llama-bench.cpp 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUDA
  108. int count = ggml_backend_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case NONE: return "none";
  137. case CSV: return "csv";
  138. case JSON: return "json";
  139. case MARKDOWN: return "md";
  140. case SQL: return "sql";
  141. default: GGML_ASSERT(!"invalid output format");
  142. }
  143. }
  144. static bool output_format_from_str(const std::string & s, output_formats & format) {
  145. if (s == "none") {
  146. format = NONE;
  147. } else if (s == "csv") {
  148. format = CSV;
  149. } else if (s == "json") {
  150. format = JSON;
  151. } else if (s == "md") {
  152. format = MARKDOWN;
  153. } else if (s == "sql") {
  154. format = SQL;
  155. } else {
  156. return false;
  157. }
  158. return true;
  159. }
  160. static const char * split_mode_str(llama_split_mode mode) {
  161. switch (mode) {
  162. case LLAMA_SPLIT_MODE_NONE: return "none";
  163. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  164. case LLAMA_SPLIT_MODE_ROW: return "row";
  165. default: GGML_ASSERT(!"invalid split mode");
  166. }
  167. }
  168. static std::string pair_str(const std::pair<int, int> & p) {
  169. static char buf[32];
  170. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  171. return buf;
  172. }
  173. struct cmd_params {
  174. std::vector<std::string> model;
  175. std::vector<int> n_prompt;
  176. std::vector<int> n_gen;
  177. std::vector<std::pair<int, int>> n_pg;
  178. std::vector<int> n_batch;
  179. std::vector<int> n_ubatch;
  180. std::vector<ggml_type> type_k;
  181. std::vector<ggml_type> type_v;
  182. std::vector<int> n_threads;
  183. std::vector<int> n_gpu_layers;
  184. std::vector<std::string> rpc_servers;
  185. std::vector<llama_split_mode> split_mode;
  186. std::vector<int> main_gpu;
  187. std::vector<bool> no_kv_offload;
  188. std::vector<bool> flash_attn;
  189. std::vector<std::vector<float>> tensor_split;
  190. std::vector<bool> use_mmap;
  191. std::vector<bool> embeddings;
  192. ggml_numa_strategy numa;
  193. int reps;
  194. bool verbose;
  195. output_formats output_format;
  196. output_formats output_format_stderr;
  197. };
  198. static const cmd_params cmd_params_defaults = {
  199. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  200. /* n_prompt */ {512},
  201. /* n_gen */ {128},
  202. /* n_pg */ {},
  203. /* n_batch */ {2048},
  204. /* n_ubatch */ {512},
  205. /* type_k */ {GGML_TYPE_F16},
  206. /* type_v */ {GGML_TYPE_F16},
  207. /* n_threads */ {cpu_get_num_math()},
  208. /* n_gpu_layers */ {99},
  209. /* rpc_servers */ {""},
  210. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  211. /* main_gpu */ {0},
  212. /* no_kv_offload */ {false},
  213. /* flash_attn */ {false},
  214. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  215. /* use_mmap */ {true},
  216. /* embeddings */ {false},
  217. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  218. /* reps */ 5,
  219. /* verbose */ false,
  220. /* output_format */ MARKDOWN,
  221. /* output_format_stderr */ NONE,
  222. };
  223. static void print_usage(int /* argc */, char ** argv) {
  224. printf("usage: %s [options]\n", argv[0]);
  225. printf("\n");
  226. printf("options:\n");
  227. printf(" -h, --help\n");
  228. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  229. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  230. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  231. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  232. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  233. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  234. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  235. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  236. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  237. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  238. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  239. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  240. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  241. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  242. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  243. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  244. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  245. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  246. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  247. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  248. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  249. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  250. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  251. printf("\n");
  252. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  253. }
  254. static ggml_type ggml_type_from_name(const std::string & s) {
  255. if (s == "f16") {
  256. return GGML_TYPE_F16;
  257. }
  258. if (s == "q8_0") {
  259. return GGML_TYPE_Q8_0;
  260. }
  261. if (s == "q4_0") {
  262. return GGML_TYPE_Q4_0;
  263. }
  264. if (s == "q4_1") {
  265. return GGML_TYPE_Q4_1;
  266. }
  267. if (s == "q5_0") {
  268. return GGML_TYPE_Q5_0;
  269. }
  270. if (s == "q5_1") {
  271. return GGML_TYPE_Q5_1;
  272. }
  273. if (s == "iq4_nl") {
  274. return GGML_TYPE_IQ4_NL;
  275. }
  276. return GGML_TYPE_COUNT;
  277. }
  278. static cmd_params parse_cmd_params(int argc, char ** argv) {
  279. cmd_params params;
  280. std::string arg;
  281. bool invalid_param = false;
  282. const std::string arg_prefix = "--";
  283. const char split_delim = ',';
  284. params.verbose = cmd_params_defaults.verbose;
  285. params.output_format = cmd_params_defaults.output_format;
  286. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  287. params.reps = cmd_params_defaults.reps;
  288. for (int i = 1; i < argc; i++) {
  289. arg = argv[i];
  290. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  291. std::replace(arg.begin(), arg.end(), '_', '-');
  292. }
  293. if (arg == "-h" || arg == "--help") {
  294. print_usage(argc, argv);
  295. exit(0);
  296. } else if (arg == "-m" || arg == "--model") {
  297. if (++i >= argc) {
  298. invalid_param = true;
  299. break;
  300. }
  301. auto p = split<std::string>(argv[i], split_delim);
  302. params.model.insert(params.model.end(), p.begin(), p.end());
  303. } else if (arg == "-p" || arg == "--n-prompt") {
  304. if (++i >= argc) {
  305. invalid_param = true;
  306. break;
  307. }
  308. auto p = split<int>(argv[i], split_delim);
  309. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  310. } else if (arg == "-n" || arg == "--n-gen") {
  311. if (++i >= argc) {
  312. invalid_param = true;
  313. break;
  314. }
  315. auto p = split<int>(argv[i], split_delim);
  316. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  317. } else if (arg == "-pg") {
  318. if (++i >= argc) {
  319. invalid_param = true;
  320. break;
  321. }
  322. auto p = split<std::string>(argv[i], ',');
  323. if (p.size() != 2) {
  324. invalid_param = true;
  325. break;
  326. }
  327. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  328. } else if (arg == "-b" || arg == "--batch-size") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = split<int>(argv[i], split_delim);
  334. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  335. } else if (arg == "-ub" || arg == "--ubatch-size") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. auto p = split<int>(argv[i], split_delim);
  341. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  342. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  343. if (++i >= argc) {
  344. invalid_param = true;
  345. break;
  346. }
  347. auto p = split<std::string>(argv[i], split_delim);
  348. std::vector<ggml_type> types;
  349. for (const auto & t : p) {
  350. ggml_type gt = ggml_type_from_name(t);
  351. if (gt == GGML_TYPE_COUNT) {
  352. invalid_param = true;
  353. break;
  354. }
  355. types.push_back(gt);
  356. }
  357. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  358. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  359. if (++i >= argc) {
  360. invalid_param = true;
  361. break;
  362. }
  363. auto p = split<std::string>(argv[i], split_delim);
  364. std::vector<ggml_type> types;
  365. for (const auto & t : p) {
  366. ggml_type gt = ggml_type_from_name(t);
  367. if (gt == GGML_TYPE_COUNT) {
  368. invalid_param = true;
  369. break;
  370. }
  371. types.push_back(gt);
  372. }
  373. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  374. } else if (arg == "-t" || arg == "--threads") {
  375. if (++i >= argc) {
  376. invalid_param = true;
  377. break;
  378. }
  379. auto p = split<int>(argv[i], split_delim);
  380. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  381. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = split<int>(argv[i], split_delim);
  387. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  388. } else if (arg == "-rpc" || arg == "--rpc") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. params.rpc_servers.push_back(argv[i]);
  394. } else if (arg == "-sm" || arg == "--split-mode") {
  395. if (++i >= argc) {
  396. invalid_param = true;
  397. break;
  398. }
  399. auto p = split<std::string>(argv[i], split_delim);
  400. std::vector<llama_split_mode> modes;
  401. for (const auto & m : p) {
  402. llama_split_mode mode;
  403. if (m == "none") {
  404. mode = LLAMA_SPLIT_MODE_NONE;
  405. } else if (m == "layer") {
  406. mode = LLAMA_SPLIT_MODE_LAYER;
  407. } else if (m == "row") {
  408. mode = LLAMA_SPLIT_MODE_ROW;
  409. } else {
  410. invalid_param = true;
  411. break;
  412. }
  413. modes.push_back(mode);
  414. }
  415. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  416. } else if (arg == "-mg" || arg == "--main-gpu") {
  417. if (++i >= argc) {
  418. invalid_param = true;
  419. break;
  420. }
  421. params.main_gpu = split<int>(argv[i], split_delim);
  422. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  423. if (++i >= argc) {
  424. invalid_param = true;
  425. break;
  426. }
  427. auto p = split<bool>(argv[i], split_delim);
  428. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  429. } else if (arg == "--numa") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. break;
  433. } else {
  434. std::string value(argv[i]);
  435. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  436. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  437. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  438. else { invalid_param = true; break; }
  439. }
  440. } else if (arg == "-fa" || arg == "--flash-attn") {
  441. if (++i >= argc) {
  442. invalid_param = true;
  443. break;
  444. }
  445. auto p = split<bool>(argv[i], split_delim);
  446. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  447. } else if (arg == "-mmp" || arg == "--mmap") {
  448. if (++i >= argc) {
  449. invalid_param = true;
  450. break;
  451. }
  452. auto p = split<bool>(argv[i], split_delim);
  453. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  454. } else if (arg == "-embd" || arg == "--embeddings") {
  455. if (++i >= argc) {
  456. invalid_param = true;
  457. break;
  458. }
  459. auto p = split<bool>(argv[i], split_delim);
  460. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  461. } else if (arg == "-ts" || arg == "--tensor-split") {
  462. if (++i >= argc) {
  463. invalid_param = true;
  464. break;
  465. }
  466. for (auto ts : split<std::string>(argv[i], split_delim)) {
  467. // split string by ; and /
  468. const std::regex regex{R"([;/]+)"};
  469. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  470. std::vector<std::string> split_arg{it, {}};
  471. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  472. std::vector<float> tensor_split(llama_max_devices());
  473. for (size_t i = 0; i < llama_max_devices(); ++i) {
  474. if (i < split_arg.size()) {
  475. tensor_split[i] = std::stof(split_arg[i]);
  476. } else {
  477. tensor_split[i] = 0.0f;
  478. }
  479. }
  480. params.tensor_split.push_back(tensor_split);
  481. }
  482. } else if (arg == "-r" || arg == "--repetitions") {
  483. if (++i >= argc) {
  484. invalid_param = true;
  485. break;
  486. }
  487. params.reps = std::stoi(argv[i]);
  488. } else if (arg == "-o" || arg == "--output") {
  489. if (++i >= argc) {
  490. invalid_param = true;
  491. break;
  492. }
  493. invalid_param = !output_format_from_str(argv[i], params.output_format);
  494. } else if (arg == "-oe" || arg == "--output-err") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. break;
  498. }
  499. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  500. } else if (arg == "-v" || arg == "--verbose") {
  501. params.verbose = true;
  502. } else {
  503. invalid_param = true;
  504. break;
  505. }
  506. }
  507. if (invalid_param) {
  508. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  509. print_usage(argc, argv);
  510. exit(1);
  511. }
  512. // set defaults
  513. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  514. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  515. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  516. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  517. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  518. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  519. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  520. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  521. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  522. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  523. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  524. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  525. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  526. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  527. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  528. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  529. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  530. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  531. return params;
  532. }
  533. struct cmd_params_instance {
  534. std::string model;
  535. int n_prompt;
  536. int n_gen;
  537. int n_batch;
  538. int n_ubatch;
  539. ggml_type type_k;
  540. ggml_type type_v;
  541. int n_threads;
  542. int n_gpu_layers;
  543. std::string rpc_servers;
  544. llama_split_mode split_mode;
  545. int main_gpu;
  546. bool no_kv_offload;
  547. bool flash_attn;
  548. std::vector<float> tensor_split;
  549. bool use_mmap;
  550. bool embeddings;
  551. llama_model_params to_llama_mparams() const {
  552. llama_model_params mparams = llama_model_default_params();
  553. mparams.n_gpu_layers = n_gpu_layers;
  554. if (!rpc_servers.empty()) {
  555. mparams.rpc_servers = rpc_servers.c_str();
  556. }
  557. mparams.split_mode = split_mode;
  558. mparams.main_gpu = main_gpu;
  559. mparams.tensor_split = tensor_split.data();
  560. mparams.use_mmap = use_mmap;
  561. return mparams;
  562. }
  563. bool equal_mparams(const cmd_params_instance & other) const {
  564. return model == other.model &&
  565. n_gpu_layers == other.n_gpu_layers &&
  566. rpc_servers == other.rpc_servers &&
  567. split_mode == other.split_mode &&
  568. main_gpu == other.main_gpu &&
  569. use_mmap == other.use_mmap &&
  570. tensor_split == other.tensor_split;
  571. }
  572. llama_context_params to_llama_cparams() const {
  573. llama_context_params cparams = llama_context_default_params();
  574. cparams.n_ctx = n_prompt + n_gen;
  575. cparams.n_batch = n_batch;
  576. cparams.n_ubatch = n_ubatch;
  577. cparams.type_k = type_k;
  578. cparams.type_v = type_v;
  579. cparams.offload_kqv = !no_kv_offload;
  580. cparams.flash_attn = flash_attn;
  581. cparams.embeddings = embeddings;
  582. return cparams;
  583. }
  584. };
  585. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  586. std::vector<cmd_params_instance> instances;
  587. // this ordering minimizes the number of times that each model needs to be reloaded
  588. for (const auto & m : params.model)
  589. for (const auto & nl : params.n_gpu_layers)
  590. for (const auto & rpc : params.rpc_servers)
  591. for (const auto & sm : params.split_mode)
  592. for (const auto & mg : params.main_gpu)
  593. for (const auto & ts : params.tensor_split)
  594. for (const auto & mmp : params.use_mmap)
  595. for (const auto & embd : params.embeddings)
  596. for (const auto & nb : params.n_batch)
  597. for (const auto & nub : params.n_ubatch)
  598. for (const auto & tk : params.type_k)
  599. for (const auto & tv : params.type_v)
  600. for (const auto & nkvo : params.no_kv_offload)
  601. for (const auto & fa : params.flash_attn)
  602. for (const auto & nt : params.n_threads) {
  603. for (const auto & n_prompt : params.n_prompt) {
  604. if (n_prompt == 0) {
  605. continue;
  606. }
  607. cmd_params_instance instance = {
  608. /* .model = */ m,
  609. /* .n_prompt = */ n_prompt,
  610. /* .n_gen = */ 0,
  611. /* .n_batch = */ nb,
  612. /* .n_ubatch = */ nub,
  613. /* .type_k = */ tk,
  614. /* .type_v = */ tv,
  615. /* .n_threads = */ nt,
  616. /* .n_gpu_layers = */ nl,
  617. /* .rpc_servers = */ rpc,
  618. /* .split_mode = */ sm,
  619. /* .main_gpu = */ mg,
  620. /* .no_kv_offload= */ nkvo,
  621. /* .flash_attn = */ fa,
  622. /* .tensor_split = */ ts,
  623. /* .use_mmap = */ mmp,
  624. /* .embeddings = */ embd,
  625. };
  626. instances.push_back(instance);
  627. }
  628. for (const auto & n_gen : params.n_gen) {
  629. if (n_gen == 0) {
  630. continue;
  631. }
  632. cmd_params_instance instance = {
  633. /* .model = */ m,
  634. /* .n_prompt = */ 0,
  635. /* .n_gen = */ n_gen,
  636. /* .n_batch = */ nb,
  637. /* .n_ubatch = */ nub,
  638. /* .type_k = */ tk,
  639. /* .type_v = */ tv,
  640. /* .n_threads = */ nt,
  641. /* .n_gpu_layers = */ nl,
  642. /* .rpc_servers = */ rpc,
  643. /* .split_mode = */ sm,
  644. /* .main_gpu = */ mg,
  645. /* .no_kv_offload= */ nkvo,
  646. /* .flash_attn = */ fa,
  647. /* .tensor_split = */ ts,
  648. /* .use_mmap = */ mmp,
  649. /* .embeddings = */ embd,
  650. };
  651. instances.push_back(instance);
  652. }
  653. for (const auto & n_pg : params.n_pg) {
  654. if (n_pg.first == 0 && n_pg.second == 0) {
  655. continue;
  656. }
  657. cmd_params_instance instance = {
  658. /* .model = */ m,
  659. /* .n_prompt = */ n_pg.first,
  660. /* .n_gen = */ n_pg.second,
  661. /* .n_batch = */ nb,
  662. /* .n_ubatch = */ nub,
  663. /* .type_k = */ tk,
  664. /* .type_v = */ tv,
  665. /* .n_threads = */ nt,
  666. /* .n_gpu_layers = */ nl,
  667. /* .rpc_servers = */ rpc,
  668. /* .split_mode = */ sm,
  669. /* .main_gpu = */ mg,
  670. /* .no_kv_offload= */ nkvo,
  671. /* .flash_attn = */ fa,
  672. /* .tensor_split = */ ts,
  673. /* .use_mmap = */ mmp,
  674. /* .embeddings = */ embd,
  675. };
  676. instances.push_back(instance);
  677. }
  678. }
  679. return instances;
  680. }
  681. struct test {
  682. static const std::string build_commit;
  683. static const int build_number;
  684. static const bool cuda;
  685. static const bool vulkan;
  686. static const bool kompute;
  687. static const bool metal;
  688. static const bool sycl;
  689. static const bool rpc;
  690. static const bool gpu_blas;
  691. static const bool blas;
  692. static const std::string cpu_info;
  693. static const std::string gpu_info;
  694. std::string model_filename;
  695. std::string model_type;
  696. uint64_t model_size;
  697. uint64_t model_n_params;
  698. int n_batch;
  699. int n_ubatch;
  700. int n_threads;
  701. ggml_type type_k;
  702. ggml_type type_v;
  703. int n_gpu_layers;
  704. llama_split_mode split_mode;
  705. int main_gpu;
  706. bool no_kv_offload;
  707. bool flash_attn;
  708. std::vector<float> tensor_split;
  709. bool use_mmap;
  710. bool embeddings;
  711. int n_prompt;
  712. int n_gen;
  713. std::string test_time;
  714. std::vector<uint64_t> samples_ns;
  715. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  716. model_filename = inst.model;
  717. char buf[128];
  718. llama_model_desc(lmodel, buf, sizeof(buf));
  719. model_type = buf;
  720. model_size = llama_model_size(lmodel);
  721. model_n_params = llama_model_n_params(lmodel);
  722. n_batch = inst.n_batch;
  723. n_ubatch = inst.n_ubatch;
  724. n_threads = inst.n_threads;
  725. type_k = inst.type_k;
  726. type_v = inst.type_v;
  727. n_gpu_layers = inst.n_gpu_layers;
  728. split_mode = inst.split_mode;
  729. main_gpu = inst.main_gpu;
  730. no_kv_offload = inst.no_kv_offload;
  731. flash_attn = inst.flash_attn;
  732. tensor_split = inst.tensor_split;
  733. use_mmap = inst.use_mmap;
  734. embeddings = inst.embeddings;
  735. n_prompt = inst.n_prompt;
  736. n_gen = inst.n_gen;
  737. // RFC 3339 date-time format
  738. time_t t = time(NULL);
  739. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  740. test_time = buf;
  741. (void) ctx;
  742. }
  743. uint64_t avg_ns() const {
  744. return ::avg(samples_ns);
  745. }
  746. uint64_t stdev_ns() const {
  747. return ::stdev(samples_ns);
  748. }
  749. std::vector<double> get_ts() const {
  750. int n_tokens = n_prompt + n_gen;
  751. std::vector<double> ts;
  752. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  753. return ts;
  754. }
  755. double avg_ts() const {
  756. return ::avg(get_ts());
  757. }
  758. double stdev_ts() const {
  759. return ::stdev(get_ts());
  760. }
  761. static std::string get_backend() {
  762. if (cuda) {
  763. return GGML_CUDA_NAME;
  764. }
  765. if (vulkan) {
  766. return "Vulkan";
  767. }
  768. if (kompute) {
  769. return "Kompute";
  770. }
  771. if (metal) {
  772. return "Metal";
  773. }
  774. if (sycl) {
  775. return GGML_SYCL_NAME;
  776. }
  777. if (rpc) {
  778. return "RPC";
  779. }
  780. if (gpu_blas) {
  781. return "GPU BLAS";
  782. }
  783. if (blas) {
  784. return "BLAS";
  785. }
  786. return "CPU";
  787. }
  788. static const std::vector<std::string> & get_fields() {
  789. static const std::vector<std::string> fields = {
  790. "build_commit", "build_number",
  791. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  792. "cpu_info", "gpu_info",
  793. "model_filename", "model_type", "model_size", "model_n_params",
  794. "n_batch", "n_ubatch",
  795. "n_threads", "type_k", "type_v",
  796. "n_gpu_layers", "split_mode",
  797. "main_gpu", "no_kv_offload", "flash_attn",
  798. "tensor_split", "use_mmap", "embeddings",
  799. "n_prompt", "n_gen", "test_time",
  800. "avg_ns", "stddev_ns",
  801. "avg_ts", "stddev_ts"
  802. };
  803. return fields;
  804. }
  805. enum field_type {STRING, BOOL, INT, FLOAT};
  806. static field_type get_field_type(const std::string & field) {
  807. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  808. field == "n_threads" ||
  809. field == "model_size" || field == "model_n_params" ||
  810. field == "n_gpu_layers" || field == "main_gpu" ||
  811. field == "n_prompt" || field == "n_gen" ||
  812. field == "avg_ns" || field == "stddev_ns") {
  813. return INT;
  814. }
  815. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  816. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  817. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  818. return BOOL;
  819. }
  820. if (field == "avg_ts" || field == "stddev_ts") {
  821. return FLOAT;
  822. }
  823. return STRING;
  824. }
  825. std::vector<std::string> get_values() const {
  826. std::string tensor_split_str;
  827. int max_nonzero = 0;
  828. for (size_t i = 0; i < llama_max_devices(); i++) {
  829. if (tensor_split[i] > 0) {
  830. max_nonzero = i;
  831. }
  832. }
  833. for (int i = 0; i <= max_nonzero; i++) {
  834. char buf[32];
  835. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  836. tensor_split_str += buf;
  837. if (i < max_nonzero) {
  838. tensor_split_str += "/";
  839. }
  840. }
  841. std::vector<std::string> values = {
  842. build_commit, std::to_string(build_number),
  843. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  844. std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
  845. cpu_info, gpu_info,
  846. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  847. std::to_string(n_batch), std::to_string(n_ubatch),
  848. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  849. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  850. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  851. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  852. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  853. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  854. std::to_string(avg_ts()), std::to_string(stdev_ts())
  855. };
  856. return values;
  857. }
  858. std::map<std::string, std::string> get_map() const {
  859. std::map<std::string, std::string> map;
  860. auto fields = get_fields();
  861. auto values = get_values();
  862. std::transform(fields.begin(), fields.end(), values.begin(),
  863. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  864. return map;
  865. }
  866. };
  867. const std::string test::build_commit = LLAMA_COMMIT;
  868. const int test::build_number = LLAMA_BUILD_NUMBER;
  869. const bool test::cuda = !!ggml_cpu_has_cuda();
  870. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  871. const bool test::kompute = !!ggml_cpu_has_kompute();
  872. const bool test::metal = !!ggml_cpu_has_metal();
  873. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  874. const bool test::blas = !!ggml_cpu_has_blas();
  875. const bool test::sycl = !!ggml_cpu_has_sycl();
  876. const bool test::rpc = !!ggml_cpu_has_rpc();
  877. const std::string test::cpu_info = get_cpu_info();
  878. const std::string test::gpu_info = get_gpu_info();
  879. struct printer {
  880. virtual ~printer() {}
  881. FILE * fout;
  882. virtual void print_header(const cmd_params & params) { (void) params; }
  883. virtual void print_test(const test & t) = 0;
  884. virtual void print_footer() { }
  885. };
  886. struct csv_printer : public printer {
  887. static std::string escape_csv(const std::string & field) {
  888. std::string escaped = "\"";
  889. for (auto c : field) {
  890. if (c == '"') {
  891. escaped += "\"";
  892. }
  893. escaped += c;
  894. }
  895. escaped += "\"";
  896. return escaped;
  897. }
  898. void print_header(const cmd_params & params) override {
  899. std::vector<std::string> fields = test::get_fields();
  900. fprintf(fout, "%s\n", join(fields, ",").c_str());
  901. (void) params;
  902. }
  903. void print_test(const test & t) override {
  904. std::vector<std::string> values = t.get_values();
  905. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  906. fprintf(fout, "%s\n", join(values, ",").c_str());
  907. }
  908. };
  909. struct json_printer : public printer {
  910. bool first = true;
  911. static std::string escape_json(const std::string & value) {
  912. std::string escaped;
  913. for (auto c : value) {
  914. if (c == '"') {
  915. escaped += "\\\"";
  916. } else if (c == '\\') {
  917. escaped += "\\\\";
  918. } else if (c <= 0x1f) {
  919. char buf[8];
  920. snprintf(buf, sizeof(buf), "\\u%04x", c);
  921. escaped += buf;
  922. } else {
  923. escaped += c;
  924. }
  925. }
  926. return escaped;
  927. }
  928. static std::string format_value(const std::string & field, const std::string & value) {
  929. switch (test::get_field_type(field)) {
  930. case test::STRING:
  931. return "\"" + escape_json(value) + "\"";
  932. case test::BOOL:
  933. return value == "0" ? "false" : "true";
  934. default:
  935. return value;
  936. }
  937. }
  938. void print_header(const cmd_params & params) override {
  939. fprintf(fout, "[\n");
  940. (void) params;
  941. }
  942. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  943. assert(fields.size() == values.size());
  944. for (size_t i = 0; i < fields.size(); i++) {
  945. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  946. }
  947. }
  948. void print_test(const test & t) override {
  949. if (first) {
  950. first = false;
  951. } else {
  952. fprintf(fout, ",\n");
  953. }
  954. fprintf(fout, " {\n");
  955. print_fields(test::get_fields(), t.get_values());
  956. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  957. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  958. fprintf(fout, " }");
  959. fflush(fout);
  960. }
  961. void print_footer() override {
  962. fprintf(fout, "\n]\n");
  963. }
  964. };
  965. struct markdown_printer : public printer {
  966. std::vector<std::string> fields;
  967. static int get_field_width(const std::string & field) {
  968. if (field == "model") {
  969. return -30;
  970. }
  971. if (field == "t/s") {
  972. return 16;
  973. }
  974. if (field == "size" || field == "params") {
  975. return 10;
  976. }
  977. if (field == "n_gpu_layers") {
  978. return 3;
  979. }
  980. if (field == "test") {
  981. return 13;
  982. }
  983. int width = std::max((int)field.length(), 10);
  984. if (test::get_field_type(field) == test::STRING) {
  985. return -width;
  986. }
  987. return width;
  988. }
  989. static std::string get_field_display_name(const std::string & field) {
  990. if (field == "n_gpu_layers") {
  991. return "ngl";
  992. }
  993. if (field == "split_mode") {
  994. return "sm";
  995. }
  996. if (field == "n_threads") {
  997. return "threads";
  998. }
  999. if (field == "no_kv_offload") {
  1000. return "nkvo";
  1001. }
  1002. if (field == "flash_attn") {
  1003. return "fa";
  1004. }
  1005. if (field == "use_mmap") {
  1006. return "mmap";
  1007. }
  1008. if (field == "embeddings") {
  1009. return "embd";
  1010. }
  1011. if (field == "tensor_split") {
  1012. return "ts";
  1013. }
  1014. return field;
  1015. }
  1016. void print_header(const cmd_params & params) override {
  1017. // select fields to print
  1018. fields.emplace_back("model");
  1019. fields.emplace_back("size");
  1020. fields.emplace_back("params");
  1021. fields.emplace_back("backend");
  1022. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1023. if (!is_cpu_backend) {
  1024. fields.emplace_back("n_gpu_layers");
  1025. }
  1026. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1027. fields.emplace_back("n_threads");
  1028. }
  1029. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1030. fields.emplace_back("n_batch");
  1031. }
  1032. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1033. fields.emplace_back("n_ubatch");
  1034. }
  1035. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1036. fields.emplace_back("type_k");
  1037. }
  1038. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1039. fields.emplace_back("type_v");
  1040. }
  1041. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1042. fields.emplace_back("main_gpu");
  1043. }
  1044. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1045. fields.emplace_back("split_mode");
  1046. }
  1047. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1048. fields.emplace_back("no_kv_offload");
  1049. }
  1050. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1051. fields.emplace_back("flash_attn");
  1052. }
  1053. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1054. fields.emplace_back("tensor_split");
  1055. }
  1056. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1057. fields.emplace_back("use_mmap");
  1058. }
  1059. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1060. fields.emplace_back("embeddings");
  1061. }
  1062. fields.emplace_back("test");
  1063. fields.emplace_back("t/s");
  1064. fprintf(fout, "|");
  1065. for (const auto & field : fields) {
  1066. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1067. }
  1068. fprintf(fout, "\n");
  1069. fprintf(fout, "|");
  1070. for (const auto & field : fields) {
  1071. int width = get_field_width(field);
  1072. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1073. }
  1074. fprintf(fout, "\n");
  1075. }
  1076. void print_test(const test & t) override {
  1077. std::map<std::string, std::string> vmap = t.get_map();
  1078. fprintf(fout, "|");
  1079. for (const auto & field : fields) {
  1080. std::string value;
  1081. char buf[128];
  1082. if (field == "model") {
  1083. value = t.model_type;
  1084. } else if (field == "size") {
  1085. if (t.model_size < 1024*1024*1024) {
  1086. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1087. } else {
  1088. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1089. }
  1090. value = buf;
  1091. } else if (field == "params") {
  1092. if (t.model_n_params < 1000*1000*1000) {
  1093. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1094. } else {
  1095. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1096. }
  1097. value = buf;
  1098. } else if (field == "backend") {
  1099. value = test::get_backend();
  1100. } else if (field == "test") {
  1101. if (t.n_prompt > 0 && t.n_gen == 0) {
  1102. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1103. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1104. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1105. } else {
  1106. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1107. }
  1108. value = buf;
  1109. } else if (field == "t/s") {
  1110. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1111. value = buf;
  1112. } else if (vmap.find(field) != vmap.end()) {
  1113. value = vmap.at(field);
  1114. } else {
  1115. assert(false);
  1116. exit(1);
  1117. }
  1118. int width = get_field_width(field);
  1119. if (field == "t/s") {
  1120. // HACK: the utf-8 character is 2 bytes
  1121. width += 1;
  1122. }
  1123. fprintf(fout, " %*s |", width, value.c_str());
  1124. }
  1125. fprintf(fout, "\n");
  1126. }
  1127. void print_footer() override {
  1128. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1129. }
  1130. };
  1131. struct sql_printer : public printer {
  1132. static std::string get_sql_field_type(const std::string & field) {
  1133. switch (test::get_field_type(field)) {
  1134. case test::STRING:
  1135. return "TEXT";
  1136. case test::BOOL:
  1137. case test::INT:
  1138. return "INTEGER";
  1139. case test::FLOAT:
  1140. return "REAL";
  1141. default:
  1142. assert(false);
  1143. exit(1);
  1144. }
  1145. }
  1146. void print_header(const cmd_params & params) override {
  1147. std::vector<std::string> fields = test::get_fields();
  1148. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1149. for (size_t i = 0; i < fields.size(); i++) {
  1150. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1151. }
  1152. fprintf(fout, ");\n");
  1153. fprintf(fout, "\n");
  1154. (void) params;
  1155. }
  1156. void print_test(const test & t) override {
  1157. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1158. fprintf(fout, "VALUES (");
  1159. std::vector<std::string> values = t.get_values();
  1160. for (size_t i = 0; i < values.size(); i++) {
  1161. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1162. }
  1163. fprintf(fout, ");\n");
  1164. }
  1165. };
  1166. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1167. llama_set_n_threads(ctx, n_threads, n_threads);
  1168. const llama_model * model = llama_get_model(ctx);
  1169. const int32_t n_vocab = llama_n_vocab(model);
  1170. std::vector<llama_token> tokens(n_batch);
  1171. int n_processed = 0;
  1172. while (n_processed < n_prompt) {
  1173. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1174. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1175. for (int i = 1; i < n_tokens; i++) {
  1176. tokens[i] = std::rand() % n_vocab;
  1177. }
  1178. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1179. n_processed += n_tokens;
  1180. }
  1181. llama_synchronize(ctx);
  1182. }
  1183. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1184. llama_set_n_threads(ctx, n_threads, n_threads);
  1185. const llama_model * model = llama_get_model(ctx);
  1186. const int32_t n_vocab = llama_n_vocab(model);
  1187. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1188. for (int i = 0; i < n_gen; i++) {
  1189. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1190. llama_synchronize(ctx);
  1191. token = std::rand() % n_vocab;
  1192. }
  1193. }
  1194. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1195. (void) level;
  1196. (void) text;
  1197. (void) user_data;
  1198. }
  1199. static std::unique_ptr<printer> create_printer(output_formats format) {
  1200. switch (format) {
  1201. case NONE:
  1202. return nullptr;
  1203. case CSV:
  1204. return std::unique_ptr<printer>(new csv_printer());
  1205. case JSON:
  1206. return std::unique_ptr<printer>(new json_printer());
  1207. case MARKDOWN:
  1208. return std::unique_ptr<printer>(new markdown_printer());
  1209. case SQL:
  1210. return std::unique_ptr<printer>(new sql_printer());
  1211. }
  1212. GGML_ASSERT(false);
  1213. }
  1214. int main(int argc, char ** argv) {
  1215. // try to set locale for unicode characters in markdown
  1216. setlocale(LC_CTYPE, ".UTF-8");
  1217. #if !defined(NDEBUG)
  1218. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1219. #endif
  1220. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1221. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1222. #endif
  1223. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1224. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1225. #endif
  1226. cmd_params params = parse_cmd_params(argc, argv);
  1227. // initialize llama.cpp
  1228. if (!params.verbose) {
  1229. llama_log_set(llama_null_log_callback, NULL);
  1230. }
  1231. llama_backend_init();
  1232. llama_numa_init(params.numa);
  1233. // initialize printer
  1234. std::unique_ptr<printer> p = create_printer(params.output_format);
  1235. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1236. if (p) {
  1237. p->fout = stdout;
  1238. p->print_header(params);
  1239. }
  1240. if (p_err) {
  1241. p_err->fout = stderr;
  1242. p_err->print_header(params);
  1243. }
  1244. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1245. llama_model * lmodel = nullptr;
  1246. const cmd_params_instance * prev_inst = nullptr;
  1247. for (const auto & inst : params_instances) {
  1248. // keep the same model between tests when possible
  1249. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1250. if (lmodel) {
  1251. llama_free_model(lmodel);
  1252. }
  1253. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1254. if (lmodel == NULL) {
  1255. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1256. return 1;
  1257. }
  1258. prev_inst = &inst;
  1259. }
  1260. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1261. if (ctx == NULL) {
  1262. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1263. llama_free_model(lmodel);
  1264. return 1;
  1265. }
  1266. test t(inst, lmodel, ctx);
  1267. llama_kv_cache_clear(ctx);
  1268. // warmup run
  1269. if (t.n_prompt > 0) {
  1270. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1271. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1272. }
  1273. if (t.n_gen > 0) {
  1274. test_gen(ctx, 1, 0, t.n_threads);
  1275. }
  1276. for (int i = 0; i < params.reps; i++) {
  1277. llama_kv_cache_clear(ctx);
  1278. uint64_t t_start = get_time_ns();
  1279. if (t.n_prompt > 0) {
  1280. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1281. }
  1282. if (t.n_gen > 0) {
  1283. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1284. }
  1285. uint64_t t_ns = get_time_ns() - t_start;
  1286. t.samples_ns.push_back(t_ns);
  1287. }
  1288. if (p) {
  1289. p->print_test(t);
  1290. fflush(p->fout);
  1291. }
  1292. if (p_err) {
  1293. p_err->print_test(t);
  1294. fflush(p_err->fout);
  1295. }
  1296. llama_print_timings(ctx);
  1297. llama_free(ctx);
  1298. }
  1299. llama_free_model(lmodel);
  1300. if (p) {
  1301. p->print_footer();
  1302. }
  1303. if (p_err) {
  1304. p_err->print_footer();
  1305. }
  1306. llama_backend_free();
  1307. return 0;
  1308. }