1350. }
  1351. condition_tasks.notify_one();
  1352. return task_id;
  1353. }
  1354. // multi-task version of post()
  1355. int post(std::vector<server_task> && tasks, bool front = false) {
  1356. std::unique_lock<std::mutex> lock(mutex_tasks);
  1357. for (auto & task : tasks) {
  1358. if (task.id == -1) {
  1359. task.id = id++;
  1360. }
  1361. // if this is cancel task make sure to clean up pending tasks
  1362. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1363. cleanup_pending_task(task.id_target);
  1364. }
  1365. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1366. if (front) {
  1367. queue_tasks.push_front(std::move(task));
  1368. } else {
  1369. queue_tasks.push_back(std::move(task));
  1370. }
  1371. }
  1372. condition_tasks.notify_one();
  1373. return 0;
  1374. }
  1375. // Add a new task, but defer until one slot is available
  1376. void defer(server_task && task) {
  1377. std::unique_lock<std::mutex> lock(mutex_tasks);
  1378. QUE_DBG("defer task, id = %d\n", task.id);
  1379. queue_tasks_deferred.push_back(std::move(task));
  1380. condition_tasks.notify_one();
  1381. }
  1382. // Get the next id for creating a new task
  1383. int get_new_id() {
  1384. std::unique_lock<std::mutex> lock(mutex_tasks);
  1385. int new_id = id++;
  1386. return new_id;
  1387. }
  1388. // Register function to process a new task
  1389. void on_new_task(std::function<void(server_task &&)> callback) {
  1390. callback_new_task = std::move(callback);
  1391. }
  1392. // Register the function to be called when all slots data is ready to be processed
  1393. void on_update_slots(std::function<void(void)> callback) {
  1394. callback_update_slots = std::move(callback);
  1395. }
  1396. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1397. void pop_deferred_task() {
  1398. std::unique_lock<std::mutex> lock(mutex_tasks);
  1399. if (!queue_tasks_deferred.empty()) {
  1400. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1401. queue_tasks_deferred.pop_front();
  1402. }
  1403. condition_tasks.notify_one();
  1404. }
  1405. // end the start_loop routine
  1406. void terminate() {
  1407. std::unique_lock<std::mutex> lock(mutex_tasks);
  1408. running = false;
  1409. condition_tasks.notify_all();
  1410. }
  1411. /**
  1412. * Main loop consists of these steps:
  1413. * - Wait until a new task arrives
  1414. * - Process the task (i.e. maybe copy data into slot)
  1415. * - Check if multitask is finished
  1416. * - Update all slots
  1417. */
  1418. void start_loop() {
  1419. running = true;
  1420. while (true) {
  1421. QUE_DBG("%s", "processing new tasks\n");
  1422. while (true) {
  1423. std::unique_lock<std::mutex> lock(mutex_tasks);
  1424. if (!running) {
  1425. QUE_DBG("%s", "terminate\n");
  1426. return;
  1427. }
  1428. if (queue_tasks.empty()) {
  1429. lock.unlock();
  1430. break;
  1431. }
  1432. server_task task = std::move(queue_tasks.front());
  1433. queue_tasks.pop_front();
  1434. lock.unlock();
  1435. QUE_DBG("processing task, id = %d\n", task.id);
  1436. callback_new_task(std::move(task));
  1437. }
  1438. // all tasks in the current loop is processed, slots data is now ready
  1439. QUE_DBG("%s", "update slots\n");
  1440. callback_update_slots();
  1441. QUE_DBG("%s", "waiting for new tasks\n");
  1442. {
  1443. std::unique_lock<std::mutex> lock(mutex_tasks);
  1444. if (!running) {
  1445. QUE_DBG("%s", "terminate\n");
  1446. return;
  1447. }
  1448. if (queue_tasks.empty()) {
  1449. condition_tasks.wait(lock, [&]{
  1450. return (!queue_tasks.empty() || !running);
  1451. });
  1452. }
  1453. }
  1454. }
  1455. }
  1456. private:
  1457. void cleanup_pending_task(int id_target) {
  1458. // no need lock because this is called exclusively by post()
  1459. auto rm_func = [id_target](const server_task & task) {
  1460. return task.id_target == id_target;
  1461. };
  1462. queue_tasks.erase(
  1463. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1464. queue_tasks.end());
  1465. queue_tasks_deferred.erase(
  1466. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1467. queue_tasks_deferred.end());
  1468. }
  1469. };
  1470. struct server_response {
  1471. bool running = true;
  1472. // for keeping track of all tasks waiting for the result
  1473. std::unordered_set<int> waiting_task_ids;
  1474. // the main result queue (using ptr for polymorphism)
  1475. std::vector<server_task_result_ptr> queue_results;
  1476. std::mutex mutex_results;
  1477. std::condition_variable condition_results;
  1478. // add the id_task to the list of tasks waiting for response
  1479. void add_waiting_task_id(int id_task) {
  1480. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1481. std::unique_lock<std::mutex> lock(mutex_results);
  1482. waiting_task_ids.insert(id_task);
  1483. }
  1484. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1485. std::unique_lock<std::mutex> lock(mutex_results);
  1486. for (const auto & task : tasks) {
  1487. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1488. waiting_task_ids.insert(task.id);
  1489. }
  1490. }
  1491. // when the request is finished, we can remove task associated with it
  1492. void remove_waiting_task_id(int id_task) {
  1493. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1494. std::unique_lock<std::mutex> lock(mutex_results);
  1495. waiting_task_ids.erase(id_task);
  1496. // make sure to clean up all pending results
  1497. queue_results.erase(
  1498. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1499. return res->id == id_task;
  1500. }),
  1501. queue_results.end());
  1502. }
  1503. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1504. std::unique_lock<std::mutex> lock(mutex_results);
  1505. for (const auto & id_task : id_tasks) {
  1506. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1507. waiting_task_ids.erase(id_task);
  1508. }
  1509. }
  1510. // This function blocks the thread until there is a response for one of the id_tasks
  1511. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1512. while (true) {
  1513. std::unique_lock<std::mutex> lock(mutex_results);
  1514. condition_results.wait(lock, [&]{
  1515. if (!running) {
  1516. SRV_DBG("%s : queue result stop\n", __func__);
  1517. std::terminate(); // we cannot return here since the caller is HTTP code
  1518. }
  1519. return !queue_results.empty();
  1520. });
  1521. for (size_t i = 0; i < queue_results.size(); i++) {
  1522. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1523. server_task_result_ptr res = std::move(queue_results[i]);
  1524. queue_results.erase(queue_results.begin() + i);
  1525. return res;
  1526. }
  1527. }
  1528. }
  1529. // should never reach here
  1530. }
  1531. // same as recv(), but have timeout in seconds
  1532. // if timeout is reached, nullptr is returned
  1533. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1534. while (true) {
  1535. std::unique_lock<std::mutex> lock(mutex_results);
  1536. for (int i = 0; i < (int) queue_results.size(); i++) {
  1537. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1538. server_task_result_ptr res = std::move(queue_results[i]);
  1539. queue_results.erase(queue_results.begin() + i);
  1540. return res;
  1541. }
  1542. }
  1543. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1544. if (!running) {
  1545. SRV_DBG("%s : queue result stop\n", __func__);
  1546. std::terminate(); // we cannot return here since the caller is HTTP code
  1547. }
  1548. if (cr_res == std::cv_status::timeout) {
  1549. return nullptr;
  1550. }
  1551. }
  1552. // should never reach here
  1553. }
  1554. // single-task version of recv()
  1555. server_task_result_ptr recv(int id_task) {
  1556. std::unordered_set<int> id_tasks = {id_task};
  1557. return recv(id_tasks);
  1558. }
  1559. // Send a new result to a waiting id_task
  1560. void send(server_task_result_ptr && result) {
  1561. SRV_DBG("sending result for task id = %d\n", result->id);
  1562. std::unique_lock<std::mutex> lock(mutex_results);
  1563. for (const auto & id_task : waiting_task_ids) {
  1564. if (result->id == id_task) {
  1565. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1566. queue_results.emplace_back(std::move(result));
  1567. condition_results.notify_all();
  1568. return;
  1569. }
  1570. }
  1571. }
  1572. // terminate the waiting loop
  1573. void terminate() {
  1574. running = false;
  1575. condition_results.notify_all();
  1576. }
  1577. };
  1578. struct server_context {
  1579. common_params params_base;
  1580. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1581. common_init_result llama_init;
  1582. common_init_result llama_init_dft;
  1583. llama_model * model = nullptr;
  1584. llama_context * ctx = nullptr;
  1585. // multimodal
  1586. mtmd_context * mctx = nullptr;
  1587. const llama_vocab * vocab = nullptr;
  1588. llama_model * model_dft = nullptr;
  1589. llama_context_params cparams_dft;
  1590. llama_batch batch {};
  1591. bool clean_kv_cache = true;
  1592. bool add_bos_token = true;
  1593. bool has_eos_token = false;
  1594. int32_t n_ctx; // total context for all clients / slots
  1595. // slots / clients
  1596. std::vector<server_slot> slots;
  1597. json default_generation_settings_for_props;
  1598. server_queue queue_tasks;
  1599. server_response queue_results;
  1600. server_metrics metrics;
  1601. // Necessary similarity of prompt for slot selection
  1602. float slot_prompt_similarity = 0.0f;
  1603. common_chat_templates_ptr chat_templates;
  1604. oaicompat_parser_options oai_parser_opt;
  1605. ~server_context() {
  1606. mtmd_free(mctx);
  1607. // Clear any sampling context
  1608. for (server_slot & slot : slots) {
  1609. common_sampler_free(slot.smpl);
  1610. slot.smpl = nullptr;
  1611. llama_free(slot.ctx_dft);
  1612. slot.ctx_dft = nullptr;
  1613. common_speculative_free(slot.spec);
  1614. slot.spec = nullptr;
  1615. llama_batch_free(slot.batch_spec);
  1616. }
  1617. llama_batch_free(batch);
  1618. }
  1619. bool load_model(const common_params & params) {
  1620. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1621. params_base = params;
  1622. llama_init = common_init_from_params(params_base);
  1623. model = llama_init.model.get();
  1624. ctx = llama_init.context.get();
  1625. if (model == nullptr) {
  1626. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1627. return false;
  1628. }
  1629. vocab = llama_model_get_vocab(model);
  1630. n_ctx = llama_n_ctx(ctx);
  1631. add_bos_token = llama_vocab_get_add_bos(vocab);
  1632. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1633. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1634. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1635. auto params_dft = params_base;
  1636. params_dft.devices = params_base.speculative.devices;
  1637. params_dft.model = params_base.speculative.model;
  1638. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1639. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1640. params_dft.n_parallel = 1;
  1641. // force F16 KV cache for the draft model for extra performance
  1642. params_dft.cache_type_k = GGML_TYPE_F16;
  1643. params_dft.cache_type_v = GGML_TYPE_F16;
  1644. llama_init_dft = common_init_from_params(params_dft);
  1645. model_dft = llama_init_dft.model.get();
  1646. if (model_dft == nullptr) {
  1647. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1648. return false;
  1649. }
  1650. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1651. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1652. return false;
  1653. }
  1654. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1655. cparams_dft = common_context_params_to_llama(params_dft);
  1656. cparams_dft.n_batch = n_ctx_dft;
  1657. // the context is not needed - we will create one for each slot
  1658. llama_init_dft.context.reset();
  1659. }
  1660. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1661. try {
  1662. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1663. } catch (const std::exception & e) {
  1664. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1665. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1666. chat_templates = common_chat_templates_init(model, "chatml");
  1667. }
  1668. std::string & mmproj_path = params_base.mmproj.path;
  1669. if (!mmproj_path.empty()) {
  1670. mtmd_context_params mparams = mtmd_context_params_default();
  1671. mparams.use_gpu = params_base.mmproj_use_gpu;
  1672. mparams.print_timings = false;
  1673. mparams.n_threads = params_base.cpuparams.n_threads;
  1674. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1675. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1676. if (mctx == nullptr) {
  1677. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1678. return false;
  1679. }
  1680. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1681. if (params_base.ctx_shift) {
  1682. params_base.ctx_shift = false;
  1683. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1684. }
  1685. if (params_base.n_cache_reuse) {
  1686. params_base.n_cache_reuse = 0;
  1687. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1688. }
  1689. if (!params_base.speculative.model.path.empty()) {
  1690. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1691. return false;
  1692. }
  1693. }
  1694. if (!llama_kv_self_can_shift(ctx)) {
  1695. if (params_base.ctx_shift) {
  1696. params_base.ctx_shift = false;
  1697. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1698. }
  1699. if (params_base.n_cache_reuse) {
  1700. params_base.n_cache_reuse = 0;
  1701. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1702. }
  1703. if (!params_base.speculative.model.path.empty()) {
  1704. SRV_ERR("%s\n", "err: speculative decode is not supported by this context");
  1705. return false;
  1706. }
  1707. }
  1708. return true;
  1709. }
  1710. void init() {
  1711. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1712. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1713. for (int i = 0; i < params_base.n_parallel; i++) {
  1714. server_slot slot;
  1715. slot.id = i;
  1716. slot.ctx = ctx;
  1717. slot.n_ctx = n_ctx_slot;
  1718. slot.n_predict = params_base.n_predict;
  1719. slot.mctx = mctx;
  1720. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1721. if (model_dft) {
  1722. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1723. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1724. if (slot.ctx_dft == nullptr) {
  1725. SRV_ERR("%s", "failed to create draft context\n");
  1726. return;
  1727. }
  1728. slot.spec = common_speculative_init(slot.ctx_dft);
  1729. if (slot.spec == nullptr) {
  1730. SRV_ERR("%s", "failed to create speculator\n");
  1731. return;
  1732. }
  1733. }
  1734. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1735. slot.params.sampling = params_base.sampling;
  1736. slot.callback_on_release = [this](int) {
  1737. queue_tasks.pop_deferred_task();
  1738. };
  1739. slot.reset();
  1740. slots.push_back(std::move(slot));
  1741. }
  1742. default_generation_settings_for_props = slots[0].to_json();
  1743. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1744. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1745. {
  1746. const int32_t n_batch = llama_n_batch(ctx);
  1747. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1748. }
  1749. metrics.init();
  1750. oai_parser_opt = {
  1751. /* use_jinja */ params_base.use_jinja,
  1752. /* prefill_assistant */ params_base.prefill_assistant,
  1753. /* reasoning_format */ params_base.reasoning_format,
  1754. /* common_chat_templates */ chat_templates.get(),
  1755. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1756. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1757. /* enable_thinking */ params_base.reasoning_budget != 0,
  1758. };
  1759. }
  1760. server_slot * get_slot_by_id(int id) {
  1761. for (server_slot & slot : slots) {
  1762. if (slot.id == id) {
  1763. return &slot;
  1764. }
  1765. }
  1766. return nullptr;
  1767. }
  1768. server_slot * get_available_slot(const server_task & task) {
  1769. server_slot * ret = nullptr;
  1770. // find the slot that has at least n% prompt similarity
  1771. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1772. int lcs_len = 0;
  1773. float similarity = 0;
  1774. for (server_slot & slot : slots) {
  1775. // skip the slot if it is not available
  1776. if (slot.is_processing()) {
  1777. continue;
  1778. }
  1779. // skip the slot if it does not contains cached tokens
  1780. if (slot.cache_tokens.empty()) {
  1781. continue;
  1782. }
  1783. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1784. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1785. // fraction of the common subsequence length compared to the current slot's prompt length
  1786. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1787. // select the current slot if the criteria match
  1788. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1789. lcs_len = cur_lcs_len;
  1790. similarity = cur_similarity;
  1791. ret = &slot;
  1792. }
  1793. }
  1794. if (ret != nullptr) {
  1795. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1796. }
  1797. }
  1798. // find the slot that has been least recently used
  1799. if (ret == nullptr) {
  1800. int64_t t_last = ggml_time_us();
  1801. for (server_slot & slot : slots) {
  1802. // skip the slot if it is not available
  1803. if (slot.is_processing()) {
  1804. continue;
  1805. }
  1806. // select the current slot if the criteria match
  1807. if (slot.t_last_used < t_last) {
  1808. t_last = slot.t_last_used;
  1809. ret = &slot;
  1810. }
  1811. }
  1812. if (ret != nullptr) {
  1813. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1814. }
  1815. }
  1816. return ret;
  1817. }
  1818. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1819. slot.reset();
  1820. slot.id_task = task.id;
  1821. slot.index = task.index;
  1822. slot.task_type = task.type;
  1823. slot.params = std::move(task.params);
  1824. slot.prompt_tokens = std::move(task.prompt_tokens);
  1825. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1826. // if lora is changed, we cannot reuse cached tokens
  1827. slot.cache_tokens.clear();
  1828. slot.lora = slot.params.lora;
  1829. }
  1830. if (!slot.prompt_tokens.validate(ctx)) {
  1831. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1832. return false;
  1833. }
  1834. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1835. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1836. // Might be better to reject the request with a 400 ?
  1837. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1838. slot.params.n_predict = slot.n_predict;
  1839. }
  1840. if (slot.params.ignore_eos && has_eos_token) {
  1841. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1842. }
  1843. {
  1844. if (slot.smpl != nullptr) {
  1845. common_sampler_free(slot.smpl);
  1846. }
  1847. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1848. if (slot.smpl == nullptr) {
  1849. // for now, the only error that may happen here is invalid grammar
  1850. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1851. return false;
  1852. }
  1853. }
  1854. if (slot.ctx_dft) {
  1855. llama_batch_free(slot.batch_spec);
  1856. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1857. }
  1858. slot.state = SLOT_STATE_STARTED;
  1859. SLT_INF(slot, "%s", "processing task\n");
  1860. return true;
  1861. }
  1862. void kv_cache_clear() {
  1863. SRV_DBG("%s", "clearing KV cache\n");
  1864. // clear the entire KV cache
  1865. llama_kv_self_clear(ctx);
  1866. clean_kv_cache = false;
  1867. }
  1868. bool process_token(completion_token_output & result, server_slot & slot) {
  1869. // remember which tokens were sampled - used for repetition penalties during sampling
  1870. const std::string token_str = result.text_to_send;
  1871. slot.sampled = result.tok;
  1872. slot.generated_text += token_str;
  1873. if (slot.params.return_tokens) {
  1874. slot.generated_tokens.push_back(result.tok);
  1875. }
  1876. slot.has_next_token = true;
  1877. // check if there is incomplete UTF-8 character at the end
  1878. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1879. // search stop word and delete it
  1880. if (!incomplete) {
  1881. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1882. const std::string str_test = slot.generated_text.substr(pos);
  1883. bool send_text = true;
  1884. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1885. if (stop_pos != std::string::npos) {
  1886. slot.generated_text.erase(
  1887. slot.generated_text.begin() + pos + stop_pos,
  1888. slot.generated_text.end());
  1889. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1890. } else if (slot.has_next_token) {
  1891. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1892. send_text = stop_pos == std::string::npos;
  1893. }
  1894. // check if there is any token to predict
  1895. if (send_text) {
  1896. // no send the stop word in the response
  1897. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1898. slot.n_sent_text += result.text_to_send.size();
  1899. // add the token to slot queue and cache
  1900. } else {
  1901. result.text_to_send = "";
  1902. }
  1903. slot.add_token(result);
  1904. if (slot.params.stream) {
  1905. send_partial_response(slot, result);
  1906. }
  1907. }
  1908. if (incomplete) {
  1909. slot.has_next_token = true;
  1910. }
  1911. // if context shifting is disabled, make sure that we don't run out of context
  1912. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1913. slot.stop = STOP_TYPE_LIMIT;
  1914. slot.has_next_token = false;
  1915. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1916. }
  1917. // check the limits
  1918. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1919. slot.stop = STOP_TYPE_LIMIT;
  1920. slot.has_next_token = false;
  1921. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1922. }
  1923. if (slot.has_new_line) {
  1924. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1925. if (slot.params.n_indent > 0) {
  1926. // check the current indentation
  1927. // TODO: improve by not doing it more than once for each new line
  1928. if (slot.last_nl_pos > 0) {
  1929. size_t pos = slot.last_nl_pos;
  1930. int n_indent = 0;
  1931. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1932. n_indent++;
  1933. pos++;
  1934. }
  1935. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1936. slot.stop = STOP_TYPE_LIMIT;
  1937. slot.has_next_token = false;
  1938. // cut the last line
  1939. slot.generated_text.erase(pos, std::string::npos);
  1940. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1941. }
  1942. }
  1943. // find the next new line
  1944. {
  1945. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1946. if (pos != std::string::npos) {
  1947. slot.last_nl_pos = pos + 1;
  1948. }
  1949. }
  1950. }
  1951. }
  1952. // check if there is a new line in the generated text
  1953. if (result.text_to_send.find('\n') != std::string::npos) {
  1954. slot.has_new_line = true;
  1955. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1956. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1957. slot.stop = STOP_TYPE_LIMIT;
  1958. slot.has_next_token = false;
  1959. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1960. }
  1961. }
  1962. // if context shift is disabled, we stop when it reaches the context limit
  1963. if (slot.n_past >= slot.n_ctx) {
  1964. slot.truncated = true;
  1965. slot.stop = STOP_TYPE_LIMIT;
  1966. slot.has_next_token = false;
  1967. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1968. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1969. }
  1970. if (llama_vocab_is_eog(vocab, result.tok)) {
  1971. slot.stop = STOP_TYPE_EOS;
  1972. slot.has_next_token = false;
  1973. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1974. }
  1975. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1976. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1977. slot.truncated = true;
  1978. slot.stop = STOP_TYPE_LIMIT;
  1979. slot.has_next_token = false; // stop prediction
  1980. SLT_WRN(slot,
  1981. "n_predict (%d) is set for infinite generation. "
  1982. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1983. slot.params.n_predict, n_ctx_train);
  1984. }
  1985. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1986. return slot.has_next_token; // continue
  1987. }
  1988. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1989. size_t n_probs = slot.params.sampling.n_probs;
  1990. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1991. if (post_sampling) {
  1992. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1993. const size_t max_probs = cur_p->size;
  1994. // set probability for sampled token
  1995. for (size_t i = 0; i < max_probs; i++) {
  1996. if (cur_p->data[i].id == result.tok) {
  1997. result.prob = cur_p->data[i].p;
  1998. break;
  1999. }
  2000. }
  2001. // set probability for top n_probs tokens
  2002. result.probs.reserve(max_probs);
  2003. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2004. result.probs.push_back({
  2005. cur_p->data[i].id,
  2006. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2007. cur_p->data[i].p
  2008. });
  2009. }
  2010. } else {
  2011. // TODO: optimize this with min-p optimization
  2012. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2013. // set probability for sampled token
  2014. for (size_t i = 0; i < n_vocab; i++) {
  2015. // set probability for sampled token
  2016. if (cur[i].id == result.tok) {
  2017. result.prob = cur[i].p;
  2018. break;
  2019. }
  2020. }
  2021. // set probability for top n_probs tokens
  2022. result.probs.reserve(n_probs);
  2023. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2024. result.probs.push_back({
  2025. cur[i].id,
  2026. common_token_to_piece(ctx, cur[i].id, special),
  2027. cur[i].p
  2028. });
  2029. }
  2030. }
  2031. }
  2032. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2033. send_error(task.id, error, type);
  2034. }
  2035. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2036. send_error(slot.id_task, error, type);
  2037. }
  2038. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2039. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2040. auto res = std::make_unique<server_task_result_error>();
  2041. res->id = id_task;
  2042. res->err_type = type;
  2043. res->err_msg = error;
  2044. queue_results.send(std::move(res));
  2045. }
  2046. // if multimodal is enabled, send an error and return false
  2047. bool ensure_no_mtmd(const int id_task) {
  2048. if (mctx) {
  2049. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2050. return false;
  2051. }
  2052. return true;
  2053. }
  2054. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2055. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2056. res->id = slot.id_task;
  2057. res->index = slot.index;
  2058. res->content = tkn.text_to_send;
  2059. res->tokens = { tkn.tok };
  2060. res->n_decoded = slot.n_decoded;
  2061. res->n_prompt_tokens = slot.n_prompt_tokens;
  2062. res->post_sampling_probs = slot.params.post_sampling_probs;
  2063. res->verbose = slot.params.verbose;
  2064. res->oaicompat = slot.params.oaicompat;
  2065. res->oaicompat_model = slot.params.oaicompat_model;
  2066. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2067. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2068. // populate res.probs_output
  2069. if (slot.params.sampling.n_probs > 0) {
  2070. res->prob_output = tkn; // copy the token probs
  2071. }
  2072. // populate timings if this is final response or timings_per_token is enabled
  2073. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2074. res->timings = slot.get_timings();
  2075. }
  2076. queue_results.send(std::move(res));
  2077. }
  2078. void send_final_response(server_slot & slot) {
  2079. auto res = std::make_unique<server_task_result_cmpl_final>();
  2080. res->id = slot.id_task;
  2081. res->id_slot = slot.id;
  2082. res->index = slot.index;
  2083. res->content = slot.generated_text;
  2084. res->tokens = std::move(slot.generated_tokens);
  2085. res->timings = slot.get_timings();
  2086. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2087. res->response_fields = std::move(slot.params.response_fields);
  2088. res->truncated = slot.truncated;
  2089. res->n_decoded = slot.n_decoded;
  2090. res->n_prompt_tokens = slot.n_prompt_tokens;
  2091. res->n_tokens_cached = slot.n_past;
  2092. res->has_new_line = slot.has_new_line;
  2093. res->stopping_word = slot.stopping_word;
  2094. res->stop = slot.stop;
  2095. res->post_sampling_probs = slot.params.post_sampling_probs;
  2096. res->verbose = slot.params.verbose;
  2097. res->stream = slot.params.stream;
  2098. res->oaicompat = slot.params.oaicompat;
  2099. res->oaicompat_model = slot.params.oaicompat_model;
  2100. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2101. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2102. // populate res.probs_output
  2103. if (slot.params.sampling.n_probs > 0) {
  2104. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2105. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2106. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2107. res->probs_output = std::vector<completion_token_output>(
  2108. slot.generated_token_probs.begin(),
  2109. slot.generated_token_probs.end() - safe_offset);
  2110. } else {
  2111. res->probs_output = std::vector<completion_token_output>(
  2112. slot.generated_token_probs.begin(),
  2113. slot.generated_token_probs.end());
  2114. }
  2115. }
  2116. res->generation_params = slot.params; // copy the parameters
  2117. queue_results.send(std::move(res));
  2118. }
  2119. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2120. auto res = std::make_unique<server_task_result_embd>();
  2121. res->id = slot.id_task;
  2122. res->index = slot.index;
  2123. res->n_tokens = slot.n_prompt_tokens;
  2124. res->oaicompat = slot.params.oaicompat;
  2125. const int n_embd = llama_model_n_embd(model);
  2126. std::vector<float> embd_res(n_embd, 0.0f);
  2127. for (int i = 0; i < batch.n_tokens; ++i) {
  2128. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2129. continue;
  2130. }
  2131. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2132. if (embd == NULL) {
  2133. embd = llama_get_embeddings_ith(ctx, i);
  2134. }
  2135. if (embd == NULL) {
  2136. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2137. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2138. continue;
  2139. }
  2140. // normalize only when there is pooling
  2141. // TODO: configurable
  2142. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2143. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2144. res->embedding.push_back(embd_res);
  2145. } else {
  2146. res->embedding.push_back({ embd, embd + n_embd });
  2147. }
  2148. }
  2149. SLT_DBG(slot, "%s", "sending embeddings\n");
  2150. queue_results.send(std::move(res));
  2151. }
  2152. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2153. auto res = std::make_unique<server_task_result_rerank>();
  2154. res->id = slot.id_task;
  2155. res->index = slot.index;
  2156. res->n_tokens = slot.n_prompt_tokens;
  2157. for (int i = 0; i < batch.n_tokens; ++i) {
  2158. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2159. continue;
  2160. }
  2161. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2162. if (embd == NULL) {
  2163. embd = llama_get_embeddings_ith(ctx, i);
  2164. }
  2165. if (embd == NULL) {
  2166. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2167. res->score = -1e6;
  2168. continue;
  2169. }
  2170. res->score = embd[0];
  2171. }
  2172. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2173. queue_results.send(std::move(res));
  2174. }
  2175. //
  2176. // Functions to create new task(s) and receive result(s)
  2177. //
  2178. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2179. std::vector<server_task> cancel_tasks;
  2180. cancel_tasks.reserve(id_tasks.size());
  2181. for (const auto & id_task : id_tasks) {
  2182. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2183. server_task task(SERVER_TASK_TYPE_CANCEL);
  2184. task.id_target = id_task;
  2185. queue_results.remove_waiting_task_id(id_task);
  2186. cancel_tasks.push_back(std::move(task));
  2187. }
  2188. // push to beginning of the queue, so it has highest priority
  2189. queue_tasks.post(std::move(cancel_tasks), true);
  2190. }
  2191. // receive the results from task(s)
  2192. void receive_multi_results(
  2193. const std::unordered_set<int> & id_tasks,
  2194. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2195. const std::function<void(json)> & error_handler,
  2196. const std::function<bool()> & is_connection_closed) {
  2197. std::vector<server_task_result_ptr> results(id_tasks.size());
  2198. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2199. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2200. if (is_connection_closed()) {
  2201. cancel_tasks(id_tasks);
  2202. return;
  2203. }
  2204. if (result == nullptr) {
  2205. i--; // retry
  2206. continue;
  2207. }
  2208. if (result->is_error()) {
  2209. error_handler(result->to_json());
  2210. cancel_tasks(id_tasks);
  2211. return;
  2212. }
  2213. GGML_ASSERT(
  2214. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2215. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2216. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2217. );
  2218. const size_t idx = result->get_index();
  2219. GGML_ASSERT(idx < results.size() && "index out of range");
  2220. results[idx] = std::move(result);
  2221. }
  2222. result_handler(results);
  2223. }
  2224. // receive the results from task(s), in stream mode
  2225. void receive_cmpl_results_stream(
  2226. const std::unordered_set<int> & id_tasks,
  2227. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2228. const std::function<void(json)> & error_handler,
  2229. const std::function<bool()> & is_connection_closed) {
  2230. size_t n_finished = 0;
  2231. while (true) {
  2232. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2233. if (is_connection_closed()) {
  2234. cancel_tasks(id_tasks);
  2235. return;
  2236. }
  2237. if (result == nullptr) {
  2238. continue; // retry
  2239. }
  2240. if (result->is_error()) {
  2241. error_handler(result->to_json());
  2242. cancel_tasks(id_tasks);
  2243. return;
  2244. }
  2245. GGML_ASSERT(
  2246. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2247. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2248. );
  2249. if (!result_handler(result)) {
  2250. cancel_tasks(id_tasks);
  2251. break;
  2252. }
  2253. if (result->is_stop()) {
  2254. if (++n_finished == id_tasks.size()) {
  2255. break;
  2256. }
  2257. }
  2258. }
  2259. }
  2260. //
  2261. // Functions to process the task
  2262. //
  2263. void process_single_task(server_task && task) {
  2264. switch (task.type) {
  2265. case SERVER_TASK_TYPE_COMPLETION:
  2266. case SERVER_TASK_TYPE_INFILL:
  2267. case SERVER_TASK_TYPE_EMBEDDING:
  2268. case SERVER_TASK_TYPE_RERANK:
  2269. {
  2270. const int id_slot = task.id_selected_slot;
  2271. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2272. if (slot == nullptr) {
  2273. // if no slot is available, we defer this task for processing later
  2274. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2275. queue_tasks.defer(std::move(task));
  2276. break;
  2277. }
  2278. if (slot->is_processing()) {
  2279. // if requested slot is unavailable, we defer this task for processing later
  2280. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2281. queue_tasks.defer(std::move(task));
  2282. break;
  2283. }
  2284. if (!launch_slot_with_task(*slot, std::move(task))) {
  2285. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2286. break;
  2287. }
  2288. } break;
  2289. case SERVER_TASK_TYPE_CANCEL:
  2290. {
  2291. // release slot linked with the task id
  2292. for (auto & slot : slots) {
  2293. if (slot.id_task == task.id_target) {
  2294. slot.release();
  2295. break;
  2296. }
  2297. }
  2298. } break;
  2299. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2300. {
  2301. // do nothing
  2302. } break;
  2303. case SERVER_TASK_TYPE_METRICS:
  2304. {
  2305. json slots_data = json::array();
  2306. int n_idle_slots = 0;
  2307. int n_processing_slots = 0;
  2308. for (server_slot & slot : slots) {
  2309. json slot_data = slot.to_json();
  2310. if (slot.is_processing()) {
  2311. n_processing_slots++;
  2312. } else {
  2313. n_idle_slots++;
  2314. }
  2315. slots_data.push_back(slot_data);
  2316. }
  2317. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2318. auto res = std::make_unique<server_task_result_metrics>();
  2319. res->id = task.id;
  2320. res->slots_data = std::move(slots_data);
  2321. res->n_idle_slots = n_idle_slots;
  2322. res->n_processing_slots = n_processing_slots;
  2323. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2324. res->t_start = metrics.t_start;
  2325. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2326. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2327. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2328. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2329. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2330. res->t_prompt_processing = metrics.t_prompt_processing;
  2331. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2332. res->t_tokens_generation = metrics.t_tokens_generation;
  2333. res->n_decode_total = metrics.n_decode_total;
  2334. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2335. if (task.metrics_reset_bucket) {
  2336. metrics.reset_bucket();
  2337. }
  2338. queue_results.send(std::move(res));
  2339. } break;
  2340. case SERVER_TASK_TYPE_SLOT_SAVE:
  2341. {
  2342. if (!ensure_no_mtmd(task.id)) {
  2343. break;
  2344. }
  2345. int id_slot = task.slot_action.slot_id;
  2346. server_slot * slot = get_slot_by_id(id_slot);
  2347. if (slot == nullptr) {
  2348. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2349. break;
  2350. }
  2351. if (slot->is_processing()) {
  2352. // if requested slot is unavailable, we defer this task for processing later
  2353. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2354. queue_tasks.defer(std::move(task));
  2355. break;
  2356. }
  2357. const size_t token_count = slot->cache_tokens.size();
  2358. const int64_t t_start = ggml_time_us();
  2359. std::string filename = task.slot_action.filename;
  2360. std::string filepath = task.slot_action.filepath;
  2361. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2362. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2363. const int64_t t_end = ggml_time_us();
  2364. const double t_save_ms = (t_end - t_start) / 1000.0;
  2365. auto res = std::make_unique<server_task_result_slot_save_load>();
  2366. res->id = task.id;
  2367. res->id_slot = id_slot;
  2368. res->filename = filename;
  2369. res->is_save = true;
  2370. res->n_tokens = token_count;
  2371. res->n_bytes = nwrite;
  2372. res->t_ms = t_save_ms;
  2373. queue_results.send(std::move(res));
  2374. } break;
  2375. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2376. {
  2377. if (!ensure_no_mtmd(task.id)) break;
  2378. int id_slot = task.slot_action.slot_id;
  2379. server_slot * slot = get_slot_by_id(id_slot);
  2380. if (slot == nullptr) {
  2381. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2382. break;
  2383. }
  2384. if (slot->is_processing()) {
  2385. // if requested slot is unavailable, we defer this task for processing later
  2386. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2387. queue_tasks.defer(std::move(task));
  2388. break;
  2389. }
  2390. const int64_t t_start = ggml_time_us();
  2391. std::string filename = task.slot_action.filename;
  2392. std::string filepath = task.slot_action.filepath;
  2393. llama_tokens tokens;
  2394. tokens.resize(slot->n_ctx);
  2395. size_t token_count = 0;
  2396. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2397. if (nread == 0) {
  2398. slot->cache_tokens.clear(); // KV may already been invalidated?
  2399. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2400. break;
  2401. }
  2402. tokens.resize(token_count);
  2403. slot->cache_tokens.clear();
  2404. slot->cache_tokens.insert(tokens);
  2405. const int64_t t_end = ggml_time_us();
  2406. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2407. auto res = std::make_unique<server_task_result_slot_save_load>();
  2408. res->id = task.id;
  2409. res->id_slot = id_slot;
  2410. res->filename = filename;
  2411. res->is_save = false;
  2412. res->n_tokens = token_count;
  2413. res->n_bytes = nread;
  2414. res->t_ms = t_restore_ms;
  2415. queue_results.send(std::move(res));
  2416. } break;
  2417. case SERVER_TASK_TYPE_SLOT_ERASE:
  2418. {
  2419. if (!ensure_no_mtmd(task.id)) break;
  2420. int id_slot = task.slot_action.slot_id;
  2421. server_slot * slot = get_slot_by_id(id_slot);
  2422. if (slot == nullptr) {
  2423. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2424. break;
  2425. }
  2426. if (slot->is_processing()) {
  2427. // if requested slot is unavailable, we defer this task for processing later
  2428. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2429. queue_tasks.defer(std::move(task));
  2430. break;
  2431. }
  2432. // Erase token cache
  2433. const size_t n_erased = slot->cache_tokens.size();
  2434. llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
  2435. slot->cache_tokens.clear();
  2436. auto res = std::make_unique<server_task_result_slot_erase>();
  2437. res->id = task.id;
  2438. res->id_slot = id_slot;
  2439. res->n_erased = n_erased;
  2440. queue_results.send(std::move(res));
  2441. } break;
  2442. case SERVER_TASK_TYPE_SET_LORA:
  2443. {
  2444. params_base.lora_adapters = std::move(task.set_lora);
  2445. auto res = std::make_unique<server_task_result_apply_lora>();
  2446. res->id = task.id;
  2447. queue_results.send(std::move(res));
  2448. } break;
  2449. }
  2450. }
  2451. void update_slots() {
  2452. // check if all slots are idle
  2453. {
  2454. bool all_idle = true;
  2455. for (auto & slot : slots) {
  2456. if (slot.is_processing()) {
  2457. all_idle = false;
  2458. break;
  2459. }
  2460. }
  2461. if (all_idle) {
  2462. SRV_INF("%s", "all slots are idle\n");
  2463. if (clean_kv_cache) {
  2464. kv_cache_clear();
  2465. }
  2466. return;
  2467. }
  2468. }
  2469. {
  2470. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2471. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2472. task.id = queue_tasks.get_new_id();
  2473. queue_tasks.post(std::move(task));
  2474. }
  2475. // apply context-shift if needed
  2476. // TODO: simplify and improve
  2477. for (server_slot & slot : slots) {
  2478. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2479. if (!params_base.ctx_shift) {
  2480. // this check is redundant (for good)
  2481. // we should never get here, because generation should already stopped in process_token()
  2482. slot.release();
  2483. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2484. continue;
  2485. }
  2486. if (mctx) {
  2487. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2488. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2489. GGML_ABORT("not supported by multimodal");
  2490. }
  2491. // Shift context
  2492. const int n_keep = slot.params.n_keep + add_bos_token;
  2493. const int n_left = slot.n_past - n_keep;
  2494. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2495. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2496. llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2497. llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2498. // add generated tokens to cache
  2499. {
  2500. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2501. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2502. new_tokens[i - n_discard] = new_tokens[i];
  2503. }
  2504. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2505. slot.cache_tokens.clear();
  2506. slot.cache_tokens.insert(new_tokens);
  2507. }
  2508. slot.n_past -= n_discard;
  2509. slot.truncated = true;
  2510. }
  2511. }
  2512. // start populating the batch for this iteration
  2513. common_batch_clear(batch);
  2514. // track if given slot can be batched with slots already in the batch
  2515. server_slot * slot_batched = nullptr;
  2516. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2517. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2518. };
  2519. // frist, add sampled tokens from any ongoing sequences
  2520. for (auto & slot : slots) {
  2521. if (slot.state != SLOT_STATE_GENERATING) {
  2522. continue;
  2523. }
  2524. // check if we can batch this slot with the previous one
  2525. if (!slot_batched) {
  2526. slot_batched = &slot;
  2527. } else if (!slot_batched->can_batch_with(slot)) {
  2528. continue;
  2529. }
  2530. slot.i_batch = batch.n_tokens;
  2531. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2532. slot.n_past += 1;
  2533. slot.cache_tokens.push_back(slot.sampled);
  2534. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2535. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2536. }
  2537. // process in chunks of params.n_batch
  2538. int32_t n_batch = llama_n_batch(ctx);
  2539. int32_t n_ubatch = llama_n_ubatch(ctx);
  2540. // next, batch any pending prompts without exceeding n_batch
  2541. if (params_base.cont_batching || batch.n_tokens == 0) {
  2542. for (auto & slot : slots) {
  2543. // check if we can batch this slot with the previous one
  2544. if (slot.is_processing()) {
  2545. if (!slot_batched) {
  2546. slot_batched = &slot;
  2547. } else if (!slot_batched->can_batch_with(slot)) {
  2548. continue;
  2549. }
  2550. }
  2551. // this slot still has a prompt to be processed
  2552. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2553. auto & prompt_tokens = slot.prompt_tokens;
  2554. // TODO: maybe move branch to outside of this loop in the future
  2555. if (slot.state == SLOT_STATE_STARTED) {
  2556. slot.t_start_process_prompt = ggml_time_us();
  2557. slot.t_start_generation = 0;
  2558. slot.n_past = 0;
  2559. slot.n_prompt_tokens = prompt_tokens.size();
  2560. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2561. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2562. // print prompt tokens (for debugging)
  2563. /*if (1) {
  2564. // first 16 tokens (avoid flooding logs)
  2565. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2566. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2567. }
  2568. } else {
  2569. // all
  2570. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2571. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2572. }
  2573. }*/
  2574. // empty prompt passed -> release the slot and send empty response
  2575. if (prompt_tokens.empty()) {
  2576. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2577. slot.release();
  2578. slot.print_timings();
  2579. send_final_response(slot);
  2580. continue;
  2581. }
  2582. if (slot.is_non_causal()) {
  2583. if (slot.n_prompt_tokens > n_ubatch) {
  2584. slot.release();
  2585. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2586. continue;
  2587. }
  2588. if (slot.n_prompt_tokens > slot.n_ctx) {
  2589. slot.release();
  2590. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2591. continue;
  2592. }
  2593. } else {
  2594. if (!params_base.ctx_shift) {
  2595. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2596. // TODO: there should be a separate parameter that control prompt truncation
  2597. // context shift should be applied only during the generation phase
  2598. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2599. slot.release();
  2600. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2601. continue;
  2602. }
  2603. }
  2604. if (slot.params.n_keep < 0) {
  2605. slot.params.n_keep = slot.n_prompt_tokens;
  2606. }
  2607. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2608. // if input prompt is too big, truncate it
  2609. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2610. if (mctx) {
  2611. // we should never reach this
  2612. GGML_ABORT("not supported by multimodal");
  2613. }
  2614. const int n_left = slot.n_ctx - slot.params.n_keep;
  2615. const int n_block_size = n_left / 2;
  2616. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2617. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2618. llama_tokens new_tokens(
  2619. curr_tokens.begin(),
  2620. curr_tokens.begin() + slot.params.n_keep);
  2621. new_tokens.insert(
  2622. new_tokens.end(),
  2623. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2624. curr_tokens.end());
  2625. prompt_tokens.clear();
  2626. prompt_tokens.insert(new_tokens);
  2627. slot.truncated = true;
  2628. slot.n_prompt_tokens = prompt_tokens.size();
  2629. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2630. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2631. }
  2632. if (slot.params.cache_prompt) {
  2633. // reuse any previously computed tokens that are common with the new prompt
  2634. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2635. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2636. if (params_base.n_cache_reuse > 0) {
  2637. size_t head_c = slot.n_past; // cache
  2638. size_t head_p = slot.n_past; // current prompt
  2639. if (mctx) {
  2640. // we should never reach this
  2641. GGML_ABORT("not supported by multimodal");
  2642. }
  2643. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2644. while (head_c < slot.cache_tokens.size() &&
  2645. head_p < prompt_tokens.size()) {
  2646. size_t n_match = 0;
  2647. while (head_c + n_match < slot.cache_tokens.size() &&
  2648. head_p + n_match < prompt_tokens.size() &&
  2649. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2650. n_match++;
  2651. }
  2652. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2653. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2654. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2655. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2656. //}
  2657. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2658. llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
  2659. llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2660. for (size_t i = 0; i < n_match; i++) {
  2661. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2662. slot.n_past++;
  2663. }
  2664. head_c += n_match;
  2665. head_p += n_match;
  2666. } else {
  2667. head_c += 1;
  2668. }
  2669. }
  2670. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2671. }
  2672. } else {
  2673. // if we don't cache the prompt, we have to remove the entire KV cache
  2674. llama_kv_self_seq_rm(ctx, slot.id, 0, -1);
  2675. slot.n_past = 0;
  2676. slot.cache_tokens.clear(); // TODO: not needed, will be cleared later via "keep_first()"
  2677. }
  2678. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2679. if (llama_kv_self_seq_pos_min(ctx, slot.id) > 0) {
  2680. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2681. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2682. slot.n_past = 0;
  2683. }
  2684. }
  2685. }
  2686. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2687. // we have to evaluate at least 1 token to generate logits.
  2688. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2689. slot.n_past--;
  2690. }
  2691. slot.n_prompt_tokens_processed = 0;
  2692. }
  2693. // non-causal tasks require to fit the entire prompt in the physical batch
  2694. if (slot.is_non_causal()) {
  2695. // cannot fit the prompt in the current batch - will try next iter
  2696. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2697. continue;
  2698. }
  2699. }
  2700. // keep only the common part
  2701. if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2702. // could not partially delete (likely using a non-Transformer model)
  2703. llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
  2704. // there is no common part left
  2705. slot.n_past = 0;
  2706. }
  2707. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2708. // remove the non-common part from the cache
  2709. slot.cache_tokens.keep_first(slot.n_past);
  2710. // check if we should process the image
  2711. if (slot.n_past < slot.n_prompt_tokens
  2712. && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2713. // process the image
  2714. int32_t new_n_past;
  2715. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2716. int32_t n_pos = new_n_past - slot.n_past;
  2717. if (res != 0) {
  2718. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2719. slot.release();
  2720. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2721. continue;
  2722. }
  2723. // add the image chunk to cache
  2724. {
  2725. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2726. slot.cache_tokens.push_back(chunk.get()); // copy
  2727. }
  2728. slot.n_past += n_pos;
  2729. slot.n_prompt_tokens_processed += n_pos;
  2730. }
  2731. // add prompt tokens for processing in the current batch
  2732. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2733. // get next token to process
  2734. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2735. if (cur_tok == LLAMA_TOKEN_NULL) {
  2736. break; // end of text chunk
  2737. }
  2738. // without pooling, we want to output the embeddings for all the tokens in the batch
  2739. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2740. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2741. slot.cache_tokens.push_back(cur_tok);
  2742. slot.n_prompt_tokens_processed++;
  2743. slot.n_past++;
  2744. }
  2745. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2746. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2747. // entire prompt has been processed
  2748. if (slot.n_past == slot.n_prompt_tokens) {
  2749. slot.state = SLOT_STATE_DONE_PROMPT;
  2750. GGML_ASSERT(batch.n_tokens > 0);
  2751. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2752. common_sampler_reset(slot.smpl);
  2753. // Process all prompt tokens through sampler system
  2754. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2755. llama_token id = slot.prompt_tokens[i];
  2756. if (id != LLAMA_TOKEN_NULL) {
  2757. common_sampler_accept(slot.smpl, id, false);
  2758. }
  2759. }
  2760. // extract the logits only for the last token
  2761. batch.logits[batch.n_tokens - 1] = true;
  2762. slot.n_decoded = 0;
  2763. slot.i_batch = batch.n_tokens - 1;
  2764. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2765. }
  2766. }
  2767. if (batch.n_tokens >= n_batch) {
  2768. break;
  2769. }
  2770. }
  2771. }
  2772. if (batch.n_tokens == 0) {
  2773. SRV_WRN("%s", "no tokens to decode\n");
  2774. return;
  2775. }
  2776. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2777. if (slot_batched) {
  2778. // make sure we're in the right embedding mode
  2779. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2780. // apply lora, only need to do it once per batch
  2781. common_set_adapter_lora(ctx, slot_batched->lora);
  2782. }
  2783. const bool do_encode = (params_base.embedding || params_base.reranking);
  2784. // pad the batch so that batch.n_tokens >= n_slots
  2785. // TODO: temporary workaround for https://github.com/ggml-org/llama.cpp/issues/13689
  2786. if (do_encode) {
  2787. const int n_slots = slots.size();
  2788. if (batch.n_tokens < n_slots) {
  2789. std::set<llama_seq_id> seq_ids;
  2790. for (int j = 0; j < batch.n_tokens; ++j) {
  2791. seq_ids.insert(batch.seq_id[j][0]);
  2792. }
  2793. // find unused sequence id
  2794. llama_seq_id seq_id = -1;
  2795. for (int i = 0; i < n_slots; ++i) {
  2796. if (seq_ids.find(i) == seq_ids.end()) {
  2797. seq_id = i;
  2798. }
  2799. }
  2800. const int n_add = n_slots - batch.n_tokens;
  2801. SRV_WRN("adding %d dummy tokens to the batch, seq_id = %d\n", n_add, seq_id);
  2802. for (int j = 0; j < n_add; ++j) {
  2803. common_batch_add(batch, 0, j, { seq_id }, false);
  2804. }
  2805. }
  2806. }
  2807. // process the created batch of tokens
  2808. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2809. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2810. llama_batch batch_view = {
  2811. n_tokens,
  2812. batch.token + i,
  2813. nullptr,
  2814. batch.pos + i,
  2815. batch.n_seq_id + i,
  2816. batch.seq_id + i,
  2817. batch.logits + i,
  2818. };
  2819. const int ret = llama_decode(ctx, batch_view);
  2820. metrics.on_decoded(slots);
  2821. if (ret != 0) {
  2822. {
  2823. std::string err;
  2824. if (n_batch == 1 && ret == 1) {
  2825. err = "Context size has been exceeded.";
  2826. }
  2827. if (ret == -1) {
  2828. err = "Invalid input batch.";
  2829. }
  2830. if (ret < -1) {
  2831. err = "Compute error.";
  2832. }
  2833. if (!err.empty()) {
  2834. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2835. for (auto & slot : slots) {
  2836. slot.release();
  2837. send_error(slot, err);
  2838. }
  2839. break;
  2840. }
  2841. }
  2842. // retry with half the batch size to try to find a free slot in the KV cache
  2843. n_batch /= 2;
  2844. i -= n_batch;
  2845. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2846. continue; // continue loop of n_batch
  2847. }
  2848. for (auto & slot : slots) {
  2849. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2850. continue; // continue loop of slots
  2851. }
  2852. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2853. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2854. // prompt evaluated for embedding
  2855. send_embedding(slot, batch_view);
  2856. slot.release();
  2857. slot.i_batch = -1;
  2858. continue; // continue loop of slots
  2859. }
  2860. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2861. send_rerank(slot, batch_view);
  2862. slot.release();
  2863. slot.i_batch = -1;
  2864. continue; // continue loop of slots
  2865. }
  2866. // prompt evaluated for next-token prediction
  2867. slot.state = SLOT_STATE_GENERATING;
  2868. } else if (slot.state != SLOT_STATE_GENERATING) {
  2869. continue; // continue loop of slots
  2870. }
  2871. const int tok_idx = slot.i_batch - i;
  2872. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2873. slot.i_batch = -1;
  2874. common_sampler_accept(slot.smpl, id, true);
  2875. slot.n_decoded += 1;
  2876. const int64_t t_current = ggml_time_us();
  2877. if (slot.n_decoded == 1) {
  2878. slot.t_start_generation = t_current;
  2879. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2880. metrics.on_prompt_eval(slot);
  2881. }
  2882. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2883. completion_token_output result;
  2884. result.tok = id;
  2885. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2886. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2887. if (slot.params.sampling.n_probs > 0) {
  2888. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2889. }
  2890. if (!process_token(result, slot)) {
  2891. // release slot because of stop condition
  2892. slot.release();
  2893. slot.print_timings();
  2894. send_final_response(slot);
  2895. metrics.on_prediction(slot);
  2896. continue;
  2897. }
  2898. }
  2899. // do speculative decoding
  2900. for (auto & slot : slots) {
  2901. if (!slot.is_processing() || !slot.can_speculate()) {
  2902. continue;
  2903. }
  2904. if (slot.state != SLOT_STATE_GENERATING) {
  2905. continue;
  2906. }
  2907. if (mctx) {
  2908. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2909. GGML_ABORT("not supported by multimodal");
  2910. }
  2911. // determine the max draft that fits the current slot state
  2912. int n_draft_max = slot.params.speculative.n_max;
  2913. // note: n_past is not yet increased for the `id` token sampled above
  2914. // also, need to leave space for 1 extra token to allow context shifts
  2915. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2916. if (slot.n_remaining > 0) {
  2917. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2918. }
  2919. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2920. if (n_draft_max < slot.params.speculative.n_min) {
  2921. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2922. continue;
  2923. }
  2924. llama_token id = slot.sampled;
  2925. struct common_speculative_params params_spec;
  2926. params_spec.n_draft = n_draft_max;
  2927. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2928. params_spec.p_min = slot.params.speculative.p_min;
  2929. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2930. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2931. // keep track of total number of tokens generated in the draft
  2932. slot.n_draft_total += draft.size();
  2933. // ignore small drafts
  2934. if (slot.params.speculative.n_min > (int) draft.size()) {
  2935. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2936. continue;
  2937. }
  2938. // construct the speculation batch
  2939. common_batch_clear(slot.batch_spec);
  2940. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2941. for (size_t i = 0; i < draft.size(); ++i) {
  2942. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2943. }
  2944. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2945. llama_decode(ctx, slot.batch_spec);
  2946. // the accepted tokens from the speculation
  2947. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2948. slot.n_past += ids.size();
  2949. slot.n_decoded += ids.size();
  2950. // update how many tokens out of draft was accepted
  2951. slot.n_draft_accepted += ids.size() - 1;
  2952. slot.cache_tokens.push_back(id);
  2953. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  2954. llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
  2955. for (size_t i = 0; i < ids.size(); ++i) {
  2956. completion_token_output result;
  2957. result.tok = ids[i];
  2958. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2959. result.prob = 1.0f; // set later
  2960. // TODO: set result.probs
  2961. if (!process_token(result, slot)) {
  2962. // release slot because of stop condition
  2963. slot.release();
  2964. slot.print_timings();
  2965. send_final_response(slot);
  2966. metrics.on_prediction(slot);
  2967. break;
  2968. }
  2969. }
  2970. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2971. }
  2972. }
  2973. SRV_DBG("%s", "run slots completed\n");
  2974. }
  2975. json model_meta() const {
  2976. return json {
  2977. {"vocab_type", llama_vocab_type (vocab)},
  2978. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2979. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2980. {"n_embd", llama_model_n_embd (model)},
  2981. {"n_params", llama_model_n_params (model)},
  2982. {"size", llama_model_size (model)},
  2983. };
  2984. }
  2985. };
  2986. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2987. // skip GH copilot requests when using default port
  2988. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2989. return;
  2990. }
  2991. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2992. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2993. SRV_DBG("request: %s\n", req.body.c_str());
  2994. SRV_DBG("response: %s\n", res.body.c_str());
  2995. }
  2996. std::function<void(int)> shutdown_handler;
  2997. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2998. inline void signal_handler(int signal) {
  2999. if (is_terminating.test_and_set()) {
  3000. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3001. // this is for better developer experience, we can remove when the server is stable enough
  3002. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3003. exit(1);
  3004. }
  3005. shutdown_handler(signal);
  3006. }
  3007. int main(int argc, char ** argv) {
  3008. // own arguments required by this example
  3009. common_params params;
  3010. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3011. return 1;
  3012. }
  3013. common_init();
  3014. // struct that contains llama context and inference
  3015. server_context ctx_server;
  3016. llama_backend_init();
  3017. llama_numa_init(params.numa);
  3018. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3019. LOG_INF("\n");
  3020. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3021. LOG_INF("\n");
  3022. std::unique_ptr<httplib::Server> svr;
  3023. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3024. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3025. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3026. svr.reset(
  3027. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3028. );
  3029. } else {
  3030. LOG_INF("Running without SSL\n");
  3031. svr.reset(new httplib::Server());
  3032. }
  3033. #else
  3034. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3035. LOG_ERR("Server is built without SSL support\n");
  3036. return 1;
  3037. }
  3038. svr.reset(new httplib::Server());
  3039. #endif
  3040. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3041. svr->set_default_headers({{"Server", "llama.cpp"}});
  3042. svr->set_logger(log_server_request);
  3043. auto res_error = [](httplib::Response & res, const json & error_data) {
  3044. json final_response {{"error", error_data}};
  3045. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3046. res.status = json_value(error_data, "code", 500);
  3047. };
  3048. auto res_ok = [](httplib::Response & res, const json & data) {
  3049. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3050. res.status = 200;
  3051. };
  3052. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3053. std::string message;
  3054. try {
  3055. std::rethrow_exception(ep);
  3056. } catch (const std::exception & e) {
  3057. message = e.what();
  3058. } catch (...) {
  3059. message = "Unknown Exception";
  3060. }
  3061. try {
  3062. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3063. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3064. res_error(res, formatted_error);
  3065. } catch (const std::exception & e) {
  3066. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3067. }
  3068. });
  3069. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3070. if (res.status == 404) {
  3071. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3072. }
  3073. // for other error codes, we skip processing here because it's already done by res_error()
  3074. });
  3075. // set timeouts and change hostname and port
  3076. svr->set_read_timeout (params.timeout_read);
  3077. svr->set_write_timeout(params.timeout_write);
  3078. std::unordered_map<std::string, std::string> log_data;
  3079. log_data["hostname"] = params.hostname;
  3080. log_data["port"] = std::to_string(params.port);
  3081. if (params.api_keys.size() == 1) {
  3082. auto key = params.api_keys[0];
  3083. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3084. } else if (params.api_keys.size() > 1) {
  3085. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3086. }
  3087. // Necessary similarity of prompt for slot selection
  3088. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3089. //
  3090. // Middlewares
  3091. //
  3092. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3093. static const std::unordered_set<std::string> public_endpoints = {
  3094. "/health",
  3095. "/models",
  3096. "/v1/models",
  3097. "/api/tags"
  3098. };
  3099. // If API key is not set, skip validation
  3100. if (params.api_keys.empty()) {
  3101. return true;
  3102. }
  3103. // If path is public or is static file, skip validation
  3104. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3105. return true;
  3106. }
  3107. // Check for API key in the header
  3108. auto auth_header = req.get_header_value("Authorization");
  3109. std::string prefix = "Bearer ";
  3110. if (auth_header.substr(0, prefix.size()) == prefix) {
  3111. std::string received_api_key = auth_header.substr(prefix.size());
  3112. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3113. return true; // API key is valid
  3114. }
  3115. }
  3116. // API key is invalid or not provided
  3117. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3118. LOG_WRN("Unauthorized: Invalid API Key\n");
  3119. return false;
  3120. };
  3121. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3122. server_state current_state = state.load();
  3123. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3124. auto tmp = string_split<std::string>(req.path, '.');
  3125. if (req.path == "/" || tmp.back() == "html") {
  3126. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3127. res.status = 503;
  3128. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3129. // allow the models endpoint to be accessed during loading
  3130. return true;
  3131. } else {
  3132. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3133. }
  3134. return false;
  3135. }
  3136. return true;
  3137. };
  3138. // register server middlewares
  3139. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3140. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3141. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3142. if (req.method == "OPTIONS") {
  3143. res.set_header("Access-Control-Allow-Credentials", "true");
  3144. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3145. res.set_header("Access-Control-Allow-Headers", "*");
  3146. res.set_content("", "text/html"); // blank response, no data
  3147. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3148. }
  3149. if (!middleware_server_state(req, res)) {
  3150. return httplib::Server::HandlerResponse::Handled;
  3151. }
  3152. if (!middleware_validate_api_key(req, res)) {
  3153. return httplib::Server::HandlerResponse::Handled;
  3154. }
  3155. return httplib::Server::HandlerResponse::Unhandled;
  3156. });
  3157. //
  3158. // Route handlers (or controllers)
  3159. //
  3160. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3161. // error and loading states are handled by middleware
  3162. json health = {{"status", "ok"}};
  3163. res_ok(res, health);
  3164. };
  3165. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3166. if (!params.endpoint_slots) {
  3167. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3168. return;
  3169. }
  3170. // request slots data using task queue
  3171. int task_id = ctx_server.queue_tasks.get_new_id();
  3172. {
  3173. server_task task(SERVER_TASK_TYPE_METRICS);
  3174. task.id = task_id;
  3175. ctx_server.queue_results.add_waiting_task_id(task_id);
  3176. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3177. }
  3178. // get the result
  3179. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3180. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3181. if (result->is_error()) {
  3182. res_error(res, result->to_json());
  3183. return;
  3184. }
  3185. // TODO: get rid of this dynamic_cast
  3186. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3187. GGML_ASSERT(res_metrics != nullptr);
  3188. // optionally return "fail_on_no_slot" error
  3189. if (req.has_param("fail_on_no_slot")) {
  3190. if (res_metrics->n_idle_slots == 0) {
  3191. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3192. return;
  3193. }
  3194. }
  3195. res_ok(res, res_metrics->slots_data);
  3196. };
  3197. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3198. if (!params.endpoint_metrics) {
  3199. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3200. return;
  3201. }
  3202. // request slots data using task queue
  3203. int task_id = ctx_server.queue_tasks.get_new_id();
  3204. {
  3205. server_task task(SERVER_TASK_TYPE_METRICS);
  3206. task.id = task_id;
  3207. ctx_server.queue_results.add_waiting_task_id(task_id);
  3208. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3209. }
  3210. // get the result
  3211. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3212. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3213. if (result->is_error()) {
  3214. res_error(res, result->to_json());
  3215. return;
  3216. }
  3217. // TODO: get rid of this dynamic_cast
  3218. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3219. GGML_ASSERT(res_metrics != nullptr);
  3220. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3221. json all_metrics_def = json {
  3222. {"counter", {{
  3223. {"name", "prompt_tokens_total"},
  3224. {"help", "Number of prompt tokens processed."},
  3225. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3226. }, {
  3227. {"name", "prompt_seconds_total"},
  3228. {"help", "Prompt process time"},
  3229. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3230. }, {
  3231. {"name", "tokens_predicted_total"},
  3232. {"help", "Number of generation tokens processed."},
  3233. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3234. }, {
  3235. {"name", "tokens_predicted_seconds_total"},
  3236. {"help", "Predict process time"},
  3237. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3238. }, {
  3239. {"name", "n_decode_total"},
  3240. {"help", "Total number of llama_decode() calls"},
  3241. {"value", res_metrics->n_decode_total}
  3242. }, {
  3243. {"name", "n_busy_slots_per_decode"},
  3244. {"help", "Average number of busy slots per llama_decode() call"},
  3245. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3246. }}},
  3247. {"gauge", {{
  3248. {"name", "prompt_tokens_seconds"},
  3249. {"help", "Average prompt throughput in tokens/s."},
  3250. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3251. },{
  3252. {"name", "predicted_tokens_seconds"},
  3253. {"help", "Average generation throughput in tokens/s."},
  3254. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3255. },{
  3256. {"name", "requests_processing"},
  3257. {"help", "Number of requests processing."},
  3258. {"value", (uint64_t) res_metrics->n_processing_slots}
  3259. },{
  3260. {"name", "requests_deferred"},
  3261. {"help", "Number of requests deferred."},
  3262. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3263. }}}
  3264. };
  3265. std::stringstream prometheus;
  3266. for (const auto & el : all_metrics_def.items()) {
  3267. const auto & type = el.key();
  3268. const auto & metrics_def = el.value();
  3269. for (const auto & metric_def : metrics_def) {
  3270. const std::string name = metric_def.at("name");
  3271. const std::string help = metric_def.at("help");
  3272. auto value = json_value(metric_def, "value", 0.);
  3273. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3274. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3275. << "llamacpp:" << name << " " << value << "\n";
  3276. }
  3277. }
  3278. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3279. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3280. res.status = 200; // HTTP OK
  3281. };
  3282. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3283. json request_data = json::parse(req.body);
  3284. std::string filename = request_data.at("filename");
  3285. if (!fs_validate_filename(filename)) {
  3286. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3287. return;
  3288. }
  3289. std::string filepath = params.slot_save_path + filename;
  3290. int task_id = ctx_server.queue_tasks.get_new_id();
  3291. {
  3292. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3293. task.id = task_id;
  3294. task.slot_action.slot_id = id_slot;
  3295. task.slot_action.filename = filename;
  3296. task.slot_action.filepath = filepath;
  3297. ctx_server.queue_results.add_waiting_task_id(task_id);
  3298. ctx_server.queue_tasks.post(std::move(task));
  3299. }
  3300. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3301. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3302. if (result->is_error()) {
  3303. res_error(res, result->to_json());
  3304. return;
  3305. }
  3306. res_ok(res, result->to_json());
  3307. };
  3308. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3309. json request_data = json::parse(req.body);
  3310. std::string filename = request_data.at("filename");
  3311. if (!fs_validate_filename(filename)) {
  3312. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3313. return;
  3314. }
  3315. std::string filepath = params.slot_save_path + filename;
  3316. int task_id = ctx_server.queue_tasks.get_new_id();
  3317. {
  3318. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3319. task.id = task_id;
  3320. task.slot_action.slot_id = id_slot;
  3321. task.slot_action.filename = filename;
  3322. task.slot_action.filepath = filepath;
  3323. ctx_server.queue_results.add_waiting_task_id(task_id);
  3324. ctx_server.queue_tasks.post(std::move(task));
  3325. }
  3326. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3327. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3328. if (result->is_error()) {
  3329. res_error(res, result->to_json());
  3330. return;
  3331. }
  3332. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3333. res_ok(res, result->to_json());
  3334. };
  3335. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3336. int task_id = ctx_server.queue_tasks.get_new_id();
  3337. {
  3338. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3339. task.id = task_id;
  3340. task.slot_action.slot_id = id_slot;
  3341. ctx_server.queue_results.add_waiting_task_id(task_id);
  3342. ctx_server.queue_tasks.post(std::move(task));
  3343. }
  3344. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3345. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3346. if (result->is_error()) {
  3347. res_error(res, result->to_json());
  3348. return;
  3349. }
  3350. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3351. res_ok(res, result->to_json());
  3352. };
  3353. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3354. if (params.slot_save_path.empty()) {
  3355. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3356. return;
  3357. }
  3358. std::string id_slot_str = req.path_params.at("id_slot");
  3359. int id_slot;
  3360. try {
  3361. id_slot = std::stoi(id_slot_str);
  3362. } catch (const std::exception &) {
  3363. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3364. return;
  3365. }
  3366. std::string action = req.get_param_value("action");
  3367. if (action == "save") {
  3368. handle_slots_save(req, res, id_slot);
  3369. } else if (action == "restore") {
  3370. handle_slots_restore(req, res, id_slot);
  3371. } else if (action == "erase") {
  3372. handle_slots_erase(req, res, id_slot);
  3373. } else {
  3374. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3375. }
  3376. };
  3377. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3378. // this endpoint is publicly available, please only return what is safe to be exposed
  3379. json data = {
  3380. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3381. { "total_slots", ctx_server.params_base.n_parallel },
  3382. { "model_path", ctx_server.params_base.model.path },
  3383. { "modalities", json{
  3384. {"vision", ctx_server.oai_parser_opt.allow_image},
  3385. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3386. } },
  3387. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3388. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3389. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3390. { "build_info", build_info },
  3391. };
  3392. if (ctx_server.params_base.use_jinja) {
  3393. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3394. data["chat_template_tool_use"] = tool_use_src;
  3395. }
  3396. }
  3397. res_ok(res, data);
  3398. };
  3399. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3400. if (!ctx_server.params_base.endpoint_props) {
  3401. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3402. return;
  3403. }
  3404. json data = json::parse(req.body);
  3405. // update any props here
  3406. res_ok(res, {{ "success", true }});
  3407. };
  3408. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3409. json data = {
  3410. {
  3411. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3412. },
  3413. {
  3414. "model_info", {
  3415. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3416. }
  3417. },
  3418. {"modelfile", ""},
  3419. {"parameters", ""},
  3420. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3421. {"details", {
  3422. {"parent_model", ""},
  3423. {"format", "gguf"},
  3424. {"family", ""},
  3425. {"families", {""}},
  3426. {"parameter_size", ""},
  3427. {"quantization_level", ""}
  3428. }},
  3429. {"model_info", ""},
  3430. {"capabilities", {"completion"}}
  3431. };
  3432. res_ok(res, data);
  3433. };
  3434. // handle completion-like requests (completion, chat, infill)
  3435. // we can optionally provide a custom format for partial results and final results
  3436. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3437. server_task_type type,
  3438. json & data,
  3439. const std::vector<raw_buffer> & files,
  3440. const std::function<bool()> & is_connection_closed,
  3441. httplib::Response & res,
  3442. oaicompat_type oaicompat) -> void {
  3443. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3444. if (ctx_server.params_base.embedding) {
  3445. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3446. return;
  3447. }
  3448. auto completion_id = gen_chatcmplid();
  3449. std::unordered_set<int> task_ids;
  3450. try {
  3451. std::vector<server_task> tasks;
  3452. const auto & prompt = data.at("prompt");
  3453. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3454. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3455. // process files
  3456. mtmd::bitmaps bitmaps;
  3457. const bool has_mtmd = ctx_server.mctx != nullptr;
  3458. {
  3459. if (!has_mtmd && !files.empty()) {
  3460. throw std::runtime_error("This server does not support multimodal");
  3461. }
  3462. for (auto & file : files) {
  3463. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3464. if (!bmp.ptr) {
  3465. throw std::runtime_error("Failed to load image or audio file");
  3466. }
  3467. // calculate bitmap hash (for KV caching)
  3468. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3469. bmp.set_id(hash.c_str());
  3470. bitmaps.entries.push_back(std::move(bmp));
  3471. }
  3472. }
  3473. // process prompt
  3474. std::vector<server_tokens> inputs;
  3475. if (oaicompat && !prompt.is_string()) {
  3476. throw std::runtime_error("prompt must be a string");
  3477. }
  3478. if (oaicompat && has_mtmd) {
  3479. // multimodal
  3480. std::string prompt_str = prompt.get<std::string>();
  3481. mtmd_input_text inp_txt = {
  3482. prompt_str.c_str(),
  3483. /* add_special */ true,
  3484. /* parse_special */ true,
  3485. };
  3486. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3487. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3488. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3489. chunks.ptr.get(),
  3490. &inp_txt,
  3491. bitmaps_c_ptr.data(),
  3492. bitmaps_c_ptr.size());
  3493. if (tokenized != 0) {
  3494. throw std::runtime_error("Failed to tokenize prompt");
  3495. }
  3496. server_tokens tmp(chunks, true);
  3497. inputs.push_back(std::move(tmp));
  3498. } else {
  3499. // non-multimodal version
  3500. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3501. for (auto & p : tokenized_prompts) {
  3502. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3503. inputs.push_back(std::move(tmp));
  3504. }
  3505. }
  3506. tasks.reserve(inputs.size());
  3507. for (size_t i = 0; i < inputs.size(); i++) {
  3508. server_task task = server_task(type);
  3509. task.id = ctx_server.queue_tasks.get_new_id();
  3510. task.index = i;
  3511. task.prompt_tokens = std::move(inputs[i]);
  3512. task.params = server_task::params_from_json_cmpl(
  3513. ctx_server.ctx,
  3514. ctx_server.params_base,
  3515. data);
  3516. task.id_selected_slot = json_value(data, "id_slot", -1);
  3517. // OAI-compat
  3518. task.params.oaicompat = oaicompat;
  3519. task.params.oaicompat_cmpl_id = completion_id;
  3520. // oaicompat_model is already populated by params_from_json_cmpl
  3521. tasks.push_back(std::move(task));
  3522. }
  3523. task_ids = server_task::get_list_id(tasks);
  3524. ctx_server.queue_results.add_waiting_tasks(tasks);
  3525. ctx_server.queue_tasks.post(std::move(tasks));
  3526. } catch (const std::exception & e) {
  3527. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3528. return;
  3529. }
  3530. bool stream = json_value(data, "stream", false);
  3531. if (!stream) {
  3532. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3533. if (results.size() == 1) {
  3534. // single result
  3535. res_ok(res, results[0]->to_json());
  3536. } else {
  3537. // multiple results (multitask)
  3538. json arr = json::array();
  3539. for (auto & res : results) {
  3540. arr.push_back(res->to_json());
  3541. }
  3542. res_ok(res, arr);
  3543. }
  3544. }, [&](const json & error_data) {
  3545. res_error(res, error_data);
  3546. }, is_connection_closed);
  3547. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3548. } else {
  3549. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3550. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3551. json res_json = result->to_json();
  3552. if (res_json.is_array()) {
  3553. for (const auto & res : res_json) {
  3554. if (!server_sent_event(sink, "data", res)) {
  3555. // sending failed (HTTP connection closed), cancel the generation
  3556. return false;
  3557. }
  3558. }
  3559. return true;
  3560. } else {
  3561. return server_sent_event(sink, "data", res_json);
  3562. }
  3563. }, [&](const json & error_data) {
  3564. server_sent_event(sink, "error", error_data);
  3565. }, [&sink]() {
  3566. // note: do not use req.is_connection_closed here because req is already destroyed
  3567. return !sink.is_writable();
  3568. });
  3569. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3570. static const std::string ev_done = "data: [DONE]\n\n";
  3571. sink.write(ev_done.data(), ev_done.size());
  3572. }
  3573. sink.done();
  3574. return false;
  3575. };
  3576. auto on_complete = [task_ids, &ctx_server] (bool) {
  3577. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3578. };
  3579. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3580. }
  3581. };
  3582. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3583. json data = json::parse(req.body);
  3584. std::vector<raw_buffer> files; // dummy
  3585. handle_completions_impl(
  3586. SERVER_TASK_TYPE_COMPLETION,
  3587. data,
  3588. files,
  3589. req.is_connection_closed,
  3590. res,
  3591. OAICOMPAT_TYPE_NONE);
  3592. };
  3593. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3594. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3595. std::vector<raw_buffer> files; // dummy
  3596. handle_completions_impl(
  3597. SERVER_TASK_TYPE_COMPLETION,
  3598. data,
  3599. files,
  3600. req.is_connection_closed,
  3601. res,
  3602. OAICOMPAT_TYPE_COMPLETION);
  3603. };
  3604. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3605. // check model compatibility
  3606. std::string err;
  3607. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3608. err += "prefix token is missing. ";
  3609. }
  3610. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3611. err += "suffix token is missing. ";
  3612. }
  3613. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3614. err += "middle token is missing. ";
  3615. }
  3616. if (!err.empty()) {
  3617. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3618. return;
  3619. }
  3620. json data = json::parse(req.body);
  3621. // validate input
  3622. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3623. // prompt is optional
  3624. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3625. }
  3626. if (!data.contains("input_prefix")) {
  3627. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3628. }
  3629. if (!data.contains("input_suffix")) {
  3630. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3631. }
  3632. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3633. // input_extra is optional
  3634. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3635. return;
  3636. }
  3637. json input_extra = json_value(data, "input_extra", json::array());
  3638. for (const auto & chunk : input_extra) {
  3639. // { "text": string, "filename": string }
  3640. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3641. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3642. return;
  3643. }
  3644. // filename is optional
  3645. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3646. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3647. return;
  3648. }
  3649. }
  3650. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3651. std::string prompt = json_value(data, "prompt", std::string());
  3652. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3653. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3654. data["prompt"] = format_infill(
  3655. ctx_server.vocab,
  3656. data.at("input_prefix"),
  3657. data.at("input_suffix"),
  3658. data.at("input_extra"),
  3659. ctx_server.params_base.n_batch,
  3660. ctx_server.params_base.n_predict,
  3661. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3662. ctx_server.params_base.spm_infill,
  3663. tokenized_prompts[0]
  3664. );
  3665. std::vector<raw_buffer> files; // dummy
  3666. handle_completions_impl(
  3667. SERVER_TASK_TYPE_INFILL,
  3668. data,
  3669. files,
  3670. req.is_connection_closed,
  3671. res,
  3672. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3673. };
  3674. const auto handle_chat_completions = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3675. LOG_DBG("request: %s\n", req.body.c_str());
  3676. if (ctx_server.params_base.embedding) {
  3677. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3678. return;
  3679. }
  3680. auto body = json::parse(req.body);
  3681. std::vector<raw_buffer> files;
  3682. json data = oaicompat_chat_params_parse(
  3683. body,
  3684. ctx_server.oai_parser_opt,
  3685. files);
  3686. handle_completions_impl(
  3687. SERVER_TASK_TYPE_COMPLETION,
  3688. data,
  3689. files,
  3690. req.is_connection_closed,
  3691. res,
  3692. OAICOMPAT_TYPE_CHAT);
  3693. };
  3694. // same with handle_chat_completions, but without inference part
  3695. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3696. auto body = json::parse(req.body);
  3697. std::vector<raw_buffer> files; // dummy, unused
  3698. json data = oaicompat_chat_params_parse(
  3699. body,
  3700. ctx_server.oai_parser_opt,
  3701. files);
  3702. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3703. };
  3704. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3705. server_state current_state = state.load();
  3706. json model_meta = nullptr;
  3707. if (current_state == SERVER_STATE_READY) {
  3708. model_meta = ctx_server.model_meta();
  3709. }
  3710. json models = {
  3711. {"models", {
  3712. {
  3713. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3714. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3715. {"modified_at", ""},
  3716. {"size", ""},
  3717. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3718. {"type", "model"},
  3719. {"description", ""},
  3720. {"tags", {""}},
  3721. {"capabilities", {"completion"}},
  3722. {"parameters", ""},
  3723. {"details", {
  3724. {"parent_model", ""},
  3725. {"format", "gguf"},
  3726. {"family", ""},
  3727. {"families", {""}},
  3728. {"parameter_size", ""},
  3729. {"quantization_level", ""}
  3730. }}
  3731. }
  3732. }},
  3733. {"object", "list"},
  3734. {"data", {
  3735. {
  3736. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3737. {"object", "model"},
  3738. {"created", std::time(0)},
  3739. {"owned_by", "llamacpp"},
  3740. {"meta", model_meta},
  3741. },
  3742. }}
  3743. };
  3744. res_ok(res, models);
  3745. };
  3746. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3747. const json body = json::parse(req.body);
  3748. json tokens_response = json::array();
  3749. if (body.count("content") != 0) {
  3750. const bool add_special = json_value(body, "add_special", false);
  3751. const bool with_pieces = json_value(body, "with_pieces", false);
  3752. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3753. if (with_pieces) {
  3754. for (const auto& token : tokens) {
  3755. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3756. json piece_json;
  3757. // Check if the piece is valid UTF-8
  3758. if (is_valid_utf8(piece)) {
  3759. piece_json = piece;
  3760. } else {
  3761. // If not valid UTF-8, store as array of byte values
  3762. piece_json = json::array();
  3763. for (unsigned char c : piece) {
  3764. piece_json.push_back(static_cast<int>(c));
  3765. }
  3766. }
  3767. tokens_response.push_back({
  3768. {"id", token},
  3769. {"piece", piece_json}
  3770. });
  3771. }
  3772. } else {
  3773. tokens_response = tokens;
  3774. }
  3775. }
  3776. const json data = format_tokenizer_response(tokens_response);
  3777. res_ok(res, data);
  3778. };
  3779. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3780. const json body = json::parse(req.body);
  3781. std::string content;
  3782. if (body.count("tokens") != 0) {
  3783. const llama_tokens tokens = body.at("tokens");
  3784. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3785. }
  3786. const json data = format_detokenized_response(content);
  3787. res_ok(res, data);
  3788. };
  3789. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3790. const json body = json::parse(req.body);
  3791. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3792. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3793. return;
  3794. }
  3795. // for the shape of input/content, see tokenize_input_prompts()
  3796. json prompt;
  3797. if (body.count("input") != 0) {
  3798. prompt = body.at("input");
  3799. } else if (body.contains("content")) {
  3800. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3801. prompt = body.at("content");
  3802. } else {
  3803. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3804. return;
  3805. }
  3806. bool use_base64 = false;
  3807. if (body.count("encoding_format") != 0) {
  3808. const std::string& format = body.at("encoding_format");
  3809. if (format == "base64") {
  3810. use_base64 = true;
  3811. } else if (format != "float") {
  3812. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3813. return;
  3814. }
  3815. }
  3816. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3817. for (const auto & tokens : tokenized_prompts) {
  3818. // this check is necessary for models that do not add BOS token to the input
  3819. if (tokens.empty()) {
  3820. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3821. return;
  3822. }
  3823. }
  3824. // create and queue the task
  3825. json responses = json::array();
  3826. bool error = false;
  3827. std::unordered_set<int> task_ids;
  3828. {
  3829. std::vector<server_task> tasks;
  3830. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3831. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3832. task.id = ctx_server.queue_tasks.get_new_id();
  3833. task.index = i;
  3834. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3835. // OAI-compat
  3836. task.params.oaicompat = oaicompat;
  3837. tasks.push_back(std::move(task));
  3838. }
  3839. task_ids = server_task::get_list_id(tasks);
  3840. ctx_server.queue_results.add_waiting_tasks(tasks);
  3841. ctx_server.queue_tasks.post(std::move(tasks));
  3842. }
  3843. // get the result
  3844. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3845. for (auto & res : results) {
  3846. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3847. responses.push_back(res->to_json());
  3848. }
  3849. }, [&](const json & error_data) {
  3850. res_error(res, error_data);
  3851. error = true;
  3852. }, req.is_connection_closed);
  3853. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3854. if (error) {
  3855. return;
  3856. }
  3857. // write JSON response
  3858. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3859. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3860. : json(responses);
  3861. res_ok(res, root);
  3862. };
  3863. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3864. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3865. };
  3866. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3867. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3868. };
  3869. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3870. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3871. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3872. return;
  3873. }
  3874. const json body = json::parse(req.body);
  3875. // TODO: implement
  3876. //int top_n = 1;
  3877. //if (body.count("top_n") != 1) {
  3878. // top_n = body.at("top_n");
  3879. //} else {
  3880. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3881. // return;
  3882. //}
  3883. // if true, use TEI API format, otherwise use Jina API format
  3884. // Jina: https://jina.ai/reranker/
  3885. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3886. bool is_tei_format = body.contains("texts");
  3887. json query;
  3888. if (body.count("query") == 1) {
  3889. query = body.at("query");
  3890. if (!query.is_string()) {
  3891. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3892. return;
  3893. }
  3894. } else {
  3895. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3896. return;
  3897. }
  3898. std::vector<std::string> documents = json_value(body, "documents",
  3899. json_value(body, "texts", std::vector<std::string>()));
  3900. if (documents.empty()) {
  3901. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3902. return;
  3903. }
  3904. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3905. // create and queue the task
  3906. json responses = json::array();
  3907. bool error = false;
  3908. std::unordered_set<int> task_ids;
  3909. {
  3910. std::vector<server_task> tasks;
  3911. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3912. tasks.reserve(tokenized_docs.size());
  3913. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3914. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3915. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3916. task.id = ctx_server.queue_tasks.get_new_id();
  3917. task.index = i;
  3918. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3919. tasks.push_back(std::move(task));
  3920. }
  3921. task_ids = server_task::get_list_id(tasks);
  3922. ctx_server.queue_results.add_waiting_tasks(tasks);
  3923. ctx_server.queue_tasks.post(std::move(tasks));
  3924. }
  3925. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3926. for (auto & res : results) {
  3927. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3928. responses.push_back(res->to_json());
  3929. }
  3930. }, [&](const json & error_data) {
  3931. res_error(res, error_data);
  3932. error = true;
  3933. }, req.is_connection_closed);
  3934. if (error) {
  3935. return;
  3936. }
  3937. // write JSON response
  3938. json root = format_response_rerank(
  3939. body,
  3940. responses,
  3941. is_tei_format,
  3942. documents);
  3943. res_ok(res, root);
  3944. };
  3945. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3946. json result = json::array();
  3947. const auto & loras = ctx_server.params_base.lora_adapters;
  3948. for (size_t i = 0; i < loras.size(); ++i) {
  3949. auto & lora = loras[i];
  3950. result.push_back({
  3951. {"id", i},
  3952. {"path", lora.path},
  3953. {"scale", lora.scale},
  3954. });
  3955. }
  3956. res_ok(res, result);
  3957. res.status = 200; // HTTP OK
  3958. };
  3959. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3960. const json body = json::parse(req.body);
  3961. if (!body.is_array()) {
  3962. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3963. return;
  3964. }
  3965. int task_id = ctx_server.queue_tasks.get_new_id();
  3966. {
  3967. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3968. task.id = task_id;
  3969. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3970. ctx_server.queue_results.add_waiting_task_id(task_id);
  3971. ctx_server.queue_tasks.post(std::move(task));
  3972. }
  3973. // get the result
  3974. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3975. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3976. if (result->is_error()) {
  3977. res_error(res, result->to_json());
  3978. return;
  3979. }
  3980. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3981. res_ok(res, result->to_json());
  3982. };
  3983. //
  3984. // Router
  3985. //
  3986. if (!params.webui) {
  3987. LOG_INF("Web UI is disabled\n");
  3988. } else {
  3989. // register static assets routes
  3990. if (!params.public_path.empty()) {
  3991. // Set the base directory for serving static files
  3992. bool is_found = svr->set_mount_point("/", params.public_path);
  3993. if (!is_found) {
  3994. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3995. return 1;
  3996. }
  3997. } else {
  3998. // using embedded static index.html
  3999. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  4000. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4001. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4002. } else {
  4003. res.set_header("Content-Encoding", "gzip");
  4004. // COEP and COOP headers, required by pyodide (python interpreter)
  4005. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4006. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4007. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4008. }
  4009. return false;
  4010. });
  4011. }
  4012. }
  4013. // register API routes
  4014. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  4015. svr->Get ("/metrics", handle_metrics);
  4016. svr->Get ("/props", handle_props);
  4017. svr->Post("/props", handle_props_change);
  4018. svr->Post("/api/show", handle_api_show);
  4019. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  4020. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  4021. svr->Get ("/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4022. svr->Post("/completion", handle_completions); // legacy
  4023. svr->Post("/completions", handle_completions);
  4024. svr->Post("/v1/completions", handle_completions_oai);
  4025. svr->Post("/chat/completions", handle_chat_completions);
  4026. svr->Post("/v1/chat/completions", handle_chat_completions);
  4027. svr->Post("/api/chat", handle_chat_completions); // ollama specific endpoint
  4028. svr->Post("/infill", handle_infill);
  4029. svr->Post("/embedding", handle_embeddings); // legacy
  4030. svr->Post("/embeddings", handle_embeddings);
  4031. svr->Post("/v1/embeddings", handle_embeddings_oai);
  4032. svr->Post("/rerank", handle_rerank);
  4033. svr->Post("/reranking", handle_rerank);
  4034. svr->Post("/v1/rerank", handle_rerank);
  4035. svr->Post("/v1/reranking", handle_rerank);
  4036. svr->Post("/tokenize", handle_tokenize);
  4037. svr->Post("/detokenize", handle_detokenize);
  4038. svr->Post("/apply-template", handle_apply_template);
  4039. // LoRA adapters hotswap
  4040. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  4041. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  4042. // Save & load slots
  4043. svr->Get ("/slots", handle_slots);
  4044. svr->Post("/slots/:id_slot", handle_slots_action);
  4045. //
  4046. // Start the server
  4047. //
  4048. if (params.n_threads_http < 1) {
  4049. // +2 threads for monitoring endpoints
  4050. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4051. }
  4052. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4053. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4054. // clean up function, to be called before exit
  4055. auto clean_up = [&svr, &ctx_server]() {
  4056. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4057. svr->stop();
  4058. ctx_server.queue_results.terminate();
  4059. llama_backend_free();
  4060. };
  4061. bool was_bound = false;
  4062. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4063. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4064. svr->set_address_family(AF_UNIX);
  4065. // bind_to_port requires a second arg, any value other than 0 should
  4066. // simply get ignored
  4067. was_bound = svr->bind_to_port(params.hostname, 8080);
  4068. } else {
  4069. LOG_INF("%s: binding port with default address family\n", __func__);
  4070. // bind HTTP listen port
  4071. if (params.port == 0) {
  4072. int bound_port = svr->bind_to_any_port(params.hostname);
  4073. if ((was_bound = (bound_port >= 0))) {
  4074. params.port = bound_port;
  4075. }
  4076. } else {
  4077. was_bound = svr->bind_to_port(params.hostname, params.port);
  4078. }
  4079. }
  4080. if (!was_bound) {
  4081. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4082. clean_up();
  4083. return 1;
  4084. }
  4085. // run the HTTP server in a thread
  4086. std::thread t([&]() { svr->listen_after_bind(); });
  4087. svr->wait_until_ready();
  4088. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4089. // load the model
  4090. LOG_INF("%s: loading model\n", __func__);
  4091. if (!ctx_server.load_model(params)) {
  4092. clean_up();
  4093. t.join();
  4094. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4095. return 1;
  4096. }
  4097. ctx_server.init();
  4098. state.store(SERVER_STATE_READY);
  4099. LOG_INF("%s: model loaded\n", __func__);
  4100. // print sample chat example to make it clear which template is used
  4101. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4102. common_chat_templates_source(ctx_server.chat_templates.get()),
  4103. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4104. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4105. ctx_server.process_single_task(std::move(task));
  4106. });
  4107. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4108. ctx_server.update_slots();
  4109. });
  4110. shutdown_handler = [&](int) {
  4111. // this will unblock start_loop()
  4112. ctx_server.queue_tasks.terminate();
  4113. };
  4114. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4115. struct sigaction sigint_action;
  4116. sigint_action.sa_handler = signal_handler;
  4117. sigemptyset (&sigint_action.sa_mask);
  4118. sigint_action.sa_flags = 0;
  4119. sigaction(SIGINT, &sigint_action, NULL);
  4120. sigaction(SIGTERM, &sigint_action, NULL);
  4121. #elif defined (_WIN32)
  4122. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4123. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4124. };
  4125. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4126. #endif
  4127. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  4128. // this call blocks the main thread until queue_tasks.terminate() is called
  4129. ctx_server.queue_tasks.start_loop();
  4130. clean_up();
  4131. t.join();
  4132. return 0;
  4133. }