test-backend-ops.cpp 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. // static RNG initialization (revisit if n_threads stops being constant)
  19. static const size_t n_threads = std::thread::hardware_concurrency();
  20. static std::vector<std::default_random_engine> generators = []() {
  21. std::random_device rd;
  22. std::vector<std::default_random_engine> vec;
  23. vec.reserve(n_threads);
  24. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  25. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  26. return vec;
  27. }();
  28. size_t size = ggml_nelements(tensor);
  29. std::vector<float> data(size);
  30. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  31. std::uniform_real_distribution<float> distribution(min, max);
  32. for (size_t i = start; i < end; i++) {
  33. data[i] = distribution(generators[ith]);
  34. }
  35. };
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, i, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  47. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  48. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
  49. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  50. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
  51. std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
  52. const float * im = imatrix.data();
  53. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  54. // when the imatrix is optional, we want to test both quantization with and without imatrix
  55. // use one of the random numbers to decide
  56. if (data[0] > 0.5f*(min + max)) {
  57. im = nullptr;
  58. }
  59. }
  60. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
  61. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  62. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  63. // This is going to create some weird integers though.
  64. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  65. } else {
  66. GGML_ASSERT(false);
  67. }
  68. }
  69. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  70. std::vector<float> tv;
  71. tv.reserve(ggml_nelements(t));
  72. std::vector<uint8_t> buf(ggml_nbytes(t));
  73. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  74. ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
  75. size_t bs = ggml_blck_size(t->type);
  76. std::vector<float> vq(ggml_blck_size(t->type));
  77. bool quantized = ggml_is_quantized(t->type);
  78. // access elements by index to avoid gaps in views
  79. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  80. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  81. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  82. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  83. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  84. if (t->type == GGML_TYPE_F16) {
  85. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  86. } else if (t->type == GGML_TYPE_F32) {
  87. tv.push_back(*(float *) &buf[i]);
  88. } else if (t->type == GGML_TYPE_I32) {
  89. tv.push_back((float)*(int32_t *) &buf[i]);
  90. } else if (t->type == GGML_TYPE_I16) {
  91. tv.push_back((float)*(int16_t *) &buf[i]);
  92. } else if (t->type == GGML_TYPE_I8) {
  93. tv.push_back((float)*(int8_t *) &buf[i]);
  94. } else if (quantized) {
  95. tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
  96. tv.insert(tv.end(), vq.begin(), vq.end());
  97. } else {
  98. GGML_ASSERT(false);
  99. }
  100. }
  101. }
  102. }
  103. }
  104. return tv;
  105. }
  106. /*
  107. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  108. double dot = 0.0;
  109. double mag1 = 0.0;
  110. double mag2 = 0.0;
  111. for (size_t i = 0; i < n; i++) {
  112. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  113. return -1.0f;
  114. }
  115. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  116. continue;
  117. }
  118. dot += v1[i]*v2[i];
  119. mag1 += v1[i]*v1[i];
  120. mag2 += v2[i]*v2[i];
  121. }
  122. return dot/sqrt(mag1*mag2);
  123. }
  124. static float distance(const float * v1, const float * v2, size_t n) {
  125. double d = 0.0;
  126. for (size_t i = 0; i < n; i++) {
  127. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  128. return INFINITY;
  129. }
  130. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  131. continue;
  132. }
  133. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  134. }
  135. return sqrt(d);
  136. }
  137. static float vec_len(const float * v, size_t n) {
  138. double d = 0.0;
  139. for (size_t i = 0; i < n; i++) {
  140. if (std::isnan(v[i])) {
  141. return INFINITY;
  142. }
  143. if (std::isinf(v[i])) {
  144. continue;
  145. }
  146. d += v[i]*v[i];
  147. }
  148. return sqrt(d);
  149. }
  150. */
  151. // normalized mean squared error = mse(a, b) / mse(a, 0)
  152. static double nmse(const float * a, const float * b, size_t n) {
  153. double mse_a_b = 0.0;
  154. double mse_a_0 = 0.0;
  155. for (size_t i = 0; i < n; i++) {
  156. float a_i = a[i];
  157. float b_i = b[i];
  158. mse_a_b += (a_i - b_i) * (a_i - b_i);
  159. mse_a_0 += a_i * a_i;
  160. }
  161. return mse_a_b / mse_a_0;
  162. }
  163. // utils for printing the variables of the test cases
  164. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  165. template<typename T>
  166. static std::string var_to_str(const T & x) {
  167. return std::to_string(x);
  168. }
  169. template<typename T, size_t N>
  170. static std::string var_to_str(const T (&x)[N]) {
  171. std::string s = "[";
  172. for (size_t i = 0; i < N; i++) {
  173. if (i > 0) {
  174. s += ",";
  175. }
  176. s += var_to_str(x[i]);
  177. }
  178. s += "]";
  179. return s;
  180. }
  181. template<typename T, size_t N>
  182. static std::string var_to_str(const std::array<T, N> & x) {
  183. std::string s = "[";
  184. for (size_t i = 0; i < N; i++) {
  185. if (i > 0) {
  186. s += ",";
  187. }
  188. s += var_to_str(x[i]);
  189. }
  190. s += "]";
  191. return s;
  192. }
  193. //static std::string var_to_str(ggml_unary_op unary_op) {
  194. // return ggml_unary_op_name(unary_op);
  195. //}
  196. static std::string var_to_str(ggml_type type) {
  197. return ggml_type_name(type);
  198. }
  199. static std::string var_to_str(ggml_op_pool pool) {
  200. switch (pool) {
  201. case GGML_OP_POOL_AVG: return "avg";
  202. case GGML_OP_POOL_MAX: return "max";
  203. default: return std::to_string(pool);
  204. }
  205. }
  206. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  207. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  208. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  209. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  210. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  211. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  212. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  213. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  214. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  215. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  216. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  217. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  218. #ifdef GGML_USE_SYCL
  219. static bool inline _isinf(float f) {
  220. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  221. }
  222. #else
  223. static bool inline _isinf(float f) { return std::isinf(f); }
  224. #endif
  225. // accept FLT_MAX as infinity
  226. static bool isinf_or_max(float f) {
  227. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  228. }
  229. static bool ggml_is_view_op(enum ggml_op op) {
  230. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  231. }
  232. enum test_mode {
  233. MODE_TEST,
  234. MODE_PERF,
  235. };
  236. struct test_case {
  237. virtual ~test_case() {}
  238. virtual std::string op_desc(ggml_tensor * t) {
  239. return ggml_op_desc(t);
  240. }
  241. virtual std::string vars() {
  242. return "";
  243. }
  244. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  245. virtual double max_nmse_err() {
  246. return 1e-7;
  247. }
  248. virtual void initialize_tensors(ggml_context * ctx) {
  249. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  250. init_tensor_uniform(t);
  251. }
  252. }
  253. virtual size_t op_size(ggml_tensor * t) {
  254. size_t size = ggml_nbytes(t);
  255. // add source tensors
  256. for (int i = 0; i < GGML_MAX_SRC; i++) {
  257. if (t->src[i] != NULL) {
  258. size += ggml_nbytes(t->src[i]);
  259. }
  260. }
  261. return size;
  262. }
  263. ggml_cgraph * gf = nullptr;
  264. static const int sentinel_size = 1024;
  265. test_mode mode;
  266. std::vector<ggml_tensor *> sentinels;
  267. void add_sentinel(ggml_context * ctx) {
  268. if (mode == MODE_PERF) {
  269. return;
  270. }
  271. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  272. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  273. sentinels.push_back(sentinel);
  274. }
  275. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  276. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  277. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  278. add_sentinel(ctx);
  279. return t;
  280. }
  281. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  282. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  283. add_sentinel(ctx);
  284. return t;
  285. }
  286. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  287. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  288. add_sentinel(ctx);
  289. return t;
  290. }
  291. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  292. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  293. add_sentinel(ctx);
  294. return t;
  295. }
  296. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  297. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  298. add_sentinel(ctx);
  299. return t;
  300. }
  301. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  302. mode = MODE_TEST;
  303. ggml_init_params params = {
  304. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  305. /* .mem_base = */ NULL,
  306. /* .no_alloc = */ true,
  307. };
  308. ggml_context * ctx = ggml_init(params);
  309. gf = ggml_new_graph(ctx);
  310. // pre-graph sentinel
  311. add_sentinel(ctx);
  312. ggml_tensor * out = build_graph(ctx);
  313. if (op_name != nullptr && op_desc(out) != op_name) {
  314. //printf(" %s: skipping\n", op_desc(out).c_str());
  315. ggml_free(ctx);
  316. return true;
  317. }
  318. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  319. fflush(stdout);
  320. // check if the backends support the ops
  321. bool supported = true;
  322. for (ggml_backend_t backend : {backend1, backend2}) {
  323. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  324. if (!ggml_backend_supports_op(backend, t)) {
  325. printf("not supported [%s] ", ggml_backend_name(backend));
  326. supported = false;
  327. break;
  328. }
  329. }
  330. }
  331. if (!supported) {
  332. printf("\n");
  333. ggml_free(ctx);
  334. return true;
  335. }
  336. // post-graph sentinel
  337. add_sentinel(ctx);
  338. // allocate
  339. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  340. if (buf == NULL) {
  341. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  342. ggml_free(ctx);
  343. return false;
  344. }
  345. // build graph
  346. ggml_build_forward_expand(gf, out);
  347. // add sentinels as graph nodes so that they are checked in the callback
  348. for (ggml_tensor * sentinel : sentinels) {
  349. gf->nodes[gf->n_nodes++] = sentinel;
  350. }
  351. // randomize tensors
  352. initialize_tensors(ctx);
  353. // compare
  354. struct callback_userdata {
  355. bool ok;
  356. double max_err;
  357. ggml_backend_t backend1;
  358. ggml_backend_t backend2;
  359. };
  360. callback_userdata ud {
  361. true,
  362. max_nmse_err(),
  363. backend1,
  364. backend2
  365. };
  366. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  367. callback_userdata * ud = (callback_userdata *) user_data;
  368. const char * bn1 = ggml_backend_name(ud->backend1);
  369. const char * bn2 = ggml_backend_name(ud->backend2);
  370. if (t1->op == GGML_OP_NONE) {
  371. // sentinels must be unchanged
  372. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  373. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  374. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  375. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  376. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  377. printf("sentinel mismatch: %s ", t1->name);
  378. ud->ok = false;
  379. return true;
  380. }
  381. }
  382. std::vector<float> f1 = tensor_to_float(t1);
  383. std::vector<float> f2 = tensor_to_float(t2);
  384. for (size_t i = 0; i < f1.size(); i++) {
  385. // check for nans
  386. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  387. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  388. ud->ok = false;
  389. return true;
  390. }
  391. // check for infs: both must be inf of the same sign, or both must be finite
  392. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  393. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  394. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  395. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  396. ud->ok = false;
  397. return true;
  398. }
  399. } else {
  400. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  401. ud->ok = false;
  402. return true;
  403. }
  404. }
  405. }
  406. double err = nmse(f1.data(), f2.data(), f1.size());
  407. if (err > ud->max_err) {
  408. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  409. //for (int i = 0; i < (int) f1.size(); i++) {
  410. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  411. //}
  412. //printf("\n");
  413. //exit(1);
  414. ud->ok = false;
  415. }
  416. return true;
  417. GGML_UNUSED(index);
  418. };
  419. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  420. if (!cmp_ok) {
  421. printf("compare failed ");
  422. }
  423. ggml_backend_buffer_free(buf);
  424. ggml_free(ctx);
  425. if (ud.ok && cmp_ok) {
  426. printf("\033[1;32mOK\033[0m\n");
  427. return true;
  428. }
  429. printf("\033[1;31mFAIL\033[0m\n");
  430. return false;
  431. }
  432. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  433. mode = MODE_PERF;
  434. static const size_t graph_nodes = 8192;
  435. ggml_init_params params = {
  436. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  437. /* .mem_base = */ NULL,
  438. /* .no_alloc = */ true,
  439. };
  440. ggml_context * ctx = ggml_init(params);
  441. ggml_tensor * out = build_graph(ctx);
  442. if (op_name != nullptr && op_desc(out) != op_name) {
  443. //printf(" %s: skipping\n", op_desc(out).c_str());
  444. ggml_free(ctx);
  445. return true;
  446. }
  447. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  448. fflush(stdout);
  449. // check if backends support op
  450. if (!ggml_backend_supports_op(backend, out)) {
  451. printf("not supported\n");
  452. ggml_free(ctx);
  453. return true;
  454. }
  455. // align while also leaving some margin for variations in parameters
  456. int align = 20;
  457. int last = (len + align - 1) / align * align;
  458. if (last - len < 5) {
  459. last += align;
  460. }
  461. last = std::max(last, 60);
  462. printf("%*s", last - len, "");
  463. // allocate
  464. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  465. if (buf == NULL) {
  466. printf("failed to allocate tensors\n");
  467. ggml_free(ctx);
  468. return false;
  469. }
  470. // randomize tensors
  471. initialize_tensors(ctx);
  472. // build graph
  473. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  474. ggml_build_forward_expand(gf, out);
  475. // warmup run
  476. ggml_backend_graph_compute(backend, gf);
  477. // duplicate the op
  478. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  479. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  480. for (int i = 1; i < n_runs; i++) {
  481. gf->nodes[gf->n_nodes++] = out;
  482. }
  483. // calculate memory
  484. size_t mem = n_runs * op_size(out);
  485. auto tensor_op_size = [](ggml_tensor * t) {
  486. size_t size = ggml_nbytes(t);
  487. // add source tensors
  488. for (int i = 0; i < GGML_MAX_SRC; i++) {
  489. if (t->src[i] != NULL) {
  490. size += ggml_nbytes(t->src[i]);
  491. }
  492. }
  493. return size;
  494. };
  495. for (int i = 0; i < gf->n_nodes; i++) {
  496. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
  497. continue;
  498. }
  499. mem += tensor_op_size(gf->nodes[i]);
  500. }
  501. // run
  502. ggml_backend_synchronize(backend);
  503. int64_t start_time = ggml_time_us();
  504. ggml_backend_graph_compute(backend, gf);
  505. ggml_backend_synchronize(backend);
  506. int64_t end_time = ggml_time_us();
  507. double time_us = end_time - start_time;
  508. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  509. n_runs,
  510. time_us / n_runs,
  511. op_size(out) / 1024,
  512. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  513. ggml_backend_buffer_free(buf);
  514. ggml_free(ctx);
  515. return true;
  516. }
  517. };
  518. // GGML_OP_UNARY
  519. struct test_unary : public test_case {
  520. const ggml_unary_op op;
  521. const ggml_type type;
  522. const std::array<int64_t, 4> ne;
  523. std::string vars() override {
  524. return VARS_TO_STR2(type, ne);
  525. }
  526. test_unary(ggml_unary_op op,
  527. ggml_type type = GGML_TYPE_F32,
  528. std::array<int64_t, 4> ne = {128, 10, 10, 10})
  529. : op(op), type(type), ne(ne) {}
  530. ggml_tensor * build_graph(ggml_context * ctx) override {
  531. ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
  532. ggml_tensor * out = ggml_unary(ctx, in, op);
  533. return out;
  534. }
  535. void initialize_tensors(ggml_context * ctx) override {
  536. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  537. // test extended range of values to check for NaNs in GELU
  538. init_tensor_uniform(t, -150.f, 150.f);
  539. }
  540. }
  541. };
  542. // GGML_OP_GET_ROWS
  543. struct test_get_rows : public test_case {
  544. const ggml_type type;
  545. const int n; // cols
  546. const int m; // rows
  547. const int r; // rows to get
  548. const int b; // batch size
  549. const bool v; // view (non-contiguous src1)
  550. std::string vars() override {
  551. return VARS_TO_STR6(type, n, m, r, b, v);
  552. }
  553. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  554. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  555. ggml_tensor * build_graph(ggml_context * ctx) override {
  556. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  557. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  558. if (v) {
  559. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  560. }
  561. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  562. return out;
  563. }
  564. void initialize_tensors(ggml_context * ctx) override {
  565. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  566. if (t->type == GGML_TYPE_I32) {
  567. if (ggml_is_view_op(t->op)) { continue; }
  568. // rows
  569. std::vector<int> data(r*b);
  570. for (int i = 0; i < r*b; i++) {
  571. data[i] = rand() % m;
  572. }
  573. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  574. } else {
  575. init_tensor_uniform(t);
  576. }
  577. }
  578. }
  579. };
  580. // GGML_OP_REPEAT
  581. struct test_repeat : public test_case {
  582. const ggml_type type;
  583. const std::array<int64_t, 4> ne;
  584. const std::array<int, 4> nr;
  585. std::string vars() override {
  586. return VARS_TO_STR3(type, ne, nr);
  587. }
  588. size_t op_size(ggml_tensor * t) override {
  589. return ggml_nbytes(t) * 2;
  590. }
  591. test_repeat(ggml_type type = GGML_TYPE_F32,
  592. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  593. std::array<int, 4> nr = {2, 2, 2, 2})
  594. : type(type), ne(ne), nr(nr) {}
  595. ggml_tensor * build_graph(ggml_context * ctx) override {
  596. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  597. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  598. ggml_tensor * out = ggml_repeat(ctx, src, target);
  599. return out;
  600. }
  601. };
  602. // GGML_OP_DUP
  603. struct test_dup : public test_case {
  604. const ggml_type type;
  605. const std::array<int64_t, 4> ne;
  606. const std::array<int64_t, 4> permute;
  607. bool _use_permute;
  608. std::string vars() override {
  609. std::string v = VARS_TO_STR2(type, ne);
  610. if (_use_permute) v += "," + VAR_TO_STR(permute);
  611. return v;
  612. }
  613. test_dup(ggml_type type = GGML_TYPE_F32,
  614. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  615. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  616. : type(type), ne(ne), permute(permute),
  617. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  618. ggml_tensor * build_graph(ggml_context * ctx) override {
  619. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  620. if (_use_permute) {
  621. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  622. }
  623. ggml_tensor * out = ggml_dup(ctx, src);
  624. return out;
  625. }
  626. };
  627. // GGML_OP_CPY
  628. struct test_cpy : public test_case {
  629. const ggml_type type_src;
  630. const ggml_type type_dst;
  631. const std::array<int64_t, 4> ne;
  632. std::string vars() override {
  633. return VARS_TO_STR3(type_src, type_dst, ne);
  634. }
  635. size_t op_size(ggml_tensor * t) override {
  636. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  637. }
  638. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  639. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  640. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  641. ggml_tensor * build_graph(ggml_context * ctx) override {
  642. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  643. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  644. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  645. return out;
  646. }
  647. };
  648. // GGML_OP_CONT
  649. struct test_cont : public test_case {
  650. const ggml_type type;
  651. const std::array<int64_t, 4> ne;
  652. std::string vars() override {
  653. return VARS_TO_STR2(type, ne);
  654. }
  655. test_cont(ggml_type type = GGML_TYPE_F32,
  656. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  657. : type(type), ne(ne) {}
  658. ggml_tensor * build_graph(ggml_context * ctx) override {
  659. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  660. src = ggml_transpose(ctx, src);
  661. ggml_tensor * out = ggml_cont(ctx, src);
  662. return out;
  663. }
  664. };
  665. // GGML_OP_ADD
  666. // GGML_OP_MUL
  667. // GGML_OP_DIV
  668. struct test_bin_bcast : public test_case {
  669. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  670. op_t op;
  671. const ggml_type type;
  672. const std::array<int64_t, 4> ne;
  673. const std::array<int, 4> nr;
  674. std::string vars() override {
  675. return VARS_TO_STR3(type, ne, nr);
  676. }
  677. size_t op_size(ggml_tensor * t) override {
  678. return ggml_nbytes(t) * 3;
  679. }
  680. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  681. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  682. std::array<int, 4> nr = {1, 2, 1, 1})
  683. : op(op), type(type), ne(ne), nr(nr) {}
  684. ggml_tensor * build_graph(ggml_context * ctx) override {
  685. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  686. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  687. ggml_tensor * out = op(ctx, a, b);
  688. return out;
  689. }
  690. void initialize_tensors(ggml_context * ctx) override {
  691. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  692. if (op == ggml_div) {
  693. // avoid division by zero
  694. init_tensor_uniform(t, 1.0f, 2.0f);
  695. } else {
  696. init_tensor_uniform(t);
  697. }
  698. }
  699. }
  700. };
  701. // GGML_OP_SCALE
  702. struct test_scale : public test_case {
  703. const ggml_type type;
  704. const std::array<int64_t, 4> ne;
  705. float scale;
  706. std::string vars() override {
  707. return VARS_TO_STR3(type, ne, scale);
  708. }
  709. test_scale(ggml_type type = GGML_TYPE_F32,
  710. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  711. float scale = 2.0f)
  712. : type(type), ne(ne), scale(scale) {}
  713. ggml_tensor * build_graph(ggml_context * ctx) override {
  714. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  715. ggml_tensor * out = ggml_scale(ctx, a, scale);
  716. return out;
  717. }
  718. };
  719. // GGML_OP_NORM
  720. struct test_norm : public test_case {
  721. const ggml_type type;
  722. const std::array<int64_t, 4> ne;
  723. float eps;
  724. std::string vars() override {
  725. return VARS_TO_STR3(type, ne, eps);
  726. }
  727. test_norm(ggml_type type = GGML_TYPE_F32,
  728. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  729. float eps = 1e-6f)
  730. : type(type), ne(ne), eps(eps) {}
  731. ggml_tensor * build_graph(ggml_context * ctx) override {
  732. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  733. ggml_tensor * out = ggml_norm(ctx, a, eps);
  734. return out;
  735. }
  736. };
  737. // GGML_OP_RMS_NORM
  738. struct test_rms_norm : public test_case {
  739. const ggml_type type;
  740. const std::array<int64_t, 4> ne;
  741. float eps;
  742. std::string vars() override {
  743. return VARS_TO_STR3(type, ne, eps);
  744. }
  745. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  746. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  747. float eps = 1e-6f)
  748. : type(type), ne(ne), eps(eps) {}
  749. ggml_tensor * build_graph(ggml_context * ctx) override {
  750. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  751. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  752. return out;
  753. }
  754. };
  755. // GGML_OP_MUL_MAT
  756. struct test_mul_mat : public test_case {
  757. const ggml_type type_a;
  758. const ggml_type type_b;
  759. const int64_t m;
  760. const int64_t n;
  761. const int64_t k;
  762. const std::array<int64_t, 2> bs; // dims 3 and 4
  763. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  764. std::string vars() override {
  765. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  766. }
  767. double max_nmse_err() override {
  768. return 5e-4;
  769. }
  770. size_t op_size(ggml_tensor * t) override {
  771. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  772. size_t b = ggml_nbytes(t->src[1]) * m;
  773. size_t c = ggml_nbytes(t);
  774. return a + b + c;
  775. GGML_UNUSED(t);
  776. }
  777. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  778. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  779. std::array<int64_t, 2> bs = {10, 10},
  780. std::array<int64_t, 2> nr = {2, 2})
  781. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  782. ggml_tensor * build_graph(ggml_context * ctx) override {
  783. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  784. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  785. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  786. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  787. return out;
  788. }
  789. };
  790. // GGML_OP_MUL_MAT_ID
  791. struct test_mul_mat_id : public test_case {
  792. const ggml_type type_a;
  793. const ggml_type type_b;
  794. const int n_mats;
  795. const int id;
  796. const int64_t m;
  797. const int64_t n;
  798. const int64_t k;
  799. const bool v; // view (non-contiguous ids)
  800. std::string vars() override {
  801. return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
  802. }
  803. double max_nmse_err() override {
  804. return 5e-4;
  805. }
  806. size_t op_size(ggml_tensor * t) override {
  807. size_t a = ggml_nbytes(t->src[2]) * n;
  808. size_t b = ggml_nbytes(t->src[1]) * m;
  809. size_t c = ggml_nbytes(t);
  810. return a + b + c;
  811. GGML_UNUSED(t);
  812. }
  813. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  814. int n_mats = 2, int id = 0,
  815. int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
  816. : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
  817. m(m), n(n), k(k), v(v) {}
  818. ggml_tensor * build_graph(ggml_context * ctx) override {
  819. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  820. std::vector<ggml_tensor *> mats;
  821. for (int i = 0; i < n_mats; i++) {
  822. ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
  823. mats.push_back(a);
  824. }
  825. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  826. if (v) {
  827. ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
  828. }
  829. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
  830. ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
  831. return out;
  832. }
  833. void initialize_tensors(ggml_context * ctx) override {
  834. std::random_device rd;
  835. std::default_random_engine rng(rd());
  836. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  837. if (t->type == GGML_TYPE_I32) {
  838. if (ggml_is_view_op(t->op)) { continue; }
  839. // ids
  840. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  841. std::vector<int32_t> data(t->ne[0]);
  842. for (int i = 0; i < t->ne[0]; i++) {
  843. data[i] = i % n_mats;
  844. }
  845. std::shuffle(data.begin(), data.end(), rng);
  846. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  847. }
  848. } else {
  849. init_tensor_uniform(t);
  850. }
  851. }
  852. }
  853. };
  854. // GGML_OP_SQR
  855. struct test_sqr : public test_case {
  856. const ggml_type type;
  857. const std::array<int64_t, 4> ne;
  858. std::string vars() override {
  859. return VARS_TO_STR2(type, ne);
  860. }
  861. test_sqr(ggml_type type = GGML_TYPE_F32,
  862. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  863. : type(type), ne(ne) {}
  864. ggml_tensor * build_graph(ggml_context * ctx) override {
  865. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  866. ggml_tensor * out = ggml_sqr(ctx, a);
  867. return out;
  868. }
  869. };
  870. // GGML_OP_CLAMP
  871. struct test_clamp : public test_case {
  872. const ggml_type type;
  873. const std::array<int64_t, 4> ne;
  874. float min;
  875. float max;
  876. std::string vars() override {
  877. return VARS_TO_STR4(type, ne, min, max);
  878. }
  879. test_clamp(ggml_type type = GGML_TYPE_F32,
  880. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  881. float min = -0.5f, float max = 0.5f)
  882. : type(type), ne(ne), min(min), max(max) {}
  883. ggml_tensor * build_graph(ggml_context * ctx) override {
  884. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  885. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  886. return out;
  887. }
  888. };
  889. // GGML_OP_DIAG_MASK_INF
  890. struct test_diag_mask_inf : public test_case {
  891. const ggml_type type;
  892. const std::array<int64_t, 4> ne;
  893. const int n_past;
  894. std::string vars() override {
  895. return VARS_TO_STR3(type, ne, n_past);
  896. }
  897. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  898. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  899. int n_past = 5)
  900. : type(type), ne(ne), n_past(n_past) {}
  901. ggml_tensor * build_graph(ggml_context * ctx) override {
  902. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  903. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  904. return out;
  905. }
  906. };
  907. // GGML_OP_SOFT_MAX
  908. struct test_soft_max : public test_case {
  909. const ggml_type type;
  910. const std::array<int64_t, 4> ne;
  911. const bool mask;
  912. const float scale;
  913. const float max_bias;
  914. std::string vars() override {
  915. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  916. }
  917. test_soft_max(ggml_type type = GGML_TYPE_F32,
  918. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  919. bool mask = false,
  920. float scale = 1.0f,
  921. float max_bias = 0.0f)
  922. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  923. ggml_tensor * build_graph(ggml_context * ctx) override {
  924. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  925. ggml_tensor * mask = nullptr;
  926. if (this->mask) {
  927. mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]);
  928. }
  929. ggml_tensor * pos = nullptr;
  930. if (max_bias > 0.0f) {
  931. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
  932. }
  933. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias);
  934. return out;
  935. }
  936. };
  937. // GGML_OP_ROPE
  938. struct test_rope : public test_case {
  939. const ggml_type type;
  940. const std::array<int64_t, 4> ne;
  941. int n_dims;
  942. int mode;
  943. int n_ctx;
  944. std::string vars() override {
  945. return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
  946. }
  947. test_rope(ggml_type type = GGML_TYPE_F32,
  948. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  949. int n_dims = 10, int mode = 0, int n_ctx = 512)
  950. : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
  951. ggml_tensor * build_graph(ggml_context * ctx) override {
  952. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  953. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  954. ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
  955. return out;
  956. }
  957. void initialize_tensors(ggml_context * ctx) override {
  958. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  959. if (t->type == GGML_TYPE_I32) {
  960. // pos
  961. std::vector<int> data(ne[2]);
  962. for (int i = 0; i < ne[2]; i++) {
  963. data[i] = rand() % n_ctx;
  964. }
  965. ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
  966. } else {
  967. init_tensor_uniform(t);
  968. }
  969. }
  970. }
  971. };
  972. // GGML_OP_POOL2D
  973. struct test_pool2d : public test_case {
  974. enum ggml_op_pool pool_type;
  975. const ggml_type type_input;
  976. const std::array<int64_t, 4> ne_input;
  977. // kernel size
  978. const int k0;
  979. const int k1;
  980. // stride
  981. const int s0;
  982. const int s1;
  983. // padding
  984. const int p0;
  985. const int p1;
  986. std::string vars() override {
  987. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  988. }
  989. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  990. ggml_type type_input = GGML_TYPE_F32,
  991. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  992. int k0 = 3, int k1 = 3,
  993. int s0 = 1, int s1 = 1,
  994. int p0 = 1, int p1 = 1)
  995. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  996. ggml_tensor * build_graph(ggml_context * ctx) override {
  997. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  998. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  999. return out;
  1000. }
  1001. };
  1002. // GGML_OP_IM2COL
  1003. struct test_im2col : public test_case {
  1004. const ggml_type type_input;
  1005. const ggml_type type_kernel;
  1006. const ggml_type dst_type;
  1007. const std::array<int64_t, 4> ne_input;
  1008. const std::array<int64_t, 4> ne_kernel;
  1009. // stride
  1010. const int s0;
  1011. const int s1;
  1012. // padding
  1013. const int p0;
  1014. const int p1;
  1015. // dilatation
  1016. const int d0;
  1017. const int d1;
  1018. // mode
  1019. const bool is_2D;
  1020. std::string vars() override {
  1021. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  1022. }
  1023. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  1024. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1025. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  1026. int s0 = 1, int s1 = 1,
  1027. int p0 = 1, int p1 = 1,
  1028. int d0 = 1, int d1 = 1,
  1029. bool is_2D = true)
  1030. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  1031. ggml_tensor * build_graph(ggml_context * ctx) override {
  1032. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1033. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  1034. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  1035. return out;
  1036. }
  1037. };
  1038. // GGML_OP_CONCAT
  1039. struct test_concat : public test_case {
  1040. const ggml_type type;
  1041. const std::array<int64_t, 4> ne;
  1042. const int64_t b_ne2;
  1043. std::string vars() override {
  1044. return VARS_TO_STR3(type, ne, b_ne2);
  1045. }
  1046. test_concat(ggml_type type = GGML_TYPE_F32,
  1047. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1048. int64_t b_ne2 = 10)
  1049. : type(type), ne(ne), b_ne2(b_ne2) {}
  1050. ggml_tensor * build_graph(ggml_context * ctx) override {
  1051. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1052. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
  1053. ggml_tensor * out = ggml_concat(ctx, a, b);
  1054. return out;
  1055. }
  1056. };
  1057. // GGML_OP_ARGSORT
  1058. struct test_argsort : public test_case {
  1059. const ggml_type type;
  1060. const std::array<int64_t, 4> ne;
  1061. ggml_sort_order order;
  1062. std::string vars() override {
  1063. return VARS_TO_STR3(type, ne, order);
  1064. }
  1065. test_argsort(ggml_type type = GGML_TYPE_F32,
  1066. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  1067. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  1068. : type(type), ne(ne), order(order) {}
  1069. ggml_tensor * build_graph(ggml_context * ctx) override {
  1070. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1071. ggml_tensor * out = ggml_argsort(ctx, a, order);
  1072. return out;
  1073. }
  1074. void initialize_tensors(ggml_context * ctx) override {
  1075. std::random_device rd;
  1076. std::default_random_engine rng(rd());
  1077. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1078. if (t->type == GGML_TYPE_I32) {
  1079. // indices
  1080. std::vector<int> data(ggml_nelements(t));
  1081. for (int i = 0; i < ggml_nelements(t); i++) {
  1082. data[i] = rand();
  1083. }
  1084. std::shuffle(data.begin(), data.end(), rng);
  1085. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  1086. } else if (t->type == GGML_TYPE_F32) {
  1087. // initialize with unique values to avoid ties
  1088. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1089. std::vector<float> data(t->ne[0]);
  1090. for (int i = 0; i < t->ne[0]; i++) {
  1091. data[i] = i;
  1092. }
  1093. std::shuffle(data.begin(), data.end(), rng);
  1094. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1095. }
  1096. } else {
  1097. GGML_ASSERT(false);
  1098. }
  1099. }
  1100. }
  1101. };
  1102. // GGML_OP_SUM_ROWS
  1103. struct test_sum_rows : public test_case {
  1104. const ggml_type type;
  1105. const std::array<int64_t, 4> ne;
  1106. std::string vars() override {
  1107. return VARS_TO_STR2(type, ne);
  1108. }
  1109. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  1110. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  1111. : type(type), ne(ne) {}
  1112. ggml_tensor * build_graph(ggml_context * ctx) override {
  1113. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1114. ggml_tensor * out = ggml_sum_rows(ctx, a);
  1115. return out;
  1116. }
  1117. };
  1118. // GGML_OP_UPSCALE
  1119. struct test_upscale : public test_case {
  1120. const ggml_type type;
  1121. const std::array<int64_t, 4> ne;
  1122. const int32_t scale_factor;
  1123. std::string vars() override {
  1124. return VARS_TO_STR3(type, ne, scale_factor);
  1125. }
  1126. test_upscale(ggml_type type = GGML_TYPE_F32,
  1127. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  1128. int32_t scale_factor = 2)
  1129. : type(type), ne(ne), scale_factor(scale_factor) {}
  1130. ggml_tensor * build_graph(ggml_context * ctx) override {
  1131. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1132. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  1133. return out;
  1134. }
  1135. };
  1136. // GGML_OP_GROUP_NORM
  1137. struct test_group_norm : public test_case {
  1138. const ggml_type type;
  1139. const std::array<int64_t, 4> ne;
  1140. const int32_t num_groups;
  1141. std::string vars() override {
  1142. return VARS_TO_STR3(type, ne, num_groups);
  1143. }
  1144. test_group_norm(ggml_type type = GGML_TYPE_F32,
  1145. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  1146. int32_t num_groups = 32)
  1147. : type(type), ne(ne), num_groups(num_groups) {}
  1148. ggml_tensor * build_graph(ggml_context * ctx) override {
  1149. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1150. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
  1151. return out;
  1152. }
  1153. };
  1154. // GGML_OP_ACC
  1155. struct test_acc : public test_case {
  1156. const ggml_type type;
  1157. const std::array<int64_t, 4> ne_a;
  1158. const std::array<int64_t, 4> ne_b;
  1159. std::string vars() override {
  1160. return VARS_TO_STR3(type, ne_a, ne_b);
  1161. }
  1162. test_acc(ggml_type type = GGML_TYPE_F32,
  1163. std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
  1164. std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
  1165. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1166. ggml_tensor * build_graph(ggml_context * ctx) override {
  1167. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1168. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1169. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  1170. return out;
  1171. }
  1172. };
  1173. // GGML_OP_PAD
  1174. struct test_pad : public test_case {
  1175. const ggml_type type;
  1176. const std::array<int64_t, 4> ne_a;
  1177. const int pad_0;
  1178. const int pad_1;
  1179. std::string vars() override {
  1180. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  1181. }
  1182. test_pad(ggml_type type = GGML_TYPE_F32,
  1183. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  1184. int pad_0 = 1, int pad_1 = 1)
  1185. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  1186. ggml_tensor * build_graph(ggml_context * ctx) override {
  1187. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1188. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  1189. return out;
  1190. }
  1191. };
  1192. // GGML_OP_ARANGE
  1193. struct test_arange : public test_case {
  1194. const ggml_type type;
  1195. const float start;
  1196. const float stop;
  1197. const float step;
  1198. std::string vars() override {
  1199. return VARS_TO_STR4(type, start, stop, step);
  1200. }
  1201. test_arange(ggml_type type = GGML_TYPE_F32,
  1202. float start = 0.f, float stop = 10.f, float step = 1.f)
  1203. : type(type), start(start), stop(stop), step(step) {}
  1204. ggml_tensor * build_graph(ggml_context * ctx) override {
  1205. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  1206. return out;
  1207. }
  1208. };
  1209. // GGML_OP_TIMESTEP_EMBEDDING
  1210. struct test_timestep_embedding : public test_case {
  1211. const ggml_type type;
  1212. const std::array<int64_t, 4> ne_a;
  1213. const int dim;
  1214. const int max_period;
  1215. std::string vars() override {
  1216. return VARS_TO_STR4(type, ne_a, dim, max_period);
  1217. }
  1218. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  1219. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  1220. int dim = 320, int max_period=10000)
  1221. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  1222. ggml_tensor * build_graph(ggml_context * ctx) override {
  1223. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1224. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  1225. return out;
  1226. }
  1227. };
  1228. // GGML_OP_LEAKY_RELU
  1229. struct test_leaky_relu : public test_case {
  1230. const ggml_type type;
  1231. const std::array<int64_t, 4> ne_a;
  1232. const float negative_slope;
  1233. std::string vars() override {
  1234. return VARS_TO_STR3(type, ne_a, negative_slope);
  1235. }
  1236. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  1237. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1238. float negative_slope = 0.1f)
  1239. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  1240. ggml_tensor * build_graph(ggml_context * ctx) override {
  1241. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1242. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  1243. return out;
  1244. }
  1245. };
  1246. // Mixtral MOE
  1247. struct test_moe : public test_case {
  1248. const int n_experts;
  1249. const int n_experts_per_tok;
  1250. const int n_tokens;
  1251. const int n_embd;
  1252. const int n_ff;
  1253. std::string op_desc(ggml_tensor * t) override {
  1254. return "MOE";
  1255. GGML_UNUSED(t);
  1256. }
  1257. std::string vars() override {
  1258. return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
  1259. }
  1260. test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
  1261. : n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
  1262. }
  1263. ggml_tensor * build_graph(ggml_context * ctx) override {
  1264. ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
  1265. std::vector<ggml_tensor *> ffn_up_exp(n_experts);
  1266. std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
  1267. std::vector<ggml_tensor *> ffn_down_exp(n_experts);
  1268. for (int i = 0; i < n_experts; ++i) {
  1269. ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  1270. ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  1271. ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  1272. }
  1273. ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
  1274. ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
  1275. ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f);
  1276. // select experts
  1277. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
  1278. ggml_tensor * weights = ggml_get_rows(ctx,
  1279. ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
  1280. weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
  1281. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
  1282. weights = ggml_div(ctx, weights, weights_sum);
  1283. // compute expert outputs
  1284. ggml_tensor * moe_out = nullptr;
  1285. for (int i = 0; i < n_experts_per_tok; ++i) {
  1286. ggml_tensor * cur_expert;
  1287. ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
  1288. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
  1289. cur_gate = ggml_silu(ctx, cur_gate);
  1290. cur_expert = ggml_mul(ctx, cur_up, cur_gate);
  1291. cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
  1292. cur_expert = ggml_mul(ctx, cur_expert,
  1293. ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  1294. if (i == 0) {
  1295. moe_out = cur_expert;
  1296. } else {
  1297. moe_out = ggml_add(ctx, moe_out, cur_expert);
  1298. }
  1299. }
  1300. cur = moe_out;
  1301. return cur;
  1302. }
  1303. };
  1304. enum llm_norm_type {
  1305. LLM_NORM,
  1306. LLM_NORM_RMS,
  1307. };
  1308. struct llama_hparams {
  1309. uint32_t n_vocab;
  1310. uint32_t n_embd;
  1311. uint32_t n_head;
  1312. uint32_t n_head_kv;
  1313. static constexpr uint32_t n_layer = 1;
  1314. uint32_t n_rot;
  1315. uint32_t n_embd_head; // dimension of values (d_v)
  1316. uint32_t n_ff;
  1317. float f_norm_eps;
  1318. float f_norm_rms_eps;
  1319. // cparams
  1320. static constexpr uint32_t n_ctx = 512; // user-specified context size
  1321. static constexpr uint32_t n_orig_ctx = n_ctx;
  1322. // batch
  1323. int32_t n_tokens;
  1324. // llm_build_context
  1325. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  1326. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  1327. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  1328. return n_embd_head * n_head_kv;
  1329. }
  1330. };
  1331. // LLM base class
  1332. struct test_llm : public test_case {
  1333. llama_hparams hp;
  1334. protected:
  1335. test_llm(llama_hparams hp)
  1336. : hp(std::move(hp)) {
  1337. }
  1338. public:
  1339. struct ggml_tensor * llm_build_norm(
  1340. struct ggml_context * ctx,
  1341. struct ggml_tensor * cur,
  1342. struct ggml_tensor * mw,
  1343. struct ggml_tensor * mb,
  1344. llm_norm_type type) {
  1345. switch (type) {
  1346. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  1347. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  1348. }
  1349. cur = ggml_mul(ctx, cur, mw);
  1350. if (mb) {
  1351. cur = ggml_add(ctx, cur, mb);
  1352. }
  1353. return cur;
  1354. }
  1355. void llm_build_kv_store(
  1356. struct ggml_context * ctx,
  1357. struct ggml_tensor * k_l,
  1358. struct ggml_tensor * v_l,
  1359. struct ggml_tensor * k_cur,
  1360. struct ggml_tensor * v_cur) {
  1361. // compute the transposed [n_tokens, n_embd] V matrix
  1362. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  1363. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  1364. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  1365. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  1366. ( hp.n_ctx)*ggml_element_size(v_l),
  1367. (hp.kv_head)*ggml_element_size(v_l));
  1368. // important: storing RoPE-ed version of K in the KV cache!
  1369. ggml_cpy(ctx, k_cur, k_cache_view);
  1370. ggml_cpy(ctx, v_cur_t, v_cache_view);
  1371. }
  1372. struct ggml_tensor * llm_build_kqv(
  1373. struct ggml_context * ctx,
  1374. struct ggml_tensor * k_l,
  1375. struct ggml_tensor * v_l,
  1376. struct ggml_tensor * q_cur,
  1377. struct ggml_tensor * kq_mask,
  1378. float kq_scale) {
  1379. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  1380. struct ggml_tensor * k =
  1381. ggml_view_3d(ctx, k_l,
  1382. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  1383. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  1384. ggml_row_size(k_l->type, hp.n_embd_head),
  1385. 0);
  1386. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  1387. kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f);
  1388. // split cached v into n_head heads
  1389. struct ggml_tensor * v =
  1390. ggml_view_3d(ctx, v_l,
  1391. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  1392. ggml_element_size(v_l)*hp.n_ctx,
  1393. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  1394. 0);
  1395. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  1396. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  1397. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  1398. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1399. cur = ggml_mul_mat(ctx, wo, cur);
  1400. return cur;
  1401. }
  1402. void initialize_tensors(ggml_context * ctx) override {
  1403. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1404. if (t->type == GGML_TYPE_I32) {
  1405. // pos
  1406. std::vector<int> data(hp.n_tokens);
  1407. for (int i = 0; i < hp.n_tokens; i++) {
  1408. data[i] = rand() % hp.n_ctx;
  1409. }
  1410. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  1411. } else {
  1412. init_tensor_uniform(t);
  1413. }
  1414. }
  1415. }
  1416. };
  1417. // Llama
  1418. struct test_llama : public test_llm {
  1419. static constexpr float freq_base = 10000.0f;
  1420. static constexpr float freq_scale = 1.0f;
  1421. static constexpr float ext_factor = 0.0f;
  1422. static constexpr float attn_factor = 1.0f;
  1423. static constexpr float beta_fast = 32.0f;
  1424. static constexpr float beta_slow = 1.0f;
  1425. std::string op_desc(ggml_tensor * t) override {
  1426. GGML_UNUSED(t);
  1427. return "LLAMA";
  1428. }
  1429. std::string vars() override {
  1430. auto n_tokens = hp.n_tokens;
  1431. return VARS_TO_STR1(n_tokens);
  1432. }
  1433. double max_nmse_err() override {
  1434. return 2e-3;
  1435. }
  1436. test_llama(int n_tokens = 1)
  1437. : test_llm({
  1438. /*n_vocab =*/ 32000,
  1439. /*n_embd =*/ 3200,
  1440. /*n_head =*/ 32,
  1441. /*n_head_kv =*/ 32,
  1442. /*n_rot =*/ 100,
  1443. /*n_embd_head =*/ 100,
  1444. /*n_ff =*/ 8640,
  1445. /*f_norm_eps =*/ 0.f,
  1446. /*f_norm_rms_eps =*/ 1e-5f,
  1447. /*n_tokens =*/ n_tokens,
  1448. }) {
  1449. }
  1450. ggml_tensor * build_graph(ggml_context * ctx) override {
  1451. struct ggml_tensor * cur;
  1452. struct ggml_tensor * inpL;
  1453. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1454. // inp_pos - contains the positions
  1455. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1456. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1457. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
  1458. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1459. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1460. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1461. struct ggml_tensor * inpSA = inpL;
  1462. // norm
  1463. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1464. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  1465. // self-attention
  1466. {
  1467. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1468. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1469. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1470. // compute Q and K and RoPE them
  1471. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  1472. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  1473. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  1474. Qcur = ggml_rope_custom(
  1475. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
  1476. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1477. ext_factor, attn_factor, beta_fast, beta_slow
  1478. );
  1479. Kcur = ggml_rope_custom(
  1480. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
  1481. hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
  1482. ext_factor, attn_factor, beta_fast, beta_slow
  1483. );
  1484. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1485. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1486. }
  1487. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  1488. // feed-forward network
  1489. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1490. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  1491. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1492. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1493. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1494. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  1495. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  1496. cur = ggml_silu(ctx, cur);
  1497. cur = ggml_mul(ctx, cur, tmp);
  1498. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1499. cur = ggml_add(ctx, cur, ffn_inp);
  1500. // input for next layer
  1501. inpL = cur;
  1502. }
  1503. cur = inpL;
  1504. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1505. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  1506. // lm_head
  1507. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  1508. cur = ggml_mul_mat(ctx, output, cur);
  1509. return cur;
  1510. }
  1511. };
  1512. // Falcon
  1513. struct test_falcon : public test_llm {
  1514. static constexpr float freq_base = 10000.0f;
  1515. static constexpr float freq_scale = 1.0f;
  1516. static constexpr float ext_factor = 0.0f;
  1517. static constexpr float attn_factor = 1.0f;
  1518. static constexpr float beta_fast = 32.0f;
  1519. static constexpr float beta_slow = 1.0f;
  1520. std::string op_desc(ggml_tensor * t) override {
  1521. GGML_UNUSED(t);
  1522. return "FALCON";
  1523. }
  1524. std::string vars() override {
  1525. auto n_tokens = hp.n_tokens;
  1526. return VARS_TO_STR1(n_tokens);
  1527. }
  1528. double max_nmse_err() override {
  1529. return 2e-3;
  1530. }
  1531. test_falcon(int n_tokens = 1)
  1532. : test_llm({
  1533. /*n_vocab =*/ 32000,
  1534. /*n_embd =*/ 3200,
  1535. /*n_head =*/ 50,
  1536. /*n_head_kv =*/ 1,
  1537. /*n_rot =*/ 64,
  1538. /*n_embd_head =*/ 64,
  1539. /*n_ff =*/ 8640,
  1540. /*f_norm_eps =*/ 1e-5f,
  1541. /*f_norm_rms_eps =*/ 0.f,
  1542. /*n_tokens =*/ n_tokens,
  1543. }) {
  1544. }
  1545. ggml_tensor * build_graph(ggml_context * ctx) override {
  1546. struct ggml_tensor * cur;
  1547. struct ggml_tensor * inpL;
  1548. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1549. // inp_pos - contains the positions
  1550. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1551. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1552. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
  1553. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1554. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1555. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1556. // norm
  1557. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1558. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1559. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  1560. // self-attention
  1561. {
  1562. cur = attn_norm;
  1563. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  1564. cur = ggml_mul_mat(ctx, wqkv, cur);
  1565. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  1566. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  1567. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  1568. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  1569. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  1570. // using mode = 2 for neox mode
  1571. Qcur = ggml_rope_custom(
  1572. ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1573. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1574. );
  1575. Kcur = ggml_rope_custom(
  1576. ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
  1577. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1578. );
  1579. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1580. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1581. }
  1582. struct ggml_tensor * ffn_inp = cur;
  1583. // feed forward
  1584. {
  1585. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1586. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1587. cur = attn_norm;
  1588. cur = ggml_mul_mat(ctx, ffn_up, cur);
  1589. cur = ggml_gelu(ctx, cur);
  1590. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1591. }
  1592. cur = ggml_add(ctx, cur, ffn_inp);
  1593. cur = ggml_add(ctx, cur, inpL);
  1594. // input for next layer
  1595. inpL = cur;
  1596. }
  1597. cur = inpL;
  1598. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1599. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1600. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  1601. // lm_head
  1602. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  1603. cur = ggml_mul_mat(ctx, output, cur);
  1604. return cur;
  1605. }
  1606. };
  1607. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  1608. std::vector<std::unique_ptr<test_case>> test_cases;
  1609. std::default_random_engine rng(0);
  1610. const ggml_type all_types[] = {
  1611. GGML_TYPE_F32, GGML_TYPE_F16,
  1612. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  1613. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1614. GGML_TYPE_Q8_0,
  1615. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1616. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  1617. GGML_TYPE_Q6_K,
  1618. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1619. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1620. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1621. };
  1622. // unary ops
  1623. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  1624. test_cases.emplace_back(new test_unary((ggml_unary_op) op));
  1625. }
  1626. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  1627. for (ggml_type type : all_types) {
  1628. for (int b : {1, 7}) {
  1629. for (bool v : {false, true}) {
  1630. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  1631. }
  1632. }
  1633. }
  1634. for (int b : {1, 7}) {
  1635. for (bool v : {false, true}) {
  1636. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  1637. }
  1638. }
  1639. for (ggml_type type_input : {GGML_TYPE_F32}) {
  1640. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  1641. for (int k0 : {1, 3}) {
  1642. for (int k1 : {1, 3}) {
  1643. for (int s0 : {1, 2}) {
  1644. for (int s1 : {1, 2}) {
  1645. for (int p0 : {0, 1}) {
  1646. for (int p1 : {0, 1}) {
  1647. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  1648. }
  1649. }
  1650. }
  1651. }
  1652. }
  1653. }
  1654. }
  1655. }
  1656. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  1657. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  1658. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  1659. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1660. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  1661. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  1662. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1663. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1664. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1665. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  1666. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  1667. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  1668. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  1669. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  1670. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  1671. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  1672. for (ggml_type type_dst : all_types) {
  1673. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  1674. }
  1675. }
  1676. test_cases.emplace_back(new test_cont());
  1677. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  1678. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  1679. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  1680. }
  1681. };
  1682. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  1683. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  1684. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  1685. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  1686. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  1687. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  1688. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  1689. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  1690. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  1691. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  1692. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  1693. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  1694. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  1695. // stable diffusion
  1696. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  1697. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  1698. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  1699. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  1700. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  1701. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  1702. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  1703. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  1704. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  1705. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  1706. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  1707. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  1708. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  1709. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  1710. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  1711. test_cases.emplace_back(new test_scale());
  1712. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  1713. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1714. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1715. }
  1716. for (ggml_type type_a : all_types) {
  1717. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1718. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1719. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1720. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1721. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1722. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1723. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1724. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1725. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1726. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1727. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1728. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1729. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1730. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1731. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1732. }
  1733. }
  1734. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  1735. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  1736. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  1737. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  1738. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  1739. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  1740. for (ggml_type type_a : all_types) {
  1741. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1742. for (int n_mats : {2, 4, 8}) {
  1743. for (int id = 0; id < n_mats; id++) {
  1744. for (bool v : {false, true}) {
  1745. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
  1746. }
  1747. }
  1748. }
  1749. }
  1750. }
  1751. test_cases.emplace_back(new test_sqr());
  1752. test_cases.emplace_back(new test_clamp());
  1753. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1754. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1755. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1756. #if 0
  1757. std::uniform_int_distribution<> dist_ne1(1, 50);
  1758. int exponent = 1;
  1759. while (exponent < (1 << 17)) {
  1760. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  1761. for (int n = 0; n < 10; ++n) {
  1762. int64_t ne0 = dist_ne0(rng);
  1763. int64_t ne1 = dist_ne1(rng);
  1764. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  1765. }
  1766. exponent <<= 1;
  1767. }
  1768. #endif
  1769. for (bool mask : {false, true}) {
  1770. for (float max_bias : {0.0f, 8.0f}) {
  1771. for (float scale : {1.0f, 0.1f}) {
  1772. for (int64_t ne0 : {16, 1024}) {
  1773. for (int64_t ne1 : {16, 1024}) {
  1774. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  1775. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  1776. }
  1777. }
  1778. }
  1779. }
  1780. }
  1781. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  1782. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  1783. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f));
  1784. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  1785. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1786. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
  1787. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
  1788. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
  1789. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
  1790. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1791. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1792. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1793. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1794. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
  1795. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
  1796. }
  1797. test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
  1798. test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
  1799. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  1800. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  1801. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1802. }
  1803. test_cases.emplace_back(new test_sum_rows());
  1804. test_cases.emplace_back(new test_upscale());
  1805. test_cases.emplace_back(new test_group_norm());
  1806. test_cases.emplace_back(new test_acc());
  1807. test_cases.emplace_back(new test_pad());
  1808. test_cases.emplace_back(new test_arange());
  1809. test_cases.emplace_back(new test_timestep_embedding());
  1810. test_cases.emplace_back(new test_leaky_relu());
  1811. // these tests are disabled to save execution time, but they can be handy for debugging
  1812. #if 0
  1813. #if !defined(__SANITIZE_THREAD__)
  1814. // FIXME: these tests use too much memory with thread sanitizer
  1815. test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
  1816. //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
  1817. #endif
  1818. test_cases.emplace_back(new test_llama(1));
  1819. test_cases.emplace_back(new test_llama(2));
  1820. test_cases.emplace_back(new test_falcon(1));
  1821. test_cases.emplace_back(new test_falcon(2));
  1822. #endif
  1823. // run tests
  1824. if (mode == MODE_TEST) {
  1825. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1826. size_t n_ok = 0;
  1827. for (auto & test : test_cases) {
  1828. if (test->eval(backend, backend_cpu, op_name)) {
  1829. n_ok++;
  1830. }
  1831. }
  1832. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1833. ggml_backend_free(backend_cpu);
  1834. return n_ok == test_cases.size();
  1835. }
  1836. if (mode == MODE_PERF) {
  1837. for (auto & test : test_cases) {
  1838. test->eval_perf(backend, op_name);
  1839. }
  1840. return true;
  1841. }
  1842. GGML_ASSERT(false);
  1843. return false;
  1844. }
  1845. static void usage(char ** argv) {
  1846. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  1847. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  1848. printf(" op names are as given by ggml_op_desc()\n");
  1849. }
  1850. int main(int argc, char ** argv) {
  1851. test_mode mode = MODE_TEST;
  1852. const char * op_name_filter = NULL;
  1853. const char * backend_filter = NULL;
  1854. for (int i = 1; i < argc; i++) {
  1855. if (strcmp(argv[i], "test") == 0) {
  1856. mode = MODE_TEST;
  1857. } else if (strcmp(argv[i], "perf") == 0) {
  1858. mode = MODE_PERF;
  1859. } else if (strcmp(argv[i], "-o") == 0) {
  1860. if (i + 1 < argc) {
  1861. op_name_filter = argv[++i];
  1862. } else {
  1863. usage(argv);
  1864. return 1;
  1865. }
  1866. } else if (strcmp(argv[i], "-b") == 0) {
  1867. if (i + 1 < argc) {
  1868. backend_filter = argv[++i];
  1869. } else {
  1870. usage(argv);
  1871. return 1;
  1872. }
  1873. } else {
  1874. usage(argv);
  1875. return 1;
  1876. }
  1877. }
  1878. // enumerate backends
  1879. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  1880. size_t n_ok = 0;
  1881. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  1882. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  1883. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
  1884. printf(" Skipping\n");
  1885. n_ok++;
  1886. continue;
  1887. }
  1888. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  1889. GGML_ASSERT(backend != NULL);
  1890. if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
  1891. printf(" Skipping CPU backend\n");
  1892. ggml_backend_free(backend);
  1893. n_ok++;
  1894. continue;
  1895. }
  1896. printf(" Backend name: %s\n", ggml_backend_name(backend));
  1897. bool ok = test_backend(backend, mode, op_name_filter);
  1898. printf(" Backend %s: ", ggml_backend_name(backend));
  1899. if (ok) {
  1900. printf("\033[1;32mOK\033[0m\n");
  1901. n_ok++;
  1902. } else {
  1903. printf("\033[1;31mFAIL\033[0m\n");
  1904. }
  1905. printf("\n");
  1906. ggml_backend_free(backend);
  1907. }
  1908. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  1909. if (n_ok != ggml_backend_reg_get_count()) {
  1910. printf("\033[1;31mFAIL\033[0m\n");
  1911. return 1;
  1912. }
  1913. ggml_quantize_free();
  1914. printf("\033[1;32mOK\033[0m\n");
  1915. return 0;
  1916. }