llama.h 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 4
  35. #ifdef __cplusplus
  36. extern "C" {
  37. #endif
  38. //
  39. // C interface
  40. //
  41. // TODO: show sample usage
  42. //
  43. struct llama_model;
  44. struct llama_context;
  45. typedef int32_t llama_pos;
  46. typedef int32_t llama_token;
  47. typedef int32_t llama_seq_id;
  48. enum llama_vocab_type {
  49. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  50. LLAMA_VOCAB_TYPE_SPM = 1, // SentencePiece
  51. LLAMA_VOCAB_TYPE_BPE = 2, // Byte Pair Encoding
  52. LLAMA_VOCAB_TYPE_WPM = 3, // WordPiece
  53. };
  54. // note: these values should be synchronized with ggml_rope
  55. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  56. enum llama_rope_type {
  57. LLAMA_ROPE_TYPE_NONE = -1,
  58. LLAMA_ROPE_TYPE_NORM = 0,
  59. LLAMA_ROPE_TYPE_NEOX = 2,
  60. LLAMA_ROPE_TYPE_GLM = 4,
  61. };
  62. enum llama_token_type {
  63. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  64. LLAMA_TOKEN_TYPE_NORMAL = 1,
  65. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  66. LLAMA_TOKEN_TYPE_CONTROL = 3,
  67. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  68. LLAMA_TOKEN_TYPE_UNUSED = 5,
  69. LLAMA_TOKEN_TYPE_BYTE = 6,
  70. };
  71. // model file types
  72. enum llama_ftype {
  73. LLAMA_FTYPE_ALL_F32 = 0,
  74. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  78. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  79. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  80. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  105. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  106. };
  107. enum llama_rope_scaling_type {
  108. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  109. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  110. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  111. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  112. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  113. };
  114. enum llama_pooling_type {
  115. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  116. LLAMA_POOLING_TYPE_NONE = 0,
  117. LLAMA_POOLING_TYPE_MEAN = 1,
  118. LLAMA_POOLING_TYPE_CLS = 2,
  119. };
  120. enum llama_split_mode {
  121. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  122. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  123. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  124. };
  125. typedef struct llama_token_data {
  126. llama_token id; // token id
  127. float logit; // log-odds of the token
  128. float p; // probability of the token
  129. } llama_token_data;
  130. typedef struct llama_token_data_array {
  131. llama_token_data * data;
  132. size_t size;
  133. bool sorted;
  134. } llama_token_data_array;
  135. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  136. // Input data for llama_decode
  137. // A llama_batch object can contain input about one or many sequences
  138. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  139. //
  140. // - token : the token ids of the input (used when embd is NULL)
  141. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  142. // - pos : the positions of the respective token in the sequence
  143. // - seq_id : the sequence to which the respective token belongs
  144. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  145. //
  146. typedef struct llama_batch {
  147. int32_t n_tokens;
  148. llama_token * token;
  149. float * embd;
  150. llama_pos * pos;
  151. int32_t * n_seq_id;
  152. llama_seq_id ** seq_id;
  153. int8_t * logits; // TODO: rename this to "output"
  154. // NOTE: helpers for smooth API transition - can be deprecated in the future
  155. // for future-proof code, use the above fields instead and ignore everything below
  156. //
  157. // pos[i] = all_pos_0 + i*all_pos_1
  158. //
  159. llama_pos all_pos_0; // used if pos == NULL
  160. llama_pos all_pos_1; // used if pos == NULL
  161. llama_seq_id all_seq_id; // used if seq_id == NULL
  162. } llama_batch;
  163. enum llama_model_kv_override_type {
  164. LLAMA_KV_OVERRIDE_TYPE_INT,
  165. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  166. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  167. };
  168. struct llama_model_kv_override {
  169. char key[128];
  170. enum llama_model_kv_override_type tag;
  171. union {
  172. int64_t int_value;
  173. double float_value;
  174. bool bool_value;
  175. };
  176. };
  177. struct llama_model_params {
  178. int32_t n_gpu_layers; // number of layers to store in VRAM
  179. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  180. // main_gpu interpretation depends on split_mode:
  181. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  182. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  183. // LLAMA_SPLIT_LAYER: ignored
  184. int32_t main_gpu;
  185. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  186. const float * tensor_split;
  187. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  188. // If the provided progress_callback returns true, model loading continues.
  189. // If it returns false, model loading is immediately aborted.
  190. llama_progress_callback progress_callback;
  191. // context pointer passed to the progress callback
  192. void * progress_callback_user_data;
  193. // override key-value pairs of the model meta data
  194. const struct llama_model_kv_override * kv_overrides;
  195. // Keep the booleans together to avoid misalignment during copy-by-value.
  196. bool vocab_only; // only load the vocabulary, no weights
  197. bool use_mmap; // use mmap if possible
  198. bool use_mlock; // force system to keep model in RAM
  199. };
  200. struct llama_context_params {
  201. uint32_t seed; // RNG seed, -1 for random
  202. uint32_t n_ctx; // text context, 0 = from model
  203. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  204. uint32_t n_ubatch; // physical maximum batch size
  205. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  206. uint32_t n_threads; // number of threads to use for generation
  207. uint32_t n_threads_batch; // number of threads to use for batch processing
  208. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  209. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  210. // (ignored if no pooling layer)
  211. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  212. float rope_freq_base; // RoPE base frequency, 0 = from model
  213. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  214. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  215. float yarn_attn_factor; // YaRN magnitude scaling factor
  216. float yarn_beta_fast; // YaRN low correction dim
  217. float yarn_beta_slow; // YaRN high correction dim
  218. uint32_t yarn_orig_ctx; // YaRN original context size
  219. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  220. ggml_backend_sched_eval_callback cb_eval;
  221. void * cb_eval_user_data;
  222. enum ggml_type type_k; // data type for K cache
  223. enum ggml_type type_v; // data type for V cache
  224. // Keep the booleans together to avoid misalignment during copy-by-value.
  225. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  226. bool embeddings; // if true, extract embeddings (together with logits)
  227. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  228. // Abort callback
  229. // if it returns true, execution of llama_decode() will be aborted
  230. // currently works only with CPU execution
  231. ggml_abort_callback abort_callback;
  232. void * abort_callback_data;
  233. };
  234. // model quantization parameters
  235. typedef struct llama_model_quantize_params {
  236. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  237. enum llama_ftype ftype; // quantize to this llama_ftype
  238. enum ggml_type output_tensor_type; // output tensor type
  239. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  240. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  241. bool quantize_output_tensor; // quantize output.weight
  242. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  243. bool pure; // quantize all tensors to the default type
  244. void * imatrix; // pointer to importance matrix data
  245. void * kv_overrides; // pointer to vector containing overrides
  246. } llama_model_quantize_params;
  247. // grammar types
  248. struct llama_grammar;
  249. // grammar element type
  250. enum llama_gretype {
  251. // end of rule definition
  252. LLAMA_GRETYPE_END = 0,
  253. // start of alternate definition for rule
  254. LLAMA_GRETYPE_ALT = 1,
  255. // non-terminal element: reference to rule
  256. LLAMA_GRETYPE_RULE_REF = 2,
  257. // terminal element: character (code point)
  258. LLAMA_GRETYPE_CHAR = 3,
  259. // inverse char(s) ([^a], [^a-b] [^abc])
  260. LLAMA_GRETYPE_CHAR_NOT = 4,
  261. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  262. // be an inclusive range ([a-z])
  263. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  264. // modifies a preceding LLAMA_GRETYPE_CHAR or
  265. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  266. LLAMA_GRETYPE_CHAR_ALT = 6,
  267. };
  268. typedef struct llama_grammar_element {
  269. enum llama_gretype type;
  270. uint32_t value; // Unicode code point or rule ID
  271. } llama_grammar_element;
  272. // performance timing information
  273. struct llama_timings {
  274. double t_start_ms;
  275. double t_end_ms;
  276. double t_load_ms;
  277. double t_sample_ms;
  278. double t_p_eval_ms;
  279. double t_eval_ms;
  280. int32_t n_sample;
  281. int32_t n_p_eval;
  282. int32_t n_eval;
  283. };
  284. // used in chat template
  285. typedef struct llama_chat_message {
  286. const char * role;
  287. const char * content;
  288. } llama_chat_message;
  289. // Helpers for getting default parameters
  290. LLAMA_API struct llama_model_params llama_model_default_params(void);
  291. LLAMA_API struct llama_context_params llama_context_default_params(void);
  292. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  293. // Initialize the llama + ggml backend
  294. // If numa is true, use NUMA optimizations
  295. // Call once at the start of the program
  296. LLAMA_API void llama_backend_init(void);
  297. //optional:
  298. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  299. // Call once at the end of the program - currently only used for MPI
  300. LLAMA_API void llama_backend_free(void);
  301. LLAMA_API struct llama_model * llama_load_model_from_file(
  302. const char * path_model,
  303. struct llama_model_params params);
  304. LLAMA_API void llama_free_model(struct llama_model * model);
  305. LLAMA_API struct llama_context * llama_new_context_with_model(
  306. struct llama_model * model,
  307. struct llama_context_params params);
  308. // Frees all allocated memory
  309. LLAMA_API void llama_free(struct llama_context * ctx);
  310. LLAMA_API int64_t llama_time_us(void);
  311. LLAMA_API size_t llama_max_devices(void);
  312. LLAMA_API bool llama_supports_mmap (void);
  313. LLAMA_API bool llama_supports_mlock (void);
  314. LLAMA_API bool llama_supports_gpu_offload(void);
  315. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  316. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  317. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  318. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  319. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  320. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  321. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  322. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  323. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  324. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  325. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  326. // Get the model's RoPE frequency scaling factor
  327. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  328. // Functions to access the model's GGUF metadata scalar values
  329. // - The functions return the length of the string on success, or -1 on failure
  330. // - The output string is always null-terminated and cleared on failure
  331. // - GGUF array values are not supported by these functions
  332. // Get metadata value as a string by key name
  333. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  334. // Get the number of metadata key/value pairs
  335. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  336. // Get metadata key name by index
  337. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  338. // Get metadata value as a string by index
  339. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  340. // Get a string describing the model type
  341. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  342. // Returns the total size of all the tensors in the model in bytes
  343. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  344. // Returns the total number of parameters in the model
  345. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  346. // Get a llama model tensor
  347. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  348. // Returns 0 on success
  349. LLAMA_API uint32_t llama_model_quantize(
  350. const char * fname_inp,
  351. const char * fname_out,
  352. const llama_model_quantize_params * params);
  353. // Apply a LoRA adapter to a loaded model
  354. // path_base_model is the path to a higher quality model to use as a base for
  355. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  356. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  357. // will be applied on top of the previous one
  358. // Returns 0 on success
  359. LLAMA_API int32_t llama_model_apply_lora_from_file(
  360. const struct llama_model * model,
  361. const char * path_lora,
  362. float scale,
  363. const char * path_base_model,
  364. int32_t n_threads);
  365. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  366. // the currently loaded vector.
  367. // n_embd should be the size of a single layer's control, and data should point
  368. // to an n_embd x n_layers buffer starting from layer 1.
  369. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  370. // See llama_control_vector_load in common to load a control vector.
  371. LLAMA_API int32_t llama_control_vector_apply(
  372. struct llama_context * lctx,
  373. const float * data,
  374. size_t len,
  375. int32_t n_embd,
  376. int32_t il_start,
  377. int32_t il_end);
  378. //
  379. // KV cache
  380. //
  381. // Information associated with an individual cell in the KV cache view.
  382. struct llama_kv_cache_view_cell {
  383. // The position for this cell. Takes KV cache shifts into account.
  384. // May be negative if the cell is not populated.
  385. llama_pos pos;
  386. };
  387. // An updateable view of the KV cache.
  388. struct llama_kv_cache_view {
  389. // Number of KV cache cells. This will be the same as the context size.
  390. int32_t n_cells;
  391. // Maximum number of sequences that can exist in a cell. It's not an error
  392. // if there are more sequences in a cell than this value, however they will
  393. // not be visible in the view cells_sequences.
  394. int32_t n_seq_max;
  395. // Number of tokens in the cache. For example, if there are two populated
  396. // cells, the first with 1 sequence id in it and the second with 2 sequence
  397. // ids then you'll have 3 tokens.
  398. int32_t token_count;
  399. // Number of populated cache cells.
  400. int32_t used_cells;
  401. // Maximum contiguous empty slots in the cache.
  402. int32_t max_contiguous;
  403. // Index to the start of the max_contiguous slot range. Can be negative
  404. // when cache is full.
  405. int32_t max_contiguous_idx;
  406. // Information for an individual cell.
  407. struct llama_kv_cache_view_cell * cells;
  408. // The sequences for each cell. There will be n_seq_max items per cell.
  409. llama_seq_id * cells_sequences;
  410. };
  411. // Create an empty KV cache view. (use only for debugging purposes)
  412. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  413. // Free a KV cache view. (use only for debugging purposes)
  414. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  415. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  416. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  417. // Returns the number of tokens in the KV cache (slow, use only for debug)
  418. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  419. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  420. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  421. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  422. // Clear the KV cache
  423. LLAMA_API void llama_kv_cache_clear(
  424. struct llama_context * ctx);
  425. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  426. // seq_id < 0 : match any sequence
  427. // p0 < 0 : [0, p1]
  428. // p1 < 0 : [p0, inf)
  429. LLAMA_API bool llama_kv_cache_seq_rm(
  430. struct llama_context * ctx,
  431. llama_seq_id seq_id,
  432. llama_pos p0,
  433. llama_pos p1);
  434. // Copy all tokens that belong to the specified sequence to another sequence
  435. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  436. // p0 < 0 : [0, p1]
  437. // p1 < 0 : [p0, inf)
  438. LLAMA_API void llama_kv_cache_seq_cp(
  439. struct llama_context * ctx,
  440. llama_seq_id seq_id_src,
  441. llama_seq_id seq_id_dst,
  442. llama_pos p0,
  443. llama_pos p1);
  444. // Removes all tokens that do not belong to the specified sequence
  445. LLAMA_API void llama_kv_cache_seq_keep(
  446. struct llama_context * ctx,
  447. llama_seq_id seq_id);
  448. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  449. // If the KV cache is RoPEd, the KV data is updated accordingly:
  450. // - lazily on next llama_decode()
  451. // - explicitly with llama_kv_cache_update()
  452. // p0 < 0 : [0, p1]
  453. // p1 < 0 : [p0, inf)
  454. LLAMA_API void llama_kv_cache_seq_add(
  455. struct llama_context * ctx,
  456. llama_seq_id seq_id,
  457. llama_pos p0,
  458. llama_pos p1,
  459. llama_pos delta);
  460. // Integer division of the positions by factor of `d > 1`
  461. // If the KV cache is RoPEd, the KV data is updated accordingly:
  462. // - lazily on next llama_decode()
  463. // - explicitly with llama_kv_cache_update()
  464. // p0 < 0 : [0, p1]
  465. // p1 < 0 : [p0, inf)
  466. LLAMA_API void llama_kv_cache_seq_div(
  467. struct llama_context * ctx,
  468. llama_seq_id seq_id,
  469. llama_pos p0,
  470. llama_pos p1,
  471. int d);
  472. // Returns the largest position present in the KV cache for the specified sequence
  473. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  474. struct llama_context * ctx,
  475. llama_seq_id seq_id);
  476. // Defragment the KV cache
  477. // This will be applied:
  478. // - lazily on next llama_decode()
  479. // - explicitly with llama_kv_cache_update()
  480. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  481. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  482. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  483. //
  484. // State / sessions
  485. //
  486. // Returns the maximum size in bytes of the state (rng, logits, embedding
  487. // and kv_cache) - will often be smaller after compacting tokens
  488. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  489. // Copies the state to the specified destination address.
  490. // Destination needs to have allocated enough memory.
  491. // Returns the number of bytes copied
  492. LLAMA_API size_t llama_copy_state_data(
  493. struct llama_context * ctx,
  494. uint8_t * dst);
  495. // Set the state reading from the specified address
  496. // Returns the number of bytes read
  497. LLAMA_API size_t llama_set_state_data(
  498. struct llama_context * ctx,
  499. const uint8_t * src);
  500. // Save/load session file
  501. LLAMA_API bool llama_load_session_file(
  502. struct llama_context * ctx,
  503. const char * path_session,
  504. llama_token * tokens_out,
  505. size_t n_token_capacity,
  506. size_t * n_token_count_out);
  507. LLAMA_API bool llama_save_session_file(
  508. struct llama_context * ctx,
  509. const char * path_session,
  510. const llama_token * tokens,
  511. size_t n_token_count);
  512. //
  513. // Decoding
  514. //
  515. // Return batch for single sequence of tokens starting at pos_0
  516. //
  517. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  518. //
  519. LLAMA_API struct llama_batch llama_batch_get_one(
  520. llama_token * tokens,
  521. int32_t n_tokens,
  522. llama_pos pos_0,
  523. llama_seq_id seq_id);
  524. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  525. // Each token can be assigned up to n_seq_max sequence ids
  526. // The batch has to be freed with llama_batch_free()
  527. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  528. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  529. // The rest of the llama_batch members are allocated with size n_tokens
  530. // All members are left uninitialized
  531. LLAMA_API struct llama_batch llama_batch_init(
  532. int32_t n_tokens,
  533. int32_t embd,
  534. int32_t n_seq_max);
  535. // Frees a batch of tokens allocated with llama_batch_init()
  536. LLAMA_API void llama_batch_free(struct llama_batch batch);
  537. // Positive return values does not mean a fatal error, but rather a warning.
  538. // 0 - success
  539. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  540. // < 0 - error
  541. LLAMA_API int32_t llama_decode(
  542. struct llama_context * ctx,
  543. struct llama_batch batch);
  544. // Set the number of threads used for decoding
  545. // n_threads is the number of threads used for generation (single token)
  546. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  547. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  548. // Set whether to use causal attention or not
  549. // If set to true, the model will only attend to the past tokens
  550. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  551. // Set abort callback
  552. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  553. // Wait until all computations are finished
  554. // This is automatically done when using one of the functions below to obtain the computation results
  555. // and is not necessary to call it explicitly in most cases
  556. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  557. // Token logits obtained from the last call to llama_decode()
  558. // The logits for the last token are stored in the last row
  559. // Logits for which llama_batch.logits[i] == 0 are undefined
  560. // Rows: n_tokens provided with llama_batch
  561. // Cols: n_vocab
  562. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  563. // Logits for the ith token. Equivalent to:
  564. // llama_get_logits(ctx) + i*n_vocab
  565. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  566. // Get all output token embeddings
  567. // shape: [n_tokens*n_embd] (1-dimensional)
  568. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  569. // Get the embeddings for the ith token
  570. // llama_get_embeddings(ctx) + i*n_embd
  571. // shape: [n_embd] (1-dimensional)
  572. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  573. // Get the embeddings for a sequence id
  574. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  575. // shape: [n_embd] (1-dimensional)
  576. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  577. //
  578. // Vocab
  579. //
  580. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  581. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  582. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  583. // Special tokens
  584. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  585. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  586. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  587. // Returns -1 if unknown, 1 for true or 0 for false.
  588. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  589. // Returns -1 if unknown, 1 for true or 0 for false.
  590. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  591. // codellama infill tokens
  592. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  593. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  594. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  595. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  596. //
  597. // Tokenization
  598. //
  599. /// @details Convert the provided text into tokens.
  600. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  601. /// @return Returns the number of tokens on success, no more than n_tokens_max
  602. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  603. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  604. /// Does not insert a leading space.
  605. LLAMA_API int32_t llama_tokenize(
  606. const struct llama_model * model,
  607. const char * text,
  608. int32_t text_len,
  609. llama_token * tokens,
  610. int32_t n_tokens_max,
  611. bool add_bos,
  612. bool special);
  613. // Token Id -> Piece.
  614. // Uses the vocabulary in the provided context.
  615. // Does not write null terminator to the buffer.
  616. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  617. LLAMA_API int32_t llama_token_to_piece(
  618. const struct llama_model * model,
  619. llama_token token,
  620. char * buf,
  621. int32_t length);
  622. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  623. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  624. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  625. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  626. /// @param chat Pointer to a list of multiple llama_chat_message
  627. /// @param n_msg Number of llama_chat_message in this chat
  628. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  629. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  630. /// @param length The size of the allocated buffer
  631. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  632. LLAMA_API int32_t llama_chat_apply_template(
  633. const struct llama_model * model,
  634. const char * tmpl,
  635. const struct llama_chat_message * chat,
  636. size_t n_msg,
  637. bool add_ass,
  638. char * buf,
  639. int32_t length);
  640. //
  641. // Grammar
  642. //
  643. LLAMA_API struct llama_grammar * llama_grammar_init(
  644. const llama_grammar_element ** rules,
  645. size_t n_rules,
  646. size_t start_rule_index);
  647. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  648. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  649. //
  650. // Sampling functions
  651. //
  652. // Sets the current rng seed.
  653. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  654. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  655. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  656. LLAMA_API void llama_sample_repetition_penalties(
  657. struct llama_context * ctx,
  658. llama_token_data_array * candidates,
  659. const llama_token * last_tokens,
  660. size_t penalty_last_n,
  661. float penalty_repeat,
  662. float penalty_freq,
  663. float penalty_present);
  664. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  665. /// @param logits Logits extracted from the original generation context.
  666. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  667. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  668. LLAMA_API void llama_sample_apply_guidance(
  669. struct llama_context * ctx,
  670. float * logits,
  671. float * logits_guidance,
  672. float scale);
  673. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  674. LLAMA_API void llama_sample_softmax(
  675. struct llama_context * ctx,
  676. llama_token_data_array * candidates);
  677. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  678. LLAMA_API void llama_sample_top_k(
  679. struct llama_context * ctx,
  680. llama_token_data_array * candidates,
  681. int32_t k,
  682. size_t min_keep);
  683. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  684. LLAMA_API void llama_sample_top_p(
  685. struct llama_context * ctx,
  686. llama_token_data_array * candidates,
  687. float p,
  688. size_t min_keep);
  689. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  690. LLAMA_API void llama_sample_min_p(
  691. struct llama_context * ctx,
  692. llama_token_data_array * candidates,
  693. float p,
  694. size_t min_keep);
  695. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  696. LLAMA_API void llama_sample_tail_free(
  697. struct llama_context * ctx,
  698. llama_token_data_array * candidates,
  699. float z,
  700. size_t min_keep);
  701. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  702. LLAMA_API void llama_sample_typical(
  703. struct llama_context * ctx,
  704. llama_token_data_array * candidates,
  705. float p,
  706. size_t min_keep);
  707. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  708. LLAMA_API void llama_sample_entropy(
  709. struct llama_context * ctx,
  710. llama_token_data_array * candidates_p,
  711. float min_temp,
  712. float max_temp,
  713. float exponent_val);
  714. LLAMA_API void llama_sample_temp(
  715. struct llama_context * ctx,
  716. llama_token_data_array * candidates,
  717. float temp);
  718. /// @details Apply constraints from grammar
  719. LLAMA_API void llama_sample_grammar(
  720. struct llama_context * ctx,
  721. llama_token_data_array * candidates,
  722. const struct llama_grammar * grammar);
  723. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  724. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  725. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  726. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  727. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  728. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  729. LLAMA_API llama_token llama_sample_token_mirostat(
  730. struct llama_context * ctx,
  731. llama_token_data_array * candidates,
  732. float tau,
  733. float eta,
  734. int32_t m,
  735. float * mu);
  736. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  737. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  738. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  739. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  740. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  741. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  742. struct llama_context * ctx,
  743. llama_token_data_array * candidates,
  744. float tau,
  745. float eta,
  746. float * mu);
  747. /// @details Selects the token with the highest probability.
  748. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  749. LLAMA_API llama_token llama_sample_token_greedy(
  750. struct llama_context * ctx,
  751. llama_token_data_array * candidates);
  752. /// @details Randomly selects a token from the candidates based on their probabilities.
  753. LLAMA_API llama_token llama_sample_token(
  754. struct llama_context * ctx,
  755. llama_token_data_array * candidates);
  756. /// @details Accepts the sampled token into the grammar
  757. LLAMA_API void llama_grammar_accept_token(
  758. struct llama_context * ctx,
  759. struct llama_grammar * grammar,
  760. llama_token token);
  761. //
  762. // Beam search
  763. //
  764. struct llama_beam_view {
  765. const llama_token * tokens;
  766. size_t n_tokens;
  767. float p; // Cumulative beam probability (renormalized relative to all beams)
  768. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  769. };
  770. // Passed to beam_search_callback function.
  771. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  772. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  773. // These pointers are valid only during the synchronous callback, so should not be saved.
  774. struct llama_beams_state {
  775. struct llama_beam_view * beam_views;
  776. size_t n_beams; // Number of elements in beam_views[].
  777. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  778. bool last_call; // True iff this is the last callback invocation.
  779. };
  780. // Type of pointer to the beam_search_callback function.
  781. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  782. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  783. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  784. /// @details Deterministically returns entire sentence constructed by a beam search.
  785. /// @param ctx Pointer to the llama_context.
  786. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  787. /// @param callback_data A pointer that is simply passed back to callback.
  788. /// @param n_beams Number of beams to use.
  789. /// @param n_past Number of tokens already evaluated.
  790. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  791. LLAMA_API void llama_beam_search(
  792. struct llama_context * ctx,
  793. llama_beam_search_callback_fn_t callback,
  794. void * callback_data,
  795. size_t n_beams,
  796. int32_t n_past,
  797. int32_t n_predict);
  798. /// @details Build a split GGUF final path for this chunk.
  799. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  800. // Returns the split_path length.
  801. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  802. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  803. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  804. // Returns the split_prefix length.
  805. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  806. // Performance information
  807. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  808. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  809. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  810. // Print system information
  811. LLAMA_API const char * llama_print_system_info(void);
  812. // Set callback for all future logging events.
  813. // If this is not called, or NULL is supplied, everything is output on stderr.
  814. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  815. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  816. #ifdef __cplusplus
  817. }
  818. #endif
  819. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  820. #ifdef LLAMA_API_INTERNAL
  821. #include <vector>
  822. #include <string>
  823. struct ggml_tensor;
  824. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  825. struct llama_context * ctx
  826. );
  827. #endif // LLAMA_API_INTERNAL
  828. #endif // LLAMA_H