| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- #include "../llama-model.h"
- #include "../llama-graph.h"
- #include "llm_build_codeshell.h"
- #include <cmath>
- llm_build_codeshell::llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- ggml_tensor * cur;
- ggml_tensor * inpL;
- inpL = build_inp_embd(model.tok_embd);
- // inp_pos - contains the positions
- ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
- ggml_tensor * inp_out_ids = build_inp_out_ids();
- for (int il = 0; il < n_layer; ++il) {
- cur = build_norm(inpL,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = build_lora_mm(model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
- Qcur = ggml_rope_ext(
- ctx0, Qcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx0, Kcur, inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(inp_attn,
- model.layers[il].wo, model.layers[il].bo,
- Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
- }
- if (il == n_layer - 1 && inp_out_ids) {
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = build_norm(ffn_inp,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, il);
- cb(cur, "ffn_norm", il);
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = build_cvec(cur, il);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = build_norm(inpL,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, -1);
- cb(cur, "result_norm", -1);
- res->t_embd = cur;
- cur = build_lora_mm(model.output, cur);
- cb(cur, "result_output", -1);
- res->t_logits = cur;
- ggml_build_forward_expand(gf, cur);
- }
|