| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- #include "llama.h"
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <vector>
- static void print_usage(int, char ** argv) {
- printf("\nexample usage:\n");
- printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
- printf("\n");
- }
- int main(int argc, char ** argv) {
- // path to the model gguf file
- std::string model_path;
- // prompt to generate text from
- std::string prompt = "Hello my name is";
- // number of layers to offload to the GPU
- int ngl = 99;
- // number of tokens to predict
- int n_predict = 32;
- // parse command line arguments
- {
- int i = 1;
- for (; i < argc; i++) {
- if (strcmp(argv[i], "-m") == 0) {
- if (i + 1 < argc) {
- model_path = argv[++i];
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-n") == 0) {
- if (i + 1 < argc) {
- try {
- n_predict = std::stoi(argv[++i]);
- } catch (...) {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-ngl") == 0) {
- if (i + 1 < argc) {
- try {
- ngl = std::stoi(argv[++i]);
- } catch (...) {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- print_usage(argc, argv);
- return 1;
- }
- } else {
- // prompt starts here
- break;
- }
- }
- if (model_path.empty()) {
- print_usage(argc, argv);
- return 1;
- }
- if (i < argc) {
- prompt = argv[i++];
- for (; i < argc; i++) {
- prompt += " ";
- prompt += argv[i];
- }
- }
- }
- // load dynamic backends
- ggml_backend_load_all();
- // initialize the model
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = ngl;
- llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- // tokenize the prompt
- // find the number of tokens in the prompt
- const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
- // allocate space for the tokens and tokenize the prompt
- std::vector<llama_token> prompt_tokens(n_prompt);
- if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
- fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
- return 1;
- }
- // initialize the context
- llama_context_params ctx_params = llama_context_default_params();
- // n_ctx is the context size
- ctx_params.n_ctx = n_prompt + n_predict - 1;
- // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
- ctx_params.n_batch = n_prompt;
- // enable performance counters
- ctx_params.no_perf = false;
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- // initialize the sampler
- auto sparams = llama_sampler_chain_default_params();
- sparams.no_perf = false;
- llama_sampler * smpl = llama_sampler_chain_init(sparams);
- llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
- // print the prompt token-by-token
- for (auto id : prompt_tokens) {
- char buf[128];
- int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
- if (n < 0) {
- fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
- return 1;
- }
- std::string s(buf, n);
- printf("%s", s.c_str());
- }
- // prepare a batch for the prompt
- llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
- // main loop
- const auto t_main_start = ggml_time_us();
- int n_decode = 0;
- llama_token new_token_id;
- for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
- // evaluate the current batch with the transformer model
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
- return 1;
- }
- n_pos += batch.n_tokens;
- // sample the next token
- {
- new_token_id = llama_sampler_sample(smpl, ctx, -1);
- // is it an end of generation?
- if (llama_token_is_eog(model, new_token_id)) {
- break;
- }
- char buf[128];
- int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
- if (n < 0) {
- fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
- return 1;
- }
- std::string s(buf, n);
- printf("%s", s.c_str());
- fflush(stdout);
- // prepare the next batch with the sampled token
- batch = llama_batch_get_one(&new_token_id, 1);
- n_decode += 1;
- }
- }
- printf("\n");
- const auto t_main_end = ggml_time_us();
- fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
- __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
- fprintf(stderr, "\n");
- llama_perf_sampler_print(smpl);
- llama_perf_context_print(ctx);
- fprintf(stderr, "\n");
- llama_sampler_free(smpl);
- llama_free(ctx);
- llama_model_free(model);
- return 0;
- }
|