ggml.c 695 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #elif defined(GGML_USE_VULKAN)
  239. #include "ggml-vulkan.h"
  240. #endif
  241. #elif defined(GGML_USE_OPENBLAS)
  242. #if defined(GGML_BLAS_USE_MKL)
  243. #include <mkl.h>
  244. #else
  245. #include <cblas.h>
  246. #endif
  247. #elif defined(GGML_USE_CLBLAST)
  248. #include "ggml-opencl.h"
  249. #elif defined(GGML_USE_VULKAN)
  250. #include "ggml-vulkan.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  289. for (int i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  294. int i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. #if defined(__ARM_NEON)
  778. #if !defined(__aarch64__)
  779. // 64-bit compatibility
  780. inline static float vaddvq_f32(float32x4_t v) {
  781. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  782. }
  783. #endif
  784. #endif
  785. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  786. // we then implement the fundamental computation operations below using only these macros
  787. // adding support for new architectures requires to define the corresponding SIMD macros
  788. //
  789. // GGML_F32_STEP / GGML_F16_STEP
  790. // number of elements to process in a single step
  791. //
  792. // GGML_F32_EPR / GGML_F16_EPR
  793. // number of elements to fit in a single register
  794. //
  795. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  796. #define GGML_SIMD
  797. // F32 NEON
  798. #define GGML_F32_STEP 16
  799. #define GGML_F32_EPR 4
  800. #define GGML_F32x4 float32x4_t
  801. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  802. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  803. #define GGML_F32x4_LOAD vld1q_f32
  804. #define GGML_F32x4_STORE vst1q_f32
  805. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  806. #define GGML_F32x4_ADD vaddq_f32
  807. #define GGML_F32x4_MUL vmulq_f32
  808. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  809. #define GGML_F32x4_REDUCE(res, x) \
  810. { \
  811. int offset = GGML_F32_ARR >> 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  824. }
  825. #define GGML_F32_VEC GGML_F32x4
  826. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  827. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  828. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  829. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  830. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  831. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  832. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  833. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  834. // F16 NEON
  835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  836. #define GGML_F16_STEP 32
  837. #define GGML_F16_EPR 8
  838. #define GGML_F16x8 float16x8_t
  839. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  840. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  841. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  842. #define GGML_F16x8_STORE vst1q_f16
  843. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  844. #define GGML_F16x8_ADD vaddq_f16
  845. #define GGML_F16x8_MUL vmulq_f16
  846. #define GGML_F16x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F16_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  861. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  862. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  863. } while (0)
  864. #define GGML_F16_VEC GGML_F16x8
  865. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  866. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  867. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  869. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  870. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  871. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  872. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  873. #else
  874. // if FP16 vector arithmetic is not supported, we use FP32 instead
  875. // and take advantage of the vcvt_ functions to convert to/from FP16
  876. #define GGML_F16_STEP 16
  877. #define GGML_F16_EPR 4
  878. #define GGML_F32Cx4 float32x4_t
  879. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  880. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  881. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  882. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  883. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  884. #define GGML_F32Cx4_ADD vaddq_f32
  885. #define GGML_F32Cx4_MUL vmulq_f32
  886. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx4
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  896. #endif
  897. #elif defined(__AVX512F__)
  898. #define GGML_SIMD
  899. // F32 AVX512
  900. #define GGML_F32_STEP 64
  901. #define GGML_F32_EPR 16
  902. #define GGML_F32x16 __m512
  903. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  904. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  905. #define GGML_F32x16_LOAD _mm512_loadu_ps
  906. #define GGML_F32x16_STORE _mm512_storeu_ps
  907. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  908. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  909. #define GGML_F32x16_ADD _mm512_add_ps
  910. #define GGML_F32x16_MUL _mm512_mul_ps
  911. #define GGML_F32x16_REDUCE(res, x) \
  912. do { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. res = _mm512_reduce_add_ps(x[0]); \
  926. } while (0)
  927. // TODO: is this optimal ?
  928. #define GGML_F32_VEC GGML_F32x16
  929. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  937. // F16 AVX512
  938. // F16 AVX
  939. #define GGML_F16_STEP 64
  940. #define GGML_F16_EPR 16
  941. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  942. #define GGML_F32Cx16 __m512
  943. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  944. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  945. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  946. // so F16C guard isn't required
  947. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  948. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  949. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  950. #define GGML_F32Cx16_ADD _mm512_add_ps
  951. #define GGML_F32Cx16_MUL _mm512_mul_ps
  952. #define GGML_F32Cx16_REDUCE(res, x) \
  953. do { \
  954. int offset = GGML_F32_ARR >> 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. res = _mm512_reduce_add_ps(x[0]); \
  967. } while (0)
  968. #define GGML_F16_VEC GGML_F32Cx16
  969. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  971. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  972. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  973. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  974. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  975. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  976. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  977. #elif defined(__AVX__)
  978. #define GGML_SIMD
  979. // F32 AVX
  980. #define GGML_F32_STEP 32
  981. #define GGML_F32_EPR 8
  982. #define GGML_F32x8 __m256
  983. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  984. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  985. #define GGML_F32x8_LOAD _mm256_loadu_ps
  986. #define GGML_F32x8_STORE _mm256_storeu_ps
  987. #if defined(__FMA__)
  988. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  989. #else
  990. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  991. #endif
  992. #define GGML_F32x8_ADD _mm256_add_ps
  993. #define GGML_F32x8_MUL _mm256_mul_ps
  994. #define GGML_F32x8_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1009. _mm256_extractf128_ps(x[0], 1)); \
  1010. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1011. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1012. } while (0)
  1013. // TODO: is this optimal ?
  1014. #define GGML_F32_VEC GGML_F32x8
  1015. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1016. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1017. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1018. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1019. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1020. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1021. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1022. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1023. // F16 AVX
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1027. #define GGML_F32Cx8 __m256
  1028. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1029. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1030. #if defined(__F16C__)
  1031. // the _mm256_cvt intrinsics require F16C
  1032. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1033. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1034. #else
  1035. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1036. float tmp[8];
  1037. for (int i = 0; i < 8; i++) {
  1038. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1039. }
  1040. return _mm256_loadu_ps(tmp);
  1041. }
  1042. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1043. float arr[8];
  1044. _mm256_storeu_ps(arr, y);
  1045. for (int i = 0; i < 8; i++)
  1046. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1047. }
  1048. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1049. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1050. #endif
  1051. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1052. #define GGML_F32Cx8_ADD _mm256_add_ps
  1053. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1054. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1055. #define GGML_F16_VEC GGML_F32Cx8
  1056. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1058. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1059. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1060. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1061. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1062. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1063. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1064. #elif defined(__POWER9_VECTOR__)
  1065. #define GGML_SIMD
  1066. // F32 POWER9
  1067. #define GGML_F32_STEP 32
  1068. #define GGML_F32_EPR 4
  1069. #define GGML_F32x4 vector float
  1070. #define GGML_F32x4_ZERO 0.0f
  1071. #define GGML_F32x4_SET1 vec_splats
  1072. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1073. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1074. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1075. #define GGML_F32x4_ADD vec_add
  1076. #define GGML_F32x4_MUL vec_mul
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. res = vec_extract(x[0], 0) + \
  1092. vec_extract(x[0], 1) + \
  1093. vec_extract(x[0], 2) + \
  1094. vec_extract(x[0], 3); \
  1095. }
  1096. #define GGML_F32_VEC GGML_F32x4
  1097. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1100. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1101. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1103. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1104. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // F16 POWER9
  1106. #define GGML_F16_STEP GGML_F32_STEP
  1107. #define GGML_F16_EPR GGML_F32_EPR
  1108. #define GGML_F16_VEC GGML_F32x4
  1109. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1111. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1113. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1114. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1115. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1116. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1117. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1118. #define GGML_F16_VEC_STORE(p, r, i) \
  1119. if (i & 0x1) \
  1120. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1121. r[i - GGML_ENDIAN_BYTE(0)]), \
  1122. 0, p - GGML_F16_EPR)
  1123. #elif defined(__wasm_simd128__)
  1124. #define GGML_SIMD
  1125. // F32 WASM
  1126. #define GGML_F32_STEP 16
  1127. #define GGML_F32_EPR 4
  1128. #define GGML_F32x4 v128_t
  1129. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F32x4_LOAD wasm_v128_load
  1132. #define GGML_F32x4_STORE wasm_v128_store
  1133. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1134. #define GGML_F32x4_ADD wasm_f32x4_add
  1135. #define GGML_F32x4_MUL wasm_f32x4_mul
  1136. #define GGML_F32x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F32_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F32_VEC GGML_F32x4
  1156. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1157. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1158. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1159. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1160. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1161. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1162. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1163. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1164. // F16 WASM
  1165. #define GGML_F16_STEP 16
  1166. #define GGML_F16_EPR 4
  1167. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1168. float tmp[4];
  1169. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1170. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1171. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1172. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1173. return wasm_v128_load(tmp);
  1174. }
  1175. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1176. float tmp[4];
  1177. wasm_v128_store(tmp, x);
  1178. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1179. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1180. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1181. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1182. }
  1183. #define GGML_F16x4 v128_t
  1184. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1187. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1188. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1189. #define GGML_F16x4_ADD wasm_f32x4_add
  1190. #define GGML_F16x4_MUL wasm_f32x4_mul
  1191. #define GGML_F16x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F16_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F16_VEC GGML_F16x4
  1211. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1219. #elif defined(__SSE3__)
  1220. #define GGML_SIMD
  1221. // F32 SSE
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 __m128
  1225. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1226. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1227. #define GGML_F32x4_LOAD _mm_loadu_ps
  1228. #define GGML_F32x4_STORE _mm_storeu_ps
  1229. #if defined(__FMA__)
  1230. // TODO: Does this work?
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1232. #else
  1233. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1234. #endif
  1235. #define GGML_F32x4_ADD _mm_add_ps
  1236. #define GGML_F32x4_MUL _mm_mul_ps
  1237. #define GGML_F32x4_REDUCE(res, x) \
  1238. { \
  1239. int offset = GGML_F32_ARR >> 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1252. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1253. }
  1254. // TODO: is this optimal ?
  1255. #define GGML_F32_VEC GGML_F32x4
  1256. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1257. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1258. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1259. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1260. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1261. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1262. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1263. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1264. // F16 SSE
  1265. #define GGML_F16_STEP 32
  1266. #define GGML_F16_EPR 4
  1267. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1268. float tmp[4];
  1269. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1270. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1271. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1272. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1273. return _mm_loadu_ps(tmp);
  1274. }
  1275. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1276. float arr[4];
  1277. _mm_storeu_ps(arr, y);
  1278. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1279. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1280. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1281. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1282. }
  1283. #define GGML_F32Cx4 __m128
  1284. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1287. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1288. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1289. #define GGML_F32Cx4_ADD _mm_add_ps
  1290. #define GGML_F32Cx4_MUL _mm_mul_ps
  1291. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1292. #define GGML_F16_VEC GGML_F32Cx4
  1293. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1301. #endif
  1302. // GGML_F32_ARR / GGML_F16_ARR
  1303. // number of registers to use per step
  1304. #ifdef GGML_SIMD
  1305. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1306. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1307. #endif
  1308. //
  1309. // fundamental operations
  1310. //
  1311. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1312. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1314. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1316. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1317. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1318. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1319. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1320. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1321. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1322. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1323. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1324. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1325. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1326. assert(nrc == 1);
  1327. UNUSED(nrc);
  1328. UNUSED(bx);
  1329. UNUSED(by);
  1330. UNUSED(bs);
  1331. #ifdef GGML_SIMD
  1332. float sumf = 0.0f;
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1335. GGML_F32_VEC ax[GGML_F32_ARR];
  1336. GGML_F32_VEC ay[GGML_F32_ARR];
  1337. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1338. for (int j = 0; j < GGML_F32_ARR; j++) {
  1339. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1340. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1341. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. GGML_F32_VEC_REDUCE(sumf, sum);
  1346. // leftovers
  1347. for (int i = np; i < n; ++i) {
  1348. sumf += x[i]*y[i];
  1349. }
  1350. #else
  1351. // scalar
  1352. ggml_float sumf = 0.0;
  1353. for (int i = 0; i < n; ++i) {
  1354. sumf += (ggml_float)(x[i]*y[i]);
  1355. }
  1356. #endif
  1357. *s = sumf;
  1358. }
  1359. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1360. assert(nrc == 1);
  1361. UNUSED(nrc);
  1362. UNUSED(bx);
  1363. UNUSED(by);
  1364. UNUSED(bs);
  1365. ggml_float sumf = 0.0;
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F16_STEP - 1));
  1368. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1369. GGML_F16_VEC ax[GGML_F16_ARR];
  1370. GGML_F16_VEC ay[GGML_F16_ARR];
  1371. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1372. for (int j = 0; j < GGML_F16_ARR; j++) {
  1373. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1374. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1375. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1376. }
  1377. }
  1378. // reduce sum0..sum3 to sum0
  1379. GGML_F16_VEC_REDUCE(sumf, sum);
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #else
  1385. for (int i = 0; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #endif
  1389. *s = sumf;
  1390. }
  1391. // compute GGML_VEC_DOT_UNROLL dot products at once
  1392. // xs - x row stride in bytes
  1393. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1394. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1395. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1396. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1397. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1398. }
  1399. #if defined(GGML_SIMD)
  1400. const int np = (n & ~(GGML_F16_STEP - 1));
  1401. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1402. GGML_F16_VEC ax[GGML_F16_ARR];
  1403. GGML_F16_VEC ay[GGML_F16_ARR];
  1404. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1405. for (int j = 0; j < GGML_F16_ARR; j++) {
  1406. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1407. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1408. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1409. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. }
  1413. // reduce sum0..sum3 to sum0
  1414. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1415. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1416. }
  1417. // leftovers
  1418. for (int i = np; i < n; ++i) {
  1419. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1420. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1421. }
  1422. }
  1423. #else
  1424. for (int i = 0; i < n; ++i) {
  1425. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1426. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1427. }
  1428. }
  1429. #endif
  1430. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1431. s[i] = sumf[i];
  1432. }
  1433. }
  1434. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1435. #if defined(GGML_SIMD)
  1436. const int np = (n & ~(GGML_F32_STEP - 1));
  1437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1438. GGML_F32_VEC ax[GGML_F32_ARR];
  1439. GGML_F32_VEC ay[GGML_F32_ARR];
  1440. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1441. for (int j = 0; j < GGML_F32_ARR; j++) {
  1442. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1443. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1444. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1445. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1446. }
  1447. }
  1448. // leftovers
  1449. for (int i = np; i < n; ++i) {
  1450. y[i] += x[i]*v;
  1451. }
  1452. #else
  1453. // scalar
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] += x[i]*v;
  1456. }
  1457. #endif
  1458. }
  1459. // xs and vs are byte strides of x and v
  1460. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1461. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1462. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1463. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1464. x[i] = (const float *) ((const char *) xv + i*xs);
  1465. v[i] = (const float *) ((const char *) vv + i*vs);
  1466. }
  1467. #if defined(GGML_SIMD)
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1472. }
  1473. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1474. GGML_F32_VEC ay[GGML_F32_ARR];
  1475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1476. for (int j = 0; j < GGML_F32_ARR; j++) {
  1477. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1480. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1481. }
  1482. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1483. }
  1484. }
  1485. // leftovers
  1486. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1487. for (int i = np; i < n; ++i) {
  1488. y[i] += x[k][i]*v[k][0];
  1489. }
  1490. }
  1491. #else
  1492. // scalar
  1493. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1494. for (int i = 0; i < n; ++i) {
  1495. y[i] += x[k][i]*v[k][0];
  1496. }
  1497. }
  1498. #endif
  1499. }
  1500. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1501. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1502. #if defined(GGML_USE_ACCELERATE)
  1503. vDSP_vsmul(y, 1, &v, y, 1, n);
  1504. #elif defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ay[GGML_F32_ARR];
  1508. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1509. for (int j = 0; j < GGML_F32_ARR; j++) {
  1510. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1511. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1512. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1513. }
  1514. }
  1515. // leftovers
  1516. for (int i = np; i < n; ++i) {
  1517. y[i] *= v;
  1518. }
  1519. #else
  1520. // scalar
  1521. for (int i = 0; i < n; ++i) {
  1522. y[i] *= v;
  1523. }
  1524. #endif
  1525. }
  1526. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1527. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1528. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1529. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1530. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1531. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1532. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1533. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1534. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1535. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1536. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1537. // TODO: optimize performance
  1538. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1539. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1540. static const float GELU_COEF_A = 0.044715f;
  1541. static const float GELU_QUICK_COEF = -1.702f;
  1542. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1543. inline static float ggml_gelu_f32(float x) {
  1544. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1545. }
  1546. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. const uint16_t * i16 = (const uint16_t *) x;
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = ggml_table_gelu_f16[i16[i]];
  1550. }
  1551. }
  1552. #ifdef GGML_GELU_FP16
  1553. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. if (x[i] <= -10.0f) {
  1557. y[i] = 0.0f;
  1558. } else if (x[i] >= 10.0f) {
  1559. y[i] = x[i];
  1560. } else {
  1561. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1562. memcpy(&t, &fp16, sizeof(uint16_t));
  1563. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1564. }
  1565. }
  1566. }
  1567. #else
  1568. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1569. for (int i = 0; i < n; ++i) {
  1570. y[i] = ggml_gelu_f32(x[i]);
  1571. }
  1572. }
  1573. #endif
  1574. inline static float ggml_gelu_quick_f32(float x) {
  1575. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1576. }
  1577. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1578. // const uint16_t * i16 = (const uint16_t *) x;
  1579. // for (int i = 0; i < n; ++i) {
  1580. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1581. // }
  1582. //}
  1583. #ifdef GGML_GELU_QUICK_FP16
  1584. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1585. uint16_t t;
  1586. for (int i = 0; i < n; ++i) {
  1587. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1588. memcpy(&t, &fp16, sizeof(uint16_t));
  1589. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1590. }
  1591. }
  1592. #else
  1593. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1594. for (int i = 0; i < n; ++i) {
  1595. y[i] = ggml_gelu_quick_f32(x[i]);
  1596. }
  1597. }
  1598. #endif
  1599. // Sigmoid Linear Unit (SiLU) function
  1600. inline static float ggml_silu_f32(float x) {
  1601. return x/(1.0f + expf(-x));
  1602. }
  1603. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1604. // const uint16_t * i16 = (const uint16_t *) x;
  1605. // for (int i = 0; i < n; ++i) {
  1606. // y[i] = ggml_table_silu_f16[i16[i]];
  1607. // }
  1608. //}
  1609. #ifdef GGML_SILU_FP16
  1610. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1611. uint16_t t;
  1612. for (int i = 0; i < n; ++i) {
  1613. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1614. memcpy(&t, &fp16, sizeof(uint16_t));
  1615. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1616. }
  1617. }
  1618. #else
  1619. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1620. for (int i = 0; i < n; ++i) {
  1621. y[i] = ggml_silu_f32(x[i]);
  1622. }
  1623. }
  1624. #endif
  1625. inline static float ggml_silu_backward_f32(float x, float dy) {
  1626. const float s = 1.0f/(1.0f + expf(-x));
  1627. return dy*s*(1.0f + x*(1.0f - s));
  1628. }
  1629. #ifdef GGML_SILU_FP16
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. // we did not use x[i] to compute forward silu but its f16 equivalent
  1633. // take derivative at f16 of x[i]:
  1634. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1635. float usedx = GGML_FP16_TO_FP32(fp16);
  1636. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1637. }
  1638. }
  1639. #else
  1640. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1641. for (int i = 0; i < n; ++i) {
  1642. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1643. }
  1644. }
  1645. #endif
  1646. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1647. #ifndef GGML_USE_ACCELERATE
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. #else
  1654. vDSP_sve(x, 1, s, n);
  1655. #endif
  1656. }
  1657. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1658. ggml_float sum = 0.0;
  1659. for (int i = 0; i < n; ++i) {
  1660. sum += (ggml_float)x[i];
  1661. }
  1662. *s = sum;
  1663. }
  1664. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1665. float sum = 0.0f;
  1666. for (int i = 0; i < n; ++i) {
  1667. sum += GGML_FP16_TO_FP32(x[i]);
  1668. }
  1669. *s = sum;
  1670. }
  1671. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1672. #ifndef GGML_USE_ACCELERATE
  1673. float max = -INFINITY;
  1674. for (int i = 0; i < n; ++i) {
  1675. max = MAX(max, x[i]);
  1676. }
  1677. *s = max;
  1678. #else
  1679. vDSP_maxv(x, 1, s, n);
  1680. #endif
  1681. }
  1682. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1683. ggml_vec_norm_f32(n, s, x);
  1684. *s = 1.f/(*s);
  1685. }
  1686. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1687. float max = -INFINITY;
  1688. int idx = 0;
  1689. for (int i = 0; i < n; ++i) {
  1690. max = MAX(max, x[i]);
  1691. if (max == x[i]) { idx = i; }
  1692. }
  1693. *s = idx;
  1694. }
  1695. //
  1696. // data types
  1697. //
  1698. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1699. "NONE",
  1700. "DUP",
  1701. "ADD",
  1702. "ADD1",
  1703. "ACC",
  1704. "SUB",
  1705. "MUL",
  1706. "DIV",
  1707. "SQR",
  1708. "SQRT",
  1709. "LOG",
  1710. "SUM",
  1711. "SUM_ROWS",
  1712. "MEAN",
  1713. "ARGMAX",
  1714. "REPEAT",
  1715. "REPEAT_BACK",
  1716. "CONCAT",
  1717. "SILU_BACK",
  1718. "NORM",
  1719. "RMS_NORM",
  1720. "RMS_NORM_BACK",
  1721. "GROUP_NORM",
  1722. "MUL_MAT",
  1723. "MUL_MAT_ID",
  1724. "OUT_PROD",
  1725. "SCALE",
  1726. "SET",
  1727. "CPY",
  1728. "CONT",
  1729. "RESHAPE",
  1730. "VIEW",
  1731. "PERMUTE",
  1732. "TRANSPOSE",
  1733. "GET_ROWS",
  1734. "GET_ROWS_BACK",
  1735. "DIAG",
  1736. "DIAG_MASK_INF",
  1737. "DIAG_MASK_ZERO",
  1738. "SOFT_MAX",
  1739. "SOFT_MAX_BACK",
  1740. "ROPE",
  1741. "ROPE_BACK",
  1742. "ALIBI",
  1743. "CLAMP",
  1744. "CONV_TRANSPOSE_1D",
  1745. "IM2COL",
  1746. "CONV_TRANSPOSE_2D",
  1747. "POOL_1D",
  1748. "POOL_2D",
  1749. "UPSCALE",
  1750. "PAD",
  1751. "ARANGE",
  1752. "TIMESTEP_EMBEDDING",
  1753. "ARGSORT",
  1754. "LEAKY_RELU",
  1755. "FLASH_ATTN",
  1756. "FLASH_FF",
  1757. "FLASH_ATTN_BACK",
  1758. "SSM_CONV",
  1759. "SSM_SCAN",
  1760. "WIN_PART",
  1761. "WIN_UNPART",
  1762. "GET_REL_POS",
  1763. "ADD_REL_POS",
  1764. "UNARY",
  1765. "MAP_UNARY",
  1766. "MAP_BINARY",
  1767. "MAP_CUSTOM1_F32",
  1768. "MAP_CUSTOM2_F32",
  1769. "MAP_CUSTOM3_F32",
  1770. "MAP_CUSTOM1",
  1771. "MAP_CUSTOM2",
  1772. "MAP_CUSTOM3",
  1773. "CROSS_ENTROPY_LOSS",
  1774. "CROSS_ENTROPY_LOSS_BACK",
  1775. };
  1776. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1777. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1778. "none",
  1779. "x",
  1780. "x+y",
  1781. "x+y",
  1782. "view(x,nb,offset)+=y->x",
  1783. "x-y",
  1784. "x*y",
  1785. "x/y",
  1786. "x^2",
  1787. "√x",
  1788. "log(x)",
  1789. "Σx",
  1790. "Σx_k",
  1791. "Σx/n",
  1792. "argmax(x)",
  1793. "repeat(x)",
  1794. "repeat_back(x)",
  1795. "concat(x, y)",
  1796. "silu_back(x)",
  1797. "norm(x)",
  1798. "rms_norm(x)",
  1799. "rms_norm_back(x)",
  1800. "group_norm(x)",
  1801. "X*Y",
  1802. "X[i]*Y",
  1803. "X*Y",
  1804. "x*v",
  1805. "y-\\>view(x)",
  1806. "x-\\>y",
  1807. "cont(x)",
  1808. "reshape(x)",
  1809. "view(x)",
  1810. "permute(x)",
  1811. "transpose(x)",
  1812. "get_rows(x)",
  1813. "get_rows_back(x)",
  1814. "diag(x)",
  1815. "diag_mask_inf(x)",
  1816. "diag_mask_zero(x)",
  1817. "soft_max(x)",
  1818. "soft_max_back(x)",
  1819. "rope(x)",
  1820. "rope_back(x)",
  1821. "alibi(x)",
  1822. "clamp(x)",
  1823. "conv_transpose_1d(x)",
  1824. "im2col(x)",
  1825. "conv_transpose_2d(x)",
  1826. "pool_1d(x)",
  1827. "pool_2d(x)",
  1828. "upscale(x)",
  1829. "pad(x)",
  1830. "arange(start, stop, step)",
  1831. "timestep_embedding(timesteps, dim, max_period)",
  1832. "argsort(x)",
  1833. "leaky_relu(x)",
  1834. "flash_attn(x)",
  1835. "flash_ff(x)",
  1836. "flash_attn_back(x)",
  1837. "ssm_conv(x)",
  1838. "ssm_scan(x)",
  1839. "win_part(x)",
  1840. "win_unpart(x)",
  1841. "get_rel_pos(x)",
  1842. "add_rel_pos(x)",
  1843. "unary(x)",
  1844. "f(x)",
  1845. "f(x,y)",
  1846. "custom_f32(x)",
  1847. "custom_f32(x,y)",
  1848. "custom_f32(x,y,z)",
  1849. "custom(x)",
  1850. "custom(x,y)",
  1851. "custom(x,y,z)",
  1852. "cross_entropy_loss(x,y)",
  1853. "cross_entropy_loss_back(x,y)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1856. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1857. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1858. "ABS",
  1859. "SGN",
  1860. "NEG",
  1861. "STEP",
  1862. "TANH",
  1863. "ELU",
  1864. "RELU",
  1865. "GELU",
  1866. "GELU_QUICK",
  1867. "SILU",
  1868. "HARDSWISH",
  1869. "HARDSIGMOID",
  1870. };
  1871. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1872. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1873. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1874. // WARN:
  1875. // Mis-configuration can lead to problem that's hard to reason about:
  1876. // * At best it crash or talks nosense.
  1877. // * At worst it talks slightly difference but hard to perceive.
  1878. //
  1879. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1880. // Take care about compile options (e.g., GGML_USE_xxx).
  1881. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1882. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1883. static void ggml_setup_op_has_task_pass(void) {
  1884. { // INIT
  1885. bool * p = GGML_OP_HAS_INIT;
  1886. p[GGML_OP_ACC ] = true;
  1887. p[GGML_OP_MUL_MAT ] = true;
  1888. p[GGML_OP_MUL_MAT_ID ] = true;
  1889. p[GGML_OP_OUT_PROD ] = true;
  1890. p[GGML_OP_SET ] = true;
  1891. p[GGML_OP_GET_ROWS_BACK ] = true;
  1892. p[GGML_OP_DIAG_MASK_INF ] = true;
  1893. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1894. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1895. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1896. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1897. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1898. p[GGML_OP_ADD_REL_POS ] = true;
  1899. }
  1900. { // FINALIZE
  1901. bool * p = GGML_OP_HAS_FINALIZE;
  1902. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1903. }
  1904. }
  1905. //
  1906. // ggml context
  1907. //
  1908. struct ggml_context {
  1909. size_t mem_size;
  1910. void * mem_buffer;
  1911. bool mem_buffer_owned;
  1912. bool no_alloc;
  1913. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1914. int n_objects;
  1915. struct ggml_object * objects_begin;
  1916. struct ggml_object * objects_end;
  1917. struct ggml_scratch scratch;
  1918. struct ggml_scratch scratch_save;
  1919. };
  1920. struct ggml_context_container {
  1921. bool used;
  1922. struct ggml_context context;
  1923. };
  1924. //
  1925. // NUMA support
  1926. //
  1927. #define GGML_NUMA_MAX_NODES 8
  1928. #define GGML_NUMA_MAX_CPUS 512
  1929. struct ggml_numa_node {
  1930. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1931. uint32_t n_cpus;
  1932. };
  1933. struct ggml_numa_nodes {
  1934. enum ggml_numa_strategy numa_strategy;
  1935. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1936. uint32_t n_nodes;
  1937. uint32_t total_cpus; // hardware threads on system
  1938. uint32_t current_node; // node on which main process is execting
  1939. #if defined(__gnu_linux__)
  1940. cpu_set_t cpuset; // cpuset from numactl
  1941. #else
  1942. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1943. #endif
  1944. };
  1945. //
  1946. // ggml state
  1947. //
  1948. struct ggml_state {
  1949. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1950. struct ggml_numa_nodes numa;
  1951. };
  1952. // global state
  1953. static struct ggml_state g_state;
  1954. static atomic_int g_state_barrier = 0;
  1955. // barrier via spin lock
  1956. inline static void ggml_critical_section_start(void) {
  1957. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1958. while (processing > 0) {
  1959. // wait for other threads to finish
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. sched_yield(); // TODO: reconsider this
  1962. processing = atomic_fetch_add(&g_state_barrier, 1);
  1963. }
  1964. }
  1965. // TODO: make this somehow automatically executed
  1966. // some sort of "sentry" mechanism
  1967. inline static void ggml_critical_section_end(void) {
  1968. atomic_fetch_sub(&g_state_barrier, 1);
  1969. }
  1970. #if defined(__gnu_linux__)
  1971. static cpu_set_t ggml_get_numa_affinity(void) {
  1972. cpu_set_t cpuset;
  1973. pthread_t thread;
  1974. thread = pthread_self();
  1975. CPU_ZERO(&cpuset);
  1976. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1977. return cpuset;
  1978. }
  1979. #else
  1980. static uint32_t ggml_get_numa_affinity(void) {
  1981. return 0; // no NUMA support
  1982. }
  1983. #endif
  1984. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1985. if (g_state.numa.n_nodes > 0) {
  1986. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1987. return;
  1988. }
  1989. #if defined(__gnu_linux__)
  1990. struct stat st;
  1991. char path[256];
  1992. int rv;
  1993. // set numa scheme
  1994. g_state.numa.numa_strategy = numa_flag;
  1995. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1996. g_state.numa.cpuset = ggml_get_numa_affinity();
  1997. // enumerate nodes
  1998. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1999. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2000. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2001. if (stat(path, &st) != 0) { break; }
  2002. ++g_state.numa.n_nodes;
  2003. }
  2004. // enumerate CPUs
  2005. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2006. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2007. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2008. if (stat(path, &st) != 0) { break; }
  2009. ++g_state.numa.total_cpus;
  2010. }
  2011. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2012. // figure out which node we're on
  2013. uint current_cpu;
  2014. int getcpu_ret = 0;
  2015. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2016. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2017. #else
  2018. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2019. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2020. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2021. # endif
  2022. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2023. #endif
  2024. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2025. g_state.numa.n_nodes = 0;
  2026. return;
  2027. }
  2028. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2029. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2030. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2031. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2032. node->n_cpus = 0;
  2033. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2034. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2035. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2036. if (stat(path, &st) == 0) {
  2037. node->cpus[node->n_cpus++] = c;
  2038. GGML_PRINT_DEBUG(" %u", c);
  2039. }
  2040. }
  2041. GGML_PRINT_DEBUG("\n");
  2042. }
  2043. if (ggml_is_numa()) {
  2044. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2045. if (fptr != NULL) {
  2046. char buf[42];
  2047. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2048. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2049. }
  2050. fclose(fptr);
  2051. }
  2052. }
  2053. #else
  2054. GGML_UNUSED(numa_flag);
  2055. // TODO
  2056. #endif
  2057. }
  2058. bool ggml_is_numa(void) {
  2059. return g_state.numa.n_nodes > 1;
  2060. }
  2061. ////////////////////////////////////////////////////////////////////////////////
  2062. void ggml_print_object(const struct ggml_object * obj) {
  2063. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2064. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2065. }
  2066. void ggml_print_objects(const struct ggml_context * ctx) {
  2067. struct ggml_object * obj = ctx->objects_begin;
  2068. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2069. while (obj != NULL) {
  2070. ggml_print_object(obj);
  2071. obj = obj->next;
  2072. }
  2073. GGML_PRINT("%s: --- end ---\n", __func__);
  2074. }
  2075. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2084. size_t nbytes;
  2085. size_t blck_size = ggml_blck_size(tensor->type);
  2086. if (blck_size == 1) {
  2087. nbytes = ggml_type_size(tensor->type);
  2088. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2089. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2090. }
  2091. }
  2092. else {
  2093. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2094. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2095. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2096. }
  2097. }
  2098. return nbytes;
  2099. }
  2100. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2101. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2102. }
  2103. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2104. return type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2107. return type_traits[type].type_size;
  2108. }
  2109. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2110. assert(ne % ggml_blck_size(type) == 0);
  2111. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2112. }
  2113. double ggml_type_sizef(enum ggml_type type) {
  2114. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2115. }
  2116. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2117. return type_traits[type].type_name;
  2118. }
  2119. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2120. return type_traits[type].is_quantized;
  2121. }
  2122. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2123. return GGML_OP_NAME[op];
  2124. }
  2125. const char * ggml_op_symbol(enum ggml_op op) {
  2126. return GGML_OP_SYMBOL[op];
  2127. }
  2128. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2129. return GGML_UNARY_OP_NAME[op];
  2130. }
  2131. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2132. if (t->op == GGML_OP_UNARY) {
  2133. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2134. return ggml_unary_op_name(uop);
  2135. }
  2136. else {
  2137. return ggml_op_name(t->op);
  2138. }
  2139. }
  2140. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2141. return ggml_type_size(tensor->type);
  2142. }
  2143. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2156. return tensor->ne[3] == 1;
  2157. }
  2158. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2159. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2160. if (tensor->ne[i] > 1) {
  2161. return i + 1;
  2162. }
  2163. }
  2164. return 1;
  2165. }
  2166. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return (t0->ne[0] == t1->ne[0]) &&
  2169. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2170. (t1->ne[3]%t0->ne[3] == 0);
  2171. }
  2172. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2174. return (t0->ne[1] == t1->ne[1]) &&
  2175. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2176. (t1->ne[3]%t0->ne[3] == 0);
  2177. }
  2178. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2179. enum ggml_type wtype = GGML_TYPE_COUNT;
  2180. switch (ftype) {
  2181. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2182. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2183. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2185. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2186. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2187. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2189. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2191. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2192. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2194. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2195. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2198. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2199. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2202. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2203. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2204. }
  2205. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2206. return wtype;
  2207. }
  2208. size_t ggml_tensor_overhead(void) {
  2209. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2210. }
  2211. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2212. return tensor->nb[0] > tensor->nb[1];
  2213. }
  2214. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2219. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2220. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2221. }
  2222. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2232. }
  2233. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return
  2236. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2237. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2238. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2239. }
  2240. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2241. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2242. return
  2243. (t0->ne[0] == t1->ne[0] ) &&
  2244. (t0->ne[1] == t1->ne[1] ) &&
  2245. (t0->ne[2] == t1->ne[2] ) &&
  2246. (t0->ne[3] == t1->ne[3] );
  2247. }
  2248. // check if t1 can be represented as a repeatition of t0
  2249. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return
  2252. (t1->ne[0]%t0->ne[0] == 0) &&
  2253. (t1->ne[1]%t0->ne[1] == 0) &&
  2254. (t1->ne[2]%t0->ne[2] == 0) &&
  2255. (t1->ne[3]%t0->ne[3] == 0);
  2256. }
  2257. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2258. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2259. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2260. }
  2261. static inline int ggml_up32(int n) {
  2262. return (n + 31) & ~31;
  2263. }
  2264. //static inline int ggml_up64(int n) {
  2265. // return (n + 63) & ~63;
  2266. //}
  2267. static inline int ggml_up(int n, int m) {
  2268. // assert m is a power of 2
  2269. GGML_ASSERT((m & (m - 1)) == 0);
  2270. return (n + m - 1) & ~(m - 1);
  2271. }
  2272. // assert that pointer is aligned to GGML_MEM_ALIGN
  2273. #define ggml_assert_aligned(ptr) \
  2274. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2275. ////////////////////////////////////////////////////////////////////////////////
  2276. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2277. // make this function thread safe
  2278. ggml_critical_section_start();
  2279. static bool is_first_call = true;
  2280. if (is_first_call) {
  2281. // initialize time system (required on Windows)
  2282. ggml_time_init();
  2283. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2284. {
  2285. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2286. ggml_fp16_t ii;
  2287. for (int i = 0; i < (1 << 16); ++i) {
  2288. uint16_t ui = i;
  2289. memcpy(&ii, &ui, sizeof(ii));
  2290. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2291. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2292. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2293. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2294. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2295. }
  2296. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2297. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2298. }
  2299. // initialize g_state
  2300. {
  2301. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2302. g_state = (struct ggml_state) {
  2303. /*.contexts =*/ { { 0 } },
  2304. /*.numa =*/ {
  2305. .n_nodes = 0,
  2306. .total_cpus = 0,
  2307. },
  2308. };
  2309. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2310. g_state.contexts[i].used = false;
  2311. }
  2312. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2313. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2314. }
  2315. #if defined(GGML_USE_CLBLAST)
  2316. ggml_cl_init();
  2317. #elif defined(GGML_USE_VULKAN)
  2318. ggml_vk_init_cpu_assist();
  2319. #endif
  2320. ggml_setup_op_has_task_pass();
  2321. is_first_call = false;
  2322. }
  2323. // find non-used context in g_state
  2324. struct ggml_context * ctx = NULL;
  2325. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2326. if (!g_state.contexts[i].used) {
  2327. g_state.contexts[i].used = true;
  2328. ctx = &g_state.contexts[i].context;
  2329. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2330. break;
  2331. }
  2332. }
  2333. if (ctx == NULL) {
  2334. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2335. ggml_critical_section_end();
  2336. return NULL;
  2337. }
  2338. // allow to call ggml_init with 0 size
  2339. if (params.mem_size == 0) {
  2340. params.mem_size = GGML_MEM_ALIGN;
  2341. }
  2342. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2343. *ctx = (struct ggml_context) {
  2344. /*.mem_size =*/ mem_size,
  2345. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2346. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2347. /*.no_alloc =*/ params.no_alloc,
  2348. /*.no_alloc_save =*/ params.no_alloc,
  2349. /*.n_objects =*/ 0,
  2350. /*.objects_begin =*/ NULL,
  2351. /*.objects_end =*/ NULL,
  2352. /*.scratch =*/ { 0, 0, NULL, },
  2353. /*.scratch_save =*/ { 0, 0, NULL, },
  2354. };
  2355. GGML_ASSERT(ctx->mem_buffer != NULL);
  2356. ggml_assert_aligned(ctx->mem_buffer);
  2357. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2358. ggml_critical_section_end();
  2359. return ctx;
  2360. }
  2361. void ggml_free(struct ggml_context * ctx) {
  2362. if (ctx == NULL) {
  2363. return;
  2364. }
  2365. // make this function thread safe
  2366. ggml_critical_section_start();
  2367. bool found = false;
  2368. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2369. if (&g_state.contexts[i].context == ctx) {
  2370. g_state.contexts[i].used = false;
  2371. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2372. __func__, i, ggml_used_mem(ctx));
  2373. if (ctx->mem_buffer_owned) {
  2374. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2375. }
  2376. found = true;
  2377. break;
  2378. }
  2379. }
  2380. if (!found) {
  2381. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2382. }
  2383. ggml_critical_section_end();
  2384. }
  2385. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2386. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2387. }
  2388. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2389. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2390. ctx->scratch = scratch;
  2391. return result;
  2392. }
  2393. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2394. return ctx->no_alloc;
  2395. }
  2396. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2397. ctx->no_alloc = no_alloc;
  2398. }
  2399. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2400. return ctx->mem_buffer;
  2401. }
  2402. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2403. return ctx->mem_size;
  2404. }
  2405. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2406. size_t max_size = 0;
  2407. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2408. size_t bytes = ggml_nbytes(tensor);
  2409. max_size = MAX(max_size, bytes);
  2410. }
  2411. return max_size;
  2412. }
  2413. // IMPORTANT:
  2414. // when creating "opt" tensors, always save and load the scratch buffer
  2415. // this is an error prone process, but it is necessary to support inplace
  2416. // operators when using scratch buffers
  2417. // TODO: implement a better way
  2418. static void ggml_scratch_save(struct ggml_context * ctx) {
  2419. // this is needed to allow opt tensors to store their data
  2420. // TODO: again, need to find a better way
  2421. ctx->no_alloc_save = ctx->no_alloc;
  2422. ctx->no_alloc = false;
  2423. ctx->scratch_save = ctx->scratch;
  2424. ctx->scratch.data = NULL;
  2425. }
  2426. static void ggml_scratch_load(struct ggml_context * ctx) {
  2427. ctx->no_alloc = ctx->no_alloc_save;
  2428. ctx->scratch = ctx->scratch_save;
  2429. }
  2430. ////////////////////////////////////////////////////////////////////////////////
  2431. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2432. // always insert objects at the end of the context's memory pool
  2433. struct ggml_object * obj_cur = ctx->objects_end;
  2434. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2435. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2436. const size_t cur_end = cur_offs + cur_size;
  2437. // align to GGML_MEM_ALIGN
  2438. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2439. char * const mem_buffer = ctx->mem_buffer;
  2440. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2441. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2442. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2443. __func__, cur_end + size_needed, ctx->mem_size);
  2444. assert(false);
  2445. return NULL;
  2446. }
  2447. *obj_new = (struct ggml_object) {
  2448. .offs = cur_end + GGML_OBJECT_SIZE,
  2449. .size = size_needed,
  2450. .next = NULL,
  2451. .type = type,
  2452. };
  2453. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2454. if (obj_cur != NULL) {
  2455. obj_cur->next = obj_new;
  2456. } else {
  2457. // this is the first object in this context
  2458. ctx->objects_begin = obj_new;
  2459. }
  2460. ctx->objects_end = obj_new;
  2461. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2462. return obj_new;
  2463. }
  2464. static struct ggml_tensor * ggml_new_tensor_impl(
  2465. struct ggml_context * ctx,
  2466. enum ggml_type type,
  2467. int n_dims,
  2468. const int64_t * ne,
  2469. struct ggml_tensor * view_src,
  2470. size_t view_offs) {
  2471. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2472. // find the base tensor and absolute offset
  2473. if (view_src != NULL && view_src->view_src != NULL) {
  2474. view_offs += view_src->view_offs;
  2475. view_src = view_src->view_src;
  2476. }
  2477. size_t data_size = ggml_row_size(type, ne[0]);
  2478. for (int i = 1; i < n_dims; i++) {
  2479. data_size *= ne[i];
  2480. }
  2481. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2482. void * data = view_src != NULL ? view_src->data : NULL;
  2483. if (data != NULL) {
  2484. data = (char *) data + view_offs;
  2485. }
  2486. size_t obj_alloc_size = 0;
  2487. if (view_src == NULL && !ctx->no_alloc) {
  2488. if (ctx->scratch.data != NULL) {
  2489. // allocate tensor data in the scratch buffer
  2490. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2491. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2492. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2493. assert(false);
  2494. return NULL;
  2495. }
  2496. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2497. ctx->scratch.offs += data_size;
  2498. } else {
  2499. // allocate tensor data in the context's memory pool
  2500. obj_alloc_size = data_size;
  2501. }
  2502. }
  2503. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2504. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2505. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2506. *result = (struct ggml_tensor) {
  2507. /*.type =*/ type,
  2508. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2509. /*.buffer =*/ NULL,
  2510. /*.ne =*/ { 1, 1, 1, 1 },
  2511. /*.nb =*/ { 0, 0, 0, 0 },
  2512. /*.op =*/ GGML_OP_NONE,
  2513. /*.op_params =*/ { 0 },
  2514. /*.flags =*/ 0,
  2515. /*.grad =*/ NULL,
  2516. /*.src =*/ { NULL },
  2517. /*.perf_runs =*/ 0,
  2518. /*.perf_cycles =*/ 0,
  2519. /*.perf_time_us =*/ 0,
  2520. /*.view_src =*/ view_src,
  2521. /*.view_offs =*/ view_offs,
  2522. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2523. /*.name =*/ { 0 },
  2524. /*.extra =*/ NULL,
  2525. /*.padding =*/ { 0 },
  2526. };
  2527. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2528. //ggml_assert_aligned(result->data);
  2529. for (int i = 0; i < n_dims; i++) {
  2530. result->ne[i] = ne[i];
  2531. }
  2532. result->nb[0] = ggml_type_size(type);
  2533. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2534. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2535. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2536. }
  2537. ctx->n_objects++;
  2538. return result;
  2539. }
  2540. struct ggml_tensor * ggml_new_tensor(
  2541. struct ggml_context * ctx,
  2542. enum ggml_type type,
  2543. int n_dims,
  2544. const int64_t * ne) {
  2545. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2546. }
  2547. struct ggml_tensor * ggml_new_tensor_1d(
  2548. struct ggml_context * ctx,
  2549. enum ggml_type type,
  2550. int64_t ne0) {
  2551. return ggml_new_tensor(ctx, type, 1, &ne0);
  2552. }
  2553. struct ggml_tensor * ggml_new_tensor_2d(
  2554. struct ggml_context * ctx,
  2555. enum ggml_type type,
  2556. int64_t ne0,
  2557. int64_t ne1) {
  2558. const int64_t ne[2] = { ne0, ne1 };
  2559. return ggml_new_tensor(ctx, type, 2, ne);
  2560. }
  2561. struct ggml_tensor * ggml_new_tensor_3d(
  2562. struct ggml_context * ctx,
  2563. enum ggml_type type,
  2564. int64_t ne0,
  2565. int64_t ne1,
  2566. int64_t ne2) {
  2567. const int64_t ne[3] = { ne0, ne1, ne2 };
  2568. return ggml_new_tensor(ctx, type, 3, ne);
  2569. }
  2570. struct ggml_tensor * ggml_new_tensor_4d(
  2571. struct ggml_context * ctx,
  2572. enum ggml_type type,
  2573. int64_t ne0,
  2574. int64_t ne1,
  2575. int64_t ne2,
  2576. int64_t ne3) {
  2577. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2578. return ggml_new_tensor(ctx, type, 4, ne);
  2579. }
  2580. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2581. ggml_scratch_save(ctx);
  2582. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2583. ggml_scratch_load(ctx);
  2584. ggml_set_i32(result, value);
  2585. return result;
  2586. }
  2587. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2588. ggml_scratch_save(ctx);
  2589. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2590. ggml_scratch_load(ctx);
  2591. ggml_set_f32(result, value);
  2592. return result;
  2593. }
  2594. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2595. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2596. }
  2597. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2598. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2599. assert(params_size <= GGML_MAX_OP_PARAMS);
  2600. memcpy(tensor->op_params, params, params_size);
  2601. }
  2602. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2603. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2604. return ((const int32_t *)(tensor->op_params))[i];
  2605. }
  2606. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2607. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2608. return ((const float *)(tensor->op_params))[i];
  2609. }
  2610. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2611. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2612. ((int32_t *)(tensor->op_params))[i] = value;
  2613. }
  2614. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2615. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2616. ((float *)(tensor->op_params))[i] = value;
  2617. }
  2618. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2619. memset(tensor->data, 0, ggml_nbytes(tensor));
  2620. return tensor;
  2621. }
  2622. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2623. const int n = ggml_nrows(tensor);
  2624. const int nc = tensor->ne[0];
  2625. const size_t n1 = tensor->nb[1];
  2626. char * const data = tensor->data;
  2627. switch (tensor->type) {
  2628. case GGML_TYPE_I8:
  2629. {
  2630. assert(tensor->nb[0] == sizeof(int8_t));
  2631. for (int i = 0; i < n; i++) {
  2632. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2633. }
  2634. } break;
  2635. case GGML_TYPE_I16:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(int16_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_I32:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(int32_t));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_F16:
  2650. {
  2651. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2652. for (int i = 0; i < n; i++) {
  2653. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2654. }
  2655. } break;
  2656. case GGML_TYPE_F32:
  2657. {
  2658. assert(tensor->nb[0] == sizeof(float));
  2659. for (int i = 0; i < n; i++) {
  2660. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2661. }
  2662. } break;
  2663. default:
  2664. {
  2665. GGML_ASSERT(false);
  2666. } break;
  2667. }
  2668. return tensor;
  2669. }
  2670. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2671. const int n = ggml_nrows(tensor);
  2672. const int nc = tensor->ne[0];
  2673. const size_t n1 = tensor->nb[1];
  2674. char * const data = tensor->data;
  2675. switch (tensor->type) {
  2676. case GGML_TYPE_I8:
  2677. {
  2678. assert(tensor->nb[0] == sizeof(int8_t));
  2679. for (int i = 0; i < n; i++) {
  2680. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2681. }
  2682. } break;
  2683. case GGML_TYPE_I16:
  2684. {
  2685. assert(tensor->nb[0] == sizeof(int16_t));
  2686. for (int i = 0; i < n; i++) {
  2687. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2688. }
  2689. } break;
  2690. case GGML_TYPE_I32:
  2691. {
  2692. assert(tensor->nb[0] == sizeof(int32_t));
  2693. for (int i = 0; i < n; i++) {
  2694. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2695. }
  2696. } break;
  2697. case GGML_TYPE_F16:
  2698. {
  2699. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2700. for (int i = 0; i < n; i++) {
  2701. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2702. }
  2703. } break;
  2704. case GGML_TYPE_F32:
  2705. {
  2706. assert(tensor->nb[0] == sizeof(float));
  2707. for (int i = 0; i < n; i++) {
  2708. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2709. }
  2710. } break;
  2711. default:
  2712. {
  2713. GGML_ASSERT(false);
  2714. } break;
  2715. }
  2716. return tensor;
  2717. }
  2718. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2719. const int64_t ne2 = tensor->ne[2];
  2720. const int64_t ne1 = tensor->ne[1];
  2721. const int64_t ne0 = tensor->ne[0];
  2722. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2723. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2724. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2725. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2726. if (i0) {
  2727. * i0 = i0_;
  2728. }
  2729. if (i1) {
  2730. * i1 = i1_;
  2731. }
  2732. if (i2) {
  2733. * i2 = i2_;
  2734. }
  2735. if (i3) {
  2736. * i3 = i3_;
  2737. }
  2738. }
  2739. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2740. if (!ggml_is_contiguous(tensor)) {
  2741. int64_t id[4] = { 0, 0, 0, 0 };
  2742. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2743. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2744. }
  2745. switch (tensor->type) {
  2746. case GGML_TYPE_I8:
  2747. {
  2748. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2749. return ((int8_t *)(tensor->data))[i];
  2750. }
  2751. case GGML_TYPE_I16:
  2752. {
  2753. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2754. return ((int16_t *)(tensor->data))[i];
  2755. }
  2756. case GGML_TYPE_I32:
  2757. {
  2758. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2759. return ((int32_t *)(tensor->data))[i];
  2760. }
  2761. case GGML_TYPE_F16:
  2762. {
  2763. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2764. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2765. }
  2766. case GGML_TYPE_F32:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2769. return ((float *)(tensor->data))[i];
  2770. }
  2771. default:
  2772. {
  2773. GGML_ASSERT(false);
  2774. }
  2775. }
  2776. return 0.0f;
  2777. }
  2778. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2779. if (!ggml_is_contiguous(tensor)) {
  2780. int64_t id[4] = { 0, 0, 0, 0 };
  2781. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2782. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2783. return;
  2784. }
  2785. switch (tensor->type) {
  2786. case GGML_TYPE_I8:
  2787. {
  2788. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2789. ((int8_t *)(tensor->data))[i] = value;
  2790. } break;
  2791. case GGML_TYPE_I16:
  2792. {
  2793. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2794. ((int16_t *)(tensor->data))[i] = value;
  2795. } break;
  2796. case GGML_TYPE_I32:
  2797. {
  2798. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2799. ((int32_t *)(tensor->data))[i] = value;
  2800. } break;
  2801. case GGML_TYPE_F16:
  2802. {
  2803. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2804. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2805. } break;
  2806. case GGML_TYPE_F32:
  2807. {
  2808. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2809. ((float *)(tensor->data))[i] = value;
  2810. } break;
  2811. default:
  2812. {
  2813. GGML_ASSERT(false);
  2814. } break;
  2815. }
  2816. }
  2817. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2818. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2819. switch (tensor->type) {
  2820. case GGML_TYPE_I8:
  2821. return ((int8_t *) data)[0];
  2822. case GGML_TYPE_I16:
  2823. return ((int16_t *) data)[0];
  2824. case GGML_TYPE_I32:
  2825. return ((int32_t *) data)[0];
  2826. case GGML_TYPE_F16:
  2827. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2828. case GGML_TYPE_F32:
  2829. return ((float *) data)[0];
  2830. default:
  2831. GGML_ASSERT(false);
  2832. }
  2833. return 0.0f;
  2834. }
  2835. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2836. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2837. switch (tensor->type) {
  2838. case GGML_TYPE_I8:
  2839. {
  2840. ((int8_t *)(data))[0] = value;
  2841. } break;
  2842. case GGML_TYPE_I16:
  2843. {
  2844. ((int16_t *)(data))[0] = value;
  2845. } break;
  2846. case GGML_TYPE_I32:
  2847. {
  2848. ((int32_t *)(data))[0] = value;
  2849. } break;
  2850. case GGML_TYPE_F16:
  2851. {
  2852. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2853. } break;
  2854. case GGML_TYPE_F32:
  2855. {
  2856. ((float *)(data))[0] = value;
  2857. } break;
  2858. default:
  2859. {
  2860. GGML_ASSERT(false);
  2861. } break;
  2862. }
  2863. }
  2864. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2865. if (!ggml_is_contiguous(tensor)) {
  2866. int64_t id[4] = { 0, 0, 0, 0 };
  2867. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2868. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2869. }
  2870. switch (tensor->type) {
  2871. case GGML_TYPE_I8:
  2872. {
  2873. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2874. return ((int8_t *)(tensor->data))[i];
  2875. }
  2876. case GGML_TYPE_I16:
  2877. {
  2878. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2879. return ((int16_t *)(tensor->data))[i];
  2880. }
  2881. case GGML_TYPE_I32:
  2882. {
  2883. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2884. return ((int32_t *)(tensor->data))[i];
  2885. }
  2886. case GGML_TYPE_F16:
  2887. {
  2888. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2889. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2890. }
  2891. case GGML_TYPE_F32:
  2892. {
  2893. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2894. return ((float *)(tensor->data))[i];
  2895. }
  2896. default:
  2897. {
  2898. GGML_ASSERT(false);
  2899. }
  2900. }
  2901. return 0.0f;
  2902. }
  2903. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2904. if (!ggml_is_contiguous(tensor)) {
  2905. int64_t id[4] = { 0, 0, 0, 0 };
  2906. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2907. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2908. return;
  2909. }
  2910. switch (tensor->type) {
  2911. case GGML_TYPE_I8:
  2912. {
  2913. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2914. ((int8_t *)(tensor->data))[i] = value;
  2915. } break;
  2916. case GGML_TYPE_I16:
  2917. {
  2918. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2919. ((int16_t *)(tensor->data))[i] = value;
  2920. } break;
  2921. case GGML_TYPE_I32:
  2922. {
  2923. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2924. ((int32_t *)(tensor->data))[i] = value;
  2925. } break;
  2926. case GGML_TYPE_F16:
  2927. {
  2928. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2929. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2930. } break;
  2931. case GGML_TYPE_F32:
  2932. {
  2933. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2934. ((float *)(tensor->data))[i] = value;
  2935. } break;
  2936. default:
  2937. {
  2938. GGML_ASSERT(false);
  2939. } break;
  2940. }
  2941. }
  2942. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2943. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2944. switch (tensor->type) {
  2945. case GGML_TYPE_I8:
  2946. return ((int8_t *) data)[0];
  2947. case GGML_TYPE_I16:
  2948. return ((int16_t *) data)[0];
  2949. case GGML_TYPE_I32:
  2950. return ((int32_t *) data)[0];
  2951. case GGML_TYPE_F16:
  2952. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2953. case GGML_TYPE_F32:
  2954. return ((float *) data)[0];
  2955. default:
  2956. GGML_ASSERT(false);
  2957. }
  2958. return 0.0f;
  2959. }
  2960. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2961. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2962. switch (tensor->type) {
  2963. case GGML_TYPE_I8:
  2964. {
  2965. ((int8_t *)(data))[0] = value;
  2966. } break;
  2967. case GGML_TYPE_I16:
  2968. {
  2969. ((int16_t *)(data))[0] = value;
  2970. } break;
  2971. case GGML_TYPE_I32:
  2972. {
  2973. ((int32_t *)(data))[0] = value;
  2974. } break;
  2975. case GGML_TYPE_F16:
  2976. {
  2977. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2978. } break;
  2979. case GGML_TYPE_F32:
  2980. {
  2981. ((float *)(data))[0] = value;
  2982. } break;
  2983. default:
  2984. {
  2985. GGML_ASSERT(false);
  2986. } break;
  2987. }
  2988. }
  2989. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2990. return tensor->data;
  2991. }
  2992. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2993. assert(tensor->type == GGML_TYPE_F32);
  2994. return (float *)(tensor->data);
  2995. }
  2996. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2997. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2998. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2999. }
  3000. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3001. return tensor->name;
  3002. }
  3003. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3004. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3005. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3006. return tensor;
  3007. }
  3008. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3009. va_list args;
  3010. va_start(args, fmt);
  3011. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3012. va_end(args);
  3013. return tensor;
  3014. }
  3015. struct ggml_tensor * ggml_view_tensor(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * src) {
  3018. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3019. ggml_format_name(result, "%s (view)", src->name);
  3020. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3021. result->nb[i] = src->nb[i];
  3022. }
  3023. return result;
  3024. }
  3025. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3026. struct ggml_object * obj = ctx->objects_begin;
  3027. char * const mem_buffer = ctx->mem_buffer;
  3028. while (obj != NULL) {
  3029. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3030. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3031. }
  3032. obj = obj->next;
  3033. }
  3034. return NULL;
  3035. }
  3036. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3037. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3038. obj = obj->next;
  3039. char * const mem_buffer = ctx->mem_buffer;
  3040. while (obj != NULL) {
  3041. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3042. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3043. }
  3044. obj = obj->next;
  3045. }
  3046. return NULL;
  3047. }
  3048. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3049. struct ggml_object * obj = ctx->objects_begin;
  3050. char * const mem_buffer = ctx->mem_buffer;
  3051. while (obj != NULL) {
  3052. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3053. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3054. if (strcmp(cur->name, name) == 0) {
  3055. return cur;
  3056. }
  3057. }
  3058. obj = obj->next;
  3059. }
  3060. return NULL;
  3061. }
  3062. ////////////////////////////////////////////////////////////////////////////////
  3063. // ggml_dup
  3064. static struct ggml_tensor * ggml_dup_impl(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. bool inplace) {
  3068. bool is_node = false;
  3069. if (!inplace && (a->grad)) {
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3073. result->op = GGML_OP_DUP;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. struct ggml_tensor * ggml_dup(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_dup_impl(ctx, a, false);
  3082. }
  3083. struct ggml_tensor * ggml_dup_inplace(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a) {
  3086. return ggml_dup_impl(ctx, a, true);
  3087. }
  3088. // ggml_add
  3089. static struct ggml_tensor * ggml_add_impl(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a,
  3092. struct ggml_tensor * b,
  3093. bool inplace) {
  3094. GGML_ASSERT(ggml_can_repeat(b, a));
  3095. bool is_node = false;
  3096. if (!inplace && (a->grad || b->grad)) {
  3097. // TODO: support backward pass for broadcasting
  3098. GGML_ASSERT(ggml_are_same_shape(a, b));
  3099. is_node = true;
  3100. }
  3101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3102. result->op = GGML_OP_ADD;
  3103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3104. result->src[0] = a;
  3105. result->src[1] = b;
  3106. return result;
  3107. }
  3108. struct ggml_tensor * ggml_add(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a,
  3111. struct ggml_tensor * b) {
  3112. return ggml_add_impl(ctx, a, b, false);
  3113. }
  3114. struct ggml_tensor * ggml_add_inplace(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b) {
  3118. return ggml_add_impl(ctx, a, b, true);
  3119. }
  3120. // ggml_add_cast
  3121. static struct ggml_tensor * ggml_add_cast_impl(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b,
  3125. enum ggml_type type) {
  3126. // TODO: support less-strict constraint
  3127. // GGML_ASSERT(ggml_can_repeat(b, a));
  3128. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3129. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3130. bool is_node = false;
  3131. if (a->grad || b->grad) {
  3132. // TODO: support backward pass for broadcasting
  3133. GGML_ASSERT(ggml_are_same_shape(a, b));
  3134. is_node = true;
  3135. }
  3136. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3137. result->op = GGML_OP_ADD;
  3138. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3139. result->src[0] = a;
  3140. result->src[1] = b;
  3141. return result;
  3142. }
  3143. struct ggml_tensor * ggml_add_cast(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a,
  3146. struct ggml_tensor * b,
  3147. enum ggml_type type) {
  3148. return ggml_add_cast_impl(ctx, a, b, type);
  3149. }
  3150. // ggml_add1
  3151. static struct ggml_tensor * ggml_add1_impl(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a,
  3154. struct ggml_tensor * b,
  3155. bool inplace) {
  3156. GGML_ASSERT(ggml_is_scalar(b));
  3157. GGML_ASSERT(ggml_is_padded_1d(a));
  3158. bool is_node = false;
  3159. if (a->grad || b->grad) {
  3160. is_node = true;
  3161. }
  3162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3163. result->op = GGML_OP_ADD1;
  3164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3165. result->src[0] = a;
  3166. result->src[1] = b;
  3167. return result;
  3168. }
  3169. struct ggml_tensor * ggml_add1(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a,
  3172. struct ggml_tensor * b) {
  3173. return ggml_add1_impl(ctx, a, b, false);
  3174. }
  3175. struct ggml_tensor * ggml_add1_inplace(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. struct ggml_tensor * b) {
  3179. return ggml_add1_impl(ctx, a, b, true);
  3180. }
  3181. // ggml_acc
  3182. static struct ggml_tensor * ggml_acc_impl(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b,
  3186. size_t nb1,
  3187. size_t nb2,
  3188. size_t nb3,
  3189. size_t offset,
  3190. bool inplace) {
  3191. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3192. GGML_ASSERT(ggml_is_contiguous(a));
  3193. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3194. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3195. bool is_node = false;
  3196. if (!inplace && (a->grad || b->grad)) {
  3197. is_node = true;
  3198. }
  3199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3200. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3201. ggml_set_op_params(result, params, sizeof(params));
  3202. result->op = GGML_OP_ACC;
  3203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3204. result->src[0] = a;
  3205. result->src[1] = b;
  3206. return result;
  3207. }
  3208. struct ggml_tensor * ggml_acc(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a,
  3211. struct ggml_tensor * b,
  3212. size_t nb1,
  3213. size_t nb2,
  3214. size_t nb3,
  3215. size_t offset) {
  3216. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3217. }
  3218. struct ggml_tensor * ggml_acc_inplace(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a,
  3221. struct ggml_tensor * b,
  3222. size_t nb1,
  3223. size_t nb2,
  3224. size_t nb3,
  3225. size_t offset) {
  3226. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3227. }
  3228. // ggml_sub
  3229. static struct ggml_tensor * ggml_sub_impl(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. struct ggml_tensor * b,
  3233. bool inplace) {
  3234. GGML_ASSERT(ggml_are_same_shape(a, b));
  3235. bool is_node = false;
  3236. if (!inplace && (a->grad || b->grad)) {
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. result->op = GGML_OP_SUB;
  3241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3242. result->src[0] = a;
  3243. result->src[1] = b;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_sub(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a,
  3249. struct ggml_tensor * b) {
  3250. return ggml_sub_impl(ctx, a, b, false);
  3251. }
  3252. struct ggml_tensor * ggml_sub_inplace(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. struct ggml_tensor * b) {
  3256. return ggml_sub_impl(ctx, a, b, true);
  3257. }
  3258. // ggml_mul
  3259. static struct ggml_tensor * ggml_mul_impl(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. struct ggml_tensor * b,
  3263. bool inplace) {
  3264. GGML_ASSERT(ggml_can_repeat(b, a));
  3265. bool is_node = false;
  3266. if (!inplace && (a->grad || b->grad)) {
  3267. // TODO: support backward pass for broadcasting
  3268. GGML_ASSERT(ggml_are_same_shape(a, b));
  3269. is_node = true;
  3270. }
  3271. if (inplace) {
  3272. GGML_ASSERT(!is_node);
  3273. }
  3274. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3275. result->op = GGML_OP_MUL;
  3276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3277. result->src[0] = a;
  3278. result->src[1] = b;
  3279. return result;
  3280. }
  3281. struct ggml_tensor * ggml_mul(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. struct ggml_tensor * b) {
  3285. return ggml_mul_impl(ctx, a, b, false);
  3286. }
  3287. struct ggml_tensor * ggml_mul_inplace(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. struct ggml_tensor * b) {
  3291. return ggml_mul_impl(ctx, a, b, true);
  3292. }
  3293. // ggml_div
  3294. static struct ggml_tensor * ggml_div_impl(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. struct ggml_tensor * b,
  3298. bool inplace) {
  3299. GGML_ASSERT(ggml_can_repeat(b, a));
  3300. bool is_node = false;
  3301. if (!inplace && (a->grad || b->grad)) {
  3302. is_node = true;
  3303. }
  3304. if (inplace) {
  3305. GGML_ASSERT(!is_node);
  3306. }
  3307. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3308. result->op = GGML_OP_DIV;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src[0] = a;
  3311. result->src[1] = b;
  3312. return result;
  3313. }
  3314. struct ggml_tensor * ggml_div(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. struct ggml_tensor * b) {
  3318. return ggml_div_impl(ctx, a, b, false);
  3319. }
  3320. struct ggml_tensor * ggml_div_inplace(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a,
  3323. struct ggml_tensor * b) {
  3324. return ggml_div_impl(ctx, a, b, true);
  3325. }
  3326. // ggml_sqr
  3327. static struct ggml_tensor * ggml_sqr_impl(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. bool inplace) {
  3331. bool is_node = false;
  3332. if (!inplace && (a->grad)) {
  3333. is_node = true;
  3334. }
  3335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3336. result->op = GGML_OP_SQR;
  3337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3338. result->src[0] = a;
  3339. return result;
  3340. }
  3341. struct ggml_tensor * ggml_sqr(
  3342. struct ggml_context * ctx,
  3343. struct ggml_tensor * a) {
  3344. return ggml_sqr_impl(ctx, a, false);
  3345. }
  3346. struct ggml_tensor * ggml_sqr_inplace(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. return ggml_sqr_impl(ctx, a, true);
  3350. }
  3351. // ggml_sqrt
  3352. static struct ggml_tensor * ggml_sqrt_impl(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a,
  3355. bool inplace) {
  3356. bool is_node = false;
  3357. if (!inplace && (a->grad)) {
  3358. is_node = true;
  3359. }
  3360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3361. result->op = GGML_OP_SQRT;
  3362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3363. result->src[0] = a;
  3364. return result;
  3365. }
  3366. struct ggml_tensor * ggml_sqrt(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_sqrt_impl(ctx, a, false);
  3370. }
  3371. struct ggml_tensor * ggml_sqrt_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_sqrt_impl(ctx, a, true);
  3375. }
  3376. // ggml_log
  3377. static struct ggml_tensor * ggml_log_impl(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. bool inplace) {
  3381. bool is_node = false;
  3382. if (!inplace && (a->grad)) {
  3383. is_node = true;
  3384. }
  3385. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3386. result->op = GGML_OP_LOG;
  3387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3388. result->src[0] = a;
  3389. return result;
  3390. }
  3391. struct ggml_tensor * ggml_log(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a) {
  3394. return ggml_log_impl(ctx, a, false);
  3395. }
  3396. struct ggml_tensor * ggml_log_inplace(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a) {
  3399. return ggml_log_impl(ctx, a, true);
  3400. }
  3401. // ggml_sum
  3402. struct ggml_tensor * ggml_sum(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a) {
  3405. bool is_node = false;
  3406. if (a->grad) {
  3407. is_node = true;
  3408. }
  3409. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3410. result->op = GGML_OP_SUM;
  3411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3412. result->src[0] = a;
  3413. return result;
  3414. }
  3415. // ggml_sum_rows
  3416. struct ggml_tensor * ggml_sum_rows(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. bool is_node = false;
  3420. if (a->grad) {
  3421. is_node = true;
  3422. }
  3423. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3424. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3425. ne[i] = a->ne[i];
  3426. }
  3427. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3428. result->op = GGML_OP_SUM_ROWS;
  3429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3430. result->src[0] = a;
  3431. return result;
  3432. }
  3433. // ggml_mean
  3434. struct ggml_tensor * ggml_mean(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a) {
  3437. bool is_node = false;
  3438. if (a->grad) {
  3439. GGML_ASSERT(false); // TODO: implement
  3440. is_node = true;
  3441. }
  3442. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3444. result->op = GGML_OP_MEAN;
  3445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3446. result->src[0] = a;
  3447. return result;
  3448. }
  3449. // ggml_argmax
  3450. struct ggml_tensor * ggml_argmax(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. GGML_ASSERT(ggml_is_matrix(a));
  3454. bool is_node = false;
  3455. if (a->grad) {
  3456. GGML_ASSERT(false);
  3457. is_node = true;
  3458. }
  3459. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3460. result->op = GGML_OP_ARGMAX;
  3461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3462. result->src[0] = a;
  3463. return result;
  3464. }
  3465. // ggml_repeat
  3466. struct ggml_tensor * ggml_repeat(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. struct ggml_tensor * b) {
  3470. GGML_ASSERT(ggml_can_repeat(a, b));
  3471. bool is_node = false;
  3472. if (a->grad) {
  3473. is_node = true;
  3474. }
  3475. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3476. result->op = GGML_OP_REPEAT;
  3477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3478. result->src[0] = a;
  3479. return result;
  3480. }
  3481. // ggml_repeat_back
  3482. struct ggml_tensor * ggml_repeat_back(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a,
  3485. struct ggml_tensor * b) {
  3486. GGML_ASSERT(ggml_can_repeat(b, a));
  3487. bool is_node = false;
  3488. if (a->grad) {
  3489. is_node = true;
  3490. }
  3491. if (ggml_are_same_shape(a, b) && !is_node) {
  3492. return a;
  3493. }
  3494. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3495. result->op = GGML_OP_REPEAT_BACK;
  3496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3497. result->src[0] = a;
  3498. return result;
  3499. }
  3500. // ggml_concat
  3501. struct ggml_tensor * ggml_concat(
  3502. struct ggml_context* ctx,
  3503. struct ggml_tensor* a,
  3504. struct ggml_tensor* b) {
  3505. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3506. bool is_node = false;
  3507. if (a->grad || b->grad) {
  3508. is_node = true;
  3509. }
  3510. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3511. result->op = GGML_OP_CONCAT;
  3512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3513. result->src[0] = a;
  3514. result->src[1] = b;
  3515. return result;
  3516. }
  3517. // ggml_abs
  3518. struct ggml_tensor * ggml_abs(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a) {
  3521. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3522. }
  3523. struct ggml_tensor * ggml_abs_inplace(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a) {
  3526. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3527. }
  3528. // ggml_sgn
  3529. struct ggml_tensor * ggml_sgn(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a) {
  3532. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3533. }
  3534. struct ggml_tensor * ggml_sgn_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a) {
  3537. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3538. }
  3539. // ggml_neg
  3540. struct ggml_tensor * ggml_neg(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a) {
  3543. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3544. }
  3545. struct ggml_tensor * ggml_neg_inplace(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a) {
  3548. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3549. }
  3550. // ggml_step
  3551. struct ggml_tensor * ggml_step(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a) {
  3554. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3555. }
  3556. struct ggml_tensor * ggml_step_inplace(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a) {
  3559. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3560. }
  3561. // ggml_tanh
  3562. struct ggml_tensor * ggml_tanh(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a) {
  3565. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3566. }
  3567. struct ggml_tensor * ggml_tanh_inplace(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a) {
  3570. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3571. }
  3572. // ggml_elu
  3573. struct ggml_tensor * ggml_elu(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a) {
  3576. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3577. }
  3578. struct ggml_tensor * ggml_elu_inplace(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3582. }
  3583. // ggml_relu
  3584. struct ggml_tensor * ggml_relu(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a) {
  3587. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3588. }
  3589. struct ggml_tensor * ggml_relu_inplace(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3593. }
  3594. // ggml_leaky_relu
  3595. struct ggml_tensor * ggml_leaky_relu(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3598. bool is_node = false;
  3599. if (!inplace && (a->grad)) {
  3600. is_node = true;
  3601. }
  3602. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3603. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3604. result->op = GGML_OP_LEAKY_RELU;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src[0] = a;
  3607. return result;
  3608. }
  3609. // ggml_gelu
  3610. struct ggml_tensor * ggml_gelu(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a) {
  3613. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3614. }
  3615. struct ggml_tensor * ggml_gelu_inplace(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a) {
  3618. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3619. }
  3620. // ggml_gelu_quick
  3621. struct ggml_tensor * ggml_gelu_quick(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a) {
  3624. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3625. }
  3626. struct ggml_tensor * ggml_gelu_quick_inplace(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a) {
  3629. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3630. }
  3631. // ggml_silu
  3632. struct ggml_tensor * ggml_silu(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a) {
  3635. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3636. }
  3637. struct ggml_tensor * ggml_silu_inplace(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a) {
  3640. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3641. }
  3642. // ggml_silu_back
  3643. struct ggml_tensor * ggml_silu_back(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. struct ggml_tensor * b) {
  3647. bool is_node = false;
  3648. if (a->grad || b->grad) {
  3649. // TODO: implement backward
  3650. is_node = true;
  3651. }
  3652. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3653. result->op = GGML_OP_SILU_BACK;
  3654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3655. result->src[0] = a;
  3656. result->src[1] = b;
  3657. return result;
  3658. }
  3659. // ggml hardswish
  3660. struct ggml_tensor * ggml_hardswish(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a) {
  3663. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3664. }
  3665. // ggml hardsigmoid
  3666. struct ggml_tensor * ggml_hardsigmoid(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a) {
  3669. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3670. }
  3671. // ggml_norm
  3672. static struct ggml_tensor * ggml_norm_impl(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. float eps,
  3676. bool inplace) {
  3677. bool is_node = false;
  3678. if (!inplace && (a->grad)) {
  3679. GGML_ASSERT(false); // TODO: implement backward
  3680. is_node = true;
  3681. }
  3682. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3683. ggml_set_op_params(result, &eps, sizeof(eps));
  3684. result->op = GGML_OP_NORM;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. struct ggml_tensor * ggml_norm(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. float eps) {
  3693. return ggml_norm_impl(ctx, a, eps, false);
  3694. }
  3695. struct ggml_tensor * ggml_norm_inplace(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. float eps) {
  3699. return ggml_norm_impl(ctx, a, eps, true);
  3700. }
  3701. // ggml_rms_norm
  3702. static struct ggml_tensor * ggml_rms_norm_impl(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. float eps,
  3706. bool inplace) {
  3707. bool is_node = false;
  3708. if (!inplace && (a->grad)) {
  3709. is_node = true;
  3710. }
  3711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3712. ggml_set_op_params(result, &eps, sizeof(eps));
  3713. result->op = GGML_OP_RMS_NORM;
  3714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3715. result->src[0] = a;
  3716. return result;
  3717. }
  3718. struct ggml_tensor * ggml_rms_norm(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. float eps) {
  3722. return ggml_rms_norm_impl(ctx, a, eps, false);
  3723. }
  3724. struct ggml_tensor * ggml_rms_norm_inplace(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. float eps) {
  3728. return ggml_rms_norm_impl(ctx, a, eps, true);
  3729. }
  3730. // ggml_rms_norm_back
  3731. struct ggml_tensor * ggml_rms_norm_back(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. struct ggml_tensor * b,
  3735. float eps) {
  3736. bool is_node = false;
  3737. if (a->grad) {
  3738. // TODO: implement backward
  3739. is_node = true;
  3740. }
  3741. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3742. ggml_set_op_params(result, &eps, sizeof(eps));
  3743. result->op = GGML_OP_RMS_NORM_BACK;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src[0] = a;
  3746. result->src[1] = b;
  3747. return result;
  3748. }
  3749. // ggml_group_norm
  3750. static struct ggml_tensor * ggml_group_norm_impl(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. int n_groups,
  3754. bool inplace) {
  3755. bool is_node = false;
  3756. if (!inplace && (a->grad)) {
  3757. GGML_ASSERT(false); // TODO: implement backward
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. result->op_params[0] = n_groups;
  3762. result->op = GGML_OP_GROUP_NORM;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src[0] = a;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_group_norm(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. int n_groups) {
  3771. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3772. }
  3773. struct ggml_tensor * ggml_group_norm_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. int n_groups) {
  3777. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3778. }
  3779. // ggml_mul_mat
  3780. struct ggml_tensor * ggml_mul_mat(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3785. GGML_ASSERT(!ggml_is_transposed(a));
  3786. bool is_node = false;
  3787. if (a->grad || b->grad) {
  3788. is_node = true;
  3789. }
  3790. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3791. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3792. result->op = GGML_OP_MUL_MAT;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. void ggml_mul_mat_set_prec(
  3799. struct ggml_tensor * a,
  3800. enum ggml_prec prec) {
  3801. const int32_t prec_i32 = (int32_t) prec;
  3802. ggml_set_op_params_i32(a, 0, prec_i32);
  3803. }
  3804. // ggml_mul_mat_id
  3805. struct ggml_tensor * ggml_mul_mat_id(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * const as[],
  3808. int n_as,
  3809. struct ggml_tensor * ids,
  3810. int id,
  3811. struct ggml_tensor * b) {
  3812. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3813. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3814. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3815. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3816. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3817. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3818. bool is_node = false;
  3819. if (as[0]->grad || b->grad) {
  3820. is_node = true;
  3821. }
  3822. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3823. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3824. ggml_set_op_params_i32(result, 0, id);
  3825. ggml_set_op_params_i32(result, 1, n_as);
  3826. result->op = GGML_OP_MUL_MAT_ID;
  3827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3828. result->src[0] = ids;
  3829. result->src[1] = b;
  3830. for (int i = 0; i < n_as; i++) {
  3831. struct ggml_tensor * a = as[i];
  3832. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3833. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3834. GGML_ASSERT(!ggml_is_transposed(a));
  3835. result->src[i + 2] = a;
  3836. }
  3837. return result;
  3838. }
  3839. // ggml_out_prod
  3840. struct ggml_tensor * ggml_out_prod(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. struct ggml_tensor * b) {
  3844. GGML_ASSERT(ggml_can_out_prod(a, b));
  3845. GGML_ASSERT(!ggml_is_transposed(a));
  3846. bool is_node = false;
  3847. if (a->grad || b->grad) {
  3848. is_node = true;
  3849. }
  3850. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3851. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3852. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3853. result->op = GGML_OP_OUT_PROD;
  3854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3855. result->src[0] = a;
  3856. result->src[1] = b;
  3857. return result;
  3858. }
  3859. // ggml_scale
  3860. static struct ggml_tensor * ggml_scale_impl(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. float s,
  3864. bool inplace) {
  3865. GGML_ASSERT(ggml_is_padded_1d(a));
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3871. ggml_set_op_params(result, &s, sizeof(s));
  3872. result->op = GGML_OP_SCALE;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src[0] = a;
  3875. return result;
  3876. }
  3877. struct ggml_tensor * ggml_scale(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a,
  3880. float s) {
  3881. return ggml_scale_impl(ctx, a, s, false);
  3882. }
  3883. struct ggml_tensor * ggml_scale_inplace(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. float s) {
  3887. return ggml_scale_impl(ctx, a, s, true);
  3888. }
  3889. // ggml_set
  3890. static struct ggml_tensor * ggml_set_impl(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b,
  3894. size_t nb1,
  3895. size_t nb2,
  3896. size_t nb3,
  3897. size_t offset,
  3898. bool inplace) {
  3899. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3900. bool is_node = false;
  3901. if (a->grad || b->grad) {
  3902. is_node = true;
  3903. }
  3904. // make a view of the destination
  3905. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3906. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3907. ggml_set_op_params(result, params, sizeof(params));
  3908. result->op = GGML_OP_SET;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. result->src[1] = b;
  3912. return result;
  3913. }
  3914. struct ggml_tensor * ggml_set(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b,
  3918. size_t nb1,
  3919. size_t nb2,
  3920. size_t nb3,
  3921. size_t offset) {
  3922. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3923. }
  3924. struct ggml_tensor * ggml_set_inplace(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. size_t nb1,
  3929. size_t nb2,
  3930. size_t nb3,
  3931. size_t offset) {
  3932. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3933. }
  3934. struct ggml_tensor * ggml_set_1d(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b,
  3938. size_t offset) {
  3939. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3940. }
  3941. struct ggml_tensor * ggml_set_1d_inplace(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b,
  3945. size_t offset) {
  3946. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3947. }
  3948. struct ggml_tensor * ggml_set_2d(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. struct ggml_tensor * b,
  3952. size_t nb1,
  3953. size_t offset) {
  3954. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3955. }
  3956. struct ggml_tensor * ggml_set_2d_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b,
  3960. size_t nb1,
  3961. size_t offset) {
  3962. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3963. }
  3964. // ggml_cpy
  3965. static struct ggml_tensor * ggml_cpy_impl(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. struct ggml_tensor * b) {
  3969. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3970. bool is_node = false;
  3971. if (a->grad || b->grad) {
  3972. // inplace is false and either one have a grad
  3973. is_node = true;
  3974. }
  3975. // make a view of the destination
  3976. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3977. if (strlen(b->name) > 0) {
  3978. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3979. } else {
  3980. ggml_format_name(result, "%s (copy)", a->name);
  3981. }
  3982. result->op = GGML_OP_CPY;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. result->src[1] = b;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_cpy(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b) {
  3992. return ggml_cpy_impl(ctx, a, b);
  3993. }
  3994. struct ggml_tensor * ggml_cast(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. enum ggml_type type) {
  3998. bool is_node = false;
  3999. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4000. ggml_format_name(result, "%s (copy)", a->name);
  4001. result->op = GGML_OP_CPY;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src[0] = a;
  4004. result->src[1] = result;
  4005. return result;
  4006. }
  4007. // ggml_cont
  4008. static struct ggml_tensor * ggml_cont_impl(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. bool is_node = false;
  4012. if (a->grad) {
  4013. is_node = true;
  4014. }
  4015. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4016. ggml_format_name(result, "%s (cont)", a->name);
  4017. result->op = GGML_OP_CONT;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src[0] = a;
  4020. return result;
  4021. }
  4022. struct ggml_tensor * ggml_cont(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a) {
  4025. return ggml_cont_impl(ctx, a);
  4026. }
  4027. // make contiguous, with new shape
  4028. GGML_API struct ggml_tensor * ggml_cont_1d(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. int64_t ne0) {
  4032. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4033. }
  4034. GGML_API struct ggml_tensor * ggml_cont_2d(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. int64_t ne0,
  4038. int64_t ne1) {
  4039. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4040. }
  4041. GGML_API struct ggml_tensor * ggml_cont_3d(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. int64_t ne0,
  4045. int64_t ne1,
  4046. int64_t ne2) {
  4047. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4048. }
  4049. struct ggml_tensor * ggml_cont_4d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. int64_t ne2,
  4055. int64_t ne3) {
  4056. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4057. bool is_node = false;
  4058. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4059. ggml_format_name(result, "%s (cont)", a->name);
  4060. result->op = GGML_OP_CONT;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src[0] = a;
  4063. return result;
  4064. }
  4065. // ggml_reshape
  4066. struct ggml_tensor * ggml_reshape(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. GGML_ASSERT(ggml_is_contiguous(a));
  4071. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4072. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4073. bool is_node = false;
  4074. if (a->grad) {
  4075. is_node = true;
  4076. }
  4077. if (b->grad) {
  4078. // gradient propagation is not supported
  4079. //GGML_ASSERT(false);
  4080. }
  4081. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4082. ggml_format_name(result, "%s (reshaped)", a->name);
  4083. result->op = GGML_OP_RESHAPE;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. return result;
  4087. }
  4088. struct ggml_tensor * ggml_reshape_1d(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. int64_t ne0) {
  4092. GGML_ASSERT(ggml_is_contiguous(a));
  4093. GGML_ASSERT(ggml_nelements(a) == ne0);
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. is_node = true;
  4097. }
  4098. const int64_t ne[1] = { ne0 };
  4099. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4100. ggml_format_name(result, "%s (reshaped)", a->name);
  4101. result->op = GGML_OP_RESHAPE;
  4102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4103. result->src[0] = a;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_reshape_2d(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a,
  4109. int64_t ne0,
  4110. int64_t ne1) {
  4111. GGML_ASSERT(ggml_is_contiguous(a));
  4112. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. const int64_t ne[2] = { ne0, ne1 };
  4118. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4119. ggml_format_name(result, "%s (reshaped)", a->name);
  4120. result->op = GGML_OP_RESHAPE;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_reshape_3d(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. int64_t ne0,
  4129. int64_t ne1,
  4130. int64_t ne2) {
  4131. GGML_ASSERT(ggml_is_contiguous(a));
  4132. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4133. bool is_node = false;
  4134. if (a->grad) {
  4135. is_node = true;
  4136. }
  4137. const int64_t ne[3] = { ne0, ne1, ne2 };
  4138. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4139. ggml_format_name(result, "%s (reshaped)", a->name);
  4140. result->op = GGML_OP_RESHAPE;
  4141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4142. result->src[0] = a;
  4143. return result;
  4144. }
  4145. struct ggml_tensor * ggml_reshape_4d(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. int64_t ne0,
  4149. int64_t ne1,
  4150. int64_t ne2,
  4151. int64_t ne3) {
  4152. GGML_ASSERT(ggml_is_contiguous(a));
  4153. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4154. bool is_node = false;
  4155. if (a->grad) {
  4156. is_node = true;
  4157. }
  4158. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4159. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4160. ggml_format_name(result, "%s (reshaped)", a->name);
  4161. result->op = GGML_OP_RESHAPE;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src[0] = a;
  4164. return result;
  4165. }
  4166. static struct ggml_tensor * ggml_view_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. int n_dims,
  4170. const int64_t * ne,
  4171. size_t offset) {
  4172. bool is_node = false;
  4173. if (a->grad) {
  4174. is_node = true;
  4175. }
  4176. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4177. ggml_format_name(result, "%s (view)", a->name);
  4178. ggml_set_op_params(result, &offset, sizeof(offset));
  4179. result->op = GGML_OP_VIEW;
  4180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4181. result->src[0] = a;
  4182. return result;
  4183. }
  4184. // ggml_view_1d
  4185. struct ggml_tensor * ggml_view_1d(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. int64_t ne0,
  4189. size_t offset) {
  4190. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4191. return result;
  4192. }
  4193. // ggml_view_2d
  4194. struct ggml_tensor * ggml_view_2d(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. int64_t ne0,
  4198. int64_t ne1,
  4199. size_t nb1,
  4200. size_t offset) {
  4201. const int64_t ne[2] = { ne0, ne1 };
  4202. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4203. result->nb[1] = nb1;
  4204. result->nb[2] = result->nb[1]*ne1;
  4205. result->nb[3] = result->nb[2];
  4206. return result;
  4207. }
  4208. // ggml_view_3d
  4209. struct ggml_tensor * ggml_view_3d(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. int64_t ne0,
  4213. int64_t ne1,
  4214. int64_t ne2,
  4215. size_t nb1,
  4216. size_t nb2,
  4217. size_t offset) {
  4218. const int64_t ne[3] = { ne0, ne1, ne2 };
  4219. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4220. result->nb[1] = nb1;
  4221. result->nb[2] = nb2;
  4222. result->nb[3] = result->nb[2]*ne2;
  4223. return result;
  4224. }
  4225. // ggml_view_4d
  4226. struct ggml_tensor * ggml_view_4d(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. int64_t ne0,
  4230. int64_t ne1,
  4231. int64_t ne2,
  4232. int64_t ne3,
  4233. size_t nb1,
  4234. size_t nb2,
  4235. size_t nb3,
  4236. size_t offset) {
  4237. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4238. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4239. result->nb[1] = nb1;
  4240. result->nb[2] = nb2;
  4241. result->nb[3] = nb3;
  4242. return result;
  4243. }
  4244. // ggml_permute
  4245. struct ggml_tensor * ggml_permute(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int axis0,
  4249. int axis1,
  4250. int axis2,
  4251. int axis3) {
  4252. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4253. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4254. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4255. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4256. GGML_ASSERT(axis0 != axis1);
  4257. GGML_ASSERT(axis0 != axis2);
  4258. GGML_ASSERT(axis0 != axis3);
  4259. GGML_ASSERT(axis1 != axis2);
  4260. GGML_ASSERT(axis1 != axis3);
  4261. GGML_ASSERT(axis2 != axis3);
  4262. bool is_node = false;
  4263. if (a->grad) {
  4264. is_node = true;
  4265. }
  4266. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4267. ggml_format_name(result, "%s (permuted)", a->name);
  4268. int ne[GGML_MAX_DIMS];
  4269. int nb[GGML_MAX_DIMS];
  4270. ne[axis0] = a->ne[0];
  4271. ne[axis1] = a->ne[1];
  4272. ne[axis2] = a->ne[2];
  4273. ne[axis3] = a->ne[3];
  4274. nb[axis0] = a->nb[0];
  4275. nb[axis1] = a->nb[1];
  4276. nb[axis2] = a->nb[2];
  4277. nb[axis3] = a->nb[3];
  4278. result->ne[0] = ne[0];
  4279. result->ne[1] = ne[1];
  4280. result->ne[2] = ne[2];
  4281. result->ne[3] = ne[3];
  4282. result->nb[0] = nb[0];
  4283. result->nb[1] = nb[1];
  4284. result->nb[2] = nb[2];
  4285. result->nb[3] = nb[3];
  4286. result->op = GGML_OP_PERMUTE;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src[0] = a;
  4289. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4290. ggml_set_op_params(result, params, sizeof(params));
  4291. return result;
  4292. }
  4293. // ggml_transpose
  4294. struct ggml_tensor * ggml_transpose(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a) {
  4297. bool is_node = false;
  4298. if (a->grad) {
  4299. is_node = true;
  4300. }
  4301. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4302. ggml_format_name(result, "%s (transposed)", a->name);
  4303. result->ne[0] = a->ne[1];
  4304. result->ne[1] = a->ne[0];
  4305. result->nb[0] = a->nb[1];
  4306. result->nb[1] = a->nb[0];
  4307. result->op = GGML_OP_TRANSPOSE;
  4308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4309. result->src[0] = a;
  4310. return result;
  4311. }
  4312. // ggml_get_rows
  4313. struct ggml_tensor * ggml_get_rows(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. struct ggml_tensor * b) {
  4317. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4318. GGML_ASSERT(b->ne[3] == 1);
  4319. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4320. bool is_node = false;
  4321. if (a->grad || b->grad) {
  4322. is_node = true;
  4323. }
  4324. // TODO: implement non F32 return
  4325. enum ggml_type type = GGML_TYPE_F32;
  4326. if (a->type == GGML_TYPE_I32) {
  4327. type = a->type;
  4328. }
  4329. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4330. result->op = GGML_OP_GET_ROWS;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src[0] = a;
  4333. result->src[1] = b;
  4334. return result;
  4335. }
  4336. // ggml_get_rows_back
  4337. struct ggml_tensor * ggml_get_rows_back(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. struct ggml_tensor * c) {
  4342. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4343. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. is_node = true;
  4347. }
  4348. // TODO: implement non F32 return
  4349. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4350. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4351. result->op = GGML_OP_GET_ROWS_BACK;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. // ggml_diag
  4358. struct ggml_tensor * ggml_diag(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. GGML_ASSERT(a->ne[1] == 1);
  4362. bool is_node = false;
  4363. if (a->grad) {
  4364. is_node = true;
  4365. }
  4366. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4367. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4368. result->op = GGML_OP_DIAG;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. return result;
  4372. }
  4373. // ggml_diag_mask_inf
  4374. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. int n_past,
  4378. bool inplace) {
  4379. bool is_node = false;
  4380. if (a->grad) {
  4381. is_node = true;
  4382. }
  4383. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4384. int32_t params[] = { n_past };
  4385. ggml_set_op_params(result, params, sizeof(params));
  4386. result->op = GGML_OP_DIAG_MASK_INF;
  4387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4388. result->src[0] = a;
  4389. return result;
  4390. }
  4391. struct ggml_tensor * ggml_diag_mask_inf(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. int n_past) {
  4395. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4396. }
  4397. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. int n_past) {
  4401. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4402. }
  4403. // ggml_diag_mask_zero
  4404. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. int n_past,
  4408. bool inplace) {
  4409. bool is_node = false;
  4410. if (a->grad) {
  4411. is_node = true;
  4412. }
  4413. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4414. int32_t params[] = { n_past };
  4415. ggml_set_op_params(result, params, sizeof(params));
  4416. result->op = GGML_OP_DIAG_MASK_ZERO;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src[0] = a;
  4419. return result;
  4420. }
  4421. struct ggml_tensor * ggml_diag_mask_zero(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. int n_past) {
  4425. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4426. }
  4427. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. int n_past) {
  4431. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4432. }
  4433. // ggml_soft_max
  4434. static struct ggml_tensor * ggml_soft_max_impl(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. struct ggml_tensor * mask,
  4438. struct ggml_tensor * pos,
  4439. float scale,
  4440. float max_bias,
  4441. bool inplace) {
  4442. GGML_ASSERT(ggml_is_contiguous(a));
  4443. if (mask) {
  4444. GGML_ASSERT(ggml_is_contiguous(mask));
  4445. GGML_ASSERT(ggml_is_matrix(mask));
  4446. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4447. }
  4448. if (pos) {
  4449. GGML_ASSERT(ggml_is_vector(pos));
  4450. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4451. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4452. }
  4453. if (max_bias > 0.0f) {
  4454. GGML_ASSERT(pos);
  4455. }
  4456. bool is_node = false;
  4457. if (a->grad) {
  4458. is_node = true;
  4459. }
  4460. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4461. float params[] = { scale, max_bias };
  4462. ggml_set_op_params(result, params, sizeof(params));
  4463. result->op = GGML_OP_SOFT_MAX;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. result->src[1] = mask;
  4467. result->src[2] = pos;
  4468. return result;
  4469. }
  4470. struct ggml_tensor * ggml_soft_max(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a) {
  4473. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4474. }
  4475. struct ggml_tensor * ggml_soft_max_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a) {
  4478. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4479. }
  4480. struct ggml_tensor * ggml_soft_max_ext(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. struct ggml_tensor * mask,
  4484. struct ggml_tensor * pos,
  4485. float scale,
  4486. float max_bias) {
  4487. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4488. }
  4489. // ggml_soft_max_back
  4490. static struct ggml_tensor * ggml_soft_max_back_impl(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b,
  4494. bool inplace) {
  4495. bool is_node = false;
  4496. if (a->grad || b->grad) {
  4497. is_node = true; // TODO : implement backward pass
  4498. }
  4499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4500. result->op = GGML_OP_SOFT_MAX_BACK;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = a;
  4503. result->src[1] = b;
  4504. return result;
  4505. }
  4506. struct ggml_tensor * ggml_soft_max_back(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. struct ggml_tensor * b) {
  4510. return ggml_soft_max_back_impl(ctx, a, b, false);
  4511. }
  4512. struct ggml_tensor * ggml_soft_max_back_inplace(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b) {
  4516. return ggml_soft_max_back_impl(ctx, a, b, true);
  4517. }
  4518. // ggml_rope
  4519. static struct ggml_tensor * ggml_rope_impl(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. int n_dims,
  4524. int mode,
  4525. int n_ctx,
  4526. int n_orig_ctx,
  4527. float freq_base,
  4528. float freq_scale,
  4529. float ext_factor,
  4530. float attn_factor,
  4531. float beta_fast,
  4532. float beta_slow,
  4533. float xpos_base,
  4534. bool xpos_down,
  4535. bool inplace) {
  4536. GGML_ASSERT(ggml_is_vector(b));
  4537. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4538. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4539. bool is_node = false;
  4540. if (a->grad) {
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4544. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4545. memcpy(params + 5, &freq_base, sizeof(float));
  4546. memcpy(params + 6, &freq_scale, sizeof(float));
  4547. memcpy(params + 7, &ext_factor, sizeof(float));
  4548. memcpy(params + 8, &attn_factor, sizeof(float));
  4549. memcpy(params + 9, &beta_fast, sizeof(float));
  4550. memcpy(params + 10, &beta_slow, sizeof(float));
  4551. memcpy(params + 11, &xpos_base, sizeof(float));
  4552. memcpy(params + 12, &xpos_down, sizeof(bool));
  4553. ggml_set_op_params(result, params, sizeof(params));
  4554. result->op = GGML_OP_ROPE;
  4555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4556. result->src[0] = a;
  4557. result->src[1] = b;
  4558. return result;
  4559. }
  4560. struct ggml_tensor * ggml_rope(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. struct ggml_tensor * b,
  4564. int n_dims,
  4565. int mode,
  4566. int n_ctx) {
  4567. return ggml_rope_impl(
  4568. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4569. );
  4570. }
  4571. struct ggml_tensor * ggml_rope_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b,
  4575. int n_dims,
  4576. int mode,
  4577. int n_ctx) {
  4578. return ggml_rope_impl(
  4579. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4580. );
  4581. }
  4582. struct ggml_tensor * ggml_rope_custom(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. struct ggml_tensor * b,
  4586. int n_dims,
  4587. int mode,
  4588. int n_ctx,
  4589. int n_orig_ctx,
  4590. float freq_base,
  4591. float freq_scale,
  4592. float ext_factor,
  4593. float attn_factor,
  4594. float beta_fast,
  4595. float beta_slow) {
  4596. return ggml_rope_impl(
  4597. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4598. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4599. );
  4600. }
  4601. struct ggml_tensor * ggml_rope_custom_inplace(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. int n_dims,
  4606. int mode,
  4607. int n_ctx,
  4608. int n_orig_ctx,
  4609. float freq_base,
  4610. float freq_scale,
  4611. float ext_factor,
  4612. float attn_factor,
  4613. float beta_fast,
  4614. float beta_slow) {
  4615. return ggml_rope_impl(
  4616. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4617. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4618. );
  4619. }
  4620. struct ggml_tensor * ggml_rope_xpos_inplace(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b,
  4624. int n_dims,
  4625. float base,
  4626. bool down) {
  4627. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4628. }
  4629. // ggml_rope_back
  4630. struct ggml_tensor * ggml_rope_back(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a,
  4633. struct ggml_tensor * b,
  4634. int n_dims,
  4635. int mode,
  4636. int n_ctx,
  4637. int n_orig_ctx,
  4638. float freq_base,
  4639. float freq_scale,
  4640. float ext_factor,
  4641. float attn_factor,
  4642. float beta_fast,
  4643. float beta_slow,
  4644. float xpos_base,
  4645. bool xpos_down) {
  4646. GGML_ASSERT(ggml_is_vector(b));
  4647. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4648. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4649. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. is_node = false; // TODO: implement backward
  4653. }
  4654. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4655. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4656. memcpy(params + 5, &freq_base, sizeof(float));
  4657. memcpy(params + 6, &freq_scale, sizeof(float));
  4658. memcpy(params + 7, &ext_factor, sizeof(float));
  4659. memcpy(params + 8, &attn_factor, sizeof(float));
  4660. memcpy(params + 9, &beta_fast, sizeof(float));
  4661. memcpy(params + 10, &beta_slow, sizeof(float));
  4662. memcpy(params + 11, &xpos_base, sizeof(float));
  4663. memcpy(params + 12, &xpos_down, sizeof(bool));
  4664. ggml_set_op_params(result, params, sizeof(params));
  4665. result->op = GGML_OP_ROPE_BACK;
  4666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4667. result->src[0] = a;
  4668. result->src[1] = b;
  4669. return result;
  4670. }
  4671. // ggml_alibi
  4672. struct ggml_tensor * ggml_alibi(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. int n_past,
  4676. int n_head,
  4677. float bias_max) {
  4678. GGML_ASSERT(n_past >= 0);
  4679. bool is_node = false;
  4680. if (a->grad) {
  4681. GGML_ASSERT(false); // TODO: implement backward
  4682. is_node = true;
  4683. }
  4684. // TODO: when implement backward, fix this:
  4685. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4686. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4687. int32_t op_params[3] = { n_past, n_head };
  4688. memcpy(op_params + 2, &bias_max, sizeof(float));
  4689. ggml_set_op_params(result, op_params, sizeof(op_params));
  4690. result->op = GGML_OP_ALIBI;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src[0] = a;
  4693. return result;
  4694. }
  4695. // ggml_clamp
  4696. struct ggml_tensor * ggml_clamp(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. float min,
  4700. float max) {
  4701. bool is_node = false;
  4702. if (a->grad) {
  4703. GGML_ASSERT(false); // TODO: implement backward
  4704. is_node = true;
  4705. }
  4706. // TODO: when implement backward, fix this:
  4707. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4708. float params[] = { min, max };
  4709. ggml_set_op_params(result, params, sizeof(params));
  4710. result->op = GGML_OP_CLAMP;
  4711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4712. result->src[0] = a;
  4713. return result;
  4714. }
  4715. // ggml_conv_1d
  4716. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4717. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4718. }
  4719. GGML_API struct ggml_tensor * ggml_conv_1d(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. struct ggml_tensor * b,
  4723. int s0,
  4724. int p0,
  4725. int d0) {
  4726. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4727. struct ggml_tensor * result =
  4728. ggml_mul_mat(ctx,
  4729. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4730. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4731. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4732. return result;
  4733. }
  4734. // ggml_conv_1d_ph
  4735. struct ggml_tensor* ggml_conv_1d_ph(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. struct ggml_tensor * b,
  4739. int s,
  4740. int d) {
  4741. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4742. }
  4743. // ggml_conv_transpose_1d
  4744. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4745. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4746. }
  4747. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * b,
  4751. int s0,
  4752. int p0,
  4753. int d0) {
  4754. GGML_ASSERT(ggml_is_matrix(b));
  4755. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4756. GGML_ASSERT(a->ne[3] == 1);
  4757. GGML_ASSERT(p0 == 0);
  4758. GGML_ASSERT(d0 == 1);
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. GGML_ASSERT(false); // TODO: implement backward
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[4] = {
  4765. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4766. a->ne[1], b->ne[2], 1,
  4767. };
  4768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4769. int32_t params[] = { s0, p0, d0 };
  4770. ggml_set_op_params(result, params, sizeof(params));
  4771. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. result->src[1] = b;
  4775. return result;
  4776. }
  4777. // ggml_conv_depthwise
  4778. struct ggml_tensor * ggml_conv_depthwise_2d(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * b,
  4782. int s0,
  4783. int s1,
  4784. int p0,
  4785. int p1,
  4786. int d0,
  4787. int d1) {
  4788. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4789. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4790. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4791. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4792. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4793. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4794. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4795. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4796. return result;
  4797. }
  4798. // ggml_conv_2d
  4799. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4800. // a: [OC,IC, KH, KW]
  4801. // b: [N, IC, IH, IW]
  4802. // result: [N, OH, OW, IC*KH*KW]
  4803. struct ggml_tensor * ggml_im2col(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. struct ggml_tensor * b,
  4807. int s0,
  4808. int s1,
  4809. int p0,
  4810. int p1,
  4811. int d0,
  4812. int d1,
  4813. bool is_2D,
  4814. enum ggml_type dst_type) {
  4815. if(is_2D) {
  4816. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4817. } else {
  4818. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4819. }
  4820. bool is_node = false;
  4821. if (a->grad || b->grad) {
  4822. GGML_ASSERT(false); // TODO: implement backward
  4823. is_node = true;
  4824. }
  4825. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4826. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4827. const int64_t ne[4] = {
  4828. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4829. OW,
  4830. is_2D ? OH : b->ne[2],
  4831. is_2D ? b->ne[3] : 1,
  4832. };
  4833. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4834. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4835. ggml_set_op_params(result, params, sizeof(params));
  4836. result->op = GGML_OP_IM2COL;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src[0] = a;
  4839. result->src[1] = b;
  4840. return result;
  4841. }
  4842. // a: [OC,IC, KH, KW]
  4843. // b: [N, IC, IH, IW]
  4844. // result: [N, OC, OH, OW]
  4845. struct ggml_tensor * ggml_conv_2d(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * b,
  4849. int s0,
  4850. int s1,
  4851. int p0,
  4852. int p1,
  4853. int d0,
  4854. int d1) {
  4855. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4856. struct ggml_tensor * result =
  4857. ggml_mul_mat(ctx,
  4858. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4859. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4860. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4861. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4862. return result;
  4863. }
  4864. // ggml_conv_2d_sk_p0
  4865. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b) {
  4869. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4870. }
  4871. // ggml_conv_2d_s1_ph
  4872. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. struct ggml_tensor * b) {
  4876. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4877. }
  4878. // ggml_conv_transpose_2d_p0
  4879. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4880. return (ins - 1) * s - 2 * p + ks;
  4881. }
  4882. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b,
  4886. int stride) {
  4887. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4888. bool is_node = false;
  4889. if (a->grad || b->grad) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. const int64_t ne[4] = {
  4894. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4895. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4896. a->ne[2], b->ne[3],
  4897. };
  4898. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4899. ggml_set_op_params_i32(result, 0, stride);
  4900. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. result->src[1] = b;
  4904. return result;
  4905. }
  4906. // ggml_pool_*
  4907. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4908. return (ins + 2 * p - ks) / s + 1;
  4909. }
  4910. // ggml_pool_1d
  4911. struct ggml_tensor * ggml_pool_1d(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. enum ggml_op_pool op,
  4915. int k0,
  4916. int s0,
  4917. int p0) {
  4918. bool is_node = false;
  4919. if (a->grad) {
  4920. GGML_ASSERT(false); // TODO: implement backward
  4921. is_node = true;
  4922. }
  4923. const int64_t ne[4] = {
  4924. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4925. a->ne[1],
  4926. a->ne[2],
  4927. a->ne[3],
  4928. };
  4929. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4930. int32_t params[] = { op, k0, s0, p0 };
  4931. ggml_set_op_params(result, params, sizeof(params));
  4932. result->op = GGML_OP_POOL_1D;
  4933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4934. result->src[0] = a;
  4935. return result;
  4936. }
  4937. // ggml_pool_2d
  4938. struct ggml_tensor * ggml_pool_2d(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. enum ggml_op_pool op,
  4942. int k0,
  4943. int k1,
  4944. int s0,
  4945. int s1,
  4946. float p0,
  4947. float p1) {
  4948. bool is_node = false;
  4949. if (a->grad) {
  4950. GGML_ASSERT(false); // TODO: implement backward
  4951. is_node = true;
  4952. }
  4953. struct ggml_tensor * result;
  4954. const int64_t ne[3] = {
  4955. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4956. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4957. a->ne[2],
  4958. };
  4959. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4960. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4961. ggml_set_op_params(result, params, sizeof(params));
  4962. result->op = GGML_OP_POOL_2D;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_upscale
  4968. static struct ggml_tensor * ggml_upscale_impl(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. int scale_factor) {
  4972. bool is_node = false;
  4973. if (a->grad) {
  4974. GGML_ASSERT(false); // TODO: implement backward
  4975. is_node = true;
  4976. }
  4977. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4978. a->ne[0] * scale_factor,
  4979. a->ne[1] * scale_factor,
  4980. a->ne[2], a->ne[3]);
  4981. result->op = GGML_OP_UPSCALE;
  4982. result->op_params[0] = scale_factor;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. return result;
  4986. }
  4987. struct ggml_tensor * ggml_pad(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. int p0, int p1, int p2, int p3) {
  4991. bool is_node = false;
  4992. if (a->grad) {
  4993. GGML_ASSERT(false); // TODO: implement backward
  4994. is_node = true;
  4995. }
  4996. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4997. a->ne[0] + p0,
  4998. a->ne[1] + p1,
  4999. a->ne[2] + p2,
  5000. a->ne[3] + p3);
  5001. result->op = GGML_OP_PAD;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. return result;
  5005. }
  5006. struct ggml_tensor * ggml_upscale(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. int scale_factor) {
  5010. return ggml_upscale_impl(ctx, a, scale_factor);
  5011. }
  5012. struct ggml_tensor * ggml_arange(
  5013. struct ggml_context * ctx,
  5014. float start,
  5015. float stop,
  5016. float step) {
  5017. GGML_ASSERT(stop > start);
  5018. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5019. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5020. result->op = GGML_OP_ARANGE;
  5021. ggml_set_op_params_f32(result, 0, start);
  5022. ggml_set_op_params_f32(result, 1, stop);
  5023. ggml_set_op_params_f32(result, 2, step);
  5024. return result;
  5025. }
  5026. struct ggml_tensor * ggml_timestep_embedding(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * timesteps,
  5029. int dim,
  5030. int max_period) {
  5031. bool is_node = false;
  5032. if (timesteps->grad) {
  5033. GGML_ASSERT(false); // TODO: implement backward
  5034. is_node = true;
  5035. }
  5036. int actual_dim = dim;
  5037. if (dim % 2 != 0) {
  5038. actual_dim = dim + 1;
  5039. }
  5040. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5041. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5042. ggml_set_op_params_i32(result, 0, dim);
  5043. ggml_set_op_params_i32(result, 1, max_period);
  5044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5045. result->src[0] = timesteps;
  5046. return result;
  5047. }
  5048. // ggml_argsort
  5049. struct ggml_tensor * ggml_argsort(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. enum ggml_sort_order order) {
  5053. bool is_node = false;
  5054. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5055. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5056. result->op = GGML_OP_ARGSORT;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. return result;
  5060. }
  5061. // ggml_top_k
  5062. struct ggml_tensor * ggml_top_k(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int k) {
  5066. GGML_ASSERT(a->ne[0] >= k);
  5067. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5068. result = ggml_view_4d(ctx, result,
  5069. k, result->ne[1], result->ne[2], result->ne[3],
  5070. result->nb[1], result->nb[2], result->nb[3],
  5071. 0);
  5072. return result;
  5073. }
  5074. // ggml_flash_attn
  5075. struct ggml_tensor * ggml_flash_attn(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * q,
  5078. struct ggml_tensor * k,
  5079. struct ggml_tensor * v,
  5080. bool masked) {
  5081. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5082. // TODO: check if vT can be multiplied by (k*qT)
  5083. bool is_node = false;
  5084. if (q->grad || k->grad || v->grad) {
  5085. is_node = true;
  5086. }
  5087. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5088. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5089. int32_t t = masked ? 1 : 0;
  5090. ggml_set_op_params(result, &t, sizeof(t));
  5091. result->op = GGML_OP_FLASH_ATTN;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src[0] = q;
  5094. result->src[1] = k;
  5095. result->src[2] = v;
  5096. return result;
  5097. }
  5098. // ggml_flash_ff
  5099. struct ggml_tensor * ggml_flash_ff(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b0,
  5103. struct ggml_tensor * b1,
  5104. struct ggml_tensor * c0,
  5105. struct ggml_tensor * c1) {
  5106. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5107. // TODO: more checks
  5108. bool is_node = false;
  5109. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5110. is_node = true;
  5111. }
  5112. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5113. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5114. result->op = GGML_OP_FLASH_FF;
  5115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5116. result->src[0] = a;
  5117. result->src[1] = b0;
  5118. result->src[2] = b1;
  5119. result->src[3] = c0;
  5120. result->src[4] = c1;
  5121. return result;
  5122. }
  5123. // ggml_flash_attn_back
  5124. struct ggml_tensor * ggml_flash_attn_back(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * q,
  5127. struct ggml_tensor * k,
  5128. struct ggml_tensor * v,
  5129. struct ggml_tensor * d,
  5130. bool masked) {
  5131. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5132. // TODO: check if vT can be multiplied by (k*qT)
  5133. // d shape [D,N,ne2,ne3]
  5134. // q shape [D,N,ne2,ne3]
  5135. // k shape [D,M,kvne2,ne3]
  5136. // v shape [M,D,kvne2,ne3]
  5137. const int64_t D = q->ne[0];
  5138. const int64_t N = q->ne[1];
  5139. const int64_t M = k->ne[1];
  5140. const int64_t ne2 = q->ne[2];
  5141. const int64_t ne3 = q->ne[3];
  5142. const int64_t kvne2 = k->ne[2];
  5143. GGML_ASSERT(k->ne[0] == D);
  5144. GGML_ASSERT(v->ne[0] == M);
  5145. GGML_ASSERT(v->ne[1] == D);
  5146. GGML_ASSERT(d->ne[0] == D);
  5147. GGML_ASSERT(d->ne[1] == N);
  5148. GGML_ASSERT(k->ne[2] == kvne2);
  5149. GGML_ASSERT(k->ne[3] == ne3);
  5150. GGML_ASSERT(v->ne[2] == kvne2);
  5151. GGML_ASSERT(v->ne[3] == ne3);
  5152. GGML_ASSERT(d->ne[2] == ne2);
  5153. GGML_ASSERT(d->ne[3] == ne3);
  5154. GGML_ASSERT(ne2 % kvne2 == 0);
  5155. bool is_node = false;
  5156. if (q->grad || k->grad || v->grad) {
  5157. // when using this operation (in backwards pass) these grads are set.
  5158. // we don't want to create (big) grad of our result, so is_node is false.
  5159. is_node = false;
  5160. }
  5161. // store gradients of q, k and v as continuous tensors concatenated in result.
  5162. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5163. const int64_t elem_q = ggml_nelements(q);
  5164. const int64_t elem_k = ggml_nelements(k);
  5165. const int64_t elem_v = ggml_nelements(v);
  5166. enum ggml_type result_type = GGML_TYPE_F32;
  5167. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5168. const size_t tsize = ggml_type_size(result_type);
  5169. const size_t offs_q = 0;
  5170. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5171. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5172. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5173. const size_t nelements = (end + tsize - 1)/tsize;
  5174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5175. int32_t masked_i = masked ? 1 : 0;
  5176. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5177. result->op = GGML_OP_FLASH_ATTN_BACK;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src[0] = q;
  5180. result->src[1] = k;
  5181. result->src[2] = v;
  5182. result->src[3] = d;
  5183. return result;
  5184. }
  5185. // ggml_ssm_conv
  5186. struct ggml_tensor * ggml_ssm_conv(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * s,
  5189. struct ggml_tensor * x,
  5190. struct ggml_tensor * c,
  5191. struct ggml_tensor * sq) {
  5192. GGML_ASSERT(ggml_is_3d(s));
  5193. GGML_ASSERT(ggml_is_matrix(x));
  5194. GGML_ASSERT(ggml_is_matrix(c));
  5195. GGML_ASSERT(ggml_is_matrix(sq));
  5196. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5197. const int64_t d_conv = c->ne[0];
  5198. const int64_t d_inner = c->ne[1];
  5199. const int64_t n_tokens = x->ne[1];
  5200. const int64_t n_kv = s->ne[2];
  5201. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5202. GGML_ASSERT( s->ne[1] == d_inner);
  5203. GGML_ASSERT( x->ne[0] == d_inner);
  5204. GGML_ASSERT(sq->ne[0] == n_kv);
  5205. GGML_ASSERT(sq->ne[1] == n_tokens);
  5206. bool is_node = false;
  5207. if (s->grad || x->grad || c->grad || sq->grad) {
  5208. GGML_ASSERT(false); // TODO: implement
  5209. is_node = true;
  5210. }
  5211. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5212. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5213. result->op = GGML_OP_SSM_CONV;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src[0] = s;
  5216. result->src[1] = x;
  5217. result->src[2] = c;
  5218. result->src[3] = sq;
  5219. return result;
  5220. }
  5221. // ggml_ssm_scan
  5222. struct ggml_tensor * ggml_ssm_scan(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * s,
  5225. struct ggml_tensor * x,
  5226. struct ggml_tensor * dt,
  5227. struct ggml_tensor * A,
  5228. struct ggml_tensor * B,
  5229. struct ggml_tensor * C,
  5230. struct ggml_tensor * sq) {
  5231. GGML_ASSERT(ggml_is_contiguous(s));
  5232. GGML_ASSERT(ggml_is_contiguous(x));
  5233. GGML_ASSERT(ggml_is_contiguous(dt));
  5234. GGML_ASSERT(ggml_is_contiguous(A));
  5235. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5236. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5237. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5238. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5239. {
  5240. const int64_t d_state = s->ne[0];
  5241. const int64_t d_inner = s->ne[1];
  5242. const int64_t n_tokens = x->ne[1];
  5243. GGML_ASSERT(x->ne[0] == d_inner);
  5244. GGML_ASSERT(A->ne[0] == d_state);
  5245. GGML_ASSERT(A->ne[1] == d_inner);
  5246. GGML_ASSERT(B->ne[0] == d_state);
  5247. GGML_ASSERT(B->ne[1] == n_tokens);
  5248. GGML_ASSERT(C->ne[0] == d_state);
  5249. GGML_ASSERT(C->ne[1] == n_tokens);
  5250. }
  5251. bool is_node = false;
  5252. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5253. GGML_ASSERT(false); // TODO: implement
  5254. is_node = true;
  5255. }
  5256. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5257. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5258. result->op = GGML_OP_SSM_SCAN;
  5259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5260. result->src[0] = s;
  5261. result->src[1] = x;
  5262. result->src[2] = dt;
  5263. result->src[3] = A;
  5264. result->src[4] = B;
  5265. result->src[5] = C;
  5266. result->src[6] = sq;
  5267. return result;
  5268. }
  5269. // ggml_win_part
  5270. struct ggml_tensor * ggml_win_part(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. int w) {
  5274. GGML_ASSERT(a->ne[3] == 1);
  5275. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5276. bool is_node = false;
  5277. if (a->grad) {
  5278. GGML_ASSERT(false); // TODO: implement backward
  5279. is_node = true;
  5280. }
  5281. // padding
  5282. const int px = (w - a->ne[1]%w)%w;
  5283. const int py = (w - a->ne[2]%w)%w;
  5284. const int npx = (px + a->ne[1])/w;
  5285. const int npy = (py + a->ne[2])/w;
  5286. const int np = npx*npy;
  5287. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5288. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5289. int32_t params[] = { npx, npy, w };
  5290. ggml_set_op_params(result, params, sizeof(params));
  5291. result->op = GGML_OP_WIN_PART;
  5292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5293. result->src[0] = a;
  5294. return result;
  5295. }
  5296. // ggml_win_unpart
  5297. struct ggml_tensor * ggml_win_unpart(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int w0,
  5301. int h0,
  5302. int w) {
  5303. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5304. bool is_node = false;
  5305. if (a->grad) {
  5306. GGML_ASSERT(false); // TODO: implement backward
  5307. is_node = true;
  5308. }
  5309. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5310. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5311. int32_t params[] = { w };
  5312. ggml_set_op_params(result, params, sizeof(params));
  5313. result->op = GGML_OP_WIN_UNPART;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src[0] = a;
  5316. return result;
  5317. }
  5318. // ggml_get_rel_pos
  5319. struct ggml_tensor * ggml_get_rel_pos(
  5320. struct ggml_context * ctx,
  5321. struct ggml_tensor * a,
  5322. int qh,
  5323. int kh) {
  5324. GGML_ASSERT(qh == kh);
  5325. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. GGML_ASSERT(false); // TODO: implement backward
  5329. is_node = true;
  5330. }
  5331. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5332. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5333. result->op = GGML_OP_GET_REL_POS;
  5334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5335. result->src[0] = a;
  5336. return result;
  5337. }
  5338. // ggml_add_rel_pos
  5339. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * pw,
  5343. struct ggml_tensor * ph,
  5344. bool inplace) {
  5345. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5346. GGML_ASSERT(ggml_is_contiguous(a));
  5347. GGML_ASSERT(ggml_is_contiguous(pw));
  5348. GGML_ASSERT(ggml_is_contiguous(ph));
  5349. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5350. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5351. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5352. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5353. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5354. bool is_node = false;
  5355. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5356. is_node = true;
  5357. }
  5358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5359. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5360. result->op = GGML_OP_ADD_REL_POS;
  5361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5362. result->src[0] = a;
  5363. result->src[1] = pw;
  5364. result->src[2] = ph;
  5365. return result;
  5366. }
  5367. struct ggml_tensor * ggml_add_rel_pos(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a,
  5370. struct ggml_tensor * pw,
  5371. struct ggml_tensor * ph) {
  5372. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5373. }
  5374. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. struct ggml_tensor * pw,
  5378. struct ggml_tensor * ph) {
  5379. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5380. }
  5381. // gmml_unary
  5382. static struct ggml_tensor * ggml_unary_impl(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. enum ggml_unary_op op,
  5386. bool inplace) {
  5387. bool is_node = false;
  5388. if (!inplace && (a->grad)) {
  5389. is_node = true;
  5390. }
  5391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5392. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5393. result->op = GGML_OP_UNARY;
  5394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5395. result->src[0] = a;
  5396. return result;
  5397. }
  5398. struct ggml_tensor * ggml_unary(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. enum ggml_unary_op op) {
  5402. return ggml_unary_impl(ctx, a, op, false);
  5403. }
  5404. struct ggml_tensor * ggml_unary_inplace(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. enum ggml_unary_op op) {
  5408. return ggml_unary_impl(ctx, a, op, true);
  5409. }
  5410. // ggml_map_unary
  5411. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. const ggml_unary_op_f32_t fun,
  5415. bool inplace) {
  5416. bool is_node = false;
  5417. if (!inplace && a->grad) {
  5418. is_node = true;
  5419. }
  5420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5421. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5422. result->op = GGML_OP_MAP_UNARY;
  5423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5424. result->src[0] = a;
  5425. return result;
  5426. }
  5427. struct ggml_tensor * ggml_map_unary_f32(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. const ggml_unary_op_f32_t fun) {
  5431. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5432. }
  5433. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. const ggml_unary_op_f32_t fun) {
  5437. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5438. }
  5439. // ggml_map_binary
  5440. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. struct ggml_tensor * b,
  5444. const ggml_binary_op_f32_t fun,
  5445. bool inplace) {
  5446. GGML_ASSERT(ggml_are_same_shape(a, b));
  5447. bool is_node = false;
  5448. if (!inplace && (a->grad || b->grad)) {
  5449. is_node = true;
  5450. }
  5451. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5452. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5453. result->op = GGML_OP_MAP_BINARY;
  5454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5455. result->src[0] = a;
  5456. result->src[1] = b;
  5457. return result;
  5458. }
  5459. struct ggml_tensor * ggml_map_binary_f32(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. struct ggml_tensor * b,
  5463. const ggml_binary_op_f32_t fun) {
  5464. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5465. }
  5466. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * a,
  5469. struct ggml_tensor * b,
  5470. const ggml_binary_op_f32_t fun) {
  5471. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5472. }
  5473. // ggml_map_custom1_f32
  5474. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5475. struct ggml_context * ctx,
  5476. struct ggml_tensor * a,
  5477. const ggml_custom1_op_f32_t fun,
  5478. bool inplace) {
  5479. bool is_node = false;
  5480. if (!inplace && a->grad) {
  5481. is_node = true;
  5482. }
  5483. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5484. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5485. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5487. result->src[0] = a;
  5488. return result;
  5489. }
  5490. struct ggml_tensor * ggml_map_custom1_f32(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. const ggml_custom1_op_f32_t fun) {
  5494. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5495. }
  5496. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. const ggml_custom1_op_f32_t fun) {
  5500. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5501. }
  5502. // ggml_map_custom2_f32
  5503. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. struct ggml_tensor * b,
  5507. const ggml_custom2_op_f32_t fun,
  5508. bool inplace) {
  5509. bool is_node = false;
  5510. if (!inplace && (a->grad || b->grad)) {
  5511. is_node = true;
  5512. }
  5513. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5514. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5515. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5517. result->src[0] = a;
  5518. result->src[1] = b;
  5519. return result;
  5520. }
  5521. struct ggml_tensor * ggml_map_custom2_f32(
  5522. struct ggml_context * ctx,
  5523. struct ggml_tensor * a,
  5524. struct ggml_tensor * b,
  5525. const ggml_custom2_op_f32_t fun) {
  5526. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5527. }
  5528. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a,
  5531. struct ggml_tensor * b,
  5532. const ggml_custom2_op_f32_t fun) {
  5533. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5534. }
  5535. // ggml_map_custom3_f32
  5536. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. struct ggml_tensor * c,
  5541. const ggml_custom3_op_f32_t fun,
  5542. bool inplace) {
  5543. bool is_node = false;
  5544. if (!inplace && (a->grad || b->grad || c->grad)) {
  5545. is_node = true;
  5546. }
  5547. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5548. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5549. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5551. result->src[0] = a;
  5552. result->src[1] = b;
  5553. result->src[2] = c;
  5554. return result;
  5555. }
  5556. struct ggml_tensor * ggml_map_custom3_f32(
  5557. struct ggml_context * ctx,
  5558. struct ggml_tensor * a,
  5559. struct ggml_tensor * b,
  5560. struct ggml_tensor * c,
  5561. const ggml_custom3_op_f32_t fun) {
  5562. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5563. }
  5564. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. struct ggml_tensor * c,
  5569. const ggml_custom3_op_f32_t fun) {
  5570. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5571. }
  5572. // ggml_map_custom1
  5573. struct ggml_map_custom1_op_params {
  5574. ggml_custom1_op_t fun;
  5575. int n_tasks;
  5576. void * userdata;
  5577. };
  5578. static struct ggml_tensor * ggml_map_custom1_impl(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. const ggml_custom1_op_t fun,
  5582. int n_tasks,
  5583. void * userdata,
  5584. bool inplace) {
  5585. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5586. bool is_node = false;
  5587. if (!inplace && a->grad) {
  5588. is_node = true;
  5589. }
  5590. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5591. struct ggml_map_custom1_op_params params = {
  5592. /*.fun =*/ fun,
  5593. /*.n_tasks =*/ n_tasks,
  5594. /*.userdata =*/ userdata
  5595. };
  5596. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5597. result->op = GGML_OP_MAP_CUSTOM1;
  5598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5599. result->src[0] = a;
  5600. return result;
  5601. }
  5602. struct ggml_tensor * ggml_map_custom1(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. const ggml_custom1_op_t fun,
  5606. int n_tasks,
  5607. void * userdata) {
  5608. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5609. }
  5610. struct ggml_tensor * ggml_map_custom1_inplace(
  5611. struct ggml_context * ctx,
  5612. struct ggml_tensor * a,
  5613. const ggml_custom1_op_t fun,
  5614. int n_tasks,
  5615. void * userdata) {
  5616. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5617. }
  5618. // ggml_map_custom2
  5619. struct ggml_map_custom2_op_params {
  5620. ggml_custom2_op_t fun;
  5621. int n_tasks;
  5622. void * userdata;
  5623. };
  5624. static struct ggml_tensor * ggml_map_custom2_impl(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. struct ggml_tensor * b,
  5628. const ggml_custom2_op_t fun,
  5629. int n_tasks,
  5630. void * userdata,
  5631. bool inplace) {
  5632. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5633. bool is_node = false;
  5634. if (!inplace && (a->grad || b->grad)) {
  5635. is_node = true;
  5636. }
  5637. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5638. struct ggml_map_custom2_op_params params = {
  5639. /*.fun =*/ fun,
  5640. /*.n_tasks =*/ n_tasks,
  5641. /*.userdata =*/ userdata
  5642. };
  5643. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5644. result->op = GGML_OP_MAP_CUSTOM2;
  5645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5646. result->src[0] = a;
  5647. result->src[1] = b;
  5648. return result;
  5649. }
  5650. struct ggml_tensor * ggml_map_custom2(
  5651. struct ggml_context * ctx,
  5652. struct ggml_tensor * a,
  5653. struct ggml_tensor * b,
  5654. const ggml_custom2_op_t fun,
  5655. int n_tasks,
  5656. void * userdata) {
  5657. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5658. }
  5659. struct ggml_tensor * ggml_map_custom2_inplace(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. struct ggml_tensor * b,
  5663. const ggml_custom2_op_t fun,
  5664. int n_tasks,
  5665. void * userdata) {
  5666. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5667. }
  5668. // ggml_map_custom3
  5669. struct ggml_map_custom3_op_params {
  5670. ggml_custom3_op_t fun;
  5671. int n_tasks;
  5672. void * userdata;
  5673. };
  5674. static struct ggml_tensor * ggml_map_custom3_impl(
  5675. struct ggml_context * ctx,
  5676. struct ggml_tensor * a,
  5677. struct ggml_tensor * b,
  5678. struct ggml_tensor * c,
  5679. const ggml_custom3_op_t fun,
  5680. int n_tasks,
  5681. void * userdata,
  5682. bool inplace) {
  5683. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5684. bool is_node = false;
  5685. if (!inplace && (a->grad || b->grad || c->grad)) {
  5686. is_node = true;
  5687. }
  5688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5689. struct ggml_map_custom3_op_params params = {
  5690. /*.fun =*/ fun,
  5691. /*.n_tasks =*/ n_tasks,
  5692. /*.userdata =*/ userdata
  5693. };
  5694. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5695. result->op = GGML_OP_MAP_CUSTOM3;
  5696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5697. result->src[0] = a;
  5698. result->src[1] = b;
  5699. result->src[2] = c;
  5700. return result;
  5701. }
  5702. struct ggml_tensor * ggml_map_custom3(
  5703. struct ggml_context * ctx,
  5704. struct ggml_tensor * a,
  5705. struct ggml_tensor * b,
  5706. struct ggml_tensor * c,
  5707. const ggml_custom3_op_t fun,
  5708. int n_tasks,
  5709. void * userdata) {
  5710. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5711. }
  5712. struct ggml_tensor * ggml_map_custom3_inplace(
  5713. struct ggml_context * ctx,
  5714. struct ggml_tensor * a,
  5715. struct ggml_tensor * b,
  5716. struct ggml_tensor * c,
  5717. const ggml_custom3_op_t fun,
  5718. int n_tasks,
  5719. void * userdata) {
  5720. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5721. }
  5722. // ggml_cross_entropy_loss
  5723. struct ggml_tensor * ggml_cross_entropy_loss(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. struct ggml_tensor * b) {
  5727. GGML_ASSERT(ggml_are_same_shape(a, b));
  5728. bool is_node = false;
  5729. if (a->grad || b->grad) {
  5730. is_node = true;
  5731. }
  5732. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5733. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src[0] = a;
  5736. result->src[1] = b;
  5737. return result;
  5738. }
  5739. // ggml_cross_entropy_loss_back
  5740. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. struct ggml_tensor * b,
  5744. struct ggml_tensor * c) {
  5745. GGML_ASSERT(ggml_are_same_shape(a, b));
  5746. GGML_ASSERT(ggml_is_scalar(c));
  5747. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5748. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5749. result->grad = NULL;
  5750. result->src[0] = a;
  5751. result->src[1] = b;
  5752. result->src[2] = c;
  5753. return result;
  5754. }
  5755. ////////////////////////////////////////////////////////////////////////////////
  5756. void ggml_set_param(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * tensor) {
  5759. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5760. GGML_ASSERT(tensor->grad == NULL);
  5761. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5762. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5763. }
  5764. // ggml_compute_forward_dup
  5765. static void ggml_compute_forward_dup_same_cont(
  5766. const struct ggml_compute_params * params,
  5767. struct ggml_tensor * dst) {
  5768. const struct ggml_tensor * src0 = dst->src[0];
  5769. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5770. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5771. GGML_ASSERT(src0->type == dst->type);
  5772. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5773. return;
  5774. }
  5775. const size_t nb00 = src0->nb[0];
  5776. const size_t nb0 = dst->nb[0];
  5777. const int ith = params->ith; // thread index
  5778. const int nth = params->nth; // number of threads
  5779. // parallelize by elements
  5780. const int ne = ggml_nelements(dst);
  5781. const int dr = (ne + nth - 1) / nth;
  5782. const int ie0 = dr * ith;
  5783. const int ie1 = MIN(ie0 + dr, ne);
  5784. if (ie0 < ie1) {
  5785. memcpy(
  5786. ((char *) dst->data + ie0*nb0),
  5787. ((char *) src0->data + ie0*nb00),
  5788. (ie1 - ie0) * ggml_type_size(src0->type));
  5789. }
  5790. }
  5791. static void ggml_compute_forward_dup_f16(
  5792. const struct ggml_compute_params * params,
  5793. struct ggml_tensor * dst) {
  5794. const struct ggml_tensor * src0 = dst->src[0];
  5795. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5797. return;
  5798. }
  5799. GGML_TENSOR_UNARY_OP_LOCALS
  5800. const int ith = params->ith; // thread index
  5801. const int nth = params->nth; // number of threads
  5802. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5803. ggml_compute_forward_dup_same_cont(params, dst);
  5804. return;
  5805. }
  5806. // parallelize by rows
  5807. const int nr = ne01;
  5808. // number of rows per thread
  5809. const int dr = (nr + nth - 1) / nth;
  5810. // row range for this thread
  5811. const int ir0 = dr * ith;
  5812. const int ir1 = MIN(ir0 + dr, nr);
  5813. if (src0->type == dst->type &&
  5814. ne00 == ne0 &&
  5815. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5816. // copy by rows
  5817. const size_t rs = ne00*nb00;
  5818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5820. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5821. memcpy(
  5822. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5823. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5824. rs);
  5825. }
  5826. }
  5827. }
  5828. return;
  5829. }
  5830. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5831. if (ggml_is_contiguous(dst)) {
  5832. if (nb00 == sizeof(ggml_fp16_t)) {
  5833. if (dst->type == GGML_TYPE_F16) {
  5834. size_t id = 0;
  5835. const size_t rs = ne00 * nb00;
  5836. char * dst_ptr = (char *) dst->data;
  5837. for (int i03 = 0; i03 < ne03; i03++) {
  5838. for (int i02 = 0; i02 < ne02; i02++) {
  5839. id += rs * ir0;
  5840. for (int i01 = ir0; i01 < ir1; i01++) {
  5841. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5842. memcpy(dst_ptr + id, src0_ptr, rs);
  5843. id += rs;
  5844. }
  5845. id += rs * (ne01 - ir1);
  5846. }
  5847. }
  5848. } else if (dst->type == GGML_TYPE_F32) {
  5849. size_t id = 0;
  5850. float * dst_ptr = (float *) dst->data;
  5851. for (int i03 = 0; i03 < ne03; i03++) {
  5852. for (int i02 = 0; i02 < ne02; i02++) {
  5853. id += ne00 * ir0;
  5854. for (int i01 = ir0; i01 < ir1; i01++) {
  5855. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5856. for (int i00 = 0; i00 < ne00; i00++) {
  5857. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5858. id++;
  5859. }
  5860. }
  5861. id += ne00 * (ne01 - ir1);
  5862. }
  5863. }
  5864. } else if (type_traits[dst->type].from_float) {
  5865. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5866. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5867. size_t id = 0;
  5868. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5869. char * dst_ptr = (char *) dst->data;
  5870. for (int i03 = 0; i03 < ne03; i03++) {
  5871. for (int i02 = 0; i02 < ne02; i02++) {
  5872. id += rs * ir0;
  5873. for (int i01 = ir0; i01 < ir1; i01++) {
  5874. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5875. for (int i00 = 0; i00 < ne00; i00++) {
  5876. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5877. }
  5878. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5879. id += rs;
  5880. }
  5881. id += rs * (ne01 - ir1);
  5882. }
  5883. }
  5884. } else {
  5885. GGML_ASSERT(false); // TODO: implement
  5886. }
  5887. } else {
  5888. //printf("%s: this is not optimal - fix me\n", __func__);
  5889. if (dst->type == GGML_TYPE_F32) {
  5890. size_t id = 0;
  5891. float * dst_ptr = (float *) dst->data;
  5892. for (int i03 = 0; i03 < ne03; i03++) {
  5893. for (int i02 = 0; i02 < ne02; i02++) {
  5894. id += ne00 * ir0;
  5895. for (int i01 = ir0; i01 < ir1; i01++) {
  5896. for (int i00 = 0; i00 < ne00; i00++) {
  5897. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5898. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5899. id++;
  5900. }
  5901. }
  5902. id += ne00 * (ne01 - ir1);
  5903. }
  5904. }
  5905. } else if (dst->type == GGML_TYPE_F16) {
  5906. size_t id = 0;
  5907. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5908. for (int i03 = 0; i03 < ne03; i03++) {
  5909. for (int i02 = 0; i02 < ne02; i02++) {
  5910. id += ne00 * ir0;
  5911. for (int i01 = ir0; i01 < ir1; i01++) {
  5912. for (int i00 = 0; i00 < ne00; i00++) {
  5913. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5914. dst_ptr[id] = *src0_ptr;
  5915. id++;
  5916. }
  5917. }
  5918. id += ne00 * (ne01 - ir1);
  5919. }
  5920. }
  5921. } else {
  5922. GGML_ASSERT(false); // TODO: implement
  5923. }
  5924. }
  5925. return;
  5926. }
  5927. // dst counters
  5928. int64_t i10 = 0;
  5929. int64_t i11 = 0;
  5930. int64_t i12 = 0;
  5931. int64_t i13 = 0;
  5932. if (dst->type == GGML_TYPE_F16) {
  5933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5935. i10 += ne00 * ir0;
  5936. while (i10 >= ne0) {
  5937. i10 -= ne0;
  5938. if (++i11 == ne1) {
  5939. i11 = 0;
  5940. if (++i12 == ne2) {
  5941. i12 = 0;
  5942. if (++i13 == ne3) {
  5943. i13 = 0;
  5944. }
  5945. }
  5946. }
  5947. }
  5948. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5949. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5950. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5951. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5952. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5953. if (++i10 == ne00) {
  5954. i10 = 0;
  5955. if (++i11 == ne01) {
  5956. i11 = 0;
  5957. if (++i12 == ne02) {
  5958. i12 = 0;
  5959. if (++i13 == ne03) {
  5960. i13 = 0;
  5961. }
  5962. }
  5963. }
  5964. }
  5965. }
  5966. }
  5967. i10 += ne00 * (ne01 - ir1);
  5968. while (i10 >= ne0) {
  5969. i10 -= ne0;
  5970. if (++i11 == ne1) {
  5971. i11 = 0;
  5972. if (++i12 == ne2) {
  5973. i12 = 0;
  5974. if (++i13 == ne3) {
  5975. i13 = 0;
  5976. }
  5977. }
  5978. }
  5979. }
  5980. }
  5981. }
  5982. } else if (dst->type == GGML_TYPE_F32) {
  5983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5985. i10 += ne00 * ir0;
  5986. while (i10 >= ne0) {
  5987. i10 -= ne0;
  5988. if (++i11 == ne1) {
  5989. i11 = 0;
  5990. if (++i12 == ne2) {
  5991. i12 = 0;
  5992. if (++i13 == ne3) {
  5993. i13 = 0;
  5994. }
  5995. }
  5996. }
  5997. }
  5998. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6000. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6001. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6002. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6003. if (++i10 == ne0) {
  6004. i10 = 0;
  6005. if (++i11 == ne1) {
  6006. i11 = 0;
  6007. if (++i12 == ne2) {
  6008. i12 = 0;
  6009. if (++i13 == ne3) {
  6010. i13 = 0;
  6011. }
  6012. }
  6013. }
  6014. }
  6015. }
  6016. }
  6017. i10 += ne00 * (ne01 - ir1);
  6018. while (i10 >= ne0) {
  6019. i10 -= ne0;
  6020. if (++i11 == ne1) {
  6021. i11 = 0;
  6022. if (++i12 == ne2) {
  6023. i12 = 0;
  6024. if (++i13 == ne3) {
  6025. i13 = 0;
  6026. }
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. } else {
  6033. GGML_ASSERT(false); // TODO: implement
  6034. }
  6035. }
  6036. static void ggml_compute_forward_dup_f32(
  6037. const struct ggml_compute_params * params,
  6038. struct ggml_tensor * dst) {
  6039. const struct ggml_tensor * src0 = dst->src[0];
  6040. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6041. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6042. return;
  6043. }
  6044. GGML_TENSOR_UNARY_OP_LOCALS
  6045. const int ith = params->ith; // thread index
  6046. const int nth = params->nth; // number of threads
  6047. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6048. ggml_compute_forward_dup_same_cont(params, dst);
  6049. return;
  6050. }
  6051. // parallelize by rows
  6052. const int nr = ne01;
  6053. // number of rows per thread
  6054. const int dr = (nr + nth - 1) / nth;
  6055. // row range for this thread
  6056. const int ir0 = dr * ith;
  6057. const int ir1 = MIN(ir0 + dr, nr);
  6058. if (src0->type == dst->type &&
  6059. ne00 == ne0 &&
  6060. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6061. // copy by rows
  6062. const size_t rs = ne00*nb00;
  6063. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6065. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6066. memcpy(
  6067. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6068. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6069. rs);
  6070. }
  6071. }
  6072. }
  6073. return;
  6074. }
  6075. if (ggml_is_contiguous(dst)) {
  6076. // TODO: simplify
  6077. if (nb00 == sizeof(float)) {
  6078. if (dst->type == GGML_TYPE_F32) {
  6079. size_t id = 0;
  6080. const size_t rs = ne00 * nb00;
  6081. char * dst_ptr = (char *) dst->data;
  6082. for (int i03 = 0; i03 < ne03; i03++) {
  6083. for (int i02 = 0; i02 < ne02; i02++) {
  6084. id += rs * ir0;
  6085. for (int i01 = ir0; i01 < ir1; i01++) {
  6086. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6087. memcpy(dst_ptr + id, src0_ptr, rs);
  6088. id += rs;
  6089. }
  6090. id += rs * (ne01 - ir1);
  6091. }
  6092. }
  6093. } else if (type_traits[dst->type].from_float) {
  6094. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6095. size_t id = 0;
  6096. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6097. char * dst_ptr = (char *) dst->data;
  6098. for (int i03 = 0; i03 < ne03; i03++) {
  6099. for (int i02 = 0; i02 < ne02; i02++) {
  6100. id += rs * ir0;
  6101. for (int i01 = ir0; i01 < ir1; i01++) {
  6102. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6103. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6104. id += rs;
  6105. }
  6106. id += rs * (ne01 - ir1);
  6107. }
  6108. }
  6109. } else {
  6110. GGML_ASSERT(false); // TODO: implement
  6111. }
  6112. } else {
  6113. //printf("%s: this is not optimal - fix me\n", __func__);
  6114. if (dst->type == GGML_TYPE_F32) {
  6115. size_t id = 0;
  6116. float * dst_ptr = (float *) dst->data;
  6117. for (int i03 = 0; i03 < ne03; i03++) {
  6118. for (int i02 = 0; i02 < ne02; i02++) {
  6119. id += ne00 * ir0;
  6120. for (int i01 = ir0; i01 < ir1; i01++) {
  6121. for (int i00 = 0; i00 < ne00; i00++) {
  6122. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6123. dst_ptr[id] = *src0_ptr;
  6124. id++;
  6125. }
  6126. }
  6127. id += ne00 * (ne01 - ir1);
  6128. }
  6129. }
  6130. } else if (dst->type == GGML_TYPE_F16) {
  6131. size_t id = 0;
  6132. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6133. for (int i03 = 0; i03 < ne03; i03++) {
  6134. for (int i02 = 0; i02 < ne02; i02++) {
  6135. id += ne00 * ir0;
  6136. for (int i01 = ir0; i01 < ir1; i01++) {
  6137. for (int i00 = 0; i00 < ne00; i00++) {
  6138. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6139. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6140. id++;
  6141. }
  6142. }
  6143. id += ne00 * (ne01 - ir1);
  6144. }
  6145. }
  6146. } else {
  6147. GGML_ASSERT(false); // TODO: implement
  6148. }
  6149. }
  6150. return;
  6151. }
  6152. // dst counters
  6153. int64_t i10 = 0;
  6154. int64_t i11 = 0;
  6155. int64_t i12 = 0;
  6156. int64_t i13 = 0;
  6157. if (dst->type == GGML_TYPE_F32) {
  6158. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6159. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6160. i10 += ne00 * ir0;
  6161. while (i10 >= ne0) {
  6162. i10 -= ne0;
  6163. if (++i11 == ne1) {
  6164. i11 = 0;
  6165. if (++i12 == ne2) {
  6166. i12 = 0;
  6167. if (++i13 == ne3) {
  6168. i13 = 0;
  6169. }
  6170. }
  6171. }
  6172. }
  6173. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6174. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6175. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6176. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6177. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6178. if (++i10 == ne0) {
  6179. i10 = 0;
  6180. if (++i11 == ne1) {
  6181. i11 = 0;
  6182. if (++i12 == ne2) {
  6183. i12 = 0;
  6184. if (++i13 == ne3) {
  6185. i13 = 0;
  6186. }
  6187. }
  6188. }
  6189. }
  6190. }
  6191. }
  6192. i10 += ne00 * (ne01 - ir1);
  6193. while (i10 >= ne0) {
  6194. i10 -= ne0;
  6195. if (++i11 == ne1) {
  6196. i11 = 0;
  6197. if (++i12 == ne2) {
  6198. i12 = 0;
  6199. if (++i13 == ne3) {
  6200. i13 = 0;
  6201. }
  6202. }
  6203. }
  6204. }
  6205. }
  6206. }
  6207. } else if (dst->type == GGML_TYPE_F16) {
  6208. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6210. i10 += ne00 * ir0;
  6211. while (i10 >= ne0) {
  6212. i10 -= ne0;
  6213. if (++i11 == ne1) {
  6214. i11 = 0;
  6215. if (++i12 == ne2) {
  6216. i12 = 0;
  6217. if (++i13 == ne3) {
  6218. i13 = 0;
  6219. }
  6220. }
  6221. }
  6222. }
  6223. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6224. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6225. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6226. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6227. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6228. if (++i10 == ne0) {
  6229. i10 = 0;
  6230. if (++i11 == ne1) {
  6231. i11 = 0;
  6232. if (++i12 == ne2) {
  6233. i12 = 0;
  6234. if (++i13 == ne3) {
  6235. i13 = 0;
  6236. }
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. i10 += ne00 * (ne01 - ir1);
  6243. while (i10 >= ne0) {
  6244. i10 -= ne0;
  6245. if (++i11 == ne1) {
  6246. i11 = 0;
  6247. if (++i12 == ne2) {
  6248. i12 = 0;
  6249. if (++i13 == ne3) {
  6250. i13 = 0;
  6251. }
  6252. }
  6253. }
  6254. }
  6255. }
  6256. }
  6257. } else {
  6258. GGML_ASSERT(false); // TODO: implement
  6259. }
  6260. }
  6261. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6262. static void ggml_compute_forward_dup_bytes(
  6263. const struct ggml_compute_params * params,
  6264. struct ggml_tensor * dst) {
  6265. const struct ggml_tensor * src0 = dst->src[0];
  6266. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6267. GGML_ASSERT(src0->type == dst->type);
  6268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6269. return;
  6270. }
  6271. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6272. ggml_compute_forward_dup_same_cont(params, dst);
  6273. return;
  6274. }
  6275. GGML_TENSOR_UNARY_OP_LOCALS;
  6276. const size_t type_size = ggml_type_size(src0->type);
  6277. const int ith = params->ith; // thread index
  6278. const int nth = params->nth; // number of threads
  6279. // parallelize by rows
  6280. const int nr = ne01;
  6281. // number of rows per thread
  6282. const int dr = (nr + nth - 1) / nth;
  6283. // row range for this thread
  6284. const int ir0 = dr * ith;
  6285. const int ir1 = MIN(ir0 + dr, nr);
  6286. if (src0->type == dst->type &&
  6287. ne00 == ne0 &&
  6288. nb00 == type_size && nb0 == type_size) {
  6289. // copy by rows
  6290. const size_t rs = ne00 * type_size;
  6291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6293. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6294. memcpy(
  6295. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6296. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6297. rs);
  6298. }
  6299. }
  6300. }
  6301. return;
  6302. }
  6303. if (ggml_is_contiguous(dst)) {
  6304. size_t id = 0;
  6305. char * dst_ptr = (char *) dst->data;
  6306. const size_t rs = ne00 * type_size;
  6307. if (nb00 == type_size) {
  6308. // src0 is contigous on first dimension, copy by rows
  6309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6311. id += rs * ir0;
  6312. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6313. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6314. memcpy(dst_ptr + id, src0_ptr, rs);
  6315. id += rs;
  6316. }
  6317. id += rs * (ne01 - ir1);
  6318. }
  6319. }
  6320. } else {
  6321. //printf("%s: this is not optimal - fix me\n", __func__);
  6322. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6323. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6324. id += rs * ir0;
  6325. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6327. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6328. memcpy(dst_ptr + id, src0_ptr, type_size);
  6329. id += type_size;
  6330. }
  6331. }
  6332. id += rs * (ne01 - ir1);
  6333. }
  6334. }
  6335. }
  6336. return;
  6337. }
  6338. // dst counters
  6339. int64_t i10 = 0;
  6340. int64_t i11 = 0;
  6341. int64_t i12 = 0;
  6342. int64_t i13 = 0;
  6343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6345. i10 += ne00 * ir0;
  6346. while (i10 >= ne0) {
  6347. i10 -= ne0;
  6348. if (++i11 == ne1) {
  6349. i11 = 0;
  6350. if (++i12 == ne2) {
  6351. i12 = 0;
  6352. if (++i13 == ne3) {
  6353. i13 = 0;
  6354. }
  6355. }
  6356. }
  6357. }
  6358. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6360. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6361. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6362. memcpy(dst_ptr, src0_ptr, type_size);
  6363. if (++i10 == ne0) {
  6364. i10 = 0;
  6365. if (++i11 == ne1) {
  6366. i11 = 0;
  6367. if (++i12 == ne2) {
  6368. i12 = 0;
  6369. if (++i13 == ne3) {
  6370. i13 = 0;
  6371. }
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. i10 += ne00 * (ne01 - ir1);
  6378. while (i10 >= ne0) {
  6379. i10 -= ne0;
  6380. if (++i11 == ne1) {
  6381. i11 = 0;
  6382. if (++i12 == ne2) {
  6383. i12 = 0;
  6384. if (++i13 == ne3) {
  6385. i13 = 0;
  6386. }
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. }
  6393. static void ggml_compute_forward_dup(
  6394. const struct ggml_compute_params * params,
  6395. struct ggml_tensor * dst) {
  6396. const struct ggml_tensor * src0 = dst->src[0];
  6397. if (src0->type == dst->type) {
  6398. ggml_compute_forward_dup_bytes(params, dst);
  6399. return;
  6400. }
  6401. switch (src0->type) {
  6402. case GGML_TYPE_F16:
  6403. {
  6404. ggml_compute_forward_dup_f16(params, dst);
  6405. } break;
  6406. case GGML_TYPE_F32:
  6407. {
  6408. ggml_compute_forward_dup_f32(params, dst);
  6409. } break;
  6410. default:
  6411. {
  6412. GGML_ASSERT(false);
  6413. } break;
  6414. }
  6415. }
  6416. // ggml_compute_forward_add
  6417. static void ggml_compute_forward_add_f32(
  6418. const struct ggml_compute_params * params,
  6419. struct ggml_tensor * dst) {
  6420. const struct ggml_tensor * src0 = dst->src[0];
  6421. const struct ggml_tensor * src1 = dst->src[1];
  6422. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6423. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6424. return;
  6425. }
  6426. const int ith = params->ith;
  6427. const int nth = params->nth;
  6428. #ifdef GGML_USE_CLBLAST
  6429. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6430. // TODO: OpenCL kernel support full broadcast
  6431. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6432. if (ith == 0) {
  6433. ggml_cl_add(src0, src1, dst);
  6434. }
  6435. return;
  6436. }
  6437. #endif
  6438. const int nr = ggml_nrows(src0);
  6439. GGML_TENSOR_BINARY_OP_LOCALS
  6440. GGML_ASSERT( nb0 == sizeof(float));
  6441. GGML_ASSERT(nb00 == sizeof(float));
  6442. // rows per thread
  6443. const int dr = (nr + nth - 1)/nth;
  6444. // row range for this thread
  6445. const int ir0 = dr*ith;
  6446. const int ir1 = MIN(ir0 + dr, nr);
  6447. if (nb10 == sizeof(float)) {
  6448. for (int ir = ir0; ir < ir1; ++ir) {
  6449. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6450. const int64_t i03 = ir/(ne02*ne01);
  6451. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6452. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6453. const int64_t i13 = i03 % ne13;
  6454. const int64_t i12 = i02 % ne12;
  6455. const int64_t i11 = i01 % ne11;
  6456. const int64_t nr0 = ne00 / ne10;
  6457. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6458. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6459. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6460. for (int64_t r = 0; r < nr0; ++r) {
  6461. #ifdef GGML_USE_ACCELERATE
  6462. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6463. #else
  6464. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6465. #endif
  6466. }
  6467. }
  6468. } else {
  6469. // src1 is not contiguous
  6470. for (int ir = ir0; ir < ir1; ++ir) {
  6471. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6472. const int64_t i03 = ir/(ne02*ne01);
  6473. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6474. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6475. const int64_t i13 = i03 % ne13;
  6476. const int64_t i12 = i02 % ne12;
  6477. const int64_t i11 = i01 % ne11;
  6478. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6479. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6480. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6481. const int64_t i10 = i0 % ne10;
  6482. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6483. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6484. }
  6485. }
  6486. }
  6487. }
  6488. static void ggml_compute_forward_add_f16_f32(
  6489. const struct ggml_compute_params * params,
  6490. struct ggml_tensor * dst) {
  6491. const struct ggml_tensor * src0 = dst->src[0];
  6492. const struct ggml_tensor * src1 = dst->src[1];
  6493. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6495. return;
  6496. }
  6497. const int ith = params->ith;
  6498. const int nth = params->nth;
  6499. const int nr = ggml_nrows(src0);
  6500. GGML_TENSOR_BINARY_OP_LOCALS
  6501. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6502. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6503. if (dst->type == GGML_TYPE_F32) {
  6504. GGML_ASSERT( nb0 == sizeof(float));
  6505. }
  6506. else {
  6507. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6508. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6509. }
  6510. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6511. // rows per thread
  6512. const int dr = (nr + nth - 1)/nth;
  6513. // row range for this thread
  6514. const int ir0 = dr*ith;
  6515. const int ir1 = MIN(ir0 + dr, nr);
  6516. if (nb10 == sizeof(float)) {
  6517. if (dst->type == GGML_TYPE_F16) {
  6518. for (int ir = ir0; ir < ir1; ++ir) {
  6519. // src0, src1 and dst are same shape => same indices
  6520. const int i3 = ir/(ne2*ne1);
  6521. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6522. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6523. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6524. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6525. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6526. for (int i = 0; i < ne0; i++) {
  6527. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6528. }
  6529. }
  6530. } else {
  6531. for (int ir = ir0; ir < ir1; ++ir) {
  6532. // src0, src1 and dst are same shape => same indices
  6533. const int i3 = ir/(ne2*ne1);
  6534. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6535. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6536. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6537. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6538. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6539. for (int i = 0; i < ne0; i++) {
  6540. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6541. }
  6542. }
  6543. }
  6544. }
  6545. else {
  6546. // src1 is not contiguous
  6547. GGML_ASSERT(false);
  6548. }
  6549. }
  6550. static void ggml_compute_forward_add_f16_f16(
  6551. const struct ggml_compute_params * params,
  6552. struct ggml_tensor * dst) {
  6553. const struct ggml_tensor * src0 = dst->src[0];
  6554. const struct ggml_tensor * src1 = dst->src[1];
  6555. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6557. return;
  6558. }
  6559. const int ith = params->ith;
  6560. const int nth = params->nth;
  6561. const int nr = ggml_nrows(src0);
  6562. GGML_TENSOR_BINARY_OP_LOCALS
  6563. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6564. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6565. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6566. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6567. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6568. // rows per thread
  6569. const int dr = (nr + nth - 1)/nth;
  6570. // row range for this thread
  6571. const int ir0 = dr*ith;
  6572. const int ir1 = MIN(ir0 + dr, nr);
  6573. if (nb10 == sizeof(ggml_fp16_t)) {
  6574. for (int ir = ir0; ir < ir1; ++ir) {
  6575. // src0, src1 and dst are same shape => same indices
  6576. const int i3 = ir/(ne2*ne1);
  6577. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6578. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6579. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6580. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6581. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6582. for (int i = 0; i < ne0; i++) {
  6583. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6584. }
  6585. }
  6586. }
  6587. else {
  6588. // src1 is not contiguous
  6589. GGML_ASSERT(false);
  6590. }
  6591. }
  6592. static void ggml_compute_forward_add_q_f32(
  6593. const struct ggml_compute_params * params,
  6594. struct ggml_tensor * dst) {
  6595. const struct ggml_tensor * src0 = dst->src[0];
  6596. const struct ggml_tensor * src1 = dst->src[1];
  6597. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6598. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6599. return;
  6600. }
  6601. const int nr = ggml_nrows(src0);
  6602. GGML_TENSOR_BINARY_OP_LOCALS
  6603. const int ith = params->ith;
  6604. const int nth = params->nth;
  6605. const enum ggml_type type = src0->type;
  6606. const enum ggml_type dtype = dst->type;
  6607. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6608. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6609. // we don't support permuted src0 or src1
  6610. GGML_ASSERT(nb00 == ggml_type_size(type));
  6611. GGML_ASSERT(nb10 == sizeof(float));
  6612. // dst cannot be transposed or permuted
  6613. GGML_ASSERT(nb0 <= nb1);
  6614. GGML_ASSERT(nb1 <= nb2);
  6615. GGML_ASSERT(nb2 <= nb3);
  6616. GGML_ASSERT(ggml_is_quantized(src0->type));
  6617. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6618. // rows per thread
  6619. const int dr = (nr + nth - 1)/nth;
  6620. // row range for this thread
  6621. const int ir0 = dr*ith;
  6622. const int ir1 = MIN(ir0 + dr, nr);
  6623. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6624. for (int ir = ir0; ir < ir1; ++ir) {
  6625. // src0 indices
  6626. const int i03 = ir/(ne02*ne01);
  6627. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6628. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6629. // src1 and dst are same shape as src0 => same indices
  6630. const int i13 = i03;
  6631. const int i12 = i02;
  6632. const int i11 = i01;
  6633. const int i3 = i03;
  6634. const int i2 = i02;
  6635. const int i1 = i01;
  6636. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6637. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6638. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6639. assert(ne00 % 32 == 0);
  6640. // unquantize row from src0 to temp buffer
  6641. dequantize_row_q(src0_row, wdata, ne00);
  6642. // add src1
  6643. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6644. // quantize row to dst
  6645. if (quantize_row_q != NULL) {
  6646. quantize_row_q(wdata, dst_row, ne00);
  6647. } else {
  6648. memcpy(dst_row, wdata, ne0*nb0);
  6649. }
  6650. }
  6651. }
  6652. static void ggml_compute_forward_add(
  6653. const struct ggml_compute_params * params,
  6654. struct ggml_tensor * dst) {
  6655. const struct ggml_tensor * src0 = dst->src[0];
  6656. const struct ggml_tensor * src1 = dst->src[1];
  6657. switch (src0->type) {
  6658. case GGML_TYPE_F32:
  6659. {
  6660. if (src1->type == GGML_TYPE_F32) {
  6661. ggml_compute_forward_add_f32(params, dst);
  6662. }
  6663. else {
  6664. GGML_ASSERT(false);
  6665. }
  6666. } break;
  6667. case GGML_TYPE_F16:
  6668. {
  6669. if (src1->type == GGML_TYPE_F16) {
  6670. ggml_compute_forward_add_f16_f16(params, dst);
  6671. }
  6672. else if (src1->type == GGML_TYPE_F32) {
  6673. ggml_compute_forward_add_f16_f32(params, dst);
  6674. }
  6675. else {
  6676. GGML_ASSERT(false);
  6677. }
  6678. } break;
  6679. case GGML_TYPE_Q4_0:
  6680. case GGML_TYPE_Q4_1:
  6681. case GGML_TYPE_Q5_0:
  6682. case GGML_TYPE_Q5_1:
  6683. case GGML_TYPE_Q8_0:
  6684. case GGML_TYPE_Q2_K:
  6685. case GGML_TYPE_Q3_K:
  6686. case GGML_TYPE_Q4_K:
  6687. case GGML_TYPE_Q5_K:
  6688. case GGML_TYPE_Q6_K:
  6689. case GGML_TYPE_IQ2_XXS:
  6690. case GGML_TYPE_IQ2_XS:
  6691. case GGML_TYPE_IQ3_XXS:
  6692. case GGML_TYPE_IQ1_S:
  6693. case GGML_TYPE_IQ1_M:
  6694. case GGML_TYPE_IQ4_NL:
  6695. case GGML_TYPE_IQ4_XS:
  6696. case GGML_TYPE_IQ3_S:
  6697. case GGML_TYPE_IQ2_S:
  6698. {
  6699. ggml_compute_forward_add_q_f32(params, dst);
  6700. } break;
  6701. default:
  6702. {
  6703. GGML_ASSERT(false);
  6704. } break;
  6705. }
  6706. }
  6707. // ggml_compute_forward_add1
  6708. static void ggml_compute_forward_add1_f32(
  6709. const struct ggml_compute_params * params,
  6710. struct ggml_tensor * dst) {
  6711. const struct ggml_tensor * src0 = dst->src[0];
  6712. const struct ggml_tensor * src1 = dst->src[1];
  6713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6714. GGML_ASSERT(ggml_is_scalar(src1));
  6715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6716. return;
  6717. }
  6718. const int ith = params->ith;
  6719. const int nth = params->nth;
  6720. const int nr = ggml_nrows(src0);
  6721. GGML_TENSOR_UNARY_OP_LOCALS
  6722. GGML_ASSERT( nb0 == sizeof(float));
  6723. GGML_ASSERT(nb00 == sizeof(float));
  6724. // rows per thread
  6725. const int dr = (nr + nth - 1)/nth;
  6726. // row range for this thread
  6727. const int ir0 = dr*ith;
  6728. const int ir1 = MIN(ir0 + dr, nr);
  6729. for (int ir = ir0; ir < ir1; ++ir) {
  6730. // src0 and dst are same shape => same indices
  6731. const int i3 = ir/(ne2*ne1);
  6732. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6733. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6734. #ifdef GGML_USE_ACCELERATE
  6735. UNUSED(ggml_vec_add1_f32);
  6736. vDSP_vadd(
  6737. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6738. (float *) ((char *) src1->data), 0,
  6739. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6740. ne0);
  6741. #else
  6742. ggml_vec_add1_f32(ne0,
  6743. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6744. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6745. *(float *) src1->data);
  6746. #endif
  6747. }
  6748. }
  6749. static void ggml_compute_forward_add1_f16_f32(
  6750. const struct ggml_compute_params * params,
  6751. struct ggml_tensor * dst) {
  6752. const struct ggml_tensor * src0 = dst->src[0];
  6753. const struct ggml_tensor * src1 = dst->src[1];
  6754. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6755. GGML_ASSERT(ggml_is_scalar(src1));
  6756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6757. return;
  6758. }
  6759. // scalar to add
  6760. const float v = *(float *) src1->data;
  6761. const int ith = params->ith;
  6762. const int nth = params->nth;
  6763. const int nr = ggml_nrows(src0);
  6764. GGML_TENSOR_UNARY_OP_LOCALS
  6765. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6766. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6767. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6768. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6769. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6770. // rows per thread
  6771. const int dr = (nr + nth - 1)/nth;
  6772. // row range for this thread
  6773. const int ir0 = dr*ith;
  6774. const int ir1 = MIN(ir0 + dr, nr);
  6775. for (int ir = ir0; ir < ir1; ++ir) {
  6776. // src0 and dst are same shape => same indices
  6777. const int i3 = ir/(ne2*ne1);
  6778. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6779. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6780. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6781. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6782. for (int i = 0; i < ne0; i++) {
  6783. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6784. }
  6785. }
  6786. }
  6787. static void ggml_compute_forward_add1_f16_f16(
  6788. const struct ggml_compute_params * params,
  6789. struct ggml_tensor * dst) {
  6790. const struct ggml_tensor * src0 = dst->src[0];
  6791. const struct ggml_tensor * src1 = dst->src[1];
  6792. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6793. GGML_ASSERT(ggml_is_scalar(src1));
  6794. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6795. return;
  6796. }
  6797. // scalar to add
  6798. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6799. const int ith = params->ith;
  6800. const int nth = params->nth;
  6801. const int nr = ggml_nrows(src0);
  6802. GGML_TENSOR_UNARY_OP_LOCALS
  6803. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6804. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6805. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6806. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6807. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6808. // rows per thread
  6809. const int dr = (nr + nth - 1)/nth;
  6810. // row range for this thread
  6811. const int ir0 = dr*ith;
  6812. const int ir1 = MIN(ir0 + dr, nr);
  6813. for (int ir = ir0; ir < ir1; ++ir) {
  6814. // src0 and dst are same shape => same indices
  6815. const int i3 = ir/(ne2*ne1);
  6816. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6817. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6818. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6819. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6820. for (int i = 0; i < ne0; i++) {
  6821. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6822. }
  6823. }
  6824. }
  6825. static void ggml_compute_forward_add1_q_f32(
  6826. const struct ggml_compute_params * params,
  6827. struct ggml_tensor * dst) {
  6828. const struct ggml_tensor * src0 = dst->src[0];
  6829. const struct ggml_tensor * src1 = dst->src[1];
  6830. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6831. GGML_ASSERT(ggml_is_scalar(src1));
  6832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6833. return;
  6834. }
  6835. // scalar to add
  6836. const float v = *(float *) src1->data;
  6837. const int ith = params->ith;
  6838. const int nth = params->nth;
  6839. const int nr = ggml_nrows(src0);
  6840. GGML_TENSOR_UNARY_OP_LOCALS
  6841. const enum ggml_type type = src0->type;
  6842. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6843. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6844. // we don't support permuted src0
  6845. GGML_ASSERT(nb00 == ggml_type_size(type));
  6846. // dst cannot be transposed or permuted
  6847. GGML_ASSERT(nb0 <= nb1);
  6848. GGML_ASSERT(nb1 <= nb2);
  6849. GGML_ASSERT(nb2 <= nb3);
  6850. GGML_ASSERT(ggml_is_quantized(src0->type));
  6851. GGML_ASSERT(dst->type == src0->type);
  6852. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6853. // rows per thread
  6854. const int dr = (nr + nth - 1)/nth;
  6855. // row range for this thread
  6856. const int ir0 = dr*ith;
  6857. const int ir1 = MIN(ir0 + dr, nr);
  6858. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6859. for (int ir = ir0; ir < ir1; ++ir) {
  6860. // src0 and dst are same shape => same indices
  6861. const int i3 = ir/(ne2*ne1);
  6862. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6863. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6864. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6865. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6866. assert(ne0 % 32 == 0);
  6867. // unquantize row from src0 to temp buffer
  6868. dequantize_row_q(src0_row, wdata, ne0);
  6869. // add src1
  6870. ggml_vec_acc1_f32(ne0, wdata, v);
  6871. // quantize row to dst
  6872. quantize_row_q(wdata, dst_row, ne0);
  6873. }
  6874. }
  6875. static void ggml_compute_forward_add1(
  6876. const struct ggml_compute_params * params,
  6877. struct ggml_tensor * dst) {
  6878. const struct ggml_tensor * src0 = dst->src[0];
  6879. const struct ggml_tensor * src1 = dst->src[1];
  6880. switch (src0->type) {
  6881. case GGML_TYPE_F32:
  6882. {
  6883. ggml_compute_forward_add1_f32(params, dst);
  6884. } break;
  6885. case GGML_TYPE_F16:
  6886. {
  6887. if (src1->type == GGML_TYPE_F16) {
  6888. ggml_compute_forward_add1_f16_f16(params, dst);
  6889. }
  6890. else if (src1->type == GGML_TYPE_F32) {
  6891. ggml_compute_forward_add1_f16_f32(params, dst);
  6892. }
  6893. else {
  6894. GGML_ASSERT(false);
  6895. }
  6896. } break;
  6897. case GGML_TYPE_Q4_0:
  6898. case GGML_TYPE_Q4_1:
  6899. case GGML_TYPE_Q5_0:
  6900. case GGML_TYPE_Q5_1:
  6901. case GGML_TYPE_Q8_0:
  6902. case GGML_TYPE_Q8_1:
  6903. case GGML_TYPE_Q2_K:
  6904. case GGML_TYPE_Q3_K:
  6905. case GGML_TYPE_Q4_K:
  6906. case GGML_TYPE_Q5_K:
  6907. case GGML_TYPE_Q6_K:
  6908. case GGML_TYPE_IQ2_XXS:
  6909. case GGML_TYPE_IQ2_XS:
  6910. case GGML_TYPE_IQ3_XXS:
  6911. case GGML_TYPE_IQ1_S:
  6912. case GGML_TYPE_IQ1_M:
  6913. case GGML_TYPE_IQ4_NL:
  6914. case GGML_TYPE_IQ4_XS:
  6915. case GGML_TYPE_IQ3_S:
  6916. case GGML_TYPE_IQ2_S:
  6917. {
  6918. ggml_compute_forward_add1_q_f32(params, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_acc
  6927. static void ggml_compute_forward_acc_f32(
  6928. const struct ggml_compute_params * params,
  6929. struct ggml_tensor * dst) {
  6930. const struct ggml_tensor * src0 = dst->src[0];
  6931. const struct ggml_tensor * src1 = dst->src[1];
  6932. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6933. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6934. // view src0 and dst with these strides and data offset inbytes during acc
  6935. // nb0 is implicitly element_size because src0 and dst are contiguous
  6936. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6937. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6938. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6939. size_t offset = ((int32_t *) dst->op_params)[3];
  6940. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6941. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6942. if (params->ith != 0) {
  6943. return;
  6944. }
  6945. // memcpy needs to be synchronized across threads to avoid race conditions.
  6946. // => do it in INIT phase
  6947. memcpy(
  6948. ((char *) dst->data),
  6949. ((char *) src0->data),
  6950. ggml_nbytes(dst));
  6951. }
  6952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6953. return;
  6954. }
  6955. const int ith = params->ith;
  6956. const int nth = params->nth;
  6957. const int nr = ggml_nrows(src1);
  6958. const int nc = src1->ne[0];
  6959. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6960. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6961. // src0 and dst as viewed during acc
  6962. const size_t nb0 = ggml_element_size(src0);
  6963. const size_t nb00 = nb0;
  6964. const size_t nb01 = nb1;
  6965. const size_t nb02 = nb2;
  6966. const size_t nb03 = nb3;
  6967. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6968. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6969. GGML_ASSERT(nb10 == sizeof(float));
  6970. // rows per thread
  6971. const int dr = (nr + nth - 1)/nth;
  6972. // row range for this thread
  6973. const int ir0 = dr*ith;
  6974. const int ir1 = MIN(ir0 + dr, nr);
  6975. for (int ir = ir0; ir < ir1; ++ir) {
  6976. // src0 and dst are viewed with shape of src1 and offset
  6977. // => same indices
  6978. const int i3 = ir/(ne12*ne11);
  6979. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6980. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6981. #ifdef GGML_USE_ACCELERATE
  6982. vDSP_vadd(
  6983. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6984. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6985. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6986. #else
  6987. ggml_vec_add_f32(nc,
  6988. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6989. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6990. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6991. #endif
  6992. }
  6993. }
  6994. static void ggml_compute_forward_acc(
  6995. const struct ggml_compute_params * params,
  6996. struct ggml_tensor * dst) {
  6997. const struct ggml_tensor * src0 = dst->src[0];
  6998. switch (src0->type) {
  6999. case GGML_TYPE_F32:
  7000. {
  7001. ggml_compute_forward_acc_f32(params, dst);
  7002. } break;
  7003. case GGML_TYPE_F16:
  7004. case GGML_TYPE_Q4_0:
  7005. case GGML_TYPE_Q4_1:
  7006. case GGML_TYPE_Q5_0:
  7007. case GGML_TYPE_Q5_1:
  7008. case GGML_TYPE_Q8_0:
  7009. case GGML_TYPE_Q8_1:
  7010. case GGML_TYPE_Q2_K:
  7011. case GGML_TYPE_Q3_K:
  7012. case GGML_TYPE_Q4_K:
  7013. case GGML_TYPE_Q5_K:
  7014. case GGML_TYPE_Q6_K:
  7015. case GGML_TYPE_IQ2_XXS:
  7016. case GGML_TYPE_IQ2_XS:
  7017. case GGML_TYPE_IQ3_XXS:
  7018. case GGML_TYPE_IQ1_S:
  7019. case GGML_TYPE_IQ1_M:
  7020. case GGML_TYPE_IQ4_NL:
  7021. case GGML_TYPE_IQ4_XS:
  7022. case GGML_TYPE_IQ3_S:
  7023. case GGML_TYPE_IQ2_S:
  7024. default:
  7025. {
  7026. GGML_ASSERT(false);
  7027. } break;
  7028. }
  7029. }
  7030. // ggml_compute_forward_sub
  7031. static void ggml_compute_forward_sub_f32(
  7032. const struct ggml_compute_params * params,
  7033. struct ggml_tensor * dst) {
  7034. const struct ggml_tensor * src0 = dst->src[0];
  7035. const struct ggml_tensor * src1 = dst->src[1];
  7036. assert(params->ith == 0);
  7037. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7039. return;
  7040. }
  7041. const int nr = ggml_nrows(src0);
  7042. GGML_TENSOR_BINARY_OP_LOCALS
  7043. GGML_ASSERT( nb0 == sizeof(float));
  7044. GGML_ASSERT(nb00 == sizeof(float));
  7045. if (nb10 == sizeof(float)) {
  7046. for (int ir = 0; ir < nr; ++ir) {
  7047. // src0, src1 and dst are same shape => same indices
  7048. const int i3 = ir/(ne2*ne1);
  7049. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7050. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7051. #ifdef GGML_USE_ACCELERATE
  7052. vDSP_vsub(
  7053. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7054. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7055. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7056. ne0);
  7057. #else
  7058. ggml_vec_sub_f32(ne0,
  7059. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7060. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7061. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7062. #endif
  7063. // }
  7064. // }
  7065. }
  7066. } else {
  7067. // src1 is not contiguous
  7068. for (int ir = 0; ir < nr; ++ir) {
  7069. // src0, src1 and dst are same shape => same indices
  7070. const int i3 = ir/(ne2*ne1);
  7071. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7072. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7073. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7074. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7075. for (int i0 = 0; i0 < ne0; i0++) {
  7076. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7077. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. static void ggml_compute_forward_sub(
  7083. const struct ggml_compute_params * params,
  7084. struct ggml_tensor * dst) {
  7085. const struct ggml_tensor * src0 = dst->src[0];
  7086. switch (src0->type) {
  7087. case GGML_TYPE_F32:
  7088. {
  7089. ggml_compute_forward_sub_f32(params, dst);
  7090. } break;
  7091. default:
  7092. {
  7093. GGML_ASSERT(false);
  7094. } break;
  7095. }
  7096. }
  7097. // ggml_compute_forward_mul
  7098. static void ggml_compute_forward_mul_f32(
  7099. const struct ggml_compute_params * params,
  7100. struct ggml_tensor * dst) {
  7101. const struct ggml_tensor * src0 = dst->src[0];
  7102. const struct ggml_tensor * src1 = dst->src[1];
  7103. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7104. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7105. return;
  7106. }
  7107. const int ith = params->ith;
  7108. const int nth = params->nth;
  7109. #if defined(GGML_USE_CLBLAST)
  7110. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7111. // TODO: OpenCL kernel support full broadcast
  7112. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7113. if (ith == 0) {
  7114. ggml_cl_mul(src0, src1, dst);
  7115. }
  7116. return;
  7117. }
  7118. #endif
  7119. const int64_t nr = ggml_nrows(src0);
  7120. GGML_TENSOR_BINARY_OP_LOCALS
  7121. GGML_ASSERT( nb0 == sizeof(float));
  7122. GGML_ASSERT(nb00 == sizeof(float));
  7123. if (nb10 == sizeof(float)) {
  7124. for (int64_t ir = ith; ir < nr; ir += nth) {
  7125. // src0 and dst are same shape => same indices
  7126. const int64_t i03 = ir/(ne02*ne01);
  7127. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7128. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7129. const int64_t i13 = i03 % ne13;
  7130. const int64_t i12 = i02 % ne12;
  7131. const int64_t i11 = i01 % ne11;
  7132. const int64_t nr0 = ne00 / ne10;
  7133. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7134. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7135. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7136. for (int64_t r = 0 ; r < nr0; ++r) {
  7137. #ifdef GGML_USE_ACCELERATE
  7138. UNUSED(ggml_vec_mul_f32);
  7139. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7140. #else
  7141. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7142. #endif
  7143. }
  7144. }
  7145. } else {
  7146. // src1 is not contiguous
  7147. for (int64_t ir = ith; ir < nr; ir += nth) {
  7148. // src0 and dst are same shape => same indices
  7149. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7150. const int64_t i03 = ir/(ne02*ne01);
  7151. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7152. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7153. const int64_t i13 = i03 % ne13;
  7154. const int64_t i12 = i02 % ne12;
  7155. const int64_t i11 = i01 % ne11;
  7156. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7157. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7158. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7159. const int64_t i10 = i0 % ne10;
  7160. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7161. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7162. }
  7163. }
  7164. }
  7165. }
  7166. static void ggml_compute_forward_mul(
  7167. const struct ggml_compute_params * params,
  7168. struct ggml_tensor * dst) {
  7169. const struct ggml_tensor * src0 = dst->src[0];
  7170. const struct ggml_tensor * src1 = dst->src[1];
  7171. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7172. switch (src0->type) {
  7173. case GGML_TYPE_F32:
  7174. {
  7175. ggml_compute_forward_mul_f32(params, dst);
  7176. } break;
  7177. default:
  7178. {
  7179. GGML_ASSERT(false);
  7180. } break;
  7181. }
  7182. }
  7183. // ggml_compute_forward_div
  7184. static void ggml_compute_forward_div_f32(
  7185. const struct ggml_compute_params * params,
  7186. struct ggml_tensor * dst) {
  7187. const struct ggml_tensor * src0 = dst->src[0];
  7188. const struct ggml_tensor * src1 = dst->src[1];
  7189. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7191. return;
  7192. }
  7193. const int ith = params->ith;
  7194. const int nth = params->nth;
  7195. const int64_t nr = ggml_nrows(src0);
  7196. GGML_TENSOR_BINARY_OP_LOCALS
  7197. GGML_ASSERT( nb0 == sizeof(float));
  7198. GGML_ASSERT(nb00 == sizeof(float));
  7199. if (nb10 == sizeof(float)) {
  7200. for (int64_t ir = ith; ir < nr; ir += nth) {
  7201. // src0 and dst are same shape => same indices
  7202. const int64_t i03 = ir/(ne02*ne01);
  7203. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7204. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7205. const int64_t i13 = i03 % ne13;
  7206. const int64_t i12 = i02 % ne12;
  7207. const int64_t i11 = i01 % ne11;
  7208. const int64_t nr0 = ne00 / ne10;
  7209. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7210. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7211. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7212. for (int64_t r = 0; r < nr0; ++r) {
  7213. #ifdef GGML_USE_ACCELERATE
  7214. UNUSED(ggml_vec_div_f32);
  7215. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7216. #else
  7217. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7218. #endif
  7219. }
  7220. }
  7221. } else {
  7222. // src1 is not contiguous
  7223. for (int64_t ir = ith; ir < nr; ir += nth) {
  7224. // src0 and dst are same shape => same indices
  7225. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7226. const int64_t i03 = ir/(ne02*ne01);
  7227. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7228. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7229. const int64_t i13 = i03 % ne13;
  7230. const int64_t i12 = i02 % ne12;
  7231. const int64_t i11 = i01 % ne11;
  7232. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7233. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7234. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7235. const int64_t i10 = i0 % ne10;
  7236. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7237. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7238. }
  7239. }
  7240. }
  7241. }
  7242. static void ggml_compute_forward_div(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. switch (src0->type) {
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_div_f32(params, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_sqr
  7258. static void ggml_compute_forward_sqr_f32(
  7259. const struct ggml_compute_params * params,
  7260. struct ggml_tensor * dst) {
  7261. const struct ggml_tensor * src0 = dst->src[0];
  7262. assert(params->ith == 0);
  7263. assert(ggml_are_same_shape(src0, dst));
  7264. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7265. return;
  7266. }
  7267. const int n = ggml_nrows(src0);
  7268. const int nc = src0->ne[0];
  7269. assert( dst->nb[0] == sizeof(float));
  7270. assert(src0->nb[0] == sizeof(float));
  7271. for (int i = 0; i < n; i++) {
  7272. ggml_vec_sqr_f32(nc,
  7273. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7274. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7275. }
  7276. }
  7277. static void ggml_compute_forward_sqr(
  7278. const struct ggml_compute_params * params,
  7279. struct ggml_tensor * dst) {
  7280. const struct ggml_tensor * src0 = dst->src[0];
  7281. switch (src0->type) {
  7282. case GGML_TYPE_F32:
  7283. {
  7284. ggml_compute_forward_sqr_f32(params, dst);
  7285. } break;
  7286. default:
  7287. {
  7288. GGML_ASSERT(false);
  7289. } break;
  7290. }
  7291. }
  7292. // ggml_compute_forward_sqrt
  7293. static void ggml_compute_forward_sqrt_f32(
  7294. const struct ggml_compute_params * params,
  7295. struct ggml_tensor * dst) {
  7296. const struct ggml_tensor * src0 = dst->src[0];
  7297. assert(params->ith == 0);
  7298. assert(ggml_are_same_shape(src0, dst));
  7299. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7300. return;
  7301. }
  7302. const int n = ggml_nrows(src0);
  7303. const int nc = src0->ne[0];
  7304. assert( dst->nb[0] == sizeof(float));
  7305. assert(src0->nb[0] == sizeof(float));
  7306. for (int i = 0; i < n; i++) {
  7307. ggml_vec_sqrt_f32(nc,
  7308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7310. }
  7311. }
  7312. static void ggml_compute_forward_sqrt(
  7313. const struct ggml_compute_params * params,
  7314. struct ggml_tensor * dst) {
  7315. const struct ggml_tensor * src0 = dst->src[0];
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_sqrt_f32(params, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_log
  7328. static void ggml_compute_forward_log_f32(
  7329. const struct ggml_compute_params * params,
  7330. struct ggml_tensor * dst) {
  7331. const struct ggml_tensor * src0 = dst->src[0];
  7332. GGML_ASSERT(params->ith == 0);
  7333. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7335. return;
  7336. }
  7337. const int n = ggml_nrows(src0);
  7338. const int nc = src0->ne[0];
  7339. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7340. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7341. for (int i = 0; i < n; i++) {
  7342. ggml_vec_log_f32(nc,
  7343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7345. }
  7346. }
  7347. static void ggml_compute_forward_log(
  7348. const struct ggml_compute_params * params,
  7349. struct ggml_tensor * dst) {
  7350. const struct ggml_tensor * src0 = dst->src[0];
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_log_f32(params, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. // ggml_compute_forward_sum
  7363. static void ggml_compute_forward_sum_f32(
  7364. const struct ggml_compute_params * params,
  7365. struct ggml_tensor * dst) {
  7366. const struct ggml_tensor * src0 = dst->src[0];
  7367. assert(params->ith == 0);
  7368. assert(ggml_is_scalar(dst));
  7369. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7370. return;
  7371. }
  7372. assert(ggml_is_scalar(dst));
  7373. assert(src0->nb[0] == sizeof(float));
  7374. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7375. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7376. ggml_float sum = 0;
  7377. ggml_float row_sum = 0;
  7378. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7379. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7380. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7381. ggml_vec_sum_f32_ggf(ne00,
  7382. &row_sum,
  7383. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7384. sum += row_sum;
  7385. }
  7386. }
  7387. }
  7388. ((float *) dst->data)[0] = sum;
  7389. }
  7390. static void ggml_compute_forward_sum_f16(
  7391. const struct ggml_compute_params * params,
  7392. struct ggml_tensor * dst) {
  7393. const struct ggml_tensor * src0 = dst->src[0];
  7394. assert(params->ith == 0);
  7395. assert(ggml_is_scalar(dst));
  7396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7397. return;
  7398. }
  7399. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7400. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7401. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7402. float sum = 0;
  7403. float row_sum = 0;
  7404. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7405. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7406. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7407. ggml_vec_sum_f16_ggf(ne00,
  7408. &row_sum,
  7409. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7410. sum += row_sum;
  7411. }
  7412. }
  7413. }
  7414. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7415. }
  7416. static void ggml_compute_forward_sum(
  7417. const struct ggml_compute_params * params,
  7418. struct ggml_tensor * dst) {
  7419. const struct ggml_tensor * src0 = dst->src[0];
  7420. switch (src0->type) {
  7421. case GGML_TYPE_F32:
  7422. {
  7423. ggml_compute_forward_sum_f32(params, dst);
  7424. } break;
  7425. case GGML_TYPE_F16:
  7426. {
  7427. ggml_compute_forward_sum_f16(params, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_sum_rows
  7436. static void ggml_compute_forward_sum_rows_f32(
  7437. const struct ggml_compute_params * params,
  7438. struct ggml_tensor * dst) {
  7439. const struct ggml_tensor * src0 = dst->src[0];
  7440. GGML_ASSERT(params->ith == 0);
  7441. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7442. return;
  7443. }
  7444. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7445. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7446. GGML_TENSOR_UNARY_OP_LOCALS
  7447. GGML_ASSERT(ne0 == 1);
  7448. GGML_ASSERT(ne1 == ne01);
  7449. GGML_ASSERT(ne2 == ne02);
  7450. GGML_ASSERT(ne3 == ne03);
  7451. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7452. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7453. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7454. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7455. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7456. float row_sum = 0;
  7457. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7458. dst_row[0] = row_sum;
  7459. }
  7460. }
  7461. }
  7462. }
  7463. static void ggml_compute_forward_sum_rows(
  7464. const struct ggml_compute_params * params,
  7465. struct ggml_tensor * dst) {
  7466. const struct ggml_tensor * src0 = dst->src[0];
  7467. switch (src0->type) {
  7468. case GGML_TYPE_F32:
  7469. {
  7470. ggml_compute_forward_sum_rows_f32(params, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_mean
  7479. static void ggml_compute_forward_mean_f32(
  7480. const struct ggml_compute_params * params,
  7481. struct ggml_tensor * dst) {
  7482. const struct ggml_tensor * src0 = dst->src[0];
  7483. assert(params->ith == 0);
  7484. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7485. return;
  7486. }
  7487. assert(src0->nb[0] == sizeof(float));
  7488. GGML_TENSOR_UNARY_OP_LOCALS
  7489. assert(ne0 == 1);
  7490. assert(ne1 == ne01);
  7491. assert(ne2 == ne02);
  7492. assert(ne3 == ne03);
  7493. UNUSED(ne0);
  7494. UNUSED(ne1);
  7495. UNUSED(ne2);
  7496. UNUSED(ne3);
  7497. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7499. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7500. ggml_vec_sum_f32(ne00,
  7501. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7502. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7503. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7504. }
  7505. }
  7506. }
  7507. }
  7508. static void ggml_compute_forward_mean(
  7509. const struct ggml_compute_params * params,
  7510. struct ggml_tensor * dst) {
  7511. const struct ggml_tensor * src0 = dst->src[0];
  7512. switch (src0->type) {
  7513. case GGML_TYPE_F32:
  7514. {
  7515. ggml_compute_forward_mean_f32(params, dst);
  7516. } break;
  7517. default:
  7518. {
  7519. GGML_ASSERT(false);
  7520. } break;
  7521. }
  7522. }
  7523. // ggml_compute_forward_argmax
  7524. static void ggml_compute_forward_argmax_f32(
  7525. const struct ggml_compute_params * params,
  7526. struct ggml_tensor * dst) {
  7527. const struct ggml_tensor * src0 = dst->src[0];
  7528. assert(params->ith == 0);
  7529. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7530. return;
  7531. }
  7532. assert(src0->nb[0] == sizeof(float));
  7533. assert(dst->nb[0] == sizeof(float));
  7534. const int64_t ne00 = src0->ne[0];
  7535. const int64_t ne01 = src0->ne[1];
  7536. const size_t nb01 = src0->nb[1];
  7537. const size_t nb0 = dst->nb[0];
  7538. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7539. float * src = (float *) ((char *) src0->data + i1*nb01);
  7540. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7541. int v = 0;
  7542. ggml_vec_argmax_f32(ne00, &v, src);
  7543. dst_[0] = v;
  7544. }
  7545. }
  7546. static void ggml_compute_forward_argmax(
  7547. const struct ggml_compute_params * params,
  7548. struct ggml_tensor * dst) {
  7549. const struct ggml_tensor * src0 = dst->src[0];
  7550. switch (src0->type) {
  7551. case GGML_TYPE_F32:
  7552. {
  7553. ggml_compute_forward_argmax_f32(params, dst);
  7554. } break;
  7555. default:
  7556. {
  7557. GGML_ASSERT(false);
  7558. } break;
  7559. }
  7560. }
  7561. // ggml_compute_forward_repeat
  7562. static void ggml_compute_forward_repeat_f32(
  7563. const struct ggml_compute_params * params,
  7564. struct ggml_tensor * dst) {
  7565. const struct ggml_tensor * src0 = dst->src[0];
  7566. GGML_ASSERT(params->ith == 0);
  7567. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7568. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7569. return;
  7570. }
  7571. GGML_TENSOR_UNARY_OP_LOCALS
  7572. // guaranteed to be an integer due to the check in ggml_can_repeat
  7573. const int nr0 = (int)(ne0/ne00);
  7574. const int nr1 = (int)(ne1/ne01);
  7575. const int nr2 = (int)(ne2/ne02);
  7576. const int nr3 = (int)(ne3/ne03);
  7577. // TODO: support for transposed / permuted tensors
  7578. GGML_ASSERT(nb0 == sizeof(float));
  7579. GGML_ASSERT(nb00 == sizeof(float));
  7580. // TODO: maybe this is not optimal?
  7581. for (int i3 = 0; i3 < nr3; i3++) {
  7582. for (int k3 = 0; k3 < ne03; k3++) {
  7583. for (int i2 = 0; i2 < nr2; i2++) {
  7584. for (int k2 = 0; k2 < ne02; k2++) {
  7585. for (int i1 = 0; i1 < nr1; i1++) {
  7586. for (int k1 = 0; k1 < ne01; k1++) {
  7587. for (int i0 = 0; i0 < nr0; i0++) {
  7588. ggml_vec_cpy_f32(ne00,
  7589. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7590. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7591. }
  7592. }
  7593. }
  7594. }
  7595. }
  7596. }
  7597. }
  7598. }
  7599. static void ggml_compute_forward_repeat_f16(
  7600. const struct ggml_compute_params * params,
  7601. struct ggml_tensor * dst) {
  7602. const struct ggml_tensor * src0 = dst->src[0];
  7603. GGML_ASSERT(params->ith == 0);
  7604. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7605. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7606. return;
  7607. }
  7608. GGML_TENSOR_UNARY_OP_LOCALS
  7609. // guaranteed to be an integer due to the check in ggml_can_repeat
  7610. const int nr0 = (int)(ne0/ne00);
  7611. const int nr1 = (int)(ne1/ne01);
  7612. const int nr2 = (int)(ne2/ne02);
  7613. const int nr3 = (int)(ne3/ne03);
  7614. // TODO: support for transposed / permuted tensors
  7615. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7616. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7617. // TODO: maybe this is not optimal?
  7618. for (int i3 = 0; i3 < nr3; i3++) {
  7619. for (int k3 = 0; k3 < ne03; k3++) {
  7620. for (int i2 = 0; i2 < nr2; i2++) {
  7621. for (int k2 = 0; k2 < ne02; k2++) {
  7622. for (int i1 = 0; i1 < nr1; i1++) {
  7623. for (int k1 = 0; k1 < ne01; k1++) {
  7624. for (int i0 = 0; i0 < nr0; i0++) {
  7625. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7626. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7627. // ggml_vec_cpy_f16(ne00, y, x)
  7628. for (int i = 0; i < ne00; ++i) {
  7629. y[i] = x[i];
  7630. }
  7631. }
  7632. }
  7633. }
  7634. }
  7635. }
  7636. }
  7637. }
  7638. }
  7639. static void ggml_compute_forward_repeat(
  7640. const struct ggml_compute_params * params,
  7641. struct ggml_tensor * dst) {
  7642. const struct ggml_tensor * src0 = dst->src[0];
  7643. switch (src0->type) {
  7644. case GGML_TYPE_F16:
  7645. case GGML_TYPE_I16:
  7646. {
  7647. ggml_compute_forward_repeat_f16(params, dst);
  7648. } break;
  7649. case GGML_TYPE_F32:
  7650. case GGML_TYPE_I32:
  7651. {
  7652. ggml_compute_forward_repeat_f32(params, dst);
  7653. } break;
  7654. default:
  7655. {
  7656. GGML_ASSERT(false);
  7657. } break;
  7658. }
  7659. }
  7660. // ggml_compute_forward_repeat_back
  7661. static void ggml_compute_forward_repeat_back_f32(
  7662. const struct ggml_compute_params * params,
  7663. struct ggml_tensor * dst) {
  7664. const struct ggml_tensor * src0 = dst->src[0];
  7665. GGML_ASSERT(params->ith == 0);
  7666. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7667. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7668. return;
  7669. }
  7670. GGML_TENSOR_UNARY_OP_LOCALS
  7671. // guaranteed to be an integer due to the check in ggml_can_repeat
  7672. const int nr0 = (int)(ne00/ne0);
  7673. const int nr1 = (int)(ne01/ne1);
  7674. const int nr2 = (int)(ne02/ne2);
  7675. const int nr3 = (int)(ne03/ne3);
  7676. // TODO: support for transposed / permuted tensors
  7677. GGML_ASSERT(nb0 == sizeof(float));
  7678. GGML_ASSERT(nb00 == sizeof(float));
  7679. if (ggml_is_contiguous(dst)) {
  7680. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7681. } else {
  7682. for (int k3 = 0; k3 < ne3; k3++) {
  7683. for (int k2 = 0; k2 < ne2; k2++) {
  7684. for (int k1 = 0; k1 < ne1; k1++) {
  7685. ggml_vec_set_f32(ne0,
  7686. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7687. 0);
  7688. }
  7689. }
  7690. }
  7691. }
  7692. // TODO: maybe this is not optimal?
  7693. for (int i3 = 0; i3 < nr3; i3++) {
  7694. for (int k3 = 0; k3 < ne3; k3++) {
  7695. for (int i2 = 0; i2 < nr2; i2++) {
  7696. for (int k2 = 0; k2 < ne2; k2++) {
  7697. for (int i1 = 0; i1 < nr1; i1++) {
  7698. for (int k1 = 0; k1 < ne1; k1++) {
  7699. for (int i0 = 0; i0 < nr0; i0++) {
  7700. ggml_vec_acc_f32(ne0,
  7701. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7702. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7703. }
  7704. }
  7705. }
  7706. }
  7707. }
  7708. }
  7709. }
  7710. }
  7711. static void ggml_compute_forward_repeat_back(
  7712. const struct ggml_compute_params * params,
  7713. struct ggml_tensor * dst) {
  7714. const struct ggml_tensor * src0 = dst->src[0];
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_repeat_back_f32(params, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. // ggml_compute_forward_concat
  7727. static void ggml_compute_forward_concat_f32(
  7728. const struct ggml_compute_params * params,
  7729. struct ggml_tensor * dst) {
  7730. const struct ggml_tensor * src0 = dst->src[0];
  7731. const struct ggml_tensor * src1 = dst->src[1];
  7732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7733. return;
  7734. }
  7735. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7736. const int ith = params->ith;
  7737. const int nth = params->nth;
  7738. GGML_TENSOR_BINARY_OP_LOCALS
  7739. // TODO: support for transposed / permuted tensors
  7740. GGML_ASSERT(nb0 == sizeof(float));
  7741. GGML_ASSERT(nb00 == sizeof(float));
  7742. GGML_ASSERT(nb10 == sizeof(float));
  7743. for (int i3 = 0; i3 < ne3; i3++) {
  7744. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7745. if (i2 < ne02) { // src0
  7746. for (int i1 = 0; i1 < ne1; i1++) {
  7747. for (int i0 = 0; i0 < ne0; i0++) {
  7748. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7749. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7750. *y = *x;
  7751. }
  7752. }
  7753. } // src1
  7754. else {
  7755. for (int i1 = 0; i1 < ne1; i1++) {
  7756. for (int i0 = 0; i0 < ne0; i0++) {
  7757. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7758. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7759. *y = *x;
  7760. }
  7761. }
  7762. }
  7763. }
  7764. }
  7765. }
  7766. static void ggml_compute_forward_concat(
  7767. const struct ggml_compute_params* params,
  7768. struct ggml_tensor* dst) {
  7769. const struct ggml_tensor * src0 = dst->src[0];
  7770. switch (src0->type) {
  7771. case GGML_TYPE_F32:
  7772. case GGML_TYPE_I32:
  7773. {
  7774. ggml_compute_forward_concat_f32(params, dst);
  7775. } break;
  7776. default:
  7777. {
  7778. GGML_ASSERT(false);
  7779. } break;
  7780. }
  7781. }
  7782. // ggml_compute_forward_abs
  7783. static void ggml_compute_forward_abs_f32(
  7784. const struct ggml_compute_params * params,
  7785. struct ggml_tensor * dst) {
  7786. const struct ggml_tensor * src0 = dst->src[0];
  7787. assert(params->ith == 0);
  7788. assert(ggml_are_same_shape(src0, dst));
  7789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7790. return;
  7791. }
  7792. const int n = ggml_nrows(src0);
  7793. const int nc = src0->ne[0];
  7794. assert(dst->nb[0] == sizeof(float));
  7795. assert(src0->nb[0] == sizeof(float));
  7796. for (int i = 0; i < n; i++) {
  7797. ggml_vec_abs_f32(nc,
  7798. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7799. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7800. }
  7801. }
  7802. static void ggml_compute_forward_abs(
  7803. const struct ggml_compute_params * params,
  7804. struct ggml_tensor * dst) {
  7805. const struct ggml_tensor * src0 = dst->src[0];
  7806. switch (src0->type) {
  7807. case GGML_TYPE_F32:
  7808. {
  7809. ggml_compute_forward_abs_f32(params, dst);
  7810. } break;
  7811. default:
  7812. {
  7813. GGML_ASSERT(false);
  7814. } break;
  7815. }
  7816. }
  7817. // ggml_compute_forward_sgn
  7818. static void ggml_compute_forward_sgn_f32(
  7819. const struct ggml_compute_params * params,
  7820. struct ggml_tensor * dst) {
  7821. const struct ggml_tensor * src0 = dst->src[0];
  7822. assert(params->ith == 0);
  7823. assert(ggml_are_same_shape(src0, dst));
  7824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7825. return;
  7826. }
  7827. const int n = ggml_nrows(src0);
  7828. const int nc = src0->ne[0];
  7829. assert(dst->nb[0] == sizeof(float));
  7830. assert(src0->nb[0] == sizeof(float));
  7831. for (int i = 0; i < n; i++) {
  7832. ggml_vec_sgn_f32(nc,
  7833. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7834. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7835. }
  7836. }
  7837. static void ggml_compute_forward_sgn(
  7838. const struct ggml_compute_params * params,
  7839. struct ggml_tensor * dst) {
  7840. const struct ggml_tensor * src0 = dst->src[0];
  7841. switch (src0->type) {
  7842. case GGML_TYPE_F32:
  7843. {
  7844. ggml_compute_forward_sgn_f32(params, dst);
  7845. } break;
  7846. default:
  7847. {
  7848. GGML_ASSERT(false);
  7849. } break;
  7850. }
  7851. }
  7852. // ggml_compute_forward_neg
  7853. static void ggml_compute_forward_neg_f32(
  7854. const struct ggml_compute_params * params,
  7855. struct ggml_tensor * dst) {
  7856. const struct ggml_tensor * src0 = dst->src[0];
  7857. assert(params->ith == 0);
  7858. assert(ggml_are_same_shape(src0, dst));
  7859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7860. return;
  7861. }
  7862. const int n = ggml_nrows(src0);
  7863. const int nc = src0->ne[0];
  7864. assert(dst->nb[0] == sizeof(float));
  7865. assert(src0->nb[0] == sizeof(float));
  7866. for (int i = 0; i < n; i++) {
  7867. ggml_vec_neg_f32(nc,
  7868. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7869. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7870. }
  7871. }
  7872. static void ggml_compute_forward_neg(
  7873. const struct ggml_compute_params * params,
  7874. struct ggml_tensor * dst) {
  7875. const struct ggml_tensor * src0 = dst->src[0];
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_neg_f32(params, dst);
  7880. } break;
  7881. default:
  7882. {
  7883. GGML_ASSERT(false);
  7884. } break;
  7885. }
  7886. }
  7887. // ggml_compute_forward_step
  7888. static void ggml_compute_forward_step_f32(
  7889. const struct ggml_compute_params * params,
  7890. struct ggml_tensor * dst) {
  7891. const struct ggml_tensor * src0 = dst->src[0];
  7892. assert(params->ith == 0);
  7893. assert(ggml_are_same_shape(src0, dst));
  7894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7895. return;
  7896. }
  7897. const int n = ggml_nrows(src0);
  7898. const int nc = src0->ne[0];
  7899. assert(dst->nb[0] == sizeof(float));
  7900. assert(src0->nb[0] == sizeof(float));
  7901. for (int i = 0; i < n; i++) {
  7902. ggml_vec_step_f32(nc,
  7903. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7904. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7905. }
  7906. }
  7907. static void ggml_compute_forward_step(
  7908. const struct ggml_compute_params * params,
  7909. struct ggml_tensor * dst) {
  7910. const struct ggml_tensor * src0 = dst->src[0];
  7911. switch (src0->type) {
  7912. case GGML_TYPE_F32:
  7913. {
  7914. ggml_compute_forward_step_f32(params, dst);
  7915. } break;
  7916. default:
  7917. {
  7918. GGML_ASSERT(false);
  7919. } break;
  7920. }
  7921. }
  7922. // ggml_compute_forward_tanh
  7923. static void ggml_compute_forward_tanh_f32(
  7924. const struct ggml_compute_params * params,
  7925. struct ggml_tensor * dst) {
  7926. const struct ggml_tensor * src0 = dst->src[0];
  7927. assert(params->ith == 0);
  7928. assert(ggml_are_same_shape(src0, dst));
  7929. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7930. return;
  7931. }
  7932. const int n = ggml_nrows(src0);
  7933. const int nc = src0->ne[0];
  7934. assert(dst->nb[0] == sizeof(float));
  7935. assert(src0->nb[0] == sizeof(float));
  7936. for (int i = 0; i < n; i++) {
  7937. ggml_vec_tanh_f32(nc,
  7938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7940. }
  7941. }
  7942. static void ggml_compute_forward_tanh(
  7943. const struct ggml_compute_params * params,
  7944. struct ggml_tensor * dst) {
  7945. const struct ggml_tensor * src0 = dst->src[0];
  7946. switch (src0->type) {
  7947. case GGML_TYPE_F32:
  7948. {
  7949. ggml_compute_forward_tanh_f32(params, dst);
  7950. } break;
  7951. default:
  7952. {
  7953. GGML_ASSERT(false);
  7954. } break;
  7955. }
  7956. }
  7957. // ggml_compute_forward_elu
  7958. static void ggml_compute_forward_elu_f32(
  7959. const struct ggml_compute_params * params,
  7960. struct ggml_tensor * dst) {
  7961. const struct ggml_tensor * src0 = dst->src[0];
  7962. assert(params->ith == 0);
  7963. assert(ggml_are_same_shape(src0, dst));
  7964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7965. return;
  7966. }
  7967. const int n = ggml_nrows(src0);
  7968. const int nc = src0->ne[0];
  7969. assert(dst->nb[0] == sizeof(float));
  7970. assert(src0->nb[0] == sizeof(float));
  7971. for (int i = 0; i < n; i++) {
  7972. ggml_vec_elu_f32(nc,
  7973. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7974. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7975. }
  7976. }
  7977. static void ggml_compute_forward_elu(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. switch (src0->type) {
  7982. case GGML_TYPE_F32:
  7983. {
  7984. ggml_compute_forward_elu_f32(params, dst);
  7985. } break;
  7986. default:
  7987. {
  7988. GGML_ASSERT(false);
  7989. } break;
  7990. }
  7991. }
  7992. // ggml_compute_forward_relu
  7993. static void ggml_compute_forward_relu_f32(
  7994. const struct ggml_compute_params * params,
  7995. struct ggml_tensor * dst) {
  7996. const struct ggml_tensor * src0 = dst->src[0];
  7997. assert(params->ith == 0);
  7998. assert(ggml_are_same_shape(src0, dst));
  7999. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8000. return;
  8001. }
  8002. const int n = ggml_nrows(src0);
  8003. const int nc = src0->ne[0];
  8004. assert(dst->nb[0] == sizeof(float));
  8005. assert(src0->nb[0] == sizeof(float));
  8006. for (int i = 0; i < n; i++) {
  8007. ggml_vec_relu_f32(nc,
  8008. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8009. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8010. }
  8011. }
  8012. static void ggml_compute_forward_relu(
  8013. const struct ggml_compute_params * params,
  8014. struct ggml_tensor * dst) {
  8015. const struct ggml_tensor * src0 = dst->src[0];
  8016. switch (src0->type) {
  8017. case GGML_TYPE_F32:
  8018. {
  8019. ggml_compute_forward_relu_f32(params, dst);
  8020. } break;
  8021. default:
  8022. {
  8023. GGML_ASSERT(false);
  8024. } break;
  8025. }
  8026. }
  8027. // ggml_compute_forward_gelu
  8028. static void ggml_compute_forward_gelu_f32(
  8029. const struct ggml_compute_params * params,
  8030. struct ggml_tensor * dst) {
  8031. const struct ggml_tensor * src0 = dst->src[0];
  8032. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8033. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8036. return;
  8037. }
  8038. const int ith = params->ith;
  8039. const int nth = params->nth;
  8040. const int nc = src0->ne[0];
  8041. const int nr = ggml_nrows(src0);
  8042. // rows per thread
  8043. const int dr = (nr + nth - 1)/nth;
  8044. // row range for this thread
  8045. const int ir0 = dr*ith;
  8046. const int ir1 = MIN(ir0 + dr, nr);
  8047. for (int i1 = ir0; i1 < ir1; i1++) {
  8048. ggml_vec_gelu_f32(nc,
  8049. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8050. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8051. #ifndef NDEBUG
  8052. for (int k = 0; k < nc; k++) {
  8053. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8054. UNUSED(x);
  8055. assert(!isnan(x));
  8056. assert(!isinf(x));
  8057. }
  8058. #endif
  8059. }
  8060. }
  8061. static void ggml_compute_forward_gelu(
  8062. const struct ggml_compute_params * params,
  8063. struct ggml_tensor * dst) {
  8064. const struct ggml_tensor * src0 = dst->src[0];
  8065. switch (src0->type) {
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_gelu_f32(params, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_gelu_quick
  8077. static void ggml_compute_forward_gelu_quick_f32(
  8078. const struct ggml_compute_params * params,
  8079. struct ggml_tensor * dst) {
  8080. const struct ggml_tensor * src0 = dst->src[0];
  8081. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8082. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8083. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8084. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8085. return;
  8086. }
  8087. const int ith = params->ith;
  8088. const int nth = params->nth;
  8089. const int nc = src0->ne[0];
  8090. const int nr = ggml_nrows(src0);
  8091. // rows per thread
  8092. const int dr = (nr + nth - 1)/nth;
  8093. // row range for this thread
  8094. const int ir0 = dr*ith;
  8095. const int ir1 = MIN(ir0 + dr, nr);
  8096. for (int i1 = ir0; i1 < ir1; i1++) {
  8097. ggml_vec_gelu_quick_f32(nc,
  8098. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8099. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8100. #ifndef NDEBUG
  8101. for (int k = 0; k < nc; k++) {
  8102. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8103. UNUSED(x);
  8104. assert(!isnan(x));
  8105. assert(!isinf(x));
  8106. }
  8107. #endif
  8108. }
  8109. }
  8110. static void ggml_compute_forward_gelu_quick(
  8111. const struct ggml_compute_params * params,
  8112. struct ggml_tensor * dst) {
  8113. const struct ggml_tensor * src0 = dst->src[0];
  8114. switch (src0->type) {
  8115. case GGML_TYPE_F32:
  8116. {
  8117. ggml_compute_forward_gelu_quick_f32(params, dst);
  8118. } break;
  8119. default:
  8120. {
  8121. GGML_ASSERT(false);
  8122. } break;
  8123. }
  8124. }
  8125. // ggml_compute_forward_silu
  8126. static void ggml_compute_forward_silu_f32(
  8127. const struct ggml_compute_params * params,
  8128. struct ggml_tensor * dst) {
  8129. const struct ggml_tensor * src0 = dst->src[0];
  8130. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8131. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8133. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8134. return;
  8135. }
  8136. const int ith = params->ith;
  8137. const int nth = params->nth;
  8138. const int nc = src0->ne[0];
  8139. const int nr = ggml_nrows(src0);
  8140. // rows per thread
  8141. const int dr = (nr + nth - 1)/nth;
  8142. // row range for this thread
  8143. const int ir0 = dr*ith;
  8144. const int ir1 = MIN(ir0 + dr, nr);
  8145. for (int i1 = ir0; i1 < ir1; i1++) {
  8146. ggml_vec_silu_f32(nc,
  8147. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8148. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8149. #ifndef NDEBUG
  8150. for (int k = 0; k < nc; k++) {
  8151. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8152. UNUSED(x);
  8153. assert(!isnan(x));
  8154. assert(!isinf(x));
  8155. }
  8156. #endif
  8157. }
  8158. }
  8159. static void ggml_compute_forward_silu(
  8160. const struct ggml_compute_params * params,
  8161. struct ggml_tensor * dst) {
  8162. const struct ggml_tensor * src0 = dst->src[0];
  8163. switch (src0->type) {
  8164. case GGML_TYPE_F32:
  8165. {
  8166. ggml_compute_forward_silu_f32(params, dst);
  8167. } break;
  8168. default:
  8169. {
  8170. GGML_ASSERT(false);
  8171. } break;
  8172. }
  8173. }
  8174. // ggml_compute_forward_leaky_relu
  8175. static void ggml_compute_forward_leaky_relu_f32(
  8176. const struct ggml_compute_params * params,
  8177. struct ggml_tensor * dst) {
  8178. const struct ggml_tensor * src0 = dst->src[0];
  8179. assert(params->ith == 0);
  8180. assert(ggml_are_same_shape(src0, dst));
  8181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8182. return;
  8183. }
  8184. const int n = ggml_nrows(src0);
  8185. const int nc = src0->ne[0];
  8186. float negative_slope;
  8187. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8188. assert(dst->nb[0] == sizeof(float));
  8189. assert(src0->nb[0] == sizeof(float));
  8190. for (int i = 0; i < n; i++) {
  8191. ggml_vec_leaky_relu_f32(nc,
  8192. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8193. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8194. }
  8195. }
  8196. static void ggml_compute_forward_leaky_relu(
  8197. const struct ggml_compute_params * params,
  8198. struct ggml_tensor * dst) {
  8199. const struct ggml_tensor * src0 = dst->src[0];
  8200. switch (src0->type) {
  8201. case GGML_TYPE_F32:
  8202. {
  8203. ggml_compute_forward_leaky_relu_f32(params, dst);
  8204. } break;
  8205. default:
  8206. {
  8207. GGML_ASSERT(false);
  8208. } break;
  8209. }
  8210. }
  8211. // ggml_compute_forward_silu_back
  8212. static void ggml_compute_forward_silu_back_f32(
  8213. const struct ggml_compute_params * params,
  8214. struct ggml_tensor * dst) {
  8215. const struct ggml_tensor * src0 = dst->src[0];
  8216. const struct ggml_tensor * grad = dst->src[1];
  8217. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8218. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8219. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8220. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8221. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8223. return;
  8224. }
  8225. const int ith = params->ith;
  8226. const int nth = params->nth;
  8227. const int nc = src0->ne[0];
  8228. const int nr = ggml_nrows(src0);
  8229. // rows per thread
  8230. const int dr = (nr + nth - 1)/nth;
  8231. // row range for this thread
  8232. const int ir0 = dr*ith;
  8233. const int ir1 = MIN(ir0 + dr, nr);
  8234. for (int i1 = ir0; i1 < ir1; i1++) {
  8235. ggml_vec_silu_backward_f32(nc,
  8236. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8237. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8238. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8239. #ifndef NDEBUG
  8240. for (int k = 0; k < nc; k++) {
  8241. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8242. UNUSED(x);
  8243. assert(!isnan(x));
  8244. assert(!isinf(x));
  8245. }
  8246. #endif
  8247. }
  8248. }
  8249. static void ggml_compute_forward_silu_back(
  8250. const struct ggml_compute_params * params,
  8251. struct ggml_tensor * dst) {
  8252. const struct ggml_tensor * src0 = dst->src[0];
  8253. switch (src0->type) {
  8254. case GGML_TYPE_F32:
  8255. {
  8256. ggml_compute_forward_silu_back_f32(params, dst);
  8257. } break;
  8258. default:
  8259. {
  8260. GGML_ASSERT(false);
  8261. } break;
  8262. }
  8263. }
  8264. static void ggml_compute_forward_hardswish_f32(
  8265. const struct ggml_compute_params * params,
  8266. struct ggml_tensor * dst) {
  8267. const struct ggml_tensor * src0 = dst->src[0];
  8268. assert(params->ith == 0);
  8269. assert(ggml_are_same_shape(src0, dst));
  8270. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8271. return;
  8272. }
  8273. const int n = ggml_nrows(src0);
  8274. const int nc = src0->ne[0];
  8275. assert(dst->nb[0] == sizeof(float));
  8276. assert(src0->nb[0] == sizeof(float));
  8277. for (int i = 0; i < n; i++) {
  8278. ggml_vec_hardswish_f32(nc,
  8279. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8280. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8281. }
  8282. }
  8283. static void ggml_compute_forward_hardswish(
  8284. const struct ggml_compute_params * params,
  8285. struct ggml_tensor * dst) {
  8286. const struct ggml_tensor * src0 = dst->src[0];
  8287. switch (src0->type) {
  8288. case GGML_TYPE_F32:
  8289. {
  8290. ggml_compute_forward_hardswish_f32(params, dst);
  8291. } break;
  8292. default:
  8293. {
  8294. GGML_ASSERT(false);
  8295. } break;
  8296. }
  8297. }
  8298. static void ggml_compute_forward_hardsigmoid_f32(
  8299. const struct ggml_compute_params * params,
  8300. struct ggml_tensor * dst) {
  8301. const struct ggml_tensor * src0 = dst->src[0];
  8302. assert(params->ith == 0);
  8303. assert(ggml_are_same_shape(src0, dst));
  8304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8305. return;
  8306. }
  8307. const int n = ggml_nrows(src0);
  8308. const int nc = src0->ne[0];
  8309. assert(dst->nb[0] == sizeof(float));
  8310. assert(src0->nb[0] == sizeof(float));
  8311. for (int i = 0; i < n; i++) {
  8312. ggml_vec_hardsigmoid_f32(nc,
  8313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8315. }
  8316. }
  8317. static void ggml_compute_forward_hardsigmoid(
  8318. const struct ggml_compute_params * params,
  8319. struct ggml_tensor * dst) {
  8320. const struct ggml_tensor * src0 = dst->src[0];
  8321. switch (src0->type) {
  8322. case GGML_TYPE_F32:
  8323. {
  8324. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8325. } break;
  8326. default:
  8327. {
  8328. GGML_ASSERT(false);
  8329. } break;
  8330. }
  8331. }
  8332. // ggml_compute_forward_norm
  8333. static void ggml_compute_forward_norm_f32(
  8334. const struct ggml_compute_params * params,
  8335. struct ggml_tensor * dst) {
  8336. const struct ggml_tensor * src0 = dst->src[0];
  8337. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8339. return;
  8340. }
  8341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8342. const int ith = params->ith;
  8343. const int nth = params->nth;
  8344. GGML_TENSOR_UNARY_OP_LOCALS
  8345. float eps;
  8346. memcpy(&eps, dst->op_params, sizeof(float));
  8347. GGML_ASSERT(eps > 0.0f);
  8348. // TODO: optimize
  8349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8351. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8352. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8353. ggml_float sum = 0.0;
  8354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8355. sum += (ggml_float)x[i00];
  8356. }
  8357. float mean = sum/ne00;
  8358. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8359. ggml_float sum2 = 0.0;
  8360. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8361. float v = x[i00] - mean;
  8362. y[i00] = v;
  8363. sum2 += (ggml_float)(v*v);
  8364. }
  8365. float variance = sum2/ne00;
  8366. const float scale = 1.0f/sqrtf(variance + eps);
  8367. ggml_vec_scale_f32(ne00, y, scale);
  8368. }
  8369. }
  8370. }
  8371. }
  8372. static void ggml_compute_forward_norm(
  8373. const struct ggml_compute_params * params,
  8374. struct ggml_tensor * dst) {
  8375. const struct ggml_tensor * src0 = dst->src[0];
  8376. switch (src0->type) {
  8377. case GGML_TYPE_F32:
  8378. {
  8379. ggml_compute_forward_norm_f32(params, dst);
  8380. } break;
  8381. default:
  8382. {
  8383. GGML_ASSERT(false);
  8384. } break;
  8385. }
  8386. }
  8387. // ggml_compute_forward_group_rms_norm
  8388. static void ggml_compute_forward_rms_norm_f32(
  8389. const struct ggml_compute_params * params,
  8390. struct ggml_tensor * dst) {
  8391. const struct ggml_tensor * src0 = dst->src[0];
  8392. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8394. return;
  8395. }
  8396. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8397. const int ith = params->ith;
  8398. const int nth = params->nth;
  8399. GGML_TENSOR_UNARY_OP_LOCALS
  8400. float eps;
  8401. memcpy(&eps, dst->op_params, sizeof(float));
  8402. GGML_ASSERT(eps > 0.0f);
  8403. // TODO: optimize
  8404. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8405. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8406. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8407. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8408. ggml_float sum = 0.0;
  8409. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8410. sum += (ggml_float)(x[i00] * x[i00]);
  8411. }
  8412. const float mean = sum/ne00;
  8413. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8414. memcpy(y, x, ne00 * sizeof(float));
  8415. // for (int i00 = 0; i00 < ne00; i00++) {
  8416. // y[i00] = x[i00];
  8417. // }
  8418. const float scale = 1.0f/sqrtf(mean + eps);
  8419. ggml_vec_scale_f32(ne00, y, scale);
  8420. }
  8421. }
  8422. }
  8423. }
  8424. static void ggml_compute_forward_rms_norm(
  8425. const struct ggml_compute_params * params,
  8426. struct ggml_tensor * dst) {
  8427. const struct ggml_tensor * src0 = dst->src[0];
  8428. switch (src0->type) {
  8429. case GGML_TYPE_F32:
  8430. {
  8431. ggml_compute_forward_rms_norm_f32(params, dst);
  8432. } break;
  8433. default:
  8434. {
  8435. GGML_ASSERT(false);
  8436. } break;
  8437. }
  8438. }
  8439. static void ggml_compute_forward_rms_norm_back_f32(
  8440. const struct ggml_compute_params * params,
  8441. struct ggml_tensor * dst) {
  8442. const struct ggml_tensor * src0 = dst->src[0];
  8443. const struct ggml_tensor * src1 = dst->src[1];
  8444. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8445. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8446. return;
  8447. }
  8448. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8449. const int ith = params->ith;
  8450. const int nth = params->nth;
  8451. GGML_TENSOR_BINARY_OP_LOCALS
  8452. float eps;
  8453. memcpy(&eps, dst->op_params, sizeof(float));
  8454. // TODO: optimize
  8455. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8456. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8457. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8458. // src1 is same shape as src0 => same indices
  8459. const int64_t i11 = i01;
  8460. const int64_t i12 = i02;
  8461. const int64_t i13 = i03;
  8462. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8463. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8464. ggml_float sum_xx = 0.0;
  8465. ggml_float sum_xdz = 0.0;
  8466. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8467. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8468. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8469. }
  8470. //const float mean = (float)(sum_xx)/ne00;
  8471. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8472. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8473. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8474. // we could cache rms from forward pass to improve performance.
  8475. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8476. //const float rms = sqrtf(mean_eps);
  8477. const float rrms = 1.0f / sqrtf(mean_eps);
  8478. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8479. {
  8480. // z = rms_norm(x)
  8481. //
  8482. // rms_norm(src0) =
  8483. // scale(
  8484. // src0,
  8485. // div(
  8486. // 1,
  8487. // sqrt(
  8488. // add(
  8489. // scale(
  8490. // sum(
  8491. // sqr(
  8492. // src0)),
  8493. // (1.0/N)),
  8494. // eps))));
  8495. // postorder:
  8496. // ## op args grad
  8497. // 00 param src0 grad[#00]
  8498. // 01 const 1
  8499. // 02 sqr (#00) grad[#02]
  8500. // 03 sum (#02) grad[#03]
  8501. // 04 const 1/N
  8502. // 05 scale (#03, #04) grad[#05]
  8503. // 06 const eps
  8504. // 07 add (#05, #06) grad[#07]
  8505. // 08 sqrt (#07) grad[#08]
  8506. // 09 div (#01,#08) grad[#09]
  8507. // 10 scale (#00,#09) grad[#10]
  8508. //
  8509. // backward pass, given grad[#10]
  8510. // #10: scale
  8511. // grad[#00] += scale(grad[#10],#09)
  8512. // grad[#09] += sum(mul(grad[#10],#00))
  8513. // #09: div
  8514. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8515. // #08: sqrt
  8516. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8517. // #07: add
  8518. // grad[#05] += grad[#07]
  8519. // #05: scale
  8520. // grad[#03] += scale(grad[#05],#04)
  8521. // #03: sum
  8522. // grad[#02] += repeat(grad[#03], #02)
  8523. // #02:
  8524. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8525. //
  8526. // substitute and simplify:
  8527. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8528. // grad[#02] = repeat(grad[#03], #02)
  8529. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8530. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8531. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8532. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8533. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8534. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8535. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8536. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8537. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8538. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8539. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8540. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8541. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8542. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8543. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8544. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8545. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8546. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8547. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8548. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8549. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8550. // a = b*c + d*e
  8551. // a = b*c*f/f + d*e*f/f
  8552. // a = (b*c*f + d*e*f)*(1/f)
  8553. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8554. // a = (b + d*e/c)*c
  8555. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8556. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8557. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8558. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8559. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8560. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8561. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8562. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8563. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8564. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8565. }
  8566. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8567. // post-order:
  8568. // dx := x
  8569. // dx := scale(dx,-mean_xdz/mean_eps)
  8570. // dx := add(dx, dz)
  8571. // dx := scale(dx, rrms)
  8572. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8573. ggml_vec_cpy_f32 (ne00, dx, x);
  8574. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8575. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8576. ggml_vec_acc_f32 (ne00, dx, dz);
  8577. ggml_vec_scale_f32(ne00, dx, rrms);
  8578. }
  8579. }
  8580. }
  8581. }
  8582. static void ggml_compute_forward_rms_norm_back(
  8583. const struct ggml_compute_params * params,
  8584. struct ggml_tensor * dst) {
  8585. const struct ggml_tensor * src0 = dst->src[0];
  8586. switch (src0->type) {
  8587. case GGML_TYPE_F32:
  8588. {
  8589. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8590. } break;
  8591. default:
  8592. {
  8593. GGML_ASSERT(false);
  8594. } break;
  8595. }
  8596. }
  8597. // ggml_compute_forward_group_norm
  8598. static void ggml_compute_forward_group_norm_f32(
  8599. const struct ggml_compute_params * params,
  8600. struct ggml_tensor * dst) {
  8601. const struct ggml_tensor * src0 = dst->src[0];
  8602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8603. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8604. return;
  8605. }
  8606. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8607. const int ith = params->ith;
  8608. const int nth = params->nth;
  8609. GGML_TENSOR_UNARY_OP_LOCALS
  8610. const float eps = 1e-6f; // TODO: make this a parameter
  8611. // TODO: optimize
  8612. int n_channels = src0->ne[2];
  8613. int n_groups = dst->op_params[0];
  8614. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8615. for (int i = ith; i < n_groups; i += nth) {
  8616. int start = i * n_channels_per_group;
  8617. int end = start + n_channels_per_group;
  8618. if (end > n_channels) {
  8619. end = n_channels;
  8620. }
  8621. int step = end - start;
  8622. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8623. ggml_float sum = 0.0;
  8624. for (int64_t i02 = start; i02 < end; i02++) {
  8625. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8626. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8627. ggml_float sumr = 0.0;
  8628. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8629. sumr += (ggml_float)x[i00];
  8630. }
  8631. sum += sumr;
  8632. }
  8633. }
  8634. const float mean = sum / (ne00 * ne01 * step);
  8635. ggml_float sum2 = 0.0;
  8636. for (int64_t i02 = start; i02 < end; i02++) {
  8637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8638. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8639. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8640. ggml_float sumr = 0.0;
  8641. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8642. float v = x[i00] - mean;
  8643. y[i00] = v;
  8644. sumr += (ggml_float)(v * v);
  8645. }
  8646. sum2 += sumr;
  8647. }
  8648. }
  8649. const float variance = sum2 / (ne00 * ne01 * step);
  8650. const float scale = 1.0f / sqrtf(variance + eps);
  8651. for (int64_t i02 = start; i02 < end; i02++) {
  8652. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8653. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8654. ggml_vec_scale_f32(ne00, y, scale);
  8655. }
  8656. }
  8657. }
  8658. }
  8659. }
  8660. static void ggml_compute_forward_group_norm(
  8661. const struct ggml_compute_params * params,
  8662. struct ggml_tensor * dst) {
  8663. const struct ggml_tensor * src0 = dst->src[0];
  8664. switch (src0->type) {
  8665. case GGML_TYPE_F32:
  8666. {
  8667. ggml_compute_forward_group_norm_f32(params, dst);
  8668. } break;
  8669. default:
  8670. {
  8671. GGML_ASSERT(false);
  8672. } break;
  8673. }
  8674. }
  8675. // ggml_compute_forward_mul_mat
  8676. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8677. // helper function to determine if it is better to use BLAS or not
  8678. // for large matrices, BLAS is faster
  8679. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8680. const struct ggml_tensor * src0 = dst->src[0];
  8681. const struct ggml_tensor * src1 = dst->src[1];
  8682. //const int64_t ne00 = src0->ne[0];
  8683. //const int64_t ne01 = src0->ne[1];
  8684. const int64_t ne10 = src1->ne[0];
  8685. const int64_t ne0 = dst->ne[0];
  8686. const int64_t ne1 = dst->ne[1];
  8687. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8688. // all the experts for each batch element and the processing would become incredibly slow
  8689. // TODO: find the optimal values for these
  8690. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8691. ggml_is_contiguous(src0) &&
  8692. ggml_is_contiguous(src1) &&
  8693. //src0->type == GGML_TYPE_F32 &&
  8694. src1->type == GGML_TYPE_F32 &&
  8695. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8696. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8697. return true;
  8698. }
  8699. return false;
  8700. }
  8701. #endif
  8702. static void ggml_compute_forward_mul_mat(
  8703. const struct ggml_compute_params * params,
  8704. struct ggml_tensor * dst) {
  8705. const struct ggml_tensor * src0 = dst->src[0];
  8706. const struct ggml_tensor * src1 = dst->src[1];
  8707. int64_t t0 = ggml_perf_time_us();
  8708. UNUSED(t0);
  8709. GGML_TENSOR_BINARY_OP_LOCALS
  8710. const int ith = params->ith;
  8711. const int nth = params->nth;
  8712. const enum ggml_type type = src0->type;
  8713. const bool src1_cont = ggml_is_contiguous(src1);
  8714. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8715. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8716. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8717. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8718. GGML_ASSERT(ne0 == ne01);
  8719. GGML_ASSERT(ne1 == ne11);
  8720. GGML_ASSERT(ne2 == ne12);
  8721. GGML_ASSERT(ne3 == ne13);
  8722. // we don't support permuted src0 or src1
  8723. GGML_ASSERT(nb00 == ggml_type_size(type));
  8724. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8725. // dst cannot be transposed or permuted
  8726. GGML_ASSERT(nb0 == sizeof(float));
  8727. GGML_ASSERT(nb0 <= nb1);
  8728. GGML_ASSERT(nb1 <= nb2);
  8729. GGML_ASSERT(nb2 <= nb3);
  8730. // broadcast factors
  8731. const int64_t r2 = ne12/ne02;
  8732. const int64_t r3 = ne13/ne03;
  8733. // nb01 >= nb00 - src0 is not transposed
  8734. // compute by src0 rows
  8735. #if defined(GGML_USE_CLBLAST)
  8736. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8737. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8738. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8739. }
  8740. return;
  8741. }
  8742. #endif
  8743. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8744. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8745. const int64_t ne_plane = ne01*ne00;
  8746. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8747. UNUSED(desired_wsize);
  8748. if (params->type == GGML_TASK_TYPE_INIT) {
  8749. if (type != GGML_TYPE_F32) {
  8750. assert(params->wsize >= desired_wsize);
  8751. // parallelize by src0 rows
  8752. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8753. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8754. // broadcast src0 into src1 across 2nd,3rd dimension
  8755. const int64_t i03 = i13/r3;
  8756. const int64_t i02 = i12/r2;
  8757. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8758. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8759. ggml_to_float_t const to_float = type_traits[type].to_float;
  8760. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8761. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8762. }
  8763. }
  8764. }
  8765. }
  8766. return;
  8767. }
  8768. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8769. return;
  8770. }
  8771. // perform sgemm, parallelization controlled by blas lib
  8772. if (ith != 0) {
  8773. return;
  8774. }
  8775. //const int64_t tgemm0 = ggml_perf_time_us();
  8776. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8777. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8778. const int64_t i03 = i13/r3;
  8779. const int64_t i02 = i12/r2;
  8780. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8781. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8782. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8783. if (type != GGML_TYPE_F32) {
  8784. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8785. }
  8786. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8787. ne1, ne01, ne10,
  8788. 1.0f, y, ne10,
  8789. x, ne00,
  8790. 0.0f, d, ne01);
  8791. }
  8792. }
  8793. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8794. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8795. return;
  8796. }
  8797. #endif
  8798. if (params->type == GGML_TASK_TYPE_INIT) {
  8799. if (ith != 0) {
  8800. return;
  8801. }
  8802. if (src1->type != vec_dot_type) {
  8803. char * wdata = params->wdata;
  8804. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8805. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8806. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8807. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8808. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8809. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8810. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8811. wdata += row_size;
  8812. }
  8813. }
  8814. }
  8815. }
  8816. return;
  8817. }
  8818. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8819. return;
  8820. }
  8821. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8822. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8823. const int64_t nr0 = ne01; // src0 rows
  8824. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8825. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8826. // distribute the thread work across the inner or outer loop based on which one is larger
  8827. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8828. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8829. const int64_t ith0 = ith % nth0;
  8830. const int64_t ith1 = ith / nth0;
  8831. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8832. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8833. const int64_t ir010 = dr0*ith0;
  8834. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8835. const int64_t ir110 = dr1*ith1;
  8836. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8837. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8838. // threads with no work simply yield (not sure if it helps)
  8839. if (ir010 >= ir011 || ir110 >= ir111) {
  8840. sched_yield();
  8841. return;
  8842. }
  8843. assert(ne12 % ne02 == 0);
  8844. assert(ne13 % ne03 == 0);
  8845. // block-tiling attempt
  8846. const int64_t blck_0 = 16;
  8847. const int64_t blck_1 = 16;
  8848. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8849. int64_t nrc = vec_dot_num_rows;
  8850. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8851. // this check can be removed once they are extended to support odd numbered rows/cols too
  8852. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8853. nrc = 1;
  8854. }
  8855. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8856. // attempt to reduce false-sharing (does not seem to make a difference)
  8857. // 16 * 2, accounting for mmla kernels
  8858. float tmp[32];
  8859. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8860. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8861. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8862. const int64_t i13 = (ir1/(ne12*ne1));
  8863. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8864. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8865. // broadcast src0 into src1
  8866. const int64_t i03 = i13/r3;
  8867. const int64_t i02 = i12/r2;
  8868. const int64_t i1 = i11;
  8869. const int64_t i2 = i12;
  8870. const int64_t i3 = i13;
  8871. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8872. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8873. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8874. // the original src1 data pointer, so we should index using the indices directly
  8875. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8876. const char * src1_col = (const char *) wdata +
  8877. (src1_cont || src1->type != vec_dot_type
  8878. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8879. : (i11*nb11 + i12*nb12 + i13*nb13));
  8880. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8881. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8882. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8883. //}
  8884. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8885. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8886. }
  8887. for (int cn = 0; cn < nrc; ++cn) {
  8888. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8889. }
  8890. }
  8891. }
  8892. }
  8893. }
  8894. // ggml_compute_forward_mul_mat_id
  8895. static void ggml_compute_forward_mul_mat_id(
  8896. const struct ggml_compute_params * params,
  8897. struct ggml_tensor * dst) {
  8898. const struct ggml_tensor * ids = dst->src[0];
  8899. const struct ggml_tensor * src1 = dst->src[1];
  8900. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8901. GGML_TENSOR_BINARY_OP_LOCALS
  8902. const int ith = params->ith;
  8903. const int nth = params->nth;
  8904. const enum ggml_type type = src0->type;
  8905. const bool src1_cont = ggml_is_contiguous(src1);
  8906. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8907. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8908. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8909. GGML_ASSERT(ne0 == ne01);
  8910. GGML_ASSERT(ne1 == ne11);
  8911. GGML_ASSERT(ne2 == ne12);
  8912. GGML_ASSERT(ne3 == ne13);
  8913. // we don't support permuted src0 or src1
  8914. GGML_ASSERT(nb00 == ggml_type_size(type));
  8915. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8916. // dst cannot be transposed or permuted
  8917. GGML_ASSERT(nb0 == sizeof(float));
  8918. GGML_ASSERT(nb0 <= nb1);
  8919. GGML_ASSERT(nb1 <= nb2);
  8920. GGML_ASSERT(nb2 <= nb3);
  8921. // broadcast factors
  8922. const int64_t r2 = ne12/ne02;
  8923. const int64_t r3 = ne13/ne03;
  8924. // row groups
  8925. const int id = ggml_get_op_params_i32(dst, 0);
  8926. const int n_as = ggml_get_op_params_i32(dst, 1);
  8927. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8928. (char *) params->wdata :
  8929. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8930. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8931. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8932. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8933. if (params->type == GGML_TASK_TYPE_INIT) {
  8934. if (ith != 0) {
  8935. return;
  8936. }
  8937. char * wdata = params->wdata;
  8938. if (src1->type != vec_dot_type) {
  8939. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8940. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8941. assert(src1->type == GGML_TYPE_F32);
  8942. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8943. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8944. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8945. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8946. wdata += row_size;
  8947. }
  8948. }
  8949. }
  8950. }
  8951. // initialize matrix_row_counts
  8952. GGML_ASSERT(wdata == wdata_src1_end);
  8953. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8954. // group rows by src0 matrix
  8955. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8956. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8957. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8958. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8959. matrix_row_counts[row_id] += 1;
  8960. }
  8961. return;
  8962. }
  8963. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8964. return;
  8965. }
  8966. // compute each matrix multiplication in sequence
  8967. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8968. const int64_t cne1 = matrix_row_counts[cur_a];
  8969. if (cne1 == 0) {
  8970. continue;
  8971. }
  8972. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8973. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8974. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8975. const int64_t nr0 = ne01; // src0 rows
  8976. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8977. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8978. // distribute the thread work across the inner or outer loop based on which one is larger
  8979. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8980. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8981. const int64_t ith0 = ith % nth0;
  8982. const int64_t ith1 = ith / nth0;
  8983. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8984. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8985. const int64_t ir010 = dr0*ith0;
  8986. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8987. const int64_t ir110 = dr1*ith1;
  8988. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8989. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8990. // threads with no work simply yield (not sure if it helps)
  8991. if (ir010 >= ir011 || ir110 >= ir111) {
  8992. sched_yield();
  8993. continue;
  8994. }
  8995. assert(ne12 % ne02 == 0);
  8996. assert(ne13 % ne03 == 0);
  8997. // block-tiling attempt
  8998. const int64_t blck_0 = 16;
  8999. const int64_t blck_1 = 16;
  9000. // attempt to reduce false-sharing (does not seem to make a difference)
  9001. float tmp[16];
  9002. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9003. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9004. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9005. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9006. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9007. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9008. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9009. // broadcast src0 into src1
  9010. const int64_t i03 = i13/r3;
  9011. const int64_t i02 = i12/r2;
  9012. const int64_t i1 = i11;
  9013. const int64_t i2 = i12;
  9014. const int64_t i3 = i13;
  9015. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  9016. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9017. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9018. // the original src1 data pointer, so we should index using the indices directly
  9019. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9020. const char * src1_col = (const char *) wdata +
  9021. (src1_cont || src1->type != vec_dot_type
  9022. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9023. : (i11*nb11 + i12*nb12 + i13*nb13));
  9024. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9025. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9026. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9027. //}
  9028. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9029. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9030. }
  9031. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9032. }
  9033. }
  9034. }
  9035. }
  9036. #undef MMID_MATRIX_ROW
  9037. }
  9038. // ggml_compute_forward_out_prod
  9039. static void ggml_compute_forward_out_prod_f32(
  9040. const struct ggml_compute_params * params,
  9041. struct ggml_tensor * dst) {
  9042. const struct ggml_tensor * src0 = dst->src[0];
  9043. const struct ggml_tensor * src1 = dst->src[1];
  9044. // int64_t t0 = ggml_perf_time_us();
  9045. // UNUSED(t0);
  9046. GGML_TENSOR_BINARY_OP_LOCALS
  9047. const int ith = params->ith;
  9048. const int nth = params->nth;
  9049. GGML_ASSERT(ne0 == ne00);
  9050. GGML_ASSERT(ne1 == ne10);
  9051. GGML_ASSERT(ne2 == ne02);
  9052. GGML_ASSERT(ne02 == ne12);
  9053. GGML_ASSERT(ne3 == ne13);
  9054. GGML_ASSERT(ne03 == ne13);
  9055. // we don't support permuted src0 or src1
  9056. GGML_ASSERT(nb00 == sizeof(float));
  9057. // dst cannot be transposed or permuted
  9058. GGML_ASSERT(nb0 == sizeof(float));
  9059. // GGML_ASSERT(nb0 <= nb1);
  9060. // GGML_ASSERT(nb1 <= nb2);
  9061. // GGML_ASSERT(nb2 <= nb3);
  9062. // nb01 >= nb00 - src0 is not transposed
  9063. // compute by src0 rows
  9064. // TODO: #if defined(GGML_USE_CLBLAST)
  9065. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9066. bool use_blas = ggml_is_matrix(src0) &&
  9067. ggml_is_matrix(src1) &&
  9068. ggml_is_contiguous(src0) &&
  9069. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9070. #endif
  9071. if (params->type == GGML_TASK_TYPE_INIT) {
  9072. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9073. if (use_blas) {
  9074. return;
  9075. }
  9076. #endif
  9077. if (ith != 0) {
  9078. return;
  9079. }
  9080. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9081. return;
  9082. }
  9083. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9084. return;
  9085. }
  9086. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9087. if (use_blas) {
  9088. if (params->ith != 0) { // All threads other than the first do no work.
  9089. return;
  9090. }
  9091. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9092. // src0: (k,n)
  9093. // src1: (k,m)
  9094. // dst: (m,n)
  9095. //
  9096. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9097. // Also expressed as (major,minor)
  9098. // a: (m,k): so src1 transposed
  9099. // b: (k,n): so src0
  9100. // c: (m,n)
  9101. //
  9102. // However, if ggml_is_transposed(src1) is true, then
  9103. // src1->data already contains a transposed version, so sgemm mustn't
  9104. // transpose it further.
  9105. int n = src0->ne[0];
  9106. int k = src0->ne[1];
  9107. int m = src1->ne[0];
  9108. int transposeA, lda;
  9109. if (!ggml_is_transposed(src1)) {
  9110. transposeA = CblasTrans;
  9111. lda = m;
  9112. } else {
  9113. transposeA = CblasNoTrans;
  9114. lda = k;
  9115. }
  9116. float * a = (float *) ((char *) src1->data);
  9117. float * b = (float *) ((char *) src0->data);
  9118. float * c = (float *) ((char *) dst->data);
  9119. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9120. return;
  9121. }
  9122. #endif
  9123. // dst[:,:,:,:] = 0
  9124. // for i2,i3:
  9125. // for i1:
  9126. // for i01:
  9127. // for i0:
  9128. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9129. // parallelize by last three dimensions
  9130. // total rows in dst
  9131. const int64_t nr = ne1*ne2*ne3;
  9132. // rows per thread
  9133. const int64_t dr = (nr + nth - 1)/nth;
  9134. // row range for this thread
  9135. const int64_t ir0 = dr*ith;
  9136. const int64_t ir1 = MIN(ir0 + dr, nr);
  9137. // block-tiling attempt
  9138. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9139. const int64_t blck_1 = 16;
  9140. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9141. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9142. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9143. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9144. for (int64_t ir = bir; ir < bir1; ++ir) {
  9145. // dst indices
  9146. const int64_t i3 = ir/(ne2*ne1);
  9147. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9148. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9149. const int64_t i02 = i2;
  9150. const int64_t i03 = i3;
  9151. //const int64_t i10 = i1;
  9152. const int64_t i12 = i2;
  9153. const int64_t i13 = i3;
  9154. #if GGML_VEC_MAD_UNROLL > 2
  9155. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9156. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9157. const int64_t i11 = i01;
  9158. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9159. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9160. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9161. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9162. }
  9163. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9164. const int64_t i11 = i01;
  9165. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9166. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9167. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9168. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9169. }
  9170. #else
  9171. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9172. const int64_t i11 = i01;
  9173. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9174. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9175. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9176. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9177. }
  9178. #endif
  9179. }
  9180. }
  9181. }
  9182. //int64_t t1 = ggml_perf_time_us();
  9183. //static int64_t acc = 0;
  9184. //acc += t1 - t0;
  9185. //if (t1 - t0 > 10) {
  9186. // printf("\n");
  9187. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9188. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9189. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9190. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9191. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9192. //}
  9193. }
  9194. static void ggml_compute_forward_out_prod_q_f32(
  9195. const struct ggml_compute_params * params,
  9196. struct ggml_tensor * dst) {
  9197. const struct ggml_tensor * src0 = dst->src[0];
  9198. const struct ggml_tensor * src1 = dst->src[1];
  9199. // int64_t t0 = ggml_perf_time_us();
  9200. // UNUSED(t0);
  9201. GGML_TENSOR_BINARY_OP_LOCALS;
  9202. const int ith = params->ith;
  9203. const int nth = params->nth;
  9204. const enum ggml_type type = src0->type;
  9205. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9206. GGML_ASSERT(ne02 == ne12);
  9207. GGML_ASSERT(ne03 == ne13);
  9208. GGML_ASSERT(ne2 == ne12);
  9209. GGML_ASSERT(ne3 == ne13);
  9210. // we don't support permuted src0 dim0
  9211. GGML_ASSERT(nb00 == ggml_type_size(type));
  9212. // dst dim0 cannot be transposed or permuted
  9213. GGML_ASSERT(nb0 == sizeof(float));
  9214. // GGML_ASSERT(nb0 <= nb1);
  9215. // GGML_ASSERT(nb1 <= nb2);
  9216. // GGML_ASSERT(nb2 <= nb3);
  9217. GGML_ASSERT(ne0 == ne00);
  9218. GGML_ASSERT(ne1 == ne10);
  9219. GGML_ASSERT(ne2 == ne02);
  9220. GGML_ASSERT(ne3 == ne03);
  9221. // nb01 >= nb00 - src0 is not transposed
  9222. // compute by src0 rows
  9223. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9224. if (params->type == GGML_TASK_TYPE_INIT) {
  9225. if (ith != 0) {
  9226. return;
  9227. }
  9228. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9229. return;
  9230. }
  9231. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9232. return;
  9233. }
  9234. // parallelize by last three dimensions
  9235. // total rows in dst
  9236. const int64_t nr = ne1*ne2*ne3;
  9237. // rows per thread
  9238. const int64_t dr = (nr + nth - 1)/nth;
  9239. // row range for this thread
  9240. const int64_t ir0 = dr*ith;
  9241. const int64_t ir1 = MIN(ir0 + dr, nr);
  9242. // dst[:,:,:,:] = 0
  9243. // for i2,i3:
  9244. // for i1:
  9245. // for i01:
  9246. // for i0:
  9247. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9248. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9249. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9250. // dst indices
  9251. const int64_t i3 = ir/(ne2*ne1);
  9252. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9253. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9254. const int64_t i02 = i2;
  9255. const int64_t i03 = i3;
  9256. //const int64_t i10 = i1;
  9257. const int64_t i12 = i2;
  9258. const int64_t i13 = i3;
  9259. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9260. const int64_t i11 = i01;
  9261. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9262. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9263. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9264. dequantize_row_q(s0, wdata, ne0);
  9265. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9266. }
  9267. }
  9268. //int64_t t1 = ggml_perf_time_us();
  9269. //static int64_t acc = 0;
  9270. //acc += t1 - t0;
  9271. //if (t1 - t0 > 10) {
  9272. // printf("\n");
  9273. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9274. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9275. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9276. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9277. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9278. //}
  9279. }
  9280. static void ggml_compute_forward_out_prod(
  9281. const struct ggml_compute_params * params,
  9282. struct ggml_tensor * dst) {
  9283. const struct ggml_tensor * src0 = dst->src[0];
  9284. switch (src0->type) {
  9285. case GGML_TYPE_Q4_0:
  9286. case GGML_TYPE_Q4_1:
  9287. case GGML_TYPE_Q5_0:
  9288. case GGML_TYPE_Q5_1:
  9289. case GGML_TYPE_Q8_0:
  9290. case GGML_TYPE_Q2_K:
  9291. case GGML_TYPE_Q3_K:
  9292. case GGML_TYPE_Q4_K:
  9293. case GGML_TYPE_Q5_K:
  9294. case GGML_TYPE_Q6_K:
  9295. case GGML_TYPE_IQ2_XXS:
  9296. case GGML_TYPE_IQ2_XS:
  9297. case GGML_TYPE_IQ3_XXS:
  9298. case GGML_TYPE_IQ1_S:
  9299. case GGML_TYPE_IQ1_M:
  9300. case GGML_TYPE_IQ4_NL:
  9301. case GGML_TYPE_IQ4_XS:
  9302. case GGML_TYPE_IQ3_S:
  9303. case GGML_TYPE_IQ2_S:
  9304. {
  9305. ggml_compute_forward_out_prod_q_f32(params, dst);
  9306. } break;
  9307. case GGML_TYPE_F16:
  9308. {
  9309. GGML_ASSERT(false); // todo
  9310. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9311. } break;
  9312. case GGML_TYPE_F32:
  9313. {
  9314. ggml_compute_forward_out_prod_f32(params, dst);
  9315. } break;
  9316. default:
  9317. {
  9318. GGML_ASSERT(false);
  9319. } break;
  9320. }
  9321. }
  9322. // ggml_compute_forward_scale
  9323. static void ggml_compute_forward_scale_f32(
  9324. const struct ggml_compute_params * params,
  9325. struct ggml_tensor * dst) {
  9326. const struct ggml_tensor * src0 = dst->src[0];
  9327. GGML_ASSERT(ggml_is_contiguous(src0));
  9328. GGML_ASSERT(ggml_is_contiguous(dst));
  9329. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9331. return;
  9332. }
  9333. // scale factor
  9334. float v;
  9335. memcpy(&v, dst->op_params, sizeof(float));
  9336. const int ith = params->ith;
  9337. const int nth = params->nth;
  9338. const int nc = src0->ne[0];
  9339. const int nr = ggml_nrows(src0);
  9340. // rows per thread
  9341. const int dr = (nr + nth - 1)/nth;
  9342. // row range for this thread
  9343. const int ir0 = dr*ith;
  9344. const int ir1 = MIN(ir0 + dr, nr);
  9345. const size_t nb01 = src0->nb[1];
  9346. const size_t nb1 = dst->nb[1];
  9347. for (int i1 = ir0; i1 < ir1; i1++) {
  9348. if (dst->data != src0->data) {
  9349. // src0 is same shape as dst => same indices
  9350. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9351. }
  9352. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9353. }
  9354. }
  9355. static void ggml_compute_forward_scale(
  9356. const struct ggml_compute_params * params,
  9357. struct ggml_tensor * dst) {
  9358. const struct ggml_tensor * src0 = dst->src[0];
  9359. switch (src0->type) {
  9360. case GGML_TYPE_F32:
  9361. {
  9362. ggml_compute_forward_scale_f32(params, dst);
  9363. } break;
  9364. default:
  9365. {
  9366. GGML_ASSERT(false);
  9367. } break;
  9368. }
  9369. }
  9370. // ggml_compute_forward_set
  9371. static void ggml_compute_forward_set_f32(
  9372. const struct ggml_compute_params * params,
  9373. struct ggml_tensor * dst) {
  9374. const struct ggml_tensor * src0 = dst->src[0];
  9375. const struct ggml_tensor * src1 = dst->src[1];
  9376. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9377. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9378. // view src0 and dst with these strides and data offset inbytes during set
  9379. // nb0 is implicitly element_size because src0 and dst are contiguous
  9380. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9381. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9382. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9383. size_t offset = ((int32_t *) dst->op_params)[3];
  9384. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9385. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9386. if (params->ith != 0) {
  9387. return;
  9388. }
  9389. // memcpy needs to be synchronized across threads to avoid race conditions.
  9390. // => do it in INIT phase
  9391. memcpy(
  9392. ((char *) dst->data),
  9393. ((char *) src0->data),
  9394. ggml_nbytes(dst));
  9395. }
  9396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9397. return;
  9398. }
  9399. const int ith = params->ith;
  9400. const int nth = params->nth;
  9401. const int nr = ggml_nrows(src1);
  9402. const int nc = src1->ne[0];
  9403. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9404. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9405. // src0 and dst as viewed during set
  9406. const size_t nb0 = ggml_element_size(src0);
  9407. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9408. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9409. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9410. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9411. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9412. GGML_ASSERT(nb10 == sizeof(float));
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. for (int ir = ir0; ir < ir1; ++ir) {
  9419. // src0 and dst are viewed with shape of src1 and offset
  9420. // => same indices
  9421. const int i3 = ir/(ne12*ne11);
  9422. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9423. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9424. ggml_vec_cpy_f32(nc,
  9425. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9426. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9427. }
  9428. }
  9429. static void ggml_compute_forward_set(
  9430. const struct ggml_compute_params * params,
  9431. struct ggml_tensor * dst) {
  9432. const struct ggml_tensor * src0 = dst->src[0];
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_set_f32(params, dst);
  9437. } break;
  9438. case GGML_TYPE_F16:
  9439. case GGML_TYPE_Q4_0:
  9440. case GGML_TYPE_Q4_1:
  9441. case GGML_TYPE_Q5_0:
  9442. case GGML_TYPE_Q5_1:
  9443. case GGML_TYPE_Q8_0:
  9444. case GGML_TYPE_Q8_1:
  9445. case GGML_TYPE_Q2_K:
  9446. case GGML_TYPE_Q3_K:
  9447. case GGML_TYPE_Q4_K:
  9448. case GGML_TYPE_Q5_K:
  9449. case GGML_TYPE_Q6_K:
  9450. case GGML_TYPE_IQ2_XXS:
  9451. case GGML_TYPE_IQ2_XS:
  9452. case GGML_TYPE_IQ3_XXS:
  9453. case GGML_TYPE_IQ1_S:
  9454. case GGML_TYPE_IQ1_M:
  9455. case GGML_TYPE_IQ4_NL:
  9456. case GGML_TYPE_IQ4_XS:
  9457. case GGML_TYPE_IQ3_S:
  9458. case GGML_TYPE_IQ2_S:
  9459. default:
  9460. {
  9461. GGML_ASSERT(false);
  9462. } break;
  9463. }
  9464. }
  9465. // ggml_compute_forward_cpy
  9466. static void ggml_compute_forward_cpy(
  9467. const struct ggml_compute_params * params,
  9468. struct ggml_tensor * dst) {
  9469. ggml_compute_forward_dup(params, dst);
  9470. }
  9471. // ggml_compute_forward_cont
  9472. static void ggml_compute_forward_cont(
  9473. const struct ggml_compute_params * params,
  9474. struct ggml_tensor * dst) {
  9475. ggml_compute_forward_dup(params, dst);
  9476. }
  9477. // ggml_compute_forward_reshape
  9478. static void ggml_compute_forward_reshape(
  9479. const struct ggml_compute_params * params,
  9480. struct ggml_tensor * dst) {
  9481. // NOP
  9482. UNUSED(params);
  9483. UNUSED(dst);
  9484. }
  9485. // ggml_compute_forward_view
  9486. static void ggml_compute_forward_view(
  9487. const struct ggml_compute_params * params,
  9488. const struct ggml_tensor * dst) {
  9489. // NOP
  9490. UNUSED(params);
  9491. UNUSED(dst);
  9492. }
  9493. // ggml_compute_forward_permute
  9494. static void ggml_compute_forward_permute(
  9495. const struct ggml_compute_params * params,
  9496. const struct ggml_tensor * dst) {
  9497. // NOP
  9498. UNUSED(params);
  9499. UNUSED(dst);
  9500. }
  9501. // ggml_compute_forward_transpose
  9502. static void ggml_compute_forward_transpose(
  9503. const struct ggml_compute_params * params,
  9504. const struct ggml_tensor * dst) {
  9505. // NOP
  9506. UNUSED(params);
  9507. UNUSED(dst);
  9508. }
  9509. // ggml_compute_forward_get_rows
  9510. static void ggml_compute_forward_get_rows_q(
  9511. const struct ggml_compute_params * params,
  9512. struct ggml_tensor * dst) {
  9513. const struct ggml_tensor * src0 = dst->src[0];
  9514. const struct ggml_tensor * src1 = dst->src[1];
  9515. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9516. return;
  9517. }
  9518. GGML_TENSOR_BINARY_OP_LOCALS
  9519. const int64_t nc = ne00;
  9520. const int64_t nr = ggml_nelements(src1);
  9521. const enum ggml_type type = src0->type;
  9522. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9523. assert(ne0 == nc);
  9524. assert(ne02 == ne11);
  9525. assert(nb00 == ggml_type_size(type));
  9526. assert(ggml_nrows(dst) == nr);
  9527. const int ith = params->ith;
  9528. const int nth = params->nth;
  9529. // rows per thread
  9530. const int dr = (nr + nth - 1)/nth;
  9531. // row range for this thread
  9532. const int ir0 = dr*ith;
  9533. const int ir1 = MIN(ir0 + dr, nr);
  9534. for (int64_t i = ir0; i < ir1; ++i) {
  9535. const int64_t i12 = i/(ne11*ne10);
  9536. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9537. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9538. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9539. dequantize_row_q(
  9540. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9541. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9542. }
  9543. }
  9544. static void ggml_compute_forward_get_rows_f16(
  9545. const struct ggml_compute_params * params,
  9546. struct ggml_tensor * dst) {
  9547. const struct ggml_tensor * src0 = dst->src[0];
  9548. const struct ggml_tensor * src1 = dst->src[1];
  9549. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9550. return;
  9551. }
  9552. GGML_TENSOR_BINARY_OP_LOCALS
  9553. const int64_t nc = ne00;
  9554. const int64_t nr = ggml_nelements(src1);
  9555. assert(ne0 == nc);
  9556. assert(ne02 == ne11);
  9557. assert(nb00 == sizeof(ggml_fp16_t));
  9558. assert(ggml_nrows(dst) == nr);
  9559. const int ith = params->ith;
  9560. const int nth = params->nth;
  9561. // rows per thread
  9562. const int dr = (nr + nth - 1)/nth;
  9563. // row range for this thread
  9564. const int ir0 = dr*ith;
  9565. const int ir1 = MIN(ir0 + dr, nr);
  9566. for (int64_t i = ir0; i < ir1; ++i) {
  9567. const int64_t i12 = i/(ne11*ne10);
  9568. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9569. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9570. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9571. ggml_fp16_to_fp32_row(
  9572. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9573. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9574. }
  9575. }
  9576. static void ggml_compute_forward_get_rows_f32(
  9577. const struct ggml_compute_params * params,
  9578. struct ggml_tensor * dst) {
  9579. const struct ggml_tensor * src0 = dst->src[0];
  9580. const struct ggml_tensor * src1 = dst->src[1];
  9581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9582. return;
  9583. }
  9584. GGML_TENSOR_BINARY_OP_LOCALS
  9585. const int64_t nc = ne00;
  9586. const int64_t nr = ggml_nelements(src1);
  9587. assert(ne0 == nc);
  9588. assert(ne02 == ne11);
  9589. assert(nb00 == sizeof(float));
  9590. assert(ggml_nrows(dst) == nr);
  9591. const int ith = params->ith;
  9592. const int nth = params->nth;
  9593. // rows per thread
  9594. const int dr = (nr + nth - 1)/nth;
  9595. // row range for this thread
  9596. const int ir0 = dr*ith;
  9597. const int ir1 = MIN(ir0 + dr, nr);
  9598. for (int64_t i = ir0; i < ir1; ++i) {
  9599. const int64_t i12 = i/(ne11*ne10);
  9600. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9601. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9602. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9603. ggml_vec_cpy_f32(nc,
  9604. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9605. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9606. }
  9607. }
  9608. static void ggml_compute_forward_get_rows(
  9609. const struct ggml_compute_params * params,
  9610. struct ggml_tensor * dst) {
  9611. const struct ggml_tensor * src0 = dst->src[0];
  9612. switch (src0->type) {
  9613. case GGML_TYPE_Q4_0:
  9614. case GGML_TYPE_Q4_1:
  9615. case GGML_TYPE_Q5_0:
  9616. case GGML_TYPE_Q5_1:
  9617. case GGML_TYPE_Q8_0:
  9618. case GGML_TYPE_Q8_1:
  9619. case GGML_TYPE_Q2_K:
  9620. case GGML_TYPE_Q3_K:
  9621. case GGML_TYPE_Q4_K:
  9622. case GGML_TYPE_Q5_K:
  9623. case GGML_TYPE_Q6_K:
  9624. case GGML_TYPE_IQ2_XXS:
  9625. case GGML_TYPE_IQ2_XS:
  9626. case GGML_TYPE_IQ3_XXS:
  9627. case GGML_TYPE_IQ1_S:
  9628. case GGML_TYPE_IQ1_M:
  9629. case GGML_TYPE_IQ4_NL:
  9630. case GGML_TYPE_IQ4_XS:
  9631. case GGML_TYPE_IQ3_S:
  9632. case GGML_TYPE_IQ2_S:
  9633. {
  9634. ggml_compute_forward_get_rows_q(params, dst);
  9635. } break;
  9636. case GGML_TYPE_F16:
  9637. {
  9638. ggml_compute_forward_get_rows_f16(params, dst);
  9639. } break;
  9640. case GGML_TYPE_F32:
  9641. case GGML_TYPE_I32:
  9642. {
  9643. ggml_compute_forward_get_rows_f32(params, dst);
  9644. } break;
  9645. default:
  9646. {
  9647. GGML_ASSERT(false);
  9648. } break;
  9649. }
  9650. //static bool first = true;
  9651. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9652. //if (first) {
  9653. // first = false;
  9654. //} else {
  9655. // for (int k = 0; k < dst->ne[1]; ++k) {
  9656. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9657. // for (int i = 0; i < 16; ++i) {
  9658. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9659. // }
  9660. // printf("\n");
  9661. // }
  9662. // printf("\n");
  9663. // }
  9664. // printf("\n");
  9665. // exit(0);
  9666. //}
  9667. }
  9668. // ggml_compute_forward_get_rows_back
  9669. static void ggml_compute_forward_get_rows_back_f32_f16(
  9670. const struct ggml_compute_params * params,
  9671. struct ggml_tensor * dst) {
  9672. const struct ggml_tensor * src0 = dst->src[0];
  9673. const struct ggml_tensor * src1 = dst->src[1];
  9674. GGML_ASSERT(params->ith == 0);
  9675. GGML_ASSERT(ggml_is_contiguous(dst));
  9676. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9677. if (params->type == GGML_TASK_TYPE_INIT) {
  9678. if (params->ith != 0) {
  9679. return;
  9680. }
  9681. memset(dst->data, 0, ggml_nbytes(dst));
  9682. }
  9683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9684. return;
  9685. }
  9686. const int nc = src0->ne[0];
  9687. const int nr = ggml_nelements(src1);
  9688. GGML_ASSERT( dst->ne[0] == nc);
  9689. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9690. for (int i = 0; i < nr; ++i) {
  9691. const int r = ((int32_t *) src1->data)[i];
  9692. for (int j = 0; j < nc; ++j) {
  9693. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9694. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9695. }
  9696. }
  9697. }
  9698. static void ggml_compute_forward_get_rows_back_f32(
  9699. const struct ggml_compute_params * params,
  9700. struct ggml_tensor * dst) {
  9701. const struct ggml_tensor * src0 = dst->src[0];
  9702. const struct ggml_tensor * src1 = dst->src[1];
  9703. GGML_ASSERT(params->ith == 0);
  9704. GGML_ASSERT(ggml_is_contiguous(dst));
  9705. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9706. if (params->type == GGML_TASK_TYPE_INIT) {
  9707. if (params->ith != 0) {
  9708. return;
  9709. }
  9710. memset(dst->data, 0, ggml_nbytes(dst));
  9711. }
  9712. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9713. return;
  9714. }
  9715. const int nc = src0->ne[0];
  9716. const int nr = ggml_nelements(src1);
  9717. GGML_ASSERT( dst->ne[0] == nc);
  9718. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9719. for (int i = 0; i < nr; ++i) {
  9720. const int r = ((int32_t *) src1->data)[i];
  9721. ggml_vec_add_f32(nc,
  9722. (float *) ((char *) dst->data + r*dst->nb[1]),
  9723. (float *) ((char *) dst->data + r*dst->nb[1]),
  9724. (float *) ((char *) src0->data + i*src0->nb[1]));
  9725. }
  9726. }
  9727. static void ggml_compute_forward_get_rows_back(
  9728. const struct ggml_compute_params * params,
  9729. struct ggml_tensor * dst) {
  9730. const struct ggml_tensor * src0 = dst->src[0];
  9731. switch (src0->type) {
  9732. case GGML_TYPE_F16:
  9733. {
  9734. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9735. } break;
  9736. case GGML_TYPE_F32:
  9737. {
  9738. ggml_compute_forward_get_rows_back_f32(params, dst);
  9739. } break;
  9740. default:
  9741. {
  9742. GGML_ASSERT(false);
  9743. } break;
  9744. }
  9745. //static bool first = true;
  9746. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9747. //if (first) {
  9748. // first = false;
  9749. //} else {
  9750. // for (int k = 0; k < dst->ne[1]; ++k) {
  9751. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9752. // for (int i = 0; i < 16; ++i) {
  9753. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9754. // }
  9755. // printf("\n");
  9756. // }
  9757. // printf("\n");
  9758. // }
  9759. // printf("\n");
  9760. // exit(0);
  9761. //}
  9762. }
  9763. // ggml_compute_forward_diag
  9764. static void ggml_compute_forward_diag_f32(
  9765. const struct ggml_compute_params * params,
  9766. struct ggml_tensor * dst) {
  9767. const struct ggml_tensor * src0 = dst->src[0];
  9768. GGML_ASSERT(params->ith == 0);
  9769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9770. return;
  9771. }
  9772. // TODO: handle transposed/permuted matrices
  9773. GGML_TENSOR_UNARY_OP_LOCALS
  9774. GGML_ASSERT(ne00 == ne0);
  9775. GGML_ASSERT(ne00 == ne1);
  9776. GGML_ASSERT(ne01 == 1);
  9777. GGML_ASSERT(ne02 == ne2);
  9778. GGML_ASSERT(ne03 == ne3);
  9779. GGML_ASSERT(nb00 == sizeof(float));
  9780. GGML_ASSERT(nb0 == sizeof(float));
  9781. for (int i3 = 0; i3 < ne3; i3++) {
  9782. for (int i2 = 0; i2 < ne2; i2++) {
  9783. for (int i1 = 0; i1 < ne1; i1++) {
  9784. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9785. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9786. for (int i0 = 0; i0 < i1; i0++) {
  9787. d[i0] = 0;
  9788. }
  9789. d[i1] = s[i1];
  9790. for (int i0 = i1+1; i0 < ne0; i0++) {
  9791. d[i0] = 0;
  9792. }
  9793. }
  9794. }
  9795. }
  9796. }
  9797. static void ggml_compute_forward_diag(
  9798. const struct ggml_compute_params * params,
  9799. struct ggml_tensor * dst) {
  9800. const struct ggml_tensor * src0 = dst->src[0];
  9801. switch (src0->type) {
  9802. case GGML_TYPE_F32:
  9803. {
  9804. ggml_compute_forward_diag_f32(params, dst);
  9805. } break;
  9806. default:
  9807. {
  9808. GGML_ASSERT(false);
  9809. } break;
  9810. }
  9811. }
  9812. // ggml_compute_forward_diag_mask_inf
  9813. static void ggml_compute_forward_diag_mask_f32(
  9814. const struct ggml_compute_params * params,
  9815. struct ggml_tensor * dst,
  9816. const float value) {
  9817. const struct ggml_tensor * src0 = dst->src[0];
  9818. const int ith = params->ith;
  9819. const int nth = params->nth;
  9820. const int n_past = ((int32_t *) dst->op_params)[0];
  9821. const bool inplace = src0->data == dst->data;
  9822. GGML_ASSERT(n_past >= 0);
  9823. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9824. if (ith != 0) {
  9825. return;
  9826. }
  9827. // memcpy needs to be synchronized across threads to avoid race conditions.
  9828. // => do it in INIT phase
  9829. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9830. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9831. memcpy(
  9832. ((char *) dst->data),
  9833. ((char *) src0->data),
  9834. ggml_nbytes(dst));
  9835. }
  9836. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9837. return;
  9838. }
  9839. // TODO: handle transposed/permuted matrices
  9840. const int n = ggml_nrows(src0);
  9841. const int nc = src0->ne[0];
  9842. const int nr = src0->ne[1];
  9843. const int nz = n/nr;
  9844. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9845. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9846. for (int k = 0; k < nz; k++) {
  9847. for (int j = ith; j < nr; j += nth) {
  9848. for (int i = n_past; i < nc; i++) {
  9849. if (i > n_past + j) {
  9850. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9851. }
  9852. }
  9853. }
  9854. }
  9855. }
  9856. static void ggml_compute_forward_diag_mask_inf(
  9857. const struct ggml_compute_params * params,
  9858. struct ggml_tensor * dst) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. switch (src0->type) {
  9861. case GGML_TYPE_F32:
  9862. {
  9863. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9864. } break;
  9865. default:
  9866. {
  9867. GGML_ASSERT(false);
  9868. } break;
  9869. }
  9870. }
  9871. static void ggml_compute_forward_diag_mask_zero(
  9872. const struct ggml_compute_params * params,
  9873. struct ggml_tensor * dst) {
  9874. const struct ggml_tensor * src0 = dst->src[0];
  9875. switch (src0->type) {
  9876. case GGML_TYPE_F32:
  9877. {
  9878. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9879. } break;
  9880. default:
  9881. {
  9882. GGML_ASSERT(false);
  9883. } break;
  9884. }
  9885. }
  9886. // ggml_compute_forward_soft_max
  9887. static void ggml_compute_forward_soft_max_f32(
  9888. const struct ggml_compute_params * params,
  9889. struct ggml_tensor * dst) {
  9890. const struct ggml_tensor * src0 = dst->src[0];
  9891. const struct ggml_tensor * src1 = dst->src[1];
  9892. const struct ggml_tensor * src2 = dst->src[2];
  9893. assert(ggml_is_contiguous(dst));
  9894. assert(ggml_are_same_shape(src0, dst));
  9895. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9896. return;
  9897. }
  9898. float scale = 1.0f;
  9899. float max_bias = 0.0f;
  9900. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9901. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9902. // TODO: handle transposed/permuted matrices
  9903. const int ith = params->ith;
  9904. const int nth = params->nth;
  9905. GGML_TENSOR_UNARY_OP_LOCALS
  9906. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9907. // TODO: is this supposed to be ceil instead of floor?
  9908. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9909. const uint32_t n_head_kv = ne02;
  9910. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9911. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9912. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9913. const int nc = src0->ne[0];
  9914. const int nr = ggml_nrows(src0);
  9915. // rows per thread
  9916. const int dr = (nr + nth - 1)/nth;
  9917. // row range for this thread
  9918. const int ir0 = dr*ith;
  9919. const int ir1 = MIN(ir0 + dr, nr);
  9920. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9921. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9922. float * pos = src2 ? (float *) src2->data : src0->data;
  9923. for (int i1 = ir0; i1 < ir1; i1++) {
  9924. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9925. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9926. // broadcast the mask across rows
  9927. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9928. ggml_vec_cpy_f32 (nc, wp, sp);
  9929. ggml_vec_scale_f32(nc, wp, scale);
  9930. if (mp) {
  9931. ggml_vec_acc_f32(nc, wp, mp);
  9932. }
  9933. // ALiBi bias
  9934. if (max_bias > 0.0f) {
  9935. const uint32_t h = (i1/ne01)%ne02; // head
  9936. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9937. for (int i = 0; i < nc; i++) {
  9938. wp[i] = wp[i] + slope*pos[i];
  9939. }
  9940. }
  9941. #ifndef NDEBUG
  9942. for (int i = 0; i < nc; ++i) {
  9943. //printf("p[%d] = %f\n", i, p[i]);
  9944. assert(!isnan(wp[i]));
  9945. }
  9946. #endif
  9947. float max = -INFINITY;
  9948. ggml_vec_max_f32(nc, &max, wp);
  9949. ggml_float sum = 0.0;
  9950. uint16_t scvt;
  9951. for (int i = 0; i < nc; i++) {
  9952. if (wp[i] == -INFINITY) {
  9953. dp[i] = 0.0f;
  9954. } else {
  9955. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9956. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9957. memcpy(&scvt, &s, sizeof(scvt));
  9958. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9959. sum += (ggml_float)val;
  9960. dp[i] = val;
  9961. }
  9962. }
  9963. assert(sum > 0.0);
  9964. sum = 1.0/sum;
  9965. ggml_vec_scale_f32(nc, dp, sum);
  9966. #ifndef NDEBUG
  9967. for (int i = 0; i < nc; ++i) {
  9968. assert(!isnan(dp[i]));
  9969. assert(!isinf(dp[i]));
  9970. }
  9971. #endif
  9972. }
  9973. }
  9974. static void ggml_compute_forward_soft_max(
  9975. const struct ggml_compute_params * params,
  9976. struct ggml_tensor * dst) {
  9977. const struct ggml_tensor * src0 = dst->src[0];
  9978. switch (src0->type) {
  9979. case GGML_TYPE_F32:
  9980. {
  9981. ggml_compute_forward_soft_max_f32(params, dst);
  9982. } break;
  9983. default:
  9984. {
  9985. GGML_ASSERT(false);
  9986. } break;
  9987. }
  9988. }
  9989. // ggml_compute_forward_soft_max_back
  9990. static void ggml_compute_forward_soft_max_back_f32(
  9991. const struct ggml_compute_params * params,
  9992. struct ggml_tensor * dst) {
  9993. const struct ggml_tensor * src0 = dst->src[0];
  9994. const struct ggml_tensor * src1 = dst->src[1];
  9995. GGML_ASSERT(ggml_is_contiguous(src0));
  9996. GGML_ASSERT(ggml_is_contiguous(src1));
  9997. GGML_ASSERT(ggml_is_contiguous(dst));
  9998. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9999. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10001. return;
  10002. }
  10003. // TODO: handle transposed/permuted matrices
  10004. const int ith = params->ith;
  10005. const int nth = params->nth;
  10006. const int nc = src0->ne[0];
  10007. const int nr = ggml_nrows(src0);
  10008. // rows per thread
  10009. const int dr = (nr + nth - 1)/nth;
  10010. // row range for this thread
  10011. const int ir0 = dr*ith;
  10012. const int ir1 = MIN(ir0 + dr, nr);
  10013. for (int i1 = ir0; i1 < ir1; i1++) {
  10014. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10015. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10016. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10017. #ifndef NDEBUG
  10018. for (int i = 0; i < nc; ++i) {
  10019. //printf("p[%d] = %f\n", i, p[i]);
  10020. assert(!isnan(dy[i]));
  10021. assert(!isnan(y[i]));
  10022. }
  10023. #endif
  10024. // Jii = yi - yi*yi
  10025. // Jij = -yi*yj
  10026. // J = diag(y)-y.T*y
  10027. // dx = J * dy
  10028. // dxk = sum_i(Jki * dyi)
  10029. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10030. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10031. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10032. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10033. // dxk = -yk * dot(y, dy) + yk*dyk
  10034. // dxk = yk * (- dot(y, dy) + dyk)
  10035. // dxk = yk * (dyk - dot(y, dy))
  10036. //
  10037. // post-order:
  10038. // dot_y_dy := dot(y, dy)
  10039. // dx := dy
  10040. // dx := dx - dot_y_dy
  10041. // dx := dx * y
  10042. // linear runtime, no additional memory
  10043. float dot_y_dy = 0;
  10044. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10045. ggml_vec_cpy_f32 (nc, dx, dy);
  10046. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10047. ggml_vec_mul_f32 (nc, dx, dx, y);
  10048. #ifndef NDEBUG
  10049. for (int i = 0; i < nc; ++i) {
  10050. assert(!isnan(dx[i]));
  10051. assert(!isinf(dx[i]));
  10052. }
  10053. #endif
  10054. }
  10055. }
  10056. static void ggml_compute_forward_soft_max_back(
  10057. const struct ggml_compute_params * params,
  10058. struct ggml_tensor * dst) {
  10059. const struct ggml_tensor * src0 = dst->src[0];
  10060. switch (src0->type) {
  10061. case GGML_TYPE_F32:
  10062. {
  10063. ggml_compute_forward_soft_max_back_f32(params, dst);
  10064. } break;
  10065. default:
  10066. {
  10067. GGML_ASSERT(false);
  10068. } break;
  10069. }
  10070. }
  10071. // ggml_compute_forward_alibi
  10072. static void ggml_compute_forward_alibi_f32(
  10073. const struct ggml_compute_params * params,
  10074. struct ggml_tensor * dst) {
  10075. const struct ggml_tensor * src0 = dst->src[0];
  10076. assert(params->ith == 0);
  10077. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10078. return;
  10079. }
  10080. //const int n_past = ((int32_t *) dst->op_params)[0];
  10081. const int n_head = ((int32_t *) dst->op_params)[1];
  10082. float max_bias;
  10083. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10084. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10085. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10086. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10087. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10088. const int64_t n = ggml_nrows(src0);
  10089. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10090. const size_t nb0 = src0->nb[0];
  10091. const size_t nb1 = src0->nb[1];
  10092. const size_t nb2 = src0->nb[2];
  10093. //const int nb3 = src0->nb[3];
  10094. GGML_ASSERT(nb0 == sizeof(float));
  10095. GGML_ASSERT(n_head == ne2);
  10096. // add alibi to src0 (KQ_scaled)
  10097. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10098. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10099. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10100. for (int64_t k = 0; k < ne2_ne3; k++) {
  10101. // TODO: k*nb2 or k*nb3
  10102. float m_k;
  10103. if (k < n_heads_log2_floor) {
  10104. m_k = powf(m0, k + 1);
  10105. } else {
  10106. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10107. }
  10108. for (int64_t i = 0; i < ne0; i++) {
  10109. for (int64_t j = 0; j < ne1; j++) {
  10110. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10111. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10112. pdst[0] = i * m_k + src[0];
  10113. }
  10114. }
  10115. }
  10116. }
  10117. static void ggml_compute_forward_alibi_f16(
  10118. const struct ggml_compute_params * params,
  10119. struct ggml_tensor * dst) {
  10120. const struct ggml_tensor * src0 = dst->src[0];
  10121. assert(params->ith == 0);
  10122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10123. return;
  10124. }
  10125. //const int n_past = ((int32_t *) dst->op_params)[0];
  10126. const int n_head = ((int32_t *) dst->op_params)[1];
  10127. float max_bias;
  10128. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10129. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10130. const int ne1 = src0->ne[1]; // seq_len_without_past
  10131. const int ne2 = src0->ne[2]; // n_head -> this is k
  10132. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10133. const int n = ggml_nrows(src0);
  10134. const int ne2_ne3 = n/ne1; // ne2*ne3
  10135. const int nb0 = src0->nb[0];
  10136. const int nb1 = src0->nb[1];
  10137. const int nb2 = src0->nb[2];
  10138. //const int nb3 = src0->nb[3];
  10139. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10140. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10141. GGML_ASSERT(n_head == ne2);
  10142. // add alibi to src0 (KQ_scaled)
  10143. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10144. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10145. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10146. for (int k = 0; k < ne2_ne3; k++) {
  10147. // TODO: k*nb2 or k*nb3
  10148. float m_k;
  10149. if (k < n_heads_log2_floor) {
  10150. m_k = powf(m0, k + 1);
  10151. } else {
  10152. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10153. }
  10154. for (int i = 0; i < ne0; i++) {
  10155. for (int j = 0; j < ne1; j++) {
  10156. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10157. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10158. // we return F32
  10159. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10160. }
  10161. }
  10162. }
  10163. }
  10164. static void ggml_compute_forward_alibi(
  10165. const struct ggml_compute_params * params,
  10166. struct ggml_tensor * dst) {
  10167. const struct ggml_tensor * src0 = dst->src[0];
  10168. switch (src0->type) {
  10169. case GGML_TYPE_F16:
  10170. {
  10171. ggml_compute_forward_alibi_f16(params, dst);
  10172. } break;
  10173. case GGML_TYPE_F32:
  10174. {
  10175. ggml_compute_forward_alibi_f32(params, dst);
  10176. } break;
  10177. case GGML_TYPE_Q4_0:
  10178. case GGML_TYPE_Q4_1:
  10179. case GGML_TYPE_Q5_0:
  10180. case GGML_TYPE_Q5_1:
  10181. case GGML_TYPE_Q8_0:
  10182. case GGML_TYPE_Q8_1:
  10183. case GGML_TYPE_Q2_K:
  10184. case GGML_TYPE_Q3_K:
  10185. case GGML_TYPE_Q4_K:
  10186. case GGML_TYPE_Q5_K:
  10187. case GGML_TYPE_Q6_K:
  10188. case GGML_TYPE_IQ2_XXS:
  10189. case GGML_TYPE_IQ2_XS:
  10190. case GGML_TYPE_IQ3_XXS:
  10191. case GGML_TYPE_IQ1_S:
  10192. case GGML_TYPE_IQ1_M:
  10193. case GGML_TYPE_IQ4_NL:
  10194. case GGML_TYPE_IQ4_XS:
  10195. case GGML_TYPE_IQ3_S:
  10196. case GGML_TYPE_IQ2_S:
  10197. case GGML_TYPE_Q8_K:
  10198. case GGML_TYPE_I8:
  10199. case GGML_TYPE_I16:
  10200. case GGML_TYPE_I32:
  10201. case GGML_TYPE_I64:
  10202. case GGML_TYPE_F64:
  10203. case GGML_TYPE_COUNT:
  10204. {
  10205. GGML_ASSERT(false);
  10206. } break;
  10207. }
  10208. }
  10209. // ggml_compute_forward_clamp
  10210. static void ggml_compute_forward_clamp_f32(
  10211. const struct ggml_compute_params * params,
  10212. struct ggml_tensor * dst) {
  10213. const struct ggml_tensor * src0 = dst->src[0];
  10214. assert(params->ith == 0);
  10215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10216. return;
  10217. }
  10218. float min;
  10219. float max;
  10220. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10221. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10222. const int ith = params->ith;
  10223. const int nth = params->nth;
  10224. const int n = ggml_nrows(src0);
  10225. const int nc = src0->ne[0];
  10226. const size_t nb00 = src0->nb[0];
  10227. const size_t nb01 = src0->nb[1];
  10228. const size_t nb0 = dst->nb[0];
  10229. const size_t nb1 = dst->nb[1];
  10230. GGML_ASSERT( nb0 == sizeof(float));
  10231. GGML_ASSERT(nb00 == sizeof(float));
  10232. for (int j = ith; j < n; j += nth) {
  10233. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10234. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10235. for (int i = 0; i < nc; i++) {
  10236. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10237. }
  10238. }
  10239. }
  10240. static void ggml_compute_forward_clamp(
  10241. const struct ggml_compute_params * params,
  10242. struct ggml_tensor * dst) {
  10243. const struct ggml_tensor * src0 = dst->src[0];
  10244. switch (src0->type) {
  10245. case GGML_TYPE_F32:
  10246. {
  10247. ggml_compute_forward_clamp_f32(params, dst);
  10248. } break;
  10249. case GGML_TYPE_F16:
  10250. case GGML_TYPE_Q4_0:
  10251. case GGML_TYPE_Q4_1:
  10252. case GGML_TYPE_Q5_0:
  10253. case GGML_TYPE_Q5_1:
  10254. case GGML_TYPE_Q8_0:
  10255. case GGML_TYPE_Q8_1:
  10256. case GGML_TYPE_Q2_K:
  10257. case GGML_TYPE_Q3_K:
  10258. case GGML_TYPE_Q4_K:
  10259. case GGML_TYPE_Q5_K:
  10260. case GGML_TYPE_Q6_K:
  10261. case GGML_TYPE_IQ2_XXS:
  10262. case GGML_TYPE_IQ2_XS:
  10263. case GGML_TYPE_IQ3_XXS:
  10264. case GGML_TYPE_IQ1_S:
  10265. case GGML_TYPE_IQ1_M:
  10266. case GGML_TYPE_IQ4_NL:
  10267. case GGML_TYPE_IQ4_XS:
  10268. case GGML_TYPE_IQ3_S:
  10269. case GGML_TYPE_IQ2_S:
  10270. case GGML_TYPE_Q8_K:
  10271. case GGML_TYPE_I8:
  10272. case GGML_TYPE_I16:
  10273. case GGML_TYPE_I32:
  10274. case GGML_TYPE_I64:
  10275. case GGML_TYPE_F64:
  10276. case GGML_TYPE_COUNT:
  10277. {
  10278. GGML_ASSERT(false);
  10279. } break;
  10280. }
  10281. }
  10282. // ggml_compute_forward_rope
  10283. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10284. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10285. return 1 - MIN(1, MAX(0, y));
  10286. }
  10287. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10288. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10289. static void rope_yarn(
  10290. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10291. float * cos_theta, float * sin_theta
  10292. ) {
  10293. // Get n-d rotational scaling corrected for extrapolation
  10294. float theta_interp = freq_scale * theta_extrap;
  10295. float theta = theta_interp;
  10296. if (ext_factor != 0.0f) {
  10297. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10298. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10299. // Get n-d magnitude scaling corrected for interpolation
  10300. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10301. }
  10302. *cos_theta = cosf(theta) * mscale;
  10303. *sin_theta = sinf(theta) * mscale;
  10304. }
  10305. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10306. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10307. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10308. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10309. }
  10310. static void ggml_rope_cache_init(
  10311. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10312. float * cache, float sin_sign, float theta_scale
  10313. ) {
  10314. float theta = theta_base;
  10315. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10316. rope_yarn(
  10317. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10318. );
  10319. cache[i0 + 1] *= sin_sign;
  10320. theta *= theta_scale;
  10321. }
  10322. }
  10323. GGML_CALL void ggml_rope_yarn_corr_dims(
  10324. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10325. ) {
  10326. // start and end correction dims
  10327. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10328. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10329. dims[0] = MAX(0, start);
  10330. dims[1] = MIN(n_dims - 1, end);
  10331. }
  10332. static void ggml_compute_forward_rope_f32(
  10333. const struct ggml_compute_params * params,
  10334. struct ggml_tensor * dst,
  10335. const bool forward) {
  10336. const struct ggml_tensor * src0 = dst->src[0];
  10337. const struct ggml_tensor * src1 = dst->src[1];
  10338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10339. return;
  10340. }
  10341. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10342. // these two only relevant for xPos RoPE:
  10343. float xpos_base;
  10344. bool xpos_down;
  10345. //const int n_past = ((int32_t *) dst->op_params)[0];
  10346. const int n_dims = ((int32_t *) dst->op_params)[1];
  10347. const int mode = ((int32_t *) dst->op_params)[2];
  10348. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10349. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10350. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10351. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10352. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10353. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10354. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10355. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10356. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10357. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10358. GGML_TENSOR_UNARY_OP_LOCALS
  10359. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10360. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10361. GGML_ASSERT(nb00 == sizeof(float));
  10362. const int ith = params->ith;
  10363. const int nth = params->nth;
  10364. const int nr = ggml_nrows(dst);
  10365. GGML_ASSERT(n_dims <= ne0);
  10366. GGML_ASSERT(n_dims % 2 == 0);
  10367. // rows per thread
  10368. const int dr = (nr + nth - 1)/nth;
  10369. // row range for this thread
  10370. const int ir0 = dr*ith;
  10371. const int ir1 = MIN(ir0 + dr, nr);
  10372. // row index used to determine which thread to use
  10373. int ir = 0;
  10374. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10375. const float inv_ndims = -1.f/n_dims;
  10376. float corr_dims[2];
  10377. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10378. const bool is_neox = mode & 2;
  10379. const bool is_glm = mode & 4;
  10380. // backward process uses inverse rotation by cos and sin.
  10381. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10382. // this essentially just switches the sign of sin.
  10383. const float sin_sign = forward ? 1.0f : -1.0f;
  10384. const int32_t * pos = (const int32_t *) src1->data;
  10385. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10386. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10387. const int64_t p = pos[i2];
  10388. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10389. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10390. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10391. }
  10392. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10393. if (ir++ < ir0) continue;
  10394. if (ir > ir1) break;
  10395. float theta_base = (float)p;
  10396. if (is_glm) {
  10397. theta_base = MIN(p, n_ctx - 2);
  10398. float block_theta = MAX(p - (n_ctx - 2), 0);
  10399. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10400. const float cos_theta = cosf(theta_base);
  10401. const float sin_theta = sinf(theta_base) * sin_sign;
  10402. const float cos_block_theta = cosf(block_theta);
  10403. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10404. theta_base *= theta_scale;
  10405. block_theta *= theta_scale;
  10406. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10407. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10408. const float x0 = src[0];
  10409. const float x1 = src[n_dims/2];
  10410. const float x2 = src[n_dims];
  10411. const float x3 = src[n_dims/2*3];
  10412. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10413. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10414. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10415. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10416. }
  10417. } else if (!is_neox) {
  10418. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10419. const float cos_theta = cache[i0 + 0];
  10420. const float sin_theta = cache[i0 + 1];
  10421. // zeta scaling for xPos only:
  10422. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10423. if (xpos_down) zeta = 1.0f / zeta;
  10424. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10425. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10426. const float x0 = src[0];
  10427. const float x1 = src[1];
  10428. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10429. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10430. }
  10431. } else {
  10432. // TODO: this might be wrong for ne0 != n_dims - need double check
  10433. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10434. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10435. theta_base *= freq_scale;
  10436. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10437. if (ic < n_dims) {
  10438. const int64_t ib = 0;
  10439. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10440. float cur_rot = inv_ndims * ic - ib;
  10441. float cos_theta, sin_theta;
  10442. rope_yarn(
  10443. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10444. &cos_theta, &sin_theta
  10445. );
  10446. sin_theta *= sin_sign;
  10447. theta_base *= theta_scale;
  10448. const int64_t i0 = ib*n_dims + ic/2;
  10449. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10450. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10451. const float x0 = src[0];
  10452. const float x1 = src[n_dims/2];
  10453. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10454. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10455. } else {
  10456. const int64_t i0 = ic;
  10457. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10458. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10459. dst_data[0] = src[0];
  10460. dst_data[1] = src[1];
  10461. }
  10462. }
  10463. }
  10464. }
  10465. }
  10466. }
  10467. }
  10468. static void ggml_compute_forward_rope_f16(
  10469. const struct ggml_compute_params * params,
  10470. struct ggml_tensor * dst,
  10471. const bool forward) {
  10472. const struct ggml_tensor * src0 = dst->src[0];
  10473. const struct ggml_tensor * src1 = dst->src[1];
  10474. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10475. return;
  10476. }
  10477. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10478. //const int n_past = ((int32_t *) dst->op_params)[0];
  10479. const int n_dims = ((int32_t *) dst->op_params)[1];
  10480. const int mode = ((int32_t *) dst->op_params)[2];
  10481. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10482. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10483. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10484. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10485. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10486. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10487. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10488. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10489. GGML_TENSOR_UNARY_OP_LOCALS
  10490. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10491. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10492. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10493. const int ith = params->ith;
  10494. const int nth = params->nth;
  10495. const int nr = ggml_nrows(dst);
  10496. GGML_ASSERT(n_dims <= ne0);
  10497. GGML_ASSERT(n_dims % 2 == 0);
  10498. // rows per thread
  10499. const int dr = (nr + nth - 1)/nth;
  10500. // row range for this thread
  10501. const int ir0 = dr*ith;
  10502. const int ir1 = MIN(ir0 + dr, nr);
  10503. // row index used to determine which thread to use
  10504. int ir = 0;
  10505. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10506. const float inv_ndims = -1.f/n_dims;
  10507. float corr_dims[2];
  10508. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10509. const bool is_neox = mode & 2;
  10510. const bool is_glm = mode & 4;
  10511. // backward process uses inverse rotation by cos and sin.
  10512. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10513. // this essentially just switches the sign of sin.
  10514. const float sin_sign = forward ? 1.0f : -1.0f;
  10515. const int32_t * pos = (const int32_t *) src1->data;
  10516. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10517. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10518. const int64_t p = pos[i2];
  10519. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10520. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10521. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10522. }
  10523. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10524. if (ir++ < ir0) continue;
  10525. if (ir > ir1) break;
  10526. float theta_base = (float)p;
  10527. if (is_glm) {
  10528. theta_base = MIN(p, n_ctx - 2);
  10529. float block_theta = MAX(p - (n_ctx - 2), 0);
  10530. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10531. const float cos_theta = cosf(theta_base);
  10532. const float sin_theta = sinf(theta_base) * sin_sign;
  10533. const float cos_block_theta = cosf(block_theta);
  10534. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10535. theta_base *= theta_scale;
  10536. block_theta *= theta_scale;
  10537. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10538. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10539. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10540. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10541. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10542. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10543. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10544. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10545. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10546. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10547. }
  10548. } else if (!is_neox) {
  10549. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10550. const float cos_theta = cache[i0 + 0];
  10551. const float sin_theta = cache[i0 + 1];
  10552. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10553. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10554. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10555. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10556. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10557. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10558. }
  10559. } else {
  10560. // TODO: this might be wrong for ne0 != n_dims - need double check
  10561. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10562. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10563. theta_base *= freq_scale;
  10564. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10565. if (ic < n_dims) {
  10566. const int64_t ib = 0;
  10567. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10568. float cur_rot = inv_ndims * ic - ib;
  10569. float cos_theta, sin_theta;
  10570. rope_yarn(
  10571. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10572. &cos_theta, &sin_theta
  10573. );
  10574. sin_theta *= sin_sign;
  10575. theta_base *= theta_scale;
  10576. const int64_t i0 = ib*n_dims + ic/2;
  10577. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10578. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10579. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10580. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10581. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10582. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10583. } else {
  10584. const int64_t i0 = ic;
  10585. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10586. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10587. dst_data[0] = src[0];
  10588. dst_data[1] = src[1];
  10589. }
  10590. }
  10591. }
  10592. }
  10593. }
  10594. }
  10595. }
  10596. static void ggml_compute_forward_rope(
  10597. const struct ggml_compute_params * params,
  10598. struct ggml_tensor * dst) {
  10599. const struct ggml_tensor * src0 = dst->src[0];
  10600. switch (src0->type) {
  10601. case GGML_TYPE_F16:
  10602. {
  10603. ggml_compute_forward_rope_f16(params, dst, true);
  10604. } break;
  10605. case GGML_TYPE_F32:
  10606. {
  10607. ggml_compute_forward_rope_f32(params, dst, true);
  10608. } break;
  10609. default:
  10610. {
  10611. GGML_ASSERT(false);
  10612. } break;
  10613. }
  10614. }
  10615. // ggml_compute_forward_rope_back
  10616. static void ggml_compute_forward_rope_back(
  10617. const struct ggml_compute_params * params,
  10618. struct ggml_tensor * dst) {
  10619. const struct ggml_tensor * src0 = dst->src[0];
  10620. switch (src0->type) {
  10621. case GGML_TYPE_F16:
  10622. {
  10623. ggml_compute_forward_rope_f16(params, dst, false);
  10624. } break;
  10625. case GGML_TYPE_F32:
  10626. {
  10627. ggml_compute_forward_rope_f32(params, dst, false);
  10628. } break;
  10629. default:
  10630. {
  10631. GGML_ASSERT(false);
  10632. } break;
  10633. }
  10634. }
  10635. // ggml_compute_forward_conv_transpose_1d
  10636. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10637. const struct ggml_compute_params * params,
  10638. struct ggml_tensor * dst) {
  10639. const struct ggml_tensor * src0 = dst->src[0];
  10640. const struct ggml_tensor * src1 = dst->src[1];
  10641. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10642. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10643. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10644. int64_t t0 = ggml_perf_time_us();
  10645. UNUSED(t0);
  10646. GGML_TENSOR_BINARY_OP_LOCALS
  10647. const int ith = params->ith;
  10648. const int nth = params->nth;
  10649. const int nk = ne00*ne01*ne02;
  10650. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10651. GGML_ASSERT(nb10 == sizeof(float));
  10652. if (params->type == GGML_TASK_TYPE_INIT) {
  10653. if (ith != 0) {
  10654. return;
  10655. }
  10656. memset(params->wdata, 0, params->wsize);
  10657. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10658. {
  10659. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10660. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10661. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10662. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10663. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10664. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10665. dst_data[i00*ne02 + i02] = src[i00];
  10666. }
  10667. }
  10668. }
  10669. }
  10670. // permute source data (src1) from (L x Cin) to (Cin x L)
  10671. {
  10672. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10673. ggml_fp16_t * dst_data = wdata;
  10674. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10675. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10676. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10677. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10678. }
  10679. }
  10680. }
  10681. // need to zero dst since we are accumulating into it
  10682. memset(dst->data, 0, ggml_nbytes(dst));
  10683. return;
  10684. }
  10685. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10686. return;
  10687. }
  10688. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10689. // total rows in dst
  10690. const int nr = ne1;
  10691. // rows per thread
  10692. const int dr = (nr + nth - 1)/nth;
  10693. // row range for this thread
  10694. const int ir0 = dr*ith;
  10695. const int ir1 = MIN(ir0 + dr, nr);
  10696. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10697. ggml_fp16_t * const wdata_src = wdata + nk;
  10698. for (int i1 = ir0; i1 < ir1; i1++) {
  10699. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10700. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10701. for (int i10 = 0; i10 < ne10; i10++) {
  10702. const int i1n = i10*ne11;
  10703. for (int i00 = 0; i00 < ne00; i00++) {
  10704. float v = 0;
  10705. ggml_vec_dot_f16(ne02, &v, 0,
  10706. (ggml_fp16_t *) wdata_src + i1n, 0,
  10707. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10708. dst_data[i10*s0 + i00] += v;
  10709. }
  10710. }
  10711. }
  10712. }
  10713. static void ggml_compute_forward_conv_transpose_1d_f32(
  10714. const struct ggml_compute_params * params,
  10715. struct ggml_tensor * dst) {
  10716. const struct ggml_tensor * src0 = dst->src[0];
  10717. const struct ggml_tensor * src1 = dst->src[1];
  10718. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10719. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10720. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10721. int64_t t0 = ggml_perf_time_us();
  10722. UNUSED(t0);
  10723. GGML_TENSOR_BINARY_OP_LOCALS
  10724. const int ith = params->ith;
  10725. const int nth = params->nth;
  10726. const int nk = ne00*ne01*ne02;
  10727. GGML_ASSERT(nb00 == sizeof(float));
  10728. GGML_ASSERT(nb10 == sizeof(float));
  10729. if (params->type == GGML_TASK_TYPE_INIT) {
  10730. if (ith != 0) {
  10731. return;
  10732. }
  10733. memset(params->wdata, 0, params->wsize);
  10734. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10735. {
  10736. float * const wdata = (float *) params->wdata + 0;
  10737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10738. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10739. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10740. float * dst_data = wdata + i01*ne00*ne02;
  10741. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10742. dst_data[i00*ne02 + i02] = src[i00];
  10743. }
  10744. }
  10745. }
  10746. }
  10747. // prepare source data (src1)
  10748. {
  10749. float * const wdata = (float *) params->wdata + nk;
  10750. float * dst_data = wdata;
  10751. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10752. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10753. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10754. dst_data[i10*ne11 + i11] = src[i10];
  10755. }
  10756. }
  10757. }
  10758. // need to zero dst since we are accumulating into it
  10759. memset(dst->data, 0, ggml_nbytes(dst));
  10760. return;
  10761. }
  10762. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10763. return;
  10764. }
  10765. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10766. // total rows in dst
  10767. const int nr = ne1;
  10768. // rows per thread
  10769. const int dr = (nr + nth - 1)/nth;
  10770. // row range for this thread
  10771. const int ir0 = dr*ith;
  10772. const int ir1 = MIN(ir0 + dr, nr);
  10773. float * const wdata = (float *) params->wdata + 0;
  10774. float * const wdata_src = wdata + nk;
  10775. for (int i1 = ir0; i1 < ir1; i1++) {
  10776. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10777. float * wdata_kernel = wdata + i1*ne02*ne00;
  10778. for (int i10 = 0; i10 < ne10; i10++) {
  10779. const int i1n = i10*ne11;
  10780. for (int i00 = 0; i00 < ne00; i00++) {
  10781. float v = 0;
  10782. ggml_vec_dot_f32(ne02, &v, 0,
  10783. wdata_src + i1n, 0,
  10784. wdata_kernel + i00*ne02, 0, 1);
  10785. dst_data[i10*s0 + i00] += v;
  10786. }
  10787. }
  10788. }
  10789. }
  10790. static void ggml_compute_forward_conv_transpose_1d(
  10791. const struct ggml_compute_params * params,
  10792. struct ggml_tensor * dst) {
  10793. const struct ggml_tensor * src0 = dst->src[0];
  10794. switch (src0->type) {
  10795. case GGML_TYPE_F16:
  10796. {
  10797. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10798. } break;
  10799. case GGML_TYPE_F32:
  10800. {
  10801. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10802. } break;
  10803. default:
  10804. {
  10805. GGML_ASSERT(false);
  10806. } break;
  10807. }
  10808. }
  10809. // src0: kernel [OC, IC, KH, KW]
  10810. // src1: image [N, IC, IH, IW]
  10811. // dst: result [N, OH, OW, IC*KH*KW]
  10812. static void ggml_compute_forward_im2col_f32(
  10813. const struct ggml_compute_params * params,
  10814. struct ggml_tensor * dst) {
  10815. const struct ggml_tensor * src0 = dst->src[0];
  10816. const struct ggml_tensor * src1 = dst->src[1];
  10817. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10818. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10819. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10820. int64_t t0 = ggml_perf_time_us();
  10821. UNUSED(t0);
  10822. GGML_TENSOR_BINARY_OP_LOCALS;
  10823. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10824. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10825. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10826. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10827. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10828. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10829. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10830. const int ith = params->ith;
  10831. const int nth = params->nth;
  10832. const int64_t N = is_2D ? ne13 : ne12;
  10833. const int64_t IC = is_2D ? ne12 : ne11;
  10834. const int64_t IH = is_2D ? ne11 : 1;
  10835. const int64_t IW = ne10;
  10836. const int64_t KH = is_2D ? ne01 : 1;
  10837. const int64_t KW = ne00;
  10838. const int64_t OH = is_2D ? ne2 : 1;
  10839. const int64_t OW = ne1;
  10840. int ofs0 = is_2D ? nb13 : nb12;
  10841. int ofs1 = is_2D ? nb12 : nb11;
  10842. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10843. GGML_ASSERT(nb10 == sizeof(float));
  10844. if (params->type == GGML_TASK_TYPE_INIT) {
  10845. return;
  10846. }
  10847. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10848. return;
  10849. }
  10850. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10851. {
  10852. float * const wdata = (float *) dst->data;
  10853. for (int64_t in = 0; in < N; in++) {
  10854. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10855. for (int64_t iow = 0; iow < OW; iow++) {
  10856. for (int64_t iic = ith; iic < IC; iic += nth) {
  10857. // micro kernel
  10858. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10859. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10860. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10861. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10862. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10863. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10864. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10865. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10866. } else {
  10867. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10868. }
  10869. }
  10870. }
  10871. }
  10872. }
  10873. }
  10874. }
  10875. }
  10876. }
  10877. // src0: kernel [OC, IC, KH, KW]
  10878. // src1: image [N, IC, IH, IW]
  10879. // dst: result [N, OH, OW, IC*KH*KW]
  10880. static void ggml_compute_forward_im2col_f16(
  10881. const struct ggml_compute_params * params,
  10882. struct ggml_tensor * dst) {
  10883. const struct ggml_tensor * src0 = dst->src[0];
  10884. const struct ggml_tensor * src1 = dst->src[1];
  10885. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10886. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10887. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10888. int64_t t0 = ggml_perf_time_us();
  10889. UNUSED(t0);
  10890. GGML_TENSOR_BINARY_OP_LOCALS;
  10891. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10892. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10893. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10894. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10895. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10896. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10897. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10898. const int ith = params->ith;
  10899. const int nth = params->nth;
  10900. const int64_t N = is_2D ? ne13 : ne12;
  10901. const int64_t IC = is_2D ? ne12 : ne11;
  10902. const int64_t IH = is_2D ? ne11 : 1;
  10903. const int64_t IW = ne10;
  10904. const int64_t KH = is_2D ? ne01 : 1;
  10905. const int64_t KW = ne00;
  10906. const int64_t OH = is_2D ? ne2 : 1;
  10907. const int64_t OW = ne1;
  10908. int ofs0 = is_2D ? nb13 : nb12;
  10909. int ofs1 = is_2D ? nb12 : nb11;
  10910. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10911. GGML_ASSERT(nb10 == sizeof(float));
  10912. if (params->type == GGML_TASK_TYPE_INIT) {
  10913. return;
  10914. }
  10915. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10916. return;
  10917. }
  10918. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10919. {
  10920. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10921. for (int64_t in = 0; in < N; in++) {
  10922. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10923. for (int64_t iow = 0; iow < OW; iow++) {
  10924. for (int64_t iic = ith; iic < IC; iic += nth) {
  10925. // micro kernel
  10926. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10927. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10928. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10929. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10930. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10931. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10932. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10933. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10934. } else {
  10935. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10936. }
  10937. }
  10938. }
  10939. }
  10940. }
  10941. }
  10942. }
  10943. }
  10944. }
  10945. static void ggml_compute_forward_im2col(
  10946. const struct ggml_compute_params * params,
  10947. struct ggml_tensor * dst) {
  10948. switch (dst->type) {
  10949. case GGML_TYPE_F16:
  10950. {
  10951. ggml_compute_forward_im2col_f16(params, dst);
  10952. } break;
  10953. case GGML_TYPE_F32:
  10954. {
  10955. ggml_compute_forward_im2col_f32(params, dst);
  10956. } break;
  10957. default:
  10958. {
  10959. GGML_ASSERT(false);
  10960. } break;
  10961. }
  10962. }
  10963. // ggml_compute_forward_conv_transpose_2d
  10964. static void ggml_compute_forward_conv_transpose_2d(
  10965. const struct ggml_compute_params * params,
  10966. struct ggml_tensor * dst) {
  10967. const struct ggml_tensor * src0 = dst->src[0];
  10968. const struct ggml_tensor * src1 = dst->src[1];
  10969. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10971. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10972. int64_t t0 = ggml_perf_time_us();
  10973. UNUSED(t0);
  10974. GGML_TENSOR_BINARY_OP_LOCALS
  10975. const int ith = params->ith;
  10976. const int nth = params->nth;
  10977. const int nk = ne00*ne01*ne02*ne03;
  10978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10979. GGML_ASSERT(nb10 == sizeof(float));
  10980. if (params->type == GGML_TASK_TYPE_INIT) {
  10981. if (ith != 0) {
  10982. return;
  10983. }
  10984. memset(params->wdata, 0, params->wsize);
  10985. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10986. {
  10987. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10990. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10991. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10992. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10993. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10994. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10995. }
  10996. }
  10997. }
  10998. }
  10999. }
  11000. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11001. {
  11002. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11003. for (int i12 = 0; i12 < ne12; i12++) {
  11004. for (int i11 = 0; i11 < ne11; i11++) {
  11005. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11006. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11007. for (int i10 = 0; i10 < ne10; i10++) {
  11008. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11009. }
  11010. }
  11011. }
  11012. }
  11013. memset(dst->data, 0, ggml_nbytes(dst));
  11014. return;
  11015. }
  11016. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11017. return;
  11018. }
  11019. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11020. // total patches in dst
  11021. const int np = ne2;
  11022. // patches per thread
  11023. const int dp = (np + nth - 1)/nth;
  11024. // patch range for this thread
  11025. const int ip0 = dp*ith;
  11026. const int ip1 = MIN(ip0 + dp, np);
  11027. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11028. ggml_fp16_t * const wdata_src = wdata + nk;
  11029. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11030. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11031. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11032. for (int i11 = 0; i11 < ne11; i11++) {
  11033. for (int i10 = 0; i10 < ne10; i10++) {
  11034. const int i1n = i11*ne10*ne12 + i10*ne12;
  11035. for (int i01 = 0; i01 < ne01; i01++) {
  11036. for (int i00 = 0; i00 < ne00; i00++) {
  11037. float v = 0;
  11038. ggml_vec_dot_f16(ne03, &v, 0,
  11039. wdata_src + i1n, 0,
  11040. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11041. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11042. }
  11043. }
  11044. }
  11045. }
  11046. }
  11047. }
  11048. // ggml_compute_forward_pool_1d_sk_p0
  11049. static void ggml_compute_forward_pool_1d_sk_p0(
  11050. const struct ggml_compute_params * params,
  11051. const enum ggml_op_pool op,
  11052. const int k,
  11053. struct ggml_tensor * dst) {
  11054. const struct ggml_tensor * src = dst->src[0];
  11055. assert(src->type == GGML_TYPE_F32);
  11056. assert(params->ith == 0);
  11057. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11058. return;
  11059. }
  11060. const char * cdata = (const char *)src->data;
  11061. const char * const data_end = cdata + ggml_nbytes(src);
  11062. float * drow = (float *)dst->data;
  11063. const int64_t rs = dst->ne[0];
  11064. while (cdata < data_end) {
  11065. const float * const srow = (const float *)cdata;
  11066. int j = 0;
  11067. for (int64_t i = 0; i < rs; ++i) {
  11068. switch (op) {
  11069. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11070. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11071. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11072. }
  11073. for (int ki = 0; ki < k; ++ki) {
  11074. switch (op) {
  11075. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11076. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11077. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11078. }
  11079. ++j;
  11080. }
  11081. switch (op) {
  11082. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11083. case GGML_OP_POOL_MAX: break;
  11084. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11085. }
  11086. }
  11087. cdata += src->nb[1];
  11088. drow += rs;
  11089. }
  11090. }
  11091. // ggml_compute_forward_pool_1d
  11092. static void ggml_compute_forward_pool_1d(
  11093. const struct ggml_compute_params * params,
  11094. struct ggml_tensor * dst) {
  11095. const int32_t * opts = (const int32_t *)dst->op_params;
  11096. enum ggml_op_pool op = opts[0];
  11097. const int k0 = opts[1];
  11098. const int s0 = opts[2];
  11099. const int p0 = opts[3];
  11100. GGML_ASSERT(p0 == 0); // padding not supported
  11101. GGML_ASSERT(k0 == s0); // only s = k supported
  11102. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11103. }
  11104. // ggml_compute_forward_pool_2d
  11105. static void ggml_compute_forward_pool_2d(
  11106. const struct ggml_compute_params * params,
  11107. struct ggml_tensor * dst) {
  11108. const struct ggml_tensor * src = dst->src[0];
  11109. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11110. GGML_ASSERT(params->ith == 0);
  11111. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11112. return;
  11113. }
  11114. const int32_t * opts = (const int32_t *)dst->op_params;
  11115. enum ggml_op_pool op = opts[0];
  11116. const int k0 = opts[1];
  11117. const int k1 = opts[2];
  11118. const int s0 = opts[3];
  11119. const int s1 = opts[4];
  11120. const int p0 = opts[5];
  11121. const int p1 = opts[6];
  11122. const char * cdata = (const char*)src->data;
  11123. const char * const data_end = cdata + ggml_nbytes(src);
  11124. const int64_t px = dst->ne[0];
  11125. const int64_t py = dst->ne[1];
  11126. const int64_t pa = px * py;
  11127. float * dplane = (float *)dst->data;
  11128. const int ka = k0 * k1;
  11129. const int offset0 = -p0;
  11130. const int offset1 = -p1;
  11131. while (cdata < data_end) {
  11132. for (int oy = 0; oy < py; ++oy) {
  11133. float * const drow = dplane + oy * px;
  11134. for (int ox = 0; ox < px; ++ox) {
  11135. float * const out = drow + ox;
  11136. switch (op) {
  11137. case GGML_OP_POOL_AVG: *out = 0; break;
  11138. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11139. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11140. }
  11141. const int ix = offset0 + ox * s0;
  11142. const int iy = offset1 + oy * s1;
  11143. for (int ky = 0; ky < k1; ++ky) {
  11144. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11145. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11146. for (int kx = 0; kx < k0; ++kx) {
  11147. int j = ix + kx;
  11148. if (j < 0 || j >= src->ne[0]) continue;
  11149. switch (op) {
  11150. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11151. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11152. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11153. }
  11154. }
  11155. }
  11156. switch (op) {
  11157. case GGML_OP_POOL_AVG: *out /= ka; break;
  11158. case GGML_OP_POOL_MAX: break;
  11159. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11160. }
  11161. }
  11162. }
  11163. cdata += src->nb[2];
  11164. dplane += pa;
  11165. }
  11166. }
  11167. // ggml_compute_forward_upscale
  11168. static void ggml_compute_forward_upscale_f32(
  11169. const struct ggml_compute_params * params,
  11170. struct ggml_tensor * dst) {
  11171. const struct ggml_tensor * src0 = dst->src[0];
  11172. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11173. return;
  11174. }
  11175. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11176. const int ith = params->ith;
  11177. const int nth = params->nth;
  11178. GGML_TENSOR_UNARY_OP_LOCALS
  11179. const int scale_factor = dst->op_params[0];
  11180. // TODO: optimize
  11181. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11182. const int64_t i03 = i3;
  11183. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11184. const int64_t i02 = i2;
  11185. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11186. const int64_t i01 = i1 / scale_factor;
  11187. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11188. const int64_t i00 = i0 / scale_factor;
  11189. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11190. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11191. *y = *x;
  11192. }
  11193. }
  11194. }
  11195. }
  11196. }
  11197. static void ggml_compute_forward_upscale(
  11198. const struct ggml_compute_params * params,
  11199. struct ggml_tensor * dst) {
  11200. const struct ggml_tensor * src0 = dst->src[0];
  11201. switch (src0->type) {
  11202. case GGML_TYPE_F32:
  11203. {
  11204. ggml_compute_forward_upscale_f32(params, dst);
  11205. } break;
  11206. default:
  11207. {
  11208. GGML_ASSERT(false);
  11209. } break;
  11210. }
  11211. }
  11212. // ggml_compute_forward_pad
  11213. static void ggml_compute_forward_pad_f32(
  11214. const struct ggml_compute_params * params,
  11215. struct ggml_tensor * dst) {
  11216. const struct ggml_tensor * src0 = dst->src[0];
  11217. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11218. return;
  11219. }
  11220. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11221. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11222. const int ith = params->ith;
  11223. const int nth = params->nth;
  11224. GGML_TENSOR_UNARY_OP_LOCALS
  11225. float * dst_ptr = (float *) dst->data;
  11226. // TODO: optimize
  11227. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11228. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11229. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11230. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11231. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11232. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11233. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11234. dst_ptr[dst_idx] = *src_ptr;
  11235. } else {
  11236. dst_ptr[dst_idx] = 0;
  11237. }
  11238. }
  11239. }
  11240. }
  11241. }
  11242. }
  11243. static void ggml_compute_forward_pad(
  11244. const struct ggml_compute_params * params,
  11245. struct ggml_tensor * dst) {
  11246. const struct ggml_tensor * src0 = dst->src[0];
  11247. switch (src0->type) {
  11248. case GGML_TYPE_F32:
  11249. {
  11250. ggml_compute_forward_pad_f32(params, dst);
  11251. } break;
  11252. default:
  11253. {
  11254. GGML_ASSERT(false);
  11255. } break;
  11256. }
  11257. }
  11258. // ggml_compute_forward_arange
  11259. static void ggml_compute_forward_arange_f32(
  11260. const struct ggml_compute_params * params,
  11261. struct ggml_tensor * dst) {
  11262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11263. return;
  11264. }
  11265. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11266. const int ith = params->ith;
  11267. const int nth = params->nth;
  11268. const float start = ggml_get_op_params_f32(dst, 0);
  11269. const float stop = ggml_get_op_params_f32(dst, 1);
  11270. const float step = ggml_get_op_params_f32(dst, 2);
  11271. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11272. GGML_ASSERT(ggml_nelements(dst) == steps);
  11273. for (int64_t i = ith; i < steps; i+= nth) {
  11274. float value = start + step * i;
  11275. ((float *)dst->data)[i] = value;
  11276. }
  11277. }
  11278. static void ggml_compute_forward_arange(
  11279. const struct ggml_compute_params * params,
  11280. struct ggml_tensor * dst) {
  11281. switch (dst->type) {
  11282. case GGML_TYPE_F32:
  11283. {
  11284. ggml_compute_forward_arange_f32(params, dst);
  11285. } break;
  11286. default:
  11287. {
  11288. GGML_ASSERT(false);
  11289. } break;
  11290. }
  11291. }
  11292. static void ggml_compute_forward_timestep_embedding_f32(
  11293. const struct ggml_compute_params * params,
  11294. struct ggml_tensor * dst) {
  11295. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11296. return;
  11297. }
  11298. const struct ggml_tensor * src0 = dst->src[0];
  11299. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11300. const int ith = params->ith;
  11301. const int nth = params->nth;
  11302. GGML_TENSOR_UNARY_OP_LOCALS
  11303. const int dim = ggml_get_op_params_i32(dst, 0);
  11304. const int max_period = ggml_get_op_params_i32(dst, 1);
  11305. int half = dim / 2;
  11306. for (int64_t i = 0; i < ne00; i++) {
  11307. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11308. for (int64_t j = ith; j < half; j += nth) {
  11309. float timestep = ((float *)src0->data)[i];
  11310. float freq = (float)expf(-logf(max_period) * j / half);
  11311. float arg = timestep * freq;
  11312. embed_data[j] = cosf(arg);
  11313. embed_data[j + half] = sinf(arg);
  11314. }
  11315. if (dim % 2 != 0 && ith == 0) {
  11316. embed_data[dim] = 0.f;
  11317. }
  11318. }
  11319. }
  11320. static void ggml_compute_forward_timestep_embedding(
  11321. const struct ggml_compute_params * params,
  11322. struct ggml_tensor * dst) {
  11323. const struct ggml_tensor * src0 = dst->src[0];
  11324. switch (src0->type) {
  11325. case GGML_TYPE_F32:
  11326. {
  11327. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11328. } break;
  11329. default:
  11330. {
  11331. GGML_ASSERT(false);
  11332. } break;
  11333. }
  11334. }
  11335. // ggml_compute_forward_argsort
  11336. static void ggml_compute_forward_argsort_f32(
  11337. const struct ggml_compute_params * params,
  11338. struct ggml_tensor * dst) {
  11339. const struct ggml_tensor * src0 = dst->src[0];
  11340. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11341. return;
  11342. }
  11343. GGML_TENSOR_UNARY_OP_LOCALS
  11344. GGML_ASSERT(nb0 == sizeof(float));
  11345. const int ith = params->ith;
  11346. const int nth = params->nth;
  11347. const int64_t nr = ggml_nrows(src0);
  11348. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11349. for (int64_t i = ith; i < nr; i += nth) {
  11350. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11351. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11352. for (int64_t j = 0; j < ne0; j++) {
  11353. dst_data[j] = j;
  11354. }
  11355. // C doesn't have a functional sort, so we do a bubble sort instead
  11356. for (int64_t j = 0; j < ne0; j++) {
  11357. for (int64_t k = j + 1; k < ne0; k++) {
  11358. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11359. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11360. int32_t tmp = dst_data[j];
  11361. dst_data[j] = dst_data[k];
  11362. dst_data[k] = tmp;
  11363. }
  11364. }
  11365. }
  11366. }
  11367. }
  11368. static void ggml_compute_forward_argsort(
  11369. const struct ggml_compute_params * params,
  11370. struct ggml_tensor * dst) {
  11371. const struct ggml_tensor * src0 = dst->src[0];
  11372. switch (src0->type) {
  11373. case GGML_TYPE_F32:
  11374. {
  11375. ggml_compute_forward_argsort_f32(params, dst);
  11376. } break;
  11377. default:
  11378. {
  11379. GGML_ASSERT(false);
  11380. } break;
  11381. }
  11382. }
  11383. // ggml_compute_forward_flash_attn
  11384. static void ggml_compute_forward_flash_attn_f32(
  11385. const struct ggml_compute_params * params,
  11386. const bool masked,
  11387. struct ggml_tensor * dst) {
  11388. const struct ggml_tensor * q = dst->src[0];
  11389. const struct ggml_tensor * k = dst->src[1];
  11390. const struct ggml_tensor * v = dst->src[2];
  11391. int64_t t0 = ggml_perf_time_us();
  11392. UNUSED(t0);
  11393. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11394. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11395. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11396. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11397. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11398. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11399. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11400. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11401. const int ith = params->ith;
  11402. const int nth = params->nth;
  11403. const int64_t D = neq0;
  11404. const int64_t N = neq1;
  11405. const int64_t P = nek1 - N;
  11406. const int64_t M = P + N;
  11407. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11408. GGML_ASSERT(ne0 == D);
  11409. GGML_ASSERT(ne1 == N);
  11410. GGML_ASSERT(P >= 0);
  11411. GGML_ASSERT(nbq0 == sizeof(float));
  11412. GGML_ASSERT(nbk0 == sizeof(float));
  11413. GGML_ASSERT(nbv0 == sizeof(float));
  11414. GGML_ASSERT(neq0 == D);
  11415. GGML_ASSERT(nek0 == D);
  11416. GGML_ASSERT(nev1 == D);
  11417. GGML_ASSERT(neq1 == N);
  11418. GGML_ASSERT(nek1 == N + P);
  11419. GGML_ASSERT(nev1 == D);
  11420. // dst cannot be transposed or permuted
  11421. GGML_ASSERT(nb0 == sizeof(float));
  11422. GGML_ASSERT(nb0 <= nb1);
  11423. GGML_ASSERT(nb1 <= nb2);
  11424. GGML_ASSERT(nb2 <= nb3);
  11425. if (params->type == GGML_TASK_TYPE_INIT) {
  11426. return;
  11427. }
  11428. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11429. return;
  11430. }
  11431. // parallelize by q rows using ggml_vec_dot_f32
  11432. // total rows in q
  11433. const int nr = neq1*neq2*neq3;
  11434. // rows per thread
  11435. const int dr = (nr + nth - 1)/nth;
  11436. // row range for this thread
  11437. const int ir0 = dr*ith;
  11438. const int ir1 = MIN(ir0 + dr, nr);
  11439. const float scale = 1.0f/sqrtf(D);
  11440. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11441. for (int ir = ir0; ir < ir1; ++ir) {
  11442. // q indices
  11443. const int iq3 = ir/(neq2*neq1);
  11444. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11445. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11446. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11447. for (int i = M; i < Mup; ++i) {
  11448. S[i] = -INFINITY;
  11449. }
  11450. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11451. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11452. // k indices
  11453. const int ik3 = iq3;
  11454. const int ik2 = iq2 % nek2;
  11455. const int ik1 = ic;
  11456. // S indices
  11457. const int i1 = ik1;
  11458. ggml_vec_dot_f32(neq0,
  11459. S + i1, 0,
  11460. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11461. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11462. }
  11463. // scale
  11464. ggml_vec_scale_f32(masked_begin, S, scale);
  11465. for (int64_t i = masked_begin; i < M; i++) {
  11466. S[i] = -INFINITY;
  11467. }
  11468. // softmax
  11469. // exclude known -INF S[..] values from max and loop
  11470. // dont forget to set their SW values to zero
  11471. {
  11472. float max = -INFINITY;
  11473. ggml_vec_max_f32(masked_begin, &max, S);
  11474. ggml_float sum = 0.0;
  11475. {
  11476. #ifdef GGML_SOFT_MAX_ACCELERATE
  11477. max = -max;
  11478. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11479. vvexpf(S, S, &Mup);
  11480. ggml_vec_sum_f32(Mup, &sum, S);
  11481. #else
  11482. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11483. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11484. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11485. if (i >= masked_begin) {
  11486. break;
  11487. }
  11488. float * SS = S + i;
  11489. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11490. if (i + j >= masked_begin) {
  11491. break;
  11492. } else if (SS[j] == -INFINITY) {
  11493. SS[j] = 0.0f;
  11494. } else {
  11495. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11496. const float val = expf(SS[j] - max);
  11497. #else
  11498. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11499. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11500. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11501. #endif
  11502. sump[j] += (ggml_float)val;
  11503. SS[j] = val;
  11504. }
  11505. }
  11506. }
  11507. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11508. sum += sump[i];
  11509. }
  11510. #endif
  11511. }
  11512. assert(sum > 0.0);
  11513. sum = 1.0/sum;
  11514. ggml_vec_scale_f32(masked_begin, S, sum);
  11515. #ifndef NDEBUG
  11516. for (int i = 0; i < masked_begin; ++i) {
  11517. assert(!isnan(S[i]));
  11518. assert(!isinf(S[i]));
  11519. }
  11520. #endif
  11521. }
  11522. for (int64_t ic = 0; ic < nev1; ++ic) {
  11523. // dst indices
  11524. const int i1 = iq1;
  11525. const int i2 = iq2;
  11526. const int i3 = iq3;
  11527. // v indices
  11528. const int iv2 = iq2 % nev2;
  11529. const int iv3 = iq3;
  11530. ggml_vec_dot_f32(masked_begin,
  11531. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11532. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11533. S, 0, 1);
  11534. }
  11535. }
  11536. }
  11537. static void ggml_compute_forward_flash_attn_f16(
  11538. const struct ggml_compute_params * params,
  11539. const bool masked,
  11540. struct ggml_tensor * dst) {
  11541. const struct ggml_tensor * q = dst->src[0];
  11542. const struct ggml_tensor * k = dst->src[1];
  11543. const struct ggml_tensor * v = dst->src[2];
  11544. int64_t t0 = ggml_perf_time_us();
  11545. UNUSED(t0);
  11546. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11547. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11548. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11549. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11550. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11551. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11552. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11553. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11554. const int ith = params->ith;
  11555. const int nth = params->nth;
  11556. const int64_t D = neq0;
  11557. const int64_t N = neq1;
  11558. const int64_t P = nek1 - N;
  11559. const int64_t M = P + N;
  11560. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11561. GGML_ASSERT(ne0 == D);
  11562. GGML_ASSERT(ne1 == N);
  11563. GGML_ASSERT(P >= 0);
  11564. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11565. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11566. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11567. GGML_ASSERT(neq0 == D);
  11568. GGML_ASSERT(nek0 == D);
  11569. GGML_ASSERT(nev1 == D);
  11570. GGML_ASSERT(neq1 == N);
  11571. GGML_ASSERT(nek1 == N + P);
  11572. GGML_ASSERT(nev1 == D);
  11573. // dst cannot be transposed or permuted
  11574. GGML_ASSERT(nb0 == sizeof(float));
  11575. GGML_ASSERT(nb0 <= nb1);
  11576. GGML_ASSERT(nb1 <= nb2);
  11577. GGML_ASSERT(nb2 <= nb3);
  11578. if (params->type == GGML_TASK_TYPE_INIT) {
  11579. return;
  11580. }
  11581. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11582. return;
  11583. }
  11584. // parallelize by q rows using ggml_vec_dot_f32
  11585. // total rows in q
  11586. const int nr = neq1*neq2*neq3;
  11587. // rows per thread
  11588. const int dr = (nr + nth - 1)/nth;
  11589. // row range for this thread
  11590. const int ir0 = dr*ith;
  11591. const int ir1 = MIN(ir0 + dr, nr);
  11592. const float scale = 1.0f/sqrtf(D);
  11593. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11594. for (int ir = ir0; ir < ir1; ++ir) {
  11595. // q indices
  11596. const int iq3 = ir/(neq2*neq1);
  11597. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11598. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11599. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11600. for (int i = M; i < Mup; ++i) {
  11601. S[i] = -INFINITY;
  11602. }
  11603. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11604. for (int64_t ic = 0; ic < nek1; ++ic) {
  11605. // k indices
  11606. const int ik3 = iq3;
  11607. const int ik2 = iq2 % nek2;
  11608. const int ik1 = ic;
  11609. // S indices
  11610. const int i1 = ik1;
  11611. ggml_vec_dot_f16(neq0,
  11612. S + i1, 0,
  11613. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11614. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11615. }
  11616. } else {
  11617. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11618. // k indices
  11619. const int ik3 = iq3;
  11620. const int ik2 = iq2 % nek2;
  11621. const int ik1 = ic;
  11622. // S indices
  11623. const int i1 = ik1;
  11624. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11625. S + i1,
  11626. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11627. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11628. }
  11629. }
  11630. // scale
  11631. ggml_vec_scale_f32(nek1, S, scale);
  11632. if (masked) {
  11633. for (int64_t i = P; i < M; i++) {
  11634. if (i > P + iq1) {
  11635. S[i] = -INFINITY;
  11636. }
  11637. }
  11638. }
  11639. // softmax
  11640. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11641. // dont forget to set their S values to zero
  11642. {
  11643. float max = -INFINITY;
  11644. ggml_vec_max_f32(M, &max, S);
  11645. ggml_float sum = 0.0;
  11646. {
  11647. #ifdef GGML_SOFT_MAX_ACCELERATE
  11648. max = -max;
  11649. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11650. vvexpf(S, S, &Mup);
  11651. ggml_vec_sum_f32(Mup, &sum, S);
  11652. #else
  11653. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11654. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11655. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11656. float * SS = S + i;
  11657. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11658. if (SS[j] == -INFINITY) {
  11659. SS[j] = 0.0f;
  11660. } else {
  11661. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11662. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11663. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11664. sump[j] += (ggml_float)val;
  11665. SS[j] = val;
  11666. }
  11667. }
  11668. }
  11669. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11670. sum += sump[i];
  11671. }
  11672. #endif
  11673. }
  11674. assert(sum > 0.0);
  11675. sum = 1.0/sum;
  11676. ggml_vec_scale_f32(M, S, sum);
  11677. #ifndef NDEBUG
  11678. for (int i = 0; i < M; ++i) {
  11679. assert(!isnan(S[i]));
  11680. assert(!isinf(S[i]));
  11681. }
  11682. #endif
  11683. }
  11684. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11685. for (int64_t i = 0; i < M; i++) {
  11686. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11687. }
  11688. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11689. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11690. for (int64_t ic = 0; ic < nev1; ++ic) {
  11691. // dst indices
  11692. const int i1 = iq1;
  11693. const int i2 = iq2;
  11694. const int i3 = iq3;
  11695. // v indices
  11696. const int iv2 = iq2 % nev2;
  11697. const int iv3 = iq3;
  11698. ggml_vec_dot_f16(nev0,
  11699. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11700. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11701. S16, 0, 1);
  11702. }
  11703. } else {
  11704. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11705. // dst indices
  11706. const int i1 = iq1;
  11707. const int i2 = iq2;
  11708. const int i3 = iq3;
  11709. // v indices
  11710. const int iv2 = iq2 % nev2;
  11711. const int iv3 = iq3;
  11712. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11713. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11714. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11715. S16);
  11716. }
  11717. }
  11718. }
  11719. }
  11720. static void ggml_compute_forward_flash_attn(
  11721. const struct ggml_compute_params * params,
  11722. const bool masked,
  11723. struct ggml_tensor * dst) {
  11724. const struct ggml_tensor * q = dst->src[0];
  11725. switch (q->type) {
  11726. case GGML_TYPE_F16:
  11727. {
  11728. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11729. } break;
  11730. case GGML_TYPE_F32:
  11731. {
  11732. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11733. } break;
  11734. default:
  11735. {
  11736. GGML_ASSERT(false);
  11737. } break;
  11738. }
  11739. }
  11740. // ggml_compute_forward_flash_ff
  11741. static void ggml_compute_forward_flash_ff_f16(
  11742. const struct ggml_compute_params * params,
  11743. struct ggml_tensor * dst) {
  11744. const struct ggml_tensor * a = dst->src[0]; // F16
  11745. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11746. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11747. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11748. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11749. int64_t t0 = ggml_perf_time_us();
  11750. UNUSED(t0);
  11751. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11752. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11753. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11754. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11755. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11756. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11757. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11758. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11759. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11760. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11761. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11762. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11763. const int ith = params->ith;
  11764. const int nth = params->nth;
  11765. const int64_t D = nea0;
  11766. //const int64_t N = nea1;
  11767. const int64_t M = neb01;
  11768. GGML_ASSERT(ne0 == nea0);
  11769. GGML_ASSERT(ne1 == nea1);
  11770. GGML_ASSERT(ne2 == nea2);
  11771. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11772. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11773. GGML_ASSERT(nbb10 == sizeof(float));
  11774. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11775. GGML_ASSERT(nbc10 == sizeof(float));
  11776. GGML_ASSERT(neb00 == D);
  11777. GGML_ASSERT(neb01 == M);
  11778. GGML_ASSERT(neb10 == M);
  11779. GGML_ASSERT(neb11 == 1);
  11780. GGML_ASSERT(nec00 == M);
  11781. GGML_ASSERT(nec01 == D);
  11782. GGML_ASSERT(nec10 == D);
  11783. GGML_ASSERT(nec11 == 1);
  11784. // dst cannot be transposed or permuted
  11785. GGML_ASSERT(nb0 == sizeof(float));
  11786. GGML_ASSERT(nb0 <= nb1);
  11787. GGML_ASSERT(nb1 <= nb2);
  11788. GGML_ASSERT(nb2 <= nb3);
  11789. if (params->type == GGML_TASK_TYPE_INIT) {
  11790. return;
  11791. }
  11792. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11793. return;
  11794. }
  11795. // parallelize by a rows using ggml_vec_dot_f32
  11796. // total rows in a
  11797. const int nr = nea1*nea2*nea3;
  11798. // rows per thread
  11799. const int dr = (nr + nth - 1)/nth;
  11800. // row range for this thread
  11801. const int ir0 = dr*ith;
  11802. const int ir1 = MIN(ir0 + dr, nr);
  11803. for (int ir = ir0; ir < ir1; ++ir) {
  11804. // a indices
  11805. const int ia3 = ir/(nea2*nea1);
  11806. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11807. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11808. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11809. for (int64_t ic = 0; ic < neb01; ++ic) {
  11810. // b0 indices
  11811. const int ib03 = ia3;
  11812. const int ib02 = ia2;
  11813. const int ib01 = ic;
  11814. // S indices
  11815. const int i1 = ib01;
  11816. ggml_vec_dot_f16(nea0,
  11817. S + i1, 0,
  11818. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11819. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11820. }
  11821. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11822. //ggml_vec_gelu_f32(neb01, S, S);
  11823. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11824. for (int64_t i = 0; i < M; i++) {
  11825. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11826. }
  11827. ggml_vec_gelu_f16(neb01, S16, S16);
  11828. {
  11829. // dst indices
  11830. const int i1 = ia1;
  11831. const int i2 = ia2;
  11832. const int i3 = ia3;
  11833. for (int64_t ic = 0; ic < nec01; ++ic) {
  11834. ggml_vec_dot_f16(neb01,
  11835. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11836. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11837. S16, 0, 1);
  11838. }
  11839. ggml_vec_add_f32(nec01,
  11840. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11841. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11842. (float *) c1->data);
  11843. }
  11844. }
  11845. }
  11846. static void ggml_compute_forward_flash_ff(
  11847. const struct ggml_compute_params * params,
  11848. struct ggml_tensor * dst) {
  11849. const struct ggml_tensor * b0 = dst->src[1];
  11850. switch (b0->type) {
  11851. case GGML_TYPE_F16:
  11852. {
  11853. ggml_compute_forward_flash_ff_f16(params, dst);
  11854. } break;
  11855. case GGML_TYPE_F32:
  11856. {
  11857. GGML_ASSERT(false); // TODO
  11858. } break;
  11859. default:
  11860. {
  11861. GGML_ASSERT(false);
  11862. } break;
  11863. }
  11864. }
  11865. // ggml_compute_forward_flash_attn_back
  11866. static void ggml_compute_forward_flash_attn_back_f32(
  11867. const struct ggml_compute_params * params,
  11868. const bool masked,
  11869. struct ggml_tensor * dst) {
  11870. const struct ggml_tensor * q = dst->src[0];
  11871. const struct ggml_tensor * k = dst->src[1];
  11872. const struct ggml_tensor * v = dst->src[2];
  11873. const struct ggml_tensor * d = dst->src[3];
  11874. int64_t t0 = ggml_perf_time_us();
  11875. UNUSED(t0);
  11876. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11877. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11878. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11879. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11880. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11881. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11882. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11883. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11884. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11885. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11886. const int ith = params->ith;
  11887. const int nth = params->nth;
  11888. const int64_t D = neq0;
  11889. const int64_t N = neq1;
  11890. const int64_t P = nek1 - N;
  11891. const int64_t M = P + N;
  11892. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11893. const int mxDM = MAX(D, Mup);
  11894. // GGML_ASSERT(ne0 == D);
  11895. // GGML_ASSERT(ne1 == N);
  11896. GGML_ASSERT(P >= 0);
  11897. GGML_ASSERT(nbq0 == sizeof(float));
  11898. GGML_ASSERT(nbk0 == sizeof(float));
  11899. GGML_ASSERT(nbv0 == sizeof(float));
  11900. GGML_ASSERT(neq0 == D);
  11901. GGML_ASSERT(nek0 == D);
  11902. GGML_ASSERT(nev1 == D);
  11903. GGML_ASSERT(ned0 == D);
  11904. GGML_ASSERT(neq1 == N);
  11905. GGML_ASSERT(nek1 == N + P);
  11906. GGML_ASSERT(nev1 == D);
  11907. GGML_ASSERT(ned1 == N);
  11908. // dst cannot be transposed or permuted
  11909. GGML_ASSERT(nb0 == sizeof(float));
  11910. GGML_ASSERT(nb0 <= nb1);
  11911. GGML_ASSERT(nb1 <= nb2);
  11912. GGML_ASSERT(nb2 <= nb3);
  11913. if (params->type == GGML_TASK_TYPE_INIT) {
  11914. if (ith == 0) {
  11915. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11916. }
  11917. return;
  11918. }
  11919. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11920. return;
  11921. }
  11922. const int64_t elem_q = ggml_nelements(q);
  11923. const int64_t elem_k = ggml_nelements(k);
  11924. enum ggml_type result_type = dst->type;
  11925. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11926. const size_t tsize = ggml_type_size(result_type);
  11927. const size_t offs_q = 0;
  11928. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11929. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11930. void * grad_q = (char *) dst->data;
  11931. void * grad_k = (char *) dst->data + offs_k;
  11932. void * grad_v = (char *) dst->data + offs_v;
  11933. const size_t nbgq1 = nb0*neq0;
  11934. const size_t nbgq2 = nb0*neq0*neq1;
  11935. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11936. const size_t nbgk1 = nb0*nek0;
  11937. const size_t nbgk2 = nb0*nek0*nek1;
  11938. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11939. const size_t nbgv1 = nb0*nev0;
  11940. const size_t nbgv2 = nb0*nev0*nev1;
  11941. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11942. // parallelize by k rows using ggml_vec_dot_f32
  11943. // total rows in k
  11944. const int nr = nek2*nek3;
  11945. // rows per thread
  11946. const int dr = (nr + nth - 1)/nth;
  11947. // row range for this thread
  11948. const int ir0 = dr*ith;
  11949. const int ir1 = MIN(ir0 + dr, nr);
  11950. const float scale = 1.0f/sqrtf(D);
  11951. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11952. // how often k2 (and v2) is repeated in q2
  11953. int nrep = neq2/nek2;
  11954. for (int ir = ir0; ir < ir1; ++ir) {
  11955. // q indices
  11956. const int ik3 = ir/(nek2);
  11957. const int ik2 = ir - ik3*nek2;
  11958. const int iq3 = ik3;
  11959. const int id3 = ik3;
  11960. const int iv3 = ik3;
  11961. const int iv2 = ik2;
  11962. for (int irep = 0; irep < nrep; ++irep) {
  11963. const int iq2 = ik2 + irep*nek2;
  11964. const int id2 = iq2;
  11965. // (ik2 + irep*nek2) % nek2 == ik2
  11966. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11967. const int id1 = iq1;
  11968. // not sure about CACHE_LINE_SIZE_F32..
  11969. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11970. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11971. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11972. for (int i = M; i < Mup; ++i) {
  11973. S[i] = -INFINITY;
  11974. }
  11975. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11976. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11977. // k indices
  11978. const int ik1 = ic;
  11979. // S indices
  11980. const int i1 = ik1;
  11981. ggml_vec_dot_f32(neq0,
  11982. S + i1, 0,
  11983. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11984. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11985. }
  11986. // scale
  11987. ggml_vec_scale_f32(masked_begin, S, scale);
  11988. for (int64_t i = masked_begin; i < M; i++) {
  11989. S[i] = -INFINITY;
  11990. }
  11991. // softmax
  11992. // exclude known -INF S[..] values from max and loop
  11993. // dont forget to set their SM values to zero
  11994. {
  11995. float max = -INFINITY;
  11996. ggml_vec_max_f32(masked_begin, &max, S);
  11997. ggml_float sum = 0.0;
  11998. {
  11999. #ifdef GGML_SOFT_MAX_ACCELERATE
  12000. max = -max;
  12001. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12002. vvexpf(SM, SM, &Mup);
  12003. ggml_vec_sum_f32(Mup, &sum, SM);
  12004. #else
  12005. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12006. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12007. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12008. if (i >= masked_begin) {
  12009. break;
  12010. }
  12011. float * SR = S + i;
  12012. float * SW = SM + i;
  12013. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12014. if (i + j >= masked_begin) {
  12015. break;
  12016. } else if (SR[j] == -INFINITY) {
  12017. SW[j] = 0.0f;
  12018. } else {
  12019. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12020. const float val = expf(SR[j] - max);
  12021. #else
  12022. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12023. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12024. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12025. #endif
  12026. sump[j] += (ggml_float)val;
  12027. SW[j] = val;
  12028. }
  12029. }
  12030. }
  12031. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12032. sum += sump[i];
  12033. }
  12034. #endif
  12035. }
  12036. assert(sum > 0.0);
  12037. sum = 1.0/sum;
  12038. ggml_vec_scale_f32(masked_begin, SM, sum);
  12039. }
  12040. // step-by-step explanation
  12041. {
  12042. // forward-process shape grads from backward process
  12043. // parallel_for ik2,ik3:
  12044. // for irep:
  12045. // iq2 = ik2 + irep*nek2
  12046. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12047. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12048. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12049. // for iq1:
  12050. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12051. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12052. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12053. // S0 = -Inf [D,1,1,1]
  12054. // ~S1[i] = dot(kcur[:D,i], qcur)
  12055. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12056. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12057. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12058. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12059. // ~S5[i] = dot(vcur[:,i], S4)
  12060. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12061. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12062. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12063. // dst backward-/ grad[dst] = d
  12064. //
  12065. // output gradients with their dependencies:
  12066. //
  12067. // grad[kcur] = grad[S1].T @ qcur
  12068. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12069. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12070. // grad[S4] = grad[S5] @ vcur
  12071. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12072. // grad[qcur] = grad[S1] @ kcur
  12073. // grad[vcur] = grad[S5].T @ S4
  12074. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12075. //
  12076. // in post-order:
  12077. //
  12078. // S1 = qcur @ kcur.T
  12079. // S2 = S1 * scale
  12080. // S3 = diag_mask_inf(S2, P)
  12081. // S4 = softmax(S3)
  12082. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12083. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12084. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12085. // grad[qcur] = grad[S1] @ kcur
  12086. // grad[kcur] = grad[S1].T @ qcur
  12087. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12088. //
  12089. // using less variables (SM=S4):
  12090. //
  12091. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12092. // SM = softmax(S)
  12093. // S = d[:D,iq1,iq2,iq3] @ vcur
  12094. // dot_SM_gradSM = dot(SM, S)
  12095. // S = SM * (S - dot(SM, S))
  12096. // S = diag_mask_zero(S, P) * scale
  12097. //
  12098. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12099. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12100. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12101. }
  12102. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12103. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12104. // for ic:
  12105. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12106. // exclude known future zero S[..] values from operation
  12107. ggml_vec_set_f32(masked_begin, S, 0);
  12108. for (int64_t ic = 0; ic < D; ++ic) {
  12109. ggml_vec_mad_f32(masked_begin,
  12110. S,
  12111. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12112. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12113. }
  12114. // S = SM * (S - dot(SM, S))
  12115. float dot_SM_gradSM = 0;
  12116. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12117. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12118. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12119. // S = diag_mask_zero(S, P) * scale
  12120. // already done by above ggml_vec_set_f32
  12121. // exclude known zero S[..] values from operation
  12122. ggml_vec_scale_f32(masked_begin, S, scale);
  12123. // S shape [M,1]
  12124. // SM shape [M,1]
  12125. // kcur shape [D,M]
  12126. // qcur shape [D,1]
  12127. // vcur shape [M,D]
  12128. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12129. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12130. // for ic:
  12131. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12132. // exclude known zero S[..] values from loop
  12133. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12134. ggml_vec_mad_f32(D,
  12135. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12136. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12137. S[ic]);
  12138. }
  12139. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12140. // for ic:
  12141. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12142. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12143. // exclude known zero S[..] values from loop
  12144. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12145. ggml_vec_mad_f32(D,
  12146. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12147. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12148. S[ic]);
  12149. }
  12150. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12151. // for ic:
  12152. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12153. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12154. // exclude known zero SM[..] values from mad
  12155. for (int64_t ic = 0; ic < D; ++ic) {
  12156. ggml_vec_mad_f32(masked_begin,
  12157. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12158. SM,
  12159. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12160. }
  12161. }
  12162. }
  12163. }
  12164. }
  12165. static void ggml_compute_forward_flash_attn_back(
  12166. const struct ggml_compute_params * params,
  12167. const bool masked,
  12168. struct ggml_tensor * dst) {
  12169. const struct ggml_tensor * q = dst->src[0];
  12170. switch (q->type) {
  12171. case GGML_TYPE_F32:
  12172. {
  12173. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12174. } break;
  12175. default:
  12176. {
  12177. GGML_ASSERT(false);
  12178. } break;
  12179. }
  12180. }
  12181. // ggml_compute_forward_ssm_conv
  12182. static void ggml_compute_forward_ssm_conv_f32(
  12183. const struct ggml_compute_params * params,
  12184. struct ggml_tensor * dst) {
  12185. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12186. return;
  12187. }
  12188. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12189. const struct ggml_tensor * src1 = dst->src[1]; // x
  12190. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12191. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12192. const int ith = params->ith;
  12193. const int nth = params->nth;
  12194. const int nc = src2->ne[0]; // d_conv
  12195. const int nr = src0->ne[1]; // d_inner
  12196. const int n_t = src1->ne[1]; // n_tokens
  12197. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12198. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12199. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12200. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12201. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12202. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12203. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12204. // for use with the destination state offset between sequences
  12205. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12206. // rows per thread
  12207. const int dr = (nr + nth - 1)/nth;
  12208. // row range for this thread
  12209. const int ir0 = dr*ith;
  12210. const int ir1 = MIN(ir0 + dr, nr);
  12211. const int ir = ir1 - ir0;
  12212. if (n_kv > 1) {
  12213. // multiple sequences means it's hard to know when it's the first time a state is read,
  12214. // so copy them all over to the destination, just to be sure.
  12215. for (int i3 = 0; i3 < n_kv; ++i3) {
  12216. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12217. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12218. // can't use memcpy because of d_conv vs d_conv - 1
  12219. for (int i1 = 0; i1 < ir; ++i1) {
  12220. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12221. // copy s0 to last (d_conv - 1) columns of s
  12222. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12223. }
  12224. }
  12225. }
  12226. }
  12227. for (int i2 = 0; i2 < n_t; ++i2) {
  12228. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12229. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12230. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12231. float * s0; // {d_conv - 1, d_inner, n_kv}
  12232. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12233. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12234. int ne0s0;
  12235. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12236. // avoid needing to copy the state for the first token
  12237. if (i2 == 0) {
  12238. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12239. ne0s0 = src0->ne[0];
  12240. } else {
  12241. // the source is the last (d_conv - 1) columns of the destination
  12242. s0 = s + 1;
  12243. ne0s0 = nc;
  12244. }
  12245. // d_inner
  12246. for (int i1 = 0; i1 < ir; ++i1) {
  12247. // shift state left
  12248. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12249. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12250. }
  12251. // insert x on the last column
  12252. s[(nc - 1) + i1*nc] = x0[i1];
  12253. }
  12254. // handle copies when there are multiple output states
  12255. for (int i3 = 1; i3 < n_kv; ++i3) {
  12256. int32_t seq = sq[i3];
  12257. if (0 <= seq && seq < n_kv) {
  12258. float * s1 = s + (seq - sq[0])*nc*nr;
  12259. memcpy(s1, s, nc*ir*sizeof(float));
  12260. } else {
  12261. // stop at negative or too big seq_ids
  12262. break;
  12263. }
  12264. }
  12265. // it seems a little faster when this is separate from the state shift
  12266. for (int i1 = 0; i1 < ir; ++i1) {
  12267. // rowwise dot product
  12268. float sumf = 0.0f;
  12269. for (int i0 = 0; i0 < nc; ++i0) {
  12270. int i = i0 + i1*nc;
  12271. sumf += s[i] * c[i];
  12272. }
  12273. x[i1] = sumf;
  12274. }
  12275. }
  12276. }
  12277. static void ggml_compute_forward_ssm_conv(
  12278. const struct ggml_compute_params * params,
  12279. struct ggml_tensor * dst) {
  12280. switch (dst->src[0]->type) {
  12281. case GGML_TYPE_F32:
  12282. {
  12283. ggml_compute_forward_ssm_conv_f32(params, dst);
  12284. } break;
  12285. default:
  12286. {
  12287. GGML_ASSERT(false);
  12288. } break;
  12289. }
  12290. }
  12291. // ggml_compute_forward_ssm_scan
  12292. static void ggml_compute_forward_ssm_scan_f32(
  12293. const struct ggml_compute_params * params,
  12294. struct ggml_tensor * dst) {
  12295. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12296. return;
  12297. }
  12298. const struct ggml_tensor * src0 = dst->src[0]; // s
  12299. const struct ggml_tensor * src1 = dst->src[1]; // x
  12300. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12301. const struct ggml_tensor * src3 = dst->src[3]; // A
  12302. const struct ggml_tensor * src4 = dst->src[4]; // B
  12303. const struct ggml_tensor * src5 = dst->src[5]; // C
  12304. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12305. const int ith = params->ith;
  12306. const int nth = params->nth;
  12307. const int64_t nc = src0->ne[0]; // d_state
  12308. const int64_t nr = src0->ne[1]; // d_inner
  12309. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12310. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12311. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12312. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12313. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12314. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12315. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12316. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12317. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12318. // required for the dot product between s and C, and when copying the states
  12319. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12320. // required for per-sequence offsets for states
  12321. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12322. // required to get correct offset for state destination (i.e. src1->nb[2])
  12323. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12324. // rows per thread
  12325. const int dr = (nr + nth - 1)/nth;
  12326. // row range for this thread
  12327. const int ir0 = dr*ith;
  12328. const int ir1 = MIN(ir0 + dr, nr);
  12329. const int ir = ir1 - ir0;
  12330. if (n_kv > 1) {
  12331. // it's hard to know if the source states have already been copied
  12332. // when there are multiple, so copy them already.
  12333. for (int i3 = 0; i3 < n_kv; ++i3) {
  12334. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12335. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12336. memcpy(s, s0, nc*ir*sizeof(float));
  12337. }
  12338. }
  12339. for (int i2 = 0; i2 < n_t; ++i2) {
  12340. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12341. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12342. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12343. float * s0;
  12344. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12345. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12346. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12347. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12348. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12349. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12350. // avoid needing to copy the state for the first token
  12351. if (i2 == 0) {
  12352. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12353. } else {
  12354. // otherwise the source is the same as the destination
  12355. s0 = s;
  12356. }
  12357. // d_inner
  12358. for (int i1 = 0; i1 < ir; ++i1) {
  12359. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12360. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12361. float x_dt = x[i1] * dt_soft_plus;
  12362. float sumf = 0.0f;
  12363. // d_state
  12364. for (int i0 = 0; i0 < nc; ++i0) {
  12365. int i = i0 + i1*nc;
  12366. // state = prev_state * dA + dB * x
  12367. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12368. // y = rowwise_dotprod(state, C)
  12369. sumf += state * C[i0];
  12370. s[i] = state;
  12371. }
  12372. y[i1] = sumf;
  12373. }
  12374. // handle copies when there are multiple output states
  12375. for (int i3 = 1; i3 < n_kv; ++i3) {
  12376. int32_t seq = sq[i3];
  12377. if (0 <= seq && seq < n_kv) {
  12378. float * s1 = s + (seq - sq[0])*nc*nr;
  12379. memcpy(s1, s, nc*ir*sizeof(float));
  12380. } else {
  12381. // stop at negative or too big seq_ids
  12382. break;
  12383. }
  12384. }
  12385. }
  12386. }
  12387. static void ggml_compute_forward_ssm_scan(
  12388. const struct ggml_compute_params * params,
  12389. struct ggml_tensor * dst) {
  12390. switch (dst->src[0]->type) {
  12391. case GGML_TYPE_F32:
  12392. {
  12393. ggml_compute_forward_ssm_scan_f32(params, dst);
  12394. } break;
  12395. default:
  12396. {
  12397. GGML_ASSERT(false);
  12398. } break;
  12399. }
  12400. }
  12401. // ggml_compute_forward_win_part
  12402. static void ggml_compute_forward_win_part_f32(
  12403. const struct ggml_compute_params * params,
  12404. struct ggml_tensor * dst) {
  12405. const struct ggml_tensor * src0 = dst->src[0];
  12406. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12407. return;
  12408. }
  12409. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12410. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12411. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12412. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12413. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12414. assert(ne00 == ne0);
  12415. assert(ne3 == nep0*nep1);
  12416. // TODO: optimize / multi-thread
  12417. for (int py = 0; py < nep1; ++py) {
  12418. for (int px = 0; px < nep0; ++px) {
  12419. const int64_t i3 = py*nep0 + px;
  12420. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12421. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12422. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12423. const int64_t i02 = py*w + i2;
  12424. const int64_t i01 = px*w + i1;
  12425. const int64_t i00 = i0;
  12426. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12427. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12428. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12429. ((float *) dst->data)[i] = 0.0f;
  12430. } else {
  12431. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12432. }
  12433. }
  12434. }
  12435. }
  12436. }
  12437. }
  12438. }
  12439. static void ggml_compute_forward_win_part(
  12440. const struct ggml_compute_params * params,
  12441. struct ggml_tensor * dst) {
  12442. const struct ggml_tensor * src0 = dst->src[0];
  12443. switch (src0->type) {
  12444. case GGML_TYPE_F32:
  12445. {
  12446. ggml_compute_forward_win_part_f32(params, dst);
  12447. } break;
  12448. default:
  12449. {
  12450. GGML_ASSERT(false);
  12451. } break;
  12452. }
  12453. }
  12454. // ggml_compute_forward_win_unpart
  12455. static void ggml_compute_forward_win_unpart_f32(
  12456. const struct ggml_compute_params * params,
  12457. struct ggml_tensor * dst) {
  12458. const struct ggml_tensor * src0 = dst->src[0];
  12459. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12460. return;
  12461. }
  12462. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12463. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12464. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12465. // padding
  12466. const int px = (w - ne1%w)%w;
  12467. //const int py = (w - ne2%w)%w;
  12468. const int npx = (px + ne1)/w;
  12469. //const int npy = (py + ne2)/w;
  12470. assert(ne0 == ne00);
  12471. // TODO: optimize / multi-thread
  12472. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12473. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12474. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12475. const int ip2 = i2/w;
  12476. const int ip1 = i1/w;
  12477. const int64_t i02 = i2%w;
  12478. const int64_t i01 = i1%w;
  12479. const int64_t i00 = i0;
  12480. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12481. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12482. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12483. }
  12484. }
  12485. }
  12486. }
  12487. static void ggml_compute_forward_win_unpart(
  12488. const struct ggml_compute_params * params,
  12489. struct ggml_tensor * dst) {
  12490. const struct ggml_tensor * src0 = dst->src[0];
  12491. switch (src0->type) {
  12492. case GGML_TYPE_F32:
  12493. {
  12494. ggml_compute_forward_win_unpart_f32(params, dst);
  12495. } break;
  12496. default:
  12497. {
  12498. GGML_ASSERT(false);
  12499. } break;
  12500. }
  12501. }
  12502. //gmml_compute_forward_unary
  12503. static void ggml_compute_forward_unary(
  12504. const struct ggml_compute_params * params,
  12505. struct ggml_tensor * dst) {
  12506. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12507. switch (op) {
  12508. case GGML_UNARY_OP_ABS:
  12509. {
  12510. ggml_compute_forward_abs(params, dst);
  12511. } break;
  12512. case GGML_UNARY_OP_SGN:
  12513. {
  12514. ggml_compute_forward_sgn(params, dst);
  12515. } break;
  12516. case GGML_UNARY_OP_NEG:
  12517. {
  12518. ggml_compute_forward_neg(params, dst);
  12519. } break;
  12520. case GGML_UNARY_OP_STEP:
  12521. {
  12522. ggml_compute_forward_step(params, dst);
  12523. } break;
  12524. case GGML_UNARY_OP_TANH:
  12525. {
  12526. ggml_compute_forward_tanh(params, dst);
  12527. } break;
  12528. case GGML_UNARY_OP_ELU:
  12529. {
  12530. ggml_compute_forward_elu(params, dst);
  12531. } break;
  12532. case GGML_UNARY_OP_RELU:
  12533. {
  12534. ggml_compute_forward_relu(params, dst);
  12535. } break;
  12536. case GGML_UNARY_OP_GELU:
  12537. {
  12538. ggml_compute_forward_gelu(params, dst);
  12539. } break;
  12540. case GGML_UNARY_OP_GELU_QUICK:
  12541. {
  12542. ggml_compute_forward_gelu_quick(params, dst);
  12543. } break;
  12544. case GGML_UNARY_OP_SILU:
  12545. {
  12546. ggml_compute_forward_silu(params, dst);
  12547. } break;
  12548. case GGML_UNARY_OP_HARDSWISH:
  12549. {
  12550. ggml_compute_forward_hardswish(params, dst);
  12551. } break;
  12552. case GGML_UNARY_OP_HARDSIGMOID:
  12553. {
  12554. ggml_compute_forward_hardsigmoid(params, dst);
  12555. } break;
  12556. default:
  12557. {
  12558. GGML_ASSERT(false);
  12559. } break;
  12560. }
  12561. }
  12562. // ggml_compute_forward_get_rel_pos
  12563. static void ggml_compute_forward_get_rel_pos_f16(
  12564. const struct ggml_compute_params * params,
  12565. struct ggml_tensor * dst) {
  12566. const struct ggml_tensor * src0 = dst->src[0];
  12567. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12568. return;
  12569. }
  12570. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12571. GGML_TENSOR_UNARY_OP_LOCALS
  12572. const int64_t w = ne1;
  12573. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12574. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12575. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12576. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12577. const int64_t pos = (w - i1 - 1) + i2;
  12578. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12579. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12580. }
  12581. }
  12582. }
  12583. }
  12584. static void ggml_compute_forward_get_rel_pos(
  12585. const struct ggml_compute_params * params,
  12586. struct ggml_tensor * dst) {
  12587. const struct ggml_tensor * src0 = dst->src[0];
  12588. switch (src0->type) {
  12589. case GGML_TYPE_F16:
  12590. {
  12591. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12592. } break;
  12593. default:
  12594. {
  12595. GGML_ASSERT(false);
  12596. } break;
  12597. }
  12598. }
  12599. // ggml_compute_forward_add_rel_pos
  12600. static void ggml_compute_forward_add_rel_pos_f32(
  12601. const struct ggml_compute_params * params,
  12602. struct ggml_tensor * dst) {
  12603. const struct ggml_tensor * src0 = dst->src[0];
  12604. const struct ggml_tensor * src1 = dst->src[1];
  12605. const struct ggml_tensor * src2 = dst->src[2];
  12606. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12607. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12608. if (params->ith != 0) {
  12609. return;
  12610. }
  12611. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12612. return;
  12613. }
  12614. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12615. return;
  12616. }
  12617. int64_t t0 = ggml_perf_time_us();
  12618. UNUSED(t0);
  12619. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12620. float * src1_data = (float *) src1->data;
  12621. float * src2_data = (float *) src2->data;
  12622. float * dst_data = (float *) dst->data;
  12623. const int64_t ne10 = src1->ne[0];
  12624. const int64_t ne11 = src1->ne[1];
  12625. const int64_t ne12 = src1->ne[2];
  12626. const int64_t ne13 = src1->ne[3];
  12627. const int ith = params->ith;
  12628. const int nth = params->nth;
  12629. // total patches in dst
  12630. const int np = ne13;
  12631. // patches per thread
  12632. const int dp = (np + nth - 1)/nth;
  12633. // patch range for this thread
  12634. const int ip0 = dp*ith;
  12635. const int ip1 = MIN(ip0 + dp, np);
  12636. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12637. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12638. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12639. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12640. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12641. const int64_t jp0 = jp1 + i10;
  12642. const float src1_e = src1_data[jp0];
  12643. const float src2_e = src2_data[jp0];
  12644. const int64_t jdh = jp0 * ne10;
  12645. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12646. for (int64_t j = 0; j < ne10; ++j) {
  12647. dst_data[jdh + j ] += src2_e;
  12648. dst_data[jdw + j*ne10] += src1_e;
  12649. }
  12650. }
  12651. }
  12652. }
  12653. }
  12654. }
  12655. static void ggml_compute_forward_add_rel_pos(
  12656. const struct ggml_compute_params * params,
  12657. struct ggml_tensor * dst) {
  12658. const struct ggml_tensor * src0 = dst->src[0];
  12659. switch (src0->type) {
  12660. case GGML_TYPE_F32:
  12661. {
  12662. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12663. } break;
  12664. default:
  12665. {
  12666. GGML_ASSERT(false);
  12667. } break;
  12668. }
  12669. }
  12670. // ggml_compute_forward_map_unary
  12671. static void ggml_compute_forward_map_unary_f32(
  12672. const struct ggml_compute_params * params,
  12673. struct ggml_tensor * dst,
  12674. const ggml_unary_op_f32_t fun) {
  12675. const struct ggml_tensor * src0 = dst->src[0];
  12676. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12678. return;
  12679. }
  12680. const int n = ggml_nrows(src0);
  12681. const int nc = src0->ne[0];
  12682. assert( dst->nb[0] == sizeof(float));
  12683. assert(src0->nb[0] == sizeof(float));
  12684. for (int i = 0; i < n; i++) {
  12685. fun(nc,
  12686. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12687. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12688. }
  12689. }
  12690. static void ggml_compute_forward_map_unary(
  12691. const struct ggml_compute_params * params,
  12692. struct ggml_tensor * dst,
  12693. const ggml_unary_op_f32_t fun) {
  12694. const struct ggml_tensor * src0 = dst->src[0];
  12695. switch (src0->type) {
  12696. case GGML_TYPE_F32:
  12697. {
  12698. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12699. } break;
  12700. default:
  12701. {
  12702. GGML_ASSERT(false);
  12703. } break;
  12704. }
  12705. }
  12706. // ggml_compute_forward_map_binary
  12707. static void ggml_compute_forward_map_binary_f32(
  12708. const struct ggml_compute_params * params,
  12709. struct ggml_tensor * dst,
  12710. const ggml_binary_op_f32_t fun) {
  12711. const struct ggml_tensor * src0 = dst->src[0];
  12712. const struct ggml_tensor * src1 = dst->src[1];
  12713. assert(params->ith == 0);
  12714. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12716. return;
  12717. }
  12718. const int n = ggml_nrows(src0);
  12719. const int nc = src0->ne[0];
  12720. assert( dst->nb[0] == sizeof(float));
  12721. assert(src0->nb[0] == sizeof(float));
  12722. assert(src1->nb[0] == sizeof(float));
  12723. for (int i = 0; i < n; i++) {
  12724. fun(nc,
  12725. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12726. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12727. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12728. }
  12729. }
  12730. static void ggml_compute_forward_map_binary(
  12731. const struct ggml_compute_params * params,
  12732. struct ggml_tensor * dst,
  12733. const ggml_binary_op_f32_t fun) {
  12734. const struct ggml_tensor * src0 = dst->src[0];
  12735. switch (src0->type) {
  12736. case GGML_TYPE_F32:
  12737. {
  12738. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12739. } break;
  12740. default:
  12741. {
  12742. GGML_ASSERT(false);
  12743. } break;
  12744. }
  12745. }
  12746. // ggml_compute_forward_map_custom1
  12747. static void ggml_compute_forward_map_custom1_f32(
  12748. const struct ggml_compute_params * params,
  12749. struct ggml_tensor * dst,
  12750. const ggml_custom1_op_f32_t fun) {
  12751. const struct ggml_tensor * a = dst->src[0];
  12752. assert(params->ith == 0);
  12753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12754. return;
  12755. }
  12756. fun(dst, a);
  12757. }
  12758. // ggml_compute_forward_map_custom2
  12759. static void ggml_compute_forward_map_custom2_f32(
  12760. const struct ggml_compute_params * params,
  12761. struct ggml_tensor * dst,
  12762. const ggml_custom2_op_f32_t fun) {
  12763. const struct ggml_tensor * a = dst->src[0];
  12764. const struct ggml_tensor * b = dst->src[1];
  12765. assert(params->ith == 0);
  12766. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12767. return;
  12768. }
  12769. fun(dst, a, b);
  12770. }
  12771. // ggml_compute_forward_map_custom3
  12772. static void ggml_compute_forward_map_custom3_f32(
  12773. const struct ggml_compute_params * params,
  12774. struct ggml_tensor * dst,
  12775. const ggml_custom3_op_f32_t fun) {
  12776. const struct ggml_tensor * a = dst->src[0];
  12777. const struct ggml_tensor * b = dst->src[1];
  12778. const struct ggml_tensor * c = dst->src[1];
  12779. assert(params->ith == 0);
  12780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12781. return;
  12782. }
  12783. fun(dst, a, b, c);
  12784. }
  12785. // ggml_compute_forward_map_custom1
  12786. static void ggml_compute_forward_map_custom1(
  12787. const struct ggml_compute_params * params,
  12788. struct ggml_tensor * dst) {
  12789. const struct ggml_tensor * a = dst->src[0];
  12790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12791. return;
  12792. }
  12793. struct ggml_map_custom1_op_params p;
  12794. memcpy(&p, dst->op_params, sizeof(p));
  12795. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12796. }
  12797. // ggml_compute_forward_map_custom2
  12798. static void ggml_compute_forward_map_custom2(
  12799. const struct ggml_compute_params * params,
  12800. struct ggml_tensor * dst) {
  12801. const struct ggml_tensor * a = dst->src[0];
  12802. const struct ggml_tensor * b = dst->src[1];
  12803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12804. return;
  12805. }
  12806. struct ggml_map_custom2_op_params p;
  12807. memcpy(&p, dst->op_params, sizeof(p));
  12808. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12809. }
  12810. // ggml_compute_forward_map_custom3
  12811. static void ggml_compute_forward_map_custom3(
  12812. const struct ggml_compute_params * params,
  12813. struct ggml_tensor * dst) {
  12814. const struct ggml_tensor * a = dst->src[0];
  12815. const struct ggml_tensor * b = dst->src[1];
  12816. const struct ggml_tensor * c = dst->src[2];
  12817. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12818. return;
  12819. }
  12820. struct ggml_map_custom3_op_params p;
  12821. memcpy(&p, dst->op_params, sizeof(p));
  12822. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12823. }
  12824. // ggml_compute_forward_cross_entropy_loss
  12825. static void ggml_compute_forward_cross_entropy_loss_f32(
  12826. const struct ggml_compute_params * params,
  12827. struct ggml_tensor * dst) {
  12828. const struct ggml_tensor * src0 = dst->src[0];
  12829. const struct ggml_tensor * src1 = dst->src[1];
  12830. GGML_ASSERT(ggml_is_contiguous(src0));
  12831. GGML_ASSERT(ggml_is_contiguous(src1));
  12832. GGML_ASSERT(ggml_is_scalar(dst));
  12833. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12834. const int ith = params->ith;
  12835. const int nth = params->nth;
  12836. float * sums = (float *) params->wdata;
  12837. // TODO: handle transposed/permuted matrices
  12838. const int nc = src0->ne[0];
  12839. const int nr = ggml_nrows(src0);
  12840. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12841. if (params->type == GGML_TASK_TYPE_INIT) {
  12842. if (ith == 0) {
  12843. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12844. }
  12845. return;
  12846. }
  12847. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12848. if (ith == 0) {
  12849. float * dp = (float *) dst->data;
  12850. ggml_vec_sum_f32(nth, dp, sums);
  12851. dp[0] *= -1.0f / (float) nr;
  12852. }
  12853. return;
  12854. }
  12855. const double eps = 1e-9;
  12856. // rows per thread
  12857. const int dr = (nr + nth - 1)/nth;
  12858. // row range for this thread
  12859. const int ir0 = dr*ith;
  12860. const int ir1 = MIN(ir0 + dr, nr);
  12861. for (int i1 = ir0; i1 < ir1; i1++) {
  12862. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12863. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12864. float * st = ((float *) params->wdata) + nth + ith*nc;
  12865. #ifndef NDEBUG
  12866. for (int i = 0; i < nc; ++i) {
  12867. //printf("p[%d] = %f\n", i, p[i]);
  12868. assert(!isnan(s0[i]));
  12869. assert(!isnan(s1[i]));
  12870. }
  12871. #endif
  12872. // soft_max
  12873. ggml_float sum = 0.0;
  12874. {
  12875. float max = -INFINITY;
  12876. ggml_vec_max_f32(nc, &max, s0);
  12877. uint16_t scvt; UNUSED(scvt);
  12878. for (int i = 0; i < nc; i++) {
  12879. if (s0[i] == -INFINITY) {
  12880. st[i] = 0.0f;
  12881. } else {
  12882. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12883. const float s = s0[i] - max;
  12884. const float val = expf(s);
  12885. #else
  12886. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12887. memcpy(&scvt, &s, sizeof(scvt));
  12888. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12889. #endif
  12890. sum += (ggml_float)val;
  12891. st[i] = val;
  12892. }
  12893. }
  12894. assert(sum > 0.0);
  12895. // sum = 1.0/sum;
  12896. }
  12897. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12898. sum = (1.0 - eps) / sum;
  12899. ggml_vec_scale_f32(nc, st, sum);
  12900. ggml_vec_add1_f32(nc, st, st, eps);
  12901. ggml_vec_log_f32(nc, st, st);
  12902. ggml_vec_mul_f32(nc, st, st, s1);
  12903. float st_sum = 0;
  12904. ggml_vec_sum_f32(nc, &st_sum, st);
  12905. sums[ith] += st_sum;
  12906. #ifndef NDEBUG
  12907. for (int i = 0; i < nc; ++i) {
  12908. assert(!isnan(st[i]));
  12909. assert(!isinf(st[i]));
  12910. }
  12911. #endif
  12912. }
  12913. }
  12914. static void ggml_compute_forward_cross_entropy_loss(
  12915. const struct ggml_compute_params * params,
  12916. struct ggml_tensor * dst) {
  12917. const struct ggml_tensor * src0 = dst->src[0];
  12918. switch (src0->type) {
  12919. case GGML_TYPE_F32:
  12920. {
  12921. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12922. } break;
  12923. default:
  12924. {
  12925. GGML_ASSERT(false);
  12926. } break;
  12927. }
  12928. }
  12929. // ggml_compute_forward_cross_entropy_loss_back
  12930. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12931. const struct ggml_compute_params * params,
  12932. struct ggml_tensor * dst) {
  12933. const struct ggml_tensor * src0 = dst->src[0];
  12934. const struct ggml_tensor * src1 = dst->src[1];
  12935. const struct ggml_tensor * opt0 = dst->src[2];
  12936. GGML_ASSERT(ggml_is_contiguous(dst));
  12937. GGML_ASSERT(ggml_is_contiguous(src0));
  12938. GGML_ASSERT(ggml_is_contiguous(src1));
  12939. GGML_ASSERT(ggml_is_contiguous(opt0));
  12940. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12941. const int64_t ith = params->ith;
  12942. const int64_t nth = params->nth;
  12943. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12944. return;
  12945. }
  12946. const double eps = 1e-9;
  12947. // TODO: handle transposed/permuted matrices
  12948. const int64_t nc = src0->ne[0];
  12949. const int64_t nr = ggml_nrows(src0);
  12950. // rows per thread
  12951. const int64_t dr = (nr + nth - 1)/nth;
  12952. // row range for this thread
  12953. const int64_t ir0 = dr*ith;
  12954. const int64_t ir1 = MIN(ir0 + dr, nr);
  12955. float * d = (float *) opt0->data;
  12956. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12957. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12958. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12959. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12960. #ifndef NDEBUG
  12961. for (int i = 0; i < nc; ++i) {
  12962. //printf("p[%d] = %f\n", i, p[i]);
  12963. assert(!isnan(s0[i]));
  12964. assert(!isnan(s1[i]));
  12965. }
  12966. #endif
  12967. // soft_max
  12968. ggml_float sum = 0.0;
  12969. {
  12970. float max = -INFINITY;
  12971. ggml_vec_max_f32(nc, &max, s0);
  12972. uint16_t scvt; UNUSED(scvt);
  12973. for (int i = 0; i < nc; i++) {
  12974. if (s0[i] == -INFINITY) {
  12975. ds0[i] = 0.0f;
  12976. } else {
  12977. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12978. const float s = s0[i] - max;
  12979. const float val = expf(s);
  12980. #else
  12981. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12982. memcpy(&scvt, &s, sizeof(scvt));
  12983. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12984. #endif
  12985. sum += (ggml_float)val;
  12986. ds0[i] = val;
  12987. }
  12988. }
  12989. assert(sum > 0.0);
  12990. sum = (1.0 - eps)/sum;
  12991. }
  12992. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12993. ggml_vec_scale_f32(nc, ds0, sum);
  12994. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12995. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12996. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12997. #ifndef NDEBUG
  12998. for (int i = 0; i < nc; ++i) {
  12999. assert(!isnan(ds0[i]));
  13000. assert(!isinf(ds0[i]));
  13001. }
  13002. #endif
  13003. }
  13004. }
  13005. static void ggml_compute_forward_cross_entropy_loss_back(
  13006. const struct ggml_compute_params * params,
  13007. struct ggml_tensor * dst) {
  13008. const struct ggml_tensor * src0 = dst->src[0];
  13009. switch (src0->type) {
  13010. case GGML_TYPE_F32:
  13011. {
  13012. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13013. } break;
  13014. default:
  13015. {
  13016. GGML_ASSERT(false);
  13017. } break;
  13018. }
  13019. }
  13020. /////////////////////////////////
  13021. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13022. GGML_ASSERT(params);
  13023. if (tensor->op == GGML_OP_NONE) {
  13024. return;
  13025. }
  13026. #if defined(GGML_USE_VULKAN)
  13027. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  13028. #ifdef GGML_VULKAN_CHECK_RESULTS
  13029. if (skip_cpu) {
  13030. ggml_vk_check_results_1_cpu_assist(params, tensor);
  13031. }
  13032. #endif
  13033. if (skip_cpu) {
  13034. return;
  13035. }
  13036. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  13037. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  13038. #endif // GGML_USE_VULKAN
  13039. switch (tensor->op) {
  13040. case GGML_OP_DUP:
  13041. {
  13042. ggml_compute_forward_dup(params, tensor);
  13043. } break;
  13044. case GGML_OP_ADD:
  13045. {
  13046. ggml_compute_forward_add(params, tensor);
  13047. } break;
  13048. case GGML_OP_ADD1:
  13049. {
  13050. ggml_compute_forward_add1(params, tensor);
  13051. } break;
  13052. case GGML_OP_ACC:
  13053. {
  13054. ggml_compute_forward_acc(params, tensor);
  13055. } break;
  13056. case GGML_OP_SUB:
  13057. {
  13058. ggml_compute_forward_sub(params, tensor);
  13059. } break;
  13060. case GGML_OP_MUL:
  13061. {
  13062. ggml_compute_forward_mul(params, tensor);
  13063. } break;
  13064. case GGML_OP_DIV:
  13065. {
  13066. ggml_compute_forward_div(params, tensor);
  13067. } break;
  13068. case GGML_OP_SQR:
  13069. {
  13070. ggml_compute_forward_sqr(params, tensor);
  13071. } break;
  13072. case GGML_OP_SQRT:
  13073. {
  13074. ggml_compute_forward_sqrt(params, tensor);
  13075. } break;
  13076. case GGML_OP_LOG:
  13077. {
  13078. ggml_compute_forward_log(params, tensor);
  13079. } break;
  13080. case GGML_OP_SUM:
  13081. {
  13082. ggml_compute_forward_sum(params, tensor);
  13083. } break;
  13084. case GGML_OP_SUM_ROWS:
  13085. {
  13086. ggml_compute_forward_sum_rows(params, tensor);
  13087. } break;
  13088. case GGML_OP_MEAN:
  13089. {
  13090. ggml_compute_forward_mean(params, tensor);
  13091. } break;
  13092. case GGML_OP_ARGMAX:
  13093. {
  13094. ggml_compute_forward_argmax(params, tensor);
  13095. } break;
  13096. case GGML_OP_REPEAT:
  13097. {
  13098. ggml_compute_forward_repeat(params, tensor);
  13099. } break;
  13100. case GGML_OP_REPEAT_BACK:
  13101. {
  13102. ggml_compute_forward_repeat_back(params, tensor);
  13103. } break;
  13104. case GGML_OP_CONCAT:
  13105. {
  13106. ggml_compute_forward_concat(params, tensor);
  13107. } break;
  13108. case GGML_OP_SILU_BACK:
  13109. {
  13110. ggml_compute_forward_silu_back(params, tensor);
  13111. } break;
  13112. case GGML_OP_NORM:
  13113. {
  13114. ggml_compute_forward_norm(params, tensor);
  13115. } break;
  13116. case GGML_OP_RMS_NORM:
  13117. {
  13118. ggml_compute_forward_rms_norm(params, tensor);
  13119. } break;
  13120. case GGML_OP_RMS_NORM_BACK:
  13121. {
  13122. ggml_compute_forward_rms_norm_back(params, tensor);
  13123. } break;
  13124. case GGML_OP_GROUP_NORM:
  13125. {
  13126. ggml_compute_forward_group_norm(params, tensor);
  13127. } break;
  13128. case GGML_OP_MUL_MAT:
  13129. {
  13130. ggml_compute_forward_mul_mat(params, tensor);
  13131. } break;
  13132. case GGML_OP_MUL_MAT_ID:
  13133. {
  13134. ggml_compute_forward_mul_mat_id(params, tensor);
  13135. } break;
  13136. case GGML_OP_OUT_PROD:
  13137. {
  13138. ggml_compute_forward_out_prod(params, tensor);
  13139. } break;
  13140. case GGML_OP_SCALE:
  13141. {
  13142. ggml_compute_forward_scale(params, tensor);
  13143. } break;
  13144. case GGML_OP_SET:
  13145. {
  13146. ggml_compute_forward_set(params, tensor);
  13147. } break;
  13148. case GGML_OP_CPY:
  13149. {
  13150. ggml_compute_forward_cpy(params, tensor);
  13151. } break;
  13152. case GGML_OP_CONT:
  13153. {
  13154. ggml_compute_forward_cont(params, tensor);
  13155. } break;
  13156. case GGML_OP_RESHAPE:
  13157. {
  13158. ggml_compute_forward_reshape(params, tensor);
  13159. } break;
  13160. case GGML_OP_VIEW:
  13161. {
  13162. ggml_compute_forward_view(params, tensor);
  13163. } break;
  13164. case GGML_OP_PERMUTE:
  13165. {
  13166. ggml_compute_forward_permute(params, tensor);
  13167. } break;
  13168. case GGML_OP_TRANSPOSE:
  13169. {
  13170. ggml_compute_forward_transpose(params, tensor);
  13171. } break;
  13172. case GGML_OP_GET_ROWS:
  13173. {
  13174. ggml_compute_forward_get_rows(params, tensor);
  13175. } break;
  13176. case GGML_OP_GET_ROWS_BACK:
  13177. {
  13178. ggml_compute_forward_get_rows_back(params, tensor);
  13179. } break;
  13180. case GGML_OP_DIAG:
  13181. {
  13182. ggml_compute_forward_diag(params, tensor);
  13183. } break;
  13184. case GGML_OP_DIAG_MASK_INF:
  13185. {
  13186. ggml_compute_forward_diag_mask_inf(params, tensor);
  13187. } break;
  13188. case GGML_OP_DIAG_MASK_ZERO:
  13189. {
  13190. ggml_compute_forward_diag_mask_zero(params, tensor);
  13191. } break;
  13192. case GGML_OP_SOFT_MAX:
  13193. {
  13194. ggml_compute_forward_soft_max(params, tensor);
  13195. } break;
  13196. case GGML_OP_SOFT_MAX_BACK:
  13197. {
  13198. ggml_compute_forward_soft_max_back(params, tensor);
  13199. } break;
  13200. case GGML_OP_ROPE:
  13201. {
  13202. ggml_compute_forward_rope(params, tensor);
  13203. } break;
  13204. case GGML_OP_ROPE_BACK:
  13205. {
  13206. ggml_compute_forward_rope_back(params, tensor);
  13207. } break;
  13208. case GGML_OP_ALIBI:
  13209. {
  13210. ggml_compute_forward_alibi(params, tensor);
  13211. } break;
  13212. case GGML_OP_CLAMP:
  13213. {
  13214. ggml_compute_forward_clamp(params, tensor);
  13215. } break;
  13216. case GGML_OP_CONV_TRANSPOSE_1D:
  13217. {
  13218. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13219. } break;
  13220. case GGML_OP_IM2COL:
  13221. {
  13222. ggml_compute_forward_im2col(params, tensor);
  13223. } break;
  13224. case GGML_OP_CONV_TRANSPOSE_2D:
  13225. {
  13226. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13227. } break;
  13228. case GGML_OP_POOL_1D:
  13229. {
  13230. ggml_compute_forward_pool_1d(params, tensor);
  13231. } break;
  13232. case GGML_OP_POOL_2D:
  13233. {
  13234. ggml_compute_forward_pool_2d(params, tensor);
  13235. } break;
  13236. case GGML_OP_UPSCALE:
  13237. {
  13238. ggml_compute_forward_upscale(params, tensor);
  13239. } break;
  13240. case GGML_OP_PAD:
  13241. {
  13242. ggml_compute_forward_pad(params, tensor);
  13243. } break;
  13244. case GGML_OP_ARANGE:
  13245. {
  13246. ggml_compute_forward_arange(params, tensor);
  13247. } break;
  13248. case GGML_OP_TIMESTEP_EMBEDDING:
  13249. {
  13250. ggml_compute_forward_timestep_embedding(params, tensor);
  13251. } break;
  13252. case GGML_OP_ARGSORT:
  13253. {
  13254. ggml_compute_forward_argsort(params, tensor);
  13255. } break;
  13256. case GGML_OP_LEAKY_RELU:
  13257. {
  13258. ggml_compute_forward_leaky_relu(params, tensor);
  13259. } break;
  13260. case GGML_OP_FLASH_ATTN:
  13261. {
  13262. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13263. GGML_ASSERT(t == 0 || t == 1);
  13264. const bool masked = t != 0;
  13265. ggml_compute_forward_flash_attn(params, masked, tensor);
  13266. } break;
  13267. case GGML_OP_FLASH_FF:
  13268. {
  13269. ggml_compute_forward_flash_ff(params, tensor);
  13270. } break;
  13271. case GGML_OP_FLASH_ATTN_BACK:
  13272. {
  13273. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13274. GGML_ASSERT(t == 0 || t == 1);
  13275. bool masked = t != 0;
  13276. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13277. } break;
  13278. case GGML_OP_SSM_CONV:
  13279. {
  13280. ggml_compute_forward_ssm_conv(params, tensor);
  13281. } break;
  13282. case GGML_OP_SSM_SCAN:
  13283. {
  13284. ggml_compute_forward_ssm_scan(params, tensor);
  13285. } break;
  13286. case GGML_OP_WIN_PART:
  13287. {
  13288. ggml_compute_forward_win_part(params, tensor);
  13289. } break;
  13290. case GGML_OP_WIN_UNPART:
  13291. {
  13292. ggml_compute_forward_win_unpart(params, tensor);
  13293. } break;
  13294. case GGML_OP_UNARY:
  13295. {
  13296. ggml_compute_forward_unary(params, tensor);
  13297. } break;
  13298. case GGML_OP_GET_REL_POS:
  13299. {
  13300. ggml_compute_forward_get_rel_pos(params, tensor);
  13301. } break;
  13302. case GGML_OP_ADD_REL_POS:
  13303. {
  13304. ggml_compute_forward_add_rel_pos(params, tensor);
  13305. } break;
  13306. case GGML_OP_MAP_UNARY:
  13307. {
  13308. ggml_unary_op_f32_t fun;
  13309. memcpy(&fun, tensor->op_params, sizeof(fun));
  13310. ggml_compute_forward_map_unary(params, tensor, fun);
  13311. }
  13312. break;
  13313. case GGML_OP_MAP_BINARY:
  13314. {
  13315. ggml_binary_op_f32_t fun;
  13316. memcpy(&fun, tensor->op_params, sizeof(fun));
  13317. ggml_compute_forward_map_binary(params, tensor, fun);
  13318. }
  13319. break;
  13320. case GGML_OP_MAP_CUSTOM1_F32:
  13321. {
  13322. ggml_custom1_op_f32_t fun;
  13323. memcpy(&fun, tensor->op_params, sizeof(fun));
  13324. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13325. }
  13326. break;
  13327. case GGML_OP_MAP_CUSTOM2_F32:
  13328. {
  13329. ggml_custom2_op_f32_t fun;
  13330. memcpy(&fun, tensor->op_params, sizeof(fun));
  13331. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13332. }
  13333. break;
  13334. case GGML_OP_MAP_CUSTOM3_F32:
  13335. {
  13336. ggml_custom3_op_f32_t fun;
  13337. memcpy(&fun, tensor->op_params, sizeof(fun));
  13338. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13339. }
  13340. break;
  13341. case GGML_OP_MAP_CUSTOM1:
  13342. {
  13343. ggml_compute_forward_map_custom1(params, tensor);
  13344. }
  13345. break;
  13346. case GGML_OP_MAP_CUSTOM2:
  13347. {
  13348. ggml_compute_forward_map_custom2(params, tensor);
  13349. }
  13350. break;
  13351. case GGML_OP_MAP_CUSTOM3:
  13352. {
  13353. ggml_compute_forward_map_custom3(params, tensor);
  13354. }
  13355. break;
  13356. case GGML_OP_CROSS_ENTROPY_LOSS:
  13357. {
  13358. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13359. }
  13360. break;
  13361. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13362. {
  13363. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13364. }
  13365. break;
  13366. case GGML_OP_NONE:
  13367. {
  13368. // nop
  13369. } break;
  13370. case GGML_OP_COUNT:
  13371. {
  13372. GGML_ASSERT(false);
  13373. } break;
  13374. }
  13375. }
  13376. ////////////////////////////////////////////////////////////////////////////////
  13377. static size_t ggml_hash_size(size_t min_sz) {
  13378. // next primes after powers of two
  13379. static const size_t primes[] = {
  13380. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13381. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13382. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13383. 16777259, 33554467, 67108879, 134217757, 268435459,
  13384. 536870923, 1073741827, 2147483659
  13385. };
  13386. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13387. // find the smallest prime that is larger or equal to min_sz
  13388. size_t l = 0;
  13389. size_t r = n_primes;
  13390. while (l < r) {
  13391. size_t m = (l + r)/2;
  13392. if (primes[m] < min_sz) {
  13393. l = m + 1;
  13394. } else {
  13395. r = m;
  13396. }
  13397. }
  13398. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13399. return sz;
  13400. }
  13401. static size_t ggml_hash(const void * p) {
  13402. return (size_t)p;
  13403. }
  13404. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13405. size_t h = ggml_hash(key) % hash_set.size;
  13406. // linear probing
  13407. size_t i = h;
  13408. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13409. i = (i + 1) % hash_set.size;
  13410. if (i == h) {
  13411. // visited all hash table entries -> not found
  13412. return GGML_HASHTABLE_FULL;
  13413. }
  13414. }
  13415. return i;
  13416. }
  13417. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13418. size_t i = ggml_hash_find(hash_set, key);
  13419. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13420. }
  13421. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13422. size_t i = ggml_hash_find(hash_set, key);
  13423. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13424. if (hash_set.keys[i] == key) {
  13425. return GGML_HASHTABLE_ALREADY_EXISTS;
  13426. }
  13427. // insert
  13428. GGML_ASSERT(hash_set.keys[i] == NULL);
  13429. hash_set.keys[i] = key;
  13430. return i;
  13431. }
  13432. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13433. size_t i = ggml_hash_find(hash_set, key);
  13434. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13435. hash_set.keys[i] = key;
  13436. return i;
  13437. }
  13438. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13439. size = ggml_hash_size(size);
  13440. struct ggml_hash_set result;
  13441. result.size = size;
  13442. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13443. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13444. return result;
  13445. }
  13446. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13447. GGML_FREE(hash_set.keys);
  13448. }
  13449. struct hash_map {
  13450. struct ggml_hash_set set;
  13451. struct ggml_tensor ** vals;
  13452. };
  13453. static struct hash_map * ggml_new_hash_map(size_t size) {
  13454. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13455. result->set = ggml_hash_set_new(size);
  13456. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13457. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13458. return result;
  13459. }
  13460. static void ggml_hash_map_free(struct hash_map * map) {
  13461. ggml_hash_set_free(map->set);
  13462. GGML_FREE(map->vals);
  13463. GGML_FREE(map);
  13464. }
  13465. // gradient checkpointing
  13466. static struct ggml_tensor * ggml_recompute_graph_node(
  13467. struct ggml_context * ctx,
  13468. struct ggml_cgraph * graph,
  13469. struct hash_map * replacements,
  13470. struct ggml_tensor * node) {
  13471. if (node == NULL) {
  13472. return NULL;
  13473. }
  13474. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13475. return node;
  13476. }
  13477. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13478. return node;
  13479. }
  13480. int count_children = 0;
  13481. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13482. if (node->src[k]) {
  13483. ++count_children;
  13484. }
  13485. }
  13486. if (count_children == 0) {
  13487. return node;
  13488. }
  13489. size_t i = ggml_hash_find(replacements->set, node);
  13490. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13491. if (replacements->set.keys[i] == node) {
  13492. return replacements->vals[i];
  13493. }
  13494. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13495. // insert clone into replacements
  13496. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13497. replacements->set.keys[i] = node;
  13498. replacements->vals[i] = clone;
  13499. clone->op = node->op;
  13500. clone->grad = node->grad;
  13501. clone->flags = node->flags;
  13502. clone->extra = node->extra;
  13503. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13504. clone->nb[k] = node->nb[k];
  13505. }
  13506. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13507. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13508. }
  13509. if (node->view_src != NULL) {
  13510. clone->data = (node->view_src->data == NULL)
  13511. ? NULL // view_src not yet allocated
  13512. : (char *) node->view_src->data // view_src already allocated
  13513. + node->view_offs;
  13514. clone->view_src = node->view_src;
  13515. clone->view_offs = node->view_offs;
  13516. }
  13517. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13518. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13519. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13520. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13521. return clone;
  13522. }
  13523. void ggml_build_backward_gradient_checkpointing(
  13524. struct ggml_context * ctx,
  13525. struct ggml_cgraph * gf,
  13526. struct ggml_cgraph * gb,
  13527. struct ggml_cgraph * gb_tmp,
  13528. struct ggml_tensor * * checkpoints,
  13529. int n_checkpoints) {
  13530. ggml_graph_cpy(gf, gb_tmp);
  13531. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13532. if (n_checkpoints <= 0) {
  13533. ggml_graph_cpy(gb_tmp, gb);
  13534. return;
  13535. }
  13536. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13537. // insert checkpoints in replacements
  13538. for (int i = 0; i < n_checkpoints; ++i) {
  13539. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13540. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13541. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13542. replacements->set.keys[k] = checkpoints[i];
  13543. replacements->vals[k] = checkpoints[i];
  13544. }
  13545. ggml_graph_cpy(gf, gb);
  13546. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13547. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13548. // by recomputing them from checkpoints
  13549. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13550. struct ggml_tensor * node = gb_tmp->nodes[i];
  13551. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13552. // insert new tensors recomputing src, reusing already made replacements,
  13553. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13554. // recurse for input tensors,
  13555. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13556. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13557. }
  13558. // insert rewritten backward node with replacements made into resulting backward graph gb
  13559. ggml_build_forward_expand(gb, node);
  13560. }
  13561. ggml_hash_map_free(replacements);
  13562. }
  13563. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13564. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13565. if (ggml_hash_contains(zero_table, a)) {
  13566. return b;
  13567. } else {
  13568. return ggml_add_impl(ctx, a, b, false);
  13569. }
  13570. }
  13571. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13572. if (ggml_hash_contains(zero_table, a)) {
  13573. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13574. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13575. } else {
  13576. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13577. }
  13578. }
  13579. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13580. if (ggml_hash_contains(zero_table, a)) {
  13581. return ggml_repeat(ctx, b, a);
  13582. } else {
  13583. return ggml_add1_impl(ctx, a, b, false);
  13584. }
  13585. }
  13586. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13587. if (ggml_hash_contains(zero_table, a)) {
  13588. return ggml_neg(ctx, b);
  13589. } else {
  13590. return ggml_sub_impl(ctx, a, b, false);
  13591. }
  13592. }
  13593. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13594. struct ggml_tensor * src0 = tensor->src[0];
  13595. struct ggml_tensor * src1 = tensor->src[1];
  13596. switch (tensor->op) {
  13597. case GGML_OP_DUP:
  13598. {
  13599. if (src0->grad) {
  13600. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13601. }
  13602. } break;
  13603. case GGML_OP_ADD:
  13604. {
  13605. if (src0->grad) {
  13606. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13607. }
  13608. if (src1->grad) {
  13609. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13610. }
  13611. } break;
  13612. case GGML_OP_ADD1:
  13613. {
  13614. if (src0->grad) {
  13615. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13616. }
  13617. if (src1->grad) {
  13618. src1->grad = ggml_add_or_set(ctx,
  13619. src1->grad,
  13620. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13621. zero_table);
  13622. }
  13623. } break;
  13624. case GGML_OP_ACC:
  13625. {
  13626. if (src0->grad) {
  13627. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13628. }
  13629. if (src1->grad) {
  13630. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13631. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13632. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13633. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13634. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13635. tensor->grad,
  13636. src1->grad->ne[0],
  13637. src1->grad->ne[1],
  13638. src1->grad->ne[2],
  13639. src1->grad->ne[3],
  13640. nb1, nb2, nb3, offset);
  13641. src1->grad =
  13642. ggml_add_or_set(ctx,
  13643. src1->grad,
  13644. ggml_reshape(ctx,
  13645. ggml_cont(ctx, tensor_grad_view),
  13646. src1->grad),
  13647. zero_table);
  13648. }
  13649. } break;
  13650. case GGML_OP_SUB:
  13651. {
  13652. if (src0->grad) {
  13653. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13654. }
  13655. if (src1->grad) {
  13656. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13657. }
  13658. } break;
  13659. case GGML_OP_MUL:
  13660. {
  13661. if (src0->grad) {
  13662. src0->grad =
  13663. ggml_add_or_set(ctx,
  13664. src0->grad,
  13665. ggml_mul(ctx, src1, tensor->grad),
  13666. zero_table);
  13667. }
  13668. if (src1->grad) {
  13669. src1->grad =
  13670. ggml_add_or_set(ctx,
  13671. src1->grad,
  13672. ggml_mul(ctx, src0, tensor->grad),
  13673. zero_table);
  13674. }
  13675. } break;
  13676. case GGML_OP_DIV:
  13677. {
  13678. if (src0->grad) {
  13679. src0->grad =
  13680. ggml_add_or_set(ctx,
  13681. src0->grad,
  13682. ggml_div(ctx, tensor->grad, src1),
  13683. zero_table);
  13684. }
  13685. if (src1->grad) {
  13686. src1->grad =
  13687. ggml_sub_or_set(ctx,
  13688. src1->grad,
  13689. ggml_mul(ctx,
  13690. tensor->grad,
  13691. ggml_div(ctx, tensor, src1)),
  13692. zero_table);
  13693. }
  13694. } break;
  13695. case GGML_OP_SQR:
  13696. {
  13697. if (src0->grad) {
  13698. src0->grad =
  13699. ggml_add_or_set(ctx,
  13700. src0->grad,
  13701. ggml_scale(ctx,
  13702. ggml_mul(ctx, src0, tensor->grad),
  13703. 2.0f),
  13704. zero_table);
  13705. }
  13706. } break;
  13707. case GGML_OP_SQRT:
  13708. {
  13709. if (src0->grad) {
  13710. src0->grad =
  13711. ggml_add_or_set(ctx,
  13712. src0->grad,
  13713. ggml_scale(ctx,
  13714. ggml_div(ctx,
  13715. tensor->grad,
  13716. tensor),
  13717. 0.5f),
  13718. zero_table);
  13719. }
  13720. } break;
  13721. case GGML_OP_LOG:
  13722. {
  13723. if (src0->grad) {
  13724. src0->grad =
  13725. ggml_add_or_set(ctx,
  13726. src0->grad,
  13727. ggml_div(ctx,
  13728. tensor->grad,
  13729. src0),
  13730. zero_table);
  13731. }
  13732. } break;
  13733. case GGML_OP_SUM:
  13734. {
  13735. if (src0->grad) {
  13736. src0->grad =
  13737. ggml_add1_or_set(ctx,
  13738. src0->grad,
  13739. tensor->grad,
  13740. zero_table);
  13741. }
  13742. } break;
  13743. case GGML_OP_SUM_ROWS:
  13744. {
  13745. if (src0->grad) {
  13746. src0->grad =
  13747. ggml_add_or_set(ctx,
  13748. src0->grad,
  13749. ggml_repeat(ctx,
  13750. tensor->grad,
  13751. src0->grad),
  13752. zero_table);
  13753. }
  13754. } break;
  13755. case GGML_OP_MEAN:
  13756. case GGML_OP_ARGMAX:
  13757. {
  13758. GGML_ASSERT(false); // TODO: implement
  13759. } break;
  13760. case GGML_OP_REPEAT:
  13761. {
  13762. // necessary for llama
  13763. if (src0->grad) {
  13764. src0->grad = ggml_add_or_set(ctx,
  13765. src0->grad,
  13766. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13767. zero_table);
  13768. }
  13769. } break;
  13770. case GGML_OP_REPEAT_BACK:
  13771. {
  13772. if (src0->grad) {
  13773. // TODO: test this
  13774. src0->grad = ggml_add_or_set(ctx,
  13775. src0->grad,
  13776. ggml_repeat(ctx, tensor->grad, src0->grad),
  13777. zero_table);
  13778. }
  13779. } break;
  13780. case GGML_OP_CONCAT:
  13781. {
  13782. GGML_ASSERT(false); // TODO: implement
  13783. } break;
  13784. case GGML_OP_SILU_BACK:
  13785. {
  13786. GGML_ASSERT(false); // TODO: not implemented
  13787. } break;
  13788. case GGML_OP_NORM:
  13789. {
  13790. GGML_ASSERT(false); // TODO: not implemented
  13791. } break;
  13792. case GGML_OP_RMS_NORM:
  13793. {
  13794. // necessary for llama
  13795. if (src0->grad) {
  13796. float eps;
  13797. memcpy(&eps, tensor->op_params, sizeof(float));
  13798. src0->grad = ggml_add_or_set(ctx,
  13799. src0->grad,
  13800. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13801. zero_table);
  13802. }
  13803. } break;
  13804. case GGML_OP_RMS_NORM_BACK:
  13805. {
  13806. GGML_ASSERT(false); // TODO: not implemented
  13807. } break;
  13808. case GGML_OP_GROUP_NORM:
  13809. {
  13810. GGML_ASSERT(false); // TODO: not implemented
  13811. } break;
  13812. case GGML_OP_MUL_MAT:
  13813. {
  13814. // https://cs231n.github.io/optimization-2/#staged
  13815. // # forward pass
  13816. // s0 = np.random.randn(5, 10)
  13817. // s1 = np.random.randn(10, 3)
  13818. // t = s0.dot(s1)
  13819. // # now suppose we had the gradient on t from above in the circuit
  13820. // dt = np.random.randn(*t.shape) # same shape as t
  13821. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13822. // ds1 = t.T.dot(dt)
  13823. // tensor.shape [m,p,qq,rr]
  13824. // src0.shape [n,m,q1,r1]
  13825. // src1.shape [n,p,qq,rr]
  13826. // necessary for llama
  13827. if (src0->grad) {
  13828. struct ggml_tensor * s1_tg =
  13829. ggml_out_prod(ctx, // [n,m,qq,rr]
  13830. src1, // [n,p,qq,rr]
  13831. tensor->grad); // [m,p,qq,rr]
  13832. const int64_t qq = s1_tg->ne[2];
  13833. const int64_t rr = s1_tg->ne[3];
  13834. const int64_t q1 = src0->ne[2];
  13835. const int64_t r1 = src0->ne[3];
  13836. const bool ne2_broadcasted = qq > q1;
  13837. const bool ne3_broadcasted = rr > r1;
  13838. if (ne2_broadcasted || ne3_broadcasted) {
  13839. // sum broadcast repetitions of s1_tg into shape of src0
  13840. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13841. }
  13842. src0->grad =
  13843. ggml_add_or_set(ctx,
  13844. src0->grad, // [n,m,q1,r1]
  13845. s1_tg, // [n,m,q1,r1]
  13846. zero_table);
  13847. }
  13848. if (src1->grad) {
  13849. src1->grad =
  13850. ggml_add_or_set(ctx,
  13851. src1->grad, // [n,p,qq,rr]
  13852. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13853. // ggml_cont(ctx, // [m,n,q1,r1]
  13854. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13855. // tensor->grad), // [m,p,qq,rr]
  13856. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13857. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13858. // // and then use ggml_out_prod
  13859. ggml_out_prod(ctx, // [n,p,qq,rr]
  13860. src0, // [n,m,q1,r1]
  13861. ggml_transpose(ctx, // [p,m,qq,rr]
  13862. tensor->grad)), // [m,p,qq,rr]
  13863. zero_table);
  13864. }
  13865. } break;
  13866. case GGML_OP_MUL_MAT_ID:
  13867. {
  13868. GGML_ASSERT(false); // TODO: not implemented
  13869. } break;
  13870. case GGML_OP_OUT_PROD:
  13871. {
  13872. GGML_ASSERT(false); // TODO: not implemented
  13873. } break;
  13874. case GGML_OP_SCALE:
  13875. {
  13876. // necessary for llama
  13877. if (src0->grad) {
  13878. float s;
  13879. memcpy(&s, tensor->op_params, sizeof(float));
  13880. src0->grad =
  13881. ggml_add_or_set(ctx,
  13882. src0->grad,
  13883. ggml_scale_impl(ctx, tensor->grad, s, false),
  13884. zero_table);
  13885. }
  13886. } break;
  13887. case GGML_OP_SET:
  13888. {
  13889. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13890. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13891. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13892. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13893. struct ggml_tensor * tensor_grad_view = NULL;
  13894. if (src0->grad || src1->grad) {
  13895. GGML_ASSERT(src0->type == tensor->type);
  13896. GGML_ASSERT(tensor->grad->type == tensor->type);
  13897. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13898. tensor_grad_view = ggml_view_4d(ctx,
  13899. tensor->grad,
  13900. src1->grad->ne[0],
  13901. src1->grad->ne[1],
  13902. src1->grad->ne[2],
  13903. src1->grad->ne[3],
  13904. nb1, nb2, nb3, offset);
  13905. }
  13906. if (src0->grad) {
  13907. src0->grad = ggml_add_or_set(ctx,
  13908. src0->grad,
  13909. ggml_acc_impl(ctx,
  13910. tensor->grad,
  13911. ggml_neg(ctx, tensor_grad_view),
  13912. nb1, nb2, nb3, offset, false),
  13913. zero_table);
  13914. }
  13915. if (src1->grad) {
  13916. src1->grad =
  13917. ggml_add_or_set(ctx,
  13918. src1->grad,
  13919. ggml_reshape(ctx,
  13920. ggml_cont(ctx, tensor_grad_view),
  13921. src1->grad),
  13922. zero_table);
  13923. }
  13924. } break;
  13925. case GGML_OP_CPY:
  13926. {
  13927. // necessary for llama
  13928. // cpy overwrites value of src1 by src0 and returns view(src1)
  13929. // the overwriting is mathematically equivalent to:
  13930. // tensor = src0 * 1 + src1 * 0
  13931. if (src0->grad) {
  13932. // dsrc0 = dtensor * 1
  13933. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13934. }
  13935. if (src1->grad) {
  13936. // dsrc1 = dtensor * 0 -> noop
  13937. }
  13938. } break;
  13939. case GGML_OP_CONT:
  13940. {
  13941. // same as cpy
  13942. if (src0->grad) {
  13943. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13944. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13945. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13946. }
  13947. } break;
  13948. case GGML_OP_RESHAPE:
  13949. {
  13950. // necessary for llama
  13951. if (src0->grad) {
  13952. src0->grad =
  13953. ggml_add_or_set(ctx, src0->grad,
  13954. ggml_reshape(ctx,
  13955. ggml_is_contiguous(tensor->grad)
  13956. ? tensor->grad
  13957. : ggml_cont(ctx, tensor->grad),
  13958. src0->grad),
  13959. zero_table);
  13960. }
  13961. } break;
  13962. case GGML_OP_VIEW:
  13963. {
  13964. // necessary for llama
  13965. if (src0->grad) {
  13966. size_t offset;
  13967. memcpy(&offset, tensor->op_params, sizeof(offset));
  13968. size_t nb1 = tensor->nb[1];
  13969. size_t nb2 = tensor->nb[2];
  13970. size_t nb3 = tensor->nb[3];
  13971. if (src0->type != src0->grad->type) {
  13972. // gradient is typically F32, but src0 could be other type
  13973. size_t ng = ggml_element_size(src0->grad);
  13974. size_t n0 = ggml_element_size(src0);
  13975. GGML_ASSERT(offset % n0 == 0);
  13976. GGML_ASSERT(nb1 % n0 == 0);
  13977. GGML_ASSERT(nb2 % n0 == 0);
  13978. GGML_ASSERT(nb3 % n0 == 0);
  13979. offset = (offset / n0) * ng;
  13980. nb1 = (nb1 / n0) * ng;
  13981. nb2 = (nb2 / n0) * ng;
  13982. nb3 = (nb3 / n0) * ng;
  13983. }
  13984. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13985. }
  13986. } break;
  13987. case GGML_OP_PERMUTE:
  13988. {
  13989. // necessary for llama
  13990. if (src0->grad) {
  13991. int32_t * axes = (int32_t *) tensor->op_params;
  13992. int axis0 = axes[0] & 0x3;
  13993. int axis1 = axes[1] & 0x3;
  13994. int axis2 = axes[2] & 0x3;
  13995. int axis3 = axes[3] & 0x3;
  13996. int axes_backward[4] = {0,0,0,0};
  13997. axes_backward[axis0] = 0;
  13998. axes_backward[axis1] = 1;
  13999. axes_backward[axis2] = 2;
  14000. axes_backward[axis3] = 3;
  14001. src0->grad =
  14002. ggml_add_or_set(ctx, src0->grad,
  14003. ggml_permute(ctx,
  14004. tensor->grad,
  14005. axes_backward[0],
  14006. axes_backward[1],
  14007. axes_backward[2],
  14008. axes_backward[3]),
  14009. zero_table);
  14010. }
  14011. } break;
  14012. case GGML_OP_TRANSPOSE:
  14013. {
  14014. // necessary for llama
  14015. if (src0->grad) {
  14016. src0->grad =
  14017. ggml_add_or_set(ctx, src0->grad,
  14018. ggml_transpose(ctx, tensor->grad),
  14019. zero_table);
  14020. }
  14021. } break;
  14022. case GGML_OP_GET_ROWS:
  14023. {
  14024. // necessary for llama (only for tokenizer)
  14025. if (src0->grad) {
  14026. src0->grad =
  14027. ggml_add_or_set(ctx, src0->grad,
  14028. // last ggml_get_rows_back argument src0->grad is only
  14029. // necessary to setup correct output shape
  14030. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14031. zero_table);
  14032. }
  14033. if (src1->grad) {
  14034. // noop
  14035. }
  14036. } break;
  14037. case GGML_OP_GET_ROWS_BACK:
  14038. {
  14039. GGML_ASSERT(false); // TODO: not implemented
  14040. } break;
  14041. case GGML_OP_DIAG:
  14042. {
  14043. GGML_ASSERT(false); // TODO: not implemented
  14044. } break;
  14045. case GGML_OP_DIAG_MASK_INF:
  14046. {
  14047. // necessary for llama
  14048. if (src0->grad) {
  14049. const int n_past = ((int32_t *) tensor->op_params)[0];
  14050. src0->grad =
  14051. ggml_add_or_set(ctx, src0->grad,
  14052. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14053. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14054. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14055. zero_table);
  14056. }
  14057. } break;
  14058. case GGML_OP_DIAG_MASK_ZERO:
  14059. {
  14060. // necessary for llama
  14061. if (src0->grad) {
  14062. const int n_past = ((int32_t *) tensor->op_params)[0];
  14063. src0->grad =
  14064. ggml_add_or_set(ctx, src0->grad,
  14065. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14066. zero_table);
  14067. }
  14068. } break;
  14069. case GGML_OP_SOFT_MAX:
  14070. {
  14071. // necessary for llama
  14072. if (src0->grad) {
  14073. src0->grad =
  14074. ggml_add_or_set(ctx, src0->grad,
  14075. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14076. zero_table);
  14077. }
  14078. } break;
  14079. case GGML_OP_SOFT_MAX_BACK:
  14080. {
  14081. GGML_ASSERT(false); // TODO: not implemented
  14082. } break;
  14083. case GGML_OP_ROPE:
  14084. {
  14085. // necessary for llama
  14086. if (src0->grad) {
  14087. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14088. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14089. const int mode = ((int32_t *) tensor->op_params)[2];
  14090. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14091. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14092. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14093. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14094. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14095. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14096. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14097. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14098. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14099. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14100. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14101. src0->grad = ggml_add_or_set(ctx,
  14102. src0->grad,
  14103. ggml_rope_back(ctx,
  14104. tensor->grad,
  14105. src1,
  14106. n_dims,
  14107. mode,
  14108. n_ctx,
  14109. n_orig_ctx,
  14110. freq_base,
  14111. freq_scale,
  14112. ext_factor,
  14113. attn_factor,
  14114. beta_fast,
  14115. beta_slow,
  14116. xpos_base,
  14117. xpos_down),
  14118. zero_table);
  14119. }
  14120. } break;
  14121. case GGML_OP_ROPE_BACK:
  14122. {
  14123. if (src0->grad) {
  14124. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14125. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14126. const int mode = ((int32_t *) tensor->op_params)[2];
  14127. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14128. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14129. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14130. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14131. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14132. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14133. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14134. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14135. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14136. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14137. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14138. src0->grad = ggml_add_or_set(ctx,
  14139. src0->grad,
  14140. ggml_rope_impl(ctx,
  14141. tensor->grad,
  14142. src1,
  14143. n_dims,
  14144. mode,
  14145. n_ctx,
  14146. n_orig_ctx,
  14147. freq_base,
  14148. freq_scale,
  14149. ext_factor,
  14150. attn_factor,
  14151. beta_fast,
  14152. beta_slow,
  14153. xpos_base,
  14154. xpos_down,
  14155. false),
  14156. zero_table);
  14157. }
  14158. } break;
  14159. case GGML_OP_ALIBI:
  14160. {
  14161. GGML_ASSERT(false); // TODO: not implemented
  14162. } break;
  14163. case GGML_OP_CLAMP:
  14164. {
  14165. GGML_ASSERT(false); // TODO: not implemented
  14166. } break;
  14167. case GGML_OP_CONV_TRANSPOSE_1D:
  14168. {
  14169. GGML_ASSERT(false); // TODO: not implemented
  14170. } break;
  14171. case GGML_OP_IM2COL:
  14172. {
  14173. GGML_ASSERT(false); // TODO: not implemented
  14174. } break;
  14175. case GGML_OP_CONV_TRANSPOSE_2D:
  14176. {
  14177. GGML_ASSERT(false); // TODO: not implemented
  14178. } break;
  14179. case GGML_OP_POOL_1D:
  14180. {
  14181. GGML_ASSERT(false); // TODO: not implemented
  14182. } break;
  14183. case GGML_OP_POOL_2D:
  14184. {
  14185. GGML_ASSERT(false); // TODO: not implemented
  14186. } break;
  14187. case GGML_OP_UPSCALE:
  14188. {
  14189. GGML_ASSERT(false); // TODO: not implemented
  14190. } break;
  14191. case GGML_OP_PAD:
  14192. {
  14193. GGML_ASSERT(false); // TODO: not implemented
  14194. } break;
  14195. case GGML_OP_ARANGE:
  14196. {
  14197. GGML_ASSERT(false); // TODO: not implemented
  14198. } break;
  14199. case GGML_OP_TIMESTEP_EMBEDDING:
  14200. {
  14201. GGML_ASSERT(false); // TODO: not implemented
  14202. } break;
  14203. case GGML_OP_ARGSORT:
  14204. {
  14205. GGML_ASSERT(false); // TODO: not implemented
  14206. } break;
  14207. case GGML_OP_LEAKY_RELU:
  14208. {
  14209. GGML_ASSERT(false); // TODO: not implemented
  14210. } break;
  14211. case GGML_OP_FLASH_ATTN:
  14212. {
  14213. struct ggml_tensor * flash_grad = NULL;
  14214. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14215. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14216. GGML_ASSERT(t == 0 || t == 1);
  14217. bool masked = t != 0;
  14218. flash_grad =
  14219. ggml_flash_attn_back(ctx,
  14220. src0,
  14221. src1,
  14222. tensor->src[2],
  14223. tensor->grad,
  14224. masked);
  14225. }
  14226. struct ggml_tensor * src2 = tensor->src[2];
  14227. const int64_t elem_q = ggml_nelements(src0);
  14228. const int64_t elem_k = ggml_nelements(src1);
  14229. const int64_t elem_v = ggml_nelements(src2);
  14230. enum ggml_type result_type = flash_grad->type;
  14231. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14232. const size_t tsize = ggml_type_size(result_type);
  14233. const size_t offs_q = 0;
  14234. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14235. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14236. if (src0->grad) {
  14237. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14238. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14239. src0->grad = ggml_add_or_set(ctx,
  14240. src0->grad,
  14241. grad_q,
  14242. zero_table);
  14243. }
  14244. if (src1->grad) {
  14245. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14246. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14247. src1->grad = ggml_add_or_set(ctx,
  14248. src1->grad,
  14249. grad_k,
  14250. zero_table);
  14251. }
  14252. if (src2->grad) {
  14253. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14254. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14255. src2->grad = ggml_add_or_set(ctx,
  14256. src2->grad,
  14257. grad_v,
  14258. zero_table);
  14259. }
  14260. } break;
  14261. case GGML_OP_FLASH_FF:
  14262. {
  14263. GGML_ASSERT(false); // not supported
  14264. } break;
  14265. case GGML_OP_FLASH_ATTN_BACK:
  14266. {
  14267. GGML_ASSERT(false); // not supported
  14268. } break;
  14269. case GGML_OP_SSM_CONV:
  14270. case GGML_OP_SSM_SCAN:
  14271. {
  14272. GGML_ASSERT(false); // TODO: not implemented
  14273. } break;
  14274. case GGML_OP_WIN_PART:
  14275. case GGML_OP_WIN_UNPART:
  14276. case GGML_OP_UNARY:
  14277. {
  14278. switch (ggml_get_unary_op(tensor)) {
  14279. case GGML_UNARY_OP_ABS:
  14280. {
  14281. if (src0->grad) {
  14282. src0->grad =
  14283. ggml_add_or_set(ctx,
  14284. src0->grad,
  14285. ggml_mul(ctx,
  14286. ggml_sgn(ctx, src0),
  14287. tensor->grad),
  14288. zero_table);
  14289. }
  14290. } break;
  14291. case GGML_UNARY_OP_SGN:
  14292. {
  14293. if (src0->grad) {
  14294. // noop
  14295. }
  14296. } break;
  14297. case GGML_UNARY_OP_NEG:
  14298. {
  14299. if (src0->grad) {
  14300. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14301. }
  14302. } break;
  14303. case GGML_UNARY_OP_STEP:
  14304. {
  14305. if (src0->grad) {
  14306. // noop
  14307. }
  14308. } break;
  14309. case GGML_UNARY_OP_TANH:
  14310. {
  14311. GGML_ASSERT(false); // TODO: not implemented
  14312. } break;
  14313. case GGML_UNARY_OP_ELU:
  14314. {
  14315. GGML_ASSERT(false); // TODO: not implemented
  14316. } break;
  14317. case GGML_UNARY_OP_RELU:
  14318. {
  14319. if (src0->grad) {
  14320. src0->grad = ggml_add_or_set(ctx,
  14321. src0->grad,
  14322. ggml_mul(ctx,
  14323. ggml_step(ctx, src0),
  14324. tensor->grad),
  14325. zero_table);
  14326. }
  14327. } break;
  14328. case GGML_UNARY_OP_GELU:
  14329. {
  14330. GGML_ASSERT(false); // TODO: not implemented
  14331. } break;
  14332. case GGML_UNARY_OP_GELU_QUICK:
  14333. {
  14334. GGML_ASSERT(false); // TODO: not implemented
  14335. } break;
  14336. case GGML_UNARY_OP_SILU:
  14337. {
  14338. // necessary for llama
  14339. if (src0->grad) {
  14340. src0->grad = ggml_add_or_set(ctx,
  14341. src0->grad,
  14342. ggml_silu_back(ctx, src0, tensor->grad),
  14343. zero_table);
  14344. }
  14345. } break;
  14346. default:
  14347. GGML_ASSERT(false);
  14348. }
  14349. } break;
  14350. case GGML_OP_GET_REL_POS:
  14351. case GGML_OP_ADD_REL_POS:
  14352. case GGML_OP_MAP_UNARY:
  14353. case GGML_OP_MAP_BINARY:
  14354. case GGML_OP_MAP_CUSTOM1_F32:
  14355. case GGML_OP_MAP_CUSTOM2_F32:
  14356. case GGML_OP_MAP_CUSTOM3_F32:
  14357. case GGML_OP_MAP_CUSTOM1:
  14358. case GGML_OP_MAP_CUSTOM2:
  14359. case GGML_OP_MAP_CUSTOM3:
  14360. {
  14361. GGML_ASSERT(false); // not supported
  14362. } break;
  14363. case GGML_OP_CROSS_ENTROPY_LOSS:
  14364. {
  14365. if (src0->grad) {
  14366. src0->grad = ggml_add_or_set(ctx,
  14367. src0->grad,
  14368. ggml_cross_entropy_loss_back(ctx,
  14369. src0,
  14370. src1,
  14371. tensor->grad),
  14372. zero_table);
  14373. }
  14374. } break;
  14375. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14376. {
  14377. GGML_ASSERT(false); // not supported
  14378. } break;
  14379. case GGML_OP_NONE:
  14380. {
  14381. // nop
  14382. } break;
  14383. case GGML_OP_COUNT:
  14384. {
  14385. GGML_ASSERT(false);
  14386. } break;
  14387. }
  14388. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14389. if (tensor->src[i] && tensor->src[i]->grad) {
  14390. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14391. }
  14392. }
  14393. }
  14394. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14395. if (node->grad == NULL) {
  14396. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14397. // it can also happen during forward pass, if the user performs computations with constants
  14398. if (node->op != GGML_OP_NONE) {
  14399. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14400. }
  14401. }
  14402. // check if already visited
  14403. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14404. return;
  14405. }
  14406. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14407. const int k =
  14408. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14409. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14410. /* unknown order, just fall back to using i*/ i;
  14411. if (node->src[k]) {
  14412. ggml_visit_parents(cgraph, node->src[k]);
  14413. }
  14414. }
  14415. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14416. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14417. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14418. if (strlen(node->name) == 0) {
  14419. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14420. }
  14421. cgraph->leafs[cgraph->n_leafs] = node;
  14422. cgraph->n_leafs++;
  14423. } else {
  14424. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14425. if (strlen(node->name) == 0) {
  14426. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14427. }
  14428. cgraph->nodes[cgraph->n_nodes] = node;
  14429. if (cgraph->grads) {
  14430. cgraph->grads[cgraph->n_nodes] = node->grad;
  14431. }
  14432. cgraph->n_nodes++;
  14433. }
  14434. }
  14435. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14436. if (!expand) {
  14437. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14438. ggml_graph_clear(cgraph);
  14439. }
  14440. const int n0 = cgraph->n_nodes;
  14441. UNUSED(n0);
  14442. ggml_visit_parents(cgraph, tensor);
  14443. const int n_new = cgraph->n_nodes - n0;
  14444. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14445. if (n_new > 0) {
  14446. // the last added node should always be starting point
  14447. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14448. }
  14449. }
  14450. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14451. ggml_build_forward_impl(cgraph, tensor, true);
  14452. }
  14453. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14454. GGML_ASSERT(gf->n_nodes > 0);
  14455. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14456. if (keep) {
  14457. for (int i = 0; i < gf->n_nodes; i++) {
  14458. struct ggml_tensor * node = gf->nodes[i];
  14459. if (node->grad) {
  14460. node->grad = ggml_dup_tensor(ctx, node);
  14461. gf->grads[i] = node->grad;
  14462. }
  14463. }
  14464. }
  14465. // remember original gradients which start with zero values
  14466. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14467. for (int i = 0; i < gf->n_nodes; i++) {
  14468. if (gf->grads[i]) {
  14469. ggml_hash_insert(zero_table, gf->grads[i]);
  14470. }
  14471. }
  14472. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14473. struct ggml_tensor * node = gf->nodes[i];
  14474. // inplace operations to add gradients are not created by ggml_compute_backward
  14475. // use allocator to automatically make inplace operations
  14476. if (node->grad) {
  14477. ggml_compute_backward(ctx, node, zero_table);
  14478. }
  14479. }
  14480. for (int i = 0; i < gf->n_nodes; i++) {
  14481. struct ggml_tensor * node = gf->nodes[i];
  14482. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14483. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14484. ggml_build_forward_expand(gb, node->grad);
  14485. }
  14486. }
  14487. ggml_hash_set_free(zero_table);
  14488. }
  14489. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14490. size_t nbytes = sizeof(struct ggml_cgraph);
  14491. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14492. if (grads) {
  14493. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14494. }
  14495. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14496. return nbytes;
  14497. }
  14498. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14499. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14500. }
  14501. size_t ggml_graph_overhead(void) {
  14502. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14503. }
  14504. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14505. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14506. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14507. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14508. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14509. size_t hash_size = ggml_hash_size(size * 2);
  14510. struct ggml_tensor ** nodes_ptr = data_start;
  14511. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14512. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14513. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14514. // check that we allocated the correct amount of memory
  14515. assert(obj_size == (size_t) (
  14516. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14517. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14518. *cgraph = (struct ggml_cgraph) {
  14519. /*.size =*/ size,
  14520. /*.n_nodes =*/ 0,
  14521. /*.n_leafs =*/ 0,
  14522. /*.nodes =*/ nodes_ptr,
  14523. /*.grads =*/ grads_ptr,
  14524. /*.leafs =*/ leafs_ptr,
  14525. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14526. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14527. /*.perf_runs =*/ 0,
  14528. /*.perf_cycles =*/ 0,
  14529. /*.perf_time_us =*/ 0,
  14530. };
  14531. return cgraph;
  14532. }
  14533. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14534. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14535. }
  14536. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14537. struct ggml_cgraph cgraph = {
  14538. /*.size =*/ 0,
  14539. /*.n_nodes =*/ i1 - i0,
  14540. /*.n_leafs =*/ 0,
  14541. /*.nodes =*/ cgraph0->nodes + i0,
  14542. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14543. /*.leafs =*/ NULL,
  14544. /*.hash_table =*/ { 0, NULL },
  14545. /*.order =*/ cgraph0->order,
  14546. /*.perf_runs =*/ 0,
  14547. /*.perf_cycles =*/ 0,
  14548. /*.perf_time_us =*/ 0,
  14549. };
  14550. return cgraph;
  14551. }
  14552. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14553. GGML_ASSERT(dst->size >= src->n_leafs);
  14554. GGML_ASSERT(dst->size >= src->n_nodes);
  14555. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14556. dst->n_leafs = src->n_leafs;
  14557. dst->n_nodes = src->n_nodes;
  14558. dst->order = src->order;
  14559. for (int i = 0; i < src->n_leafs; ++i) {
  14560. dst->leafs[i] = src->leafs[i];
  14561. }
  14562. for (int i = 0; i < src->n_nodes; ++i) {
  14563. dst->nodes[i] = src->nodes[i];
  14564. }
  14565. if (src->grads) {
  14566. GGML_ASSERT(dst->grads != NULL);
  14567. for (int i = 0; i < src->n_nodes; ++i) {
  14568. dst->grads[i] = src->grads[i];
  14569. }
  14570. }
  14571. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14572. if (src->visited_hash_table.keys[i]) {
  14573. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14574. }
  14575. }
  14576. }
  14577. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14578. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14579. ggml_graph_cpy(cgraph, result);
  14580. return result;
  14581. }
  14582. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14583. GGML_ASSERT(cgraph->grads != NULL);
  14584. for (int i = 0; i < cgraph->n_nodes; i++) {
  14585. struct ggml_tensor * grad = cgraph->grads[i];
  14586. if (grad) {
  14587. ggml_set_zero(grad);
  14588. }
  14589. }
  14590. }
  14591. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14592. cgraph->n_leafs = 0;
  14593. cgraph->n_nodes = 0;
  14594. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14595. }
  14596. //
  14597. // thread data
  14598. //
  14599. // synchronization is done via busy loops
  14600. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14601. //
  14602. #ifdef __APPLE__
  14603. //#include <os/lock.h>
  14604. //
  14605. //typedef os_unfair_lock ggml_lock_t;
  14606. //
  14607. //#define ggml_lock_init(x) UNUSED(x)
  14608. //#define ggml_lock_destroy(x) UNUSED(x)
  14609. //#define ggml_lock_lock os_unfair_lock_lock
  14610. //#define ggml_lock_unlock os_unfair_lock_unlock
  14611. //
  14612. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14613. typedef int ggml_lock_t;
  14614. #define ggml_lock_init(x) UNUSED(x)
  14615. #define ggml_lock_destroy(x) UNUSED(x)
  14616. #define ggml_lock_lock(x) UNUSED(x)
  14617. #define ggml_lock_unlock(x) UNUSED(x)
  14618. #define GGML_LOCK_INITIALIZER 0
  14619. typedef pthread_t ggml_thread_t;
  14620. #define ggml_thread_create pthread_create
  14621. #define ggml_thread_join pthread_join
  14622. #else
  14623. //typedef pthread_spinlock_t ggml_lock_t;
  14624. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14625. //#define ggml_lock_destroy pthread_spin_destroy
  14626. //#define ggml_lock_lock pthread_spin_lock
  14627. //#define ggml_lock_unlock pthread_spin_unlock
  14628. typedef int ggml_lock_t;
  14629. #define ggml_lock_init(x) UNUSED(x)
  14630. #define ggml_lock_destroy(x) UNUSED(x)
  14631. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14632. #define ggml_lock_lock(x) _mm_pause()
  14633. #else
  14634. #define ggml_lock_lock(x) UNUSED(x)
  14635. #endif
  14636. #define ggml_lock_unlock(x) UNUSED(x)
  14637. #define GGML_LOCK_INITIALIZER 0
  14638. typedef pthread_t ggml_thread_t;
  14639. #define ggml_thread_create pthread_create
  14640. #define ggml_thread_join pthread_join
  14641. #endif
  14642. // Android's libc implementation "bionic" does not support setting affinity
  14643. #if defined(__gnu_linux__)
  14644. static void set_numa_thread_affinity(int thread_n) {
  14645. if (!ggml_is_numa()) {
  14646. return;
  14647. }
  14648. int node_num;
  14649. int rv;
  14650. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14651. switch(g_state.numa.numa_strategy) {
  14652. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14653. // run thread on node_num thread_n / (threads per node)
  14654. node_num = thread_n % g_state.numa.n_nodes;
  14655. break;
  14656. case GGML_NUMA_STRATEGY_ISOLATE:
  14657. // run thread on current_node
  14658. node_num = g_state.numa.current_node;
  14659. break;
  14660. case GGML_NUMA_STRATEGY_NUMACTL:
  14661. // use the cpuset that numactl gave us
  14662. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14663. if (rv) {
  14664. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14665. }
  14666. return;
  14667. default:
  14668. return;
  14669. }
  14670. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14671. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14672. CPU_ZERO_S(setsize, cpus);
  14673. for (size_t i = 0; i < node->n_cpus; ++i) {
  14674. CPU_SET_S(node->cpus[i], setsize, cpus);
  14675. }
  14676. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14677. if (rv) {
  14678. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14679. }
  14680. CPU_FREE(cpus);
  14681. }
  14682. static void clear_numa_thread_affinity(void) {
  14683. if (!ggml_is_numa()) {
  14684. return;
  14685. }
  14686. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14687. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14688. CPU_ZERO_S(setsize, cpus);
  14689. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14690. CPU_SET_S(i, setsize, cpus);
  14691. }
  14692. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14693. if (rv) {
  14694. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14695. }
  14696. CPU_FREE(cpus);
  14697. }
  14698. #else
  14699. // TODO: Windows etc.
  14700. // (the linux implementation may also work on BSD, someone should test)
  14701. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14702. static void clear_numa_thread_affinity(void) {}
  14703. #endif
  14704. struct ggml_compute_state_shared {
  14705. const struct ggml_cgraph * cgraph;
  14706. const struct ggml_cplan * cplan;
  14707. int64_t perf_node_start_cycles;
  14708. int64_t perf_node_start_time_us;
  14709. const int n_threads;
  14710. // synchronization primitives
  14711. atomic_int n_active; // num active threads
  14712. atomic_int node_n; // active graph node
  14713. atomic_int node_task; // active graph node task phase
  14714. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14715. void * abort_callback_data;
  14716. };
  14717. struct ggml_compute_state {
  14718. ggml_thread_t thrd;
  14719. int ith;
  14720. struct ggml_compute_state_shared * shared;
  14721. enum ggml_status ec;
  14722. };
  14723. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14724. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14725. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14726. node->perf_runs++;
  14727. node->perf_cycles += cycles_cur;
  14728. node->perf_time_us += time_us_cur;
  14729. }
  14730. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14731. int n_tasks = 0;
  14732. switch (node->op) {
  14733. case GGML_OP_CPY:
  14734. case GGML_OP_DUP:
  14735. case GGML_OP_ADD:
  14736. case GGML_OP_ADD1:
  14737. case GGML_OP_ACC:
  14738. {
  14739. n_tasks = n_threads;
  14740. } break;
  14741. case GGML_OP_SUB:
  14742. case GGML_OP_SQR:
  14743. case GGML_OP_SQRT:
  14744. case GGML_OP_LOG:
  14745. case GGML_OP_SUM:
  14746. case GGML_OP_SUM_ROWS:
  14747. case GGML_OP_MEAN:
  14748. case GGML_OP_ARGMAX:
  14749. case GGML_OP_REPEAT:
  14750. case GGML_OP_REPEAT_BACK:
  14751. case GGML_OP_LEAKY_RELU:
  14752. {
  14753. n_tasks = 1;
  14754. } break;
  14755. case GGML_OP_UNARY:
  14756. switch (ggml_get_unary_op(node)) {
  14757. case GGML_UNARY_OP_ABS:
  14758. case GGML_UNARY_OP_SGN:
  14759. case GGML_UNARY_OP_NEG:
  14760. case GGML_UNARY_OP_STEP:
  14761. case GGML_UNARY_OP_TANH:
  14762. case GGML_UNARY_OP_ELU:
  14763. case GGML_UNARY_OP_RELU:
  14764. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14765. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14766. {
  14767. n_tasks = 1;
  14768. } break;
  14769. case GGML_UNARY_OP_GELU:
  14770. case GGML_UNARY_OP_GELU_QUICK:
  14771. case GGML_UNARY_OP_SILU:
  14772. {
  14773. n_tasks = n_threads;
  14774. } break;
  14775. default:
  14776. GGML_ASSERT(false);
  14777. }
  14778. break;
  14779. case GGML_OP_SILU_BACK:
  14780. case GGML_OP_MUL:
  14781. case GGML_OP_DIV:
  14782. case GGML_OP_NORM:
  14783. case GGML_OP_RMS_NORM:
  14784. case GGML_OP_RMS_NORM_BACK:
  14785. case GGML_OP_GROUP_NORM:
  14786. case GGML_OP_CONCAT:
  14787. {
  14788. n_tasks = n_threads;
  14789. } break;
  14790. case GGML_OP_MUL_MAT:
  14791. {
  14792. n_tasks = n_threads;
  14793. // TODO: use different scheduling for different matrix sizes
  14794. //const int nr0 = ggml_nrows(node->src[0]);
  14795. //const int nr1 = ggml_nrows(node->src[1]);
  14796. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14797. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14798. } break;
  14799. case GGML_OP_MUL_MAT_ID:
  14800. {
  14801. n_tasks = n_threads;
  14802. } break;
  14803. case GGML_OP_OUT_PROD:
  14804. {
  14805. n_tasks = n_threads;
  14806. } break;
  14807. case GGML_OP_GET_ROWS:
  14808. {
  14809. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14810. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14811. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14812. } break;
  14813. case GGML_OP_SCALE:
  14814. case GGML_OP_SET:
  14815. case GGML_OP_CONT:
  14816. case GGML_OP_RESHAPE:
  14817. case GGML_OP_VIEW:
  14818. case GGML_OP_PERMUTE:
  14819. case GGML_OP_TRANSPOSE:
  14820. case GGML_OP_GET_ROWS_BACK:
  14821. case GGML_OP_DIAG:
  14822. {
  14823. n_tasks = 1;
  14824. } break;
  14825. case GGML_OP_DIAG_MASK_ZERO:
  14826. case GGML_OP_DIAG_MASK_INF:
  14827. case GGML_OP_SOFT_MAX_BACK:
  14828. case GGML_OP_ROPE:
  14829. case GGML_OP_ROPE_BACK:
  14830. case GGML_OP_ADD_REL_POS:
  14831. {
  14832. n_tasks = n_threads;
  14833. } break;
  14834. case GGML_OP_ALIBI:
  14835. {
  14836. n_tasks = 1; //TODO
  14837. } break;
  14838. case GGML_OP_CLAMP:
  14839. {
  14840. n_tasks = 1; //TODO
  14841. } break;
  14842. case GGML_OP_SOFT_MAX:
  14843. {
  14844. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14845. } break;
  14846. case GGML_OP_CONV_TRANSPOSE_1D:
  14847. {
  14848. n_tasks = n_threads;
  14849. } break;
  14850. case GGML_OP_IM2COL:
  14851. {
  14852. n_tasks = n_threads;
  14853. } break;
  14854. case GGML_OP_CONV_TRANSPOSE_2D:
  14855. {
  14856. n_tasks = n_threads;
  14857. } break;
  14858. case GGML_OP_POOL_1D:
  14859. case GGML_OP_POOL_2D:
  14860. {
  14861. n_tasks = 1;
  14862. } break;
  14863. case GGML_OP_UPSCALE:
  14864. {
  14865. n_tasks = n_threads;
  14866. } break;
  14867. case GGML_OP_PAD:
  14868. {
  14869. n_tasks = n_threads;
  14870. } break;
  14871. case GGML_OP_ARANGE:
  14872. {
  14873. n_tasks = n_threads;
  14874. } break;
  14875. case GGML_OP_TIMESTEP_EMBEDDING:
  14876. {
  14877. n_tasks = n_threads;
  14878. } break;
  14879. case GGML_OP_ARGSORT:
  14880. {
  14881. n_tasks = n_threads;
  14882. } break;
  14883. case GGML_OP_FLASH_ATTN:
  14884. {
  14885. n_tasks = n_threads;
  14886. } break;
  14887. case GGML_OP_FLASH_FF:
  14888. {
  14889. n_tasks = n_threads;
  14890. } break;
  14891. case GGML_OP_FLASH_ATTN_BACK:
  14892. {
  14893. n_tasks = n_threads;
  14894. } break;
  14895. case GGML_OP_SSM_CONV:
  14896. case GGML_OP_SSM_SCAN:
  14897. {
  14898. n_tasks = n_threads;
  14899. } break;
  14900. case GGML_OP_WIN_PART:
  14901. case GGML_OP_WIN_UNPART:
  14902. case GGML_OP_GET_REL_POS:
  14903. case GGML_OP_MAP_UNARY:
  14904. case GGML_OP_MAP_BINARY:
  14905. case GGML_OP_MAP_CUSTOM1_F32:
  14906. case GGML_OP_MAP_CUSTOM2_F32:
  14907. case GGML_OP_MAP_CUSTOM3_F32:
  14908. {
  14909. n_tasks = 1;
  14910. } break;
  14911. case GGML_OP_MAP_CUSTOM1:
  14912. {
  14913. struct ggml_map_custom1_op_params p;
  14914. memcpy(&p, node->op_params, sizeof(p));
  14915. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14916. n_tasks = n_threads;
  14917. } else {
  14918. n_tasks = MIN(p.n_tasks, n_threads);
  14919. }
  14920. } break;
  14921. case GGML_OP_MAP_CUSTOM2:
  14922. {
  14923. struct ggml_map_custom2_op_params p;
  14924. memcpy(&p, node->op_params, sizeof(p));
  14925. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14926. n_tasks = n_threads;
  14927. } else {
  14928. n_tasks = MIN(p.n_tasks, n_threads);
  14929. }
  14930. } break;
  14931. case GGML_OP_MAP_CUSTOM3:
  14932. {
  14933. struct ggml_map_custom3_op_params p;
  14934. memcpy(&p, node->op_params, sizeof(p));
  14935. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14936. n_tasks = n_threads;
  14937. } else {
  14938. n_tasks = MIN(p.n_tasks, n_threads);
  14939. }
  14940. } break;
  14941. case GGML_OP_CROSS_ENTROPY_LOSS:
  14942. {
  14943. n_tasks = n_threads;
  14944. } break;
  14945. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14946. {
  14947. n_tasks = n_threads;
  14948. } break;
  14949. case GGML_OP_NONE:
  14950. {
  14951. n_tasks = 1;
  14952. } break;
  14953. case GGML_OP_COUNT:
  14954. {
  14955. GGML_ASSERT(false);
  14956. } break;
  14957. default:
  14958. {
  14959. fprintf(stderr, "%s: op not implemented: ", __func__);
  14960. if (node->op < GGML_OP_COUNT) {
  14961. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14962. } else {
  14963. fprintf(stderr, "%d\n", node->op);
  14964. }
  14965. GGML_ASSERT(false);
  14966. } break;
  14967. }
  14968. assert(n_tasks > 0);
  14969. return n_tasks;
  14970. }
  14971. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14972. // wait for other threads to finish
  14973. const int last_node_n = * node_n;
  14974. while (true) {
  14975. if (do_yield) {
  14976. sched_yield();
  14977. }
  14978. * node_n = atomic_load(&state->shared->node_n);
  14979. if (* node_n != last_node_n) break;
  14980. }
  14981. }
  14982. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14983. // wait for other threads to finish
  14984. const int last_task_phase = * task_phase;
  14985. while (true) {
  14986. if (do_yield) {
  14987. sched_yield();
  14988. }
  14989. * task_phase = atomic_load(&state->shared->node_task);
  14990. if (* task_phase != last_task_phase) break;
  14991. }
  14992. }
  14993. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14994. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14995. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14996. const struct ggml_cplan * cplan = state->shared->cplan;
  14997. const int n_threads = state->shared->n_threads;
  14998. set_numa_thread_affinity(state->ith);
  14999. int node_n = -1;
  15000. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15001. while (true) {
  15002. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15003. state->shared->node_n += 1;
  15004. state->ec = GGML_STATUS_ABORTED;
  15005. return 0;
  15006. }
  15007. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15008. // all other threads are finished and spinning
  15009. // do finalize and init here so we don't have synchronize again
  15010. struct ggml_compute_params params = {
  15011. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15012. /*.ith =*/ 0,
  15013. /*.nth =*/ 0,
  15014. /*.wsize =*/ cplan->work_size,
  15015. /*.wdata =*/ cplan->work_data,
  15016. };
  15017. if (node_n != -1) {
  15018. /* FINALIZE */
  15019. struct ggml_tensor * node = cgraph->nodes[node_n];
  15020. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15021. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15022. ggml_compute_forward(&params, node);
  15023. }
  15024. ggml_graph_compute_perf_stats_node(node, state->shared);
  15025. }
  15026. // distribute new work or execute it direct if 1T
  15027. while (++node_n < cgraph->n_nodes) {
  15028. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15029. struct ggml_tensor * node = cgraph->nodes[node_n];
  15030. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15031. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15032. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15033. params.nth = n_tasks;
  15034. if (n_tasks == 1) {
  15035. /* INIT */
  15036. if (GGML_OP_HAS_INIT[node->op]) {
  15037. params.type = GGML_TASK_TYPE_INIT;
  15038. ggml_compute_forward(&params, node);
  15039. }
  15040. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15041. // they do something more efficient than spinning (?)
  15042. params.type = GGML_TASK_TYPE_COMPUTE;
  15043. ggml_compute_forward(&params, node);
  15044. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15045. params.type = GGML_TASK_TYPE_FINALIZE;
  15046. ggml_compute_forward(&params, node);
  15047. }
  15048. ggml_graph_compute_perf_stats_node(node, state->shared);
  15049. } else {
  15050. break;
  15051. }
  15052. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15053. break;
  15054. }
  15055. }
  15056. task_phase = GGML_TASK_TYPE_INIT;
  15057. atomic_store(&state->shared->n_active, n_threads);
  15058. atomic_store(&state->shared->node_n, node_n);
  15059. atomic_store(&state->shared->node_task, task_phase);
  15060. } else {
  15061. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15062. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15063. }
  15064. // check if we should stop
  15065. if (node_n >= cgraph->n_nodes) break;
  15066. /* INIT & COMPUTE */
  15067. struct ggml_tensor * node = cgraph->nodes[node_n];
  15068. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15069. struct ggml_compute_params params = {
  15070. /*.type =*/ GGML_TASK_TYPE_INIT,
  15071. /*.ith =*/ state->ith,
  15072. /*.nth =*/ n_tasks,
  15073. /*.wsize =*/ cplan->work_size,
  15074. /*.wdata =*/ cplan->work_data,
  15075. };
  15076. if (state->ith < n_tasks) {
  15077. if (GGML_OP_HAS_INIT[node->op]) {
  15078. ggml_compute_forward(&params, node);
  15079. }
  15080. }
  15081. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15082. task_phase = GGML_TASK_TYPE_COMPUTE;
  15083. atomic_store(&state->shared->n_active, n_threads);
  15084. atomic_store(&state->shared->node_task, task_phase);
  15085. }
  15086. else {
  15087. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15088. // depending on the workload and the operating system.
  15089. // since it is not clear what is the best approach, it should potentially become user-configurable
  15090. // ref: https://github.com/ggerganov/ggml/issues/291
  15091. // UPD: adding the do_yield flag seems to resolve the issue universally
  15092. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15093. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15094. }
  15095. if (state->ith < n_tasks) {
  15096. params.type = GGML_TASK_TYPE_COMPUTE;
  15097. ggml_compute_forward(&params, node);
  15098. }
  15099. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15100. task_phase = GGML_TASK_TYPE_FINALIZE;
  15101. atomic_store(&state->shared->n_active, n_threads);
  15102. atomic_store(&state->shared->node_task, task_phase);
  15103. }
  15104. else {
  15105. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15106. }
  15107. }
  15108. return 0;
  15109. }
  15110. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15111. if (n_threads <= 0) {
  15112. n_threads = GGML_DEFAULT_N_THREADS;
  15113. }
  15114. size_t work_size = 0;
  15115. struct ggml_cplan cplan;
  15116. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15117. int max_tasks = 1;
  15118. // thread scheduling for the different operations + work buffer size estimation
  15119. for (int i = 0; i < cgraph->n_nodes; i++) {
  15120. struct ggml_tensor * node = cgraph->nodes[i];
  15121. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15122. max_tasks = MAX(max_tasks, n_tasks);
  15123. size_t cur = 0;
  15124. switch (node->op) {
  15125. case GGML_OP_CPY:
  15126. case GGML_OP_DUP:
  15127. {
  15128. if (ggml_is_quantized(node->type)) {
  15129. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15130. }
  15131. } break;
  15132. case GGML_OP_ADD:
  15133. case GGML_OP_ADD1:
  15134. {
  15135. if (ggml_is_quantized(node->src[0]->type)) {
  15136. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15137. }
  15138. } break;
  15139. case GGML_OP_ACC:
  15140. {
  15141. if (ggml_is_quantized(node->src[0]->type)) {
  15142. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15143. }
  15144. } break;
  15145. case GGML_OP_MUL_MAT:
  15146. {
  15147. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15148. #if defined(GGML_USE_CLBLAST)
  15149. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15150. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15151. } else
  15152. #endif
  15153. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15154. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15155. if (node->src[0]->type != GGML_TYPE_F32) {
  15156. // here we need memory for fully dequantized matrix from src0
  15157. // take into account that src0 can be broadcasted into src1[2,3]
  15158. cur = ggml_type_size(GGML_TYPE_F32)
  15159. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15160. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15161. }
  15162. } else
  15163. #endif
  15164. if (node->src[1]->type != vec_dot_type) {
  15165. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15166. }
  15167. } break;
  15168. case GGML_OP_MUL_MAT_ID:
  15169. {
  15170. cur = 0;
  15171. const struct ggml_tensor * src0 = node->src[2];
  15172. const struct ggml_tensor * src1 = node->src[1];
  15173. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15174. if (src1->type != vec_dot_type) {
  15175. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15176. }
  15177. const int n_as = ggml_get_op_params_i32(node, 1);
  15178. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15179. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15180. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15181. } break;
  15182. case GGML_OP_OUT_PROD:
  15183. {
  15184. if (ggml_is_quantized(node->src[0]->type)) {
  15185. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15186. }
  15187. } break;
  15188. case GGML_OP_SOFT_MAX:
  15189. case GGML_OP_ROPE:
  15190. {
  15191. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15192. } break;
  15193. case GGML_OP_CONV_TRANSPOSE_1D:
  15194. {
  15195. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15196. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15197. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15198. const int64_t ne00 = node->src[0]->ne[0]; // K
  15199. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15200. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15201. const int64_t ne10 = node->src[1]->ne[0]; // L
  15202. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15203. if (node->src[0]->type == GGML_TYPE_F16 &&
  15204. node->src[1]->type == GGML_TYPE_F32) {
  15205. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15206. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15207. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15208. node->src[1]->type == GGML_TYPE_F32) {
  15209. cur += sizeof(float)*ne00*ne01*ne02;
  15210. cur += sizeof(float)*ne10*ne11;
  15211. } else {
  15212. GGML_ASSERT(false);
  15213. }
  15214. } break;
  15215. case GGML_OP_CONV_TRANSPOSE_2D:
  15216. {
  15217. const int64_t ne00 = node->src[0]->ne[0]; // W
  15218. const int64_t ne01 = node->src[0]->ne[1]; // H
  15219. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15220. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15221. const int64_t ne10 = node->src[1]->ne[0]; // W
  15222. const int64_t ne11 = node->src[1]->ne[1]; // H
  15223. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15224. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15225. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15226. } break;
  15227. case GGML_OP_FLASH_ATTN:
  15228. {
  15229. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15230. if (node->src[1]->type == GGML_TYPE_F32) {
  15231. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15232. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15233. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15234. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15235. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15236. }
  15237. } break;
  15238. case GGML_OP_FLASH_FF:
  15239. {
  15240. if (node->src[1]->type == GGML_TYPE_F32) {
  15241. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15242. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15243. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15244. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15245. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15246. }
  15247. } break;
  15248. case GGML_OP_FLASH_ATTN_BACK:
  15249. {
  15250. const int64_t D = node->src[0]->ne[0];
  15251. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15252. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15253. if (node->src[1]->type == GGML_TYPE_F32) {
  15254. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15255. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15256. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15257. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15258. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15259. }
  15260. } break;
  15261. case GGML_OP_CROSS_ENTROPY_LOSS:
  15262. {
  15263. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15264. } break;
  15265. case GGML_OP_COUNT:
  15266. {
  15267. GGML_ASSERT(false);
  15268. } break;
  15269. default:
  15270. break;
  15271. }
  15272. work_size = MAX(work_size, cur);
  15273. }
  15274. if (work_size > 0) {
  15275. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15276. }
  15277. cplan.n_threads = MIN(max_tasks, n_threads);
  15278. cplan.work_size = work_size;
  15279. cplan.work_data = NULL;
  15280. return cplan;
  15281. }
  15282. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15283. {
  15284. GGML_ASSERT(cplan);
  15285. GGML_ASSERT(cplan->n_threads > 0);
  15286. if (cplan->work_size > 0) {
  15287. GGML_ASSERT(cplan->work_data);
  15288. }
  15289. }
  15290. #ifdef GGML_USE_VULKAN
  15291. for (int i = 0; i < cgraph->n_nodes; i++) {
  15292. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15293. }
  15294. ggml_vk_preallocate_buffers_cpu_assist();
  15295. for (int i = 0; i < cgraph->n_nodes; i++) {
  15296. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15297. }
  15298. #endif
  15299. const int n_threads = cplan->n_threads;
  15300. struct ggml_compute_state_shared state_shared = {
  15301. /*.cgraph =*/ cgraph,
  15302. /*.cgraph_plan =*/ cplan,
  15303. /*.perf_node_start_cycles =*/ 0,
  15304. /*.perf_node_start_time_us =*/ 0,
  15305. /*.n_threads =*/ n_threads,
  15306. /*.n_active =*/ n_threads,
  15307. /*.node_n =*/ -1,
  15308. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15309. /*.abort_callback =*/ NULL,
  15310. /*.abort_callback_data =*/ NULL,
  15311. };
  15312. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15313. // create thread pool
  15314. if (n_threads > 1) {
  15315. for (int j = 1; j < n_threads; ++j) {
  15316. workers[j] = (struct ggml_compute_state) {
  15317. .thrd = 0,
  15318. .ith = j,
  15319. .shared = &state_shared,
  15320. .ec = GGML_STATUS_SUCCESS,
  15321. };
  15322. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15323. GGML_ASSERT(rc == 0);
  15324. UNUSED(rc);
  15325. }
  15326. }
  15327. workers[0].ith = 0;
  15328. workers[0].shared = &state_shared;
  15329. workers[0].ec = GGML_STATUS_SUCCESS;
  15330. const int64_t perf_start_cycles = ggml_perf_cycles();
  15331. const int64_t perf_start_time_us = ggml_perf_time_us();
  15332. // this is a work thread too
  15333. ggml_graph_compute_thread(&workers[0]);
  15334. enum ggml_status compute_status = workers[0].ec;
  15335. // don't leave affinity set on the main thread
  15336. clear_numa_thread_affinity();
  15337. // join or kill thread pool
  15338. if (n_threads > 1) {
  15339. for (int j = 1; j < n_threads; j++) {
  15340. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15341. GGML_ASSERT(rc == 0);
  15342. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15343. compute_status = workers[j].ec;
  15344. }
  15345. }
  15346. #ifdef GGML_USE_VULKAN
  15347. ggml_vk_graph_cleanup_cpu_assist();
  15348. #endif
  15349. // performance stats (graph)
  15350. {
  15351. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15352. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15353. cgraph->perf_runs++;
  15354. cgraph->perf_cycles += perf_cycles_cur;
  15355. cgraph->perf_time_us += perf_time_us_cur;
  15356. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15357. __func__, cgraph->perf_runs,
  15358. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15359. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15360. (double) perf_time_us_cur / 1000.0,
  15361. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15362. }
  15363. return compute_status;
  15364. }
  15365. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15366. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15367. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15368. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15369. return ggml_graph_compute(cgraph, &cplan);
  15370. }
  15371. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15372. for (int i = 0; i < cgraph->n_leafs; i++) {
  15373. struct ggml_tensor * leaf = cgraph->leafs[i];
  15374. if (strcmp(leaf->name, name) == 0) {
  15375. return leaf;
  15376. }
  15377. }
  15378. for (int i = 0; i < cgraph->n_nodes; i++) {
  15379. struct ggml_tensor * node = cgraph->nodes[i];
  15380. if (strcmp(node->name, name) == 0) {
  15381. return node;
  15382. }
  15383. }
  15384. return NULL;
  15385. }
  15386. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15387. const int64_t * ne = tensor->ne;
  15388. const size_t * nb = tensor->nb;
  15389. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15390. ggml_type_name(tensor->type),
  15391. ggml_op_name (tensor->op),
  15392. ggml_n_dims(tensor),
  15393. ne[0], ne[1], ne[2], ne[3],
  15394. nb[0], nb[1], nb[2], nb[3],
  15395. tensor->data,
  15396. tensor->name);
  15397. }
  15398. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15399. const int64_t * ne = tensor->ne;
  15400. const size_t * nb = tensor->nb;
  15401. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15402. arg,
  15403. ggml_type_name(tensor->type),
  15404. ggml_op_name (tensor->op),
  15405. ggml_n_dims(tensor),
  15406. ne[0], ne[1], ne[2], ne[3],
  15407. nb[0], nb[1], nb[2], nb[3],
  15408. tensor->data,
  15409. tensor->name);
  15410. }
  15411. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15412. uint64_t size_eval = 0;
  15413. // compute size of intermediate results
  15414. // TODO: does not take into account scratch buffers !!!!
  15415. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15416. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15417. }
  15418. // print
  15419. {
  15420. FILE * fout = stdout;
  15421. fprintf(fout, "\n");
  15422. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15423. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15424. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15425. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15426. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15427. // header
  15428. fprintf(fout, "\n");
  15429. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15430. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15431. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15432. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15433. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15434. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15435. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15436. }
  15437. // header
  15438. fprintf(fout, "\n");
  15439. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15440. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15441. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15442. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15443. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15444. if (cgraph->nodes[i]->src[j]) {
  15445. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15446. }
  15447. }
  15448. fprintf(fout, "\n");
  15449. }
  15450. fprintf(fout, "\n");
  15451. }
  15452. // write binary data
  15453. {
  15454. FILE * fout = ggml_fopen(fname, "wb");
  15455. if (!fout) {
  15456. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15457. return;
  15458. }
  15459. // header
  15460. {
  15461. const uint32_t magic = GGML_FILE_MAGIC;
  15462. const uint32_t version = GGML_FILE_VERSION;
  15463. const uint32_t n_leafs = cgraph->n_leafs;
  15464. const uint32_t n_nodes = cgraph->n_nodes;
  15465. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15466. fwrite(&version, sizeof(uint32_t), 1, fout);
  15467. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15468. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15469. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15470. }
  15471. // leafs
  15472. {
  15473. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15474. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15475. const uint32_t type = tensor->type;
  15476. const uint32_t op = tensor->op;
  15477. fwrite(&type, sizeof(uint32_t), 1, fout);
  15478. fwrite(&op, sizeof(uint32_t), 1, fout);
  15479. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15480. const uint64_t ne = tensor->ne[j];
  15481. const uint64_t nb = tensor->nb[j];
  15482. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15483. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15484. }
  15485. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15486. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15487. // dump the data
  15488. // TODO: pad this to 32 byte boundary
  15489. {
  15490. const size_t size = ggml_nbytes(tensor);
  15491. fwrite(tensor->data, sizeof(char), size, fout);
  15492. }
  15493. }
  15494. }
  15495. // nodes
  15496. {
  15497. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15498. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15499. const uint32_t type = tensor->type;
  15500. const uint32_t op = tensor->op;
  15501. fwrite(&type, sizeof(uint32_t), 1, fout);
  15502. fwrite(&op, sizeof(uint32_t), 1, fout);
  15503. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15504. const uint64_t ne = tensor->ne[j];
  15505. const uint64_t nb = tensor->nb[j];
  15506. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15507. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15508. }
  15509. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15510. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15511. // output the op arguments
  15512. {
  15513. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15514. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15515. args[j] = tensor->src[j];
  15516. }
  15517. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15518. if (args[j]) {
  15519. int32_t idx = -1;
  15520. // check if leaf
  15521. {
  15522. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15523. if (args[j] == cgraph->leafs[k]) {
  15524. idx = k;
  15525. break;
  15526. }
  15527. }
  15528. }
  15529. // check if node
  15530. if (idx == -1) {
  15531. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15532. if (args[j] == cgraph->nodes[k]) {
  15533. idx = cgraph->n_leafs + k;
  15534. break;
  15535. }
  15536. }
  15537. }
  15538. if (idx == -1) {
  15539. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15540. fclose(fout);
  15541. return;
  15542. }
  15543. fwrite(&idx, sizeof(int32_t), 1, fout);
  15544. } else {
  15545. const int32_t nul = -1;
  15546. fwrite(&nul, sizeof(int32_t), 1, fout);
  15547. }
  15548. }
  15549. }
  15550. }
  15551. }
  15552. fclose(fout);
  15553. }
  15554. }
  15555. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15556. assert(*ctx_data == NULL);
  15557. assert(*ctx_eval == NULL);
  15558. struct ggml_cgraph * result = NULL;
  15559. struct ggml_tensor * data = NULL;
  15560. // read file into data
  15561. {
  15562. FILE * fin = ggml_fopen(fname, "rb");
  15563. if (!fin) {
  15564. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15565. return result;
  15566. }
  15567. size_t fsize = 0;
  15568. fseek(fin, 0, SEEK_END);
  15569. fsize = ftell(fin);
  15570. fseek(fin, 0, SEEK_SET);
  15571. // create the data context
  15572. {
  15573. const size_t overhead = 1*ggml_tensor_overhead();
  15574. struct ggml_init_params params = {
  15575. .mem_size = fsize + overhead,
  15576. .mem_buffer = NULL,
  15577. .no_alloc = false,
  15578. };
  15579. *ctx_data = ggml_init(params);
  15580. if (!*ctx_data) {
  15581. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15582. fclose(fin);
  15583. return result;
  15584. }
  15585. }
  15586. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15587. {
  15588. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15589. if (ret != fsize) {
  15590. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15591. fclose(fin);
  15592. return result;
  15593. }
  15594. }
  15595. fclose(fin);
  15596. }
  15597. // populate result
  15598. {
  15599. char * ptr = (char *) data->data;
  15600. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15601. if (magic != GGML_FILE_MAGIC) {
  15602. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15603. return result;
  15604. }
  15605. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15606. if (version != GGML_FILE_VERSION) {
  15607. fprintf(stderr, "%s: invalid version number\n", __func__);
  15608. return result;
  15609. }
  15610. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15611. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15612. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15613. const int graph_size = MAX(n_leafs, n_nodes);
  15614. // create the data context
  15615. {
  15616. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15617. struct ggml_init_params params = {
  15618. .mem_size = size_eval + overhead,
  15619. .mem_buffer = NULL,
  15620. .no_alloc = true,
  15621. };
  15622. *ctx_eval = ggml_init(params);
  15623. if (!*ctx_eval) {
  15624. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15625. return result;
  15626. }
  15627. }
  15628. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15629. result->n_leafs = n_leafs;
  15630. result->n_nodes = n_nodes;
  15631. // leafs
  15632. {
  15633. uint32_t type;
  15634. uint32_t op;
  15635. for (uint32_t i = 0; i < n_leafs; ++i) {
  15636. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15637. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15638. int64_t ne[GGML_MAX_DIMS];
  15639. size_t nb[GGML_MAX_DIMS];
  15640. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15641. uint64_t ne_cur;
  15642. uint64_t nb_cur;
  15643. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15644. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15645. ne[j] = ne_cur;
  15646. nb[j] = nb_cur;
  15647. }
  15648. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15649. tensor->op = (enum ggml_op) op;
  15650. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15651. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15652. tensor->data = (void *) ptr;
  15653. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15654. tensor->nb[j] = nb[j];
  15655. }
  15656. result->leafs[i] = tensor;
  15657. ptr += ggml_nbytes(tensor);
  15658. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15659. }
  15660. }
  15661. ggml_set_no_alloc(*ctx_eval, false);
  15662. // nodes
  15663. {
  15664. uint32_t type;
  15665. uint32_t op;
  15666. for (uint32_t i = 0; i < n_nodes; ++i) {
  15667. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15668. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15669. enum ggml_op eop = (enum ggml_op) op;
  15670. int64_t ne[GGML_MAX_DIMS];
  15671. size_t nb[GGML_MAX_DIMS];
  15672. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15673. uint64_t ne_cur;
  15674. uint64_t nb_cur;
  15675. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15676. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15677. ne[j] = ne_cur;
  15678. nb[j] = nb_cur;
  15679. }
  15680. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15681. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15682. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15683. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15684. // parse args
  15685. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15686. const int32_t arg_idx = ptr_arg_idx[j];
  15687. if (arg_idx == -1) {
  15688. continue;
  15689. }
  15690. if (arg_idx < result->n_leafs) {
  15691. args[j] = result->leafs[arg_idx];
  15692. } else {
  15693. args[j] = result->nodes[arg_idx - result->n_leafs];
  15694. }
  15695. }
  15696. // create the tensor
  15697. // "view" operations are handled differently
  15698. // TODO: handle inplace ops - currently a copy is always made
  15699. struct ggml_tensor * tensor = NULL;
  15700. switch (eop) {
  15701. // TODO: implement other view ops
  15702. case GGML_OP_RESHAPE:
  15703. {
  15704. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15705. } break;
  15706. case GGML_OP_VIEW:
  15707. {
  15708. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15709. size_t offs;
  15710. memcpy(&offs, ptr_op_params, sizeof(offs));
  15711. tensor->data = ((char *) tensor->data) + offs;
  15712. } break;
  15713. case GGML_OP_TRANSPOSE:
  15714. {
  15715. tensor = ggml_transpose(*ctx_eval, args[0]);
  15716. } break;
  15717. case GGML_OP_PERMUTE:
  15718. {
  15719. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15720. } break;
  15721. default:
  15722. {
  15723. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15724. tensor->op = eop;
  15725. } break;
  15726. }
  15727. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15728. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15729. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15730. tensor->nb[j] = nb[j];
  15731. }
  15732. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15733. tensor->src[j] = args[j];
  15734. }
  15735. result->nodes[i] = tensor;
  15736. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15737. }
  15738. }
  15739. }
  15740. return result;
  15741. }
  15742. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15743. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15744. GGML_PRINT("=== GRAPH ===\n");
  15745. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15746. for (int i = 0; i < cgraph->n_nodes; i++) {
  15747. struct ggml_tensor * node = cgraph->nodes[i];
  15748. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15749. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15750. i,
  15751. node->ne[0], node->ne[1], node->ne[2],
  15752. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15753. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15754. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15755. (double) node->perf_time_us / 1000.0,
  15756. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15757. }
  15758. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15759. for (int i = 0; i < cgraph->n_leafs; i++) {
  15760. struct ggml_tensor * node = cgraph->leafs[i];
  15761. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15762. i,
  15763. node->ne[0], node->ne[1],
  15764. ggml_op_name(node->op),
  15765. ggml_get_name(node));
  15766. }
  15767. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15768. if (perf_total_per_op_us[i] == 0) {
  15769. continue;
  15770. }
  15771. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15772. }
  15773. GGML_PRINT("========================================\n");
  15774. }
  15775. // check if node is part of the graph
  15776. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15777. if (cgraph == NULL) {
  15778. return true;
  15779. }
  15780. for (int i = 0; i < cgraph->n_nodes; i++) {
  15781. if (cgraph->nodes[i] == node) {
  15782. return true;
  15783. }
  15784. }
  15785. return false;
  15786. }
  15787. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15788. for (int i = 0; i < cgraph->n_nodes; i++) {
  15789. struct ggml_tensor * parent = cgraph->nodes[i];
  15790. if (parent->grad == node) {
  15791. return parent;
  15792. }
  15793. }
  15794. return NULL;
  15795. }
  15796. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15797. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15798. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15799. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15800. gparent0 ? (void *) gparent0 : (void *) parent,
  15801. gparent0 ? "g" : "x",
  15802. gparent ? (void *) gparent : (void *) node,
  15803. gparent ? "g" : "x",
  15804. gparent ? "empty" : "vee",
  15805. gparent ? "dashed" : "solid",
  15806. label);
  15807. }
  15808. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15809. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15810. (void *) parent, "x",
  15811. (void *) node, "x",
  15812. label);
  15813. }
  15814. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15815. char color[16];
  15816. FILE * fp = ggml_fopen(filename, "w");
  15817. GGML_ASSERT(fp);
  15818. fprintf(fp, "digraph G {\n");
  15819. fprintf(fp, " newrank = true;\n");
  15820. fprintf(fp, " rankdir = LR;\n");
  15821. for (int i = 0; i < gb->n_nodes; i++) {
  15822. struct ggml_tensor * node = gb->nodes[i];
  15823. if (ggml_graph_get_parent(gb, node) != NULL) {
  15824. continue;
  15825. }
  15826. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15827. snprintf(color, sizeof(color), "yellow");
  15828. } else if (node->grad) {
  15829. if (ggml_graph_find(gf, node)) {
  15830. snprintf(color, sizeof(color), "green");
  15831. } else {
  15832. snprintf(color, sizeof(color), "lightblue");
  15833. }
  15834. } else {
  15835. snprintf(color, sizeof(color), "white");
  15836. }
  15837. fprintf(fp, " \"%p\" [ "
  15838. "style = filled; fillcolor = %s; shape = record; "
  15839. "label=\"",
  15840. (void *) node, color);
  15841. if (strlen(node->name) > 0) {
  15842. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15843. } else {
  15844. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15845. }
  15846. if (ggml_is_matrix(node)) {
  15847. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15848. } else {
  15849. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15850. }
  15851. if (node->grad) {
  15852. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15853. } else {
  15854. fprintf(fp, "\"; ]\n");
  15855. }
  15856. }
  15857. for (int i = 0; i < gb->n_leafs; i++) {
  15858. struct ggml_tensor * node = gb->leafs[i];
  15859. snprintf(color, sizeof(color), "pink");
  15860. fprintf(fp, " \"%p\" [ "
  15861. "style = filled; fillcolor = %s; shape = record; "
  15862. "label=\"<x>",
  15863. (void *) node, color);
  15864. if (strlen(node->name) > 0) {
  15865. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15866. } else {
  15867. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15868. }
  15869. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15870. if (ggml_nelements(node) < 5) {
  15871. fprintf(fp, " | (");
  15872. for (int j = 0; j < ggml_nelements(node); j++) {
  15873. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15874. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15875. }
  15876. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15877. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15878. }
  15879. else {
  15880. fprintf(fp, "#");
  15881. }
  15882. if (j < ggml_nelements(node) - 1) {
  15883. fprintf(fp, ", ");
  15884. }
  15885. }
  15886. fprintf(fp, ")");
  15887. }
  15888. fprintf(fp, "\"; ]\n");
  15889. }
  15890. for (int i = 0; i < gb->n_nodes; i++) {
  15891. struct ggml_tensor * node = gb->nodes[i];
  15892. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15893. if (node->src[j]) {
  15894. char label[16];
  15895. snprintf(label, sizeof(label), "src %d", j);
  15896. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15897. }
  15898. }
  15899. }
  15900. for (int i = 0; i < gb->n_leafs; i++) {
  15901. struct ggml_tensor * node = gb->leafs[i];
  15902. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15903. if (node->src[j]) {
  15904. char label[16];
  15905. snprintf(label, sizeof(label), "src %d", j);
  15906. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15907. }
  15908. }
  15909. }
  15910. fprintf(fp, "}\n");
  15911. fclose(fp);
  15912. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15913. }
  15914. ////////////////////////////////////////////////////////////////////////////////
  15915. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15916. int i = 0;
  15917. for (int p = 0; p < np; ++p) {
  15918. const int64_t ne = ggml_nelements(ps[p]) ;
  15919. // TODO: add function to set tensor from array
  15920. for (int64_t j = 0; j < ne; ++j) {
  15921. ggml_set_f32_1d(ps[p], j, x[i++]);
  15922. }
  15923. }
  15924. }
  15925. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15926. int i = 0;
  15927. for (int p = 0; p < np; ++p) {
  15928. const int64_t ne = ggml_nelements(ps[p]) ;
  15929. // TODO: add function to get all elements at once
  15930. for (int64_t j = 0; j < ne; ++j) {
  15931. x[i++] = ggml_get_f32_1d(ps[p], j);
  15932. }
  15933. }
  15934. }
  15935. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15936. int64_t i = 0;
  15937. for (int p = 0; p < np; ++p) {
  15938. const int64_t ne = ggml_nelements(ps[p]) ;
  15939. // TODO: add function to get all elements at once
  15940. for (int64_t j = 0; j < ne; ++j) {
  15941. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15942. }
  15943. }
  15944. }
  15945. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15946. int64_t i = 0;
  15947. for (int p = 0; p < np; ++p) {
  15948. const int64_t ne = ggml_nelements(ps[p]) ;
  15949. // TODO: add function to get all elements at once
  15950. for (int64_t j = 0; j < ne; ++j) {
  15951. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15952. }
  15953. }
  15954. }
  15955. //
  15956. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15957. //
  15958. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15959. //
  15960. static enum ggml_opt_result ggml_opt_adam(
  15961. struct ggml_context * ctx,
  15962. struct ggml_opt_context * opt,
  15963. struct ggml_opt_params params,
  15964. struct ggml_tensor * f,
  15965. struct ggml_cgraph * gf,
  15966. struct ggml_cgraph * gb,
  15967. ggml_opt_callback callback,
  15968. void * callback_data) {
  15969. GGML_ASSERT(ggml_is_scalar(f));
  15970. // these will store the parameters we want to optimize
  15971. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15972. int np = 0;
  15973. int64_t nx = 0;
  15974. for (int i = 0; i < gf->n_nodes; ++i) {
  15975. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15976. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15977. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15978. ps[np++] = gf->nodes[i];
  15979. nx += ggml_nelements(gf->nodes[i]);
  15980. }
  15981. }
  15982. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15983. int iter = opt->iter;
  15984. ggml_opt_init(opt->ctx, opt, params, nx);
  15985. opt->iter = iter;
  15986. }
  15987. // constants
  15988. float sched = params.adam.sched;
  15989. const float alpha = params.adam.alpha;
  15990. const float decay = params.adam.decay * alpha;
  15991. const float beta1 = params.adam.beta1;
  15992. const float beta2 = params.adam.beta2;
  15993. const float eps = params.adam.eps;
  15994. const float gclip = params.adam.gclip;
  15995. const int decay_min_ndim = params.adam.decay_min_ndim;
  15996. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15997. const float accum_norm = 1.0f / (float) n_accum;
  15998. float * g = opt->adam.g->data; // gradients
  15999. float * m = opt->adam.m->data; // first moment
  16000. float * v = opt->adam.v->data; // second moment
  16001. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16002. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16003. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16004. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16005. bool cancel = false;
  16006. // compute the function value
  16007. float fx = 0;
  16008. ggml_set_zero(opt->adam.g);
  16009. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16010. if (callback) {
  16011. callback(callback_data, accum_step, &sched, &cancel);
  16012. if (cancel) {
  16013. return GGML_OPT_RESULT_CANCEL;
  16014. }
  16015. }
  16016. // ggml_graph_reset (gf);
  16017. ggml_set_f32 (f->grad, 1.0f);
  16018. ggml_graph_compute(gb, &cplan);
  16019. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16020. fx += ggml_get_f32_1d(f, 0);
  16021. }
  16022. fx *= accum_norm;
  16023. opt->adam.fx_prev = fx;
  16024. opt->adam.fx_best = opt->adam.fx_prev;
  16025. if (pf) {
  16026. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16027. }
  16028. opt->loss_before = opt->adam.fx_prev;
  16029. opt->loss_after = opt->adam.fx_prev;
  16030. // initialize
  16031. if (opt->just_initialized) {
  16032. opt->adam.n_no_improvement = 0;
  16033. opt->just_initialized = false;
  16034. }
  16035. float * fx_best = &opt->adam.fx_best;
  16036. float * fx_prev = &opt->adam.fx_prev;
  16037. int * n_no_improvement = &opt->adam.n_no_improvement;
  16038. int iter0 = opt->iter;
  16039. // run the optimizer
  16040. for (int t = 0; t < params.adam.n_iter; ++t) {
  16041. opt->iter = iter0 + t + 1;
  16042. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16043. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16044. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16045. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16046. for (int i = 0; i < np; ++i) {
  16047. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16048. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16049. }
  16050. const int64_t t_start_wall = ggml_time_us();
  16051. const int64_t t_start_cpu = ggml_cycles();
  16052. UNUSED(t_start_wall);
  16053. UNUSED(t_start_cpu);
  16054. {
  16055. float gnorm = 1.0f;
  16056. if (gclip > 0.0f) {
  16057. // gradient clipping
  16058. ggml_float sum = 0.0;
  16059. for (int64_t i = 0; i < nx; ++i) {
  16060. sum += (ggml_float)(g[i]*g[i]);
  16061. }
  16062. ggml_float norm = sqrt(sum);
  16063. if (norm > (ggml_float) gclip) {
  16064. gnorm = (float) ((ggml_float) gclip / norm);
  16065. }
  16066. }
  16067. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16068. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16069. int64_t i = 0;
  16070. for (int p = 0; p < np; ++p) {
  16071. const int64_t ne = ggml_nelements(ps[p]);
  16072. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16073. for (int64_t j = 0; j < ne; ++j) {
  16074. float x = ggml_get_f32_1d(ps[p], j);
  16075. float g_ = g[i]*gnorm;
  16076. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16077. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16078. float mh = m[i]*beta1h;
  16079. float vh = v[i]*beta2h;
  16080. vh = sqrtf(vh) + eps;
  16081. x = x*(1.0f - p_decay) - mh/vh;
  16082. ggml_set_f32_1d(ps[p], j, x);
  16083. ++i;
  16084. }
  16085. }
  16086. }
  16087. fx = 0;
  16088. ggml_set_zero(opt->adam.g);
  16089. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16090. if (callback) {
  16091. callback(callback_data, accum_step, &sched, &cancel);
  16092. if (cancel) {
  16093. return GGML_OPT_RESULT_CANCEL;;
  16094. }
  16095. }
  16096. // ggml_graph_reset (gf);
  16097. ggml_set_f32 (f->grad, 1.0f);
  16098. ggml_graph_compute(gb, &cplan);
  16099. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16100. fx += ggml_get_f32_1d(f, 0);
  16101. }
  16102. fx *= accum_norm;
  16103. opt->loss_after = fx;
  16104. // check convergence
  16105. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16106. GGML_PRINT_DEBUG("converged\n");
  16107. return GGML_OPT_RESULT_OK;
  16108. }
  16109. // delta-based convergence test
  16110. if (pf != NULL) {
  16111. // need at least params.past iterations to start checking for convergence
  16112. if (params.past <= iter0 + t) {
  16113. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16114. if (fabsf(rate) < params.delta) {
  16115. return GGML_OPT_RESULT_OK;
  16116. }
  16117. }
  16118. pf[(iter0 + t)%params.past] = fx;
  16119. }
  16120. // check for improvement
  16121. if (params.max_no_improvement > 0) {
  16122. if (fx_best[0] > fx) {
  16123. fx_best[0] = fx;
  16124. n_no_improvement[0] = 0;
  16125. } else {
  16126. ++n_no_improvement[0];
  16127. if (n_no_improvement[0] >= params.max_no_improvement) {
  16128. return GGML_OPT_RESULT_OK;
  16129. }
  16130. }
  16131. }
  16132. fx_prev[0] = fx;
  16133. {
  16134. const int64_t t_end_cpu = ggml_cycles();
  16135. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16136. UNUSED(t_end_cpu);
  16137. const int64_t t_end_wall = ggml_time_us();
  16138. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16139. UNUSED(t_end_wall);
  16140. }
  16141. }
  16142. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16143. }
  16144. //
  16145. // L-BFGS
  16146. //
  16147. // the L-BFGS implementation below is based on the following implementation:
  16148. //
  16149. // https://github.com/chokkan/liblbfgs
  16150. //
  16151. struct ggml_lbfgs_iteration_data {
  16152. float alpha;
  16153. float ys;
  16154. float * s;
  16155. float * y;
  16156. };
  16157. static enum ggml_opt_result linesearch_backtracking(
  16158. const struct ggml_opt_params * params,
  16159. int nx,
  16160. float * x,
  16161. float * fx,
  16162. float * g,
  16163. float * d,
  16164. float * step,
  16165. const float * xp,
  16166. struct ggml_tensor * f,
  16167. struct ggml_cgraph * gb,
  16168. struct ggml_cplan * cplan,
  16169. const int np,
  16170. struct ggml_tensor * ps[],
  16171. bool * cancel,
  16172. ggml_opt_callback callback,
  16173. void * callback_data) {
  16174. int count = 0;
  16175. float width = 0.0f;
  16176. float dg = 0.0f;
  16177. float finit = 0.0f;
  16178. float dginit = 0.0f;
  16179. float dgtest = 0.0f;
  16180. const float dec = 0.5f;
  16181. const float inc = 2.1f;
  16182. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16183. const float accum_norm = 1.0f / (float) n_accum;
  16184. if (*step <= 0.f) {
  16185. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16186. }
  16187. // compute the initial gradient in the search direction
  16188. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16189. // make sure that d points to a descent direction
  16190. if (0 < dginit) {
  16191. return GGML_LINESEARCH_FAIL;
  16192. }
  16193. // initialize local variables
  16194. finit = *fx;
  16195. dgtest = params->lbfgs.ftol*dginit;
  16196. while (true) {
  16197. ggml_vec_cpy_f32(nx, x, xp);
  16198. ggml_vec_mad_f32(nx, x, d, *step);
  16199. // evaluate the function and gradient values
  16200. {
  16201. ggml_opt_set_params(np, ps, x);
  16202. *fx = 0;
  16203. memset(g, 0, sizeof(float)*nx);
  16204. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16205. if (callback) {
  16206. // LBFG-S does not support learning rate -> ignore learning schedule
  16207. float sched = 0;
  16208. callback(callback_data, accum_step, &sched, cancel);
  16209. if (*cancel) {
  16210. return GGML_OPT_RESULT_CANCEL;
  16211. }
  16212. }
  16213. // ggml_graph_reset (gf);
  16214. ggml_set_f32 (f->grad, 1.0f);
  16215. ggml_graph_compute(gb, cplan);
  16216. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16217. *fx += ggml_get_f32_1d(f, 0);
  16218. }
  16219. *fx *= accum_norm;
  16220. }
  16221. ++count;
  16222. if (*fx > finit + (*step)*dgtest) {
  16223. width = dec;
  16224. } else {
  16225. // Armijo condition is satisfied
  16226. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16227. return count;
  16228. }
  16229. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16230. // check the Wolfe condition
  16231. if (dg < params->lbfgs.wolfe * dginit) {
  16232. width = inc;
  16233. } else {
  16234. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16235. // regular Wolfe conditions
  16236. return count;
  16237. }
  16238. if(dg > -params->lbfgs.wolfe*dginit) {
  16239. width = dec;
  16240. } else {
  16241. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16242. return count;
  16243. }
  16244. }
  16245. }
  16246. if (*step < params->lbfgs.min_step) {
  16247. return GGML_LINESEARCH_MINIMUM_STEP;
  16248. }
  16249. if (*step > params->lbfgs.max_step) {
  16250. return GGML_LINESEARCH_MAXIMUM_STEP;
  16251. }
  16252. if (params->lbfgs.max_linesearch <= count) {
  16253. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16254. }
  16255. (*step) *= width;
  16256. }
  16257. GGML_ASSERT(false && "line search failed");
  16258. return GGML_LINESEARCH_FAIL;
  16259. }
  16260. static enum ggml_opt_result ggml_opt_lbfgs(
  16261. struct ggml_context * ctx,
  16262. struct ggml_opt_context * opt,
  16263. struct ggml_opt_params params,
  16264. struct ggml_tensor * f,
  16265. struct ggml_cgraph * gf,
  16266. struct ggml_cgraph * gb,
  16267. ggml_opt_callback callback,
  16268. void * callback_data) {
  16269. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16270. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16271. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16272. return GGML_OPT_RESULT_INVALID_WOLFE;
  16273. }
  16274. }
  16275. const int m = params.lbfgs.m;
  16276. // these will store the parameters we want to optimize
  16277. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16278. int np = 0;
  16279. int nx = 0;
  16280. for (int i = 0; i < gf->n_nodes; ++i) {
  16281. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16282. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16283. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16284. ps[np++] = gf->nodes[i];
  16285. nx += ggml_nelements(gf->nodes[i]);
  16286. }
  16287. }
  16288. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16289. int iter = opt->iter;
  16290. ggml_opt_init(ctx, opt, params, nx);
  16291. opt->iter = iter;
  16292. }
  16293. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16294. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16295. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16296. float * x = opt->lbfgs.x->data; // current parameters
  16297. float * xp = opt->lbfgs.xp->data; // previous parameters
  16298. float * g = opt->lbfgs.g->data; // current gradient
  16299. float * gp = opt->lbfgs.gp->data; // previous gradient
  16300. float * d = opt->lbfgs.d->data; // search direction
  16301. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16302. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16303. const float accum_norm = 1.0f / (float) n_accum;
  16304. float fx = 0.0f; // cost function value
  16305. float xnorm = 0.0f; // ||x||
  16306. float gnorm = 0.0f; // ||g||
  16307. // initialize x from the graph nodes
  16308. ggml_opt_get_params(np, ps, x);
  16309. // the L-BFGS memory
  16310. float * lm_alpha = opt->lbfgs.lmal->data;
  16311. float * lm_ys = opt->lbfgs.lmys->data;
  16312. float * lm_s = opt->lbfgs.lms->data;
  16313. float * lm_y = opt->lbfgs.lmy->data;
  16314. bool cancel = false;
  16315. // evaluate the function value and its gradient
  16316. {
  16317. ggml_opt_set_params(np, ps, x);
  16318. fx = 0;
  16319. memset(g, 0, sizeof(float)*nx);
  16320. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16321. if (callback) {
  16322. // LBFG-S does not support learning rate -> ignore learning schedule
  16323. float sched = 0;
  16324. callback(callback_data, accum_step, &sched, &cancel);
  16325. if (cancel) {
  16326. return GGML_OPT_RESULT_CANCEL;
  16327. }
  16328. }
  16329. // ggml_graph_reset (gf);
  16330. ggml_set_f32 (f->grad, 1.0f);
  16331. ggml_graph_compute(gb, &cplan);
  16332. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16333. fx += ggml_get_f32_1d(f, 0);
  16334. }
  16335. fx *= accum_norm;
  16336. opt->loss_before = fx;
  16337. opt->loss_after = fx;
  16338. }
  16339. // search direction = -gradient
  16340. ggml_vec_neg_f32(nx, d, g);
  16341. // ||x||, ||g||
  16342. ggml_vec_norm_f32(nx, &xnorm, x);
  16343. ggml_vec_norm_f32(nx, &gnorm, g);
  16344. if (xnorm < 1.0f) {
  16345. xnorm = 1.0f;
  16346. }
  16347. // already optimized
  16348. if (gnorm/xnorm <= params.lbfgs.eps) {
  16349. return GGML_OPT_RESULT_OK;
  16350. }
  16351. if (opt->just_initialized) {
  16352. if (pf) {
  16353. pf[0] = fx;
  16354. }
  16355. opt->lbfgs.fx_best = fx;
  16356. // initial step
  16357. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16358. opt->lbfgs.j = 0;
  16359. opt->lbfgs.k = 1;
  16360. opt->lbfgs.end = 0;
  16361. opt->lbfgs.n_no_improvement = 0;
  16362. opt->just_initialized = false;
  16363. }
  16364. float * fx_best = &opt->lbfgs.fx_best;
  16365. float * step = &opt->lbfgs.step;
  16366. int * j = &opt->lbfgs.j;
  16367. int * k = &opt->lbfgs.k;
  16368. int * end = &opt->lbfgs.end;
  16369. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16370. int ls = 0;
  16371. int bound = 0;
  16372. float ys = 0.0f;
  16373. float yy = 0.0f;
  16374. float beta = 0.0f;
  16375. int it = 0;
  16376. while (true) {
  16377. // store the current position and gradient vectors
  16378. ggml_vec_cpy_f32(nx, xp, x);
  16379. ggml_vec_cpy_f32(nx, gp, g);
  16380. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16381. // to determine if the optimization should be cancelled
  16382. // this is a simple change, but not doing this atm, since I don't have a nice
  16383. // way to test and don't want to break something with so many changes lined up
  16384. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16385. if (cancel) {
  16386. return GGML_OPT_RESULT_CANCEL;
  16387. }
  16388. if (ls < 0) {
  16389. // linesearch failed - go back to the previous point and return
  16390. ggml_vec_cpy_f32(nx, x, xp);
  16391. ggml_vec_cpy_f32(nx, g, gp);
  16392. return ls;
  16393. }
  16394. opt->loss_after = fx;
  16395. ggml_vec_norm_f32(nx, &xnorm, x);
  16396. ggml_vec_norm_f32(nx, &gnorm, g);
  16397. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16398. if (xnorm < 1.0f) {
  16399. xnorm = 1.0f;
  16400. }
  16401. if (gnorm/xnorm <= params.lbfgs.eps) {
  16402. // converged
  16403. return GGML_OPT_RESULT_OK;
  16404. }
  16405. // delta-based convergence test
  16406. if (pf != NULL) {
  16407. // need at least params.past iterations to start checking for convergence
  16408. if (params.past <= k[0]) {
  16409. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16410. if (fabsf(rate) < params.delta) {
  16411. return GGML_OPT_RESULT_OK;
  16412. }
  16413. }
  16414. pf[k[0]%params.past] = fx;
  16415. }
  16416. // check for improvement
  16417. if (params.max_no_improvement > 0) {
  16418. if (fx < fx_best[0]) {
  16419. fx_best[0] = fx;
  16420. n_no_improvement[0] = 0;
  16421. } else {
  16422. n_no_improvement[0]++;
  16423. if (n_no_improvement[0] >= params.max_no_improvement) {
  16424. return GGML_OPT_RESULT_OK;
  16425. }
  16426. }
  16427. }
  16428. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16429. // reached the maximum number of iterations
  16430. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16431. }
  16432. // update vectors s and y:
  16433. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16434. // y_{k+1} = g_{k+1} - g_{k}.
  16435. //
  16436. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16437. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16438. // compute scalars ys and yy:
  16439. // ys = y^t \cdot s -> 1 / \rho.
  16440. // yy = y^t \cdot y.
  16441. //
  16442. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16443. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16444. lm_ys[end[0]] = ys;
  16445. // find new search direction
  16446. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16447. bound = (m <= k[0]) ? m : k[0];
  16448. k[0]++;
  16449. it++;
  16450. end[0] = (end[0] + 1)%m;
  16451. // initialize search direction with -g
  16452. ggml_vec_neg_f32(nx, d, g);
  16453. j[0] = end[0];
  16454. for (int i = 0; i < bound; ++i) {
  16455. j[0] = (j[0] + m - 1) % m;
  16456. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16457. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16458. lm_alpha[j[0]] /= lm_ys[j[0]];
  16459. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16460. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16461. }
  16462. ggml_vec_scale_f32(nx, d, ys/yy);
  16463. for (int i = 0; i < bound; ++i) {
  16464. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16465. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16466. beta /= lm_ys[j[0]];
  16467. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16468. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16469. j[0] = (j[0] + 1)%m;
  16470. }
  16471. step[0] = 1.0;
  16472. }
  16473. GGML_ASSERT(false && "lbfgs failed");
  16474. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16475. }
  16476. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16477. struct ggml_opt_params result;
  16478. switch (type) {
  16479. case GGML_OPT_TYPE_ADAM:
  16480. {
  16481. result = (struct ggml_opt_params) {
  16482. .type = GGML_OPT_TYPE_ADAM,
  16483. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16484. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16485. .past = 0,
  16486. .delta = 1e-5f,
  16487. .max_no_improvement = 100,
  16488. .print_forward_graph = true,
  16489. .print_backward_graph = true,
  16490. .n_gradient_accumulation = 1,
  16491. .adam = {
  16492. .n_iter = 10000,
  16493. .sched = 1.000f,
  16494. .decay = 0.0f,
  16495. .decay_min_ndim = 2,
  16496. .alpha = 0.001f,
  16497. .beta1 = 0.9f,
  16498. .beta2 = 0.999f,
  16499. .eps = 1e-8f,
  16500. .eps_f = 1e-5f,
  16501. .eps_g = 1e-3f,
  16502. .gclip = 0.0f,
  16503. },
  16504. };
  16505. } break;
  16506. case GGML_OPT_TYPE_LBFGS:
  16507. {
  16508. result = (struct ggml_opt_params) {
  16509. .type = GGML_OPT_TYPE_LBFGS,
  16510. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16511. .n_threads = 1,
  16512. .past = 0,
  16513. .delta = 1e-5f,
  16514. .max_no_improvement = 0,
  16515. .print_forward_graph = true,
  16516. .print_backward_graph = true,
  16517. .n_gradient_accumulation = 1,
  16518. .lbfgs = {
  16519. .m = 6,
  16520. .n_iter = 100,
  16521. .max_linesearch = 20,
  16522. .eps = 1e-5f,
  16523. .ftol = 1e-4f,
  16524. .wolfe = 0.9f,
  16525. .min_step = 1e-20f,
  16526. .max_step = 1e+20f,
  16527. .linesearch = GGML_LINESEARCH_DEFAULT,
  16528. },
  16529. };
  16530. } break;
  16531. }
  16532. return result;
  16533. }
  16534. GGML_API void ggml_opt_init(
  16535. struct ggml_context * ctx,
  16536. struct ggml_opt_context * opt,
  16537. struct ggml_opt_params params,
  16538. int64_t nx) {
  16539. opt->ctx = ctx;
  16540. opt->params = params;
  16541. opt->iter = 0;
  16542. opt->nx = nx;
  16543. opt->just_initialized = true;
  16544. if (opt->ctx == NULL) {
  16545. struct ggml_init_params ctx_opt_params;
  16546. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16547. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16548. if (opt->params.past > 0) {
  16549. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16550. }
  16551. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16552. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16553. if (opt->params.past > 0) {
  16554. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16555. }
  16556. }
  16557. ctx_opt_params.mem_buffer = NULL;
  16558. ctx_opt_params.no_alloc = false;
  16559. opt->ctx = ggml_init(ctx_opt_params);
  16560. }
  16561. switch (opt->params.type) {
  16562. case GGML_OPT_TYPE_ADAM:
  16563. {
  16564. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16565. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16566. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16567. opt->adam.pf = params.past > 0
  16568. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16569. : NULL;
  16570. ggml_set_zero(opt->adam.m);
  16571. ggml_set_zero(opt->adam.v);
  16572. if (opt->adam.pf) {
  16573. ggml_set_zero(opt->adam.pf);
  16574. }
  16575. } break;
  16576. case GGML_OPT_TYPE_LBFGS:
  16577. {
  16578. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16579. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16580. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16581. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16582. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16583. opt->lbfgs.pf = params.past > 0
  16584. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16585. : NULL;
  16586. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16587. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16588. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16589. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16590. ggml_set_zero(opt->lbfgs.x);
  16591. ggml_set_zero(opt->lbfgs.xp);
  16592. ggml_set_zero(opt->lbfgs.g);
  16593. ggml_set_zero(opt->lbfgs.gp);
  16594. ggml_set_zero(opt->lbfgs.d);
  16595. if (opt->lbfgs.pf) {
  16596. ggml_set_zero(opt->lbfgs.pf);
  16597. }
  16598. ggml_set_zero(opt->lbfgs.lmal);
  16599. ggml_set_zero(opt->lbfgs.lmys);
  16600. ggml_set_zero(opt->lbfgs.lms);
  16601. ggml_set_zero(opt->lbfgs.lmy);
  16602. } break;
  16603. }
  16604. }
  16605. enum ggml_opt_result ggml_opt(
  16606. struct ggml_context * ctx,
  16607. struct ggml_opt_params params,
  16608. struct ggml_tensor * f) {
  16609. bool free_ctx = false;
  16610. if (ctx == NULL) {
  16611. struct ggml_init_params params_ctx = {
  16612. .mem_size = 16*1024*1024,
  16613. .mem_buffer = NULL,
  16614. .no_alloc = false,
  16615. };
  16616. ctx = ggml_init(params_ctx);
  16617. if (ctx == NULL) {
  16618. return GGML_OPT_RESULT_NO_CONTEXT;
  16619. }
  16620. free_ctx = true;
  16621. }
  16622. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16623. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16624. ggml_opt_init(ctx, opt, params, 0);
  16625. result = ggml_opt_resume(ctx, opt, f);
  16626. if (free_ctx) {
  16627. ggml_free(ctx);
  16628. }
  16629. return result;
  16630. }
  16631. enum ggml_opt_result ggml_opt_resume(
  16632. struct ggml_context * ctx,
  16633. struct ggml_opt_context * opt,
  16634. struct ggml_tensor * f) {
  16635. // build forward + backward compute graphs
  16636. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16637. ggml_build_forward_expand(gf, f);
  16638. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16639. ggml_build_backward_expand(ctx, gf, gb, true);
  16640. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16641. }
  16642. enum ggml_opt_result ggml_opt_resume_g(
  16643. struct ggml_context * ctx,
  16644. struct ggml_opt_context * opt,
  16645. struct ggml_tensor * f,
  16646. struct ggml_cgraph * gf,
  16647. struct ggml_cgraph * gb,
  16648. ggml_opt_callback callback,
  16649. void * callback_data) {
  16650. // build forward + backward compute graphs
  16651. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16652. switch (opt->params.type) {
  16653. case GGML_OPT_TYPE_ADAM:
  16654. {
  16655. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16656. } break;
  16657. case GGML_OPT_TYPE_LBFGS:
  16658. {
  16659. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16660. } break;
  16661. }
  16662. if (opt->params.print_forward_graph) {
  16663. ggml_graph_print (gf);
  16664. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16665. }
  16666. if (opt->params.print_backward_graph) {
  16667. ggml_graph_print (gb);
  16668. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16669. }
  16670. return result;
  16671. }
  16672. ////////////////////////////////////////////////////////////////////////////////
  16673. void ggml_set_input(struct ggml_tensor * tensor) {
  16674. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16675. }
  16676. void ggml_set_output(struct ggml_tensor * tensor) {
  16677. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16678. }
  16679. ////////////////////////////////////////////////////////////////////////////////
  16680. void ggml_quantize_init(enum ggml_type type) {
  16681. ggml_critical_section_start();
  16682. switch (type) {
  16683. case GGML_TYPE_IQ2_XXS:
  16684. case GGML_TYPE_IQ2_XS:
  16685. case GGML_TYPE_IQ2_S:
  16686. case GGML_TYPE_IQ1_S:
  16687. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16688. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16689. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16690. default: // nothing
  16691. break;
  16692. }
  16693. ggml_critical_section_end();
  16694. }
  16695. void ggml_quantize_free(void) {
  16696. ggml_critical_section_start();
  16697. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16698. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16699. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16700. iq3xs_free_impl(256);
  16701. ggml_critical_section_end();
  16702. }
  16703. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16704. return
  16705. type == GGML_TYPE_IQ2_XXS ||
  16706. type == GGML_TYPE_IQ2_XS ||
  16707. type == GGML_TYPE_IQ1_S;// ||
  16708. //type == GGML_TYPE_IQ1_M;
  16709. }
  16710. size_t ggml_quantize_chunk(
  16711. enum ggml_type type,
  16712. const float * src,
  16713. void * dst,
  16714. int start,
  16715. int nrows,
  16716. int n_per_row,
  16717. const float * imatrix) {
  16718. const int n = nrows * n_per_row;
  16719. if (ggml_quantize_requires_imatrix(type)) {
  16720. GGML_ASSERT(imatrix != NULL);
  16721. }
  16722. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16723. GGML_ASSERT(start % n_per_row == 0);
  16724. ggml_quantize_init(type); // this is noop if already initialized
  16725. const size_t start_row = start / n_per_row;
  16726. const size_t row_size = ggml_row_size(type, n_per_row);
  16727. size_t result = 0;
  16728. switch (type) {
  16729. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16730. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16731. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16732. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16733. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16734. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16735. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16736. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16737. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16738. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16739. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16740. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16741. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16742. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16743. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16744. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16745. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16746. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16747. #if QK_K == 64
  16748. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16749. #else
  16750. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16751. #endif
  16752. case GGML_TYPE_F16:
  16753. {
  16754. size_t elemsize = sizeof(ggml_fp16_t);
  16755. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16756. result = n * elemsize;
  16757. } break;
  16758. case GGML_TYPE_F32:
  16759. {
  16760. size_t elemsize = sizeof(float);
  16761. result = n * elemsize;
  16762. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16763. } break;
  16764. default:
  16765. assert(false);
  16766. }
  16767. GGML_ASSERT(result == nrows * row_size);
  16768. return result;
  16769. }
  16770. ////////////////////////////////////////////////////////////////////////////////
  16771. struct gguf_str {
  16772. uint64_t n; // GGUFv2
  16773. char * data;
  16774. };
  16775. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16776. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16777. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16778. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16779. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16780. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16781. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16782. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16783. [GGUF_TYPE_BOOL] = sizeof(bool),
  16784. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16785. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16786. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16787. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16788. [GGUF_TYPE_ARRAY] = 0, // undefined
  16789. };
  16790. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16791. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16792. [GGUF_TYPE_UINT8] = "u8",
  16793. [GGUF_TYPE_INT8] = "i8",
  16794. [GGUF_TYPE_UINT16] = "u16",
  16795. [GGUF_TYPE_INT16] = "i16",
  16796. [GGUF_TYPE_UINT32] = "u32",
  16797. [GGUF_TYPE_INT32] = "i32",
  16798. [GGUF_TYPE_FLOAT32] = "f32",
  16799. [GGUF_TYPE_BOOL] = "bool",
  16800. [GGUF_TYPE_STRING] = "str",
  16801. [GGUF_TYPE_ARRAY] = "arr",
  16802. [GGUF_TYPE_UINT64] = "u64",
  16803. [GGUF_TYPE_INT64] = "i64",
  16804. [GGUF_TYPE_FLOAT64] = "f64",
  16805. };
  16806. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16807. union gguf_value {
  16808. uint8_t uint8;
  16809. int8_t int8;
  16810. uint16_t uint16;
  16811. int16_t int16;
  16812. uint32_t uint32;
  16813. int32_t int32;
  16814. float float32;
  16815. uint64_t uint64;
  16816. int64_t int64;
  16817. double float64;
  16818. bool bool_;
  16819. struct gguf_str str;
  16820. struct {
  16821. enum gguf_type type;
  16822. uint64_t n; // GGUFv2
  16823. void * data;
  16824. } arr;
  16825. };
  16826. struct gguf_kv {
  16827. struct gguf_str key;
  16828. enum gguf_type type;
  16829. union gguf_value value;
  16830. };
  16831. struct gguf_header {
  16832. char magic[4];
  16833. uint32_t version;
  16834. uint64_t n_tensors; // GGUFv2
  16835. uint64_t n_kv; // GGUFv2
  16836. };
  16837. struct gguf_tensor_info {
  16838. struct gguf_str name;
  16839. uint32_t n_dims;
  16840. uint64_t ne[GGML_MAX_DIMS];
  16841. enum ggml_type type;
  16842. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16843. // for writing API
  16844. const void * data;
  16845. size_t size;
  16846. };
  16847. struct gguf_context {
  16848. struct gguf_header header;
  16849. struct gguf_kv * kv;
  16850. struct gguf_tensor_info * infos;
  16851. size_t alignment;
  16852. size_t offset; // offset of `data` from beginning of file
  16853. size_t size; // size of `data` in bytes
  16854. //uint8_t * padding;
  16855. void * data;
  16856. };
  16857. static size_t gguf_type_size(enum gguf_type type) {
  16858. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16859. return GGUF_TYPE_SIZE[type];
  16860. }
  16861. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16862. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16863. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16864. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16865. GGML_ASSERT(info->ne[i] > 0);
  16866. }
  16867. // prevent overflow for total number of elements
  16868. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16869. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16870. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16871. }
  16872. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16873. const size_t n = fread(dst, 1, size, file);
  16874. *offset += n;
  16875. return n == size;
  16876. }
  16877. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16878. p->n = 0;
  16879. p->data = NULL;
  16880. bool ok = true;
  16881. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16882. // early exit if string length is invalid, prevents from integer overflow
  16883. if (p->n == SIZE_MAX) {
  16884. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16885. return false;
  16886. }
  16887. p->data = GGML_CALLOC(p->n + 1, 1);
  16888. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16889. return ok;
  16890. }
  16891. struct gguf_context * gguf_init_empty(void) {
  16892. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16893. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16894. ctx->header.version = GGUF_VERSION;
  16895. ctx->header.n_tensors = 0;
  16896. ctx->header.n_kv = 0;
  16897. ctx->kv = NULL;
  16898. ctx->infos = NULL;
  16899. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16900. ctx->offset = 0;
  16901. ctx->size = 0;
  16902. ctx->data = NULL;
  16903. return ctx;
  16904. }
  16905. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16906. FILE * file = ggml_fopen(fname, "rb");
  16907. if (!file) {
  16908. return NULL;
  16909. }
  16910. // offset from start of file
  16911. size_t offset = 0;
  16912. char magic[4];
  16913. // check the magic before making allocations
  16914. {
  16915. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16916. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16917. if (magic[i] != GGUF_MAGIC[i]) {
  16918. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16919. fclose(file);
  16920. return NULL;
  16921. }
  16922. }
  16923. }
  16924. bool ok = true;
  16925. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16926. // read the header
  16927. {
  16928. strncpy(ctx->header.magic, magic, 4);
  16929. ctx->kv = NULL;
  16930. ctx->infos = NULL;
  16931. ctx->data = NULL;
  16932. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16933. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16934. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16935. if (ctx->header.version == 1) {
  16936. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16937. fclose(file);
  16938. gguf_free(ctx);
  16939. return NULL;
  16940. }
  16941. // sanity-checks to prevent from integer/buffer overflows
  16942. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16943. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16944. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16945. if (!ok) {
  16946. fprintf(stderr, "%s: failed to read header\n", __func__);
  16947. fclose(file);
  16948. gguf_free(ctx);
  16949. return NULL;
  16950. }
  16951. }
  16952. // read the kv pairs
  16953. {
  16954. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16955. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16956. struct gguf_kv * kv = &ctx->kv[i];
  16957. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16958. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16959. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16960. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16961. switch (kv->type) {
  16962. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16963. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16964. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16965. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16966. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16967. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16968. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16969. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16970. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16971. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16972. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16973. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16974. case GGUF_TYPE_ARRAY:
  16975. {
  16976. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16977. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16978. switch (kv->value.arr.type) {
  16979. case GGUF_TYPE_UINT8:
  16980. case GGUF_TYPE_INT8:
  16981. case GGUF_TYPE_UINT16:
  16982. case GGUF_TYPE_INT16:
  16983. case GGUF_TYPE_UINT32:
  16984. case GGUF_TYPE_INT32:
  16985. case GGUF_TYPE_FLOAT32:
  16986. case GGUF_TYPE_UINT64:
  16987. case GGUF_TYPE_INT64:
  16988. case GGUF_TYPE_FLOAT64:
  16989. case GGUF_TYPE_BOOL:
  16990. {
  16991. // prevent from integer overflow in the malloc below
  16992. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16993. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16994. fclose(file);
  16995. gguf_free(ctx);
  16996. return NULL;
  16997. }
  16998. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16999. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17000. } break;
  17001. case GGUF_TYPE_STRING:
  17002. {
  17003. // prevent from integer overflow in the malloc below
  17004. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17005. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17006. fclose(file);
  17007. gguf_free(ctx);
  17008. return NULL;
  17009. }
  17010. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17011. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17012. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17013. }
  17014. } break;
  17015. case GGUF_TYPE_ARRAY:
  17016. default: GGML_ASSERT(false && "invalid type"); break;
  17017. }
  17018. } break;
  17019. default: GGML_ASSERT(false && "invalid type");
  17020. }
  17021. if (!ok) {
  17022. break;
  17023. }
  17024. }
  17025. if (!ok) {
  17026. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17027. fclose(file);
  17028. gguf_free(ctx);
  17029. return NULL;
  17030. }
  17031. }
  17032. // read the tensor infos
  17033. {
  17034. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17035. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17036. struct gguf_tensor_info * info = &ctx->infos[i];
  17037. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17038. info->ne[j] = 1;
  17039. }
  17040. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17041. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17042. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17043. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17044. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17045. }
  17046. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17047. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17048. gguf_tensor_info_sanitize(info);
  17049. if (!ok) {
  17050. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17051. fclose(file);
  17052. gguf_free(ctx);
  17053. return NULL;
  17054. }
  17055. }
  17056. }
  17057. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17058. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17059. if (alignment_idx != -1) {
  17060. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17061. }
  17062. // we require the data section to be aligned, so take into account any padding
  17063. {
  17064. const size_t offset_pad = offset % ctx->alignment;
  17065. if (offset_pad != 0) {
  17066. offset += ctx->alignment - offset_pad;
  17067. fseek(file, offset, SEEK_SET);
  17068. }
  17069. }
  17070. // store the current file offset - this is where the data section starts
  17071. ctx->offset = offset;
  17072. // compute the total size of the data section, taking into account the alignment
  17073. {
  17074. ctx->size = 0;
  17075. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17076. struct gguf_tensor_info * info = &ctx->infos[i];
  17077. const int64_t ne =
  17078. (int64_t) info->ne[0] *
  17079. (int64_t) info->ne[1] *
  17080. (int64_t) info->ne[2] *
  17081. (int64_t) info->ne[3];
  17082. if (ne % ggml_blck_size(info->type) != 0) {
  17083. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17084. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17085. fclose(file);
  17086. gguf_free(ctx);
  17087. return NULL;
  17088. }
  17089. const size_t size_cur = ggml_row_size(info->type, ne);
  17090. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17091. }
  17092. }
  17093. // load the tensor data only if requested
  17094. if (params.ctx != NULL) {
  17095. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17096. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17097. // the ggml_tensor structs to the appropriate locations in the binary blob
  17098. // compute the exact size needed for the new ggml_context
  17099. const size_t mem_size =
  17100. params.no_alloc ?
  17101. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17102. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17103. struct ggml_init_params pdata = {
  17104. .mem_size = mem_size,
  17105. .mem_buffer = NULL,
  17106. .no_alloc = params.no_alloc,
  17107. };
  17108. *params.ctx = ggml_init(pdata);
  17109. struct ggml_context * ctx_data = *params.ctx;
  17110. struct ggml_tensor * data = NULL;
  17111. if (!params.no_alloc) {
  17112. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17113. ok = ok && data != NULL;
  17114. // read the binary blob with the tensor data
  17115. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17116. if (!ok) {
  17117. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17118. fclose(file);
  17119. ggml_free(ctx_data);
  17120. gguf_free(ctx);
  17121. return NULL;
  17122. }
  17123. ctx->data = data->data;
  17124. }
  17125. ggml_set_no_alloc(ctx_data, true);
  17126. // create the tensors
  17127. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17128. const int64_t ne[GGML_MAX_DIMS] = {
  17129. ctx->infos[i].ne[0],
  17130. ctx->infos[i].ne[1],
  17131. ctx->infos[i].ne[2],
  17132. ctx->infos[i].ne[3],
  17133. };
  17134. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17135. ok = ok && cur != NULL;
  17136. ggml_set_name(cur, ctx->infos[i].name.data);
  17137. if (!ok) {
  17138. break;
  17139. }
  17140. // point the data member to the appropriate location in the binary blob using the tensor infos
  17141. if (!params.no_alloc) {
  17142. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17143. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17144. }
  17145. }
  17146. if (!ok) {
  17147. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17148. fclose(file);
  17149. ggml_free(ctx_data);
  17150. gguf_free(ctx);
  17151. return NULL;
  17152. }
  17153. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17154. }
  17155. fclose(file);
  17156. return ctx;
  17157. }
  17158. void gguf_free(struct gguf_context * ctx) {
  17159. if (ctx == NULL) {
  17160. return;
  17161. }
  17162. if (ctx->kv) {
  17163. // free string memory - not great..
  17164. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17165. struct gguf_kv * kv = &ctx->kv[i];
  17166. if (kv->key.data) {
  17167. GGML_FREE(kv->key.data);
  17168. }
  17169. if (kv->type == GGUF_TYPE_STRING) {
  17170. if (kv->value.str.data) {
  17171. GGML_FREE(kv->value.str.data);
  17172. }
  17173. }
  17174. if (kv->type == GGUF_TYPE_ARRAY) {
  17175. if (kv->value.arr.data) {
  17176. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17177. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17178. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17179. if (str->data) {
  17180. GGML_FREE(str->data);
  17181. }
  17182. }
  17183. }
  17184. GGML_FREE(kv->value.arr.data);
  17185. }
  17186. }
  17187. }
  17188. GGML_FREE(ctx->kv);
  17189. }
  17190. if (ctx->infos) {
  17191. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17192. struct gguf_tensor_info * info = &ctx->infos[i];
  17193. if (info->name.data) {
  17194. GGML_FREE(info->name.data);
  17195. }
  17196. }
  17197. GGML_FREE(ctx->infos);
  17198. }
  17199. GGML_ALIGNED_FREE(ctx);
  17200. }
  17201. const char * gguf_type_name(enum gguf_type type) {
  17202. return GGUF_TYPE_NAME[type];
  17203. }
  17204. int gguf_get_version(const struct gguf_context * ctx) {
  17205. return ctx->header.version;
  17206. }
  17207. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17208. return ctx->alignment;
  17209. }
  17210. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17211. return ctx->offset;
  17212. }
  17213. void * gguf_get_data(const struct gguf_context * ctx) {
  17214. return ctx->data;
  17215. }
  17216. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17217. return ctx->header.n_kv;
  17218. }
  17219. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17220. // return -1 if key not found
  17221. int keyfound = -1;
  17222. const int n_kv = gguf_get_n_kv(ctx);
  17223. for (int i = 0; i < n_kv; ++i) {
  17224. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17225. keyfound = i;
  17226. break;
  17227. }
  17228. }
  17229. return keyfound;
  17230. }
  17231. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17232. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17233. return ctx->kv[key_id].key.data;
  17234. }
  17235. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17236. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17237. return ctx->kv[key_id].type;
  17238. }
  17239. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17240. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17242. return ctx->kv[key_id].value.arr.type;
  17243. }
  17244. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17245. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17246. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17247. return ctx->kv[key_id].value.arr.data;
  17248. }
  17249. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17251. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17252. struct gguf_kv * kv = &ctx->kv[key_id];
  17253. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17254. return str->data;
  17255. }
  17256. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17257. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17258. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17259. return ctx->kv[key_id].value.arr.n;
  17260. }
  17261. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17262. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17263. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17264. return ctx->kv[key_id].value.uint8;
  17265. }
  17266. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17267. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17268. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17269. return ctx->kv[key_id].value.int8;
  17270. }
  17271. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17273. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17274. return ctx->kv[key_id].value.uint16;
  17275. }
  17276. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17277. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17278. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17279. return ctx->kv[key_id].value.int16;
  17280. }
  17281. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17282. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17283. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17284. return ctx->kv[key_id].value.uint32;
  17285. }
  17286. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17287. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17288. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17289. return ctx->kv[key_id].value.int32;
  17290. }
  17291. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17292. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17293. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17294. return ctx->kv[key_id].value.float32;
  17295. }
  17296. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17297. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17298. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17299. return ctx->kv[key_id].value.uint64;
  17300. }
  17301. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17302. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17303. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17304. return ctx->kv[key_id].value.int64;
  17305. }
  17306. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17307. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17308. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17309. return ctx->kv[key_id].value.float64;
  17310. }
  17311. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17312. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17313. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17314. return ctx->kv[key_id].value.bool_;
  17315. }
  17316. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17317. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17318. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17319. return ctx->kv[key_id].value.str.data;
  17320. }
  17321. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17322. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17323. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17324. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17325. return &ctx->kv[key_id].value;
  17326. }
  17327. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17328. return ctx->header.n_tensors;
  17329. }
  17330. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17331. // return -1 if tensor not found
  17332. int tensorfound = -1;
  17333. const int n_tensors = gguf_get_n_tensors(ctx);
  17334. for (int i = 0; i < n_tensors; ++i) {
  17335. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17336. tensorfound = i;
  17337. break;
  17338. }
  17339. }
  17340. return tensorfound;
  17341. }
  17342. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17343. return ctx->infos[i].offset;
  17344. }
  17345. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17346. return ctx->infos[i].name.data;
  17347. }
  17348. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17349. return ctx->infos[i].type;
  17350. }
  17351. // returns the index
  17352. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17353. const int idx = gguf_find_key(ctx, key);
  17354. if (idx >= 0) {
  17355. return idx;
  17356. }
  17357. const int n_kv = gguf_get_n_kv(ctx);
  17358. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17359. ctx->kv[n_kv].key.n = strlen(key);
  17360. ctx->kv[n_kv].key.data = strdup(key);
  17361. ctx->header.n_kv++;
  17362. return n_kv;
  17363. }
  17364. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17365. const int idx = gguf_get_or_add_key(ctx, key);
  17366. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17367. ctx->kv[idx].value.uint8 = val;
  17368. }
  17369. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17370. const int idx = gguf_get_or_add_key(ctx, key);
  17371. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17372. ctx->kv[idx].value.int8 = val;
  17373. }
  17374. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17375. const int idx = gguf_get_or_add_key(ctx, key);
  17376. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17377. ctx->kv[idx].value.uint16 = val;
  17378. }
  17379. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17380. const int idx = gguf_get_or_add_key(ctx, key);
  17381. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17382. ctx->kv[idx].value.int16 = val;
  17383. }
  17384. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17385. const int idx = gguf_get_or_add_key(ctx, key);
  17386. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17387. ctx->kv[idx].value.uint32 = val;
  17388. }
  17389. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17390. const int idx = gguf_get_or_add_key(ctx, key);
  17391. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17392. ctx->kv[idx].value.int32 = val;
  17393. }
  17394. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17395. const int idx = gguf_get_or_add_key(ctx, key);
  17396. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17397. ctx->kv[idx].value.float32 = val;
  17398. }
  17399. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17400. const int idx = gguf_get_or_add_key(ctx, key);
  17401. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17402. ctx->kv[idx].value.uint64 = val;
  17403. }
  17404. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17405. const int idx = gguf_get_or_add_key(ctx, key);
  17406. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17407. ctx->kv[idx].value.int64 = val;
  17408. }
  17409. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17410. const int idx = gguf_get_or_add_key(ctx, key);
  17411. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17412. ctx->kv[idx].value.float64 = val;
  17413. }
  17414. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17415. const int idx = gguf_get_or_add_key(ctx, key);
  17416. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17417. ctx->kv[idx].value.bool_ = val;
  17418. }
  17419. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17420. const int idx = gguf_get_or_add_key(ctx, key);
  17421. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17422. ctx->kv[idx].value.str.n = strlen(val);
  17423. ctx->kv[idx].value.str.data = strdup(val);
  17424. }
  17425. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17426. const int idx = gguf_get_or_add_key(ctx, key);
  17427. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17428. ctx->kv[idx].value.arr.type = type;
  17429. ctx->kv[idx].value.arr.n = n;
  17430. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17431. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17432. }
  17433. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17434. const int idx = gguf_get_or_add_key(ctx, key);
  17435. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17436. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17437. ctx->kv[idx].value.arr.n = n;
  17438. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17439. for (int i = 0; i < n; i++) {
  17440. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17441. str->n = strlen(data[i]);
  17442. str->data = strdup(data[i]);
  17443. }
  17444. }
  17445. // set or add KV pairs from another context
  17446. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17447. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17448. switch (src->kv[i].type) {
  17449. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17450. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17451. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17452. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17453. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17454. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17455. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17456. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17457. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17458. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17459. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17460. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17461. case GGUF_TYPE_ARRAY:
  17462. {
  17463. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17464. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17465. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17466. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17467. }
  17468. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17469. GGML_FREE((void *)data);
  17470. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17471. GGML_ASSERT(false && "nested arrays not supported");
  17472. } else {
  17473. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17474. }
  17475. } break;
  17476. default: GGML_ASSERT(false && "invalid type"); break;
  17477. }
  17478. }
  17479. }
  17480. void gguf_add_tensor(
  17481. struct gguf_context * ctx,
  17482. const struct ggml_tensor * tensor) {
  17483. const int idx = ctx->header.n_tensors;
  17484. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17485. ctx->infos[idx].name.n = strlen(tensor->name);
  17486. ctx->infos[idx].name.data = strdup(tensor->name);
  17487. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17488. ctx->infos[idx].ne[i] = 1;
  17489. }
  17490. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17491. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17492. ctx->infos[idx].ne[i] = tensor->ne[i];
  17493. }
  17494. ctx->infos[idx].type = tensor->type;
  17495. ctx->infos[idx].offset = 0;
  17496. ctx->infos[idx].data = tensor->data;
  17497. ctx->infos[idx].size = ggml_nbytes(tensor);
  17498. if (ctx->header.n_tensors > 0) {
  17499. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17500. }
  17501. ctx->header.n_tensors++;
  17502. }
  17503. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17504. const int idx = gguf_find_tensor(ctx, name);
  17505. if (idx < 0) {
  17506. GGML_ASSERT(false && "tensor not found");
  17507. }
  17508. ctx->infos[idx].type = type;
  17509. }
  17510. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17511. const int idx = gguf_find_tensor(ctx, name);
  17512. if (idx < 0) {
  17513. GGML_ASSERT(false && "tensor not found");
  17514. }
  17515. ctx->infos[idx].data = data;
  17516. ctx->infos[idx].size = size;
  17517. // update offsets
  17518. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17519. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17520. }
  17521. }
  17522. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17523. // fwrite(&val->n, sizeof(val->n), 1, file);
  17524. // fwrite(val->data, sizeof(char), val->n, file);
  17525. //}
  17526. //
  17527. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17528. // fwrite(val, sizeof(char), size, file);
  17529. //}
  17530. struct gguf_buf {
  17531. void * data;
  17532. size_t size;
  17533. size_t offset;
  17534. };
  17535. static struct gguf_buf gguf_buf_init(size_t size) {
  17536. struct gguf_buf buf = {
  17537. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17538. /*buf.size =*/ size,
  17539. /*buf.offset =*/ 0,
  17540. };
  17541. return buf;
  17542. }
  17543. static void gguf_buf_free(struct gguf_buf buf) {
  17544. if (buf.data) {
  17545. GGML_FREE(buf.data);
  17546. }
  17547. }
  17548. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17549. if (buf->offset + size > buf->size) {
  17550. buf->size = 1.5*(buf->offset + size);
  17551. if (buf->data) {
  17552. buf->data = realloc(buf->data, buf->size);
  17553. }
  17554. }
  17555. }
  17556. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17557. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17558. if (buf->data) {
  17559. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17560. }
  17561. buf->offset += sizeof(val->n);
  17562. if (buf->data) {
  17563. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17564. }
  17565. buf->offset += val->n;
  17566. }
  17567. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17568. gguf_buf_grow(buf, el_size);
  17569. if (buf->data) {
  17570. memcpy((char *) buf->data + buf->offset, val, el_size);
  17571. }
  17572. buf->offset += el_size;
  17573. }
  17574. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17575. // write header
  17576. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17577. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17578. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17579. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17580. // write key-value pairs
  17581. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17582. struct gguf_kv * kv = &ctx->kv[i];
  17583. gguf_bwrite_str(buf, &kv->key);
  17584. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17585. switch (kv->type) {
  17586. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17587. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17588. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17589. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17590. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17591. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17592. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17593. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17594. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17595. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17596. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17597. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17598. case GGUF_TYPE_ARRAY:
  17599. {
  17600. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17601. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17602. switch (kv->value.arr.type) {
  17603. case GGUF_TYPE_UINT8:
  17604. case GGUF_TYPE_INT8:
  17605. case GGUF_TYPE_UINT16:
  17606. case GGUF_TYPE_INT16:
  17607. case GGUF_TYPE_UINT32:
  17608. case GGUF_TYPE_INT32:
  17609. case GGUF_TYPE_FLOAT32:
  17610. case GGUF_TYPE_UINT64:
  17611. case GGUF_TYPE_INT64:
  17612. case GGUF_TYPE_FLOAT64:
  17613. case GGUF_TYPE_BOOL:
  17614. {
  17615. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17616. } break;
  17617. case GGUF_TYPE_STRING:
  17618. {
  17619. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17620. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17621. }
  17622. } break;
  17623. case GGUF_TYPE_ARRAY:
  17624. default: GGML_ASSERT(false && "invalid type"); break;
  17625. }
  17626. } break;
  17627. default: GGML_ASSERT(false && "invalid type");
  17628. }
  17629. }
  17630. // write tensor infos
  17631. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17632. struct gguf_tensor_info * info = &ctx->infos[i];
  17633. gguf_bwrite_str(buf, &info->name);
  17634. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17635. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17636. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17637. }
  17638. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17639. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17640. }
  17641. // we require the data section to be aligned, so take into account any padding
  17642. {
  17643. const size_t offset = buf->offset;
  17644. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17645. if (offset_pad != offset) {
  17646. uint8_t pad = 0;
  17647. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17648. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17649. }
  17650. }
  17651. }
  17652. if (only_meta) {
  17653. return;
  17654. }
  17655. size_t offset = 0;
  17656. // write tensor data
  17657. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17658. struct gguf_tensor_info * info = &ctx->infos[i];
  17659. const size_t size = info->size;
  17660. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17661. gguf_bwrite_el(buf, info->data, size);
  17662. if (size_pad != size) {
  17663. uint8_t pad = 0;
  17664. for (size_t j = 0; j < size_pad - size; ++j) {
  17665. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17666. }
  17667. }
  17668. GGML_ASSERT(offset == info->offset);
  17669. offset += size_pad;
  17670. }
  17671. }
  17672. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17673. FILE * file = ggml_fopen(fname, "wb");
  17674. if (!file) {
  17675. GGML_ASSERT(false && "failed to open file for writing");
  17676. }
  17677. struct gguf_buf buf = gguf_buf_init(16*1024);
  17678. gguf_write_to_buf(ctx, &buf, only_meta);
  17679. fwrite(buf.data, 1, buf.offset, file);
  17680. gguf_buf_free(buf);
  17681. fclose(file);
  17682. }
  17683. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17684. // no allocs - only compute size
  17685. struct gguf_buf buf = gguf_buf_init(0);
  17686. gguf_write_to_buf(ctx, &buf, true);
  17687. return buf.offset;
  17688. }
  17689. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17690. struct gguf_buf buf = gguf_buf_init(16*1024);
  17691. gguf_write_to_buf(ctx, &buf, true);
  17692. memcpy(data, buf.data, buf.offset);
  17693. gguf_buf_free(buf);
  17694. }
  17695. ////////////////////////////////////////////////////////////////////////////////
  17696. int ggml_cpu_has_avx(void) {
  17697. #if defined(__AVX__)
  17698. return 1;
  17699. #else
  17700. return 0;
  17701. #endif
  17702. }
  17703. int ggml_cpu_has_avx_vnni(void) {
  17704. #if defined(__AVXVNNI__)
  17705. return 1;
  17706. #else
  17707. return 0;
  17708. #endif
  17709. }
  17710. int ggml_cpu_has_avx2(void) {
  17711. #if defined(__AVX2__)
  17712. return 1;
  17713. #else
  17714. return 0;
  17715. #endif
  17716. }
  17717. int ggml_cpu_has_avx512(void) {
  17718. #if defined(__AVX512F__)
  17719. return 1;
  17720. #else
  17721. return 0;
  17722. #endif
  17723. }
  17724. int ggml_cpu_has_avx512_vbmi(void) {
  17725. #if defined(__AVX512VBMI__)
  17726. return 1;
  17727. #else
  17728. return 0;
  17729. #endif
  17730. }
  17731. int ggml_cpu_has_avx512_vnni(void) {
  17732. #if defined(__AVX512VNNI__)
  17733. return 1;
  17734. #else
  17735. return 0;
  17736. #endif
  17737. }
  17738. int ggml_cpu_has_fma(void) {
  17739. #if defined(__FMA__)
  17740. return 1;
  17741. #else
  17742. return 0;
  17743. #endif
  17744. }
  17745. int ggml_cpu_has_neon(void) {
  17746. #if defined(__ARM_NEON)
  17747. return 1;
  17748. #else
  17749. return 0;
  17750. #endif
  17751. }
  17752. int ggml_cpu_has_arm_fma(void) {
  17753. #if defined(__ARM_FEATURE_FMA)
  17754. return 1;
  17755. #else
  17756. return 0;
  17757. #endif
  17758. }
  17759. int ggml_cpu_has_metal(void) {
  17760. #if defined(GGML_USE_METAL)
  17761. return 1;
  17762. #else
  17763. return 0;
  17764. #endif
  17765. }
  17766. int ggml_cpu_has_f16c(void) {
  17767. #if defined(__F16C__)
  17768. return 1;
  17769. #else
  17770. return 0;
  17771. #endif
  17772. }
  17773. int ggml_cpu_has_fp16_va(void) {
  17774. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17775. return 1;
  17776. #else
  17777. return 0;
  17778. #endif
  17779. }
  17780. int ggml_cpu_has_wasm_simd(void) {
  17781. #if defined(__wasm_simd128__)
  17782. return 1;
  17783. #else
  17784. return 0;
  17785. #endif
  17786. }
  17787. int ggml_cpu_has_blas(void) {
  17788. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17789. return 1;
  17790. #else
  17791. return 0;
  17792. #endif
  17793. }
  17794. int ggml_cpu_has_cuda(void) {
  17795. #if defined(GGML_USE_CUDA)
  17796. return 1;
  17797. #else
  17798. return 0;
  17799. #endif
  17800. }
  17801. int ggml_cpu_has_clblast(void) {
  17802. #if defined(GGML_USE_CLBLAST)
  17803. return 1;
  17804. #else
  17805. return 0;
  17806. #endif
  17807. }
  17808. int ggml_cpu_has_vulkan(void) {
  17809. #if defined(GGML_USE_VULKAN)
  17810. return 1;
  17811. #else
  17812. return 0;
  17813. #endif
  17814. }
  17815. int ggml_cpu_has_kompute(void) {
  17816. #if defined(GGML_USE_KOMPUTE)
  17817. return 1;
  17818. #else
  17819. return 0;
  17820. #endif
  17821. }
  17822. int ggml_cpu_has_sycl(void) {
  17823. #if defined(GGML_USE_SYCL)
  17824. return 1;
  17825. #else
  17826. return 0;
  17827. #endif
  17828. }
  17829. int ggml_cpu_has_gpublas(void) {
  17830. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17831. ggml_cpu_has_sycl();
  17832. }
  17833. int ggml_cpu_has_sse3(void) {
  17834. #if defined(__SSE3__)
  17835. return 1;
  17836. #else
  17837. return 0;
  17838. #endif
  17839. }
  17840. int ggml_cpu_has_ssse3(void) {
  17841. #if defined(__SSSE3__)
  17842. return 1;
  17843. #else
  17844. return 0;
  17845. #endif
  17846. }
  17847. int ggml_cpu_has_vsx(void) {
  17848. #if defined(__POWER9_VECTOR__)
  17849. return 1;
  17850. #else
  17851. return 0;
  17852. #endif
  17853. }
  17854. int ggml_cpu_has_matmul_int8(void) {
  17855. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17856. return 1;
  17857. #else
  17858. return 0;
  17859. #endif
  17860. }
  17861. ////////////////////////////////////////////////////////////////////////////////