llm_build_phi3.cpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. #include "../llama-model.h"
  2. #include "../llama-graph.h"
  3. #include "llm_build_phi3.h"
  4. #include <cmath>
  5. template<bool iswa>
  6. llm_build_phi3<iswa>::llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7. const int64_t n_embd_head = hparams.n_embd_head_v;
  8. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10. ggml_tensor * cur;
  11. ggml_tensor * inpL;
  12. inpL = build_inp_embd(model.tok_embd);
  13. // inp_pos - contains the positions
  14. ggml_tensor * inp_pos = build_inp_pos();
  15. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  16. inp_attn_type * inp_attn = nullptr;
  17. if constexpr (iswa) {
  18. inp_attn = build_attn_inp_kv_iswa();
  19. } else {
  20. inp_attn = build_attn_inp_kv();
  21. }
  22. ggml_tensor * inp_out_ids = build_inp_out_ids();
  23. for (int il = 0; il < n_layer; ++il) {
  24. auto * residual = inpL;
  25. // self-attention
  26. {
  27. // rope freq factors for 128k context
  28. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  29. ggml_tensor* attn_norm_output = build_norm(inpL,
  30. model.layers[il].attn_norm,
  31. model.layers[il].attn_norm_b,
  32. LLM_NORM_RMS, il);
  33. cb(attn_norm_output, "attn_norm", il);
  34. ggml_tensor * Qcur = nullptr;
  35. ggml_tensor * Kcur = nullptr;
  36. ggml_tensor * Vcur = nullptr;
  37. if (model.layers[il].wqkv) {
  38. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  39. cb(cur, "wqkv", il);
  40. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd));
  41. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd));
  42. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
  43. }
  44. else {
  45. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  46. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  47. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  48. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  49. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  50. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  51. }
  52. Qcur = ggml_rope_ext(
  53. ctx0, Qcur, inp_pos, rope_factors,
  54. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  55. ext_factor, attn_factor, beta_fast, beta_slow
  56. );
  57. Kcur = ggml_rope_ext(
  58. ctx0, Kcur, inp_pos, rope_factors,
  59. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  60. ext_factor, attn_factor, beta_fast, beta_slow
  61. );
  62. cb(Qcur, "Qcur", il);
  63. cb(Kcur, "Kcur", il);
  64. cb(Vcur, "Vcur", il);
  65. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  66. cb(Qcur, "Qcur", il);
  67. cur = build_attn(inp_attn,
  68. model.layers[il].wo, model.layers[il].bo,
  69. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  70. }
  71. if (il == n_layer - 1 && inp_out_ids) {
  72. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  73. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  74. }
  75. cur = ggml_add(ctx0, cur, residual);
  76. residual = cur;
  77. cur = build_norm(cur,
  78. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  79. LLM_NORM_RMS, il);
  80. cb(cur, "ffn_norm", il);
  81. // feed-forward network
  82. if (model.layers[il].ffn_gate_inp == nullptr) {
  83. cur = build_ffn(cur,
  84. model.layers[il].ffn_up, NULL, NULL,
  85. NULL, NULL, NULL,
  86. model.layers[il].ffn_down, NULL, NULL,
  87. NULL,
  88. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  89. cb(cur, "ffn_out", il);
  90. } else {
  91. // MoE branch
  92. cur = build_moe_ffn(cur,
  93. model.layers[il].ffn_gate_inp,
  94. model.layers[il].ffn_up_exps,
  95. model.layers[il].ffn_gate_exps,
  96. model.layers[il].ffn_down_exps,
  97. nullptr,
  98. n_expert, n_expert_used,
  99. LLM_FFN_SILU, true,
  100. false, 0.0,
  101. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  102. il);
  103. cb(cur, "ffn_moe_out", il);
  104. }
  105. cur = ggml_add(ctx0, residual, cur);
  106. cur = build_cvec(cur, il);
  107. cb(cur, "l_out", il);
  108. // input for next layer
  109. inpL = cur;
  110. }
  111. cur = build_norm(inpL,
  112. model.output_norm,
  113. model.output_norm_b,
  114. LLM_NORM_RMS, -1);
  115. cb(cur, "result_norm", -1);
  116. res->t_embd = cur;
  117. cur = build_lora_mm(model.output, cur);
  118. if (model.output_b != nullptr) {
  119. cb(cur, "result_output_no_bias", -1);
  120. cur = ggml_add(ctx0, cur, model.output_b);
  121. }
  122. cb(cur, "result_output", -1);
  123. res->t_logits = cur;
  124. ggml_build_forward_expand(gf, cur);
  125. }
  126. // Explicit template instantiations
  127. template struct llm_build_phi3<false>;
  128. template struct llm_build_phi3<true>;