llm_build_olmo2.cpp 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. #include "llm_build_olmo2.h"
  2. #include <cmath>
  3. template <bool iswa>
  4. llm_build_olmo2<iswa>::llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5. const int64_t n_embd_head = hparams.n_embd_head_v;
  6. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8. ggml_tensor * cur;
  9. ggml_tensor * inpL;
  10. inpL = build_inp_embd(model.tok_embd);
  11. // inp_pos - contains the positions
  12. ggml_tensor * inp_pos = build_inp_pos();
  13. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  14. inp_attn_type * inp_attn = nullptr;
  15. if constexpr (iswa) {
  16. inp_attn = build_attn_inp_kv_iswa();
  17. } else {
  18. inp_attn = build_attn_inp_kv();
  19. }
  20. ;
  21. ggml_tensor * inp_out_ids = build_inp_out_ids();
  22. for (int il = 0; il < n_layer; ++il) {
  23. ggml_tensor * inpSA = inpL;
  24. cur = inpL;
  25. // self_attention
  26. {
  27. // compute Q and K and RoPE them
  28. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  29. cb(Qcur, "Qcur", il);
  30. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  31. cb(Kcur, "Kcur", il);
  32. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  33. cb(Vcur, "Vcur", il);
  34. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  35. LLM_NORM_RMS, il);
  36. cb(Qcur, "Qcur_normed", il);
  37. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  38. LLM_NORM_RMS, il);
  39. cb(Kcur, "Kcur_normed", il);
  40. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  41. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  42. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  43. const bool is_swa = hparams.is_swa(il);
  44. if (is_swa) {
  45. // For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
  46. // This is achieved here by setting freq_scale and attn_factor to 1.
  47. // We also set ext_factor to 0 to avoid a few unnecessary computations.
  48. Qcur = ggml_rope_ext(
  49. ctx0, Qcur, inp_pos, nullptr,
  50. n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
  51. 0.0, 1.0, beta_fast, beta_slow
  52. );
  53. Kcur = ggml_rope_ext(
  54. ctx0, Kcur, inp_pos, nullptr,
  55. n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
  56. 0.0, 1.0, beta_fast, beta_slow
  57. );
  58. } else {
  59. Qcur = ggml_rope_ext(
  60. ctx0, Qcur, inp_pos, nullptr,
  61. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  62. ext_factor, attn_factor, beta_fast, beta_slow
  63. );
  64. Kcur = ggml_rope_ext(
  65. ctx0, Kcur, inp_pos, nullptr,
  66. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  67. ext_factor, attn_factor, beta_fast, beta_slow
  68. );
  69. }
  70. ;
  71. cb(Qcur, "Qcur", il);
  72. cb(Kcur, "Kcur", il);
  73. cb(Vcur, "Vcur", il);
  74. cur = build_attn(inp_attn,
  75. model.layers[il].wo, NULL,
  76. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  77. }
  78. ;
  79. if (il == n_layer - 1 && inp_out_ids) {
  80. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  81. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  82. }
  83. ;
  84. cur = build_norm(cur,
  85. model.layers[il].attn_post_norm, NULL,
  86. LLM_NORM_RMS, il);
  87. cb(cur, "attn_post_norm", il);
  88. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  89. cb(ffn_inp, "ffn_inp", il);
  90. // feed-forward network
  91. cur = build_ffn(ffn_inp,
  92. model.layers[il].ffn_up, NULL, NULL,
  93. model.layers[il].ffn_gate, NULL, NULL,
  94. model.layers[il].ffn_down, NULL, NULL,
  95. NULL,
  96. LLM_FFN_SILU, LLM_FFN_PAR, il);
  97. cb(cur, "ffn_out", il);
  98. cur = build_norm(cur,
  99. model.layers[il].ffn_post_norm, NULL,
  100. LLM_NORM_RMS, -1);
  101. cb(cur, "ffn_post_norm", -1);
  102. cur = ggml_add(ctx0, cur, ffn_inp);
  103. cb(cur, "ffn_out", il);
  104. cur = build_cvec(cur, il);
  105. cb(cur, "l_out", il);
  106. // input for next layer
  107. inpL = cur;
  108. }
  109. ;
  110. cur = inpL;
  111. cur = build_norm(cur,
  112. model.output_norm, NULL,
  113. LLM_NORM_RMS, -1);
  114. cb(cur, "result_norm", -1);
  115. res->t_embd = cur;
  116. // lm_head
  117. cur = build_lora_mm(model.output, cur);
  118. cb(cur, "result_output", -1);
  119. res->t_logits = cur;
  120. ggml_build_forward_expand(gf, cur);
  121. }
  122. // Explicit template instantiations
  123. template struct llm_build_olmo2<false>;
  124. template struct llm_build_olmo2<true>;