passkey.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <cmath>
  6. #include <cstdio>
  7. #include <string>
  8. #include <vector>
  9. static void print_usage(int, char ** argv) {
  10. LOG("\nexample usage:\n");
  11. LOG("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
  12. LOG("\n");
  13. }
  14. int main(int argc, char ** argv) {
  15. common_params params;
  16. params.n_junk = 250;
  17. params.n_keep = 32;
  18. params.i_pos = -1;
  19. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
  20. return 1;
  21. }
  22. common_init();
  23. int n_junk = params.n_junk;
  24. int n_keep = params.n_keep;
  25. int n_grp = params.grp_attn_n;
  26. int i_pos = params.i_pos;
  27. if (i_pos == -1) {
  28. i_pos = rand() % n_junk;
  29. }
  30. const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
  31. const std::string prompt_suffix = " What is the pass key? The pass key is";
  32. // generate junk text
  33. params.prompt = prompt_prefix;
  34. const int passkey = rand() % 50000 + 1;
  35. for (int i = 0; i < n_junk; i++) {
  36. if (i % n_junk == i_pos) {
  37. params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
  38. }
  39. params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
  40. }
  41. params.prompt += prompt_suffix;
  42. // init LLM
  43. llama_backend_init();
  44. llama_numa_init(params.numa);
  45. // initialize the model
  46. llama_model_params model_params = common_model_params_to_llama(params);
  47. llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
  48. if (model == NULL) {
  49. LOG_ERR("%s: unable to load model\n" , __func__);
  50. return 1;
  51. }
  52. // initialize the context
  53. llama_context_params ctx_params = common_context_params_to_llama(params);
  54. ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
  55. GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
  56. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  57. if (ctx == NULL) {
  58. LOG_ERR("%s: failed to create the llama_context\n" , __func__);
  59. return 1;
  60. }
  61. auto sparams = llama_sampler_chain_default_params();
  62. llama_sampler * smpl = llama_sampler_chain_init(sparams);
  63. llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
  64. // tokenize the prompt
  65. std::vector<llama_token> tokens_list;
  66. tokens_list = common_tokenize(ctx, params.prompt, true);
  67. // tokenize the prefix and use it as a sink
  68. const int n_tokens_prefix = common_tokenize(ctx, prompt_prefix, true).size();
  69. const int n_tokens_all = tokens_list.size();
  70. // we leave a margin of 16 tokens for the generated text - it should contain just the passkey
  71. const int n_predict = 16;
  72. // total length of the sequences including the prompt
  73. const int n_len = n_tokens_all + n_predict;
  74. const int n_ctx = llama_n_ctx(ctx) - n_keep;
  75. const int n_kv_req = llama_n_ctx(ctx);
  76. const int n_batch = ctx_params.n_batch;
  77. const int n_batch_grp = ctx_params.n_batch/n_grp;
  78. LOG_INF("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
  79. // print the prompt token-by-token
  80. LOG_INF("\n");
  81. LOG_INF("prefix tokens: %d\n", n_tokens_prefix);
  82. LOG_INF("prompt tokens: %d\n", n_tokens_all);
  83. //LOG_INF("prompt: %s\n", params.prompt.c_str());
  84. llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
  85. int n_past = 0;
  86. // fill the KV cache
  87. for (int i = 0; i < n_ctx; i += n_batch) {
  88. if (i > 0 && n_grp > 1) {
  89. // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
  90. const int ib = i/n_batch - 1;
  91. const int bd = n_batch_grp*(n_grp - 1);
  92. llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
  93. llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
  94. llama_kv_cache_update (ctx);
  95. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  96. }
  97. common_batch_clear(batch);
  98. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  99. common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  100. }
  101. if (i + n_batch >= n_tokens_all) {
  102. batch.logits[batch.n_tokens - 1] = true;
  103. }
  104. if (llama_decode(ctx, batch) != 0) {
  105. LOG_INF("%s: llama_decode() failed\n", __func__);
  106. return 1;
  107. }
  108. LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  109. if (i + n_batch >= n_tokens_all) {
  110. break;
  111. }
  112. }
  113. for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
  114. const int n_discard = n_batch;
  115. LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
  116. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  117. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  118. //llama_kv_cache_defrag (ctx);
  119. llama_kv_cache_update (ctx);
  120. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  121. common_batch_clear(batch);
  122. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  123. common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  124. }
  125. if (i + n_batch >= n_tokens_all) {
  126. batch.logits[batch.n_tokens - 1] = true;
  127. }
  128. if (llama_decode(ctx, batch) != 0) {
  129. LOG_ERR("%s: llama_decode() failed\n", __func__);
  130. return 1;
  131. }
  132. LOG_INF("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  133. }
  134. {
  135. const int n_discard = n_past - n_ctx + n_predict;
  136. if (n_discard > 0) {
  137. LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
  138. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  139. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  140. //llama_kv_cache_defrag (ctx);
  141. llama_kv_cache_update (ctx);
  142. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  143. }
  144. }
  145. LOG_INF("\n");
  146. LOG_INF("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
  147. LOG_INF("\n");
  148. // main loop
  149. int n_cur = n_tokens_all;
  150. int n_decode = 0;
  151. LOG_INF("%s", prompt_suffix.c_str());
  152. const auto t_main_start = ggml_time_us();
  153. while (n_cur <= n_len) {
  154. // sample the next token
  155. {
  156. const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
  157. // is it an end of generation?
  158. if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
  159. LOG("\n");
  160. break;
  161. }
  162. LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
  163. n_decode += 1;
  164. // prepare the next batch
  165. common_batch_clear(batch);
  166. // push this new token for next evaluation
  167. common_batch_add(batch, new_token_id, n_past++, { 0 }, true);
  168. }
  169. n_cur += 1;
  170. // evaluate the current batch with the transformer model
  171. if (llama_decode(ctx, batch)) {
  172. LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
  173. return 1;
  174. }
  175. }
  176. LOG("\n");
  177. const auto t_main_end = ggml_time_us();
  178. LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  179. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  180. LOG("\n");
  181. llama_perf_context_print(ctx);
  182. LOG("\n");
  183. llama_sampler_free(smpl);
  184. llama_batch_free(batch);
  185. llama_free(ctx);
  186. llama_model_free(model);
  187. llama_backend_free();
  188. return 0;
  189. }