1
0

server.cpp 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "grammar-parser.h"
  4. #include "utils.hpp"
  5. #include "oai.hpp"
  6. #include "../llava/clip.h"
  7. #include "../llava/llava.h"
  8. #include "stb_image.h"
  9. #ifndef NDEBUG
  10. // crash the server in debug mode, otherwise send an http 500 error
  11. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  12. #endif
  13. // increase max payload length to allow use of larger context size
  14. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  15. #include "httplib.h"
  16. #include "json.hpp"
  17. // auto generated files (update with ./deps.sh)
  18. #include "index.html.hpp"
  19. #include "index.js.hpp"
  20. #include "completion.js.hpp"
  21. #include "json-schema-to-grammar.mjs.hpp"
  22. #include <cstddef>
  23. #include <thread>
  24. #include <chrono>
  25. #include <condition_variable>
  26. #include <atomic>
  27. #include <signal.h>
  28. using json = nlohmann::json;
  29. struct server_params
  30. {
  31. std::string hostname = "127.0.0.1";
  32. std::vector<std::string> api_keys;
  33. std::string public_path = "examples/server/public";
  34. std::string chat_template = "";
  35. int32_t port = 8080;
  36. int32_t read_timeout = 600;
  37. int32_t write_timeout = 600;
  38. bool slots_endpoint = true;
  39. };
  40. bool server_verbose = false;
  41. static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
  42. {
  43. size_t i;
  44. for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
  45. {
  46. }
  47. return i;
  48. }
  49. enum stop_type
  50. {
  51. STOP_FULL,
  52. STOP_PARTIAL,
  53. };
  54. static bool ends_with(const std::string &str, const std::string &suffix)
  55. {
  56. return str.size() >= suffix.size() &&
  57. 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  58. }
  59. static size_t find_partial_stop_string(const std::string &stop,
  60. const std::string &text)
  61. {
  62. if (!text.empty() && !stop.empty())
  63. {
  64. const char text_last_char = text.back();
  65. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
  66. {
  67. if (stop[char_index] == text_last_char)
  68. {
  69. const std::string current_partial = stop.substr(0, char_index + 1);
  70. if (ends_with(text, current_partial))
  71. {
  72. return text.size() - char_index - 1;
  73. }
  74. }
  75. }
  76. }
  77. return std::string::npos;
  78. }
  79. // TODO: reuse llama_detokenize
  80. template <class Iter>
  81. static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
  82. {
  83. std::string ret;
  84. for (; begin != end; ++begin)
  85. {
  86. ret += llama_token_to_piece(ctx, *begin);
  87. }
  88. return ret;
  89. }
  90. // format incomplete utf-8 multibyte character for output
  91. static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
  92. {
  93. std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
  94. // if the size is 1 and first bit is 1, meaning it's a partial character
  95. // (size > 1 meaning it's already a known token)
  96. if (out.size() == 1 && (out[0] & 0x80) == 0x80)
  97. {
  98. std::stringstream ss;
  99. ss << std::hex << (out[0] & 0xff);
  100. std::string res(ss.str());
  101. out = "byte: \\x" + res;
  102. }
  103. return out;
  104. }
  105. // convert a vector of completion_token_output to json
  106. static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
  107. {
  108. json out = json::array();
  109. for (const auto &prob : probs)
  110. {
  111. json probs_for_token = json::array();
  112. for (const auto &p : prob.probs)
  113. {
  114. std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
  115. probs_for_token.push_back(json
  116. {
  117. {"tok_str", tok_str},
  118. {"prob", p.prob},
  119. });
  120. }
  121. std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
  122. out.push_back(json{
  123. {"content", tok_str},
  124. {"probs", probs_for_token},
  125. });
  126. }
  127. return out;
  128. }
  129. struct llama_client_slot
  130. {
  131. int id;
  132. int task_id = -1;
  133. struct slot_params params;
  134. slot_state state = IDLE;
  135. slot_command command = NONE;
  136. // used to determine the slot that has been used the longest
  137. int64_t t_last_used = -1;
  138. // generation props
  139. int32_t n_ctx = 0; // context size per slot
  140. int32_t n_past = 0;
  141. int32_t n_decoded = 0;
  142. int32_t n_remaining = -1;
  143. int32_t i_batch = -1;
  144. int32_t n_predict = -1;
  145. int32_t num_prompt_tokens = 0;
  146. int32_t num_prompt_tokens_processed = 0;
  147. json prompt;
  148. std::string generated_text;
  149. llama_token sampled;
  150. std::vector<llama_token> cache_tokens;
  151. std::vector<completion_token_output> generated_token_probs;
  152. bool infill = false;
  153. bool embedding = false;
  154. bool has_next_token = true;
  155. bool truncated = false;
  156. bool stopped_eos = false;
  157. bool stopped_word = false;
  158. bool stopped_limit = false;
  159. bool oaicompat = false;
  160. std::string oaicompat_model;
  161. std::string stopping_word;
  162. // sampling
  163. struct llama_sampling_params sparams;
  164. llama_sampling_context *ctx_sampling = nullptr;
  165. int32_t ga_i = 0; // group-attention state
  166. int32_t ga_n = 1; // group-attention factor
  167. int32_t ga_w = 512; // group-attention width
  168. int32_t n_past_se = 0; // self-extend
  169. // multimodal
  170. std::vector<slot_image> images;
  171. // stats
  172. size_t sent_count = 0;
  173. size_t sent_token_probs_index = 0;
  174. int64_t t_start_process_prompt;
  175. int64_t t_start_genereration;
  176. double t_prompt_processing; // ms
  177. double t_token_generation; // ms
  178. // multitasks
  179. int multitask_id = -1;
  180. void reset() {
  181. num_prompt_tokens = 0;
  182. generated_text = "";
  183. truncated = false;
  184. stopped_eos = false;
  185. stopped_word = false;
  186. stopped_limit = false;
  187. stopping_word = "";
  188. n_past = 0;
  189. sent_count = 0;
  190. sent_token_probs_index = 0;
  191. infill = false;
  192. ga_i = 0;
  193. n_past_se = 0;
  194. generated_token_probs.clear();
  195. for (slot_image & img : images)
  196. {
  197. free(img.image_embedding);
  198. if (img.img_data) {
  199. clip_image_u8_free(img.img_data);
  200. }
  201. img.prefix_prompt = "";
  202. }
  203. images.clear();
  204. }
  205. bool has_budget(gpt_params &global_params) {
  206. if (params.n_predict == -1 && global_params.n_predict == -1)
  207. {
  208. return true; // limitless
  209. }
  210. n_remaining = -1;
  211. if (params.n_predict != -1)
  212. {
  213. n_remaining = params.n_predict - n_decoded;
  214. }
  215. else if (global_params.n_predict != -1)
  216. {
  217. n_remaining = global_params.n_predict - n_decoded;
  218. }
  219. return n_remaining > 0; // no budget
  220. }
  221. bool available() const {
  222. return state == IDLE && command == NONE;
  223. }
  224. bool is_processing() const {
  225. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  226. }
  227. void add_token_string(const completion_token_output &token) {
  228. if (command == RELEASE)
  229. {
  230. return;
  231. }
  232. cache_tokens.push_back(token.tok);
  233. generated_token_probs.push_back(token);
  234. }
  235. void release() {
  236. if (state == PROCESSING)
  237. {
  238. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  239. command = RELEASE;
  240. }
  241. }
  242. json get_formated_timings() {
  243. return json
  244. {
  245. {"prompt_n", num_prompt_tokens_processed},
  246. {"prompt_ms", t_prompt_processing},
  247. {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
  248. {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
  249. {"predicted_n", n_decoded},
  250. {"predicted_ms", t_token_generation},
  251. {"predicted_per_token_ms", t_token_generation / n_decoded},
  252. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  253. };
  254. }
  255. void print_timings() const {
  256. LOG_TEE("\n");
  257. LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  258. __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
  259. LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  260. __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
  261. LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
  262. }
  263. };
  264. struct llama_server_context
  265. {
  266. llama_model *model = nullptr;
  267. llama_context *ctx = nullptr;
  268. clip_ctx *clp_ctx = nullptr;
  269. gpt_params params;
  270. llama_batch batch;
  271. bool multimodal = false;
  272. bool clean_kv_cache = true;
  273. bool all_slots_are_idle = false;
  274. bool add_bos_token = true;
  275. int32_t n_ctx; // total context for all clients / slots
  276. // system prompt
  277. bool system_need_update = false;
  278. std::string system_prompt;
  279. std::vector<llama_token> system_tokens;
  280. std::string name_user; // this should be the antiprompt
  281. std::string name_assistant;
  282. // slots / clients
  283. std::vector<llama_client_slot> slots;
  284. json default_generation_settings_for_props;
  285. llama_server_queue queue_tasks;
  286. llama_server_response queue_results;
  287. ~llama_server_context()
  288. {
  289. if (ctx)
  290. {
  291. llama_free(ctx);
  292. ctx = nullptr;
  293. }
  294. if (model)
  295. {
  296. llama_free_model(model);
  297. model = nullptr;
  298. }
  299. }
  300. bool load_model(const gpt_params &params_)
  301. {
  302. params = params_;
  303. if (!params.mmproj.empty()) {
  304. multimodal = true;
  305. LOG_TEE("Multi Modal Mode Enabled");
  306. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  307. if(clp_ctx == nullptr) {
  308. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  309. return false;
  310. }
  311. if (params.n_ctx < 2048) { // request larger context for the image embedding
  312. params.n_ctx = 2048;
  313. }
  314. }
  315. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  316. if (model == nullptr)
  317. {
  318. LOG_ERROR("unable to load model", {{"model", params.model}});
  319. return false;
  320. }
  321. if (multimodal) {
  322. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  323. const int n_embd_llm = llama_n_embd(model);
  324. if (n_embd_clip != n_embd_llm) {
  325. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  326. llama_free(ctx);
  327. llama_free_model(model);
  328. return false;
  329. }
  330. }
  331. n_ctx = llama_n_ctx(ctx);
  332. add_bos_token = llama_should_add_bos_token(model);
  333. return true;
  334. }
  335. void validate_model_chat_template(server_params & sparams) {
  336. llama_chat_message chat[] = {{"user", "test"}};
  337. std::vector<char> buf(1);
  338. int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
  339. if (res < 0) {
  340. LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
  341. sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
  342. }
  343. }
  344. void initialize() {
  345. // create slots
  346. all_slots_are_idle = true;
  347. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  348. LOG_TEE("Available slots:\n");
  349. for (int i = 0; i < params.n_parallel; i++)
  350. {
  351. llama_client_slot slot;
  352. slot.id = i;
  353. slot.n_ctx = n_ctx_slot;
  354. slot.n_predict = params.n_predict;
  355. LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
  356. const int ga_n = params.grp_attn_n;
  357. const int ga_w = params.grp_attn_w;
  358. if (ga_n != 1) {
  359. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  360. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  361. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  362. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  363. LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
  364. }
  365. slot.ga_i = 0;
  366. slot.ga_n = ga_n;
  367. slot.ga_w = ga_w;
  368. slot.reset();
  369. slots.push_back(slot);
  370. }
  371. default_generation_settings_for_props = get_formated_generation(slots.front());
  372. default_generation_settings_for_props["seed"] = -1;
  373. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  374. }
  375. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  376. {
  377. // TODO: currently, we tokenize using special tokens by default
  378. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  379. // but it's better compared to completely ignoring ChatML and other chat templates
  380. const bool TMP_FORCE_SPECIAL = true;
  381. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  382. // or the first element of the json_prompt array is a string.
  383. std::vector<llama_token> prompt_tokens;
  384. if (json_prompt.is_array())
  385. {
  386. bool first = true;
  387. for (const auto& p : json_prompt)
  388. {
  389. if (p.is_string())
  390. {
  391. auto s = p.template get<std::string>();
  392. std::vector<llama_token> p;
  393. if (first)
  394. {
  395. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  396. first = false;
  397. }
  398. else
  399. {
  400. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  401. }
  402. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  403. }
  404. else
  405. {
  406. if (first)
  407. {
  408. first = false;
  409. }
  410. prompt_tokens.push_back(p.template get<llama_token>());
  411. }
  412. }
  413. }
  414. else
  415. {
  416. auto s = json_prompt.template get<std::string>();
  417. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  418. }
  419. return prompt_tokens;
  420. }
  421. llama_client_slot* get_slot(int id) {
  422. int64_t t_last = ggml_time_us();
  423. llama_client_slot *last_used = nullptr;
  424. for (llama_client_slot & slot : slots)
  425. {
  426. if (slot.id == id && slot.available())
  427. {
  428. return &slot;
  429. }
  430. if (slot.available() && slot.t_last_used < t_last)
  431. {
  432. last_used = &slot;
  433. t_last = slot.t_last_used;
  434. }
  435. }
  436. return last_used;
  437. }
  438. bool launch_slot_with_data(llama_client_slot* &slot, json data) {
  439. slot_params default_params;
  440. llama_sampling_params default_sparams;
  441. if (data.count("__oaicompat") != 0) {
  442. slot->oaicompat = true;
  443. slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  444. } else {
  445. slot->oaicompat = false;
  446. slot->oaicompat_model = "";
  447. }
  448. slot->params.stream = json_value(data, "stream", false);
  449. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  450. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  451. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  452. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  453. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  454. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  455. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  456. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  457. slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  458. slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  459. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  460. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  461. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  462. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  463. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  464. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  465. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  466. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  467. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  468. slot->params.seed = json_value(data, "seed", default_params.seed);
  469. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  470. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  471. slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  472. if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
  473. // Might be better to reject the request with a 400 ?
  474. LOG_WARNING("Max tokens to predict exceeds server configuration", {
  475. {"params.n_predict", slot->params.n_predict},
  476. {"slot.n_predict", slot->n_predict},
  477. });
  478. slot->params.n_predict = slot->n_predict;
  479. }
  480. // infill
  481. if (data.count("input_prefix") != 0)
  482. {
  483. slot->params.input_prefix = data["input_prefix"];
  484. }
  485. else
  486. {
  487. slot->params.input_prefix = "";
  488. }
  489. if (data.count("input_suffix") != 0)
  490. {
  491. slot->params.input_suffix = data["input_suffix"];
  492. }
  493. else
  494. {
  495. slot->params.input_suffix = "";
  496. }
  497. if (data.count("prompt") != 0)
  498. {
  499. slot->prompt = data["prompt"];
  500. }
  501. else
  502. {
  503. slot->prompt = "";
  504. }
  505. slot->sparams.penalty_prompt_tokens.clear();
  506. slot->sparams.use_penalty_prompt_tokens = false;
  507. const auto &penalty_prompt = data.find("penalty_prompt");
  508. if (penalty_prompt != data.end())
  509. {
  510. if (penalty_prompt->is_string())
  511. {
  512. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  513. auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
  514. slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
  515. if (slot->params.n_predict > 0)
  516. {
  517. slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
  518. }
  519. slot->sparams.use_penalty_prompt_tokens = true;
  520. }
  521. else if (penalty_prompt->is_array())
  522. {
  523. const auto n_tokens = penalty_prompt->size();
  524. slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
  525. const int n_vocab = llama_n_vocab(model);
  526. for (const auto &penalty_token : *penalty_prompt)
  527. {
  528. if (penalty_token.is_number_integer())
  529. {
  530. const auto tok = penalty_token.get<llama_token>();
  531. if (tok >= 0 && tok < n_vocab)
  532. {
  533. slot->sparams.penalty_prompt_tokens.push_back(tok);
  534. }
  535. }
  536. }
  537. slot->sparams.use_penalty_prompt_tokens = true;
  538. }
  539. }
  540. slot->sparams.logit_bias.clear();
  541. if (json_value(data, "ignore_eos", false))
  542. {
  543. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  544. }
  545. const auto &logit_bias = data.find("logit_bias");
  546. if (logit_bias != data.end() && logit_bias->is_array())
  547. {
  548. const int n_vocab = llama_n_vocab(model);
  549. for (const auto &el : *logit_bias)
  550. {
  551. if (el.is_array() && el.size() == 2)
  552. {
  553. float bias;
  554. if (el[1].is_number())
  555. {
  556. bias = el[1].get<float>();
  557. }
  558. else if (el[1].is_boolean() && !el[1].get<bool>())
  559. {
  560. bias = -INFINITY;
  561. }
  562. else
  563. {
  564. continue;
  565. }
  566. if (el[0].is_number_integer())
  567. {
  568. llama_token tok = el[0].get<llama_token>();
  569. if (tok >= 0 && tok < n_vocab)
  570. {
  571. slot->sparams.logit_bias[tok] = bias;
  572. }
  573. }
  574. else if (el[0].is_string())
  575. {
  576. auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
  577. for (auto tok : toks)
  578. {
  579. slot->sparams.logit_bias[tok] = bias;
  580. }
  581. }
  582. }
  583. }
  584. }
  585. slot->params.antiprompt.clear();
  586. const auto &stop = data.find("stop");
  587. if (stop != data.end() && stop->is_array())
  588. {
  589. for (const auto &word : *stop)
  590. {
  591. if (!word.empty())
  592. {
  593. slot->params.antiprompt.push_back(word);
  594. }
  595. }
  596. }
  597. const auto &samplers_sequence = data.find("samplers");
  598. if (samplers_sequence != data.end() && samplers_sequence->is_array())
  599. {
  600. std::vector<std::string> sampler_names;
  601. for (const auto &sampler_name : *samplers_sequence)
  602. {
  603. if (sampler_name.is_string())
  604. {
  605. sampler_names.emplace_back(sampler_name);
  606. }
  607. }
  608. slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
  609. }
  610. else
  611. {
  612. slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
  613. }
  614. if (multimodal)
  615. {
  616. const auto &images_data = data.find("image_data");
  617. if (images_data != data.end() && images_data->is_array())
  618. {
  619. for (const auto &img : *images_data)
  620. {
  621. const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
  622. slot_image img_sl;
  623. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  624. img_sl.img_data = clip_image_u8_init();
  625. if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
  626. {
  627. LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
  628. return false;
  629. }
  630. LOG_TEE("slot %i - loaded image\n", slot->id);
  631. img_sl.request_encode_image = true;
  632. slot->images.push_back(img_sl);
  633. }
  634. // process prompt
  635. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  636. if (slot->images.size() > 0 && !slot->prompt.is_array())
  637. {
  638. std::string prompt = slot->prompt.get<std::string>();
  639. size_t pos = 0, begin_prefix = 0;
  640. std::string pattern = "[img-";
  641. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  642. size_t end_prefix = pos;
  643. pos += pattern.length();
  644. size_t end_pos = prompt.find(']', pos);
  645. if (end_pos != std::string::npos)
  646. {
  647. std::string image_id = prompt.substr(pos, end_pos - pos);
  648. try
  649. {
  650. int img_id = std::stoi(image_id);
  651. bool found = false;
  652. for (slot_image &img : slot->images)
  653. {
  654. if (img.id == img_id) {
  655. found = true;
  656. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  657. begin_prefix = end_pos + 1;
  658. break;
  659. }
  660. }
  661. if (!found) {
  662. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  663. slot->images.clear();
  664. return false;
  665. }
  666. } catch (const std::invalid_argument& e) {
  667. LOG_TEE("Invalid image number id in prompt\n");
  668. slot->images.clear();
  669. return false;
  670. }
  671. }
  672. }
  673. slot->prompt = "";
  674. slot->params.input_suffix = prompt.substr(begin_prefix);
  675. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  676. }
  677. }
  678. }
  679. if (slot->ctx_sampling != nullptr)
  680. {
  681. llama_sampling_free(slot->ctx_sampling);
  682. }
  683. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  684. llama_set_rng_seed(ctx, slot->params.seed);
  685. slot->command = LOAD_PROMPT;
  686. all_slots_are_idle = false;
  687. LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
  688. return true;
  689. }
  690. void kv_cache_clear() {
  691. // clear the entire KV cache
  692. llama_kv_cache_clear(ctx);
  693. clean_kv_cache = false;
  694. }
  695. void update_system_prompt() {
  696. kv_cache_clear();
  697. system_tokens.clear();
  698. if (!system_prompt.empty()) {
  699. system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
  700. llama_batch_clear(batch);
  701. for (int i = 0; i < (int)system_tokens.size(); ++i)
  702. {
  703. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  704. }
  705. if (llama_decode(ctx, batch) != 0)
  706. {
  707. LOG_TEE("%s: llama_decode() failed\n", __func__);
  708. return;
  709. }
  710. // assign the system KV cache to all parallel sequences
  711. for (int32_t i = 1; i < params.n_parallel; ++i)
  712. {
  713. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  714. }
  715. }
  716. LOG_TEE("system prompt updated\n");
  717. system_need_update = false;
  718. }
  719. void notify_system_prompt_changed() {
  720. // release all slots
  721. for (llama_client_slot &slot : slots)
  722. {
  723. slot.release();
  724. }
  725. system_need_update = true;
  726. }
  727. void process_system_prompt_data(const json &sys_props) {
  728. system_prompt = sys_props.value("prompt", "");
  729. name_user = sys_props.value("anti_prompt", "");
  730. name_assistant = sys_props.value("assistant_name", "");
  731. notify_system_prompt_changed();
  732. }
  733. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  734. const stop_type type, llama_client_slot &slot)
  735. {
  736. size_t stop_pos = std::string::npos;
  737. for (const std::string &word : slot.params.antiprompt)
  738. {
  739. size_t pos;
  740. if (type == STOP_FULL)
  741. {
  742. const size_t tmp = word.size() + last_token_size;
  743. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  744. pos = text.find(word, from_pos);
  745. }
  746. else
  747. {
  748. pos = find_partial_stop_string(word, text);
  749. }
  750. if (pos != std::string::npos &&
  751. (stop_pos == std::string::npos || pos < stop_pos))
  752. {
  753. if (type == STOP_FULL)
  754. {
  755. slot.stopped_word = true;
  756. slot.stopping_word = word;
  757. slot.has_next_token = false;
  758. }
  759. stop_pos = pos;
  760. }
  761. }
  762. return stop_pos;
  763. }
  764. bool process_token(completion_token_output &result, llama_client_slot &slot) {
  765. // remember which tokens were sampled - used for repetition penalties during sampling
  766. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  767. slot.sampled = result.tok;
  768. // search stop word and delete it
  769. slot.generated_text += token_str;
  770. slot.has_next_token = true;
  771. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
  772. {
  773. // we can change penalty_prompt_tokens because it is always created from scratch each request
  774. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  775. }
  776. // check if there is incomplete UTF-8 character at the end
  777. bool incomplete = false;
  778. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  779. {
  780. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  781. if ((c & 0xC0) == 0x80)
  782. {
  783. // continuation byte: 10xxxxxx
  784. continue;
  785. }
  786. if ((c & 0xE0) == 0xC0)
  787. {
  788. // 2-byte character: 110xxxxx ...
  789. incomplete = i < 2;
  790. }
  791. else if ((c & 0xF0) == 0xE0)
  792. {
  793. // 3-byte character: 1110xxxx ...
  794. incomplete = i < 3;
  795. }
  796. else if ((c & 0xF8) == 0xF0)
  797. {
  798. // 4-byte character: 11110xxx ...
  799. incomplete = i < 4;
  800. }
  801. // else 1-byte character or invalid byte
  802. break;
  803. }
  804. if (!incomplete)
  805. {
  806. size_t pos = std::min(slot.sent_count, slot.generated_text.size());
  807. const std::string str_test = slot.generated_text.substr(pos);
  808. bool is_stop_full = false;
  809. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  810. if (stop_pos != std::string::npos)
  811. {
  812. is_stop_full = true;
  813. slot.generated_text.erase(
  814. slot.generated_text.begin() + pos + stop_pos,
  815. slot.generated_text.end());
  816. pos = std::min(slot.sent_count, slot.generated_text.size());
  817. }
  818. else
  819. {
  820. is_stop_full = false;
  821. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  822. }
  823. // check if there is any token to predict
  824. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  825. {
  826. // no send the stop word in the response
  827. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  828. slot.sent_count += result.text_to_send.size();
  829. // add the token to slot queue and cache
  830. }
  831. slot.add_token_string(result);
  832. if (slot.params.stream)
  833. {
  834. send_partial_response(slot, result);
  835. }
  836. }
  837. if (incomplete)
  838. {
  839. slot.has_next_token = true;
  840. }
  841. // check the limits
  842. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
  843. {
  844. slot.stopped_limit = true;
  845. slot.has_next_token = false;
  846. }
  847. if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
  848. {
  849. slot.stopped_eos = true;
  850. slot.has_next_token = false;
  851. LOG_VERBOSE("eos token found", {});
  852. }
  853. LOG_VERBOSE("next token", {
  854. {"token", result.tok},
  855. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  856. {"has_next_token", slot.has_next_token},
  857. {"n_remain", slot.n_remaining},
  858. {"num_tokens_predicted", slot.n_decoded},
  859. {"stopped_eos", slot.stopped_eos},
  860. {"stopped_word", slot.stopped_word},
  861. {"stopped_limit", slot.stopped_limit},
  862. {"stopping_word", slot.stopping_word},
  863. });
  864. return slot.has_next_token; // continue
  865. }
  866. bool process_images(llama_client_slot &slot) const
  867. {
  868. for (slot_image &img : slot.images)
  869. {
  870. if (!img.request_encode_image)
  871. {
  872. continue;
  873. }
  874. if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
  875. LOG_TEE("Error processing the given image");
  876. return false;
  877. }
  878. img.request_encode_image = false;
  879. }
  880. return slot.images.size() > 0;
  881. }
  882. void send_error(task_server& task, const std::string &error)
  883. {
  884. LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
  885. task_result res;
  886. res.id = task.id;
  887. res.multitask_id = task.multitask_id;
  888. res.stop = false;
  889. res.error = true;
  890. res.result_json = { { "content", error } };
  891. queue_results.send(res);
  892. }
  893. json get_formated_generation(llama_client_slot &slot)
  894. {
  895. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  896. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  897. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  898. std::vector<std::string> samplers_sequence;
  899. for (const auto &sampler_type : slot.sparams.samplers_sequence)
  900. {
  901. samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
  902. }
  903. return json {
  904. {"n_ctx", slot.n_ctx},
  905. {"n_predict", slot.n_predict},
  906. {"model", params.model_alias},
  907. {"seed", slot.params.seed},
  908. {"temperature", slot.sparams.temp},
  909. {"dynatemp_range", slot.sparams.dynatemp_range},
  910. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  911. {"top_k", slot.sparams.top_k},
  912. {"top_p", slot.sparams.top_p},
  913. {"min_p", slot.sparams.min_p},
  914. {"tfs_z", slot.sparams.tfs_z},
  915. {"typical_p", slot.sparams.typical_p},
  916. {"repeat_last_n", slot.sparams.penalty_last_n},
  917. {"repeat_penalty", slot.sparams.penalty_repeat},
  918. {"presence_penalty", slot.sparams.penalty_present},
  919. {"frequency_penalty", slot.sparams.penalty_freq},
  920. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  921. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  922. {"mirostat", slot.sparams.mirostat},
  923. {"mirostat_tau", slot.sparams.mirostat_tau},
  924. {"mirostat_eta", slot.sparams.mirostat_eta},
  925. {"penalize_nl", slot.sparams.penalize_nl},
  926. {"stop", slot.params.antiprompt},
  927. {"n_predict", slot.params.n_predict},
  928. {"n_keep", params.n_keep},
  929. {"ignore_eos", ignore_eos},
  930. {"stream", slot.params.stream},
  931. {"logit_bias", slot.sparams.logit_bias},
  932. {"n_probs", slot.sparams.n_probs},
  933. {"min_keep", slot.sparams.min_keep},
  934. {"grammar", slot.sparams.grammar},
  935. {"samplers", samplers_sequence}
  936. };
  937. }
  938. void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
  939. {
  940. task_result res;
  941. res.id = slot.task_id;
  942. res.multitask_id = slot.multitask_id;
  943. res.error = false;
  944. res.stop = false;
  945. res.result_json = json
  946. {
  947. {"content", tkn.text_to_send},
  948. {"stop", false},
  949. {"slot_id", slot.id},
  950. {"multimodal", multimodal}
  951. };
  952. if (slot.sparams.n_probs > 0)
  953. {
  954. std::vector<completion_token_output> probs_output = {};
  955. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  956. size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
  957. size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
  958. if (probs_pos < probs_stop_pos)
  959. {
  960. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  961. }
  962. slot.sent_token_probs_index = probs_stop_pos;
  963. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  964. }
  965. if (slot.oaicompat)
  966. {
  967. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  968. res.result_json["model"] = slot.oaicompat_model;
  969. }
  970. queue_results.send(res);
  971. }
  972. void send_final_response(llama_client_slot &slot)
  973. {
  974. task_result res;
  975. res.id = slot.task_id;
  976. res.multitask_id = slot.multitask_id;
  977. res.error = false;
  978. res.stop = true;
  979. res.result_json = json
  980. {
  981. {"content", !slot.params.stream ? slot.generated_text : ""},
  982. {"slot_id", slot.id},
  983. {"stop", true},
  984. {"model", params.model_alias},
  985. {"tokens_predicted", slot.n_decoded},
  986. {"tokens_evaluated", slot.num_prompt_tokens},
  987. {"generation_settings", get_formated_generation(slot)},
  988. {"prompt", slot.prompt},
  989. {"truncated", slot.truncated},
  990. {"stopped_eos", slot.stopped_eos},
  991. {"stopped_word", slot.stopped_word},
  992. {"stopped_limit", slot.stopped_limit},
  993. {"stopping_word", slot.stopping_word},
  994. {"tokens_cached", slot.n_past},
  995. {"timings", slot.get_formated_timings()}
  996. };
  997. if (slot.sparams.n_probs > 0)
  998. {
  999. std::vector<completion_token_output> probs = {};
  1000. if (!slot.params.stream && slot.stopped_word)
  1001. {
  1002. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1003. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  1004. }
  1005. else
  1006. {
  1007. probs = std::vector<completion_token_output>(
  1008. slot.generated_token_probs.begin(),
  1009. slot.generated_token_probs.end());
  1010. }
  1011. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1012. }
  1013. if (slot.oaicompat)
  1014. {
  1015. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  1016. res.result_json["model"] = slot.oaicompat_model;
  1017. }
  1018. queue_results.send(res);
  1019. }
  1020. void send_embedding(llama_client_slot &slot)
  1021. {
  1022. task_result res;
  1023. res.id = slot.task_id;
  1024. res.multitask_id = slot.multitask_id;
  1025. res.error = false;
  1026. res.stop = true;
  1027. const int n_embd = llama_n_embd(model);
  1028. if (!params.embedding)
  1029. {
  1030. LOG_WARNING("embedding disabled", {
  1031. {"params.embedding", params.embedding},
  1032. });
  1033. res.result_json = json
  1034. {
  1035. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1036. };
  1037. }
  1038. else
  1039. {
  1040. const float *data = llama_get_embeddings(ctx);
  1041. std::vector<float> embedding(data, data + n_embd);
  1042. res.result_json = json
  1043. {
  1044. {"embedding", embedding },
  1045. };
  1046. }
  1047. queue_results.send(res);
  1048. }
  1049. void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
  1050. {
  1051. task_server task;
  1052. task.id = task_id;
  1053. task.target_id = 0;
  1054. task.data = std::move(data);
  1055. task.infill_mode = infill;
  1056. task.embedding_mode = embedding;
  1057. task.type = TASK_TYPE_COMPLETION;
  1058. task.multitask_id = multitask_id;
  1059. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1060. // otherwise, it's a single-prompt task, we actually queue it
  1061. // if there's numbers in the prompt array it will be treated as an array of tokens
  1062. if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
  1063. bool numbers = false;
  1064. for (const auto& e : task.data.at("prompt")) {
  1065. if (e.is_number()) {
  1066. numbers = true;
  1067. break;
  1068. }
  1069. }
  1070. // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
  1071. // it will completely stall the server. I don't know where the bug for this is.
  1072. //
  1073. // if there are numbers, it needs to be treated like a single prompt,
  1074. // queue_tasks handles a mix of strings and numbers just fine.
  1075. if (numbers) {
  1076. queue_tasks.post(task);
  1077. } else {
  1078. split_multiprompt_task(task_id, task);
  1079. }
  1080. } else {
  1081. queue_tasks.post(task);
  1082. }
  1083. }
  1084. // for multiple images processing
  1085. bool ingest_images(llama_client_slot &slot, int n_batch)
  1086. {
  1087. int image_idx = 0;
  1088. while (image_idx < (int) slot.images.size())
  1089. {
  1090. slot_image &img = slot.images[image_idx];
  1091. // process prefix prompt
  1092. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1093. {
  1094. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1095. llama_batch batch_view = {
  1096. n_tokens,
  1097. batch.token + i,
  1098. nullptr,
  1099. batch.pos + i,
  1100. batch.n_seq_id + i,
  1101. batch.seq_id + i,
  1102. batch.logits + i,
  1103. 0, 0, 0, // unused
  1104. };
  1105. if (llama_decode(ctx, batch_view))
  1106. {
  1107. LOG_TEE("%s : failed to eval\n", __func__);
  1108. return false;
  1109. }
  1110. }
  1111. // process image with llm
  1112. for (int i = 0; i < img.image_tokens; i += n_batch)
  1113. {
  1114. int n_eval = img.image_tokens - i;
  1115. if (n_eval > n_batch)
  1116. {
  1117. n_eval = n_batch;
  1118. }
  1119. const int n_embd = llama_n_embd(model);
  1120. llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
  1121. if (llama_decode(ctx, batch_img))
  1122. {
  1123. LOG_TEE("%s : failed to eval image\n", __func__);
  1124. return false;
  1125. }
  1126. slot.n_past += n_eval;
  1127. }
  1128. image_idx++;
  1129. llama_batch_clear(batch);
  1130. // append prefix of next image
  1131. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1132. slot.params.input_suffix : // no more images, then process suffix prompt
  1133. (json)(slot.images[image_idx].prefix_prompt);
  1134. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1135. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1136. {
  1137. llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
  1138. slot.n_past += 1;
  1139. }
  1140. }
  1141. return true;
  1142. }
  1143. void request_cancel(int task_id)
  1144. {
  1145. task_server task;
  1146. task.type = TASK_TYPE_CANCEL;
  1147. task.target_id = task_id;
  1148. queue_tasks.post(task);
  1149. }
  1150. void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
  1151. {
  1152. int prompt_count = multiprompt_task.data.at("prompt").size();
  1153. if (prompt_count <= 1) {
  1154. send_error(multiprompt_task, "error while handling multiple prompts");
  1155. return;
  1156. }
  1157. // generate all the ID for subtask
  1158. std::vector<int> subtask_ids(prompt_count);
  1159. for (int i = 0; i < prompt_count; i++)
  1160. {
  1161. subtask_ids[i] = queue_tasks.get_new_id();
  1162. }
  1163. // queue up the multitask so we can track its subtask progression
  1164. queue_tasks.add_multitask(multitask_id, subtask_ids);
  1165. // add subtasks
  1166. for (int i = 0; i < prompt_count; i++)
  1167. {
  1168. json subtask_data = multiprompt_task.data;
  1169. subtask_data["prompt"] = subtask_data["prompt"][i];
  1170. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1171. request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
  1172. }
  1173. }
  1174. void process_single_task(task_server& task)
  1175. {
  1176. switch (task.type)
  1177. {
  1178. case TASK_TYPE_COMPLETION: {
  1179. llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
  1180. if (slot == nullptr)
  1181. {
  1182. // if no slot is available, we defer this task for processing later
  1183. LOG_VERBOSE("no slot is available", {});
  1184. queue_tasks.defer(task);
  1185. break;
  1186. }
  1187. if (task.data.contains("system_prompt"))
  1188. {
  1189. if (!all_slots_are_idle) {
  1190. send_error(task, "system prompt can only be updated when all slots are idle");
  1191. break;
  1192. }
  1193. process_system_prompt_data(task.data["system_prompt"]);
  1194. // reset cache_tokens for all slots
  1195. for (llama_client_slot &slot : slots)
  1196. {
  1197. slot.cache_tokens.clear();
  1198. slot.n_past = 0;
  1199. slot.n_past_se = 0;
  1200. }
  1201. }
  1202. slot->reset();
  1203. slot->infill = task.infill_mode;
  1204. slot->embedding = task.embedding_mode;
  1205. slot->task_id = task.id;
  1206. slot->multitask_id = task.multitask_id;
  1207. if (!launch_slot_with_data(slot, task.data))
  1208. {
  1209. // send error result
  1210. send_error(task, "internal_error");
  1211. break;
  1212. }
  1213. } break;
  1214. case TASK_TYPE_CANCEL: { // release slot linked with the task id
  1215. for (auto & slot : slots)
  1216. {
  1217. if (slot.task_id == task.target_id)
  1218. {
  1219. slot.release();
  1220. break;
  1221. }
  1222. }
  1223. } break;
  1224. case TASK_TYPE_NEXT_RESPONSE: {
  1225. // do nothing
  1226. } break;
  1227. case TASK_TYPE_SLOTS_DATA: {
  1228. json slots_data = json::array();
  1229. int n_idle_slots = 0;
  1230. int n_processing_slots = 0;
  1231. for (llama_client_slot &slot: slots) {
  1232. if (slot.available()) {
  1233. n_idle_slots++;
  1234. } else {
  1235. n_processing_slots++;
  1236. }
  1237. json slot_data = get_formated_generation(slot);
  1238. slot_data["id"] = slot.id;
  1239. slot_data["task_id"] = slot.task_id;
  1240. slot_data["state"] = slot.state;
  1241. slot_data["prompt"] = slot.prompt;
  1242. slot_data["next_token"] = {
  1243. {"has_next_token", slot.has_next_token},
  1244. {"n_remain", slot.n_remaining},
  1245. {"num_tokens_predicted", slot.n_decoded},
  1246. {"stopped_eos", slot.stopped_eos},
  1247. {"stopped_word", slot.stopped_word},
  1248. {"stopped_limit", slot.stopped_limit},
  1249. {"stopping_word", slot.stopping_word},
  1250. };
  1251. slots_data.push_back(slot_data);
  1252. }
  1253. LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
  1254. task_result res;
  1255. res.id = task.id;
  1256. res.multitask_id = task.multitask_id;
  1257. res.stop = true;
  1258. res.error = false;
  1259. res.result_json = {
  1260. { "idle", n_idle_slots },
  1261. { "processing", n_processing_slots },
  1262. { "slots", slots_data }
  1263. };
  1264. queue_results.send(res);
  1265. } break;
  1266. }
  1267. }
  1268. void on_finish_multitask(task_multi& multitask)
  1269. {
  1270. // all subtasks done == multitask is done
  1271. task_result result;
  1272. result.id = multitask.id;
  1273. result.stop = true;
  1274. result.error = false;
  1275. // collect json results into one json result
  1276. std::vector<json> result_jsons;
  1277. for (auto& subres : multitask.results)
  1278. {
  1279. result_jsons.push_back(subres.result_json);
  1280. result.error = result.error && subres.error;
  1281. }
  1282. result.result_json = json{ { "results", result_jsons } };
  1283. queue_results.send(result);
  1284. }
  1285. bool update_slots() {
  1286. if (system_need_update)
  1287. {
  1288. LOG_TEE("updating system prompt\n");
  1289. update_system_prompt();
  1290. }
  1291. llama_batch_clear(batch);
  1292. if (all_slots_are_idle)
  1293. {
  1294. if (system_prompt.empty() && clean_kv_cache)
  1295. {
  1296. LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
  1297. kv_cache_clear();
  1298. }
  1299. return true;
  1300. }
  1301. task_server task;
  1302. task.type = TASK_TYPE_NEXT_RESPONSE;
  1303. task.target_id = -1;
  1304. queue_tasks.post(task);
  1305. for (llama_client_slot &slot : slots)
  1306. {
  1307. if (slot.ga_n == 1)
  1308. {
  1309. if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1310. {
  1311. // Shift context
  1312. const int n_keep = slot.params.n_keep + add_bos_token;
  1313. const int n_left = system_tokens.size() + slot.n_past - n_keep;
  1314. const int n_discard = n_left / 2;
  1315. LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, n_keep, n_left, n_discard);
  1316. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1317. llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1318. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
  1319. {
  1320. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1321. }
  1322. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1323. slot.n_past -= n_discard;
  1324. slot.truncated = true;
  1325. LOG_VERBOSE("context shift", {
  1326. { "n_ctx", n_ctx },
  1327. { "n_keep", n_keep },
  1328. { "n_left", n_left },
  1329. });
  1330. }
  1331. }
  1332. }
  1333. // decode any currently ongoing sequences
  1334. for (auto & slot : slots)
  1335. {
  1336. // release the slot
  1337. if (slot.command == RELEASE)
  1338. {
  1339. slot.state = IDLE;
  1340. slot.command = NONE;
  1341. slot.t_last_used = ggml_time_us();
  1342. LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
  1343. queue_tasks.notify_slot_changed();
  1344. continue;
  1345. }
  1346. if (slot.state == IDLE)
  1347. {
  1348. continue;
  1349. }
  1350. slot.i_batch = batch.n_tokens;
  1351. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1352. // TODO: we always have to take into account the "system_tokens"
  1353. // this is not great and needs to be improved somehow
  1354. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
  1355. slot.n_past += 1;
  1356. }
  1357. // process in chunks of params.n_batch
  1358. int32_t n_batch = params.n_batch;
  1359. // assign workload to the slots
  1360. if (params.cont_batching || batch.n_tokens == 0)
  1361. {
  1362. for (auto & slot : slots)
  1363. {
  1364. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1365. // empty prompt passed -> release the slot and send empty response
  1366. // note: infill mode allows empty prompt
  1367. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
  1368. {
  1369. slot.release();
  1370. slot.print_timings();
  1371. send_final_response(slot);
  1372. continue;
  1373. }
  1374. // need process the prompt
  1375. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1376. {
  1377. slot.state = PROCESSING;
  1378. slot.command = NONE;
  1379. std::vector<llama_token> prompt_tokens;
  1380. slot.t_start_process_prompt = ggml_time_us();
  1381. slot.t_start_genereration = 0;
  1382. if (slot.infill)
  1383. {
  1384. bool suff_rm_leading_spc = true;
  1385. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
  1386. {
  1387. params.input_suffix.erase(0, 1);
  1388. suff_rm_leading_spc = false;
  1389. }
  1390. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1391. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1392. const int space_token = 29871; // TODO: this should not be hardcoded
  1393. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1394. suffix_tokens.erase(suffix_tokens.begin());
  1395. }
  1396. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1397. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1398. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1399. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1400. prefix_tokens.push_back(llama_token_middle(model));
  1401. prompt_tokens = prefix_tokens;
  1402. }
  1403. else
  1404. {
  1405. prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
  1406. }
  1407. slot.num_prompt_tokens = prompt_tokens.size();
  1408. if (slot.params.n_keep < 0)
  1409. {
  1410. slot.params.n_keep = slot.num_prompt_tokens;
  1411. }
  1412. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1413. // if input prompt is too big, truncate it
  1414. if (slot.num_prompt_tokens >= slot.n_ctx)
  1415. {
  1416. const int n_left = slot.n_ctx - slot.params.n_keep;
  1417. const int n_block_size = n_left / 2;
  1418. const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1419. std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
  1420. new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
  1421. LOG_VERBOSE("input truncated", {
  1422. {"n_ctx", slot.n_ctx},
  1423. {"n_keep", slot.params.n_keep},
  1424. {"n_left", n_left},
  1425. {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
  1426. });
  1427. slot.truncated = true;
  1428. prompt_tokens = new_tokens;
  1429. slot.num_prompt_tokens = prompt_tokens.size();
  1430. GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
  1431. }
  1432. if (!slot.params.cache_prompt)
  1433. {
  1434. llama_sampling_reset(slot.ctx_sampling);
  1435. slot.n_past = 0;
  1436. slot.n_past_se = 0;
  1437. slot.ga_i = 0;
  1438. slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
  1439. }
  1440. else
  1441. {
  1442. // push the prompt into the sampling context (do not apply grammar)
  1443. for (auto &token : prompt_tokens)
  1444. {
  1445. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1446. }
  1447. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1448. slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
  1449. if (slot.ga_n != 1)
  1450. {
  1451. int ga_i = 0;
  1452. int32_t ga_n = slot.ga_n;
  1453. int32_t ga_w = slot.ga_w;
  1454. int32_t slot_npast = 0;
  1455. for (int k = 0; k < slot.n_past; ++k)
  1456. {
  1457. while (slot_npast >= ga_i + ga_w) {
  1458. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1459. slot_npast -= bd;
  1460. ga_i += ga_w/ga_n;
  1461. }
  1462. slot_npast++;
  1463. }
  1464. slot.n_past_se = slot_npast;
  1465. slot.ga_i = ga_i;
  1466. }
  1467. LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
  1468. }
  1469. slot.cache_tokens = prompt_tokens;
  1470. if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
  1471. {
  1472. // we have to evaluate at least 1 token to generate logits.
  1473. LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
  1474. slot.n_past--;
  1475. if (slot.ga_i > 0)
  1476. {
  1477. slot.n_past_se--;
  1478. }
  1479. }
  1480. LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
  1481. llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
  1482. LOG_VERBOSE("prompt ingested", {
  1483. {"n_past", slot.n_past},
  1484. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1485. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1486. });
  1487. const bool has_images = process_images(slot);
  1488. // process the prefix of first image
  1489. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1490. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1491. int32_t ga_i = slot.ga_i;
  1492. int32_t ga_n = slot.ga_n;
  1493. int32_t ga_w = slot.ga_w;
  1494. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1495. {
  1496. if (slot.ga_n != 1)
  1497. {
  1498. while (slot_npast >= ga_i + ga_w) {
  1499. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1500. slot_npast -= bd;
  1501. ga_i += ga_w/ga_n;
  1502. }
  1503. }
  1504. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
  1505. slot_npast++;
  1506. }
  1507. if (has_images && !ingest_images(slot, n_batch))
  1508. {
  1509. LOG_TEE("failed processing images\n");
  1510. return false;
  1511. }
  1512. // extract the logits only for the last token
  1513. if (batch.n_tokens > 0)
  1514. {
  1515. batch.logits[batch.n_tokens - 1] = true;
  1516. }
  1517. slot.n_decoded = 0;
  1518. slot.i_batch = batch.n_tokens - 1;
  1519. }
  1520. }
  1521. }
  1522. if (batch.n_tokens == 0)
  1523. {
  1524. all_slots_are_idle = true;
  1525. return true;
  1526. }
  1527. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1528. {
  1529. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1530. for (auto & slot : slots)
  1531. {
  1532. if (slot.ga_n != 1)
  1533. {
  1534. // context extension via Self-Extend
  1535. while (slot.n_past_se >= slot.ga_i + slot.ga_w)
  1536. {
  1537. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1538. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1539. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1540. LOG_TEE("\n");
  1541. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1542. LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1543. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1544. llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
  1545. llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
  1546. llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
  1547. slot.n_past_se -= bd;
  1548. slot.ga_i += slot.ga_w / slot.ga_n;
  1549. LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1550. }
  1551. slot.n_past_se += n_tokens;
  1552. }
  1553. }
  1554. llama_batch batch_view =
  1555. {
  1556. n_tokens,
  1557. batch.token + i,
  1558. nullptr,
  1559. batch.pos + i,
  1560. batch.n_seq_id + i,
  1561. batch.seq_id + i,
  1562. batch.logits + i,
  1563. 0, 0, 0, // unused
  1564. };
  1565. const int ret = llama_decode(ctx, batch_view);
  1566. if (ret != 0)
  1567. {
  1568. if (n_batch == 1 || ret < 0)
  1569. {
  1570. // if you get here, it means the KV cache is full - try increasing it via the context size
  1571. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1572. return false;
  1573. }
  1574. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1575. // retry with half the batch size to try to find a free slot in the KV cache
  1576. n_batch /= 2;
  1577. i -= n_batch;
  1578. continue;
  1579. }
  1580. for (auto & slot : slots)
  1581. {
  1582. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1583. {
  1584. continue;
  1585. }
  1586. // prompt evaluated for embedding
  1587. if (slot.embedding)
  1588. {
  1589. send_embedding(slot);
  1590. slot.release();
  1591. slot.i_batch = -1;
  1592. return true;
  1593. }
  1594. completion_token_output result;
  1595. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1596. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1597. slot.n_decoded += 1;
  1598. if (slot.n_decoded == 1)
  1599. {
  1600. slot.t_start_genereration = ggml_time_us();
  1601. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1602. }
  1603. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1604. result.tok = id;
  1605. const int32_t n_probs = slot.sparams.n_probs;
  1606. if (slot.sparams.temp <= 0 && n_probs > 0)
  1607. {
  1608. // for llama_sample_token_greedy we need to sort candidates
  1609. llama_sample_softmax(ctx, &cur_p);
  1610. }
  1611. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1612. {
  1613. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1614. }
  1615. if (!process_token(result, slot))
  1616. {
  1617. slot.release();
  1618. slot.print_timings();
  1619. send_final_response(slot);
  1620. }
  1621. slot.i_batch = -1;
  1622. }
  1623. }
  1624. return true;
  1625. }
  1626. void run_on_all_tasks_finished() {
  1627. update_slots();
  1628. }
  1629. };
  1630. static void server_print_usage(const char *argv0, const gpt_params &params,
  1631. const server_params &sparams)
  1632. {
  1633. printf("usage: %s [options]\n", argv0);
  1634. printf("\n");
  1635. printf("options:\n");
  1636. printf(" -h, --help show this help message and exit\n");
  1637. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1638. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1639. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1640. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1641. printf(" --rope-scaling {none,linear,yarn}\n");
  1642. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1643. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1644. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1645. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1646. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1647. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1648. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1649. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1650. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1651. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1652. if (llama_supports_mlock())
  1653. {
  1654. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1655. }
  1656. if (llama_supports_mmap())
  1657. {
  1658. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1659. }
  1660. printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
  1661. printf(" - distribute: spread execution evenly over all nodes\n");
  1662. printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
  1663. printf(" - numactl: use the CPU map provided my numactl\n");
  1664. if (llama_supports_gpu_offload()) {
  1665. printf(" -ngl N, --n-gpu-layers N\n");
  1666. printf(" number of layers to store in VRAM\n");
  1667. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1668. printf(" how to split the model across multiple GPUs, one of:\n");
  1669. printf(" - none: use one GPU only\n");
  1670. printf(" - layer (default): split layers and KV across GPUs\n");
  1671. printf(" - row: split rows across GPUs\n");
  1672. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1673. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1674. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1675. printf(" or for intermediate results and KV (with split-mode = row)\n");
  1676. }
  1677. printf(" -m FNAME, --model FNAME\n");
  1678. printf(" model path (default: %s)\n", params.model.c_str());
  1679. printf(" -a ALIAS, --alias ALIAS\n");
  1680. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1681. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1682. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1683. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1684. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1685. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1686. printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
  1687. printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
  1688. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1689. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1690. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1691. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1692. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1693. printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1694. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1695. printf(" --log-disable disables logging to a file.\n");
  1696. printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
  1697. printf("\n");
  1698. printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
  1699. printf(" --override-kv KEY=TYPE:VALUE\n");
  1700. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1701. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1702. printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
  1703. printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
  1704. printf(" --chat-template JINJA_TEMPLATE\n");
  1705. printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
  1706. printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
  1707. printf("\n");
  1708. }
  1709. static void server_params_parse(int argc, char **argv, server_params &sparams,
  1710. gpt_params &params, llama_server_context& llama)
  1711. {
  1712. gpt_params default_params;
  1713. server_params default_sparams;
  1714. std::string arg;
  1715. bool invalid_param = false;
  1716. for (int i = 1; i < argc; i++)
  1717. {
  1718. arg = argv[i];
  1719. if (arg == "--port")
  1720. {
  1721. if (++i >= argc)
  1722. {
  1723. invalid_param = true;
  1724. break;
  1725. }
  1726. sparams.port = std::stoi(argv[i]);
  1727. }
  1728. else if (arg == "--host")
  1729. {
  1730. if (++i >= argc)
  1731. {
  1732. invalid_param = true;
  1733. break;
  1734. }
  1735. sparams.hostname = argv[i];
  1736. }
  1737. else if (arg == "--path")
  1738. {
  1739. if (++i >= argc)
  1740. {
  1741. invalid_param = true;
  1742. break;
  1743. }
  1744. sparams.public_path = argv[i];
  1745. }
  1746. else if (arg == "--api-key")
  1747. {
  1748. if (++i >= argc)
  1749. {
  1750. invalid_param = true;
  1751. break;
  1752. }
  1753. sparams.api_keys.emplace_back(argv[i]);
  1754. }
  1755. else if (arg == "--api-key-file")
  1756. {
  1757. if (++i >= argc)
  1758. {
  1759. invalid_param = true;
  1760. break;
  1761. }
  1762. std::ifstream key_file(argv[i]);
  1763. if (!key_file) {
  1764. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1765. invalid_param = true;
  1766. break;
  1767. }
  1768. std::string key;
  1769. while (std::getline(key_file, key)) {
  1770. if (key.size() > 0) {
  1771. sparams.api_keys.push_back(key);
  1772. }
  1773. }
  1774. key_file.close();
  1775. }
  1776. else if (arg == "--timeout" || arg == "-to")
  1777. {
  1778. if (++i >= argc)
  1779. {
  1780. invalid_param = true;
  1781. break;
  1782. }
  1783. sparams.read_timeout = std::stoi(argv[i]);
  1784. sparams.write_timeout = std::stoi(argv[i]);
  1785. }
  1786. else if (arg == "-m" || arg == "--model")
  1787. {
  1788. if (++i >= argc)
  1789. {
  1790. invalid_param = true;
  1791. break;
  1792. }
  1793. params.model = argv[i];
  1794. }
  1795. else if (arg == "-a" || arg == "--alias")
  1796. {
  1797. if (++i >= argc)
  1798. {
  1799. invalid_param = true;
  1800. break;
  1801. }
  1802. params.model_alias = argv[i];
  1803. }
  1804. else if (arg == "-h" || arg == "--help")
  1805. {
  1806. server_print_usage(argv[0], default_params, default_sparams);
  1807. exit(0);
  1808. }
  1809. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1810. {
  1811. if (++i >= argc)
  1812. {
  1813. invalid_param = true;
  1814. break;
  1815. }
  1816. params.n_ctx = std::stoi(argv[i]);
  1817. }
  1818. else if (arg == "--rope-scaling")
  1819. {
  1820. if (++i >= argc)
  1821. {
  1822. invalid_param = true;
  1823. break;
  1824. }
  1825. std::string value(argv[i]);
  1826. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  1827. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  1828. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  1829. else { invalid_param = true; break; }
  1830. }
  1831. else if (arg == "--rope-freq-base")
  1832. {
  1833. if (++i >= argc)
  1834. {
  1835. invalid_param = true;
  1836. break;
  1837. }
  1838. params.rope_freq_base = std::stof(argv[i]);
  1839. }
  1840. else if (arg == "--rope-freq-scale")
  1841. {
  1842. if (++i >= argc)
  1843. {
  1844. invalid_param = true;
  1845. break;
  1846. }
  1847. params.rope_freq_scale = std::stof(argv[i]);
  1848. }
  1849. else if (arg == "--yarn-ext-factor")
  1850. {
  1851. if (++i >= argc) {
  1852. invalid_param = true;
  1853. break;
  1854. }
  1855. params.yarn_ext_factor = std::stof(argv[i]);
  1856. }
  1857. else if (arg == "--yarn-attn-factor")
  1858. {
  1859. if (++i >= argc) {
  1860. invalid_param = true;
  1861. break;
  1862. }
  1863. params.yarn_attn_factor = std::stof(argv[i]);
  1864. }
  1865. else if (arg == "--yarn-beta-fast")
  1866. {
  1867. if (++i >= argc) {
  1868. invalid_param = true;
  1869. break;
  1870. }
  1871. params.yarn_beta_fast = std::stof(argv[i]);
  1872. }
  1873. else if (arg == "--yarn-beta-slow")
  1874. {
  1875. if (++i >= argc) {
  1876. invalid_param = true;
  1877. break;
  1878. }
  1879. params.yarn_beta_slow = std::stof(argv[i]);
  1880. }
  1881. else if (arg == "--threads" || arg == "-t")
  1882. {
  1883. if (++i >= argc)
  1884. {
  1885. invalid_param = true;
  1886. break;
  1887. }
  1888. params.n_threads = std::stoi(argv[i]);
  1889. }
  1890. else if (arg == "--grp-attn-n" || arg == "-gan")
  1891. {
  1892. if (++i >= argc) {
  1893. invalid_param = true;
  1894. break;
  1895. }
  1896. params.grp_attn_n = std::stoi(argv[i]);
  1897. }
  1898. else if (arg == "--grp-attn-w" || arg == "-gaw")
  1899. {
  1900. if (++i >= argc)
  1901. {
  1902. invalid_param = true;
  1903. break;
  1904. }
  1905. params.grp_attn_w = std::stoi(argv[i]);
  1906. }
  1907. else if (arg == "--threads-batch" || arg == "-tb")
  1908. {
  1909. if (++i >= argc)
  1910. {
  1911. invalid_param = true;
  1912. break;
  1913. }
  1914. params.n_threads_batch = std::stoi(argv[i]);
  1915. }
  1916. else if (arg == "-b" || arg == "--batch-size")
  1917. {
  1918. if (++i >= argc)
  1919. {
  1920. invalid_param = true;
  1921. break;
  1922. }
  1923. params.n_batch = std::stoi(argv[i]);
  1924. params.n_batch = std::min(512, params.n_batch);
  1925. }
  1926. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  1927. {
  1928. if (++i >= argc)
  1929. {
  1930. invalid_param = true;
  1931. break;
  1932. }
  1933. if (llama_supports_gpu_offload()) {
  1934. params.n_gpu_layers = std::stoi(argv[i]);
  1935. } else {
  1936. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  1937. "See main README.md for information on enabling GPU BLAS support",
  1938. {{"n_gpu_layers", params.n_gpu_layers}});
  1939. }
  1940. }
  1941. else if (arg == "--split-mode" || arg == "-sm")
  1942. {
  1943. if (++i >= argc) {
  1944. invalid_param = true;
  1945. break;
  1946. }
  1947. std::string arg_next = argv[i];
  1948. if (arg_next == "none")
  1949. {
  1950. params.split_mode = LLAMA_SPLIT_NONE;
  1951. }
  1952. else if (arg_next == "layer")
  1953. {
  1954. params.split_mode = LLAMA_SPLIT_LAYER;
  1955. }
  1956. else if (arg_next == "row")
  1957. {
  1958. params.split_mode = LLAMA_SPLIT_ROW;
  1959. }
  1960. else {
  1961. invalid_param = true;
  1962. break;
  1963. }
  1964. #ifndef GGML_USE_CUBLAS
  1965. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
  1966. #endif // GGML_USE_CUBLAS
  1967. }
  1968. else if (arg == "--tensor-split" || arg == "-ts")
  1969. {
  1970. if (++i >= argc)
  1971. {
  1972. invalid_param = true;
  1973. break;
  1974. }
  1975. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  1976. std::string arg_next = argv[i];
  1977. // split string by , and /
  1978. const std::regex regex{R"([,/]+)"};
  1979. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  1980. std::vector<std::string> split_arg{it, {}};
  1981. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  1982. for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
  1983. {
  1984. if (i_device < split_arg.size())
  1985. {
  1986. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  1987. }
  1988. else
  1989. {
  1990. params.tensor_split[i_device] = 0.0f;
  1991. }
  1992. }
  1993. #else
  1994. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
  1995. #endif // GGML_USE_CUBLAS
  1996. }
  1997. else if (arg == "--no-mul-mat-q" || arg == "-nommq")
  1998. {
  1999. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  2000. params.mul_mat_q = false;
  2001. #else
  2002. LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
  2003. #endif // GGML_USE_CUBLAS
  2004. }
  2005. else if (arg == "--main-gpu" || arg == "-mg")
  2006. {
  2007. if (++i >= argc)
  2008. {
  2009. invalid_param = true;
  2010. break;
  2011. }
  2012. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  2013. params.main_gpu = std::stoi(argv[i]);
  2014. #else
  2015. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  2016. #endif
  2017. }
  2018. else if (arg == "--lora")
  2019. {
  2020. if (++i >= argc)
  2021. {
  2022. invalid_param = true;
  2023. break;
  2024. }
  2025. params.lora_adapter.emplace_back(argv[i], 1.0f);
  2026. params.use_mmap = false;
  2027. }
  2028. else if (arg == "--lora-scaled")
  2029. {
  2030. if (++i >= argc)
  2031. {
  2032. invalid_param = true;
  2033. break;
  2034. }
  2035. const char * lora_adapter = argv[i];
  2036. if (++i >= argc)
  2037. {
  2038. invalid_param = true;
  2039. break;
  2040. }
  2041. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  2042. params.use_mmap = false;
  2043. }
  2044. else if (arg == "--lora-base")
  2045. {
  2046. if (++i >= argc)
  2047. {
  2048. invalid_param = true;
  2049. break;
  2050. }
  2051. params.lora_base = argv[i];
  2052. }
  2053. else if (arg == "-v" || arg == "--verbose")
  2054. {
  2055. #if SERVER_VERBOSE != 1
  2056. LOG_WARNING("server.cpp is not built with verbose logging.", {});
  2057. #else
  2058. server_verbose = true;
  2059. #endif
  2060. }
  2061. else if (arg == "--mlock")
  2062. {
  2063. params.use_mlock = true;
  2064. }
  2065. else if (arg == "--no-mmap")
  2066. {
  2067. params.use_mmap = false;
  2068. }
  2069. else if (arg == "--numa") {
  2070. if (++i >= argc) {
  2071. invalid_param = true;
  2072. break;
  2073. } else {
  2074. std::string value(argv[i]);
  2075. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2076. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2077. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2078. else { invalid_param = true; break; }
  2079. }
  2080. }
  2081. else if (arg == "--embedding")
  2082. {
  2083. params.embedding = true;
  2084. }
  2085. else if (arg == "-cb" || arg == "--cont-batching")
  2086. {
  2087. params.cont_batching = true;
  2088. }
  2089. else if (arg == "-np" || arg == "--parallel")
  2090. {
  2091. if (++i >= argc)
  2092. {
  2093. invalid_param = true;
  2094. break;
  2095. }
  2096. params.n_parallel = std::stoi(argv[i]);
  2097. } else if (arg == "-n" || arg == "--n-predict")
  2098. {
  2099. if (++i >= argc)
  2100. {
  2101. invalid_param = true;
  2102. break;
  2103. }
  2104. params.n_predict = std::stoi(argv[i]);
  2105. } else if (arg == "-spf" || arg == "--system-prompt-file")
  2106. {
  2107. if (++i >= argc)
  2108. {
  2109. invalid_param = true;
  2110. break;
  2111. }
  2112. std::ifstream file(argv[i]);
  2113. if (!file) {
  2114. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  2115. invalid_param = true;
  2116. break;
  2117. }
  2118. std::string systm_content;
  2119. std::copy(
  2120. std::istreambuf_iterator<char>(file),
  2121. std::istreambuf_iterator<char>(),
  2122. std::back_inserter(systm_content)
  2123. );
  2124. llama.process_system_prompt_data(json::parse(systm_content));
  2125. }
  2126. else if(arg == "--mmproj")
  2127. {
  2128. if (++i >= argc)
  2129. {
  2130. invalid_param = true;
  2131. break;
  2132. }
  2133. params.mmproj = argv[i];
  2134. }
  2135. else if (arg == "--log-disable")
  2136. {
  2137. log_set_target(stdout);
  2138. LOG_INFO("logging to file is disabled.", {});
  2139. }
  2140. else if (arg == "--slots-endpoint-disable")
  2141. {
  2142. sparams.slots_endpoint = false;
  2143. }
  2144. else if (arg == "--chat-template")
  2145. {
  2146. if (++i >= argc)
  2147. {
  2148. invalid_param = true;
  2149. break;
  2150. }
  2151. if (!verify_custom_template(argv[i])) {
  2152. fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
  2153. fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
  2154. invalid_param = true;
  2155. break;
  2156. }
  2157. sparams.chat_template = argv[i];
  2158. }
  2159. else if (arg == "--override-kv")
  2160. {
  2161. if (++i >= argc) {
  2162. invalid_param = true;
  2163. break;
  2164. }
  2165. char * sep = strchr(argv[i], '=');
  2166. if (sep == nullptr || sep - argv[i] >= 128) {
  2167. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  2168. invalid_param = true;
  2169. break;
  2170. }
  2171. struct llama_model_kv_override kvo;
  2172. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  2173. kvo.key[sep - argv[i]] = 0;
  2174. sep++;
  2175. if (strncmp(sep, "int:", 4) == 0) {
  2176. sep += 4;
  2177. kvo.tag = LLAMA_KV_OVERRIDE_INT;
  2178. kvo.int_value = std::atol(sep);
  2179. } else if (strncmp(sep, "float:", 6) == 0) {
  2180. sep += 6;
  2181. kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
  2182. kvo.float_value = std::atof(sep);
  2183. } else if (strncmp(sep, "bool:", 5) == 0) {
  2184. sep += 5;
  2185. kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
  2186. if (std::strcmp(sep, "true") == 0) {
  2187. kvo.bool_value = true;
  2188. } else if (std::strcmp(sep, "false") == 0) {
  2189. kvo.bool_value = false;
  2190. } else {
  2191. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  2192. invalid_param = true;
  2193. break;
  2194. }
  2195. } else {
  2196. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  2197. invalid_param = true;
  2198. break;
  2199. }
  2200. params.kv_overrides.push_back(kvo);
  2201. }
  2202. else
  2203. {
  2204. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  2205. server_print_usage(argv[0], default_params, default_sparams);
  2206. exit(1);
  2207. }
  2208. }
  2209. if (!params.kv_overrides.empty()) {
  2210. params.kv_overrides.emplace_back();
  2211. params.kv_overrides.back().key[0] = 0;
  2212. }
  2213. if (invalid_param)
  2214. {
  2215. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  2216. server_print_usage(argv[0], default_params, default_sparams);
  2217. exit(1);
  2218. }
  2219. }
  2220. /* llama.cpp completion api semantics */
  2221. static json format_partial_response(
  2222. llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  2223. ) {
  2224. json res = json
  2225. {
  2226. {"content", content },
  2227. {"stop", false},
  2228. {"slot_id", slot->id },
  2229. {"multimodal", llama.multimodal }
  2230. };
  2231. if (slot->sparams.n_probs > 0)
  2232. {
  2233. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  2234. }
  2235. return res;
  2236. }
  2237. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  2238. {
  2239. return json{
  2240. {"tokens", tokens}};
  2241. }
  2242. static json format_detokenized_response(std::string content)
  2243. {
  2244. return json{
  2245. {"content", content}};
  2246. }
  2247. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2248. {
  2249. LOG_INFO("request", {
  2250. {"remote_addr", req.remote_addr},
  2251. {"remote_port", req.remote_port},
  2252. {"status", res.status},
  2253. {"method", req.method},
  2254. {"path", req.path},
  2255. {"params", req.params},
  2256. });
  2257. LOG_VERBOSE("request", {
  2258. {"request", req.body},
  2259. {"response", res.body},
  2260. });
  2261. }
  2262. struct token_translator
  2263. {
  2264. llama_context * ctx;
  2265. std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
  2266. std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
  2267. };
  2268. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
  2269. {
  2270. auto & gtps = slot->generated_token_probs;
  2271. auto translator = token_translator{llama.ctx};
  2272. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2273. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2274. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2275. {
  2276. slot->generated_text.reserve(slot->generated_text.size() + len);
  2277. }
  2278. for (const completion_token_output & cto : gtps)
  2279. {
  2280. slot->generated_text += translator(cto);
  2281. }
  2282. }
  2283. std::function<void(int)> shutdown_handler;
  2284. inline void signal_handler(int signal) { shutdown_handler(signal); }
  2285. int main(int argc, char **argv)
  2286. {
  2287. #if SERVER_VERBOSE != 1
  2288. log_disable();
  2289. #endif
  2290. // own arguments required by this example
  2291. gpt_params params;
  2292. server_params sparams;
  2293. // struct that contains llama context and inference
  2294. llama_server_context llama;
  2295. server_params_parse(argc, argv, sparams, params, llama);
  2296. if (params.model_alias == "unknown")
  2297. {
  2298. params.model_alias = params.model;
  2299. }
  2300. llama_backend_init();
  2301. llama_numa_init(params.numa);
  2302. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2303. {"commit", LLAMA_COMMIT}});
  2304. LOG_INFO("system info", {
  2305. {"n_threads", params.n_threads},
  2306. {"n_threads_batch", params.n_threads_batch},
  2307. {"total_threads", std::thread::hardware_concurrency()},
  2308. {"system_info", llama_print_system_info()},
  2309. });
  2310. httplib::Server svr;
  2311. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2312. svr.set_default_headers({{"Server", "llama.cpp"}});
  2313. // CORS preflight
  2314. svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
  2315. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2316. res.set_header("Access-Control-Allow-Credentials", "true");
  2317. res.set_header("Access-Control-Allow-Methods", "POST");
  2318. res.set_header("Access-Control-Allow-Headers", "*");
  2319. });
  2320. svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
  2321. server_state current_state = state.load();
  2322. switch(current_state) {
  2323. case SERVER_STATE_READY: {
  2324. // request slots data using task queue
  2325. task_server task;
  2326. task.id = llama.queue_tasks.get_new_id();
  2327. task.type = TASK_TYPE_SLOTS_DATA;
  2328. task.target_id = -1;
  2329. llama.queue_results.add_waiting_task_id(task.id);
  2330. llama.queue_tasks.post(task);
  2331. // get the result
  2332. task_result result = llama.queue_results.recv(task.id);
  2333. llama.queue_results.remove_waiting_task_id(task.id);
  2334. int n_idle_slots = result.result_json["idle"];
  2335. int n_processing_slots = result.result_json["processing"];
  2336. json health = {
  2337. {"status", "ok"},
  2338. {"slots_idle", n_idle_slots},
  2339. {"slots_processing", n_processing_slots}};
  2340. res.status = 200; // HTTP OK
  2341. if (sparams.slots_endpoint && req.has_param("include_slots")) {
  2342. health["slots"] = result.result_json["slots"];
  2343. }
  2344. if (n_idle_slots == 0) {
  2345. health["status"] = "no slot available";
  2346. if (req.has_param("fail_on_no_slot")) {
  2347. res.status = 503; // HTTP Service Unavailable
  2348. }
  2349. }
  2350. res.set_content(health.dump(), "application/json");
  2351. break;
  2352. }
  2353. case SERVER_STATE_LOADING_MODEL:
  2354. res.set_content(R"({"status": "loading model"})", "application/json");
  2355. res.status = 503; // HTTP Service Unavailable
  2356. break;
  2357. case SERVER_STATE_ERROR:
  2358. res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
  2359. res.status = 500; // HTTP Internal Server Error
  2360. break;
  2361. }
  2362. });
  2363. if (sparams.slots_endpoint) {
  2364. svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
  2365. // request slots data using task queue
  2366. task_server task;
  2367. task.id = llama.queue_tasks.get_new_id();
  2368. task.type = TASK_TYPE_SLOTS_DATA;
  2369. task.target_id = -1;
  2370. llama.queue_results.add_waiting_task_id(task.id);
  2371. llama.queue_tasks.post(task);
  2372. // get the result
  2373. task_result result = llama.queue_results.recv(task.id);
  2374. llama.queue_results.remove_waiting_task_id(task.id);
  2375. res.set_content(result.result_json["slots"].dump(), "application/json");
  2376. res.status = 200; // HTTP OK
  2377. });
  2378. }
  2379. svr.set_logger(log_server_request);
  2380. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2381. {
  2382. const char fmt[] = "500 Internal Server Error\n%s";
  2383. char buf[BUFSIZ];
  2384. try
  2385. {
  2386. std::rethrow_exception(std::move(ep));
  2387. }
  2388. catch (std::exception &e)
  2389. {
  2390. snprintf(buf, sizeof(buf), fmt, e.what());
  2391. }
  2392. catch (...)
  2393. {
  2394. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2395. }
  2396. res.set_content(buf, "text/plain; charset=utf-8");
  2397. res.status = 500;
  2398. });
  2399. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2400. {
  2401. if (res.status == 401)
  2402. {
  2403. res.set_content("Unauthorized", "text/plain; charset=utf-8");
  2404. }
  2405. if (res.status == 400)
  2406. {
  2407. res.set_content("Invalid request", "text/plain; charset=utf-8");
  2408. }
  2409. else if (res.status == 404)
  2410. {
  2411. res.set_content("File Not Found", "text/plain; charset=utf-8");
  2412. res.status = 404;
  2413. }
  2414. });
  2415. // set timeouts and change hostname and port
  2416. svr.set_read_timeout (sparams.read_timeout);
  2417. svr.set_write_timeout(sparams.write_timeout);
  2418. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2419. {
  2420. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2421. return 1;
  2422. }
  2423. // Set the base directory for serving static files
  2424. svr.set_base_dir(sparams.public_path);
  2425. // to make it ctrl+clickable:
  2426. LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
  2427. std::unordered_map<std::string, std::string> log_data;
  2428. log_data["hostname"] = sparams.hostname;
  2429. log_data["port"] = std::to_string(sparams.port);
  2430. if (sparams.api_keys.size() == 1) {
  2431. log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
  2432. } else if (sparams.api_keys.size() > 1) {
  2433. log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
  2434. }
  2435. LOG_INFO("HTTP server listening", log_data);
  2436. // run the HTTP server in a thread - see comment below
  2437. std::thread t([&]()
  2438. {
  2439. if (!svr.listen_after_bind())
  2440. {
  2441. state.store(SERVER_STATE_ERROR);
  2442. return 1;
  2443. }
  2444. return 0;
  2445. });
  2446. // load the model
  2447. if (!llama.load_model(params))
  2448. {
  2449. state.store(SERVER_STATE_ERROR);
  2450. return 1;
  2451. } else {
  2452. llama.initialize();
  2453. state.store(SERVER_STATE_READY);
  2454. LOG_INFO("model loaded", {});
  2455. }
  2456. if (sparams.chat_template.empty()) { // custom chat template is not supplied
  2457. // check if the template comes with the model is supported by us
  2458. llama.validate_model_chat_template(sparams);
  2459. }
  2460. // Middleware for API key validation
  2461. auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
  2462. // If API key is not set, skip validation
  2463. if (sparams.api_keys.empty()) {
  2464. return true;
  2465. }
  2466. // Check for API key in the header
  2467. auto auth_header = req.get_header_value("Authorization");
  2468. std::string prefix = "Bearer ";
  2469. if (auth_header.substr(0, prefix.size()) == prefix) {
  2470. std::string received_api_key = auth_header.substr(prefix.size());
  2471. if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
  2472. return true; // API key is valid
  2473. }
  2474. }
  2475. // API key is invalid or not provided
  2476. res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
  2477. res.status = 401; // Unauthorized
  2478. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2479. return false;
  2480. };
  2481. // this is only called if no index.html is found in the public --path
  2482. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2483. {
  2484. res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
  2485. return false;
  2486. });
  2487. // this is only called if no index.js is found in the public --path
  2488. svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
  2489. {
  2490. res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
  2491. return false;
  2492. });
  2493. // this is only called if no index.html is found in the public --path
  2494. svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
  2495. {
  2496. res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
  2497. return false;
  2498. });
  2499. // this is only called if no index.html is found in the public --path
  2500. svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
  2501. {
  2502. res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
  2503. return false;
  2504. });
  2505. svr.Get("/props", [&llama](const httplib::Request & req, httplib::Response &res)
  2506. {
  2507. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2508. json data = {
  2509. { "user_name", llama.name_user.c_str() },
  2510. { "assistant_name", llama.name_assistant.c_str() },
  2511. { "default_generation_settings", llama.default_generation_settings_for_props },
  2512. { "total_slots", llama.params.n_parallel }
  2513. };
  2514. res.set_content(data.dump(), "application/json; charset=utf-8");
  2515. });
  2516. svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2517. {
  2518. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2519. if (!validate_api_key(req, res)) {
  2520. return;
  2521. }
  2522. json data = json::parse(req.body);
  2523. const int task_id = llama.queue_tasks.get_new_id();
  2524. llama.queue_results.add_waiting_task_id(task_id);
  2525. llama.request_completion(task_id, data, false, false, -1);
  2526. if (!json_value(data, "stream", false)) {
  2527. std::string completion_text;
  2528. task_result result = llama.queue_results.recv(task_id);
  2529. if (!result.error && result.stop) {
  2530. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2531. }
  2532. else
  2533. {
  2534. res.status = 404;
  2535. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2536. }
  2537. llama.queue_results.remove_waiting_task_id(task_id);
  2538. } else {
  2539. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2540. {
  2541. while (true)
  2542. {
  2543. task_result result = llama.queue_results.recv(task_id);
  2544. if (!result.error) {
  2545. const std::string str =
  2546. "data: " +
  2547. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2548. "\n\n";
  2549. LOG_VERBOSE("data stream", {
  2550. { "to_send", str }
  2551. });
  2552. if (!sink.write(str.c_str(), str.size()))
  2553. {
  2554. llama.queue_results.remove_waiting_task_id(task_id);
  2555. return false;
  2556. }
  2557. if (result.stop) {
  2558. break;
  2559. }
  2560. } else {
  2561. const std::string str =
  2562. "error: " +
  2563. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2564. "\n\n";
  2565. LOG_VERBOSE("data stream", {
  2566. { "to_send", str }
  2567. });
  2568. if (!sink.write(str.c_str(), str.size()))
  2569. {
  2570. llama.queue_results.remove_waiting_task_id(task_id);
  2571. return false;
  2572. }
  2573. break;
  2574. }
  2575. }
  2576. llama.queue_results.remove_waiting_task_id(task_id);
  2577. sink.done();
  2578. return true;
  2579. };
  2580. auto on_complete = [task_id, &llama] (bool)
  2581. {
  2582. // cancel
  2583. llama.request_cancel(task_id);
  2584. llama.queue_results.remove_waiting_task_id(task_id);
  2585. };
  2586. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2587. }
  2588. });
  2589. svr.Get("/v1/models", [&params](const httplib::Request& req, httplib::Response& res)
  2590. {
  2591. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2592. std::time_t t = std::time(0);
  2593. json models = {
  2594. {"object", "list"},
  2595. {"data", {
  2596. {
  2597. {"id", params.model_alias},
  2598. {"object", "model"},
  2599. {"created", t},
  2600. {"owned_by", "llamacpp"}
  2601. },
  2602. }}
  2603. };
  2604. res.set_content(models.dump(), "application/json; charset=utf-8");
  2605. });
  2606. // TODO: add mount point without "/v1" prefix -- how?
  2607. svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
  2608. {
  2609. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2610. if (!validate_api_key(req, res)) {
  2611. return;
  2612. }
  2613. json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template);
  2614. const int task_id = llama.queue_tasks.get_new_id();
  2615. llama.queue_results.add_waiting_task_id(task_id);
  2616. llama.request_completion(task_id, data, false, false, -1);
  2617. if (!json_value(data, "stream", false)) {
  2618. std::string completion_text;
  2619. task_result result = llama.queue_results.recv(task_id);
  2620. if (!result.error && result.stop) {
  2621. json oaicompat_result = format_final_response_oaicompat(data, result);
  2622. res.set_content(oaicompat_result.dump(-1, ' ', false,
  2623. json::error_handler_t::replace),
  2624. "application/json; charset=utf-8");
  2625. } else {
  2626. res.status = 500;
  2627. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2628. }
  2629. llama.queue_results.remove_waiting_task_id(task_id);
  2630. } else {
  2631. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
  2632. while (true) {
  2633. task_result llama_result = llama.queue_results.recv(task_id);
  2634. if (!llama_result.error) {
  2635. std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
  2636. for (auto it = result_array.begin(); it != result_array.end(); ++it)
  2637. {
  2638. if (!it->empty()) {
  2639. const std::string str =
  2640. "data: " +
  2641. it->dump(-1, ' ', false, json::error_handler_t::replace) +
  2642. "\n\n";
  2643. LOG_VERBOSE("data stream", {{"to_send", str}});
  2644. if (!sink.write(str.c_str(), str.size())) {
  2645. llama.queue_results.remove_waiting_task_id(task_id);
  2646. return false;
  2647. }
  2648. }
  2649. }
  2650. if (llama_result.stop) {
  2651. break;
  2652. }
  2653. } else {
  2654. const std::string str =
  2655. "error: " +
  2656. llama_result.result_json.dump(-1, ' ', false,
  2657. json::error_handler_t::replace) +
  2658. "\n\n";
  2659. LOG_VERBOSE("data stream", {{"to_send", str}});
  2660. if (!sink.write(str.c_str(), str.size())) {
  2661. llama.queue_results.remove_waiting_task_id(task_id);
  2662. return false;
  2663. }
  2664. break;
  2665. }
  2666. }
  2667. sink.done();
  2668. llama.queue_results.remove_waiting_task_id(task_id);
  2669. return true;
  2670. };
  2671. auto on_complete = [task_id, &llama](bool) {
  2672. // cancel request
  2673. llama.request_cancel(task_id);
  2674. llama.queue_results.remove_waiting_task_id(task_id);
  2675. };
  2676. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2677. }
  2678. });
  2679. svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2680. {
  2681. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2682. if (!validate_api_key(req, res)) {
  2683. return;
  2684. }
  2685. json data = json::parse(req.body);
  2686. const int task_id = llama.queue_tasks.get_new_id();
  2687. llama.queue_results.add_waiting_task_id(task_id);
  2688. llama.request_completion(task_id, data, true, false, -1);
  2689. if (!json_value(data, "stream", false)) {
  2690. std::string completion_text;
  2691. task_result result = llama.queue_results.recv(task_id);
  2692. if (!result.error && result.stop)
  2693. {
  2694. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2695. }
  2696. else
  2697. {
  2698. res.status = 404;
  2699. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2700. }
  2701. llama.queue_results.remove_waiting_task_id(task_id);
  2702. } else {
  2703. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
  2704. while (true)
  2705. {
  2706. task_result result = llama.queue_results.recv(task_id);
  2707. if (!result.error) {
  2708. const std::string str =
  2709. "data: " +
  2710. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2711. "\n\n";
  2712. LOG_VERBOSE("data stream", {
  2713. { "to_send", str }
  2714. });
  2715. if (!sink.write(str.c_str(), str.size()))
  2716. {
  2717. llama.queue_results.remove_waiting_task_id(task_id);
  2718. return false;
  2719. }
  2720. if (result.stop)
  2721. {
  2722. break;
  2723. }
  2724. }
  2725. else
  2726. {
  2727. break;
  2728. }
  2729. }
  2730. llama.queue_results.remove_waiting_task_id(task_id);
  2731. sink.done();
  2732. return true;
  2733. };
  2734. auto on_complete = [task_id, &llama] (bool)
  2735. {
  2736. // cancel
  2737. llama.request_cancel(task_id);
  2738. };
  2739. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2740. }
  2741. });
  2742. svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
  2743. { return res.set_content("", "application/json; charset=utf-8"); });
  2744. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2745. {
  2746. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2747. const json body = json::parse(req.body);
  2748. std::vector<llama_token> tokens;
  2749. if (body.count("content") != 0)
  2750. {
  2751. tokens = llama.tokenize(body["content"], false);
  2752. }
  2753. const json data = format_tokenizer_response(tokens);
  2754. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2755. });
  2756. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2757. {
  2758. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2759. const json body = json::parse(req.body);
  2760. std::string content;
  2761. if (body.count("tokens") != 0)
  2762. {
  2763. const std::vector<llama_token> tokens = body["tokens"];
  2764. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2765. }
  2766. const json data = format_detokenized_response(content);
  2767. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2768. });
  2769. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2770. {
  2771. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2772. const json body = json::parse(req.body);
  2773. json prompt;
  2774. if (body.count("content") != 0)
  2775. {
  2776. prompt = body["content"];
  2777. }
  2778. else
  2779. {
  2780. prompt = "";
  2781. }
  2782. json image_data;
  2783. if (body.count("image_data") != 0) {
  2784. image_data = body["image_data"];
  2785. }
  2786. else
  2787. {
  2788. image_data = "";
  2789. }
  2790. // create and queue the task
  2791. const int task_id = llama.queue_tasks.get_new_id();
  2792. llama.queue_results.add_waiting_task_id(task_id);
  2793. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
  2794. // get the result
  2795. task_result result = llama.queue_results.recv(task_id);
  2796. llama.queue_results.remove_waiting_task_id(task_id);
  2797. // send the result
  2798. return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
  2799. });
  2800. svr.Post("/v1/embeddings", [&llama](const httplib::Request &req, httplib::Response &res)
  2801. {
  2802. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2803. const json body = json::parse(req.body);
  2804. json prompt;
  2805. if (body.count("input") != 0)
  2806. {
  2807. prompt = body["input"];
  2808. // batch
  2809. if(prompt.is_array()) {
  2810. json data = json::array();
  2811. int i = 0;
  2812. for (const json &elem : prompt) {
  2813. const int task_id = llama.queue_tasks.get_new_id();
  2814. llama.queue_results.add_waiting_task_id(task_id);
  2815. llama.request_completion(task_id, { {"prompt", elem}, { "n_predict", 0} }, false, true, -1);
  2816. // get the result
  2817. task_result result = llama.queue_results.recv(task_id);
  2818. llama.queue_results.remove_waiting_task_id(task_id);
  2819. json embedding = json{
  2820. {"embedding", json_value(result.result_json, "embedding", json::array())},
  2821. {"index", i++},
  2822. {"object", "embedding"}
  2823. };
  2824. data.push_back(embedding);
  2825. }
  2826. json result = format_embeddings_response_oaicompat(body, data);
  2827. return res.set_content(result.dump(), "application/json; charset=utf-8");
  2828. }
  2829. }
  2830. else
  2831. {
  2832. prompt = "";
  2833. }
  2834. // create and queue the task
  2835. const int task_id = llama.queue_tasks.get_new_id();
  2836. llama.queue_results.add_waiting_task_id(task_id);
  2837. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}}, false, true, -1);
  2838. // get the result
  2839. task_result result = llama.queue_results.recv(task_id);
  2840. llama.queue_results.remove_waiting_task_id(task_id);
  2841. json data = json::array({json{
  2842. {"embedding", json_value(result.result_json, "embedding", json::array())},
  2843. {"index", 0},
  2844. {"object", "embedding"}
  2845. }}
  2846. );
  2847. json root = format_embeddings_response_oaicompat(body, data);
  2848. // send the result
  2849. return res.set_content(root.dump(), "application/json; charset=utf-8");
  2850. });
  2851. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2852. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2853. //std::thread t2([&]()
  2854. /*{
  2855. bool running = true;
  2856. while (running)
  2857. {
  2858. running = llama.update_slots();
  2859. }
  2860. }*/
  2861. //);
  2862. llama.queue_tasks.on_new_task(std::bind(
  2863. &llama_server_context::process_single_task, &llama, std::placeholders::_1));
  2864. llama.queue_tasks.on_finish_multitask(std::bind(
  2865. &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
  2866. llama.queue_tasks.on_all_tasks_finished(std::bind(
  2867. &llama_server_context::run_on_all_tasks_finished, &llama));
  2868. llama.queue_results.on_multitask_update(std::bind(
  2869. &llama_server_queue::update_multitask,
  2870. &llama.queue_tasks,
  2871. std::placeholders::_1,
  2872. std::placeholders::_2,
  2873. std::placeholders::_3
  2874. ));
  2875. shutdown_handler = [&](int) {
  2876. llama.queue_tasks.terminate();
  2877. };
  2878. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2879. struct sigaction sigint_action;
  2880. sigint_action.sa_handler = signal_handler;
  2881. sigemptyset (&sigint_action.sa_mask);
  2882. sigint_action.sa_flags = 0;
  2883. sigaction(SIGINT, &sigint_action, NULL);
  2884. #elif defined (_WIN32)
  2885. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2886. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2887. };
  2888. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2889. #endif
  2890. llama.queue_tasks.start_loop();
  2891. svr.stop();
  2892. t.join();
  2893. llama_backend_free();
  2894. return 0;
  2895. }