convert_hf_to_gguf.py 205 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. data = data_torch.squeeze().numpy()
  248. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  249. if len(data.shape) == 0:
  250. data = data_torch.numpy()
  251. n_dims = len(data.shape)
  252. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  253. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  254. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  255. data_qtype = gguf.GGMLQuantizationType.F32
  256. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  257. # Some tensor types are always in float32
  258. if data_qtype is False and (
  259. any(
  260. self.match_model_tensor_name(new_name, key, bid)
  261. for key in (
  262. gguf.MODEL_TENSOR.FFN_GATE_INP,
  263. gguf.MODEL_TENSOR.POS_EMBD,
  264. gguf.MODEL_TENSOR.TOKEN_TYPES,
  265. gguf.MODEL_TENSOR.SSM_CONV1D,
  266. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  267. gguf.MODEL_TENSOR.TIME_MIX_W1,
  268. gguf.MODEL_TENSOR.TIME_MIX_W2,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  271. )
  272. )
  273. or not new_name.endswith(".weight")
  274. ):
  275. data_qtype = gguf.GGMLQuantizationType.F32
  276. if data_qtype is False and any(
  277. self.match_model_tensor_name(new_name, key, bid)
  278. for key in (
  279. gguf.MODEL_TENSOR.TOKEN_EMBD,
  280. gguf.MODEL_TENSOR.OUTPUT,
  281. )
  282. ):
  283. if self.ftype in (
  284. gguf.LlamaFileType.MOSTLY_TQ1_0,
  285. gguf.LlamaFileType.MOSTLY_TQ2_0,
  286. ):
  287. # TODO: use Q4_K and Q6_K
  288. data_qtype = gguf.GGMLQuantizationType.F16
  289. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  290. if isinstance(data_qtype, bool):
  291. if self.ftype == gguf.LlamaFileType.ALL_F32:
  292. data_qtype = gguf.GGMLQuantizationType.F32
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  296. data_qtype = gguf.GGMLQuantizationType.BF16
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  298. data_qtype = gguf.GGMLQuantizationType.Q8_0
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  300. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  302. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  303. else:
  304. raise ValueError(f"Unknown file type: {self.ftype.name}")
  305. try:
  306. data = gguf.quants.quantize(data, data_qtype)
  307. except gguf.QuantError as e:
  308. logger.warning("%s, %s", e, "falling back to F16")
  309. data_qtype = gguf.GGMLQuantizationType.F16
  310. data = gguf.quants.quantize(data, data_qtype)
  311. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  312. # reverse shape to make it similar to the internal ggml dimension order
  313. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  314. # n_dims is implicit in the shape
  315. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  316. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  317. def set_type(self):
  318. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  319. def prepare_metadata(self, vocab_only: bool):
  320. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  321. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  329. output_type: str = self.ftype.name.partition("_")[2]
  330. # Filename Output
  331. if self.fname_out.is_dir():
  332. # Generate default filename based on model specification and available metadata
  333. if not vocab_only:
  334. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  335. else:
  336. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  337. # Use the default filename
  338. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  339. else:
  340. # Output path is a custom defined templated filename
  341. # Note: `not is_dir()` is used because `.is_file()` will not detect
  342. # file template strings as it doesn't actually exist as a file
  343. # Process templated file name with the output ftype, useful with the "auto" ftype
  344. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model tokenizer")
  351. self.set_vocab()
  352. logger.info("Set model quantization version")
  353. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. def write_vocab(self):
  362. if len(self.gguf_writer.tensors) != 1:
  363. raise ValueError('Splitting the vocabulary is not supported')
  364. self.prepare_metadata(vocab_only=True)
  365. self.gguf_writer.write_header_to_file(path=self.fname_out)
  366. self.gguf_writer.write_kv_data_to_file()
  367. self.gguf_writer.close()
  368. @staticmethod
  369. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  370. part_names: list[str] = []
  371. for filename in os.listdir(dir_model):
  372. if filename.startswith(prefix) and filename.endswith(suffix):
  373. part_names.append(filename)
  374. part_names.sort()
  375. return part_names
  376. @staticmethod
  377. def load_hparams(dir_model: Path):
  378. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  379. return json.load(f)
  380. @classmethod
  381. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  382. assert names
  383. def func(modelcls: AnyModel) -> AnyModel:
  384. for name in names:
  385. cls._model_classes[name] = modelcls
  386. return modelcls
  387. return func
  388. @classmethod
  389. def from_model_architecture(cls, arch: str) -> type[Model]:
  390. try:
  391. return cls._model_classes[arch]
  392. except KeyError:
  393. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  394. def does_token_look_special(self, token: str | bytes) -> bool:
  395. if isinstance(token, (bytes, bytearray)):
  396. token_text = token.decode(encoding="utf-8")
  397. elif isinstance(token, memoryview):
  398. token_text = token.tobytes().decode(encoding="utf-8")
  399. else:
  400. token_text = token
  401. # Some models mark some added tokens which ought to be control tokens as not special.
  402. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  403. seems_special = token_text in (
  404. "<pad>", # deepseek-coder
  405. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  406. )
  407. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  408. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  409. # TODO: should these be marked as UNUSED instead? (maybe not)
  410. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  411. return seems_special
  412. # used for GPT-2 BPE and WordPiece vocabs
  413. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  414. tokens: list[str] = []
  415. toktypes: list[int] = []
  416. from transformers import AutoTokenizer
  417. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  418. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  419. assert max(tokenizer.vocab.values()) < vocab_size
  420. tokpre = self.get_vocab_base_pre(tokenizer)
  421. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  422. added_vocab = tokenizer.get_added_vocab()
  423. for i in range(vocab_size):
  424. if i not in reverse_vocab:
  425. tokens.append(f"[PAD{i}]")
  426. toktypes.append(gguf.TokenType.UNUSED)
  427. else:
  428. token: str = reverse_vocab[i]
  429. if token in added_vocab:
  430. # We need to manually encode and decode the added tokens in case special characters
  431. # used for `\n` / `\t` have been manually added in the added tokens
  432. token = tokenizer.decode(tokenizer.encode(token))
  433. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  434. toktypes.append(gguf.TokenType.CONTROL)
  435. else:
  436. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  437. toktypes.append(gguf.TokenType.USER_DEFINED)
  438. else:
  439. toktypes.append(gguf.TokenType.NORMAL)
  440. tokens.append(token)
  441. return tokens, toktypes, tokpre
  442. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  443. # do not modify it manually!
  444. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  445. # Marker: Start get_vocab_base_pre
  446. def get_vocab_base_pre(self, tokenizer) -> str:
  447. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  448. # is specific for the BPE pre-tokenizer used by the model
  449. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  450. # use in llama.cpp to implement the same pre-tokenizer
  451. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  452. chktok = tokenizer.encode(chktxt)
  453. chkhsh = sha256(str(chktok).encode()).hexdigest()
  454. logger.debug(f"chktok: {chktok}")
  455. logger.debug(f"chkhsh: {chkhsh}")
  456. res = None
  457. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  458. # or pull the latest version of the model from Huggingface
  459. # don't edit the hashes manually!
  460. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  461. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  462. res = "llama-bpe"
  463. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  464. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  465. res = "deepseek-llm"
  466. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  467. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  468. res = "deepseek-coder"
  469. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  470. # ref: https://huggingface.co/tiiuae/falcon-7b
  471. res = "falcon"
  472. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  473. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  474. res = "falcon3"
  475. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  476. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  477. res = "bert-bge"
  478. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  479. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  480. res = "bert-bge-large"
  481. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  482. # ref: https://huggingface.co/mosaicml/mpt-7b
  483. res = "mpt"
  484. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  485. # ref: https://huggingface.co/bigcode/starcoder2-3b
  486. res = "starcoder"
  487. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  488. # ref: https://huggingface.co/openai-community/gpt2
  489. res = "gpt-2"
  490. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  491. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  492. res = "stablelm2"
  493. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  494. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  495. res = "refact"
  496. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  497. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  498. res = "command-r"
  499. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  500. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  501. res = "qwen2"
  502. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  503. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  504. res = "olmo"
  505. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  506. # ref: https://huggingface.co/databricks/dbrx-base
  507. res = "dbrx"
  508. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  509. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  510. res = "jina-v1-en"
  511. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  512. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  513. res = "jina-v2-en"
  514. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  515. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  516. res = "jina-v2-es"
  517. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  518. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  519. res = "jina-v2-de"
  520. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  521. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  522. res = "smaug-bpe"
  523. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  524. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  525. res = "poro-chat"
  526. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  527. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  528. res = "jina-v2-code"
  529. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  530. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  531. res = "chatglm-bpe"
  532. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  533. # ref: https://huggingface.co/LumiOpen/Viking-7B
  534. res = "viking"
  535. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  536. # ref: https://huggingface.co/core42/jais-13b
  537. res = "jais"
  538. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  539. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  540. res = "codeshell"
  541. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  542. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  543. res = "tekken"
  544. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  545. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  546. res = "smollm"
  547. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  548. # ref: https://huggingface.co/bigscience/bloom
  549. res = "bloom"
  550. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  551. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  552. res = "gpt3-finnish"
  553. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  554. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  555. res = "exaone"
  556. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  557. # ref: https://huggingface.co/microsoft/phi-2
  558. res = "phi-2"
  559. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  560. # ref: https://huggingface.co/facebook/chameleon-7b
  561. res = "chameleon"
  562. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  563. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  564. res = "minerva-7b"
  565. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  566. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  567. res = "roberta-bpe"
  568. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  569. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  570. res = "gigachat"
  571. if res is None:
  572. logger.warning("\n")
  573. logger.warning("**************************************************************************************")
  574. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  575. logger.warning("** There are 2 possible reasons for this:")
  576. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  577. logger.warning("** - the pre-tokenization config has changed upstream")
  578. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  579. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  580. logger.warning("**")
  581. logger.warning(f"** chkhsh: {chkhsh}")
  582. logger.warning("**************************************************************************************")
  583. logger.warning("\n")
  584. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  585. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  586. logger.debug(f"chkhsh: {chkhsh}")
  587. return res
  588. # Marker: End get_vocab_base_pre
  589. def _set_vocab_gpt2(self) -> None:
  590. tokens, toktypes, tokpre = self.get_vocab_base()
  591. self.gguf_writer.add_tokenizer_model("gpt2")
  592. self.gguf_writer.add_tokenizer_pre(tokpre)
  593. self.gguf_writer.add_token_list(tokens)
  594. self.gguf_writer.add_token_types(toktypes)
  595. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  596. special_vocab.add_to_gguf(self.gguf_writer)
  597. def _set_vocab_qwen(self):
  598. dir_model = self.dir_model
  599. hparams = self.hparams
  600. tokens: list[str] = []
  601. toktypes: list[int] = []
  602. from transformers import AutoTokenizer
  603. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  604. vocab_size = hparams["vocab_size"]
  605. assert max(tokenizer.get_vocab().values()) < vocab_size
  606. tokpre = self.get_vocab_base_pre(tokenizer)
  607. merges = []
  608. vocab = {}
  609. mergeable_ranks = tokenizer.mergeable_ranks
  610. for token, rank in mergeable_ranks.items():
  611. vocab[QwenModel.token_bytes_to_string(token)] = rank
  612. if len(token) == 1:
  613. continue
  614. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  615. assert len(merged) == 2
  616. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  617. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  618. added_vocab = tokenizer.special_tokens
  619. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  620. for i in range(vocab_size):
  621. if i not in reverse_vocab:
  622. tokens.append(f"[PAD{i}]")
  623. toktypes.append(gguf.TokenType.UNUSED)
  624. elif reverse_vocab[i] in added_vocab:
  625. tokens.append(reverse_vocab[i])
  626. toktypes.append(gguf.TokenType.CONTROL)
  627. else:
  628. tokens.append(reverse_vocab[i])
  629. toktypes.append(gguf.TokenType.NORMAL)
  630. self.gguf_writer.add_tokenizer_model("gpt2")
  631. self.gguf_writer.add_tokenizer_pre(tokpre)
  632. self.gguf_writer.add_token_list(tokens)
  633. self.gguf_writer.add_token_types(toktypes)
  634. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  635. special_vocab.merges = merges
  636. # only add special tokens when they were not already loaded from config.json
  637. if len(special_vocab.special_token_ids) == 0:
  638. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  639. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  640. # this one is usually not in config.json anyway
  641. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  642. special_vocab.add_to_gguf(self.gguf_writer)
  643. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  644. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  645. self.gguf_writer.add_tokenizer_model("llama")
  646. self.gguf_writer.add_tokenizer_pre("default")
  647. self.gguf_writer.add_token_list(tokens)
  648. self.gguf_writer.add_token_scores(scores)
  649. self.gguf_writer.add_token_types(toktypes)
  650. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  651. special_vocab.add_to_gguf(self.gguf_writer)
  652. def _create_vocab_sentencepiece(self):
  653. from sentencepiece import SentencePieceProcessor
  654. tokenizer_path = self.dir_model / 'tokenizer.model'
  655. if not tokenizer_path.is_file():
  656. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  657. tokenizer = SentencePieceProcessor()
  658. tokenizer.LoadFromFile(str(tokenizer_path))
  659. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  660. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  661. scores: list[float] = [-10000.0] * vocab_size
  662. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  663. for token_id in range(tokenizer.vocab_size()):
  664. piece = tokenizer.IdToPiece(token_id)
  665. text = piece.encode("utf-8")
  666. score = tokenizer.GetScore(token_id)
  667. toktype = SentencePieceTokenTypes.NORMAL
  668. if tokenizer.IsUnknown(token_id):
  669. toktype = SentencePieceTokenTypes.UNKNOWN
  670. elif tokenizer.IsControl(token_id):
  671. toktype = SentencePieceTokenTypes.CONTROL
  672. elif tokenizer.IsUnused(token_id):
  673. toktype = SentencePieceTokenTypes.UNUSED
  674. elif tokenizer.IsByte(token_id):
  675. toktype = SentencePieceTokenTypes.BYTE
  676. tokens[token_id] = text
  677. scores[token_id] = score
  678. toktypes[token_id] = toktype
  679. added_tokens_file = self.dir_model / 'added_tokens.json'
  680. if added_tokens_file.is_file():
  681. with open(added_tokens_file, "r", encoding="utf-8") as f:
  682. added_tokens_json = json.load(f)
  683. for key in added_tokens_json:
  684. token_id = added_tokens_json[key]
  685. if token_id >= vocab_size:
  686. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  687. continue
  688. tokens[token_id] = key.encode("utf-8")
  689. scores[token_id] = -1000.0
  690. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  691. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  692. if tokenizer_config_file.is_file():
  693. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  694. tokenizer_config_json = json.load(f)
  695. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  696. for token_id, token_data in added_tokens_decoder.items():
  697. token_id = int(token_id)
  698. token: str = token_data["content"]
  699. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  700. if tokens[token_id] != token.encode("utf-8"):
  701. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  702. if token_data.get("special") or self.does_token_look_special(token):
  703. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  704. else:
  705. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  706. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  707. scores[token_id] = -1000.0
  708. tokens[token_id] = token.encode("utf-8")
  709. if vocab_size > len(tokens):
  710. pad_count = vocab_size - len(tokens)
  711. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  712. for i in range(1, pad_count + 1):
  713. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  714. scores.append(-1000.0)
  715. toktypes.append(SentencePieceTokenTypes.UNUSED)
  716. return tokens, scores, toktypes
  717. def _set_vocab_llama_hf(self):
  718. vocab = gguf.LlamaHfVocab(self.dir_model)
  719. tokens = []
  720. scores = []
  721. toktypes = []
  722. for text, score, toktype in vocab.all_tokens():
  723. tokens.append(text)
  724. scores.append(score)
  725. toktypes.append(toktype)
  726. assert len(tokens) == vocab.vocab_size
  727. self.gguf_writer.add_tokenizer_model("llama")
  728. self.gguf_writer.add_tokenizer_pre("default")
  729. self.gguf_writer.add_token_list(tokens)
  730. self.gguf_writer.add_token_scores(scores)
  731. self.gguf_writer.add_token_types(toktypes)
  732. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  733. special_vocab.add_to_gguf(self.gguf_writer)
  734. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  735. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  736. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  737. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  738. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  739. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  740. assert field # tokenizer model
  741. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  742. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  743. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  744. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  745. assert field # token list
  746. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  747. if model_name == "llama-spm":
  748. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  749. assert field # token scores
  750. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  751. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  752. assert field # token types
  753. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  754. if model_name != "llama-spm":
  755. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  756. assert field # token merges
  757. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  758. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  759. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  760. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  761. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  762. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  763. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  764. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  765. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  766. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  767. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  768. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  769. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  770. @Model.register("GPTNeoXForCausalLM")
  771. class GPTNeoXModel(Model):
  772. model_arch = gguf.MODEL_ARCH.GPTNEOX
  773. def set_gguf_parameters(self):
  774. block_count = self.hparams["num_hidden_layers"]
  775. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  776. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  777. self.gguf_writer.add_block_count(block_count)
  778. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  779. self.gguf_writer.add_rope_dimension_count(
  780. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  781. )
  782. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  783. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  784. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  786. del bid # unused
  787. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  788. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  789. tensors: list[tuple[str, Tensor]] = []
  790. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  791. # Map bloom-style qkv_linear to gpt-style qkv_linear
  792. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  793. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  794. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  795. data_torch = torch.cat(
  796. (
  797. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  798. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  799. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  800. ),
  801. dim=0,
  802. )
  803. logger.info("re-format attention.linear_qkv.weight")
  804. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  805. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  806. data_torch = torch.cat(
  807. (
  808. qkv_bias[:, 0, :].reshape((n_embed,)),
  809. qkv_bias[:, 1, :].reshape((n_embed,)),
  810. qkv_bias[:, 2, :].reshape((n_embed,)),
  811. ),
  812. dim=0,
  813. )
  814. logger.info("re-format attention.linear_qkv.bias")
  815. tensors.append((self.map_tensor_name(name), data_torch))
  816. return tensors
  817. @Model.register("BloomForCausalLM", "BloomModel")
  818. class BloomModel(Model):
  819. model_arch = gguf.MODEL_ARCH.BLOOM
  820. def set_gguf_parameters(self):
  821. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  822. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  823. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  824. self.gguf_writer.add_embedding_length(n_embed)
  825. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  826. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  827. self.gguf_writer.add_head_count(n_head)
  828. self.gguf_writer.add_head_count_kv(n_head)
  829. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  830. self.gguf_writer.add_file_type(self.ftype)
  831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  832. del bid # unused
  833. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  834. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  835. name = re.sub(r'transformer\.', '', name)
  836. tensors: list[tuple[str, Tensor]] = []
  837. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  838. # Map bloom-style qkv_linear to gpt-style qkv_linear
  839. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  840. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  841. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  842. data_torch = torch.cat(
  843. (
  844. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  845. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  846. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  847. ),
  848. dim=0,
  849. )
  850. logger.info("re-format attention.linear_qkv.weight")
  851. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  852. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  853. data_torch = torch.cat(
  854. (
  855. qkv_bias[:, 0, :].reshape((n_embed,)),
  856. qkv_bias[:, 1, :].reshape((n_embed,)),
  857. qkv_bias[:, 2, :].reshape((n_embed,)),
  858. ),
  859. dim=0,
  860. )
  861. logger.info("re-format attention.linear_qkv.bias")
  862. tensors.append((self.map_tensor_name(name), data_torch))
  863. if name == "word_embeddings.weight":
  864. assert self.tensor_names is not None
  865. # TODO: tie them at runtime, don't duplicate in the model file
  866. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  867. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  868. return tensors
  869. @Model.register("MPTForCausalLM")
  870. class MPTModel(Model):
  871. model_arch = gguf.MODEL_ARCH.MPT
  872. def set_vocab(self):
  873. try:
  874. self._set_vocab_gpt2()
  875. except Exception:
  876. # Fallback for SEA-LION model
  877. self._set_vocab_sentencepiece()
  878. self.gguf_writer.add_add_bos_token(False)
  879. self.gguf_writer.add_pad_token_id(3)
  880. self.gguf_writer.add_eos_token_id(1)
  881. self.gguf_writer.add_unk_token_id(0)
  882. def set_gguf_parameters(self):
  883. block_count = self.hparams["n_layers"]
  884. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  885. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  886. self.gguf_writer.add_block_count(block_count)
  887. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  888. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  889. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  890. self.gguf_writer.add_head_count_kv(kv_n_heads)
  891. self.gguf_writer.add_layer_norm_eps(1e-5)
  892. if self.hparams["attn_config"]["clip_qkv"] is not None:
  893. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  894. if self.hparams["attn_config"]["alibi"]:
  895. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  896. else:
  897. self.gguf_writer.add_max_alibi_bias(0.0)
  898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  899. del bid # unused
  900. if "scales" in name:
  901. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  902. new_name = new_name.replace("scales", "act.scales")
  903. else:
  904. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  905. return [(new_name, data_torch)]
  906. @Model.register("OrionForCausalLM")
  907. class OrionModel(Model):
  908. model_arch = gguf.MODEL_ARCH.ORION
  909. def set_vocab(self):
  910. self._set_vocab_sentencepiece()
  911. def set_gguf_parameters(self):
  912. block_count = self.hparams["num_hidden_layers"]
  913. head_count = self.hparams["num_attention_heads"]
  914. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  915. ctx_length = 0
  916. if "max_sequence_length" in self.hparams:
  917. ctx_length = self.hparams["max_sequence_length"]
  918. elif "max_position_embeddings" in self.hparams:
  919. ctx_length = self.hparams["max_position_embeddings"]
  920. elif "model_max_length" in self.hparams:
  921. ctx_length = self.hparams["model_max_length"]
  922. else:
  923. raise ValueError("gguf: can not find ctx length parameter.")
  924. self.gguf_writer.add_file_type(self.ftype)
  925. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  926. self.gguf_writer.add_context_length(ctx_length)
  927. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  928. self.gguf_writer.add_block_count(block_count)
  929. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  930. self.gguf_writer.add_head_count(head_count)
  931. self.gguf_writer.add_head_count_kv(head_count_kv)
  932. # note: config provides rms norm but it is actually layer norm
  933. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  934. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  935. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  936. class BaichuanModel(Model):
  937. model_arch = gguf.MODEL_ARCH.BAICHUAN
  938. def set_vocab(self):
  939. self._set_vocab_sentencepiece()
  940. def set_gguf_parameters(self):
  941. block_count = self.hparams["num_hidden_layers"]
  942. head_count = self.hparams["num_attention_heads"]
  943. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  944. ctx_length = 0
  945. if "max_sequence_length" in self.hparams:
  946. ctx_length = self.hparams["max_sequence_length"]
  947. elif "max_position_embeddings" in self.hparams:
  948. ctx_length = self.hparams["max_position_embeddings"]
  949. elif "model_max_length" in self.hparams:
  950. ctx_length = self.hparams["model_max_length"]
  951. else:
  952. raise ValueError("gguf: can not find ctx length parameter.")
  953. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  954. self.gguf_writer.add_context_length(ctx_length)
  955. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  956. self.gguf_writer.add_block_count(block_count)
  957. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  958. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  959. self.gguf_writer.add_head_count(head_count)
  960. self.gguf_writer.add_head_count_kv(head_count_kv)
  961. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  962. self.gguf_writer.add_file_type(self.ftype)
  963. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  964. if self.hparams["rope_scaling"].get("type") == "linear":
  965. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  966. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  967. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  968. head_count = self.hparams["num_attention_heads"]
  969. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  970. tensors: list[tuple[str, Tensor]] = []
  971. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  972. logger.info(f"Unpacking and permuting layer {bid}")
  973. tensors = [
  974. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  975. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  976. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  977. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  978. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  979. self._reverse_hf_part(data_torch, 2)),
  980. ]
  981. else:
  982. tensors = [(self.map_tensor_name(name), data_torch)]
  983. return tensors
  984. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  985. if n_kv_head is not None and n_head != n_kv_head:
  986. n_head //= n_kv_head
  987. return (
  988. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  989. .swapaxes(1, 2)
  990. .reshape(weights.shape)
  991. )
  992. def _reverse_hf_permute_part(
  993. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  994. ) -> Tensor:
  995. r = weights.shape[0] // 3
  996. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  997. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  998. r = weights.shape[0] // 3
  999. return weights[r * n_part:r * n_part + r, ...]
  1000. @Model.register("XverseForCausalLM")
  1001. class XverseModel(Model):
  1002. model_arch = gguf.MODEL_ARCH.XVERSE
  1003. def set_vocab(self):
  1004. assert (self.dir_model / "tokenizer.json").is_file()
  1005. dir_model = self.dir_model
  1006. hparams = self.hparams
  1007. tokens: list[bytes] = []
  1008. toktypes: list[int] = []
  1009. from transformers import AutoTokenizer
  1010. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1011. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1012. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1013. # because vocab_size is the count of items, and indexes start at 0.
  1014. max_vocab_index = max(tokenizer.get_vocab().values())
  1015. if max_vocab_index >= vocab_size:
  1016. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1017. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1018. added_vocab = tokenizer.get_added_vocab()
  1019. for token_id in range(vocab_size):
  1020. token_text = reverse_vocab[token_id].encode('utf-8')
  1021. # replace "\x00" to string with length > 0
  1022. if token_text == b"\x00":
  1023. toktype = gguf.TokenType.BYTE # special
  1024. token_text = f"<{token_text}>".encode('utf-8')
  1025. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1026. toktype = gguf.TokenType.BYTE # special
  1027. elif reverse_vocab[token_id] in added_vocab:
  1028. if tokenizer.added_tokens_decoder[token_id].special:
  1029. toktype = gguf.TokenType.CONTROL
  1030. else:
  1031. toktype = gguf.TokenType.USER_DEFINED
  1032. else:
  1033. toktype = gguf.TokenType.NORMAL
  1034. tokens.append(token_text)
  1035. toktypes.append(toktype)
  1036. self.gguf_writer.add_tokenizer_model("llama")
  1037. self.gguf_writer.add_tokenizer_pre("default")
  1038. self.gguf_writer.add_token_list(tokens)
  1039. self.gguf_writer.add_token_types(toktypes)
  1040. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1041. special_vocab.add_to_gguf(self.gguf_writer)
  1042. def set_gguf_parameters(self):
  1043. block_count = self.hparams["num_hidden_layers"]
  1044. head_count = self.hparams["num_attention_heads"]
  1045. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1046. ctx_length = 0
  1047. if "max_sequence_length" in self.hparams:
  1048. ctx_length = self.hparams["max_sequence_length"]
  1049. elif "max_position_embeddings" in self.hparams:
  1050. ctx_length = self.hparams["max_position_embeddings"]
  1051. elif "model_max_length" in self.hparams:
  1052. ctx_length = self.hparams["model_max_length"]
  1053. else:
  1054. raise ValueError("gguf: can not find ctx length parameter.")
  1055. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1056. self.gguf_writer.add_context_length(ctx_length)
  1057. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1058. self.gguf_writer.add_block_count(block_count)
  1059. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1060. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1061. self.gguf_writer.add_head_count(head_count)
  1062. self.gguf_writer.add_head_count_kv(head_count_kv)
  1063. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1064. self.gguf_writer.add_file_type(self.ftype)
  1065. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1066. if self.hparams["rope_scaling"].get("type") == "linear":
  1067. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1068. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1070. del bid # unused
  1071. head_count = self.hparams["num_attention_heads"]
  1072. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1073. # HF models permute some of the tensors, so we need to undo that
  1074. if name.endswith("q_proj.weight"):
  1075. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1076. if name.endswith("k_proj.weight"):
  1077. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1078. return [(self.map_tensor_name(name), data_torch)]
  1079. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1080. if n_kv_head is not None and n_head != n_kv_head:
  1081. n_head //= n_kv_head
  1082. return (
  1083. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1084. .swapaxes(1, 2)
  1085. .reshape(weights.shape)
  1086. )
  1087. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1088. class FalconModel(Model):
  1089. model_arch = gguf.MODEL_ARCH.FALCON
  1090. def set_gguf_parameters(self):
  1091. block_count = self.hparams.get("num_hidden_layers")
  1092. if block_count is None:
  1093. block_count = self.hparams["n_layer"] # old name
  1094. n_head = self.hparams.get("num_attention_heads")
  1095. if n_head is None:
  1096. n_head = self.hparams["n_head"] # old name
  1097. n_head_kv = self.hparams.get("num_kv_heads")
  1098. if n_head_kv is None:
  1099. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1100. self.gguf_writer.add_context_length(2048) # not in config.json
  1101. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1102. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1103. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1104. self.gguf_writer.add_block_count(block_count)
  1105. self.gguf_writer.add_head_count(n_head)
  1106. self.gguf_writer.add_head_count_kv(n_head_kv)
  1107. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1108. self.gguf_writer.add_file_type(self.ftype)
  1109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1110. del bid # unused
  1111. # QKV tensor transform
  1112. # The original query_key_value tensor contains n_head_kv "kv groups",
  1113. # each consisting of n_head/n_head_kv query weights followed by one key
  1114. # and one value weight (shared by all query heads in the kv group).
  1115. # This layout makes it a big pain to work with in GGML.
  1116. # So we rearrange them here,, so that we have n_head query weights
  1117. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1118. # in contiguous fashion.
  1119. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1120. if "query_key_value" in name:
  1121. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1122. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1123. head_dim = self.hparams["hidden_size"] // n_head
  1124. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1125. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1126. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1127. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1128. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1129. return [(self.map_tensor_name(name), data_torch)]
  1130. @Model.register("GPTBigCodeForCausalLM")
  1131. class StarCoderModel(Model):
  1132. model_arch = gguf.MODEL_ARCH.STARCODER
  1133. def set_gguf_parameters(self):
  1134. block_count = self.hparams["n_layer"]
  1135. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1136. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1137. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1138. self.gguf_writer.add_block_count(block_count)
  1139. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1140. self.gguf_writer.add_head_count_kv(1)
  1141. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. @Model.register("GPTRefactForCausalLM")
  1144. class RefactModel(Model):
  1145. model_arch = gguf.MODEL_ARCH.REFACT
  1146. def set_vocab(self):
  1147. super().set_vocab()
  1148. # TODO: how to determine special FIM tokens automatically?
  1149. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1150. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1151. special_vocab._set_special_token("prefix", 1)
  1152. special_vocab._set_special_token("suffix", 3)
  1153. special_vocab._set_special_token("middle", 2)
  1154. special_vocab.chat_template = None # do not add it twice
  1155. special_vocab.add_to_gguf(self.gguf_writer)
  1156. def set_gguf_parameters(self):
  1157. hidden_dim = self.hparams["n_embd"]
  1158. inner_dim = 4 * hidden_dim
  1159. hidden_dim = int(2 * inner_dim / 3)
  1160. multiple_of = 256
  1161. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1162. block_count = self.hparams["n_layer"]
  1163. # refact uses Alibi. So this is from config.json which might be used by training.
  1164. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1165. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1166. self.gguf_writer.add_feed_forward_length(ff_dim)
  1167. self.gguf_writer.add_block_count(block_count)
  1168. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1169. self.gguf_writer.add_head_count_kv(1)
  1170. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1171. self.gguf_writer.add_file_type(self.ftype)
  1172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1173. hidden_dim = self.hparams["n_embd"]
  1174. inner_dim = 4 * hidden_dim
  1175. hidden_dim = int(2 * inner_dim / 3)
  1176. multiple_of = 256
  1177. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1178. n_head = self.hparams["n_head"]
  1179. n_head_kv = 1
  1180. head_dim = self.hparams["n_embd"] // n_head
  1181. tensors: list[tuple[str, Tensor]] = []
  1182. if bid is not None:
  1183. if name == f"transformer.h.{bid}.attn.kv.weight":
  1184. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1185. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1186. elif name == f"transformer.h.{bid}.attn.q.weight":
  1187. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1188. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1189. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1190. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1191. if len(tensors) == 0:
  1192. tensors.append((self.map_tensor_name(name), data_torch))
  1193. return tensors
  1194. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1195. class StableLMModel(Model):
  1196. model_arch = gguf.MODEL_ARCH.STABLELM
  1197. def set_vocab(self):
  1198. if (self.dir_model / "tokenizer.json").is_file():
  1199. self._set_vocab_gpt2()
  1200. else:
  1201. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1202. self._set_vocab_qwen()
  1203. def set_gguf_parameters(self):
  1204. hparams = self.hparams
  1205. block_count = hparams["num_hidden_layers"]
  1206. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1207. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1208. self.gguf_writer.add_block_count(block_count)
  1209. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1210. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1211. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1212. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1214. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1215. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1216. self.gguf_writer.add_file_type(self.ftype)
  1217. _q_norms: list[dict[str, Tensor]] | None = None
  1218. _k_norms: list[dict[str, Tensor]] | None = None
  1219. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1220. n_head = self.hparams["num_attention_heads"]
  1221. n_kv_head = self.hparams["num_key_value_heads"]
  1222. if name.find("q_layernorm.norms") != -1:
  1223. assert bid is not None
  1224. if self._q_norms is None:
  1225. self._q_norms = [{} for _ in range(self.block_count)]
  1226. self._q_norms[bid][name] = data_torch
  1227. if len(self._q_norms[bid]) >= n_head:
  1228. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1229. else:
  1230. return []
  1231. if name.find("k_layernorm.norms") != -1:
  1232. assert bid is not None
  1233. if self._k_norms is None:
  1234. self._k_norms = [{} for _ in range(self.block_count)]
  1235. self._k_norms[bid][name] = data_torch
  1236. if len(self._k_norms[bid]) >= n_kv_head:
  1237. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1238. else:
  1239. return []
  1240. return [(self.map_tensor_name(name), data_torch)]
  1241. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1242. datas: list[Tensor] = []
  1243. # extract the norms in order
  1244. for xid in range(n_head):
  1245. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1246. datas.append(norms[ename])
  1247. del norms[ename]
  1248. data_torch = torch.stack(datas, dim=0)
  1249. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1250. new_name = self.map_tensor_name(merged_name)
  1251. return [(new_name, data_torch)]
  1252. def prepare_tensors(self):
  1253. super().prepare_tensors()
  1254. if self._q_norms is not None or self._k_norms is not None:
  1255. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1256. norms = (
  1257. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1258. ) + (
  1259. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1260. )
  1261. if len(norms) > 0:
  1262. raise ValueError(f"Unprocessed norms: {norms}")
  1263. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1264. class LlamaModel(Model):
  1265. model_arch = gguf.MODEL_ARCH.LLAMA
  1266. def set_vocab(self):
  1267. try:
  1268. self._set_vocab_sentencepiece()
  1269. except FileNotFoundError:
  1270. try:
  1271. self._set_vocab_llama_hf()
  1272. except (FileNotFoundError, TypeError):
  1273. # Llama 3
  1274. self._set_vocab_gpt2()
  1275. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1276. if self.hparams.get("vocab_size", 32000) == 32016:
  1277. special_vocab = gguf.SpecialVocab(
  1278. self.dir_model, load_merges=False,
  1279. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1280. )
  1281. special_vocab._set_special_token("prefix", 32007)
  1282. special_vocab._set_special_token("suffix", 32008)
  1283. special_vocab._set_special_token("middle", 32009)
  1284. special_vocab._set_special_token("eot", 32010)
  1285. special_vocab.add_to_gguf(self.gguf_writer)
  1286. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1287. if tokenizer_config_file.is_file():
  1288. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1289. tokenizer_config_json = json.load(f)
  1290. if "add_prefix_space" in tokenizer_config_json:
  1291. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1292. # Apply to granite small models only
  1293. if self.hparams.get("vocab_size", 32000) == 49152:
  1294. self.gguf_writer.add_add_bos_token(False)
  1295. def set_gguf_parameters(self):
  1296. super().set_gguf_parameters()
  1297. hparams = self.hparams
  1298. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1299. if "head_dim" in hparams:
  1300. rope_dim = hparams["head_dim"]
  1301. else:
  1302. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1303. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1304. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1305. if self.hparams["rope_scaling"].get("type") == "linear":
  1306. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1307. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1308. @staticmethod
  1309. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1310. if n_head_kv is not None and n_head != n_head_kv:
  1311. n_head = n_head_kv
  1312. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1313. .swapaxes(1, 2)
  1314. .reshape(weights.shape))
  1315. _experts: list[dict[str, Tensor]] | None = None
  1316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1317. n_head = self.hparams["num_attention_heads"]
  1318. n_kv_head = self.hparams.get("num_key_value_heads")
  1319. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1320. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1321. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1322. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1323. # process the experts separately
  1324. if name.find("block_sparse_moe.experts") != -1:
  1325. n_experts = self.hparams["num_local_experts"]
  1326. assert bid is not None
  1327. if self._experts is None:
  1328. self._experts = [{} for _ in range(self.block_count)]
  1329. self._experts[bid][name] = data_torch
  1330. if len(self._experts[bid]) >= n_experts * 3:
  1331. tensors: list[tuple[str, Tensor]] = []
  1332. # merge the experts into a single 3d tensor
  1333. for wid in ["w1", "w2", "w3"]:
  1334. datas: list[Tensor] = []
  1335. for xid in range(n_experts):
  1336. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1337. datas.append(self._experts[bid][ename])
  1338. del self._experts[bid][ename]
  1339. data_torch = torch.stack(datas, dim=0)
  1340. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1341. new_name = self.map_tensor_name(merged_name)
  1342. tensors.append((new_name, data_torch))
  1343. return tensors
  1344. else:
  1345. return []
  1346. return [(self.map_tensor_name(name), data_torch)]
  1347. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1348. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1349. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1350. base = self.hparams.get("rope_theta", 10000.0)
  1351. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1352. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1353. factor = rope_scaling.get("factor", 8.0)
  1354. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1355. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1356. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1357. low_freq_wavelen = old_context_len / low_freq_factor
  1358. high_freq_wavelen = old_context_len / high_freq_factor
  1359. assert low_freq_wavelen != high_freq_wavelen
  1360. rope_factors = []
  1361. for freq in freqs:
  1362. wavelen = 2 * math.pi / freq
  1363. if wavelen < high_freq_wavelen:
  1364. rope_factors.append(1)
  1365. elif wavelen > low_freq_wavelen:
  1366. rope_factors.append(factor)
  1367. else:
  1368. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1369. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1370. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1371. def prepare_tensors(self):
  1372. super().prepare_tensors()
  1373. if self._experts is not None:
  1374. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1375. experts = [k for d in self._experts for k in d.keys()]
  1376. if len(experts) > 0:
  1377. raise ValueError(f"Unprocessed experts: {experts}")
  1378. @Model.register("BitnetForCausalLM")
  1379. class BitnetModel(Model):
  1380. model_arch = gguf.MODEL_ARCH.BITNET
  1381. def set_vocab(self):
  1382. self._set_vocab_sentencepiece()
  1383. def set_gguf_parameters(self):
  1384. super().set_gguf_parameters()
  1385. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1386. self.gguf_writer.add_rope_scaling_factor(1.0)
  1387. def weight_quant(self, weight: Tensor) -> Tensor:
  1388. dtype = weight.dtype
  1389. weight = weight.float()
  1390. scale = weight.abs().mean().clamp(min=1e-5)
  1391. iscale = 1 / scale
  1392. # TODO: multiply by the scale directly instead of inverting it twice
  1393. # (this is also unnecessarily doubly inverted upstream)
  1394. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1395. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1396. return result.type(dtype)
  1397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1398. new_name = self.map_tensor_name(name)
  1399. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1400. gguf.MODEL_TENSOR.ATTN_Q,
  1401. gguf.MODEL_TENSOR.ATTN_K,
  1402. gguf.MODEL_TENSOR.ATTN_V,
  1403. gguf.MODEL_TENSOR.ATTN_OUT,
  1404. gguf.MODEL_TENSOR.FFN_UP,
  1405. gguf.MODEL_TENSOR.FFN_DOWN,
  1406. gguf.MODEL_TENSOR.FFN_GATE,
  1407. ]):
  1408. # transform weight into 1/0/-1 (in fp32)
  1409. data_torch = self.weight_quant(data_torch)
  1410. yield (new_name, data_torch)
  1411. @Model.register("GrokForCausalLM")
  1412. class GrokModel(Model):
  1413. model_arch = gguf.MODEL_ARCH.GROK
  1414. def set_vocab(self):
  1415. self._set_vocab_sentencepiece()
  1416. def __init__(self, *args, **kwargs):
  1417. super().__init__(*args, **kwargs)
  1418. def set_gguf_parameters(self):
  1419. super().set_gguf_parameters()
  1420. _experts: list[dict[str, Tensor]] | None = None
  1421. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1422. # process the experts separately
  1423. if name.find(".moe.") != -1:
  1424. n_experts = self.hparams["num_local_experts"]
  1425. assert bid is not None
  1426. if self._experts is None:
  1427. self._experts = [{} for _ in range(self.block_count)]
  1428. self._experts[bid][name] = data_torch
  1429. if len(self._experts[bid]) >= n_experts * 3:
  1430. tensors: list[tuple[str, Tensor]] = []
  1431. # merge the experts into a single 3d tensor
  1432. for wid in ["linear", "linear_1", "linear_v"]:
  1433. datas: list[Tensor] = []
  1434. for xid in range(n_experts):
  1435. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1436. datas.append(self._experts[bid][ename])
  1437. del self._experts[bid][ename]
  1438. data_torch = torch.stack(datas, dim=0)
  1439. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1440. new_name = self.map_tensor_name(merged_name)
  1441. tensors.append((new_name, data_torch))
  1442. return tensors
  1443. else:
  1444. return []
  1445. return [(self.map_tensor_name(name), data_torch)]
  1446. @Model.register("DbrxForCausalLM")
  1447. class DbrxModel(Model):
  1448. model_arch = gguf.MODEL_ARCH.DBRX
  1449. def set_gguf_parameters(self):
  1450. ffn_config = self.hparams["ffn_config"]
  1451. attn_config = self.hparams["attn_config"]
  1452. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1453. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1454. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1455. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1456. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1457. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1458. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1459. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1460. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1461. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1462. self.gguf_writer.add_layer_norm_eps(1e-5)
  1463. self.gguf_writer.add_file_type(self.ftype)
  1464. logger.info(f"gguf: file type = {self.ftype}")
  1465. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1466. del bid # unused
  1467. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1468. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1469. n_embd = self.hparams["d_model"]
  1470. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1471. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1472. # But llama.cpp moe graph works differently
  1473. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1474. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1475. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1476. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1477. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1478. experts = False
  1479. for exp_tensor_name in exp_tensor_names.keys():
  1480. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1481. experts = True
  1482. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1483. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1484. data_torch = data_torch.permute(*permute_tensor)
  1485. break
  1486. # map tensor names
  1487. # In MoE models the ffn tensors are typically most of the model weights,
  1488. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1489. # Every other model has the weight names ending in .weight,
  1490. # let's assume that is the convention which is not the case for dbrx:
  1491. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1492. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1493. return [(new_name, data_torch)]
  1494. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1495. del name, new_name, bid # unused
  1496. return n_dims > 1
  1497. @Model.register("MiniCPMForCausalLM")
  1498. class MiniCPMModel(Model):
  1499. model_arch = gguf.MODEL_ARCH.MINICPM
  1500. def set_gguf_parameters(self):
  1501. super().set_gguf_parameters()
  1502. embedding_scale = float(self.hparams["scale_emb"])
  1503. self.gguf_writer.add_embedding_scale(embedding_scale)
  1504. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1505. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1506. self.gguf_writer.add_residual_scale(residual_scale)
  1507. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1508. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1509. self.gguf_writer.add_logit_scale(logit_scale)
  1510. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1511. if self.hparams.get("rope_scaling") is not None:
  1512. if self.hparams["rope_scaling"].get("type") == "longrope":
  1513. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1514. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1515. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1516. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1517. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1518. if rope_scaling is not None:
  1519. long_factors = rope_scaling.get('long_factor', None)
  1520. short_factors = rope_scaling.get('short_factor', None)
  1521. if long_factors is None or short_factors is None:
  1522. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1523. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1524. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1525. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1526. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1527. def set_vocab(self):
  1528. self._set_vocab_sentencepiece()
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. del bid # unused
  1531. n_head = self.hparams["num_attention_heads"]
  1532. n_kv_head = self.hparams.get("num_key_value_heads")
  1533. # HF models permute some of the tensors, so we need to undo that
  1534. if name.endswith(("q_proj.weight")):
  1535. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1536. if name.endswith(("k_proj.weight")):
  1537. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1538. return [(self.map_tensor_name(name), data_torch)]
  1539. @Model.register("MiniCPM3ForCausalLM")
  1540. class MiniCPM3Model(Model):
  1541. model_arch = gguf.MODEL_ARCH.MINICPM3
  1542. def set_gguf_parameters(self):
  1543. hparams = self.hparams
  1544. self.gguf_writer.add_file_type(self.ftype)
  1545. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1546. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1547. self.gguf_writer.add_block_count(self.block_count)
  1548. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1549. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1550. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1551. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1552. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1553. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1554. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1555. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1556. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1557. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1558. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1559. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1560. if rope_scaling is not None:
  1561. rope_dims = self.hparams["qk_rope_head_dim"]
  1562. long_factors = rope_scaling.get('long_factor', None)
  1563. short_factors = rope_scaling.get('short_factor', None)
  1564. if long_factors is None or short_factors is None:
  1565. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1566. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1567. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1568. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1569. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1570. def set_vocab(self):
  1571. self._set_vocab_sentencepiece()
  1572. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1573. if n_kv_head is not None and n_head != n_kv_head:
  1574. n_head //= n_kv_head
  1575. return (
  1576. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1577. .swapaxes(1, 2)
  1578. .reshape(weights.shape)
  1579. )
  1580. @Model.register("QWenLMHeadModel")
  1581. class QwenModel(Model):
  1582. model_arch = gguf.MODEL_ARCH.QWEN
  1583. @staticmethod
  1584. def token_bytes_to_string(b):
  1585. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1586. byte_encoder = bytes_to_unicode()
  1587. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1588. @staticmethod
  1589. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1590. parts = [bytes([b]) for b in token]
  1591. while True:
  1592. min_idx = None
  1593. min_rank = None
  1594. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1595. rank = mergeable_ranks.get(pair[0] + pair[1])
  1596. if rank is not None and (min_rank is None or rank < min_rank):
  1597. min_idx = i
  1598. min_rank = rank
  1599. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1600. break
  1601. assert min_idx is not None
  1602. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1603. return parts
  1604. def set_vocab(self):
  1605. self._set_vocab_qwen()
  1606. def set_gguf_parameters(self):
  1607. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1608. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1609. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1610. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1611. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1612. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1613. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1614. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1615. self.gguf_writer.add_file_type(self.ftype)
  1616. @Model.register("Qwen2ForCausalLM")
  1617. class Qwen2Model(Model):
  1618. model_arch = gguf.MODEL_ARCH.QWEN2
  1619. def set_vocab(self):
  1620. try:
  1621. self._set_vocab_sentencepiece()
  1622. except FileNotFoundError:
  1623. self._set_vocab_gpt2()
  1624. def set_gguf_parameters(self):
  1625. super().set_gguf_parameters()
  1626. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1627. if self.hparams["rope_scaling"].get("type") == "yarn":
  1628. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1629. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1630. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1631. @Model.register("Qwen2VLForConditionalGeneration")
  1632. class Qwen2VLModel(Model):
  1633. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1634. def set_gguf_parameters(self):
  1635. super().set_gguf_parameters()
  1636. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1637. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1638. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1639. def set_vocab(self):
  1640. try:
  1641. self._set_vocab_sentencepiece()
  1642. except FileNotFoundError:
  1643. self._set_vocab_gpt2()
  1644. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1645. for name, data in super().get_tensors():
  1646. if name.startswith("visual."):
  1647. continue
  1648. yield name, data
  1649. @Model.register("Qwen2MoeForCausalLM")
  1650. class Qwen2MoeModel(Model):
  1651. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1652. def set_gguf_parameters(self):
  1653. super().set_gguf_parameters()
  1654. if (n_experts := self.hparams.get("num_experts")) is not None:
  1655. self.gguf_writer.add_expert_count(n_experts)
  1656. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1657. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1658. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1659. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1660. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1661. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1662. _experts: list[dict[str, Tensor]] | None = None
  1663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1664. # process the experts separately
  1665. if name.find("experts") != -1:
  1666. n_experts = self.hparams["num_experts"]
  1667. assert bid is not None
  1668. if self._experts is None:
  1669. self._experts = [{} for _ in range(self.block_count)]
  1670. self._experts[bid][name] = data_torch
  1671. if len(self._experts[bid]) >= n_experts * 3:
  1672. tensors: list[tuple[str, Tensor]] = []
  1673. # merge the experts into a single 3d tensor
  1674. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1675. datas: list[Tensor] = []
  1676. for xid in range(n_experts):
  1677. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1678. datas.append(self._experts[bid][ename])
  1679. del self._experts[bid][ename]
  1680. data_torch = torch.stack(datas, dim=0)
  1681. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1682. new_name = self.map_tensor_name(merged_name)
  1683. tensors.append((new_name, data_torch))
  1684. return tensors
  1685. else:
  1686. return []
  1687. return [(self.map_tensor_name(name), data_torch)]
  1688. def prepare_tensors(self):
  1689. super().prepare_tensors()
  1690. if self._experts is not None:
  1691. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1692. experts = [k for d in self._experts for k in d.keys()]
  1693. if len(experts) > 0:
  1694. raise ValueError(f"Unprocessed experts: {experts}")
  1695. @Model.register("GPT2LMHeadModel")
  1696. class GPT2Model(Model):
  1697. model_arch = gguf.MODEL_ARCH.GPT2
  1698. def set_gguf_parameters(self):
  1699. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1700. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1701. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1702. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1703. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1704. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1705. self.gguf_writer.add_file_type(self.ftype)
  1706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1707. del bid # unused
  1708. tensors: list[tuple[str, Tensor]] = []
  1709. # we don't need these
  1710. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1711. return tensors
  1712. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1713. data_torch = data_torch.transpose(1, 0)
  1714. new_name = self.map_tensor_name(name)
  1715. tensors.append((new_name, data_torch))
  1716. # note: GPT2 output is tied to (same as) wte in original model
  1717. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1718. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1719. return tensors
  1720. @Model.register("PhiForCausalLM")
  1721. class Phi2Model(Model):
  1722. model_arch = gguf.MODEL_ARCH.PHI2
  1723. def set_gguf_parameters(self):
  1724. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1725. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1726. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1727. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1728. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1729. self.gguf_writer.add_embedding_length(n_embd)
  1730. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1731. self.gguf_writer.add_block_count(block_count)
  1732. self.gguf_writer.add_head_count(n_head)
  1733. self.gguf_writer.add_head_count_kv(n_head)
  1734. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1735. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1736. self.gguf_writer.add_file_type(self.ftype)
  1737. self.gguf_writer.add_add_bos_token(False)
  1738. @Model.register("Phi3ForCausalLM")
  1739. class Phi3MiniModel(Model):
  1740. model_arch = gguf.MODEL_ARCH.PHI3
  1741. def set_vocab(self):
  1742. from sentencepiece import SentencePieceProcessor
  1743. tokenizer_path = self.dir_model / 'tokenizer.model'
  1744. if not tokenizer_path.is_file():
  1745. raise ValueError(f'Error: Missing {tokenizer_path}')
  1746. tokenizer = SentencePieceProcessor()
  1747. tokenizer.LoadFromFile(str(tokenizer_path))
  1748. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1749. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1750. scores: list[float] = [-10000.0] * vocab_size
  1751. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1752. for token_id in range(tokenizer.vocab_size()):
  1753. piece = tokenizer.IdToPiece(token_id)
  1754. text = piece.encode("utf-8")
  1755. score = tokenizer.GetScore(token_id)
  1756. toktype = SentencePieceTokenTypes.NORMAL
  1757. if tokenizer.IsUnknown(token_id):
  1758. toktype = SentencePieceTokenTypes.UNKNOWN
  1759. elif tokenizer.IsControl(token_id):
  1760. toktype = SentencePieceTokenTypes.CONTROL
  1761. elif tokenizer.IsUnused(token_id):
  1762. toktype = SentencePieceTokenTypes.UNUSED
  1763. elif tokenizer.IsByte(token_id):
  1764. toktype = SentencePieceTokenTypes.BYTE
  1765. tokens[token_id] = text
  1766. scores[token_id] = score
  1767. toktypes[token_id] = toktype
  1768. added_tokens_file = self.dir_model / 'added_tokens.json'
  1769. if added_tokens_file.is_file():
  1770. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1771. added_tokens_json = json.load(f)
  1772. for key in added_tokens_json:
  1773. token_id = added_tokens_json[key]
  1774. if token_id >= vocab_size:
  1775. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1776. continue
  1777. tokens[token_id] = key.encode("utf-8")
  1778. scores[token_id] = -1000.0
  1779. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1780. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1781. if tokenizer_config_file.is_file():
  1782. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1783. tokenizer_config_json = json.load(f)
  1784. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1785. for token_id, foken_data in added_tokens_decoder.items():
  1786. token_id = int(token_id)
  1787. token = foken_data["content"].encode("utf-8")
  1788. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1789. if tokens[token_id] != token:
  1790. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1791. tokens[token_id] = token
  1792. scores[token_id] = -1000.0
  1793. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1794. if foken_data.get("special"):
  1795. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1796. tokenizer_file = self.dir_model / 'tokenizer.json'
  1797. if tokenizer_file.is_file():
  1798. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1799. tokenizer_json = json.load(f)
  1800. added_tokens = tokenizer_json.get("added_tokens", [])
  1801. for foken_data in added_tokens:
  1802. token_id = int(foken_data["id"])
  1803. token = foken_data["content"].encode("utf-8")
  1804. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1805. if tokens[token_id] != token:
  1806. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1807. tokens[token_id] = token
  1808. scores[token_id] = -1000.0
  1809. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1810. if foken_data.get("special"):
  1811. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1812. self.gguf_writer.add_tokenizer_model("llama")
  1813. self.gguf_writer.add_tokenizer_pre("default")
  1814. self.gguf_writer.add_token_list(tokens)
  1815. self.gguf_writer.add_token_scores(scores)
  1816. self.gguf_writer.add_token_types(toktypes)
  1817. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1818. special_vocab.add_to_gguf(self.gguf_writer)
  1819. def set_gguf_parameters(self):
  1820. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1821. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1822. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1823. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1824. rms_eps = self.find_hparam(["rms_norm_eps"])
  1825. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1826. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1827. rope_dims = n_embd // n_head
  1828. self.gguf_writer.add_context_length(max_pos_embds)
  1829. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1830. self.gguf_writer.add_embedding_length(n_embd)
  1831. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1832. self.gguf_writer.add_block_count(block_count)
  1833. self.gguf_writer.add_head_count(n_head)
  1834. self.gguf_writer.add_head_count_kv(n_head_kv)
  1835. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1836. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1837. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1838. self.gguf_writer.add_file_type(self.ftype)
  1839. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1840. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1841. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1842. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1843. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1844. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1845. rope_dims = n_embd // n_head
  1846. # write rope scaling for long context (128k) model
  1847. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1848. if rope_scaling is None:
  1849. return
  1850. scale = max_pos_embds / orig_max_pos_embds
  1851. rope_scaling_type = rope_scaling.get('type', '').lower()
  1852. if len(rope_scaling_type) == 0:
  1853. raise KeyError('Missing the required key rope_scaling.type')
  1854. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1855. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1856. elif rope_scaling_type == 'yarn':
  1857. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1858. else:
  1859. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1860. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1861. long_factors = rope_scaling.get('long_factor', None)
  1862. short_factors = rope_scaling.get('short_factor', None)
  1863. if long_factors is None or short_factors is None:
  1864. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1865. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1866. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1867. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1868. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1869. @Model.register("PlamoForCausalLM")
  1870. class PlamoModel(Model):
  1871. model_arch = gguf.MODEL_ARCH.PLAMO
  1872. def set_vocab(self):
  1873. self._set_vocab_sentencepiece()
  1874. def set_gguf_parameters(self):
  1875. hparams = self.hparams
  1876. block_count = hparams["num_hidden_layers"]
  1877. self.gguf_writer.add_context_length(4096) # not in config.json
  1878. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1879. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1880. self.gguf_writer.add_block_count(block_count)
  1881. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1882. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1883. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1884. self.gguf_writer.add_file_type(self.ftype)
  1885. def shuffle_attn_q_weight(self, data_torch):
  1886. assert data_torch.size() == (5120, 5120)
  1887. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1888. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1889. data_torch = torch.reshape(data_torch, (5120, 5120))
  1890. return data_torch
  1891. def shuffle_attn_output_weight(self, data_torch):
  1892. assert data_torch.size() == (5120, 5120)
  1893. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1894. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1895. data_torch = torch.reshape(data_torch, (5120, 5120))
  1896. return data_torch
  1897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1898. del bid # unused
  1899. new_name = self.map_tensor_name(name)
  1900. # shuffle for broadcasting of gqa in ggml_mul_mat
  1901. if new_name.endswith("attn_q.weight"):
  1902. data_torch = self.shuffle_attn_q_weight(data_torch)
  1903. elif new_name.endswith("attn_output.weight"):
  1904. data_torch = self.shuffle_attn_output_weight(data_torch)
  1905. return [(new_name, data_torch)]
  1906. @Model.register("CodeShellForCausalLM")
  1907. class CodeShellModel(Model):
  1908. model_arch = gguf.MODEL_ARCH.CODESHELL
  1909. def set_gguf_parameters(self):
  1910. block_count = self.hparams["n_layer"]
  1911. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1912. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1913. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1914. self.gguf_writer.add_block_count(block_count)
  1915. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1916. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1917. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1918. self.gguf_writer.add_file_type(self.ftype)
  1919. self.gguf_writer.add_rope_freq_base(10000.0)
  1920. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1921. self.gguf_writer.add_rope_scaling_factor(1.0)
  1922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1923. del bid # unused
  1924. new_name = self.map_tensor_name(name)
  1925. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1926. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1927. assert self.tensor_names is not None
  1928. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1929. # copy tok_embd.weight to output.weight
  1930. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1931. return tensors
  1932. @Model.register("InternLM2ForCausalLM")
  1933. class InternLM2Model(Model):
  1934. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1935. def set_vocab(self):
  1936. # (TODO): Is there a better way?
  1937. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1938. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1939. # recognized as an empty string in C++.
  1940. from sentencepiece import SentencePieceProcessor
  1941. from sentencepiece import sentencepiece_model_pb2 as model
  1942. tokenizer_path = self.dir_model / 'tokenizer.model'
  1943. tokens: list[bytes] = []
  1944. scores: list[float] = []
  1945. toktypes: list[int] = []
  1946. if not tokenizer_path.is_file():
  1947. logger.error(f'Error: Missing {tokenizer_path}')
  1948. sys.exit(1)
  1949. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1950. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1951. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1952. tokenizer = SentencePieceProcessor()
  1953. tokenizer.LoadFromFile(str(tokenizer_path))
  1954. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1955. for token_id in range(vocab_size):
  1956. piece = tokenizer.IdToPiece(token_id)
  1957. text = piece.encode("utf-8")
  1958. score = tokenizer.GetScore(token_id)
  1959. if text == b"\x00":
  1960. # (TODO): fixme
  1961. # Hack here and replace the \x00 characters.
  1962. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1963. text = "🐉".encode("utf-8")
  1964. toktype = SentencePieceTokenTypes.NORMAL
  1965. if tokenizer.IsUnknown(token_id):
  1966. toktype = SentencePieceTokenTypes.UNKNOWN
  1967. elif tokenizer.IsControl(token_id):
  1968. toktype = SentencePieceTokenTypes.CONTROL
  1969. elif tokenizer.IsUnused(token_id):
  1970. toktype = SentencePieceTokenTypes.UNUSED
  1971. elif tokenizer.IsByte(token_id):
  1972. toktype = SentencePieceTokenTypes.BYTE
  1973. # take care of ununsed raw token
  1974. if piece.startswith('[UNUSED'):
  1975. toktype = SentencePieceTokenTypes.UNUSED
  1976. tokens.append(text)
  1977. scores.append(score)
  1978. toktypes.append(toktype)
  1979. added_tokens_file = self.dir_model / 'added_tokens.json'
  1980. if added_tokens_file.is_file():
  1981. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1982. added_tokens_json = json.load(f)
  1983. for key in added_tokens_json:
  1984. tokens.append(key.encode("utf-8"))
  1985. scores.append(-1000.0)
  1986. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1987. chat_eos_token = '<|im_end|>'
  1988. chat_eos_token_id = None
  1989. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1990. if tokenizer_config_file.is_file():
  1991. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1992. tokenizer_config_json = json.load(f)
  1993. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1994. for token_id, foken_data in added_tokens_decoder.items():
  1995. token_id = int(token_id)
  1996. token = foken_data["content"]
  1997. if token == chat_eos_token:
  1998. chat_eos_token_id = token_id
  1999. token = token.encode("utf-8")
  2000. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2001. if tokens[token_id] != token:
  2002. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2003. tokens[token_id] = token
  2004. scores[token_id] = -1000.0
  2005. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2006. if foken_data.get("special"):
  2007. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2008. tokenizer_file = self.dir_model / 'tokenizer.json'
  2009. if tokenizer_file.is_file():
  2010. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2011. tokenizer_json = json.load(f)
  2012. added_tokens = tokenizer_json.get("added_tokens", [])
  2013. for foken_data in added_tokens:
  2014. token_id = int(foken_data["id"])
  2015. token = foken_data["content"]
  2016. if token == chat_eos_token:
  2017. chat_eos_token_id = token_id
  2018. token = token.encode("utf-8")
  2019. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2020. if tokens[token_id] != token:
  2021. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2022. tokens[token_id] = token
  2023. scores[token_id] = -1000.0
  2024. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2025. if foken_data.get("special"):
  2026. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2027. self.gguf_writer.add_tokenizer_model("llama")
  2028. self.gguf_writer.add_tokenizer_pre("default")
  2029. self.gguf_writer.add_token_list(tokens)
  2030. self.gguf_writer.add_token_scores(scores)
  2031. self.gguf_writer.add_token_types(toktypes)
  2032. self.gguf_writer.add_add_space_prefix(add_prefix)
  2033. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2034. old_eos = special_vocab.special_token_ids["eos"]
  2035. if chat_eos_token_id is not None:
  2036. # For the chat model, we replace the eos with '<|im_end|>'.
  2037. # TODO: this is a hack, should be fixed
  2038. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2039. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2040. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2041. " in chat mode so that the conversation can end normally.")
  2042. special_vocab.add_to_gguf(self.gguf_writer)
  2043. def set_gguf_parameters(self):
  2044. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2045. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2046. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2047. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2048. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2049. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2050. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2051. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2052. self.gguf_writer.add_file_type(self.ftype)
  2053. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2054. if self.hparams["rope_scaling"].get("type") == "linear":
  2055. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2056. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2058. num_heads = self.hparams["num_attention_heads"]
  2059. num_kv_heads = self.hparams["num_key_value_heads"]
  2060. n_embd = self.hparams["hidden_size"]
  2061. q_per_kv = num_heads // num_kv_heads
  2062. head_dim = n_embd // num_heads
  2063. num_groups = num_heads // q_per_kv
  2064. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2065. qkv = data_torch
  2066. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2067. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2068. # The model weights of q and k equire additional reshape.
  2069. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2070. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2071. v = v.reshape((-1, v.shape[-1]))
  2072. return [
  2073. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2074. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2075. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2076. ]
  2077. else:
  2078. return [(self.map_tensor_name(name), data_torch)]
  2079. @Model.register("BertModel", "CamembertModel", "RobertaModel")
  2080. class BertModel(Model):
  2081. model_arch = gguf.MODEL_ARCH.BERT
  2082. def __init__(self, *args, **kwargs):
  2083. super().__init__(*args, **kwargs)
  2084. self.vocab_size = None
  2085. def set_gguf_parameters(self):
  2086. super().set_gguf_parameters()
  2087. self.gguf_writer.add_causal_attention(False)
  2088. # get pooling path
  2089. pooling_path = None
  2090. module_path = self.dir_model / "modules.json"
  2091. if module_path.is_file():
  2092. with open(module_path, encoding="utf-8") as f:
  2093. modules = json.load(f)
  2094. for mod in modules:
  2095. if mod["type"] == "sentence_transformers.models.Pooling":
  2096. pooling_path = mod["path"]
  2097. break
  2098. # get pooling type
  2099. if pooling_path is not None:
  2100. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2101. pooling = json.load(f)
  2102. if pooling["pooling_mode_mean_tokens"]:
  2103. pooling_type = gguf.PoolingType.MEAN
  2104. elif pooling["pooling_mode_cls_token"]:
  2105. pooling_type = gguf.PoolingType.CLS
  2106. else:
  2107. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2108. self.gguf_writer.add_pooling_type(pooling_type)
  2109. def set_vocab(self):
  2110. tokens, toktypes, tokpre = self.get_vocab_base()
  2111. self.vocab_size = len(tokens)
  2112. # we need this to validate the size of the token_type embeddings
  2113. # though currently we are passing all zeros to the token_type embeddings
  2114. # "Sequence A" or "Sequence B"
  2115. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2116. # convert to phantom space vocab
  2117. def phantom(tok):
  2118. if tok.startswith("[") and tok.endswith("]"):
  2119. return tok
  2120. if tok.startswith("##"):
  2121. return tok[2:]
  2122. return "\u2581" + tok
  2123. tokens = list(map(phantom, tokens))
  2124. # add vocab to gguf
  2125. self.gguf_writer.add_tokenizer_model("bert")
  2126. self.gguf_writer.add_tokenizer_pre(tokpre)
  2127. self.gguf_writer.add_token_list(tokens)
  2128. self.gguf_writer.add_token_types(toktypes)
  2129. # handle special tokens
  2130. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2131. special_vocab.add_to_gguf(self.gguf_writer)
  2132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2133. del bid # unused
  2134. # we are only using BERT for embeddings so we don't need the pooling layer
  2135. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2136. return [] # we don't need these
  2137. return [(self.map_tensor_name(name), data_torch)]
  2138. @Model.register("NomicBertModel")
  2139. class NomicBertModel(BertModel):
  2140. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2141. def __init__(self, *args, **kwargs):
  2142. super().__init__(*args, **kwargs)
  2143. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2144. self.hparams["n_ctx"] = 2048
  2145. # SwigLU activation
  2146. assert self.hparams["activation_function"] == "swiglu"
  2147. # this doesn't do anything in the HF version
  2148. assert self.hparams["causal"] is False
  2149. # no bias tensors
  2150. assert self.hparams["qkv_proj_bias"] is False
  2151. assert self.hparams["mlp_fc1_bias"] is False
  2152. assert self.hparams["mlp_fc2_bias"] is False
  2153. # norm at end of layer
  2154. assert self.hparams["prenorm"] is False
  2155. # standard RoPE
  2156. assert self.hparams["rotary_emb_fraction"] == 1.0
  2157. assert self.hparams["rotary_emb_interleaved"] is False
  2158. assert self.hparams["rotary_emb_scale_base"] is None
  2159. def set_gguf_parameters(self):
  2160. super().set_gguf_parameters()
  2161. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2162. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2163. class XLMRobertaModel(BertModel):
  2164. model_arch = gguf.MODEL_ARCH.BERT
  2165. def __init__(self, *args, **kwargs):
  2166. super().__init__(*args, **kwargs)
  2167. # we need the pad_token_id to know how to chop down position_embd matrix
  2168. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2169. self._position_offset = 1 + pad_token_id
  2170. if "max_position_embeddings" in self.hparams:
  2171. self.hparams["max_position_embeddings"] -= self._position_offset
  2172. else:
  2173. self._position_offset = None
  2174. def set_vocab(self):
  2175. # to avoid TypeError: Descriptors cannot be created directly
  2176. # exception when importing sentencepiece_model_pb2
  2177. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2178. from sentencepiece import SentencePieceProcessor
  2179. from sentencepiece import sentencepiece_model_pb2 as model
  2180. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2181. if not tokenizer_path.is_file():
  2182. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2183. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2184. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2185. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2186. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2187. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2188. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2189. tokenizer = SentencePieceProcessor()
  2190. tokenizer.LoadFromFile(str(tokenizer_path))
  2191. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2192. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2193. scores: list[float] = [-10000.0] * vocab_size
  2194. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2195. for token_id in range(tokenizer.vocab_size()):
  2196. piece = tokenizer.IdToPiece(token_id)
  2197. text = piece.encode("utf-8")
  2198. score = tokenizer.GetScore(token_id)
  2199. toktype = SentencePieceTokenTypes.NORMAL
  2200. if tokenizer.IsUnknown(token_id):
  2201. toktype = SentencePieceTokenTypes.UNKNOWN
  2202. elif tokenizer.IsControl(token_id):
  2203. toktype = SentencePieceTokenTypes.CONTROL
  2204. elif tokenizer.IsUnused(token_id):
  2205. toktype = SentencePieceTokenTypes.UNUSED
  2206. elif tokenizer.IsByte(token_id):
  2207. toktype = SentencePieceTokenTypes.BYTE
  2208. tokens[token_id] = text
  2209. scores[token_id] = score
  2210. toktypes[token_id] = toktype
  2211. if vocab_size > len(tokens):
  2212. pad_count = vocab_size - len(tokens)
  2213. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2214. for i in range(1, pad_count + 1):
  2215. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2216. scores.append(-1000.0)
  2217. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2218. # realign tokens (see HF tokenizer code)
  2219. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2220. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2221. toktypes = [
  2222. SentencePieceTokenTypes.CONTROL,
  2223. SentencePieceTokenTypes.CONTROL,
  2224. SentencePieceTokenTypes.CONTROL,
  2225. SentencePieceTokenTypes.UNKNOWN,
  2226. ] + toktypes[3:-1]
  2227. self.gguf_writer.add_tokenizer_model("t5")
  2228. self.gguf_writer.add_tokenizer_pre("default")
  2229. self.gguf_writer.add_token_list(tokens)
  2230. self.gguf_writer.add_token_scores(scores)
  2231. self.gguf_writer.add_token_types(toktypes)
  2232. self.gguf_writer.add_add_space_prefix(add_prefix)
  2233. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2234. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2235. if precompiled_charsmap:
  2236. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2237. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2238. special_vocab.add_to_gguf(self.gguf_writer)
  2239. self.gguf_writer.add_add_bos_token(True)
  2240. self.gguf_writer.add_add_eos_token(True)
  2241. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2242. # if name starts with "roberta.", remove the prefix
  2243. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2244. if name.startswith("roberta."):
  2245. name = name[8:]
  2246. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2247. if name == "embeddings.position_embeddings.weight":
  2248. if self._position_offset is not None:
  2249. data_torch = data_torch[self._position_offset:,:]
  2250. return super().modify_tensors(data_torch, name, bid)
  2251. @Model.register("GemmaForCausalLM")
  2252. class GemmaModel(Model):
  2253. model_arch = gguf.MODEL_ARCH.GEMMA
  2254. def set_vocab(self):
  2255. self._set_vocab_sentencepiece()
  2256. # TODO: these special tokens should be exported only for the CodeGemma family
  2257. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2258. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2259. special_vocab._set_special_token("prefix", 67)
  2260. special_vocab._set_special_token("suffix", 69)
  2261. special_vocab._set_special_token("middle", 68)
  2262. special_vocab._set_special_token("fsep", 70)
  2263. special_vocab._set_special_token("eot", 107)
  2264. special_vocab.chat_template = None # do not add it twice
  2265. special_vocab.add_to_gguf(self.gguf_writer)
  2266. self.gguf_writer.add_add_space_prefix(False)
  2267. def set_gguf_parameters(self):
  2268. hparams = self.hparams
  2269. block_count = hparams["num_hidden_layers"]
  2270. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2271. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2272. self.gguf_writer.add_block_count(block_count)
  2273. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2274. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2275. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2276. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2277. self.gguf_writer.add_key_length(hparams["head_dim"])
  2278. self.gguf_writer.add_value_length(hparams["head_dim"])
  2279. self.gguf_writer.add_file_type(self.ftype)
  2280. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2281. del bid # unused
  2282. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2283. # To prevent errors, skip loading lm_head.weight.
  2284. if name == "lm_head.weight":
  2285. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2286. return []
  2287. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2288. if name.endswith("norm.weight"):
  2289. data_torch = data_torch + 1
  2290. return [(self.map_tensor_name(name), data_torch)]
  2291. @Model.register("Gemma2ForCausalLM")
  2292. class Gemma2Model(Model):
  2293. model_arch = gguf.MODEL_ARCH.GEMMA2
  2294. def set_vocab(self):
  2295. self._set_vocab_sentencepiece()
  2296. self.gguf_writer.add_add_space_prefix(False)
  2297. def set_gguf_parameters(self):
  2298. hparams = self.hparams
  2299. block_count = hparams["num_hidden_layers"]
  2300. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2301. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2302. self.gguf_writer.add_block_count(block_count)
  2303. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2304. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2305. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2306. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2307. self.gguf_writer.add_key_length(hparams["head_dim"])
  2308. self.gguf_writer.add_value_length(hparams["head_dim"])
  2309. self.gguf_writer.add_file_type(self.ftype)
  2310. self.gguf_writer.add_attn_logit_softcapping(
  2311. self.hparams["attn_logit_softcapping"]
  2312. )
  2313. self.gguf_writer.add_final_logit_softcapping(
  2314. self.hparams["final_logit_softcapping"]
  2315. )
  2316. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2318. del bid # unused
  2319. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2320. # To prevent errors, skip loading lm_head.weight.
  2321. if name == "lm_head.weight":
  2322. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2323. return []
  2324. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2325. if name.endswith("norm.weight"):
  2326. data_torch = data_torch + 1
  2327. return [(self.map_tensor_name(name), data_torch)]
  2328. @Model.register("Starcoder2ForCausalLM")
  2329. class StarCoder2Model(Model):
  2330. model_arch = gguf.MODEL_ARCH.STARCODER2
  2331. @Model.register("Rwkv6ForCausalLM")
  2332. class Rwkv6Model(Model):
  2333. model_arch = gguf.MODEL_ARCH.RWKV6
  2334. def set_vocab(self):
  2335. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2336. vocab_size = self.hparams.get("vocab_size", 65536)
  2337. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2338. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2339. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2340. lines = f.readlines()
  2341. for line in lines:
  2342. parts = line.split(' ')
  2343. assert len(parts) >= 3
  2344. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2345. token = token.encode("utf-8") if isinstance(token, str) else token
  2346. assert isinstance(token, bytes)
  2347. assert len(token) == token_len
  2348. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2349. tokens.append(token_text.encode("utf-8"))
  2350. toktypes.append(gguf.TokenType.NORMAL)
  2351. remainder = vocab_size - len(tokens)
  2352. assert remainder >= 0
  2353. for i in range(len(tokens), vocab_size):
  2354. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2355. toktypes.append(gguf.TokenType.UNUSED)
  2356. self.gguf_writer.add_tokenizer_model("rwkv")
  2357. self.gguf_writer.add_token_list(tokens)
  2358. self.gguf_writer.add_token_types(toktypes)
  2359. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2360. special_vocab.chat_template = "rwkv-world"
  2361. # hack: Add '\n\n' as the EOT token to make it chat normally
  2362. special_vocab._set_special_token("eot", 261)
  2363. special_vocab.add_to_gguf(self.gguf_writer)
  2364. def set_gguf_parameters(self):
  2365. block_count = self.hparams["num_hidden_layers"]
  2366. head_size = self.hparams["head_size"]
  2367. hidden_size = self.hparams["hidden_size"]
  2368. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2369. rescale_every_n_layers = self.hparams["rescale_every"]
  2370. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2371. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2372. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2373. # RWKV isn't context limited
  2374. self.gguf_writer.add_context_length(1048576)
  2375. self.gguf_writer.add_embedding_length(hidden_size)
  2376. self.gguf_writer.add_block_count(block_count)
  2377. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2378. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2379. self.gguf_writer.add_wkv_head_size(head_size)
  2380. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2381. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2382. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2383. self.gguf_writer.add_file_type(self.ftype)
  2384. # required by llama.cpp, unused
  2385. self.gguf_writer.add_head_count(0)
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2387. new_name = self.map_tensor_name(name)
  2388. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2389. new_name += ".weight"
  2390. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2391. data_torch = data_torch.transpose(0, 1)
  2392. if new_name.endswith("time_mix_w2.weight"):
  2393. data_torch = data_torch.permute(0, 2, 1)
  2394. rescale_every_n_layers = self.hparams["rescale_every"]
  2395. if rescale_every_n_layers > 0:
  2396. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2397. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2398. yield (new_name, data_torch)
  2399. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2400. class MambaModel(Model):
  2401. model_arch = gguf.MODEL_ARCH.MAMBA
  2402. def set_vocab(self):
  2403. vocab_size = self.hparams["vocab_size"]
  2404. # Round vocab size to next multiple of 8
  2405. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2406. # pad using ceiling division
  2407. # ref: https://stackoverflow.com/a/17511341/22827863
  2408. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2409. self.hparams["vocab_size"] = vocab_size
  2410. if (self.dir_model / "tokenizer.json").is_file():
  2411. self._set_vocab_gpt2()
  2412. elif (self.dir_model / "tokenizer.model").is_file():
  2413. self._set_vocab_sentencepiece()
  2414. else:
  2415. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2416. self._set_vocab_builtin("gpt-neox", vocab_size)
  2417. def set_gguf_parameters(self):
  2418. d_model = self.find_hparam(["hidden_size", "d_model"])
  2419. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2420. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2421. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2422. # ceiling division
  2423. # ref: https://stackoverflow.com/a/17511341/22827863
  2424. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2425. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2426. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2427. use_dt_b_c_norm = False
  2428. # For falconmamba we do apply RMS norm on B / DT and C layers
  2429. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2430. use_dt_b_c_norm = True
  2431. # Fail early for models which don't have a block expansion factor of 2
  2432. assert d_inner == 2 * d_model
  2433. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2434. self.gguf_writer.add_embedding_length(d_model)
  2435. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2436. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2437. self.gguf_writer.add_block_count(self.block_count)
  2438. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2439. self.gguf_writer.add_ssm_inner_size(d_inner)
  2440. self.gguf_writer.add_ssm_state_size(d_state)
  2441. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2442. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2443. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2444. self.gguf_writer.add_file_type(self.ftype)
  2445. _tok_embd = None
  2446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2447. del bid # unused
  2448. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2449. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2450. new_name = self.map_tensor_name(name)
  2451. if name.endswith(".A_log"):
  2452. logger.debug("A_log --> A ==> " + new_name)
  2453. data_torch = -torch.exp(data_torch)
  2454. # assuming token_embd.weight is seen before output.weight
  2455. if self._tok_embd is not None and new_name == output_name:
  2456. if torch.equal(self._tok_embd, data_torch):
  2457. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2458. return []
  2459. elif new_name == tok_embd_name:
  2460. self._tok_embd = data_torch
  2461. return [(new_name, data_torch)]
  2462. @Model.register("CohereForCausalLM")
  2463. class CommandR2Model(Model):
  2464. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2465. def __init__(self, *args, **kwargs):
  2466. super().__init__(*args, **kwargs)
  2467. # max_position_embeddings = 8192 in config.json but model was actually
  2468. # trained on 128k context length
  2469. # aya-23 models don't have model_max_length specified
  2470. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2471. def set_gguf_parameters(self):
  2472. super().set_gguf_parameters()
  2473. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2474. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2475. @Model.register("OlmoForCausalLM")
  2476. @Model.register("OLMoForCausalLM")
  2477. class OlmoModel(Model):
  2478. model_arch = gguf.MODEL_ARCH.OLMO
  2479. def set_gguf_parameters(self):
  2480. super().set_gguf_parameters()
  2481. self.gguf_writer.add_layer_norm_eps(1e-5)
  2482. clip_qkv = self.hparams.get("clip_qkv")
  2483. if clip_qkv is not None:
  2484. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2485. # Same as super class, but permuting q_proj, k_proj
  2486. # Copied from: LlamaModel
  2487. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2488. del bid # unused
  2489. n_head = self.hparams["num_attention_heads"]
  2490. n_kv_head = self.hparams.get("num_key_value_heads")
  2491. if name.endswith("q_proj.weight"):
  2492. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2493. if name.endswith("k_proj.weight"):
  2494. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2495. return [(self.map_tensor_name(name), data_torch)]
  2496. @Model.register("Olmo2ForCausalLM")
  2497. class Olmo2Model(Model):
  2498. model_arch = gguf.MODEL_ARCH.OLMO2
  2499. @Model.register("OlmoeForCausalLM")
  2500. class OlmoeModel(Model):
  2501. model_arch = gguf.MODEL_ARCH.OLMOE
  2502. def set_gguf_parameters(self):
  2503. super().set_gguf_parameters()
  2504. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2505. if (n_experts := self.hparams.get("num_experts")) is not None:
  2506. self.gguf_writer.add_expert_count(n_experts)
  2507. _experts: list[dict[str, Tensor]] | None = None
  2508. # Copied from: Qwen2MoeModel
  2509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2510. # process the experts separately
  2511. if name.find("experts") != -1:
  2512. n_experts = self.hparams["num_experts"]
  2513. assert bid is not None
  2514. if self._experts is None:
  2515. self._experts = [{} for _ in range(self.block_count)]
  2516. self._experts[bid][name] = data_torch
  2517. if len(self._experts[bid]) >= n_experts * 3:
  2518. tensors: list[tuple[str, Tensor]] = []
  2519. # merge the experts into a single 3d tensor
  2520. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2521. datas: list[Tensor] = []
  2522. for xid in range(n_experts):
  2523. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2524. datas.append(self._experts[bid][ename])
  2525. del self._experts[bid][ename]
  2526. data_torch = torch.stack(datas, dim=0)
  2527. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2528. new_name = self.map_tensor_name(merged_name)
  2529. tensors.append((new_name, data_torch))
  2530. return tensors
  2531. else:
  2532. return []
  2533. return [(self.map_tensor_name(name), data_torch)]
  2534. # Copied from: Qwen2MoeModel
  2535. def prepare_tensors(self):
  2536. super().prepare_tensors()
  2537. if self._experts is not None:
  2538. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2539. experts = [k for d in self._experts for k in d.keys()]
  2540. if len(experts) > 0:
  2541. raise ValueError(f"Unprocessed experts: {experts}")
  2542. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2543. class JinaBertV2Model(BertModel):
  2544. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2545. def __init__(self, *args, **kwargs):
  2546. super().__init__(*args, **kwargs)
  2547. self.intermediate_size = self.hparams["intermediate_size"]
  2548. def get_tensors(self):
  2549. for name, data in super().get_tensors():
  2550. if 'gated_layer' in name:
  2551. d1 = data[:self.intermediate_size, :]
  2552. name1 = name.replace('gated_layers', 'gated_layers_w')
  2553. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2554. d2 = data[self.intermediate_size:, :]
  2555. name2 = name.replace('gated_layers', 'gated_layers_v')
  2556. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2557. yield name1, d1
  2558. yield name2, d2
  2559. continue
  2560. yield name, data
  2561. def set_vocab(self):
  2562. tokenizer_class = 'BertTokenizer'
  2563. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2564. tokenizer_class = json.load(f)['tokenizer_class']
  2565. if tokenizer_class == 'BertTokenizer':
  2566. super().set_vocab()
  2567. elif tokenizer_class == 'RobertaTokenizer':
  2568. self._set_vocab_gpt2()
  2569. self.gguf_writer.add_token_type_count(2)
  2570. else:
  2571. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2572. self.gguf_writer.add_add_bos_token(True)
  2573. self.gguf_writer.add_add_eos_token(True)
  2574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2575. # if name starts with "bert.", remove the prefix
  2576. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2577. if name.startswith("bert."):
  2578. name = name[5:]
  2579. return super().modify_tensors(data_torch, name, bid)
  2580. @Model.register("OpenELMForCausalLM")
  2581. class OpenELMModel(Model):
  2582. model_arch = gguf.MODEL_ARCH.OPENELM
  2583. @staticmethod
  2584. def _make_divisible(v: float | int, divisor: int) -> int:
  2585. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2586. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2587. # Make sure that round down does not go down by more than 10%.
  2588. if new_v < 0.9 * v:
  2589. new_v += divisor
  2590. return new_v
  2591. def __init__(self, *args, **kwargs):
  2592. super().__init__(*args, **kwargs)
  2593. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2594. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2595. self._n_embd: int = self.hparams["model_dim"]
  2596. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2597. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2598. self._ffn_dims: list[int] = [
  2599. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2600. for multiplier in ffn_multipliers
  2601. ]
  2602. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2603. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2604. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2605. def set_vocab(self):
  2606. try:
  2607. self._set_vocab_sentencepiece()
  2608. except FileNotFoundError:
  2609. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2610. def set_gguf_parameters(self):
  2611. n_embd = self._n_embd
  2612. head_dim = self.hparams["head_dim"]
  2613. rot_pct = 1.0
  2614. assert self.block_count == len(self._num_kv_heads)
  2615. assert self.block_count == len(self._num_query_heads)
  2616. assert self.block_count == len(self._ffn_dims)
  2617. self.gguf_writer.add_block_count(self.block_count)
  2618. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2619. self.gguf_writer.add_embedding_length(n_embd)
  2620. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2621. self.gguf_writer.add_head_count(self._num_query_heads)
  2622. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2623. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2624. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2625. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2626. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2627. self.gguf_writer.add_key_length(head_dim)
  2628. self.gguf_writer.add_value_length(head_dim)
  2629. self.gguf_writer.add_file_type(self.ftype)
  2630. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2631. if "n_layers" in keys:
  2632. return self.hparams["num_transformer_layers"]
  2633. return super().find_hparam(keys, optional)
  2634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2635. # split ff
  2636. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2637. ff_dim = self._ffn_dims[bid]
  2638. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2639. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2640. return
  2641. yield (self.map_tensor_name(name), data_torch)
  2642. @Model.register("ArcticForCausalLM")
  2643. class ArcticModel(Model):
  2644. model_arch = gguf.MODEL_ARCH.ARCTIC
  2645. def set_vocab(self):
  2646. # The reason for using a custom implementation here is that the
  2647. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2648. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2649. from sentencepiece import SentencePieceProcessor
  2650. tokenizer_path = self.dir_model / 'tokenizer.model'
  2651. if not tokenizer_path.is_file():
  2652. logger.error(f'Error: Missing {tokenizer_path}')
  2653. sys.exit(1)
  2654. # Read the whole vocabulary from the tokenizer.model file
  2655. tokenizer = SentencePieceProcessor()
  2656. tokenizer.LoadFromFile(str(tokenizer_path))
  2657. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2658. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2659. scores: list[float] = [-10000.0] * vocab_size
  2660. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2661. for token_id in range(tokenizer.vocab_size()):
  2662. piece = tokenizer.IdToPiece(token_id)
  2663. text = piece.encode("utf-8")
  2664. score = tokenizer.GetScore(token_id)
  2665. toktype = SentencePieceTokenTypes.NORMAL
  2666. if tokenizer.IsUnknown(token_id):
  2667. toktype = SentencePieceTokenTypes.UNKNOWN
  2668. elif tokenizer.IsControl(token_id):
  2669. toktype = SentencePieceTokenTypes.CONTROL
  2670. elif tokenizer.IsUnused(token_id):
  2671. toktype = SentencePieceTokenTypes.UNUSED
  2672. elif tokenizer.IsByte(token_id):
  2673. toktype = SentencePieceTokenTypes.BYTE
  2674. tokens[token_id] = text
  2675. scores[token_id] = score
  2676. toktypes[token_id] = toktype
  2677. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2678. # of information about added/redefined tokens and modify them accordingly.
  2679. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2680. if tokenizer_config_file.is_file():
  2681. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2682. tokenizer_config_json = json.load(f)
  2683. if "added_tokens_decoder" in tokenizer_config_json:
  2684. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2685. for token_id, token_json in added_tokens_decoder.items():
  2686. token_id = int(token_id)
  2687. if token_id >= vocab_size:
  2688. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2689. continue
  2690. token_content = token_json["content"]
  2691. token_type = SentencePieceTokenTypes.USER_DEFINED
  2692. token_score = -10000.0
  2693. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2694. # Set the score to 0.0 as in the original tokenizer.model
  2695. if ("special" in token_json) and token_json["special"]:
  2696. if token_content == tokenizer_config_json["unk_token"]:
  2697. token_type = SentencePieceTokenTypes.UNKNOWN
  2698. else:
  2699. token_type = SentencePieceTokenTypes.CONTROL
  2700. token_score = 0.0
  2701. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2702. tokens[token_id] = token_content.encode("utf-8")
  2703. toktypes[token_id] = token_type
  2704. scores[token_id] = token_score
  2705. self.gguf_writer.add_tokenizer_model("llama")
  2706. self.gguf_writer.add_tokenizer_pre("default")
  2707. self.gguf_writer.add_token_list(tokens)
  2708. self.gguf_writer.add_token_scores(scores)
  2709. self.gguf_writer.add_token_types(toktypes)
  2710. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2711. special_vocab.add_to_gguf(self.gguf_writer)
  2712. def set_gguf_parameters(self):
  2713. super().set_gguf_parameters()
  2714. hparams = self.hparams
  2715. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2716. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2717. _experts: list[dict[str, Tensor]] | None = None
  2718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2719. n_head = self.hparams["num_attention_heads"]
  2720. n_kv_head = self.hparams.get("num_key_value_heads")
  2721. if name.endswith("q_proj.weight"):
  2722. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2723. if name.endswith("k_proj.weight"):
  2724. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2725. # process the experts separately
  2726. if name.find("block_sparse_moe.experts") != -1:
  2727. n_experts = self.hparams["num_local_experts"]
  2728. assert bid is not None
  2729. if self._experts is None:
  2730. self._experts = [{} for _ in range(self.block_count)]
  2731. self._experts[bid][name] = data_torch
  2732. if len(self._experts[bid]) >= n_experts * 3:
  2733. tensors: list[tuple[str, Tensor]] = []
  2734. # merge the experts into a single 3d tensor
  2735. for wid in ["w1", "w2", "w3"]:
  2736. datas: list[Tensor] = []
  2737. for xid in range(n_experts):
  2738. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2739. datas.append(self._experts[bid][ename])
  2740. del self._experts[bid][ename]
  2741. data_torch = torch.stack(datas, dim=0)
  2742. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2743. new_name = self.map_tensor_name(merged_name)
  2744. tensors.append((new_name, data_torch))
  2745. return tensors
  2746. else:
  2747. return []
  2748. return [(self.map_tensor_name(name), data_torch)]
  2749. def prepare_tensors(self):
  2750. super().prepare_tensors()
  2751. if self._experts is not None:
  2752. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2753. experts = [k for d in self._experts for k in d.keys()]
  2754. if len(experts) > 0:
  2755. raise ValueError(f"Unprocessed experts: {experts}")
  2756. @Model.register("DeepseekForCausalLM")
  2757. class DeepseekModel(Model):
  2758. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  2759. def set_vocab(self):
  2760. try:
  2761. self._set_vocab_sentencepiece()
  2762. except FileNotFoundError:
  2763. self._set_vocab_gpt2()
  2764. def set_gguf_parameters(self):
  2765. super().set_gguf_parameters()
  2766. hparams = self.hparams
  2767. if "head_dim" in hparams:
  2768. rope_dim = hparams["head_dim"]
  2769. else:
  2770. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2771. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2773. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2774. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2775. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2776. self.gguf_writer.add_expert_weights_scale(1.0)
  2777. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2778. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2779. _experts: list[dict[str, Tensor]] | None = None
  2780. @staticmethod
  2781. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2782. if n_head_kv is not None and n_head != n_head_kv:
  2783. n_head = n_head_kv
  2784. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2785. .swapaxes(1, 2)
  2786. .reshape(weights.shape))
  2787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2788. n_head = self.hparams["num_attention_heads"]
  2789. n_kv_head = self.hparams.get("num_key_value_heads")
  2790. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2791. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  2792. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2793. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  2794. # process the experts separately
  2795. if name.find("mlp.experts") != -1:
  2796. n_experts = self.hparams["n_routed_experts"]
  2797. assert bid is not None
  2798. if self._experts is None:
  2799. self._experts = [{} for _ in range(self.block_count)]
  2800. self._experts[bid][name] = data_torch
  2801. if len(self._experts[bid]) >= n_experts * 3:
  2802. tensors: list[tuple[str, Tensor]] = []
  2803. # merge the experts into a single 3d tensor
  2804. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2805. datas: list[Tensor] = []
  2806. for xid in range(n_experts):
  2807. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2808. datas.append(self._experts[bid][ename])
  2809. del self._experts[bid][ename]
  2810. data_torch = torch.stack(datas, dim=0)
  2811. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2812. new_name = self.map_tensor_name(merged_name)
  2813. tensors.append((new_name, data_torch))
  2814. return tensors
  2815. else:
  2816. return []
  2817. return [(self.map_tensor_name(name), data_torch)]
  2818. def prepare_tensors(self):
  2819. super().prepare_tensors()
  2820. if self._experts is not None:
  2821. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2822. experts = [k for d in self._experts for k in d.keys()]
  2823. if len(experts) > 0:
  2824. raise ValueError(f"Unprocessed experts: {experts}")
  2825. @Model.register("DeepseekV2ForCausalLM")
  2826. class DeepseekV2Model(Model):
  2827. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2828. def set_vocab(self):
  2829. self._set_vocab_gpt2()
  2830. def set_gguf_parameters(self):
  2831. super().set_gguf_parameters()
  2832. hparams = self.hparams
  2833. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2834. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2835. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2836. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2837. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2838. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2839. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2840. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2841. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2842. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2843. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2844. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2845. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2846. if self.hparams["rope_scaling"].get("type") == "yarn":
  2847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2848. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2849. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2850. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2851. _experts: list[dict[str, Tensor]] | None = None
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. # process the experts separately
  2854. if name.find("mlp.experts") != -1:
  2855. n_experts = self.hparams["n_routed_experts"]
  2856. assert bid is not None
  2857. if self._experts is None:
  2858. self._experts = [{} for _ in range(self.block_count)]
  2859. self._experts[bid][name] = data_torch
  2860. if len(self._experts[bid]) >= n_experts * 3:
  2861. tensors: list[tuple[str, Tensor]] = []
  2862. # merge the experts into a single 3d tensor
  2863. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2864. datas: list[Tensor] = []
  2865. for xid in range(n_experts):
  2866. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2867. datas.append(self._experts[bid][ename])
  2868. del self._experts[bid][ename]
  2869. data_torch = torch.stack(datas, dim=0)
  2870. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2871. new_name = self.map_tensor_name(merged_name)
  2872. tensors.append((new_name, data_torch))
  2873. return tensors
  2874. else:
  2875. return []
  2876. return [(self.map_tensor_name(name), data_torch)]
  2877. def prepare_tensors(self):
  2878. super().prepare_tensors()
  2879. if self._experts is not None:
  2880. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2881. experts = [k for d in self._experts for k in d.keys()]
  2882. if len(experts) > 0:
  2883. raise ValueError(f"Unprocessed experts: {experts}")
  2884. @Model.register("T5WithLMHeadModel")
  2885. @Model.register("T5ForConditionalGeneration")
  2886. @Model.register("MT5ForConditionalGeneration")
  2887. @Model.register("UMT5ForConditionalGeneration")
  2888. class T5Model(Model):
  2889. model_arch = gguf.MODEL_ARCH.T5
  2890. def __init__(self, *args, **kwargs):
  2891. super().__init__(*args, **kwargs)
  2892. self.shared_token_embeddings_found = False
  2893. def set_vocab(self):
  2894. # to avoid TypeError: Descriptors cannot be created directly
  2895. # exception when importing sentencepiece_model_pb2
  2896. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2897. from sentencepiece import SentencePieceProcessor
  2898. from sentencepiece import sentencepiece_model_pb2 as model
  2899. tokenizer_path = self.dir_model / 'tokenizer.model'
  2900. # many older models use spiece.model tokenizer model filename
  2901. if not tokenizer_path.is_file():
  2902. tokenizer_path = self.dir_model / 'spiece.model'
  2903. if not tokenizer_path.is_file():
  2904. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2905. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2906. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2907. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2908. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2909. # assure the tokenizer model file name is correct
  2910. assert tokenizer_path.name == 'tokenizer.model'
  2911. return self._set_vocab_sentencepiece()
  2912. else:
  2913. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2914. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2915. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2916. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2917. tokenizer = SentencePieceProcessor()
  2918. tokenizer.LoadFromFile(str(tokenizer_path))
  2919. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2920. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2921. scores: list[float] = [-10000.0] * vocab_size
  2922. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2923. for token_id in range(tokenizer.vocab_size()):
  2924. piece = tokenizer.IdToPiece(token_id)
  2925. text = piece.encode("utf-8")
  2926. score = tokenizer.GetScore(token_id)
  2927. toktype = SentencePieceTokenTypes.NORMAL
  2928. if tokenizer.IsUnknown(token_id):
  2929. toktype = SentencePieceTokenTypes.UNKNOWN
  2930. elif tokenizer.IsControl(token_id):
  2931. toktype = SentencePieceTokenTypes.CONTROL
  2932. elif tokenizer.IsUnused(token_id):
  2933. toktype = SentencePieceTokenTypes.UNUSED
  2934. elif tokenizer.IsByte(token_id):
  2935. toktype = SentencePieceTokenTypes.BYTE
  2936. tokens[token_id] = text
  2937. scores[token_id] = score
  2938. toktypes[token_id] = toktype
  2939. added_tokens_file = self.dir_model / 'added_tokens.json'
  2940. if added_tokens_file.is_file():
  2941. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2942. added_tokens_json = json.load(f)
  2943. for key in added_tokens_json:
  2944. token_id = added_tokens_json[key]
  2945. if token_id >= vocab_size:
  2946. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2947. continue
  2948. tokens[token_id] = key.encode("utf-8")
  2949. scores[token_id] = -1000.0
  2950. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2951. if vocab_size > len(tokens):
  2952. pad_count = vocab_size - len(tokens)
  2953. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2954. for i in range(1, pad_count + 1):
  2955. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2956. scores.append(-1000.0)
  2957. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2958. self.gguf_writer.add_tokenizer_model("t5")
  2959. self.gguf_writer.add_tokenizer_pre("default")
  2960. self.gguf_writer.add_token_list(tokens)
  2961. self.gguf_writer.add_token_scores(scores)
  2962. self.gguf_writer.add_token_types(toktypes)
  2963. self.gguf_writer.add_add_space_prefix(add_prefix)
  2964. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2965. if precompiled_charsmap:
  2966. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2967. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2968. special_vocab.add_to_gguf(self.gguf_writer)
  2969. self.gguf_writer.add_add_bos_token(False)
  2970. self.gguf_writer.add_add_eos_token(True)
  2971. def set_gguf_parameters(self):
  2972. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2973. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2974. n_ctx = 512
  2975. self.gguf_writer.add_context_length(n_ctx)
  2976. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2977. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2978. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2979. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2980. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2981. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2982. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2983. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2984. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2985. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2986. self.gguf_writer.add_file_type(self.ftype)
  2987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2988. del bid # unused
  2989. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2990. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2991. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2992. # and decoder and ignore the remaining ones.
  2993. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2994. if not self.shared_token_embeddings_found:
  2995. name = "shared.weight"
  2996. self.shared_token_embeddings_found = True
  2997. else:
  2998. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2999. return []
  3000. return [(self.map_tensor_name(name), data_torch)]
  3001. @Model.register("T5EncoderModel")
  3002. class T5EncoderModel(Model):
  3003. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3004. def __init__(self, *args, **kwargs):
  3005. super().__init__(*args, **kwargs)
  3006. self.shared_token_embeddings_found = False
  3007. def set_vocab(self):
  3008. # to avoid TypeError: Descriptors cannot be created directly
  3009. # exception when importing sentencepiece_model_pb2
  3010. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3011. from sentencepiece import SentencePieceProcessor
  3012. from sentencepiece import sentencepiece_model_pb2 as model
  3013. tokenizer_path = self.dir_model / 'tokenizer.model'
  3014. # many older models use spiece.model tokenizer model filename
  3015. if not tokenizer_path.is_file():
  3016. tokenizer_path = self.dir_model / 'spiece.model'
  3017. if not tokenizer_path.is_file():
  3018. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3019. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3020. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3021. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3022. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3023. # assure the tokenizer model file name is correct
  3024. assert tokenizer_path.name == 'tokenizer.model'
  3025. return self._set_vocab_sentencepiece()
  3026. else:
  3027. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3028. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3029. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3030. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3031. tokenizer = SentencePieceProcessor()
  3032. tokenizer.LoadFromFile(str(tokenizer_path))
  3033. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3034. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3035. scores: list[float] = [-10000.0] * vocab_size
  3036. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3037. for token_id in range(tokenizer.vocab_size()):
  3038. piece = tokenizer.IdToPiece(token_id)
  3039. text = piece.encode("utf-8")
  3040. score = tokenizer.GetScore(token_id)
  3041. toktype = SentencePieceTokenTypes.NORMAL
  3042. if tokenizer.IsUnknown(token_id):
  3043. toktype = SentencePieceTokenTypes.UNKNOWN
  3044. elif tokenizer.IsControl(token_id):
  3045. toktype = SentencePieceTokenTypes.CONTROL
  3046. elif tokenizer.IsUnused(token_id):
  3047. toktype = SentencePieceTokenTypes.UNUSED
  3048. elif tokenizer.IsByte(token_id):
  3049. toktype = SentencePieceTokenTypes.BYTE
  3050. tokens[token_id] = text
  3051. scores[token_id] = score
  3052. toktypes[token_id] = toktype
  3053. added_tokens_file = self.dir_model / 'added_tokens.json'
  3054. if added_tokens_file.is_file():
  3055. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3056. added_tokens_json = json.load(f)
  3057. for key in added_tokens_json:
  3058. token_id = added_tokens_json[key]
  3059. if token_id >= vocab_size:
  3060. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3061. continue
  3062. tokens[token_id] = key.encode("utf-8")
  3063. scores[token_id] = -1000.0
  3064. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3065. if vocab_size > len(tokens):
  3066. pad_count = vocab_size - len(tokens)
  3067. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3068. for i in range(1, pad_count + 1):
  3069. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3070. scores.append(-1000.0)
  3071. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3072. self.gguf_writer.add_tokenizer_model("t5")
  3073. self.gguf_writer.add_tokenizer_pre("default")
  3074. self.gguf_writer.add_token_list(tokens)
  3075. self.gguf_writer.add_token_scores(scores)
  3076. self.gguf_writer.add_token_types(toktypes)
  3077. self.gguf_writer.add_add_space_prefix(add_prefix)
  3078. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3079. if precompiled_charsmap:
  3080. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3081. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3082. special_vocab.add_to_gguf(self.gguf_writer)
  3083. self.gguf_writer.add_add_bos_token(False)
  3084. self.gguf_writer.add_add_eos_token(True)
  3085. def set_gguf_parameters(self):
  3086. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3087. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3088. n_ctx = 512
  3089. self.gguf_writer.add_context_length(n_ctx)
  3090. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3091. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3092. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3093. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3094. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3095. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3096. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3097. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3098. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3099. self.gguf_writer.add_file_type(self.ftype)
  3100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3101. del bid # unused
  3102. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3103. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3104. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3105. # and decoder and ignore the remaining ones.
  3106. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3107. if not self.shared_token_embeddings_found:
  3108. name = "shared.weight"
  3109. self.shared_token_embeddings_found = True
  3110. else:
  3111. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3112. return []
  3113. return [(self.map_tensor_name(name), data_torch)]
  3114. @Model.register("JAISLMHeadModel")
  3115. class JaisModel(Model):
  3116. model_arch = gguf.MODEL_ARCH.JAIS
  3117. def __init__(self, *args, **kwargs):
  3118. super().__init__(*args, **kwargs)
  3119. # SwigLU activation
  3120. assert self.hparams["activation_function"] == "swiglu"
  3121. # ALiBi position embedding
  3122. assert self.hparams["position_embedding_type"] == "alibi"
  3123. # Embeddings scale
  3124. self.embeddings_scale = 1.0
  3125. if 'mup_embeddings_scale' in self.hparams:
  3126. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3127. elif 'embeddings_scale' in self.hparams:
  3128. self.embeddings_scale = self.hparams['embeddings_scale']
  3129. else:
  3130. assert False
  3131. self.width_scale = 1.0
  3132. if 'mup_output_alpha' in self.hparams:
  3133. assert 'mup_width_scale' in self.hparams
  3134. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3135. elif 'width_scale' in self.hparams:
  3136. self.width_scale = self.hparams['width_scale']
  3137. else:
  3138. assert False
  3139. self.max_alibi_bias = 8.0
  3140. def set_vocab(self):
  3141. self._set_vocab_gpt2()
  3142. def set_gguf_parameters(self):
  3143. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3144. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3145. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3146. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3147. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3148. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3149. self.gguf_writer.add_file_type(self.ftype)
  3150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3151. del bid # unused
  3152. tensors: list[tuple[str, Tensor]] = []
  3153. # we don't need these
  3154. if name.endswith((".attn.bias")):
  3155. return tensors
  3156. if name.endswith(("relative_pe.slopes")):
  3157. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3158. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3159. # but Jais's PyTorch model simply precalculates the slope values and places them
  3160. # in relative_pes.slopes
  3161. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3162. first_val = float(data_torch[0].item())
  3163. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3164. return tensors
  3165. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3166. data_torch = data_torch.transpose(1, 0)
  3167. new_name = self.map_tensor_name(name)
  3168. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3169. tensors.append((new_name, data_torch * self.embeddings_scale))
  3170. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3171. tensors.append((new_name, data_torch * self.width_scale))
  3172. else:
  3173. tensors.append((new_name, data_torch))
  3174. return tensors
  3175. def prepare_tensors(self):
  3176. super().prepare_tensors()
  3177. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3178. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3179. class ChatGLMModel(Model):
  3180. model_arch = gguf.MODEL_ARCH.CHATGLM
  3181. def set_vocab_chatglm3(self):
  3182. dir_model = self.dir_model
  3183. hparams = self.hparams
  3184. tokens: list[bytes] = []
  3185. toktypes: list[int] = []
  3186. scores: list[float] = []
  3187. from transformers import AutoTokenizer
  3188. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3189. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3190. assert max(tokenizer.get_vocab().values()) < vocab_size
  3191. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3192. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3193. for token_id in range(vocab_size):
  3194. piece = tokenizer._convert_id_to_token(token_id)
  3195. if token_id == 0:
  3196. piece = "<unk>"
  3197. elif token_id == 1:
  3198. piece = "<bos>"
  3199. elif token_id == 2:
  3200. piece = "<eos>"
  3201. text = piece.encode("utf-8")
  3202. score = 0.0
  3203. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3204. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3205. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3206. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3207. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3208. if piece in special_tokens:
  3209. toktype = SentencePieceTokenTypes.CONTROL
  3210. elif len(piece) == 0:
  3211. text = f"[PAD{token_id}]".encode("utf-8")
  3212. toktype = SentencePieceTokenTypes.UNUSED
  3213. else:
  3214. toktype = SentencePieceTokenTypes.USER_DEFINED
  3215. tokens.append(text)
  3216. scores.append(score)
  3217. toktypes.append(toktype)
  3218. continue
  3219. toktype = SentencePieceTokenTypes.NORMAL
  3220. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3221. toktype = SentencePieceTokenTypes.UNKNOWN
  3222. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3223. toktype = SentencePieceTokenTypes.CONTROL
  3224. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3225. toktype = SentencePieceTokenTypes.UNUSED
  3226. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3227. toktype = SentencePieceTokenTypes.BYTE
  3228. tokens.append(text)
  3229. scores.append(score)
  3230. toktypes.append(toktype)
  3231. self.gguf_writer.add_tokenizer_model("llama")
  3232. # glm3 needs prefix and suffix formatted as:
  3233. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3234. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3235. self.gguf_writer.add_token_list(tokens)
  3236. self.gguf_writer.add_token_scores(scores)
  3237. self.gguf_writer.add_token_types(toktypes)
  3238. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3239. special_vocab.add_to_gguf(self.gguf_writer)
  3240. @staticmethod
  3241. def token_bytes_to_string(b):
  3242. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3243. byte_encoder = bytes_to_unicode()
  3244. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3245. @staticmethod
  3246. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3247. parts = [bytes([b]) for b in token]
  3248. while True:
  3249. min_idx = None
  3250. min_rank = None
  3251. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3252. rank = mergeable_ranks.get(pair[0] + pair[1])
  3253. if rank is not None and (min_rank is None or rank < min_rank):
  3254. min_idx = i
  3255. min_rank = rank
  3256. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3257. break
  3258. assert min_idx is not None
  3259. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3260. return parts
  3261. def set_vocab(self):
  3262. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3263. self.set_vocab_chatglm3()
  3264. return
  3265. dir_model = self.dir_model
  3266. hparams = self.hparams
  3267. tokens: list[str] = []
  3268. toktypes: list[int] = []
  3269. from transformers import AutoTokenizer
  3270. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3271. vocab_size = hparams["padded_vocab_size"]
  3272. assert max(tokenizer.get_vocab().values()) < vocab_size
  3273. tokpre = self.get_vocab_base_pre(tokenizer)
  3274. merges = []
  3275. vocab = {}
  3276. mergeable_ranks = tokenizer.mergeable_ranks
  3277. for token, rank in mergeable_ranks.items():
  3278. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3279. if len(token) == 1:
  3280. continue
  3281. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3282. assert len(merged) >= 2 and len(merged) <= 7
  3283. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3284. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3285. added_vocab = tokenizer.get_added_vocab()
  3286. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3287. for i in range(vocab_size):
  3288. if i not in reverse_vocab:
  3289. tokens.append(f"[PAD{i}]")
  3290. toktypes.append(gguf.TokenType.UNUSED)
  3291. elif reverse_vocab[i] in added_vocab:
  3292. tokens.append(reverse_vocab[i])
  3293. if tokenizer.added_tokens_decoder[i].special:
  3294. toktypes.append(gguf.TokenType.CONTROL)
  3295. else:
  3296. toktypes.append(gguf.TokenType.USER_DEFINED)
  3297. else:
  3298. tokens.append(reverse_vocab[i])
  3299. toktypes.append(gguf.TokenType.NORMAL)
  3300. self.gguf_writer.add_tokenizer_model("gpt2")
  3301. self.gguf_writer.add_tokenizer_pre(tokpre)
  3302. self.gguf_writer.add_token_list(tokens)
  3303. self.gguf_writer.add_token_types(toktypes)
  3304. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3305. special_vocab.merges = merges
  3306. # only add special tokens when they were not already loaded from config.json
  3307. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3308. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3309. # this one is usually not in config.json anyway
  3310. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3311. special_vocab.add_to_gguf(self.gguf_writer)
  3312. def set_gguf_parameters(self):
  3313. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3314. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3315. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3316. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3317. self.gguf_writer.add_embedding_length(n_embed)
  3318. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3319. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3320. self.gguf_writer.add_head_count(n_head)
  3321. self.gguf_writer.add_head_count_kv(n_head_kv)
  3322. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3323. self.gguf_writer.add_file_type(self.ftype)
  3324. self.gguf_writer.add_rope_dimension_count(64)
  3325. self.gguf_writer.add_add_bos_token(False)
  3326. rope_freq = 10000
  3327. if "rope_ratio" in self.hparams:
  3328. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3329. self.gguf_writer.add_rope_freq_base(rope_freq)
  3330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3331. del bid # unused
  3332. if name.endswith(".rotary_pos_emb.inv_freq"):
  3333. return []
  3334. name = name.removeprefix("transformer.")
  3335. return [(self.map_tensor_name(name), data_torch)]
  3336. @Model.register("NemotronForCausalLM")
  3337. class NemotronModel(Model):
  3338. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3339. def set_vocab(self):
  3340. self._set_vocab_sentencepiece()
  3341. self.gguf_writer.add_pad_token_id(0)
  3342. self.gguf_writer.add_unk_token_id(1)
  3343. def set_gguf_parameters(self):
  3344. super().set_gguf_parameters()
  3345. hparams = self.hparams
  3346. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3347. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3348. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3349. # * Partial RoPE
  3350. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3351. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3352. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3353. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3354. # * RopeScaling for Nemotron
  3355. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3356. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3357. else:
  3358. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3359. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3361. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3362. # model.layers.{l}.input_layernorm.weight
  3363. # model.layers.{l}.post_attention_layernorm.weight
  3364. # model.norm.weight
  3365. if name.endswith("norm.weight"):
  3366. data_torch = data_torch + 1
  3367. return [(self.map_tensor_name(name), data_torch)]
  3368. @Model.register("ExaoneForCausalLM")
  3369. class ExaoneModel(Model):
  3370. model_arch = gguf.MODEL_ARCH.EXAONE
  3371. def set_gguf_parameters(self):
  3372. hparams = self.hparams
  3373. assert (hparams["activation_function"] == "silu")
  3374. max_position_embeddings = hparams["max_position_embeddings"]
  3375. embed_dim = hparams["hidden_size"]
  3376. num_heads = hparams["num_attention_heads"]
  3377. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3378. layer_norm_eps = hparams["layer_norm_epsilon"]
  3379. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3380. num_layers = hparams["num_layers"]
  3381. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3382. # attention_dropout_rate = hparams["attention_dropout"]
  3383. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3384. # embed_dropout_rate = hparams["embed_dropout"]
  3385. self.gguf_writer.add_embedding_length(embed_dim)
  3386. self.gguf_writer.add_head_count(num_heads)
  3387. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3388. self.gguf_writer.add_context_length(max_position_embeddings)
  3389. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3390. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3391. self.gguf_writer.add_block_count(num_layers)
  3392. self.gguf_writer.add_file_type(self.ftype)
  3393. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3394. self.gguf_writer.add_rope_freq_base(rope_theta)
  3395. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3396. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3397. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3398. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3399. if hparams["rope_scaling"].get("type") == "linear":
  3400. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3401. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3402. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3403. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3404. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3405. base = self.hparams.get("rope_theta", 10000.0)
  3406. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3407. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3408. factor = rope_scaling.get("factor", 8.0)
  3409. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3410. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3411. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3412. low_freq_wavelen = old_context_len / low_freq_factor
  3413. high_freq_wavelen = old_context_len / high_freq_factor
  3414. assert low_freq_wavelen != high_freq_wavelen
  3415. rope_factors = []
  3416. for freq in freqs:
  3417. wavelen = 2 * math.pi / freq
  3418. if wavelen < high_freq_wavelen:
  3419. rope_factors.append(1)
  3420. elif wavelen > low_freq_wavelen:
  3421. rope_factors.append(factor)
  3422. else:
  3423. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3424. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3425. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3426. @Model.register("GraniteForCausalLM")
  3427. class GraniteModel(LlamaModel):
  3428. """Conversion for IBM's GraniteForCausalLM"""
  3429. model_arch = gguf.MODEL_ARCH.GRANITE
  3430. def set_gguf_parameters(self):
  3431. """Granite uses standard llama parameters with the following differences:
  3432. - No head_dim support
  3433. - New multiplier params:
  3434. - attention_scale
  3435. - embedding_scale
  3436. - residual_scale
  3437. - logits_scaling
  3438. """
  3439. if head_dim := self.hparams.pop("head_dim", None):
  3440. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3441. super().set_gguf_parameters()
  3442. # NOTE: Convert _multiplier params to _scale params for naming
  3443. # consistency
  3444. if attention_scale := self.hparams.get("attention_multiplier"):
  3445. self.gguf_writer.add_attention_scale(attention_scale)
  3446. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3447. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3448. self.gguf_writer.add_embedding_scale(embedding_scale)
  3449. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3450. if residual_scale := self.hparams.get("residual_multiplier"):
  3451. self.gguf_writer.add_residual_scale(residual_scale)
  3452. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3453. if logits_scale := self.hparams.get("logits_scaling"):
  3454. self.gguf_writer.add_logit_scale(logits_scale)
  3455. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3456. @Model.register("GraniteMoeForCausalLM")
  3457. class GraniteMoeModel(GraniteModel):
  3458. """Conversion for IBM's GraniteMoeForCausalLM"""
  3459. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3461. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3462. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3463. the hidden size that is then split during forward. To keep compatibility
  3464. with existing mixtral support, we pull them apart here.
  3465. """
  3466. if name.endswith("block_sparse_moe.input_linear.weight"):
  3467. ffn_dim = self.hparams["intermediate_size"]
  3468. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3469. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3470. return [
  3471. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3472. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3473. ]
  3474. return super().modify_tensors(data_torch, name, bid)
  3475. @Model.register("ChameleonForConditionalGeneration")
  3476. @Model.register("ChameleonForCausalLM") # obsolete
  3477. class ChameleonModel(Model):
  3478. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3479. def set_gguf_parameters(self):
  3480. super().set_gguf_parameters()
  3481. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3482. def set_vocab(self):
  3483. self._set_vocab_gpt2()
  3484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3485. # ignore image tokenizer for now
  3486. # TODO: remove this once image support is implemented for Chameleon
  3487. if name.startswith("model.vqmodel"):
  3488. return []
  3489. n_head = self.hparams["num_attention_heads"]
  3490. n_kv_head = self.hparams.get("num_key_value_heads")
  3491. hidden_dim = self.hparams.get("hidden_size")
  3492. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3493. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3494. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3495. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3496. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3497. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3498. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3499. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3500. return [(self.map_tensor_name(name), data_torch)]
  3501. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3502. @staticmethod
  3503. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3504. head_dim = hidden_dim // n_heads
  3505. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3506. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3507. return data_torch
  3508. ###### CONVERSION LOGIC ######
  3509. # tree of lazy tensors
  3510. class LazyTorchTensor(gguf.LazyBase):
  3511. _tensor_type = torch.Tensor
  3512. # to keep the type-checker happy
  3513. dtype: torch.dtype
  3514. shape: torch.Size
  3515. # only used when converting a torch.Tensor to a np.ndarray
  3516. _dtype_map: dict[torch.dtype, type] = {
  3517. torch.float16: np.float16,
  3518. torch.float32: np.float32,
  3519. }
  3520. # used for safetensors slices
  3521. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3522. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3523. _dtype_str_map: dict[str, torch.dtype] = {
  3524. "F64": torch.float64,
  3525. "F32": torch.float32,
  3526. "BF16": torch.bfloat16,
  3527. "F16": torch.float16,
  3528. # "U64": torch.uint64,
  3529. "I64": torch.int64,
  3530. # "U32": torch.uint32,
  3531. "I32": torch.int32,
  3532. # "U16": torch.uint16,
  3533. "I16": torch.int16,
  3534. "U8": torch.uint8,
  3535. "I8": torch.int8,
  3536. "BOOL": torch.bool,
  3537. "F8_E4M3": torch.float8_e4m3fn,
  3538. "F8_E5M2": torch.float8_e5m2,
  3539. }
  3540. def numpy(self) -> gguf.LazyNumpyTensor:
  3541. dtype = self._dtype_map[self.dtype]
  3542. return gguf.LazyNumpyTensor(
  3543. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3544. args=(self,),
  3545. func=(lambda s: s.numpy())
  3546. )
  3547. @classmethod
  3548. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3549. return torch.empty(size=shape, dtype=dtype, device="meta")
  3550. @classmethod
  3551. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3552. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3553. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3554. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3555. return cast(torch.Tensor, lazy)
  3556. @classmethod
  3557. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3558. del types # unused
  3559. if kwargs is None:
  3560. kwargs = {}
  3561. if func is torch.Tensor.numpy:
  3562. return args[0].numpy()
  3563. return cls._wrap_fn(func)(*args, **kwargs)
  3564. def parse_args() -> argparse.Namespace:
  3565. parser = argparse.ArgumentParser(
  3566. description="Convert a huggingface model to a GGML compatible file")
  3567. parser.add_argument(
  3568. "--vocab-only", action="store_true",
  3569. help="extract only the vocab",
  3570. )
  3571. parser.add_argument(
  3572. "--outfile", type=Path,
  3573. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3574. )
  3575. parser.add_argument(
  3576. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3577. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3578. )
  3579. parser.add_argument(
  3580. "--bigendian", action="store_true",
  3581. help="model is executed on big endian machine",
  3582. )
  3583. parser.add_argument(
  3584. "model", type=Path,
  3585. help="directory containing model file",
  3586. )
  3587. parser.add_argument(
  3588. "--use-temp-file", action="store_true",
  3589. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3590. )
  3591. parser.add_argument(
  3592. "--no-lazy", action="store_true",
  3593. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3594. )
  3595. parser.add_argument(
  3596. "--model-name", type=str, default=None,
  3597. help="name of the model",
  3598. )
  3599. parser.add_argument(
  3600. "--verbose", action="store_true",
  3601. help="increase output verbosity",
  3602. )
  3603. parser.add_argument(
  3604. "--split-max-tensors", type=int, default=0,
  3605. help="max tensors in each split",
  3606. )
  3607. parser.add_argument(
  3608. "--split-max-size", type=str, default="0",
  3609. help="max size per split N(M|G)",
  3610. )
  3611. parser.add_argument(
  3612. "--dry-run", action="store_true",
  3613. help="only print out a split plan and exit, without writing any new files",
  3614. )
  3615. parser.add_argument(
  3616. "--no-tensor-first-split", action="store_true",
  3617. help="do not add tensors to the first split (disabled by default)"
  3618. )
  3619. parser.add_argument(
  3620. "--metadata", type=Path,
  3621. help="Specify the path for an authorship metadata override file"
  3622. )
  3623. return parser.parse_args()
  3624. def split_str_to_n_bytes(split_str: str) -> int:
  3625. if split_str.endswith("K"):
  3626. n = int(split_str[:-1]) * 1000
  3627. elif split_str.endswith("M"):
  3628. n = int(split_str[:-1]) * 1000 * 1000
  3629. elif split_str.endswith("G"):
  3630. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3631. elif split_str.isnumeric():
  3632. n = int(split_str)
  3633. else:
  3634. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3635. if n < 0:
  3636. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3637. return n
  3638. def main() -> None:
  3639. args = parse_args()
  3640. if args.verbose:
  3641. logging.basicConfig(level=logging.DEBUG)
  3642. else:
  3643. logging.basicConfig(level=logging.INFO)
  3644. dir_model = args.model
  3645. if not dir_model.is_dir():
  3646. logger.error(f'Error: {args.model} is not a directory')
  3647. sys.exit(1)
  3648. ftype_map: dict[str, gguf.LlamaFileType] = {
  3649. "f32": gguf.LlamaFileType.ALL_F32,
  3650. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3651. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3652. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3653. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3654. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3655. "auto": gguf.LlamaFileType.GUESSED,
  3656. }
  3657. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3658. if args.use_temp_file and is_split:
  3659. logger.error("Error: Cannot use temp file when splitting")
  3660. sys.exit(1)
  3661. if args.outfile is not None:
  3662. fname_out = args.outfile
  3663. else:
  3664. fname_out = dir_model
  3665. logger.info(f"Loading model: {dir_model.name}")
  3666. hparams = Model.load_hparams(dir_model)
  3667. with torch.inference_mode():
  3668. output_type = ftype_map[args.outtype]
  3669. model_architecture = hparams["architectures"][0]
  3670. try:
  3671. model_class = Model.from_model_architecture(model_architecture)
  3672. except NotImplementedError:
  3673. logger.error(f"Model {model_architecture} is not supported")
  3674. sys.exit(1)
  3675. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3676. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3677. eager=args.no_lazy,
  3678. metadata_override=args.metadata, model_name=args.model_name,
  3679. split_max_tensors=args.split_max_tensors,
  3680. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3681. small_first_shard=args.no_tensor_first_split)
  3682. if args.vocab_only:
  3683. logger.info("Exporting model vocab...")
  3684. model_instance.write_vocab()
  3685. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3686. else:
  3687. logger.info("Exporting model...")
  3688. model_instance.write()
  3689. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3690. logger.info(f"Model successfully exported to {out_path}")
  3691. if __name__ == '__main__':
  3692. main()