llm_build_olmoe.cpp 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_olmoe.h"
  4. #include <cmath>
  5. llm_build_olmoe::llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6. const int64_t n_embd_head = hparams.n_embd_head_v;
  7. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9. ggml_tensor * cur;
  10. ggml_tensor * inpL;
  11. inpL = build_inp_embd(model.tok_embd);
  12. // inp_pos - contains the positions
  13. ggml_tensor * inp_pos = build_inp_pos();
  14. auto * inp_attn = build_attn_inp_kv();
  15. ggml_tensor * inp_out_ids = build_inp_out_ids();
  16. for (int il = 0; il < n_layer; ++il) {
  17. ggml_tensor * inpSA = inpL;
  18. // norm
  19. cur = build_norm(inpL,
  20. model.layers[il].attn_norm, NULL,
  21. LLM_NORM_RMS, il);
  22. cb(cur, "attn_norm", il);
  23. // self_attention
  24. {
  25. // compute Q and K and RoPE them
  26. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  27. cb(Qcur, "Qcur", il);
  28. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  29. cb(Kcur, "Kcur", il);
  30. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  31. cb(Vcur, "Vcur", il);
  32. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  33. LLM_NORM_RMS, il);
  34. cb(Qcur, "Qcur_normed", il);
  35. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  36. LLM_NORM_RMS, il);
  37. cb(Kcur, "Kcur_normed", il);
  38. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  39. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  40. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  41. Qcur = ggml_rope_ext(
  42. ctx0, Qcur, inp_pos, nullptr,
  43. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  44. ext_factor, attn_factor, beta_fast, beta_slow
  45. );
  46. Kcur = ggml_rope_ext(
  47. ctx0, Kcur, inp_pos, nullptr,
  48. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  49. ext_factor, attn_factor, beta_fast, beta_slow
  50. );
  51. cb(Qcur, "Qcur", il);
  52. cb(Kcur, "Kcur", il);
  53. cb(Vcur, "Vcur", il);
  54. cur = build_attn(inp_attn,
  55. model.layers[il].wo, NULL,
  56. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  57. }
  58. ;
  59. if (il == n_layer - 1 && inp_out_ids) {
  60. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  61. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  62. }
  63. ;
  64. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  65. cb(ffn_inp, "ffn_inp", il);
  66. // MoE branch
  67. cur = build_norm(ffn_inp,
  68. model.layers[il].ffn_norm, NULL,
  69. LLM_NORM_RMS, il);
  70. cb(cur, "ffn_norm", il);
  71. cur = build_moe_ffn(cur,
  72. model.layers[il].ffn_gate_inp,
  73. model.layers[il].ffn_up_exps,
  74. model.layers[il].ffn_gate_exps,
  75. model.layers[il].ffn_down_exps,
  76. nullptr,
  77. n_expert, n_expert_used,
  78. LLM_FFN_SILU, false,
  79. false, 0.0,
  80. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  81. il);
  82. cb(cur, "ffn_moe_out", il);
  83. cur = ggml_add(ctx0, cur, ffn_inp);
  84. cur = build_cvec(cur, il);
  85. cb(cur, "l_out", il);
  86. // input for next layer
  87. inpL = cur;
  88. }
  89. ;
  90. cur = inpL;
  91. cur = build_norm(cur,
  92. model.output_norm, NULL,
  93. LLM_NORM_RMS, -1);
  94. cb(cur, "result_norm", -1);
  95. res->t_embd = cur;
  96. // lm_head
  97. cur = build_lora_mm(model.output, cur);
  98. cb(cur, "result_output", -1);
  99. res->t_logits = cur;
  100. ggml_build_forward_expand(gf, cur);
  101. }
  102. ;