llm_build_codeshell.cpp 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_codeshell.h"
  4. #include <cmath>
  5. llm_build_codeshell::llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10. ggml_tensor * cur;
  11. ggml_tensor * inpL;
  12. inpL = build_inp_embd(model.tok_embd);
  13. // inp_pos - contains the positions
  14. ggml_tensor * inp_pos = build_inp_pos();
  15. auto * inp_attn = build_attn_inp_kv();
  16. ggml_tensor * inp_out_ids = build_inp_out_ids();
  17. for (int il = 0; il < n_layer; ++il) {
  18. cur = build_norm(inpL,
  19. model.layers[il].attn_norm,
  20. model.layers[il].attn_norm_b,
  21. LLM_NORM, il);
  22. cb(cur, "attn_norm", il);
  23. // self-attention
  24. {
  25. cur = build_lora_mm(model.layers[il].wqkv, cur);
  26. cb(cur, "wqkv", il);
  27. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  28. cb(cur, "bqkv", il);
  29. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  30. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  31. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  32. Qcur = ggml_rope_ext(
  33. ctx0, Qcur, inp_pos, nullptr,
  34. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  35. ext_factor, attn_factor, beta_fast, beta_slow
  36. );
  37. Kcur = ggml_rope_ext(
  38. ctx0, Kcur, inp_pos, nullptr,
  39. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  40. ext_factor, attn_factor, beta_fast, beta_slow
  41. );
  42. cb(Qcur, "Qcur", il);
  43. cb(Kcur, "Kcur", il);
  44. cb(Vcur, "Vcur", il);
  45. cur = build_attn(inp_attn,
  46. model.layers[il].wo, model.layers[il].bo,
  47. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  48. }
  49. if (il == n_layer - 1 && inp_out_ids) {
  50. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  51. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  52. }
  53. // add the input
  54. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  55. cb(ffn_inp, "ffn_inp", il);
  56. // FF
  57. {
  58. cur = build_norm(ffn_inp,
  59. model.layers[il].ffn_norm,
  60. model.layers[il].ffn_norm_b,
  61. LLM_NORM, il);
  62. cb(cur, "ffn_norm", il);
  63. cur = build_ffn(cur,
  64. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  65. NULL, NULL, NULL,
  66. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  67. NULL,
  68. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  69. cb(cur, "ffn_out", il);
  70. }
  71. cur = ggml_add(ctx0, cur, ffn_inp);
  72. cur = build_cvec(cur, il);
  73. cb(cur, "l_out", il);
  74. // input for next layer
  75. inpL = cur;
  76. }
  77. cur = build_norm(inpL,
  78. model.output_norm,
  79. model.output_norm_b,
  80. LLM_NORM, -1);
  81. cb(cur, "result_norm", -1);
  82. res->t_embd = cur;
  83. cur = build_lora_mm(model.output, cur);
  84. cb(cur, "result_output", -1);
  85. res->t_logits = cur;
  86. ggml_build_forward_expand(gf, cur);
  87. }