ggml.c 331 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #else
  143. // FP16 <-> FP32
  144. // ref: https://github.com/Maratyszcza/FP16
  145. static inline float fp32_from_bits(uint32_t w) {
  146. union {
  147. uint32_t as_bits;
  148. float as_value;
  149. } fp32;
  150. fp32.as_bits = w;
  151. return fp32.as_value;
  152. }
  153. static inline uint32_t fp32_to_bits(float f) {
  154. union {
  155. float as_value;
  156. uint32_t as_bits;
  157. } fp32;
  158. fp32.as_value = f;
  159. return fp32.as_bits;
  160. }
  161. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  162. const uint32_t w = (uint32_t) h << 16;
  163. const uint32_t sign = w & UINT32_C(0x80000000);
  164. const uint32_t two_w = w + w;
  165. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  166. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  167. const float exp_scale = 0x1.0p-112f;
  168. #else
  169. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  170. #endif
  171. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  172. const uint32_t magic_mask = UINT32_C(126) << 23;
  173. const float magic_bias = 0.5f;
  174. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  175. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  176. const uint32_t result = sign |
  177. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  178. return fp32_from_bits(result);
  179. }
  180. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  181. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  182. const float scale_to_inf = 0x1.0p+112f;
  183. const float scale_to_zero = 0x1.0p-110f;
  184. #else
  185. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  186. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  187. #endif
  188. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  189. const uint32_t w = fp32_to_bits(f);
  190. const uint32_t shl1_w = w + w;
  191. const uint32_t sign = w & UINT32_C(0x80000000);
  192. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  193. if (bias < UINT32_C(0x71000000)) {
  194. bias = UINT32_C(0x71000000);
  195. }
  196. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  197. const uint32_t bits = fp32_to_bits(base);
  198. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  199. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  200. const uint32_t nonsign = exp_bits + mantissa_bits;
  201. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  202. }
  203. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  204. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  205. #endif // __F16C__
  206. #endif // __ARM_NEON
  207. //
  208. // global data
  209. //
  210. // precomputed gelu table for f16 (128 KB)
  211. static ggml_fp16_t table_gelu_f16[1 << 16];
  212. // precomputed silu table for f16 (128 KB)
  213. static ggml_fp16_t table_silu_f16[1 << 16];
  214. // precomputed exp table for f16 (128 KB)
  215. static ggml_fp16_t table_exp_f16[1 << 16];
  216. // precomputed f32 table for f16 (256 KB)
  217. static float table_f32_f16[1 << 16];
  218. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  219. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  220. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  221. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  222. uint16_t s;
  223. memcpy(&s, &f, sizeof(uint16_t));
  224. return table_f32_f16[s];
  225. }
  226. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  227. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  228. #endif
  229. // note: do not use these inside ggml.c
  230. // these are meant to be used via the ggml.h API
  231. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  232. return GGML_FP16_TO_FP32(x);
  233. }
  234. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  235. return GGML_FP32_TO_FP16(x);
  236. }
  237. //
  238. // timing
  239. //
  240. #if defined(_MSC_VER) || defined(__MINGW32__)
  241. static int64_t timer_freq;
  242. void ggml_time_init(void) {
  243. LARGE_INTEGER frequency;
  244. QueryPerformanceFrequency(&frequency);
  245. timer_freq = frequency.QuadPart;
  246. }
  247. int64_t ggml_time_ms(void) {
  248. LARGE_INTEGER t;
  249. QueryPerformanceCounter(&t);
  250. return (t.QuadPart * 1000) / timer_freq;
  251. }
  252. int64_t ggml_time_us(void) {
  253. LARGE_INTEGER t;
  254. QueryPerformanceCounter(&t);
  255. return (t.QuadPart * 1000000) / timer_freq;
  256. }
  257. #else
  258. void ggml_time_init(void) {}
  259. int64_t ggml_time_ms(void) {
  260. struct timespec ts;
  261. clock_gettime(CLOCK_MONOTONIC, &ts);
  262. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  263. }
  264. int64_t ggml_time_us(void) {
  265. struct timespec ts;
  266. clock_gettime(CLOCK_MONOTONIC, &ts);
  267. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  268. }
  269. #endif
  270. int64_t ggml_cycles(void) {
  271. return clock();
  272. }
  273. int64_t ggml_cycles_per_ms(void) {
  274. return CLOCKS_PER_SEC/1000;
  275. }
  276. #ifdef GGML_PERF
  277. #define ggml_perf_time_ms() ggml_time_ms()
  278. #define ggml_perf_time_us() ggml_time_us()
  279. #define ggml_perf_cycles() ggml_cycles()
  280. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  281. #else
  282. #define ggml_perf_time_ms() 0
  283. #define ggml_perf_time_us() 0
  284. #define ggml_perf_cycles() 0
  285. #define ggml_perf_cycles_per_ms() 0
  286. #endif
  287. //
  288. // cache line
  289. //
  290. #if defined(__cpp_lib_hardware_interference_size)
  291. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  292. #else
  293. #if defined(__POWER9_VECTOR__)
  294. #define CACHE_LINE_SIZE 128
  295. #else
  296. #define CACHE_LINE_SIZE 64
  297. #endif
  298. #endif
  299. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  300. //
  301. // quantization
  302. //
  303. #define QK 32
  304. // AVX routines provided by GH user Const-me
  305. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  306. #if __AVX2__ || __AVX512F__
  307. // Unpack 32 4-bit fields into 32 bytes
  308. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  309. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  310. {
  311. // Load 16 bytes from memory
  312. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  313. // Expand bytes into uint16_t values
  314. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  315. // Unpack values into individual bytes
  316. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  317. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  318. __m256i low = _mm256_and_si256( lowMask, bytes );
  319. high = _mm256_slli_epi16( high, 4 );
  320. bytes = _mm256_or_si256( low, high );
  321. return bytes;
  322. }
  323. static inline __m128i packNibbles( __m256i bytes )
  324. {
  325. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  326. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  327. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  328. __m256i low = _mm256_and_si256( lowByte, bytes );
  329. high = _mm256_srli_epi16( high, 4 );
  330. bytes = _mm256_or_si256( low, high );
  331. // Compress uint16_t lanes into bytes
  332. __m128i r0 = _mm256_castsi256_si128( bytes );
  333. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  334. return _mm_packus_epi16( r0, r1 );
  335. }
  336. #endif
  337. // method 5
  338. // blocks of QK elements
  339. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  340. // reference implementation for deterministic creation of model files
  341. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  342. assert(k % QK == 0);
  343. const int nb = k / QK;
  344. const size_t bs = sizeof(float) + QK/2;
  345. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  346. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  347. uint8_t pp[QK/2];
  348. for (int i = 0; i < nb; i++) {
  349. float amax = 0.0f; // absolute max
  350. for (int l = 0; l < QK; l++) {
  351. const float v = x[i*QK + l];
  352. amax = MAX(amax, fabsf(v));
  353. }
  354. const float d = amax / ((1 << 3) - 1);
  355. const float id = d ? 1.0f/d : 0.0f;
  356. *(float *)pd = d;
  357. pd += bs;
  358. for (int l = 0; l < QK; l += 2) {
  359. const float v0 = x[i*QK + l + 0]*id;
  360. const float v1 = x[i*QK + l + 1]*id;
  361. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  362. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  363. assert(vi0 >= 0 && vi0 < 16);
  364. assert(vi1 >= 0 && vi1 < 16);
  365. pp[l/2] = vi0 | (vi1 << 4);
  366. }
  367. memcpy(pb, pp, sizeof(pp));
  368. pb += bs;
  369. }
  370. }
  371. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. #if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__)
  374. const int nb = k / QK;
  375. const size_t bs = sizeof(float) + QK/2;
  376. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  377. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  378. uint8_t pp[QK/2];
  379. #endif
  380. #if __ARM_NEON
  381. #if QK == 32
  382. for (int i = 0; i < nb; i++) {
  383. float amax = 0.0f; // absolute max
  384. float32x4_t srcv [8];
  385. float32x4_t asrcv[8];
  386. float32x4_t amaxv[8];
  387. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  388. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  389. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  390. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  391. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  392. amax = MAX(
  393. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  394. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  395. const float d = amax / ((1 << 3) - 1);
  396. const float id = d ? 1.0/d : 0.0;
  397. *(float *)pd = d;
  398. pd += bs;
  399. for (int l = 0; l < 8; l++) {
  400. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  401. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  402. const int32x4_t vi = vcvtq_s32_f32(vf);
  403. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  404. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  405. }
  406. memcpy(pb, pp, sizeof(pp));
  407. pb += bs;
  408. }
  409. #else
  410. #error "not implemented for QK"
  411. #endif
  412. #elif defined(__AVX2__)
  413. #if QK == 32
  414. for (int i = 0; i < nb; i++) {
  415. // Load elements into 4 AVX vectors
  416. __m256 v0 = _mm256_loadu_ps( x );
  417. __m256 v1 = _mm256_loadu_ps( x + 8 );
  418. __m256 v2 = _mm256_loadu_ps( x + 16 );
  419. __m256 v3 = _mm256_loadu_ps( x + 24 );
  420. x += 32;
  421. // Compute max(abs(e)) for the block
  422. const __m256 signBit = _mm256_set1_ps( -0.0f );
  423. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  424. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  425. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  426. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  427. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  428. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  429. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  430. const float maxScalar = _mm_cvtss_f32( max4 );
  431. // Quantize these floats
  432. const float d = maxScalar / 7.0f;
  433. *(float *)pd = d;
  434. pd += bs;
  435. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  436. const __m256 mul = _mm256_set1_ps( id );
  437. // Apply the multiplier
  438. v0 = _mm256_mul_ps( v0, mul );
  439. v1 = _mm256_mul_ps( v1, mul );
  440. v2 = _mm256_mul_ps( v2, mul );
  441. v3 = _mm256_mul_ps( v3, mul );
  442. // Round to nearest integer
  443. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  444. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  445. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  446. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  447. // Convert floats to integers
  448. __m256i i0 = _mm256_cvtps_epi32( v0 );
  449. __m256i i1 = _mm256_cvtps_epi32( v1 );
  450. __m256i i2 = _mm256_cvtps_epi32( v2 );
  451. __m256i i3 = _mm256_cvtps_epi32( v3 );
  452. // Convert int32 to int16
  453. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  454. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  455. // Convert int16 to int8
  456. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  457. // We got our precious signed bytes, but the order is now wrong
  458. // These AVX2 pack instructions process 16-byte pieces independently
  459. // The following instruction is fixing the order
  460. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  461. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  462. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  463. const __m256i off = _mm256_set1_epi8( 8 );
  464. i0 = _mm256_add_epi8( i0, off );
  465. // Compress the vector into 4 bit/value, and store
  466. __m128i res = packNibbles( i0 );
  467. _mm_storeu_si128( ( __m128i* )pb, res );
  468. pb += bs;
  469. }
  470. #else
  471. #error "not implemented for QK"
  472. #endif
  473. #elif defined(__wasm_simd128__)
  474. #if QK == 32
  475. for (int i = 0; i < nb; i++) {
  476. float amax = 0.0f; // absolute max
  477. v128_t srcv [8];
  478. v128_t asrcv[8];
  479. v128_t amaxv[8];
  480. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  481. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  482. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  483. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  484. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  485. amax = MAX(
  486. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  487. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  488. const float d = amax / ((1 << 3) - 1);
  489. const float id = d ? 1.0/d : 0.0;
  490. *(float *)pd = d;
  491. pd += bs;
  492. for (int l = 0; l < 8; l++) {
  493. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  494. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  495. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  496. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  497. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  498. }
  499. memcpy(pb, pp, sizeof(pp));
  500. pb += bs;
  501. }
  502. #else
  503. #error "not implemented for QK"
  504. #endif
  505. #else
  506. // scalar
  507. quantize_row_q4_0_reference(x, y, k);
  508. #endif
  509. }
  510. // method 4
  511. // blocks of QK elements
  512. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  513. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  514. assert(k % QK == 0);
  515. const int nb = k / QK;
  516. const size_t bs = 2*sizeof(float) + QK/2;
  517. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  518. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  519. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  520. uint8_t pp[QK/2];
  521. for (int i = 0; i < nb; i++) {
  522. float min = FLT_MAX;
  523. float max = -FLT_MAX;
  524. for (int l = 0; l < QK; l++) {
  525. const float v = x[i*QK + l];
  526. if (v < min) min = v;
  527. if (v > max) max = v;
  528. }
  529. const float d = (max - min) / ((1 << 4) - 1);
  530. const float id = d ? 1.0f/d : 0.0f;
  531. *(float *)pm = min;
  532. *(float *)pd = d;
  533. pm += bs;
  534. pd += bs;
  535. for (int l = 0; l < QK; l += 2) {
  536. const float v0 = (x[i*QK + l + 0] - min)*id;
  537. const float v1 = (x[i*QK + l + 1] - min)*id;
  538. const uint8_t vi0 = round(v0);
  539. const uint8_t vi1 = round(v1);
  540. assert(vi0 >= 0 && vi0 < 16);
  541. assert(vi1 >= 0 && vi1 < 16);
  542. pp[l/2] = vi0 | (vi1 << 4);
  543. }
  544. memcpy(pb, pp, sizeof(pp));
  545. pb += bs;
  546. }
  547. }
  548. // TODO: vectorize
  549. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  550. assert(k % QK == 0);
  551. const int nb = k / QK;
  552. const size_t bs = sizeof(float) + QK/2;
  553. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  554. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  555. // scalar
  556. for (int i = 0; i < nb; i++) {
  557. const float d = *(const float *) (pd + i*bs);
  558. const uint8_t * restrict pp = pb + i*bs;
  559. for (int l = 0; l < QK; l += 2) {
  560. const uint8_t vi = pp[l/2];
  561. const int8_t vi0 = vi & 0xf;
  562. const int8_t vi1 = vi >> 4;
  563. const float v0 = (vi0 - 8)*d;
  564. const float v1 = (vi1 - 8)*d;
  565. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  566. y[i*QK + l + 0] = v0;
  567. y[i*QK + l + 1] = v1;
  568. assert(!isnan(y[i*QK + l + 0]));
  569. assert(!isnan(y[i*QK + l + 1]));
  570. }
  571. }
  572. }
  573. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  574. assert(k % QK == 0);
  575. const int nb = k / QK;
  576. const size_t bs = 2*sizeof(float) + QK/2;
  577. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  578. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  579. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  580. for (int i = 0; i < nb; i++) {
  581. const float d = *(const float *) (pd + i*bs);
  582. const float m = *(const float *) (pm + i*bs);
  583. const uint8_t * restrict pp = pb + i*bs;
  584. for (int l = 0; l < QK; l += 2) {
  585. const uint8_t vi = pp[l/2];
  586. const int8_t vi0 = vi & 0xf;
  587. const int8_t vi1 = vi >> 4;
  588. const float v0 = vi0*d + m;
  589. const float v1 = vi1*d + m;
  590. y[i*QK + l + 0] = v0;
  591. y[i*QK + l + 1] = v1;
  592. assert(!isnan(y[i*QK + l + 0]));
  593. assert(!isnan(y[i*QK + l + 1]));
  594. }
  595. }
  596. }
  597. //
  598. // simd mappings
  599. //
  600. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  601. // we then implement the fundamental computation operations below using only these macros
  602. // adding support for new architectures requires to define the corresponding SIMD macros
  603. //
  604. // GGML_F32_STEP / GGML_F16_STEP
  605. // number of elements to process in a single step
  606. //
  607. // GGML_F32_EPR / GGML_F16_EPR
  608. // number of elements to fit in a single register
  609. //
  610. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  611. #define GGML_SIMD
  612. // F32 NEON
  613. #define GGML_F32_STEP 16
  614. #define GGML_F32_EPR 4
  615. #define GGML_F32x4 float32x4_t
  616. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  617. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  618. #define GGML_F32x4_LOAD vld1q_f32
  619. #define GGML_F32x4_STORE vst1q_f32
  620. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  621. #define GGML_F32x4_ADD vaddq_f32
  622. #define GGML_F32x4_MUL vmulq_f32
  623. #if defined(__ARM_FEATURE_QRDMX)
  624. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  625. #else
  626. #define GGML_F32x4_REDUCE_ONE(x) \
  627. (vgetq_lane_f32(x, 0) + \
  628. vgetq_lane_f32(x, 1) + \
  629. vgetq_lane_f32(x, 2) + \
  630. vgetq_lane_f32(x, 3))
  631. #endif
  632. #define GGML_F32x4_REDUCE(res, x) \
  633. { \
  634. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  635. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  636. } \
  637. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  638. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  639. } \
  640. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  641. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  642. } \
  643. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  644. }
  645. #define GGML_F32_VEC GGML_F32x4
  646. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  647. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  648. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  649. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  650. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  651. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  652. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  653. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  654. // F16 NEON
  655. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  656. #define GGML_F16_STEP 32
  657. #define GGML_F16_EPR 8
  658. #define GGML_F16x8 float16x8_t
  659. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  660. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  661. #define GGML_F16x8_LOAD vld1q_f16
  662. #define GGML_F16x8_STORE vst1q_f16
  663. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  664. #define GGML_F16x8_ADD vaddq_f16
  665. #define GGML_F16x8_MUL vmulq_f16
  666. #define GGML_F16x8_REDUCE(res, x) \
  667. { \
  668. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  669. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  670. } \
  671. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  672. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  673. } \
  674. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  675. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  676. } \
  677. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  678. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  679. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  680. }
  681. #define GGML_F16_VEC GGML_F16x8
  682. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  683. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  684. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  685. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  686. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  687. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  688. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  689. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  690. #else
  691. // if FP16 vector arithmetic is not supported, we use FP32 instead
  692. // and take advantage of the vcvt_ functions to convert to/from FP16
  693. #define GGML_F16_STEP 16
  694. #define GGML_F16_EPR 4
  695. #define GGML_F32Cx4 float32x4_t
  696. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  697. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  698. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  699. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  700. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  701. #define GGML_F32Cx4_ADD vaddq_f32
  702. #define GGML_F32Cx4_MUL vmulq_f32
  703. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  704. #define GGML_F16_VEC GGML_F32Cx4
  705. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  706. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  709. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  710. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  711. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  712. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  713. #endif
  714. #elif defined(__AVX__)
  715. #define GGML_SIMD
  716. // F32 AVX
  717. #define GGML_F32_STEP 32
  718. #define GGML_F32_EPR 8
  719. #define GGML_F32x8 __m256
  720. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  721. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  722. #define GGML_F32x8_LOAD _mm256_loadu_ps
  723. #define GGML_F32x8_STORE _mm256_storeu_ps
  724. #if defined(__FMA__)
  725. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  726. #else
  727. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  728. #endif
  729. #define GGML_F32x8_ADD _mm256_add_ps
  730. #define GGML_F32x8_MUL _mm256_mul_ps
  731. #define GGML_F32x8_REDUCE(res, x) \
  732. { \
  733. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  734. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  735. } \
  736. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  737. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  738. } \
  739. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  740. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  741. } \
  742. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  743. _mm256_extractf128_ps(x[0], 1)); \
  744. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  745. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  746. }
  747. // TODO: is this optimal ?
  748. #define GGML_F32_VEC GGML_F32x8
  749. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  750. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  751. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  752. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  753. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  754. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  755. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  756. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  757. // F16 AVX
  758. #define GGML_F16_STEP 32
  759. #define GGML_F16_EPR 8
  760. // F16 arithmetic is not supported by AVX, so we use F32 instead
  761. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  762. #define GGML_F32Cx8 __m256
  763. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  764. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  765. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  766. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  767. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  768. #define GGML_F32Cx8_ADD _mm256_add_ps
  769. #define GGML_F32Cx8_MUL _mm256_mul_ps
  770. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  771. #define GGML_F16_VEC GGML_F32Cx8
  772. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  773. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  774. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  775. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  776. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  777. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  778. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  779. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  780. #elif defined(__POWER9_VECTOR__)
  781. #define GGML_SIMD
  782. // F32 POWER9
  783. #define GGML_F32_STEP 32
  784. #define GGML_F32_EPR 4
  785. #define GGML_F32x4 vector float
  786. #define GGML_F32x4_ZERO 0.0f
  787. #define GGML_F32x4_SET1 vec_splats
  788. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  789. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  790. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  791. #define GGML_F32x4_ADD vec_add
  792. #define GGML_F32x4_MUL vec_mul
  793. #define GGML_F32x4_REDUCE(res, x) \
  794. { \
  795. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  796. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  797. } \
  798. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  799. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  800. } \
  801. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  802. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  803. } \
  804. res = vec_extract(x[0], 0) + \
  805. vec_extract(x[0], 1) + \
  806. vec_extract(x[0], 2) + \
  807. vec_extract(x[0], 3); \
  808. }
  809. #define GGML_F32_VEC GGML_F32x4
  810. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  811. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  812. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  813. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  814. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  815. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  816. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  817. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  818. // F16 POWER9
  819. #define GGML_F16_STEP GGML_F32_STEP
  820. #define GGML_F16_EPR GGML_F32_EPR
  821. #define GGML_F16_VEC GGML_F32x4
  822. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  823. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  824. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  825. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  826. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  827. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  828. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  829. vec_extract_fp32_from_shortl(vec_xl(0, p))
  830. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  831. #define GGML_F16_VEC_STORE(p, r, i) \
  832. if (i & 0x1) \
  833. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  834. r[i - GGML_ENDIAN_BYTE(0)]), \
  835. 0, p - GGML_F16_EPR)
  836. #elif defined(__wasm_simd128__)
  837. #define GGML_SIMD
  838. // F32 WASM
  839. #define GGML_F32_STEP 16
  840. #define GGML_F32_EPR 4
  841. #define GGML_F32x4 v128_t
  842. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  843. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  844. #define GGML_F32x4_LOAD wasm_v128_load
  845. #define GGML_F32x4_STORE wasm_v128_store
  846. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  847. #define GGML_F32x4_ADD wasm_f32x4_add
  848. #define GGML_F32x4_MUL wasm_f32x4_mul
  849. #define GGML_F32x4_REDUCE(res, x) \
  850. { \
  851. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  852. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  853. } \
  854. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  855. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  856. } \
  857. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  858. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  859. } \
  860. res = wasm_f32x4_extract_lane(x[0], 0) + \
  861. wasm_f32x4_extract_lane(x[0], 1) + \
  862. wasm_f32x4_extract_lane(x[0], 2) + \
  863. wasm_f32x4_extract_lane(x[0], 3); \
  864. }
  865. #define GGML_F32_VEC GGML_F32x4
  866. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  867. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  868. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  869. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  870. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  871. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  872. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  873. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  874. // F16 WASM
  875. #define GGML_F16_STEP 16
  876. #define GGML_F16_EPR 4
  877. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  878. float tmp[4];
  879. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  880. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  881. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  882. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  883. return wasm_v128_load(tmp);
  884. }
  885. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  886. float tmp[4];
  887. wasm_v128_store(tmp, x);
  888. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  889. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  890. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  891. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  892. }
  893. #define GGML_F16x4 v128_t
  894. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  895. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  896. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  897. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  898. #define GGML_F16x4_FMA GGML_F32x4_FMA
  899. #define GGML_F16x4_ADD wasm_f32x4_add
  900. #define GGML_F16x4_MUL wasm_f32x4_mul
  901. #define GGML_F16x4_REDUCE(res, x) \
  902. { \
  903. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  904. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  905. } \
  906. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  907. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  908. } \
  909. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  910. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  911. } \
  912. res = wasm_f32x4_extract_lane(x[0], 0) + \
  913. wasm_f32x4_extract_lane(x[0], 1) + \
  914. wasm_f32x4_extract_lane(x[0], 2) + \
  915. wasm_f32x4_extract_lane(x[0], 3); \
  916. }
  917. #define GGML_F16_VEC GGML_F16x4
  918. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  922. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  923. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  924. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  926. #elif defined(__SSE3__)
  927. #define GGML_SIMD
  928. // F32 SSE
  929. #define GGML_F32_STEP 32
  930. #define GGML_F32_EPR 4
  931. #define GGML_F32x4 __m128
  932. #define GGML_F32x4_ZERO _mm_setzero_ps()
  933. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  934. #define GGML_F32x4_LOAD _mm_loadu_ps
  935. #define GGML_F32x4_STORE _mm_storeu_ps
  936. #if defined(__FMA__)
  937. // TODO: Does this work?
  938. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  939. #else
  940. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  941. #endif
  942. #define GGML_F32x4_ADD _mm_add_ps
  943. #define GGML_F32x4_MUL _mm_mul_ps
  944. #define GGML_F32x4_REDUCE(res, x) \
  945. { \
  946. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  947. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  948. } \
  949. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  950. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  951. } \
  952. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  953. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  954. } \
  955. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  956. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  957. }
  958. // TODO: is this optimal ?
  959. #define GGML_F32_VEC GGML_F32x4
  960. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  961. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  962. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  963. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  964. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  965. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  966. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  967. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  968. // F16 SSE
  969. #define GGML_F16_STEP 32
  970. #define GGML_F16_EPR 4
  971. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  972. float tmp[4];
  973. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  974. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  975. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  976. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  977. return _mm_loadu_ps(tmp);
  978. }
  979. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  980. float arr[4];
  981. _mm_storeu_ps(arr, y);
  982. x[0] = GGML_FP32_TO_FP16(arr[0]);
  983. x[1] = GGML_FP32_TO_FP16(arr[1]);
  984. x[2] = GGML_FP32_TO_FP16(arr[2]);
  985. x[3] = GGML_FP32_TO_FP16(arr[3]);
  986. }
  987. #define GGML_F32Cx4 __m128
  988. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  989. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  990. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  991. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  992. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  993. #define GGML_F32Cx4_ADD _mm_add_ps
  994. #define GGML_F32Cx4_MUL _mm_mul_ps
  995. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  996. #define GGML_F16_VEC GGML_F32Cx4
  997. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  998. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  999. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1000. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1001. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1002. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1003. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1004. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1005. #endif
  1006. // GGML_F32_ARR / GGML_F16_ARR
  1007. // number of registers to use per step
  1008. #ifdef GGML_SIMD
  1009. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1010. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1011. #endif
  1012. //
  1013. // fundamental operations
  1014. //
  1015. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1016. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1017. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1018. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1019. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1020. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1021. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1022. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1023. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1024. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1025. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1026. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1027. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1028. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1029. ggml_float sumf = 0.0;
  1030. #ifdef GGML_SIMD
  1031. const int np = (n & ~(GGML_F32_STEP - 1));
  1032. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1033. GGML_F32_VEC ax[GGML_F32_ARR];
  1034. GGML_F32_VEC ay[GGML_F32_ARR];
  1035. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1036. for (int j = 0; j < GGML_F32_ARR; j++) {
  1037. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1038. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1039. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1040. }
  1041. }
  1042. // reduce sum0..sum3 to sum0
  1043. GGML_F32_VEC_REDUCE(sumf, sum);
  1044. // leftovers
  1045. for (int i = np; i < n; ++i) {
  1046. sumf += x[i]*y[i];
  1047. }
  1048. #else
  1049. // scalar
  1050. for (int i = 0; i < n; ++i) {
  1051. sumf += x[i]*y[i];
  1052. }
  1053. #endif
  1054. *s = sumf;
  1055. }
  1056. #if __AVX512F__ && QK == 32
  1057. static inline __m512 dot_q4_0_oneblock_avx512(
  1058. __m512 acc,
  1059. const uint8_t * pd0,
  1060. const uint8_t * pd1,
  1061. const uint8_t * pb0,
  1062. const uint8_t * pb1,
  1063. size_t bs,
  1064. int i
  1065. ) {
  1066. const float * d0_0 = (const float *) (pd0 + i*bs);
  1067. const float * d1_0 = (const float *) (pd1 + i*bs);
  1068. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1069. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1070. // Compute combined scale for the block
  1071. float scaleScalar = d0_0[0] * d1_0[0];
  1072. __m512 scale = _mm512_set1_ps( scaleScalar );
  1073. __m256i bx = bytesFromNibbles( p0 );
  1074. __m256i by = bytesFromNibbles( p1 );
  1075. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1076. const __m256i off = _mm256_set1_epi8( 8 );
  1077. bx = _mm256_sub_epi8( bx, off );
  1078. by = _mm256_sub_epi8( by, off );
  1079. // Sign-extend 16 signed bytes into int16_t
  1080. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1081. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1082. // Compute products of int16_t integers, add pairwise
  1083. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1084. // Convert int32_t to float
  1085. __m512 p = _mm512_cvtepi32_ps( i64 );
  1086. // Apply the scale, and accumulate
  1087. return _mm512_fmadd_ps( scale, p, acc );
  1088. }
  1089. #endif
  1090. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1091. ggml_float sumf = 0.0;
  1092. #if defined(GGML_SIMD)
  1093. const int np = (n & ~(GGML_F16_STEP - 1));
  1094. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1095. GGML_F16_VEC ax[GGML_F16_ARR];
  1096. GGML_F16_VEC ay[GGML_F16_ARR];
  1097. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1098. for (int j = 0; j < GGML_F16_ARR; j++) {
  1099. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1100. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1101. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1102. }
  1103. }
  1104. // reduce sum0..sum3 to sum0
  1105. GGML_F16_VEC_REDUCE(sumf, sum);
  1106. // leftovers
  1107. for (int i = np; i < n; ++i) {
  1108. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1109. }
  1110. #else
  1111. for (int i = 0; i < n; ++i) {
  1112. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1113. }
  1114. #endif
  1115. *s = sumf;
  1116. }
  1117. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1118. const int nb = n / QK;
  1119. assert(n % QK == 0);
  1120. assert(nb % 2 == 0);
  1121. const size_t bs = sizeof(float) + QK/2;
  1122. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1123. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1124. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1125. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1126. float sumf = 0.0;
  1127. #ifdef __ARM_NEON
  1128. #if QK == 32
  1129. float sum0 = 0.0f;
  1130. float sum1 = 0.0f;
  1131. for (int i = 0; i < nb; i += 2) {
  1132. const float d0_0 = *(const float *) (pd0 + i*bs);
  1133. const float d1_0 = *(const float *) (pd1 + i*bs);
  1134. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1135. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1136. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1137. const uint8_t * restrict p0 = pb0 + i*bs;
  1138. const uint8_t * restrict p1 = pb1 + i*bs;
  1139. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1140. const int8x16_t s8b = vdupq_n_s8(0x8);
  1141. const uint8x16_t v0_0 = vld1q_u8(p0);
  1142. const uint8x16_t v1_0 = vld1q_u8(p1);
  1143. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1144. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1145. // 4-bit -> 8-bit
  1146. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1147. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1148. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1149. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1150. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1151. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1152. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1153. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1154. // sub 8
  1155. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1156. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1157. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1158. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1159. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1160. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1161. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1162. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1163. #if defined(__ARM_FEATURE_DOTPROD)
  1164. // dot product into int16x8_t
  1165. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1166. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1167. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1168. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1169. // scalar
  1170. #if defined(__ARM_FEATURE_QRDMX)
  1171. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1172. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1173. #else
  1174. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1175. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1176. #endif
  1177. #else
  1178. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1179. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1180. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1181. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1182. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1183. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1184. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1185. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1186. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1187. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1188. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1189. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1190. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1191. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1192. // scalar
  1193. #if defined(__ARM_FEATURE_QRDMX)
  1194. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1195. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1196. #else
  1197. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1198. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1199. #endif
  1200. #endif
  1201. }
  1202. sumf = sum0 + sum1;
  1203. #else
  1204. #error "not implemented for QK"
  1205. #endif
  1206. #elif defined(__AVX512F__)
  1207. #if QK == 32
  1208. // Initialize accumulator with zeros
  1209. __m512 acc0 = _mm512_setzero_ps();
  1210. __m512 acc1 = _mm512_setzero_ps();
  1211. const int superblock_size = 8;
  1212. const int superblock_count = nb / superblock_size;
  1213. const int remainder = nb % superblock_size;
  1214. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1215. int i = superblock_ix * superblock_size;
  1216. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1217. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1218. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1219. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1220. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1221. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1222. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1223. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1224. }
  1225. // Remainders
  1226. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1227. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1228. }
  1229. // Horizontal sum of all lanes of the accumulator
  1230. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1231. #else
  1232. #error "not implemented for QK"
  1233. #endif
  1234. #elif defined(__AVX2__)
  1235. #if QK == 32
  1236. const size_t countBlocks = nb;
  1237. // Initialize accumulator with zeros
  1238. __m256 acc = _mm256_setzero_ps();
  1239. // Main loop
  1240. for (int i = 0; i < nb; ++i) {
  1241. const float * d0_0 = (const float *) (pd0 + i*bs);
  1242. const float * d1_0 = (const float *) (pd1 + i*bs);
  1243. const uint8_t * restrict p0 = pb0 + i*bs;
  1244. const uint8_t * restrict p1 = pb1 + i*bs;
  1245. // Compute combined scale for the block
  1246. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1247. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1248. __m256i bx = bytesFromNibbles( p0 );
  1249. __m256i by = bytesFromNibbles( p1 );
  1250. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1251. const __m256i off = _mm256_set1_epi8( 8 );
  1252. bx = _mm256_sub_epi8( bx, off );
  1253. by = _mm256_sub_epi8( by, off );
  1254. // Sign-extend first 16 signed bytes into int16_t
  1255. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1256. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1257. // Compute products of int16_t integers, add pairwise
  1258. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1259. // Sign-extend last 16 signed bytes into int16_t vectors
  1260. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1261. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1262. // Accumulate products of int16_t integers
  1263. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1264. // Convert int32_t to float
  1265. __m256 p = _mm256_cvtepi32_ps( i32 );
  1266. // Apply the scale, and accumulate
  1267. acc = _mm256_fmadd_ps( scale, p, acc );
  1268. }
  1269. // Return horizontal sum of the acc vector
  1270. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1271. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1272. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1273. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1274. sumf = _mm_cvtss_f32( res );
  1275. #else
  1276. #error "not implemented for QK"
  1277. #endif
  1278. #elif defined(__wasm_simd128__)
  1279. #if QK == 32
  1280. // wasm simd
  1281. float sum0 = 0.0f;
  1282. float sum1 = 0.0f;
  1283. for (int i = 0; i < nb; i += 2) {
  1284. const float d0_0 = *(const float *) (pd0 + i*bs);
  1285. const float d1_0 = *(const float *) (pd1 + i*bs);
  1286. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1287. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1288. const uint8_t * restrict p0 = pb0 + i*bs;
  1289. const uint8_t * restrict p1 = pb1 + i*bs;
  1290. const v128_t m4b = wasm_u8x16_splat(0xf);
  1291. const v128_t s8b = wasm_i8x16_splat(0x8);
  1292. const v128_t v0_0 = wasm_v128_load(p0);
  1293. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1294. const v128_t v1_0 = wasm_v128_load(p1);
  1295. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1296. // 4-bit -> 8-bit
  1297. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1298. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1299. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1300. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1301. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1302. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1303. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1304. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1305. // sub 8
  1306. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1307. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1308. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1309. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1310. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1311. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1312. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1313. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1314. // dot product into int16x8_t
  1315. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1316. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1317. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1318. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1319. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1320. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1321. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1322. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1323. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1324. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1325. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1326. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1327. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1328. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1329. sum0 += d0_0*d1_0*(
  1330. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1331. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1332. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1333. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1334. sum1 += d0_1*d1_1*(
  1335. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1336. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1337. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1338. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1339. }
  1340. sumf = sum0 + sum1;
  1341. #else
  1342. #error "not implemented for QK"
  1343. #endif
  1344. #else
  1345. // scalar
  1346. for (int i = 0; i < nb; i++) {
  1347. const float d0 = *(const float *) (pd0 + i*bs);
  1348. const float d1 = *(const float *) (pd1 + i*bs);
  1349. const uint8_t * restrict p0 = pb0 + i*bs;
  1350. const uint8_t * restrict p1 = pb1 + i*bs;
  1351. for (int j = 0; j < QK/2; j++) {
  1352. const uint8_t v0 = p0[j];
  1353. const uint8_t v1 = p1[j];
  1354. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1355. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1356. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1357. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1358. sumf += f0*f2 + f1*f3;
  1359. }
  1360. }
  1361. #endif
  1362. *s = sumf;
  1363. }
  1364. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1365. const int nb = n / QK;
  1366. const size_t bs = 2*sizeof(float) + QK/2;
  1367. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1368. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1369. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1370. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1371. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1372. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1373. float sumf = 0.0;
  1374. #if defined(__AVX2__)
  1375. #if QK == 32
  1376. // Initialize accumulator with zeros
  1377. __m256 acc = _mm256_setzero_ps();
  1378. // Accumulator for constant offsets
  1379. float acc_offset = 0.0f;
  1380. // Main loop
  1381. for (int i = 0; i < nb; ++i) {
  1382. const float * m0 = (const float *) (pm0 + i*bs);
  1383. const float * m1 = (const float *) (pm1 + i*bs);
  1384. const float * d0 = (const float *) (pd0 + i*bs);
  1385. const float * d1 = (const float *) (pd1 + i*bs);
  1386. const uint8_t * restrict p0 = pb0 + i*bs;
  1387. const uint8_t * restrict p1 = pb1 + i*bs;
  1388. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1389. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1390. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1391. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1392. // Compute combined scale for the block
  1393. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1394. // Compute cross scales for the block
  1395. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1396. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1397. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1398. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1399. __m256i bx = bytesFromNibbles( p0 );
  1400. __m256i by = bytesFromNibbles( p1 );
  1401. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1402. // Sign-extend first 16 signed bytes into int16_t
  1403. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1404. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1405. // Compute products of int16_t integers, add pairwise
  1406. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1407. // Sign-extend last 16 signed bytes into int16_t vectors
  1408. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1409. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1410. // Accumulate products of int16_t integers
  1411. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1412. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1413. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1414. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1415. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1416. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1417. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1418. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1419. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1420. // Convert int32_t to float
  1421. __m256 p = _mm256_cvtepi32_ps( i32 );
  1422. // Apply the scale, and accumulate
  1423. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1424. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1425. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1426. // acc_offset += m0*m1 (for each entry in the block)
  1427. acc_offset += (*m0)*(*m1);
  1428. }
  1429. // Return horizontal sum of the acc vector
  1430. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1431. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1432. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1433. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1434. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1435. #else
  1436. #error "not implemented for QK"
  1437. #endif
  1438. #else
  1439. // scalar
  1440. for (int i = 0; i < nb; i++) {
  1441. const float m0 = *(const float *) (pm0 + i*bs);
  1442. const float m1 = *(const float *) (pm1 + i*bs);
  1443. const float d0 = *(const float *) (pd0 + i*bs);
  1444. const float d1 = *(const float *) (pd1 + i*bs);
  1445. const uint8_t * restrict p0 = pb0 + i*bs;
  1446. const uint8_t * restrict p1 = pb1 + i*bs;
  1447. for (int j = 0; j < QK/2; j++) {
  1448. const uint8_t v0 = p0[j];
  1449. const uint8_t v1 = p1[j];
  1450. const float f0 = d0*(v0 & 0xf) + m0;
  1451. const float f1 = d0*(v0 >> 4) + m0;
  1452. const float f2 = d1*(v1 & 0xf) + m1;
  1453. const float f3 = d1*(v1 >> 4) + m1;
  1454. sumf += f0*f2 + f1*f3;
  1455. }
  1456. }
  1457. #endif
  1458. *s = sumf;
  1459. }
  1460. // compute GGML_VEC_DOT_UNROLL dot products at once
  1461. // xs - x row stride in bytes
  1462. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1463. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1464. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1465. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1466. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1467. }
  1468. #if defined(GGML_SIMD)
  1469. const int np = (n & ~(GGML_F16_STEP - 1));
  1470. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1471. GGML_F16_VEC ax[GGML_F16_ARR];
  1472. GGML_F16_VEC ay[GGML_F16_ARR];
  1473. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1474. for (int j = 0; j < GGML_F16_ARR; j++) {
  1475. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1476. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1477. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1478. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1479. }
  1480. }
  1481. }
  1482. // reduce sum0..sum3 to sum0
  1483. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1484. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1485. }
  1486. // leftovers
  1487. for (int i = np; i < n; ++i) {
  1488. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1489. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1490. }
  1491. }
  1492. #else
  1493. for (int i = 0; i < n; ++i) {
  1494. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1495. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1496. }
  1497. }
  1498. #endif
  1499. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1500. s[i] = sumf[i];
  1501. }
  1502. }
  1503. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1504. #if defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ax[GGML_F32_ARR];
  1508. GGML_F32_VEC ay[GGML_F32_ARR];
  1509. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1510. for (int j = 0; j < GGML_F32_ARR; j++) {
  1511. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1512. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1513. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1514. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1515. }
  1516. }
  1517. // leftovers
  1518. for (int i = np; i < n; ++i) {
  1519. y[i] += x[i]*v;
  1520. }
  1521. #else
  1522. // scalar
  1523. for (int i = 0; i < n; ++i) {
  1524. y[i] += x[i]*v;
  1525. }
  1526. #endif
  1527. }
  1528. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1529. #if defined(GGML_SIMD)
  1530. const int np = (n & ~(GGML_F16_STEP - 1));
  1531. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1532. GGML_F16_VEC ax[GGML_F16_ARR];
  1533. GGML_F16_VEC ay[GGML_F16_ARR];
  1534. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1535. for (int j = 0; j < GGML_F16_ARR; j++) {
  1536. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1537. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1538. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1539. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1540. }
  1541. }
  1542. // leftovers
  1543. for (int i = np; i < n; ++i) {
  1544. GGML_ASSERT(false);
  1545. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1546. }
  1547. #else
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1550. }
  1551. #endif
  1552. }
  1553. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1554. assert(n % QK == 0);
  1555. const int nb = n / QK;
  1556. const size_t bs = sizeof(float) + QK/2;
  1557. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1558. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1559. #if __ARM_NEON
  1560. #if QK == 32
  1561. for (int i = 0; i < nb; ++i) {
  1562. const float d0 = v*(*(const float *) (pd + i*bs));
  1563. const uint8_t * restrict pp = pb + i*bs;
  1564. const uint8x8_t m4b = vdup_n_u8(0xf);
  1565. const int8x8_t s8b = vdup_n_s8(0x8);
  1566. const float32x4_t vd = vdupq_n_f32(d0);
  1567. for (int j = 0; j < 2; j++) {
  1568. const uint8x8_t vx = vld1_u8(pp + j*8);
  1569. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1570. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1571. // sub 8
  1572. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1573. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1574. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1575. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1576. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1577. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1578. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1579. // convert to 2x int16x8_t
  1580. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1581. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1582. // convert to 4x float32x4_t
  1583. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1584. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1585. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1586. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1587. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1588. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1589. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1590. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1591. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1592. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1593. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1594. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1595. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1596. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1597. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1598. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1599. }
  1600. }
  1601. #endif
  1602. #else
  1603. // scalar
  1604. for (int i = 0; i < nb; i++) {
  1605. const float d = *(const float *) (pd + i*bs);
  1606. const uint8_t * restrict pp = pb + i*bs;
  1607. for (int l = 0; l < QK; l += 2) {
  1608. const uint8_t vi = pp[l/2];
  1609. const int8_t vi0 = vi & 0xf;
  1610. const int8_t vi1 = vi >> 4;
  1611. const float v0 = (vi0 - 8)*d;
  1612. const float v1 = (vi1 - 8)*d;
  1613. y[i*QK + l + 0] += v0*v;
  1614. y[i*QK + l + 1] += v1*v;
  1615. assert(!isnan(y[i*QK + l + 0]));
  1616. assert(!isnan(y[i*QK + l + 1]));
  1617. assert(!isinf(y[i*QK + l + 0]));
  1618. assert(!isinf(y[i*QK + l + 1]));
  1619. }
  1620. }
  1621. #endif
  1622. }
  1623. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1624. assert(n % QK == 0);
  1625. const int nb = n / QK;
  1626. const size_t bs = 2*sizeof(float) + QK/2;
  1627. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1628. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1629. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1630. for (int i = 0; i < nb; i++) {
  1631. const float d = *(const float *) (pd + i*bs);
  1632. const float m = *(const float *) (pm + i*bs);
  1633. const uint8_t * restrict pp = pb + i*bs;
  1634. for (int l = 0; l < QK; l += 2) {
  1635. const uint8_t vi = pp[l/2];
  1636. const uint8_t vi0 = vi & 0xf;
  1637. const uint8_t vi1 = vi >> 4;
  1638. const float v0 = d*vi0 + m;
  1639. const float v1 = d*vi1 + m;
  1640. y[i*QK + l + 0] += v0*v;
  1641. y[i*QK + l + 1] += v1*v;
  1642. assert(!isnan(y[i*QK + l + 0]));
  1643. assert(!isnan(y[i*QK + l + 1]));
  1644. assert(!isinf(y[i*QK + l + 0]));
  1645. assert(!isinf(y[i*QK + l + 1]));
  1646. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1647. }
  1648. }
  1649. }
  1650. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1651. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1652. #if defined(GGML_SIMD)
  1653. const int np = (n & ~(GGML_F32_STEP - 1));
  1654. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1655. GGML_F32_VEC ay[GGML_F32_ARR];
  1656. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1657. for (int j = 0; j < GGML_F32_ARR; j++) {
  1658. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1659. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1660. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1661. }
  1662. }
  1663. // leftovers
  1664. for (int i = np; i < n; ++i) {
  1665. y[i] *= v;
  1666. }
  1667. #else
  1668. // scalar
  1669. for (int i = 0; i < n; ++i) {
  1670. y[i] *= v;
  1671. }
  1672. #endif
  1673. }
  1674. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1675. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1676. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1677. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1678. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1679. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1680. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1681. static const ggml_float GELU_COEF_A = 0.044715;
  1682. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1683. inline static float ggml_gelu_f32(float x) {
  1684. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1685. }
  1686. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1687. const uint16_t * i16 = (const uint16_t *) x;
  1688. for (int i = 0; i < n; ++i) {
  1689. y[i] = table_gelu_f16[i16[i]];
  1690. }
  1691. }
  1692. #ifdef GGML_GELU_FP16
  1693. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1694. uint16_t t;
  1695. for (int i = 0; i < n; ++i) {
  1696. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1697. memcpy(&t, &fp16, sizeof(uint16_t));
  1698. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1699. }
  1700. }
  1701. #else
  1702. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1703. for (int i = 0; i < n; ++i) {
  1704. y[i] = ggml_gelu_f32(x[i]);
  1705. }
  1706. }
  1707. #endif
  1708. // Sigmoid Linear Unit (SiLU) function
  1709. inline static float ggml_silu_f32(float x) {
  1710. return x/(1.0 + exp(-x));
  1711. }
  1712. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1713. const uint16_t * i16 = (const uint16_t *) x;
  1714. for (int i = 0; i < n; ++i) {
  1715. y[i] = table_silu_f16[i16[i]];
  1716. }
  1717. }
  1718. #ifdef GGML_SILU_FP16
  1719. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1720. uint16_t t;
  1721. for (int i = 0; i < n; ++i) {
  1722. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1723. memcpy(&t, &fp16, sizeof(uint16_t));
  1724. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1725. }
  1726. }
  1727. #else
  1728. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1729. for (int i = 0; i < n; ++i) {
  1730. y[i] = ggml_silu_f32(x[i]);
  1731. }
  1732. }
  1733. #endif
  1734. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1735. #ifndef GGML_USE_ACCELERATE
  1736. ggml_float sum = 0.0;
  1737. for (int i = 0; i < n; ++i) {
  1738. sum += x[i];
  1739. }
  1740. *s = sum;
  1741. #else
  1742. vDSP_sve(x, 1, s, n);
  1743. #endif
  1744. }
  1745. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1746. #ifndef GGML_USE_ACCELERATE
  1747. ggml_float max = -INFINITY;
  1748. for (int i = 0; i < n; ++i) {
  1749. max = MAX(max, x[i]);
  1750. }
  1751. *s = max;
  1752. #else
  1753. vDSP_maxv(x, 1, s, n);
  1754. #endif
  1755. }
  1756. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1757. //
  1758. // logging
  1759. //
  1760. #if (GGML_DEBUG >= 1)
  1761. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1762. #else
  1763. #define GGML_PRINT_DEBUG(...)
  1764. #endif
  1765. #if (GGML_DEBUG >= 5)
  1766. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1767. #else
  1768. #define GGML_PRINT_DEBUG_5(...)
  1769. #endif
  1770. #if (GGML_DEBUG >= 10)
  1771. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1772. #else
  1773. #define GGML_PRINT_DEBUG_10(...)
  1774. #endif
  1775. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1776. //
  1777. // data types
  1778. //
  1779. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1780. QK,
  1781. QK,
  1782. 1,
  1783. 1,
  1784. 1,
  1785. 1,
  1786. 1,
  1787. };
  1788. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1789. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1790. sizeof(float ) + QK/2,
  1791. sizeof(float )*2 + QK/2,
  1792. sizeof(int8_t ),
  1793. sizeof(int16_t),
  1794. sizeof(int32_t),
  1795. sizeof(ggml_fp16_t),
  1796. sizeof(float ),
  1797. };
  1798. // don't forget to update the array above when adding new types
  1799. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1800. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1801. "NONE",
  1802. "DUP",
  1803. "ADD",
  1804. "SUB",
  1805. "MUL",
  1806. "DIV",
  1807. "SQR",
  1808. "SQRT",
  1809. "SUM",
  1810. "MEAN",
  1811. "REPEAT",
  1812. "ABS",
  1813. "SGN",
  1814. "NEG",
  1815. "STEP",
  1816. "RELU",
  1817. "GELU",
  1818. "SILU",
  1819. "NORM",
  1820. "RMS_NORM",
  1821. "MUL_MAT",
  1822. "SCALE",
  1823. "CPY",
  1824. "RESHAPE",
  1825. "VIEW",
  1826. "PERMUTE",
  1827. "TRANSPOSE",
  1828. "GET_ROWS",
  1829. "DIAG_MASK_INF",
  1830. "SOFT_MAX",
  1831. "ROPE",
  1832. "CONV_1D_1S",
  1833. "CONV_1D_2S",
  1834. "FLASH_ATTN",
  1835. "FLASH_FF",
  1836. };
  1837. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1838. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1839. "none",
  1840. "x",
  1841. "x+y",
  1842. "x-y",
  1843. "x*y",
  1844. "x/y",
  1845. "x^2",
  1846. "√x",
  1847. "Σx",
  1848. "Σx/n",
  1849. "repeat(x)",
  1850. "abs(x)",
  1851. "sgn(x)",
  1852. "-x",
  1853. "step(x)",
  1854. "relu(x)",
  1855. "gelu(x)",
  1856. "silu(x)",
  1857. "norm(x)",
  1858. "rms_norm(x)",
  1859. "X*Y",
  1860. "x*v",
  1861. "x-\\>y",
  1862. "reshape(x)",
  1863. "view(x)",
  1864. "permute(x)",
  1865. "transpose(x)",
  1866. "get_rows(x)",
  1867. "diag_mask_inf(x)",
  1868. "soft_max(x)",
  1869. "rope(x)",
  1870. "conv_1d_1s(x)",
  1871. "conv_1d_2s(x)",
  1872. "flash_attn(x)",
  1873. "flash_ff(x)",
  1874. };
  1875. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1876. //
  1877. // ggml object
  1878. //
  1879. struct ggml_object {
  1880. size_t offs;
  1881. size_t size;
  1882. struct ggml_object * next;
  1883. char padding[8];
  1884. };
  1885. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1886. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1887. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1888. //
  1889. // ggml context
  1890. //
  1891. struct ggml_context {
  1892. size_t mem_size;
  1893. void * mem_buffer;
  1894. bool mem_buffer_owned;
  1895. bool mem_buffer_mlocked;
  1896. int n_objects;
  1897. struct ggml_object * objects_begin;
  1898. struct ggml_object * objects_end;
  1899. struct ggml_scratch scratch;
  1900. struct ggml_scratch scratch_save;
  1901. };
  1902. struct ggml_context_container {
  1903. bool used;
  1904. struct ggml_context context;
  1905. };
  1906. //
  1907. // compute types
  1908. //
  1909. enum ggml_task_type {
  1910. GGML_TASK_INIT = 0,
  1911. GGML_TASK_COMPUTE,
  1912. GGML_TASK_FINALIZE,
  1913. };
  1914. struct ggml_compute_params {
  1915. enum ggml_task_type type;
  1916. int ith, nth;
  1917. // work buffer for all threads
  1918. size_t wsize;
  1919. void * wdata;
  1920. };
  1921. //
  1922. // ggml state
  1923. //
  1924. struct ggml_state {
  1925. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1926. };
  1927. // global state
  1928. static struct ggml_state g_state;
  1929. static atomic_int g_state_barrier = 0;
  1930. // barrier via spin lock
  1931. inline static void ggml_critical_section_start(void) {
  1932. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1933. while (processing > 0) {
  1934. // wait for other threads to finish
  1935. atomic_fetch_sub(&g_state_barrier, 1);
  1936. sched_yield(); // TODO: reconsider this
  1937. processing = atomic_fetch_add(&g_state_barrier, 1);
  1938. }
  1939. }
  1940. // TODO: make this somehow automatically executed
  1941. // some sort of "sentry" mechanism
  1942. inline static void ggml_critical_section_end(void) {
  1943. atomic_fetch_sub(&g_state_barrier, 1);
  1944. }
  1945. ////////////////////////////////////////////////////////////////////////////////
  1946. void ggml_print_object(const struct ggml_object * obj) {
  1947. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1948. obj->offs, obj->size, (const void *) obj->next);
  1949. }
  1950. void ggml_print_objects(const struct ggml_context * ctx) {
  1951. struct ggml_object * obj = ctx->objects_begin;
  1952. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1953. while (obj != NULL) {
  1954. ggml_print_object(obj);
  1955. obj = obj->next;
  1956. }
  1957. GGML_PRINT("%s: --- end ---\n", __func__);
  1958. }
  1959. int ggml_nelements(const struct ggml_tensor * tensor) {
  1960. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1961. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1962. }
  1963. int ggml_nrows(const struct ggml_tensor * tensor) {
  1964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1965. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1966. }
  1967. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1970. }
  1971. int ggml_blck_size(enum ggml_type type) {
  1972. return GGML_BLCK_SIZE[type];
  1973. }
  1974. size_t ggml_type_size(enum ggml_type type) {
  1975. return GGML_TYPE_SIZE[type];
  1976. }
  1977. float ggml_type_sizef(enum ggml_type type) {
  1978. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1979. }
  1980. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1981. return GGML_TYPE_SIZE[tensor->type];
  1982. }
  1983. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1984. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1985. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1986. }
  1987. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1990. }
  1991. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1993. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1994. }
  1995. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return
  1998. (t0->ne[0] == t1->ne[0]) &&
  1999. (t0->ne[2] == t1->ne[2]) &&
  2000. (t0->ne[3] == t1->ne[3]);
  2001. }
  2002. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2003. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2004. return
  2005. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2006. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2007. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2008. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2009. }
  2010. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2011. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2012. return
  2013. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2014. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2015. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2016. }
  2017. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return
  2020. (t0->ne[0] == t1->ne[0] ) &&
  2021. (t0->ne[1] == t1->ne[1] ) &&
  2022. (t0->ne[2] == t1->ne[2] ) &&
  2023. (t0->ne[3] == t1->ne[3] );
  2024. }
  2025. // check if t1 can be represented as a repeatition of t0
  2026. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2027. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2028. return
  2029. (t1->ne[0]%t0->ne[0] == 0) &&
  2030. (t1->ne[1]%t0->ne[1] == 0) &&
  2031. (t1->ne[2]%t0->ne[2] == 0) &&
  2032. (t1->ne[3]%t0->ne[3] == 0);
  2033. }
  2034. static inline int ggml_up32(int n) {
  2035. return (n + 31) & ~31;
  2036. }
  2037. static inline int ggml_up64(int n) {
  2038. return (n + 63) & ~63;
  2039. }
  2040. static inline int ggml_up(int n, int m) {
  2041. // assert m is a power of 2
  2042. GGML_ASSERT((m & (m - 1)) == 0);
  2043. return (n + m - 1) & ~(m - 1);
  2044. }
  2045. // assert that pointer is aligned to GGML_MEM_ALIGN
  2046. #define ggml_assert_aligned(ptr) \
  2047. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2048. ////////////////////////////////////////////////////////////////////////////////
  2049. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2050. // make this function thread safe
  2051. ggml_critical_section_start();
  2052. static bool is_first_call = true;
  2053. if (is_first_call) {
  2054. // initialize GELU, SILU and EXP F32 tables
  2055. {
  2056. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2057. ggml_fp16_t ii;
  2058. for (int i = 0; i < (1 << 16); ++i) {
  2059. uint16_t ui = i;
  2060. memcpy(&ii, &ui, sizeof(ii));
  2061. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2062. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2063. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2064. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2065. }
  2066. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2067. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2068. }
  2069. // initialize g_state
  2070. {
  2071. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2072. g_state = (struct ggml_state) {
  2073. /*.contexts =*/ { { 0 } },
  2074. };
  2075. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2076. g_state.contexts[i].used = false;
  2077. }
  2078. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2079. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2080. }
  2081. is_first_call = false;
  2082. }
  2083. // find non-used context in g_state
  2084. struct ggml_context * ctx = NULL;
  2085. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2086. if (!g_state.contexts[i].used) {
  2087. g_state.contexts[i].used = true;
  2088. ctx = &g_state.contexts[i].context;
  2089. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2090. break;
  2091. }
  2092. }
  2093. if (ctx == NULL) {
  2094. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2095. ggml_critical_section_end();
  2096. return NULL;
  2097. }
  2098. *ctx = (struct ggml_context) {
  2099. /*.mem_size =*/ params.mem_size,
  2100. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2101. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2102. /*.mem_buffer_mlocked =*/ false,
  2103. /*.n_objects =*/ 0,
  2104. /*.objects_begin =*/ NULL,
  2105. /*.objects_end =*/ NULL,
  2106. /*.scratch =*/ { 0, 0, NULL, },
  2107. /*.scratch_save =*/ { 0, 0, NULL, },
  2108. };
  2109. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2110. ggml_assert_aligned(ctx->mem_buffer);
  2111. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2112. ggml_critical_section_end();
  2113. return ctx;
  2114. }
  2115. void ggml_free(struct ggml_context * ctx) {
  2116. // make this function thread safe
  2117. ggml_critical_section_start();
  2118. bool found = false;
  2119. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2120. if (&g_state.contexts[i].context == ctx) {
  2121. g_state.contexts[i].used = false;
  2122. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2123. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2124. #if GGML_MLOCK_SUPPORT
  2125. if (ctx->mem_buffer_mlocked) {
  2126. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2127. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2128. }
  2129. }
  2130. #endif
  2131. if (ctx->mem_buffer_owned) {
  2132. free(ctx->mem_buffer);
  2133. }
  2134. found = true;
  2135. break;
  2136. }
  2137. }
  2138. if (!found) {
  2139. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2140. }
  2141. ggml_critical_section_end();
  2142. }
  2143. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2144. return ctx->objects_end->offs + ctx->objects_end->size;
  2145. }
  2146. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2147. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2148. ctx->scratch = scratch;
  2149. return result;
  2150. }
  2151. bool ggml_mlock_supported(void) {
  2152. return GGML_MLOCK_SUPPORT;
  2153. }
  2154. #if GGML_MLOCK_SUPPORT
  2155. #ifdef __APPLE__
  2156. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2157. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2158. #else
  2159. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2160. #endif
  2161. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2162. if (ctx->mem_buffer_mlocked) {
  2163. return true;
  2164. }
  2165. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2166. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2167. ctx->mem_size, strerror(errno));
  2168. GGML_ASSERT(ret >= 0);
  2169. return false;
  2170. }
  2171. ctx->mem_buffer_mlocked = true;
  2172. return true;
  2173. }
  2174. #else // GGML_MLOCK_SUPPORT
  2175. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2176. *err_p = strdup("can't mlock because it's not supported on this system");
  2177. return false;
  2178. }
  2179. #endif // GGML_MLOCK_SUPPORT
  2180. ////////////////////////////////////////////////////////////////////////////////
  2181. struct ggml_tensor * ggml_new_tensor_impl(
  2182. struct ggml_context * ctx,
  2183. enum ggml_type type,
  2184. int n_dims,
  2185. const int* ne,
  2186. void* data) {
  2187. // always insert objects at the end of the context's memory pool
  2188. struct ggml_object * obj_cur = ctx->objects_end;
  2189. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2190. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2191. const size_t cur_end = cur_offs + cur_size;
  2192. size_t size_needed = 0;
  2193. if (data == NULL) {
  2194. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2195. for (int i = 1; i < n_dims; i++) {
  2196. size_needed *= ne[i];
  2197. }
  2198. // align to GGML_MEM_ALIGN
  2199. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2200. }
  2201. char * const mem_buffer = ctx->mem_buffer;
  2202. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2203. if (ctx->scratch.data == NULL || data != NULL) {
  2204. size_needed += sizeof(struct ggml_tensor);
  2205. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2206. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2207. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2208. assert(false);
  2209. return NULL;
  2210. }
  2211. *obj_new = (struct ggml_object) {
  2212. .offs = cur_end + GGML_OBJECT_SIZE,
  2213. .size = size_needed,
  2214. .next = NULL,
  2215. };
  2216. } else {
  2217. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2218. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2219. assert(false);
  2220. return NULL;
  2221. }
  2222. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2223. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2224. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2225. assert(false);
  2226. return NULL;
  2227. }
  2228. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2229. *obj_new = (struct ggml_object) {
  2230. .offs = cur_end + GGML_OBJECT_SIZE,
  2231. .size = sizeof(struct ggml_tensor),
  2232. .next = NULL,
  2233. };
  2234. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2235. ctx->scratch.offs += size_needed;
  2236. }
  2237. if (obj_cur != NULL) {
  2238. obj_cur->next = obj_new;
  2239. } else {
  2240. // this is the first object in this context
  2241. ctx->objects_begin = obj_new;
  2242. }
  2243. ctx->objects_end = obj_new;
  2244. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2245. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2246. ggml_assert_aligned(result);
  2247. *result = (struct ggml_tensor) {
  2248. /*.type =*/ type,
  2249. /*.n_dims =*/ n_dims,
  2250. /*.ne =*/ { 1, 1, 1, 1 },
  2251. /*.nb =*/ { 0, 0, 0, 0 },
  2252. /*.op =*/ GGML_OP_NONE,
  2253. /*.is_param =*/ false,
  2254. /*.grad =*/ NULL,
  2255. /*.src0 =*/ NULL,
  2256. /*.src1 =*/ NULL,
  2257. /*.opt =*/ { NULL },
  2258. /*.n_tasks =*/ 0,
  2259. /*.perf_runs =*/ 0,
  2260. /*.perf_cycles =*/ 0,
  2261. /*.perf_time_us =*/ 0,
  2262. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2263. /*.pad =*/ { 0 },
  2264. };
  2265. ggml_assert_aligned(result->data);
  2266. for (int i = 0; i < n_dims; i++) {
  2267. result->ne[i] = ne[i];
  2268. }
  2269. result->nb[0] = GGML_TYPE_SIZE[type];
  2270. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2271. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2272. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2273. }
  2274. ctx->n_objects++;
  2275. return result;
  2276. }
  2277. struct ggml_tensor * ggml_new_tensor(
  2278. struct ggml_context * ctx,
  2279. enum ggml_type type,
  2280. int n_dims,
  2281. const int * ne) {
  2282. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2283. }
  2284. struct ggml_tensor * ggml_new_tensor_1d(
  2285. struct ggml_context * ctx,
  2286. enum ggml_type type,
  2287. int ne0) {
  2288. return ggml_new_tensor(ctx, type, 1, &ne0);
  2289. }
  2290. struct ggml_tensor * ggml_new_tensor_2d(
  2291. struct ggml_context * ctx,
  2292. enum ggml_type type,
  2293. int ne0,
  2294. int ne1) {
  2295. const int ne[2] = { ne0, ne1 };
  2296. return ggml_new_tensor(ctx, type, 2, ne);
  2297. }
  2298. struct ggml_tensor * ggml_new_tensor_3d(
  2299. struct ggml_context * ctx,
  2300. enum ggml_type type,
  2301. int ne0,
  2302. int ne1,
  2303. int ne2) {
  2304. const int ne[3] = { ne0, ne1, ne2 };
  2305. return ggml_new_tensor(ctx, type, 3, ne);
  2306. }
  2307. struct ggml_tensor * ggml_new_tensor_4d(
  2308. struct ggml_context * ctx,
  2309. enum ggml_type type,
  2310. int ne0,
  2311. int ne1,
  2312. int ne2,
  2313. int ne3) {
  2314. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2315. return ggml_new_tensor(ctx, type, 4, ne);
  2316. }
  2317. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2318. ctx->scratch_save = ctx->scratch;
  2319. ctx->scratch.data = NULL;
  2320. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2321. ctx->scratch = ctx->scratch_save;
  2322. ggml_set_i32(result, value);
  2323. return result;
  2324. }
  2325. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2326. ctx->scratch_save = ctx->scratch;
  2327. ctx->scratch.data = NULL;
  2328. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2329. ctx->scratch = ctx->scratch_save;
  2330. ggml_set_f32(result, value);
  2331. return result;
  2332. }
  2333. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2334. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2335. }
  2336. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2337. memset(tensor->data, 0, ggml_nbytes(tensor));
  2338. return tensor;
  2339. }
  2340. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2341. const int n = ggml_nrows(tensor);
  2342. const int nc = tensor->ne[0];
  2343. const size_t n1 = tensor->nb[1];
  2344. char * const data = tensor->data;
  2345. switch (tensor->type) {
  2346. case GGML_TYPE_Q4_0:
  2347. {
  2348. GGML_ASSERT(false);
  2349. } break;
  2350. case GGML_TYPE_Q4_1:
  2351. {
  2352. GGML_ASSERT(false);
  2353. } break;
  2354. case GGML_TYPE_I8:
  2355. {
  2356. assert(tensor->nb[0] == sizeof(int8_t));
  2357. for (int i = 0; i < n; i++) {
  2358. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2359. }
  2360. } break;
  2361. case GGML_TYPE_I16:
  2362. {
  2363. assert(tensor->nb[0] == sizeof(int16_t));
  2364. for (int i = 0; i < n; i++) {
  2365. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2366. }
  2367. } break;
  2368. case GGML_TYPE_I32:
  2369. {
  2370. assert(tensor->nb[0] == sizeof(int32_t));
  2371. for (int i = 0; i < n; i++) {
  2372. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2373. }
  2374. } break;
  2375. case GGML_TYPE_F16:
  2376. {
  2377. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2378. for (int i = 0; i < n; i++) {
  2379. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2380. }
  2381. } break;
  2382. case GGML_TYPE_F32:
  2383. {
  2384. assert(tensor->nb[0] == sizeof(float));
  2385. for (int i = 0; i < n; i++) {
  2386. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2387. }
  2388. } break;
  2389. case GGML_TYPE_COUNT:
  2390. {
  2391. GGML_ASSERT(false);
  2392. } break;
  2393. }
  2394. return tensor;
  2395. }
  2396. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2397. const int n = ggml_nrows(tensor);
  2398. const int nc = tensor->ne[0];
  2399. const size_t n1 = tensor->nb[1];
  2400. char * const data = tensor->data;
  2401. switch (tensor->type) {
  2402. case GGML_TYPE_Q4_0:
  2403. {
  2404. GGML_ASSERT(false);
  2405. } break;
  2406. case GGML_TYPE_Q4_1:
  2407. {
  2408. GGML_ASSERT(false);
  2409. } break;
  2410. case GGML_TYPE_I8:
  2411. {
  2412. assert(tensor->nb[0] == sizeof(int8_t));
  2413. for (int i = 0; i < n; i++) {
  2414. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2415. }
  2416. } break;
  2417. case GGML_TYPE_I16:
  2418. {
  2419. assert(tensor->nb[0] == sizeof(int16_t));
  2420. for (int i = 0; i < n; i++) {
  2421. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2422. }
  2423. } break;
  2424. case GGML_TYPE_I32:
  2425. {
  2426. assert(tensor->nb[0] == sizeof(int32_t));
  2427. for (int i = 0; i < n; i++) {
  2428. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2429. }
  2430. } break;
  2431. case GGML_TYPE_F16:
  2432. {
  2433. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2434. for (int i = 0; i < n; i++) {
  2435. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2436. }
  2437. } break;
  2438. case GGML_TYPE_F32:
  2439. {
  2440. assert(tensor->nb[0] == sizeof(float));
  2441. for (int i = 0; i < n; i++) {
  2442. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2443. }
  2444. } break;
  2445. case GGML_TYPE_COUNT:
  2446. {
  2447. GGML_ASSERT(false);
  2448. } break;
  2449. }
  2450. return tensor;
  2451. }
  2452. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2453. switch (tensor->type) {
  2454. case GGML_TYPE_Q4_0:
  2455. {
  2456. GGML_ASSERT(false);
  2457. } break;
  2458. case GGML_TYPE_Q4_1:
  2459. {
  2460. GGML_ASSERT(false);
  2461. } break;
  2462. case GGML_TYPE_I8:
  2463. {
  2464. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2465. return ((int8_t *)(tensor->data))[i];
  2466. } break;
  2467. case GGML_TYPE_I16:
  2468. {
  2469. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2470. return ((int16_t *)(tensor->data))[i];
  2471. } break;
  2472. case GGML_TYPE_I32:
  2473. {
  2474. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2475. return ((int32_t *)(tensor->data))[i];
  2476. } break;
  2477. case GGML_TYPE_F16:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2480. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2481. } break;
  2482. case GGML_TYPE_F32:
  2483. {
  2484. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2485. return ((float *)(tensor->data))[i];
  2486. } break;
  2487. case GGML_TYPE_COUNT:
  2488. {
  2489. GGML_ASSERT(false);
  2490. } break;
  2491. }
  2492. return 0.0f;
  2493. }
  2494. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2495. switch (tensor->type) {
  2496. case GGML_TYPE_Q4_0:
  2497. {
  2498. GGML_ASSERT(false);
  2499. } break;
  2500. case GGML_TYPE_Q4_1:
  2501. {
  2502. GGML_ASSERT(false);
  2503. } break;
  2504. case GGML_TYPE_I8:
  2505. {
  2506. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2507. ((int8_t *)(tensor->data))[i] = value;
  2508. } break;
  2509. case GGML_TYPE_I16:
  2510. {
  2511. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2512. ((int16_t *)(tensor->data))[i] = value;
  2513. } break;
  2514. case GGML_TYPE_I32:
  2515. {
  2516. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2517. ((int32_t *)(tensor->data))[i] = value;
  2518. } break;
  2519. case GGML_TYPE_F16:
  2520. {
  2521. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2522. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2523. } break;
  2524. case GGML_TYPE_F32:
  2525. {
  2526. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2527. ((float *)(tensor->data))[i] = value;
  2528. } break;
  2529. case GGML_TYPE_COUNT:
  2530. {
  2531. GGML_ASSERT(false);
  2532. } break;
  2533. }
  2534. }
  2535. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2536. switch (tensor->type) {
  2537. case GGML_TYPE_Q4_0:
  2538. {
  2539. GGML_ASSERT(false);
  2540. } break;
  2541. case GGML_TYPE_Q4_1:
  2542. {
  2543. GGML_ASSERT(false);
  2544. } break;
  2545. case GGML_TYPE_I8:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2548. return ((int8_t *)(tensor->data))[i];
  2549. } break;
  2550. case GGML_TYPE_I16:
  2551. {
  2552. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2553. return ((int16_t *)(tensor->data))[i];
  2554. } break;
  2555. case GGML_TYPE_I32:
  2556. {
  2557. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2558. return ((int32_t *)(tensor->data))[i];
  2559. } break;
  2560. case GGML_TYPE_F16:
  2561. {
  2562. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2563. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2564. } break;
  2565. case GGML_TYPE_F32:
  2566. {
  2567. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2568. return ((float *)(tensor->data))[i];
  2569. } break;
  2570. case GGML_TYPE_COUNT:
  2571. {
  2572. GGML_ASSERT(false);
  2573. } break;
  2574. }
  2575. return 0.0f;
  2576. }
  2577. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2578. switch (tensor->type) {
  2579. case GGML_TYPE_Q4_0:
  2580. {
  2581. GGML_ASSERT(false);
  2582. } break;
  2583. case GGML_TYPE_Q4_1:
  2584. {
  2585. GGML_ASSERT(false);
  2586. } break;
  2587. case GGML_TYPE_I8:
  2588. {
  2589. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2590. ((int8_t *)(tensor->data))[i] = value;
  2591. } break;
  2592. case GGML_TYPE_I16:
  2593. {
  2594. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2595. ((int16_t *)(tensor->data))[i] = value;
  2596. } break;
  2597. case GGML_TYPE_I32:
  2598. {
  2599. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2600. ((int32_t *)(tensor->data))[i] = value;
  2601. } break;
  2602. case GGML_TYPE_F16:
  2603. {
  2604. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2605. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2606. } break;
  2607. case GGML_TYPE_F32:
  2608. {
  2609. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2610. ((float *)(tensor->data))[i] = value;
  2611. } break;
  2612. case GGML_TYPE_COUNT:
  2613. {
  2614. GGML_ASSERT(false);
  2615. } break;
  2616. }
  2617. }
  2618. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2619. return tensor->data;
  2620. }
  2621. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2622. assert(tensor->type == GGML_TYPE_F32);
  2623. return (float *)(tensor->data);
  2624. }
  2625. struct ggml_tensor * ggml_view_tensor(
  2626. struct ggml_context * ctx,
  2627. const struct ggml_tensor * src) {
  2628. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2629. }
  2630. ////////////////////////////////////////////////////////////////////////////////
  2631. // ggml_dup
  2632. struct ggml_tensor * ggml_dup_impl(
  2633. struct ggml_context * ctx,
  2634. struct ggml_tensor * a,
  2635. bool inplace) {
  2636. bool is_node = false;
  2637. if (!inplace && (a->grad)) {
  2638. is_node = true;
  2639. }
  2640. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2641. result->op = GGML_OP_DUP;
  2642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2643. result->src0 = a;
  2644. result->src1 = NULL;
  2645. return result;
  2646. }
  2647. struct ggml_tensor * ggml_dup(
  2648. struct ggml_context * ctx,
  2649. struct ggml_tensor * a) {
  2650. return ggml_dup_impl(ctx, a, false);
  2651. }
  2652. struct ggml_tensor * ggml_dup_inplace(
  2653. struct ggml_context * ctx,
  2654. struct ggml_tensor * a) {
  2655. return ggml_dup_impl(ctx, a, true);
  2656. }
  2657. // ggml_add
  2658. struct ggml_tensor * ggml_add_impl(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. struct ggml_tensor * b,
  2662. bool inplace) {
  2663. GGML_ASSERT(ggml_are_same_shape(a, b));
  2664. bool is_node = false;
  2665. if (!inplace && (a->grad || b->grad)) {
  2666. is_node = true;
  2667. }
  2668. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2669. result->op = GGML_OP_ADD;
  2670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2671. result->src0 = a;
  2672. result->src1 = b;
  2673. return result;
  2674. }
  2675. struct ggml_tensor * ggml_add(
  2676. struct ggml_context * ctx,
  2677. struct ggml_tensor * a,
  2678. struct ggml_tensor * b) {
  2679. return ggml_add_impl(ctx, a, b, false);
  2680. }
  2681. struct ggml_tensor * ggml_add_inplace(
  2682. struct ggml_context * ctx,
  2683. struct ggml_tensor * a,
  2684. struct ggml_tensor * b) {
  2685. return ggml_add_impl(ctx, a, b, true);
  2686. }
  2687. // ggml_sub
  2688. struct ggml_tensor * ggml_sub_impl(
  2689. struct ggml_context * ctx,
  2690. struct ggml_tensor * a,
  2691. struct ggml_tensor * b,
  2692. bool inplace) {
  2693. GGML_ASSERT(ggml_are_same_shape(a, b));
  2694. bool is_node = false;
  2695. if (!inplace && (a->grad || b->grad)) {
  2696. is_node = true;
  2697. }
  2698. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2699. result->op = GGML_OP_SUB;
  2700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2701. result->src0 = a;
  2702. result->src1 = b;
  2703. return result;
  2704. }
  2705. struct ggml_tensor * ggml_sub(
  2706. struct ggml_context * ctx,
  2707. struct ggml_tensor * a,
  2708. struct ggml_tensor * b) {
  2709. return ggml_sub_impl(ctx, a, b, false);
  2710. }
  2711. struct ggml_tensor * ggml_sub_inplace(
  2712. struct ggml_context * ctx,
  2713. struct ggml_tensor * a,
  2714. struct ggml_tensor * b) {
  2715. return ggml_sub_impl(ctx, a, b, true);
  2716. }
  2717. // ggml_mul
  2718. struct ggml_tensor * ggml_mul_impl(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a,
  2721. struct ggml_tensor * b,
  2722. bool inplace) {
  2723. GGML_ASSERT(ggml_are_same_shape(a, b));
  2724. bool is_node = false;
  2725. if (!inplace && (a->grad || b->grad)) {
  2726. is_node = true;
  2727. }
  2728. if (inplace) {
  2729. GGML_ASSERT(is_node == false);
  2730. }
  2731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2732. result->op = GGML_OP_MUL;
  2733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2734. result->src0 = a;
  2735. result->src1 = b;
  2736. return result;
  2737. }
  2738. struct ggml_tensor * ggml_mul(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b) {
  2742. return ggml_mul_impl(ctx, a, b, false);
  2743. }
  2744. struct ggml_tensor * ggml_mul_inplace(
  2745. struct ggml_context * ctx,
  2746. struct ggml_tensor * a,
  2747. struct ggml_tensor * b) {
  2748. return ggml_mul_impl(ctx, a, b, true);
  2749. }
  2750. // ggml_div
  2751. struct ggml_tensor * ggml_div_impl(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. struct ggml_tensor * b,
  2755. bool inplace) {
  2756. GGML_ASSERT(ggml_are_same_shape(a, b));
  2757. bool is_node = false;
  2758. if (!inplace && (a->grad || b->grad)) {
  2759. is_node = true;
  2760. }
  2761. if (inplace) {
  2762. GGML_ASSERT(is_node == false);
  2763. }
  2764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2765. result->op = GGML_OP_DIV;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src0 = a;
  2768. result->src1 = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_div(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b) {
  2775. return ggml_div_impl(ctx, a, b, false);
  2776. }
  2777. struct ggml_tensor * ggml_div_inplace(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_div_impl(ctx, a, b, true);
  2782. }
  2783. // ggml_sqr
  2784. struct ggml_tensor * ggml_sqr_impl(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. bool inplace) {
  2788. bool is_node = false;
  2789. if (!inplace && (a->grad)) {
  2790. is_node = true;
  2791. }
  2792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2793. result->op = GGML_OP_SQR;
  2794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2795. result->src0 = a;
  2796. result->src1 = NULL;
  2797. return result;
  2798. }
  2799. struct ggml_tensor * ggml_sqr(
  2800. struct ggml_context * ctx,
  2801. struct ggml_tensor * a) {
  2802. return ggml_sqr_impl(ctx, a, false);
  2803. }
  2804. struct ggml_tensor * ggml_sqr_inplace(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a) {
  2807. return ggml_sqr_impl(ctx, a, true);
  2808. }
  2809. // ggml_sqrt
  2810. struct ggml_tensor * ggml_sqrt_impl(
  2811. struct ggml_context * ctx,
  2812. struct ggml_tensor * a,
  2813. bool inplace) {
  2814. bool is_node = false;
  2815. if (!inplace && (a->grad)) {
  2816. is_node = true;
  2817. }
  2818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2819. result->op = GGML_OP_SQRT;
  2820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2821. result->src0 = a;
  2822. result->src1 = NULL;
  2823. return result;
  2824. }
  2825. struct ggml_tensor * ggml_sqrt(
  2826. struct ggml_context * ctx,
  2827. struct ggml_tensor * a) {
  2828. return ggml_sqrt_impl(ctx, a, false);
  2829. }
  2830. struct ggml_tensor * ggml_sqrt_inplace(
  2831. struct ggml_context * ctx,
  2832. struct ggml_tensor * a) {
  2833. return ggml_sqrt_impl(ctx, a, true);
  2834. }
  2835. // ggml_sum
  2836. struct ggml_tensor * ggml_sum(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * a) {
  2839. bool is_node = false;
  2840. if (a->grad) {
  2841. is_node = true;
  2842. }
  2843. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2844. result->op = GGML_OP_SUM;
  2845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2846. result->src0 = a;
  2847. result->src1 = NULL;
  2848. return result;
  2849. }
  2850. // ggml_mean
  2851. struct ggml_tensor * ggml_mean(
  2852. struct ggml_context * ctx,
  2853. struct ggml_tensor * a) {
  2854. bool is_node = false;
  2855. if (a->grad) {
  2856. GGML_ASSERT(false); // TODO: implement
  2857. is_node = true;
  2858. }
  2859. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2860. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2861. result->op = GGML_OP_MEAN;
  2862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2863. result->src0 = a;
  2864. result->src1 = NULL;
  2865. return result;
  2866. }
  2867. // ggml_repeat
  2868. struct ggml_tensor * ggml_repeat(
  2869. struct ggml_context * ctx,
  2870. struct ggml_tensor * a,
  2871. struct ggml_tensor * b) {
  2872. GGML_ASSERT(ggml_can_repeat(a, b));
  2873. bool is_node = false;
  2874. if (a->grad) {
  2875. is_node = true;
  2876. }
  2877. if (ggml_are_same_shape(a, b) && !is_node) {
  2878. return a;
  2879. }
  2880. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2881. result->op = GGML_OP_REPEAT;
  2882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2883. result->src0 = a;
  2884. result->src1 = b;
  2885. return result;
  2886. }
  2887. // ggml_abs
  2888. struct ggml_tensor * ggml_abs_impl(
  2889. struct ggml_context * ctx,
  2890. struct ggml_tensor * a,
  2891. bool inplace) {
  2892. bool is_node = false;
  2893. if (!inplace && (a->grad)) {
  2894. is_node = true;
  2895. }
  2896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2897. result->op = GGML_OP_ABS;
  2898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2899. result->src0 = a;
  2900. result->src1 = NULL;
  2901. return result;
  2902. }
  2903. struct ggml_tensor * ggml_abs(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a) {
  2906. return ggml_abs_impl(ctx, a, false);
  2907. }
  2908. struct ggml_tensor * ggml_abs_inplace(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a) {
  2911. return ggml_abs_impl(ctx, a, true);
  2912. }
  2913. // ggml_sgn
  2914. struct ggml_tensor * ggml_sgn_impl(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a,
  2917. bool inplace) {
  2918. bool is_node = false;
  2919. if (!inplace && (a->grad)) {
  2920. is_node = true;
  2921. }
  2922. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2923. result->op = GGML_OP_SGN;
  2924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2925. result->src0 = a;
  2926. result->src1 = NULL;
  2927. return result;
  2928. }
  2929. struct ggml_tensor * ggml_sgn(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a) {
  2932. return ggml_sgn_impl(ctx, a, false);
  2933. }
  2934. struct ggml_tensor * ggml_sgn_inplace(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a) {
  2937. return ggml_sgn_impl(ctx, a, true);
  2938. }
  2939. // ggml_neg
  2940. struct ggml_tensor * ggml_neg_impl(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. bool inplace) {
  2944. bool is_node = false;
  2945. if (!inplace && (a->grad)) {
  2946. is_node = true;
  2947. }
  2948. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2949. result->op = GGML_OP_NEG;
  2950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2951. result->src0 = a;
  2952. result->src1 = NULL;
  2953. return result;
  2954. }
  2955. struct ggml_tensor * ggml_neg(
  2956. struct ggml_context * ctx,
  2957. struct ggml_tensor * a) {
  2958. return ggml_neg_impl(ctx, a, false);
  2959. }
  2960. struct ggml_tensor * ggml_neg_inplace(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_neg_impl(ctx, a, true);
  2964. }
  2965. // ggml_step
  2966. struct ggml_tensor * ggml_step_impl(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. bool inplace) {
  2970. bool is_node = false;
  2971. if (!inplace && (a->grad)) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2975. result->op = GGML_OP_STEP;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src0 = a;
  2978. result->src1 = NULL;
  2979. return result;
  2980. }
  2981. struct ggml_tensor * ggml_step(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a) {
  2984. return ggml_step_impl(ctx, a, false);
  2985. }
  2986. struct ggml_tensor * ggml_step_inplace(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a) {
  2989. return ggml_step_impl(ctx, a, true);
  2990. }
  2991. // ggml_relu
  2992. struct ggml_tensor * ggml_relu_impl(
  2993. struct ggml_context * ctx,
  2994. struct ggml_tensor * a,
  2995. bool inplace) {
  2996. bool is_node = false;
  2997. if (!inplace && (a->grad)) {
  2998. is_node = true;
  2999. }
  3000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3001. result->op = GGML_OP_RELU;
  3002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3003. result->src0 = a;
  3004. result->src1 = NULL;
  3005. return result;
  3006. }
  3007. struct ggml_tensor * ggml_relu(
  3008. struct ggml_context * ctx,
  3009. struct ggml_tensor * a) {
  3010. return ggml_relu_impl(ctx, a, false);
  3011. }
  3012. struct ggml_tensor * ggml_relu_inplace(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a) {
  3015. return ggml_relu_impl(ctx, a, true);
  3016. }
  3017. // ggml_gelu
  3018. struct ggml_tensor * ggml_gelu_impl(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a,
  3021. bool inplace) {
  3022. bool is_node = false;
  3023. if (!inplace && (a->grad)) {
  3024. is_node = true;
  3025. }
  3026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3027. result->op = GGML_OP_GELU;
  3028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3029. result->src0 = a;
  3030. result->src1 = NULL;
  3031. return result;
  3032. }
  3033. struct ggml_tensor * ggml_gelu(
  3034. struct ggml_context * ctx,
  3035. struct ggml_tensor * a) {
  3036. return ggml_gelu_impl(ctx, a, false);
  3037. }
  3038. struct ggml_tensor * ggml_gelu_inplace(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a) {
  3041. return ggml_gelu_impl(ctx, a, true);
  3042. }
  3043. // ggml_silu
  3044. struct ggml_tensor * ggml_silu_impl(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. bool inplace) {
  3048. bool is_node = false;
  3049. if (!inplace && (a->grad)) {
  3050. is_node = true;
  3051. }
  3052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3053. result->op = GGML_OP_SILU;
  3054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3055. result->src0 = a;
  3056. result->src1 = NULL;
  3057. return result;
  3058. }
  3059. struct ggml_tensor * ggml_silu(
  3060. struct ggml_context * ctx,
  3061. struct ggml_tensor * a) {
  3062. return ggml_silu_impl(ctx, a, false);
  3063. }
  3064. struct ggml_tensor * ggml_silu_inplace(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a) {
  3067. return ggml_silu_impl(ctx, a, true);
  3068. }
  3069. // ggml_norm
  3070. struct ggml_tensor * ggml_norm_impl(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. bool inplace) {
  3074. bool is_node = false;
  3075. if (!inplace && (a->grad)) {
  3076. GGML_ASSERT(false); // TODO: implement backward
  3077. is_node = true;
  3078. }
  3079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3080. result->op = GGML_OP_NORM;
  3081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3082. result->src0 = a;
  3083. result->src1 = NULL; // TODO: maybe store epsilon here?
  3084. return result;
  3085. }
  3086. struct ggml_tensor * ggml_norm(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a) {
  3089. return ggml_norm_impl(ctx, a, false);
  3090. }
  3091. struct ggml_tensor * ggml_norm_inplace(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a) {
  3094. return ggml_norm_impl(ctx, a, true);
  3095. }
  3096. struct ggml_tensor * ggml_rms_norm_impl(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. bool inplace) {
  3100. bool is_node = false;
  3101. if (!inplace && (a->grad)) {
  3102. GGML_ASSERT(false); // TODO: implement backward
  3103. is_node = true;
  3104. }
  3105. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3106. result->op = GGML_OP_RMS_NORM;
  3107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3108. result->src0 = a;
  3109. result->src1 = NULL; // TODO: maybe store epsilon here?
  3110. return result;
  3111. }
  3112. struct ggml_tensor * ggml_rms_norm(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_rms_norm_impl(ctx, a, false);
  3116. }
  3117. struct ggml_tensor * ggml_rms_norm_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_rms_norm_impl(ctx, a, true);
  3121. }
  3122. // ggml_mul_mat
  3123. struct ggml_tensor * ggml_mul_mat(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. struct ggml_tensor * b) {
  3127. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3128. bool is_node = false;
  3129. if (a->grad || b->grad) {
  3130. is_node = true;
  3131. }
  3132. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3133. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3134. result->op = GGML_OP_MUL_MAT;
  3135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3136. result->src0 = a;
  3137. result->src1 = b;
  3138. return result;
  3139. }
  3140. // ggml_scale
  3141. struct ggml_tensor * ggml_scale_impl(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a,
  3144. struct ggml_tensor * b,
  3145. bool inplace) {
  3146. GGML_ASSERT(ggml_is_scalar(b));
  3147. GGML_ASSERT(ggml_is_padded_1d(a));
  3148. bool is_node = false;
  3149. if (!inplace && (a->grad || b->grad)) {
  3150. GGML_ASSERT(false); // TODO: implement backward
  3151. is_node = true;
  3152. }
  3153. // TODO: when implement backward, fix this:
  3154. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3155. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3156. result->op = GGML_OP_SCALE;
  3157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3158. result->src0 = a;
  3159. result->src1 = b;
  3160. return result;
  3161. }
  3162. struct ggml_tensor * ggml_scale(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b) {
  3166. return ggml_scale_impl(ctx, a, b, false);
  3167. }
  3168. struct ggml_tensor * ggml_scale_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a,
  3171. struct ggml_tensor * b) {
  3172. return ggml_scale_impl(ctx, a, b, true);
  3173. }
  3174. // ggml_cpy
  3175. struct ggml_tensor * ggml_cpy_impl(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. struct ggml_tensor * b,
  3179. bool inplace) {
  3180. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3181. bool is_node = false;
  3182. if (!inplace && (a->grad || b->grad)) {
  3183. GGML_ASSERT(false); // TODO: implement backward
  3184. is_node = true;
  3185. }
  3186. // make a view of the destination
  3187. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3188. result->op = GGML_OP_CPY;
  3189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3190. result->src0 = a;
  3191. result->src1 = b;
  3192. return result;
  3193. }
  3194. struct ggml_tensor * ggml_cpy(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a,
  3197. struct ggml_tensor * b) {
  3198. return ggml_cpy_impl(ctx, a, b, false);
  3199. }
  3200. struct ggml_tensor * ggml_cpy_inplace(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. return ggml_cpy_impl(ctx, a, b, true);
  3205. }
  3206. // ggml_reshape
  3207. struct ggml_tensor * ggml_reshape(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b) {
  3211. GGML_ASSERT(ggml_is_contiguous(a));
  3212. GGML_ASSERT(ggml_is_contiguous(b));
  3213. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3214. bool is_node = false;
  3215. if (a->grad || b->grad) {
  3216. GGML_ASSERT(false); // TODO: implement backward
  3217. is_node = true;
  3218. }
  3219. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3220. result->op = GGML_OP_RESHAPE;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src0 = a;
  3223. result->src1 = NULL;
  3224. return result;
  3225. }
  3226. struct ggml_tensor * ggml_reshape_2d(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a,
  3229. int ne0,
  3230. int ne1) {
  3231. GGML_ASSERT(ggml_is_contiguous(a));
  3232. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3233. bool is_node = false;
  3234. if (a->grad) {
  3235. GGML_ASSERT(false); // TODO: implement backward
  3236. is_node = true;
  3237. }
  3238. const int ne[2] = { ne0, ne1 };
  3239. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3240. result->op = GGML_OP_RESHAPE;
  3241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3242. result->src0 = a;
  3243. result->src1 = NULL;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_reshape_3d(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a,
  3249. int ne0,
  3250. int ne1,
  3251. int ne2) {
  3252. GGML_ASSERT(ggml_is_contiguous(a));
  3253. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3254. bool is_node = false;
  3255. if (a->grad) {
  3256. GGML_ASSERT(false); // TODO: implement backward
  3257. is_node = true;
  3258. }
  3259. const int ne[3] = { ne0, ne1, ne2 };
  3260. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3261. result->op = GGML_OP_RESHAPE;
  3262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3263. result->src0 = a;
  3264. result->src1 = NULL;
  3265. return result;
  3266. }
  3267. // ggml_view_1d
  3268. struct ggml_tensor * ggml_view_1d(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. int ne0,
  3272. size_t offset) {
  3273. if (a->grad) {
  3274. GGML_ASSERT(false); // gradient propagation is not supported
  3275. }
  3276. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3277. result->op = GGML_OP_VIEW;
  3278. result->grad = NULL;
  3279. result->src0 = a;
  3280. result->src1 = NULL; // TODO: maybe store the offset here?
  3281. return result;
  3282. }
  3283. // ggml_view_2d
  3284. struct ggml_tensor * ggml_view_2d(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. int ne0,
  3288. int ne1,
  3289. size_t nb1,
  3290. size_t offset) {
  3291. if (a->grad) {
  3292. GGML_ASSERT(false); // gradient propagation is not supported
  3293. }
  3294. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3295. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3296. result->nb[1] = nb1;
  3297. result->nb[2] = result->nb[1]*ne1;
  3298. result->nb[3] = result->nb[2];
  3299. result->op = GGML_OP_VIEW;
  3300. result->grad = NULL;
  3301. result->src0 = a;
  3302. result->src1 = NULL; // TODO: maybe store the offset here?
  3303. return result;
  3304. }
  3305. // ggml_permute
  3306. struct ggml_tensor * ggml_permute(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. int axis0,
  3310. int axis1,
  3311. int axis2,
  3312. int axis3) {
  3313. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3314. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3315. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3316. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3317. GGML_ASSERT(axis0 != axis1);
  3318. GGML_ASSERT(axis0 != axis2);
  3319. GGML_ASSERT(axis0 != axis3);
  3320. GGML_ASSERT(axis1 != axis2);
  3321. GGML_ASSERT(axis1 != axis3);
  3322. GGML_ASSERT(axis2 != axis3);
  3323. bool is_node = false;
  3324. if (a->grad) {
  3325. GGML_ASSERT(false); // TODO: implement backward
  3326. is_node = true;
  3327. }
  3328. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3329. int ne[GGML_MAX_DIMS];
  3330. int nb[GGML_MAX_DIMS];
  3331. ne[axis0] = a->ne[0];
  3332. ne[axis1] = a->ne[1];
  3333. ne[axis2] = a->ne[2];
  3334. ne[axis3] = a->ne[3];
  3335. nb[axis0] = a->nb[0];
  3336. nb[axis1] = a->nb[1];
  3337. nb[axis2] = a->nb[2];
  3338. nb[axis3] = a->nb[3];
  3339. result->ne[0] = ne[0];
  3340. result->ne[1] = ne[1];
  3341. result->ne[2] = ne[2];
  3342. result->ne[3] = ne[3];
  3343. result->nb[0] = nb[0];
  3344. result->nb[1] = nb[1];
  3345. result->nb[2] = nb[2];
  3346. result->nb[3] = nb[3];
  3347. result->op = GGML_OP_PERMUTE;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src0 = a;
  3350. result->src1 = NULL; // TODO: maybe store the permutation here?
  3351. return result;
  3352. }
  3353. // ggml_transpose
  3354. struct ggml_tensor * ggml_transpose(
  3355. struct ggml_context * ctx,
  3356. struct ggml_tensor * a) {
  3357. bool is_node = false;
  3358. if (a->grad) {
  3359. GGML_ASSERT(false); // TODO: implement backward
  3360. is_node = true;
  3361. }
  3362. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3363. result->ne[0] = a->ne[1];
  3364. result->ne[1] = a->ne[0];
  3365. result->nb[0] = a->nb[1];
  3366. result->nb[1] = a->nb[0];
  3367. result->op = GGML_OP_TRANSPOSE;
  3368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3369. result->src0 = a;
  3370. result->src1 = NULL;
  3371. return result;
  3372. }
  3373. // ggml_get_rows
  3374. struct ggml_tensor * ggml_get_rows(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. struct ggml_tensor * b) {
  3378. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3379. bool is_node = false;
  3380. if (a->grad || b->grad) {
  3381. GGML_ASSERT(false); // TODO: implement backward
  3382. is_node = true;
  3383. }
  3384. // TODO: implement non F32 return
  3385. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3386. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3387. result->op = GGML_OP_GET_ROWS;
  3388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3389. result->src0 = a;
  3390. result->src1 = b;
  3391. return result;
  3392. }
  3393. // ggml_diag_mask_inf
  3394. struct ggml_tensor * ggml_diag_mask_inf(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. int n_past) {
  3398. bool is_node = false;
  3399. if (a->grad) {
  3400. GGML_ASSERT(false); // TODO: implement backward
  3401. is_node = true;
  3402. }
  3403. // TODO: when implement backward, fix this:
  3404. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3405. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3406. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3407. result->op = GGML_OP_DIAG_MASK_INF;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = b;
  3411. return result;
  3412. }
  3413. // ggml_soft_max
  3414. struct ggml_tensor * ggml_soft_max(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a) {
  3417. bool is_node = false;
  3418. if (a->grad) {
  3419. GGML_ASSERT(false); // TODO: implement backward
  3420. is_node = true;
  3421. }
  3422. // TODO: when implement backward, fix this:
  3423. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3424. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3425. result->op = GGML_OP_SOFT_MAX;
  3426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3427. result->src0 = a;
  3428. result->src1 = NULL;
  3429. return result;
  3430. }
  3431. // ggml_rope
  3432. struct ggml_tensor * ggml_rope(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. int n_past,
  3436. int n_dims,
  3437. int mode) {
  3438. GGML_ASSERT(n_past >= 0);
  3439. bool is_node = false;
  3440. if (a->grad) {
  3441. GGML_ASSERT(false); // TODO: implement backward
  3442. is_node = true;
  3443. }
  3444. // TODO: when implement backward, fix this:
  3445. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3446. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3447. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3448. ((int32_t *) b->data)[0] = n_past;
  3449. ((int32_t *) b->data)[1] = n_dims;
  3450. ((int32_t *) b->data)[2] = mode;
  3451. result->op = GGML_OP_ROPE;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src0 = a;
  3454. result->src1 = b;
  3455. return result;
  3456. }
  3457. // ggml_conv_1d_1s
  3458. struct ggml_tensor * ggml_conv_1d_1s(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. struct ggml_tensor * b) {
  3462. GGML_ASSERT(ggml_is_matrix(b));
  3463. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3464. GGML_ASSERT(a->ne[3] == 1);
  3465. bool is_node = false;
  3466. if (a->grad || b->grad) {
  3467. GGML_ASSERT(false); // TODO: implement backward
  3468. is_node = true;
  3469. }
  3470. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3471. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3472. result->op = GGML_OP_CONV_1D_1S;
  3473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3474. result->src0 = a;
  3475. result->src1 = b;
  3476. return result;
  3477. }
  3478. // ggml_conv_1d_2s
  3479. struct ggml_tensor * ggml_conv_1d_2s(
  3480. struct ggml_context * ctx,
  3481. struct ggml_tensor * a,
  3482. struct ggml_tensor * b) {
  3483. GGML_ASSERT(ggml_is_matrix(b));
  3484. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3485. GGML_ASSERT(a->ne[3] == 1);
  3486. bool is_node = false;
  3487. if (a->grad || b->grad) {
  3488. GGML_ASSERT(false); // TODO: implement backward
  3489. is_node = true;
  3490. }
  3491. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3492. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3493. result->op = GGML_OP_CONV_1D_2S;
  3494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3495. result->src0 = a;
  3496. result->src1 = b;
  3497. return result;
  3498. }
  3499. // ggml_flash_attn
  3500. struct ggml_tensor * ggml_flash_attn(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * q,
  3503. struct ggml_tensor * k,
  3504. struct ggml_tensor * v,
  3505. bool masked) {
  3506. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3507. // TODO: check if vT can be multiplied by (k*qT)
  3508. bool is_node = false;
  3509. if (q->grad || k->grad || v->grad) {
  3510. GGML_ASSERT(false); // TODO: implement backward
  3511. is_node = true;
  3512. }
  3513. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3514. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3515. result->op = GGML_OP_FLASH_ATTN;
  3516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3517. result->src0 = q;
  3518. result->src1 = k;
  3519. result->opt[0] = v;
  3520. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3521. return result;
  3522. }
  3523. // ggml_flash_ff
  3524. struct ggml_tensor * ggml_flash_ff(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b0,
  3528. struct ggml_tensor * b1,
  3529. struct ggml_tensor * c0,
  3530. struct ggml_tensor * c1) {
  3531. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3532. // TODO: more checks
  3533. bool is_node = false;
  3534. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3535. GGML_ASSERT(false); // TODO: implement backward
  3536. is_node = true;
  3537. }
  3538. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3539. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3540. result->op = GGML_OP_FLASH_FF;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = a;
  3543. result->src1 = b0;
  3544. result->opt[0] = b1;
  3545. result->opt[1] = c0;
  3546. result->opt[2] = c1;
  3547. return result;
  3548. }
  3549. ////////////////////////////////////////////////////////////////////////////////
  3550. void ggml_set_param(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * tensor) {
  3553. tensor->is_param = true;
  3554. GGML_ASSERT(tensor->grad == NULL);
  3555. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3556. }
  3557. // ggml_compute_forward_dup
  3558. static void ggml_compute_forward_dup_f16(
  3559. const struct ggml_compute_params * params,
  3560. const struct ggml_tensor * src0,
  3561. struct ggml_tensor * dst) {
  3562. GGML_ASSERT(params->ith == 0);
  3563. GGML_ASSERT(ggml_is_contiguous(dst));
  3564. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3566. return;
  3567. }
  3568. const int ne00 = src0->ne[0];
  3569. const int ne01 = src0->ne[1];
  3570. const int ne02 = src0->ne[2];
  3571. const int ne03 = src0->ne[3];
  3572. const size_t nb00 = src0->nb[0];
  3573. const size_t nb01 = src0->nb[1];
  3574. const size_t nb02 = src0->nb[2];
  3575. const size_t nb03 = src0->nb[3];
  3576. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3577. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3578. return;
  3579. }
  3580. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3581. if (dst->type == GGML_TYPE_F16) {
  3582. int id = 0;
  3583. const size_t rs = ne00*nb00;
  3584. for (int i03 = 0; i03 < ne03; i03++) {
  3585. for (int i02 = 0; i02 < ne02; i02++) {
  3586. for (int i01 = 0; i01 < ne01; i01++) {
  3587. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3588. char * dst_ptr = (char *) dst->data + id*rs;
  3589. memcpy(dst_ptr, src0_ptr, rs);
  3590. id++;
  3591. }
  3592. }
  3593. }
  3594. } else if (dst->type == GGML_TYPE_F32) {
  3595. int id = 0;
  3596. float * dst_ptr = (float *) dst->data;
  3597. for (int i03 = 0; i03 < ne03; i03++) {
  3598. for (int i02 = 0; i02 < ne02; i02++) {
  3599. for (int i01 = 0; i01 < ne01; i01++) {
  3600. for (int i00 = 0; i00 < ne00; i00++) {
  3601. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3602. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3603. id++;
  3604. }
  3605. }
  3606. }
  3607. }
  3608. } else {
  3609. GGML_ASSERT(false); // TODO: implement
  3610. }
  3611. } else {
  3612. //printf("%s: this is not optimal - fix me\n", __func__);
  3613. if (dst->type == GGML_TYPE_F32) {
  3614. int id = 0;
  3615. float * dst_ptr = (float *) dst->data;
  3616. for (int i03 = 0; i03 < ne03; i03++) {
  3617. for (int i02 = 0; i02 < ne02; i02++) {
  3618. for (int i01 = 0; i01 < ne01; i01++) {
  3619. for (int i00 = 0; i00 < ne00; i00++) {
  3620. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3621. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3622. id++;
  3623. }
  3624. }
  3625. }
  3626. }
  3627. } else if (dst->type == GGML_TYPE_F16) {
  3628. int id = 0;
  3629. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3630. for (int i03 = 0; i03 < ne03; i03++) {
  3631. for (int i02 = 0; i02 < ne02; i02++) {
  3632. for (int i01 = 0; i01 < ne01; i01++) {
  3633. for (int i00 = 0; i00 < ne00; i00++) {
  3634. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3635. dst_ptr[id] = *src0_ptr;
  3636. id++;
  3637. }
  3638. }
  3639. }
  3640. }
  3641. } else {
  3642. GGML_ASSERT(false); // TODO: implement
  3643. }
  3644. }
  3645. }
  3646. static void ggml_compute_forward_dup_f32(
  3647. const struct ggml_compute_params * params,
  3648. const struct ggml_tensor * src0,
  3649. struct ggml_tensor * dst) {
  3650. GGML_ASSERT(params->ith == 0);
  3651. GGML_ASSERT(ggml_is_contiguous(dst));
  3652. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3654. return;
  3655. }
  3656. const int ne00 = src0->ne[0];
  3657. const int ne01 = src0->ne[1];
  3658. const int ne02 = src0->ne[2];
  3659. const int ne03 = src0->ne[3];
  3660. const size_t nb00 = src0->nb[0];
  3661. const size_t nb01 = src0->nb[1];
  3662. const size_t nb02 = src0->nb[2];
  3663. const size_t nb03 = src0->nb[3];
  3664. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3665. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3666. return;
  3667. }
  3668. if (src0->nb[0] == sizeof(float)) {
  3669. if (dst->type == GGML_TYPE_F32) {
  3670. int id = 0;
  3671. const size_t rs = ne00*nb00;
  3672. for (int i03 = 0; i03 < ne03; i03++) {
  3673. for (int i02 = 0; i02 < ne02; i02++) {
  3674. for (int i01 = 0; i01 < ne01; i01++) {
  3675. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3676. char * dst_ptr = (char *) dst->data + id*rs;
  3677. memcpy(dst_ptr, src0_ptr, rs);
  3678. id++;
  3679. }
  3680. }
  3681. }
  3682. } else if (dst->type == GGML_TYPE_F16) {
  3683. int id = 0;
  3684. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3685. for (int i03 = 0; i03 < ne03; i03++) {
  3686. for (int i02 = 0; i02 < ne02; i02++) {
  3687. for (int i01 = 0; i01 < ne01; i01++) {
  3688. for (int i00 = 0; i00 < ne00; i00++) {
  3689. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3690. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3691. id++;
  3692. }
  3693. }
  3694. }
  3695. }
  3696. } else {
  3697. GGML_ASSERT(false); // TODO: implement
  3698. }
  3699. } else {
  3700. //printf("%s: this is not optimal - fix me\n", __func__);
  3701. if (dst->type == GGML_TYPE_F32) {
  3702. int id = 0;
  3703. float * dst_ptr = (float *) dst->data;
  3704. for (int i03 = 0; i03 < ne03; i03++) {
  3705. for (int i02 = 0; i02 < ne02; i02++) {
  3706. for (int i01 = 0; i01 < ne01; i01++) {
  3707. for (int i00 = 0; i00 < ne00; i00++) {
  3708. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3709. dst_ptr[id] = *src0_ptr;
  3710. id++;
  3711. }
  3712. }
  3713. }
  3714. }
  3715. } else if (dst->type == GGML_TYPE_F16) {
  3716. int id = 0;
  3717. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3718. for (int i03 = 0; i03 < ne03; i03++) {
  3719. for (int i02 = 0; i02 < ne02; i02++) {
  3720. for (int i01 = 0; i01 < ne01; i01++) {
  3721. for (int i00 = 0; i00 < ne00; i00++) {
  3722. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3723. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3724. id++;
  3725. }
  3726. }
  3727. }
  3728. }
  3729. } else {
  3730. GGML_ASSERT(false); // TODO: implement
  3731. }
  3732. }
  3733. }
  3734. static void ggml_compute_forward_dup(
  3735. const struct ggml_compute_params * params,
  3736. const struct ggml_tensor * src0,
  3737. struct ggml_tensor * dst) {
  3738. switch (src0->type) {
  3739. case GGML_TYPE_F16:
  3740. {
  3741. ggml_compute_forward_dup_f16(params, src0, dst);
  3742. } break;
  3743. case GGML_TYPE_F32:
  3744. {
  3745. ggml_compute_forward_dup_f32(params, src0, dst);
  3746. } break;
  3747. case GGML_TYPE_Q4_0:
  3748. case GGML_TYPE_Q4_1:
  3749. case GGML_TYPE_I8:
  3750. case GGML_TYPE_I16:
  3751. case GGML_TYPE_I32:
  3752. case GGML_TYPE_COUNT:
  3753. {
  3754. GGML_ASSERT(false);
  3755. } break;
  3756. }
  3757. }
  3758. // ggml_compute_forward_add
  3759. static void ggml_compute_forward_add_f32(
  3760. const struct ggml_compute_params * params,
  3761. const struct ggml_tensor * src0,
  3762. const struct ggml_tensor * src1,
  3763. struct ggml_tensor * dst) {
  3764. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3766. return;
  3767. }
  3768. const int ith = params->ith;
  3769. const int nth = params->nth;
  3770. const int n = ggml_nrows(src0);
  3771. const int nc = src0->ne[0];
  3772. const size_t nb00 = src0->nb[0];
  3773. const size_t nb01 = src0->nb[1];
  3774. const size_t nb10 = src1->nb[0];
  3775. const size_t nb11 = src1->nb[1];
  3776. const size_t nb0 = dst->nb[0];
  3777. const size_t nb1 = dst->nb[1];
  3778. GGML_ASSERT( nb0 == sizeof(float));
  3779. GGML_ASSERT(nb00 == sizeof(float));
  3780. if (nb10 == sizeof(float)) {
  3781. const int j0 = (n/nth)*ith;
  3782. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3783. for (int j = j0; j < j1; j++) {
  3784. ggml_vec_add_f32(nc,
  3785. (float *) ((char *) dst->data + j*nb1),
  3786. (float *) ((char *) src0->data + j*nb01),
  3787. (float *) ((char *) src1->data + j*nb11));
  3788. }
  3789. } else {
  3790. // src1 is not contiguous
  3791. for (int j = ith; j < n; j += nth) {
  3792. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3793. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3794. for (int i = 0; i < nc; i++) {
  3795. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3796. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3797. }
  3798. }
  3799. }
  3800. }
  3801. static void ggml_compute_forward_add(
  3802. const struct ggml_compute_params * params,
  3803. const struct ggml_tensor * src0,
  3804. const struct ggml_tensor * src1,
  3805. struct ggml_tensor * dst) {
  3806. switch (src0->type) {
  3807. case GGML_TYPE_F32:
  3808. {
  3809. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3810. } break;
  3811. case GGML_TYPE_Q4_0:
  3812. case GGML_TYPE_Q4_1:
  3813. case GGML_TYPE_I8:
  3814. case GGML_TYPE_I16:
  3815. case GGML_TYPE_I32:
  3816. case GGML_TYPE_F16:
  3817. case GGML_TYPE_COUNT:
  3818. {
  3819. GGML_ASSERT(false);
  3820. } break;
  3821. }
  3822. }
  3823. // ggml_compute_forward_sub
  3824. static void ggml_compute_forward_sub_f32(
  3825. const struct ggml_compute_params * params,
  3826. const struct ggml_tensor * src0,
  3827. const struct ggml_tensor * src1,
  3828. struct ggml_tensor * dst) {
  3829. assert(params->ith == 0);
  3830. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3832. return;
  3833. }
  3834. const int n = ggml_nrows(src0);
  3835. const int nc = src0->ne[0];
  3836. assert( dst->nb[0] == sizeof(float));
  3837. assert(src0->nb[0] == sizeof(float));
  3838. assert(src1->nb[0] == sizeof(float));
  3839. for (int i = 0; i < n; i++) {
  3840. ggml_vec_sub_f32(nc,
  3841. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3842. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3843. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3844. }
  3845. }
  3846. static void ggml_compute_forward_sub(
  3847. const struct ggml_compute_params * params,
  3848. const struct ggml_tensor * src0,
  3849. const struct ggml_tensor * src1,
  3850. struct ggml_tensor * dst) {
  3851. switch (src0->type) {
  3852. case GGML_TYPE_F32:
  3853. {
  3854. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3855. } break;
  3856. case GGML_TYPE_Q4_0:
  3857. case GGML_TYPE_Q4_1:
  3858. case GGML_TYPE_I8:
  3859. case GGML_TYPE_I16:
  3860. case GGML_TYPE_I32:
  3861. case GGML_TYPE_F16:
  3862. case GGML_TYPE_COUNT:
  3863. {
  3864. GGML_ASSERT(false);
  3865. } break;
  3866. }
  3867. }
  3868. // ggml_compute_forward_mul
  3869. static void ggml_compute_forward_mul_f32(
  3870. const struct ggml_compute_params * params,
  3871. const struct ggml_tensor * src0,
  3872. const struct ggml_tensor * src1,
  3873. struct ggml_tensor * dst) {
  3874. assert(params->ith == 0);
  3875. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3877. return;
  3878. }
  3879. const int n = ggml_nrows(src0);
  3880. const int nc = src0->ne[0];
  3881. assert( dst->nb[0] == sizeof(float));
  3882. assert(src0->nb[0] == sizeof(float));
  3883. assert(src1->nb[0] == sizeof(float));
  3884. for (int i = 0; i < n; i++) {
  3885. ggml_vec_mul_f32(nc,
  3886. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3887. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3888. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3889. }
  3890. }
  3891. static void ggml_compute_forward_mul(
  3892. const struct ggml_compute_params * params,
  3893. const struct ggml_tensor * src0,
  3894. const struct ggml_tensor * src1,
  3895. struct ggml_tensor * dst) {
  3896. switch (src0->type) {
  3897. case GGML_TYPE_F32:
  3898. {
  3899. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3900. } break;
  3901. case GGML_TYPE_Q4_0:
  3902. case GGML_TYPE_Q4_1:
  3903. case GGML_TYPE_I8:
  3904. case GGML_TYPE_I16:
  3905. case GGML_TYPE_I32:
  3906. case GGML_TYPE_F16:
  3907. case GGML_TYPE_COUNT:
  3908. {
  3909. GGML_ASSERT(false);
  3910. } break;
  3911. }
  3912. }
  3913. // ggml_compute_forward_div
  3914. static void ggml_compute_forward_div_f32(
  3915. const struct ggml_compute_params * params,
  3916. const struct ggml_tensor * src0,
  3917. const struct ggml_tensor * src1,
  3918. struct ggml_tensor * dst) {
  3919. assert(params->ith == 0);
  3920. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3922. return;
  3923. }
  3924. const int n = ggml_nrows(src0);
  3925. const int nc = src0->ne[0];
  3926. assert( dst->nb[0] == sizeof(float));
  3927. assert(src0->nb[0] == sizeof(float));
  3928. assert(src1->nb[0] == sizeof(float));
  3929. for (int i = 0; i < n; i++) {
  3930. ggml_vec_div_f32(nc,
  3931. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3932. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3933. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3934. }
  3935. }
  3936. static void ggml_compute_forward_div(
  3937. const struct ggml_compute_params * params,
  3938. const struct ggml_tensor * src0,
  3939. const struct ggml_tensor * src1,
  3940. struct ggml_tensor * dst) {
  3941. switch (src0->type) {
  3942. case GGML_TYPE_F32:
  3943. {
  3944. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3945. } break;
  3946. case GGML_TYPE_Q4_0:
  3947. case GGML_TYPE_Q4_1:
  3948. case GGML_TYPE_I8:
  3949. case GGML_TYPE_I16:
  3950. case GGML_TYPE_I32:
  3951. case GGML_TYPE_F16:
  3952. case GGML_TYPE_COUNT:
  3953. {
  3954. GGML_ASSERT(false);
  3955. } break;
  3956. }
  3957. }
  3958. // ggml_compute_forward_sqr
  3959. static void ggml_compute_forward_sqr_f32(
  3960. const struct ggml_compute_params * params,
  3961. const struct ggml_tensor * src0,
  3962. struct ggml_tensor * dst) {
  3963. assert(params->ith == 0);
  3964. assert(ggml_are_same_shape(src0, dst));
  3965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3966. return;
  3967. }
  3968. const int n = ggml_nrows(src0);
  3969. const int nc = src0->ne[0];
  3970. assert( dst->nb[0] == sizeof(float));
  3971. assert(src0->nb[0] == sizeof(float));
  3972. for (int i = 0; i < n; i++) {
  3973. ggml_vec_sqr_f32(nc,
  3974. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3975. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3976. }
  3977. }
  3978. static void ggml_compute_forward_sqr(
  3979. const struct ggml_compute_params * params,
  3980. const struct ggml_tensor * src0,
  3981. struct ggml_tensor * dst) {
  3982. switch (src0->type) {
  3983. case GGML_TYPE_F32:
  3984. {
  3985. ggml_compute_forward_sqr_f32(params, src0, dst);
  3986. } break;
  3987. case GGML_TYPE_Q4_0:
  3988. case GGML_TYPE_Q4_1:
  3989. case GGML_TYPE_I8:
  3990. case GGML_TYPE_I16:
  3991. case GGML_TYPE_I32:
  3992. case GGML_TYPE_F16:
  3993. case GGML_TYPE_COUNT:
  3994. {
  3995. GGML_ASSERT(false);
  3996. } break;
  3997. }
  3998. }
  3999. // ggml_compute_forward_sqrt
  4000. static void ggml_compute_forward_sqrt_f32(
  4001. const struct ggml_compute_params * params,
  4002. const struct ggml_tensor * src0,
  4003. struct ggml_tensor * dst) {
  4004. assert(params->ith == 0);
  4005. assert(ggml_are_same_shape(src0, dst));
  4006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4007. return;
  4008. }
  4009. const int n = ggml_nrows(src0);
  4010. const int nc = src0->ne[0];
  4011. assert( dst->nb[0] == sizeof(float));
  4012. assert(src0->nb[0] == sizeof(float));
  4013. for (int i = 0; i < n; i++) {
  4014. ggml_vec_sqrt_f32(nc,
  4015. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4016. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4017. }
  4018. }
  4019. static void ggml_compute_forward_sqrt(
  4020. const struct ggml_compute_params * params,
  4021. const struct ggml_tensor * src0,
  4022. struct ggml_tensor * dst) {
  4023. switch (src0->type) {
  4024. case GGML_TYPE_F32:
  4025. {
  4026. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4027. } break;
  4028. case GGML_TYPE_Q4_0:
  4029. case GGML_TYPE_Q4_1:
  4030. case GGML_TYPE_I8:
  4031. case GGML_TYPE_I16:
  4032. case GGML_TYPE_I32:
  4033. case GGML_TYPE_F16:
  4034. case GGML_TYPE_COUNT:
  4035. {
  4036. GGML_ASSERT(false);
  4037. } break;
  4038. }
  4039. }
  4040. // ggml_compute_forward_sum
  4041. static void ggml_compute_forward_sum_f32(
  4042. const struct ggml_compute_params * params,
  4043. const struct ggml_tensor * src0,
  4044. struct ggml_tensor * dst) {
  4045. assert(params->ith == 0);
  4046. assert(ggml_is_scalar(dst));
  4047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4048. return;
  4049. }
  4050. assert(ggml_is_scalar(dst));
  4051. assert(src0->nb[0] == sizeof(float));
  4052. const int ne00 = src0->ne[0];
  4053. const int ne01 = src0->ne[1];
  4054. const int ne02 = src0->ne[2];
  4055. const int ne03 = src0->ne[3];
  4056. const size_t nb01 = src0->nb[1];
  4057. const size_t nb02 = src0->nb[2];
  4058. const size_t nb03 = src0->nb[3];
  4059. for (int i03 = 0; i03 < ne03; i03++) {
  4060. for (int i02 = 0; i02 < ne02; i02++) {
  4061. for (int i01 = 0; i01 < ne01; i01++) {
  4062. ggml_vec_sum_f32(ne00,
  4063. (float *) (dst->data),
  4064. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4065. }
  4066. }
  4067. }
  4068. }
  4069. static void ggml_compute_forward_sum(
  4070. const struct ggml_compute_params * params,
  4071. const struct ggml_tensor * src0,
  4072. struct ggml_tensor * dst) {
  4073. switch (src0->type) {
  4074. case GGML_TYPE_F32:
  4075. {
  4076. ggml_compute_forward_sum_f32(params, src0, dst);
  4077. } break;
  4078. case GGML_TYPE_Q4_0:
  4079. case GGML_TYPE_Q4_1:
  4080. case GGML_TYPE_I8:
  4081. case GGML_TYPE_I16:
  4082. case GGML_TYPE_I32:
  4083. case GGML_TYPE_F16:
  4084. case GGML_TYPE_COUNT:
  4085. {
  4086. GGML_ASSERT(false);
  4087. } break;
  4088. }
  4089. }
  4090. // ggml_compute_forward_mean
  4091. static void ggml_compute_forward_mean_f32(
  4092. const struct ggml_compute_params * params,
  4093. const struct ggml_tensor * src0,
  4094. struct ggml_tensor * dst) {
  4095. assert(params->ith == 0);
  4096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4097. return;
  4098. }
  4099. assert(src0->nb[0] == sizeof(float));
  4100. const int ne00 = src0->ne[0];
  4101. const int ne01 = src0->ne[1];
  4102. const int ne02 = src0->ne[2];
  4103. const int ne03 = src0->ne[3];
  4104. const size_t nb01 = src0->nb[1];
  4105. const size_t nb02 = src0->nb[2];
  4106. const size_t nb03 = src0->nb[3];
  4107. const int ne0 = dst->ne[0];
  4108. const int ne1 = dst->ne[1];
  4109. const int ne2 = dst->ne[2];
  4110. const int ne3 = dst->ne[3];
  4111. assert(ne0 == 1);
  4112. assert(ne1 == ne01);
  4113. assert(ne2 == ne02);
  4114. assert(ne3 == ne03);
  4115. UNUSED(ne0);
  4116. UNUSED(ne1);
  4117. UNUSED(ne2);
  4118. UNUSED(ne3);
  4119. const size_t nb1 = dst->nb[1];
  4120. const size_t nb2 = dst->nb[2];
  4121. const size_t nb3 = dst->nb[3];
  4122. for (int i03 = 0; i03 < ne03; i03++) {
  4123. for (int i02 = 0; i02 < ne02; i02++) {
  4124. for (int i01 = 0; i01 < ne01; i01++) {
  4125. ggml_vec_sum_f32(ne00,
  4126. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4127. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4128. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4129. }
  4130. }
  4131. }
  4132. }
  4133. static void ggml_compute_forward_mean(
  4134. const struct ggml_compute_params * params,
  4135. const struct ggml_tensor * src0,
  4136. struct ggml_tensor * dst) {
  4137. switch (src0->type) {
  4138. case GGML_TYPE_F32:
  4139. {
  4140. ggml_compute_forward_mean_f32(params, src0, dst);
  4141. } break;
  4142. case GGML_TYPE_Q4_0:
  4143. case GGML_TYPE_Q4_1:
  4144. case GGML_TYPE_I8:
  4145. case GGML_TYPE_I16:
  4146. case GGML_TYPE_I32:
  4147. case GGML_TYPE_F16:
  4148. case GGML_TYPE_COUNT:
  4149. {
  4150. GGML_ASSERT(false);
  4151. } break;
  4152. }
  4153. }
  4154. // ggml_compute_forward_repeat
  4155. static void ggml_compute_forward_repeat_f32(
  4156. const struct ggml_compute_params * params,
  4157. const struct ggml_tensor * src0,
  4158. struct ggml_tensor * dst) {
  4159. assert(params->ith == 0);
  4160. assert(ggml_can_repeat(src0, dst));
  4161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4162. return;
  4163. }
  4164. // TODO: implement support for rank > 2 tensors
  4165. assert(src0->ne[2] == 1);
  4166. assert(src0->ne[3] == 1);
  4167. assert( dst->ne[2] == 1);
  4168. assert( dst->ne[3] == 1);
  4169. const int nc = dst->ne[0];
  4170. const int nr = dst->ne[1];
  4171. const int nc0 = src0->ne[0];
  4172. const int nr0 = src0->ne[1];
  4173. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4174. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4175. // TODO: support for transposed / permuted tensors
  4176. assert( dst->nb[0] == sizeof(float));
  4177. assert(src0->nb[0] == sizeof(float));
  4178. // TODO: maybe this is not optimal?
  4179. for (int i = 0; i < nrr; i++) {
  4180. for (int j = 0; j < ncr; j++) {
  4181. for (int k = 0; k < nr0; k++) {
  4182. ggml_vec_cpy_f32(nc0,
  4183. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4184. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4185. }
  4186. }
  4187. }
  4188. }
  4189. static void ggml_compute_forward_repeat(
  4190. const struct ggml_compute_params * params,
  4191. const struct ggml_tensor * src0,
  4192. struct ggml_tensor * dst) {
  4193. switch (src0->type) {
  4194. case GGML_TYPE_F32:
  4195. {
  4196. ggml_compute_forward_repeat_f32(params, src0, dst);
  4197. } break;
  4198. case GGML_TYPE_Q4_0:
  4199. case GGML_TYPE_Q4_1:
  4200. case GGML_TYPE_I8:
  4201. case GGML_TYPE_I16:
  4202. case GGML_TYPE_I32:
  4203. case GGML_TYPE_F16:
  4204. case GGML_TYPE_COUNT:
  4205. {
  4206. GGML_ASSERT(false);
  4207. } break;
  4208. }
  4209. }
  4210. // ggml_compute_forward_abs
  4211. static void ggml_compute_forward_abs_f32(
  4212. const struct ggml_compute_params * params,
  4213. const struct ggml_tensor * src0,
  4214. struct ggml_tensor * dst) {
  4215. assert(params->ith == 0);
  4216. assert(ggml_are_same_shape(src0, dst));
  4217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4218. return;
  4219. }
  4220. const int n = ggml_nrows(src0);
  4221. const int nc = src0->ne[0];
  4222. assert(dst->nb[0] == sizeof(float));
  4223. assert(src0->nb[0] == sizeof(float));
  4224. for (int i = 0; i < n; i++) {
  4225. ggml_vec_abs_f32(nc,
  4226. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4227. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4228. }
  4229. }
  4230. static void ggml_compute_forward_abs(
  4231. const struct ggml_compute_params * params,
  4232. const struct ggml_tensor * src0,
  4233. struct ggml_tensor * dst) {
  4234. switch (src0->type) {
  4235. case GGML_TYPE_F32:
  4236. {
  4237. ggml_compute_forward_abs_f32(params, src0, dst);
  4238. } break;
  4239. case GGML_TYPE_Q4_0:
  4240. case GGML_TYPE_Q4_1:
  4241. case GGML_TYPE_I8:
  4242. case GGML_TYPE_I16:
  4243. case GGML_TYPE_I32:
  4244. case GGML_TYPE_F16:
  4245. case GGML_TYPE_COUNT:
  4246. {
  4247. GGML_ASSERT(false);
  4248. } break;
  4249. }
  4250. }
  4251. // ggml_compute_forward_sgn
  4252. static void ggml_compute_forward_sgn_f32(
  4253. const struct ggml_compute_params * params,
  4254. const struct ggml_tensor * src0,
  4255. struct ggml_tensor * dst) {
  4256. assert(params->ith == 0);
  4257. assert(ggml_are_same_shape(src0, dst));
  4258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4259. return;
  4260. }
  4261. const int n = ggml_nrows(src0);
  4262. const int nc = src0->ne[0];
  4263. assert(dst->nb[0] == sizeof(float));
  4264. assert(src0->nb[0] == sizeof(float));
  4265. for (int i = 0; i < n; i++) {
  4266. ggml_vec_sgn_f32(nc,
  4267. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4268. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4269. }
  4270. }
  4271. static void ggml_compute_forward_sgn(
  4272. const struct ggml_compute_params * params,
  4273. const struct ggml_tensor * src0,
  4274. struct ggml_tensor * dst) {
  4275. switch (src0->type) {
  4276. case GGML_TYPE_F32:
  4277. {
  4278. ggml_compute_forward_sgn_f32(params, src0, dst);
  4279. } break;
  4280. case GGML_TYPE_Q4_0:
  4281. case GGML_TYPE_Q4_1:
  4282. case GGML_TYPE_I8:
  4283. case GGML_TYPE_I16:
  4284. case GGML_TYPE_I32:
  4285. case GGML_TYPE_F16:
  4286. case GGML_TYPE_COUNT:
  4287. {
  4288. GGML_ASSERT(false);
  4289. } break;
  4290. }
  4291. }
  4292. // ggml_compute_forward_neg
  4293. static void ggml_compute_forward_neg_f32(
  4294. const struct ggml_compute_params * params,
  4295. const struct ggml_tensor * src0,
  4296. struct ggml_tensor * dst) {
  4297. assert(params->ith == 0);
  4298. assert(ggml_are_same_shape(src0, dst));
  4299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4300. return;
  4301. }
  4302. const int n = ggml_nrows(src0);
  4303. const int nc = src0->ne[0];
  4304. assert(dst->nb[0] == sizeof(float));
  4305. assert(src0->nb[0] == sizeof(float));
  4306. for (int i = 0; i < n; i++) {
  4307. ggml_vec_neg_f32(nc,
  4308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4310. }
  4311. }
  4312. static void ggml_compute_forward_neg(
  4313. const struct ggml_compute_params * params,
  4314. const struct ggml_tensor * src0,
  4315. struct ggml_tensor * dst) {
  4316. switch (src0->type) {
  4317. case GGML_TYPE_F32:
  4318. {
  4319. ggml_compute_forward_neg_f32(params, src0, dst);
  4320. } break;
  4321. case GGML_TYPE_Q4_0:
  4322. case GGML_TYPE_Q4_1:
  4323. case GGML_TYPE_I8:
  4324. case GGML_TYPE_I16:
  4325. case GGML_TYPE_I32:
  4326. case GGML_TYPE_F16:
  4327. case GGML_TYPE_COUNT:
  4328. {
  4329. GGML_ASSERT(false);
  4330. } break;
  4331. }
  4332. }
  4333. // ggml_compute_forward_step
  4334. static void ggml_compute_forward_step_f32(
  4335. const struct ggml_compute_params * params,
  4336. const struct ggml_tensor * src0,
  4337. struct ggml_tensor * dst) {
  4338. assert(params->ith == 0);
  4339. assert(ggml_are_same_shape(src0, dst));
  4340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4341. return;
  4342. }
  4343. const int n = ggml_nrows(src0);
  4344. const int nc = src0->ne[0];
  4345. assert(dst->nb[0] == sizeof(float));
  4346. assert(src0->nb[0] == sizeof(float));
  4347. for (int i = 0; i < n; i++) {
  4348. ggml_vec_step_f32(nc,
  4349. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4350. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4351. }
  4352. }
  4353. static void ggml_compute_forward_step(
  4354. const struct ggml_compute_params * params,
  4355. const struct ggml_tensor * src0,
  4356. struct ggml_tensor * dst) {
  4357. switch (src0->type) {
  4358. case GGML_TYPE_F32:
  4359. {
  4360. ggml_compute_forward_step_f32(params, src0, dst);
  4361. } break;
  4362. case GGML_TYPE_Q4_0:
  4363. case GGML_TYPE_Q4_1:
  4364. case GGML_TYPE_I8:
  4365. case GGML_TYPE_I16:
  4366. case GGML_TYPE_I32:
  4367. case GGML_TYPE_F16:
  4368. case GGML_TYPE_COUNT:
  4369. {
  4370. GGML_ASSERT(false);
  4371. } break;
  4372. }
  4373. }
  4374. // ggml_compute_forward_relu
  4375. static void ggml_compute_forward_relu_f32(
  4376. const struct ggml_compute_params * params,
  4377. const struct ggml_tensor * src0,
  4378. struct ggml_tensor * dst) {
  4379. assert(params->ith == 0);
  4380. assert(ggml_are_same_shape(src0, dst));
  4381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4382. return;
  4383. }
  4384. const int n = ggml_nrows(src0);
  4385. const int nc = src0->ne[0];
  4386. assert(dst->nb[0] == sizeof(float));
  4387. assert(src0->nb[0] == sizeof(float));
  4388. for (int i = 0; i < n; i++) {
  4389. ggml_vec_relu_f32(nc,
  4390. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4391. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4392. }
  4393. }
  4394. static void ggml_compute_forward_relu(
  4395. const struct ggml_compute_params * params,
  4396. const struct ggml_tensor * src0,
  4397. struct ggml_tensor * dst) {
  4398. switch (src0->type) {
  4399. case GGML_TYPE_F32:
  4400. {
  4401. ggml_compute_forward_relu_f32(params, src0, dst);
  4402. } break;
  4403. case GGML_TYPE_Q4_0:
  4404. case GGML_TYPE_Q4_1:
  4405. case GGML_TYPE_I8:
  4406. case GGML_TYPE_I16:
  4407. case GGML_TYPE_I32:
  4408. case GGML_TYPE_F16:
  4409. case GGML_TYPE_COUNT:
  4410. {
  4411. GGML_ASSERT(false);
  4412. } break;
  4413. }
  4414. }
  4415. // ggml_compute_forward_gelu
  4416. static void ggml_compute_forward_gelu_f32(
  4417. const struct ggml_compute_params * params,
  4418. const struct ggml_tensor * src0,
  4419. struct ggml_tensor * dst) {
  4420. GGML_ASSERT(ggml_is_contiguous(src0));
  4421. GGML_ASSERT(ggml_is_contiguous(dst));
  4422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4424. return;
  4425. }
  4426. const int ith = params->ith;
  4427. const int nth = params->nth;
  4428. const int nc = src0->ne[0];
  4429. const int nr = ggml_nrows(src0);
  4430. // rows per thread
  4431. const int dr = (nr + nth - 1)/nth;
  4432. // row range for this thread
  4433. const int ir0 = dr*ith;
  4434. const int ir1 = MIN(ir0 + dr, nr);
  4435. for (int i1 = ir0; i1 < ir1; i1++) {
  4436. ggml_vec_gelu_f32(nc,
  4437. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4438. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4439. #ifndef NDEBUG
  4440. for (int k = 0; k < nc; k++) {
  4441. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4442. UNUSED(x);
  4443. assert(!isnan(x));
  4444. assert(!isinf(x));
  4445. }
  4446. #endif
  4447. }
  4448. }
  4449. static void ggml_compute_forward_gelu(
  4450. const struct ggml_compute_params * params,
  4451. const struct ggml_tensor * src0,
  4452. struct ggml_tensor * dst) {
  4453. switch (src0->type) {
  4454. case GGML_TYPE_F32:
  4455. {
  4456. ggml_compute_forward_gelu_f32(params, src0, dst);
  4457. } break;
  4458. case GGML_TYPE_Q4_0:
  4459. case GGML_TYPE_Q4_1:
  4460. case GGML_TYPE_I8:
  4461. case GGML_TYPE_I16:
  4462. case GGML_TYPE_I32:
  4463. case GGML_TYPE_F16:
  4464. case GGML_TYPE_COUNT:
  4465. {
  4466. GGML_ASSERT(false);
  4467. } break;
  4468. }
  4469. //printf("XXXXXXXX gelu\n");
  4470. }
  4471. // ggml_compute_forward_silu
  4472. static void ggml_compute_forward_silu_f32(
  4473. const struct ggml_compute_params * params,
  4474. const struct ggml_tensor * src0,
  4475. struct ggml_tensor * dst) {
  4476. GGML_ASSERT(ggml_is_contiguous(src0));
  4477. GGML_ASSERT(ggml_is_contiguous(dst));
  4478. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4480. return;
  4481. }
  4482. const int ith = params->ith;
  4483. const int nth = params->nth;
  4484. const int nc = src0->ne[0];
  4485. const int nr = ggml_nrows(src0);
  4486. // rows per thread
  4487. const int dr = (nr + nth - 1)/nth;
  4488. // row range for this thread
  4489. const int ir0 = dr*ith;
  4490. const int ir1 = MIN(ir0 + dr, nr);
  4491. for (int i1 = ir0; i1 < ir1; i1++) {
  4492. ggml_vec_silu_f32(nc,
  4493. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4494. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4495. #ifndef NDEBUG
  4496. for (int k = 0; k < nc; k++) {
  4497. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4498. UNUSED(x);
  4499. assert(!isnan(x));
  4500. assert(!isinf(x));
  4501. }
  4502. #endif
  4503. }
  4504. }
  4505. static void ggml_compute_forward_silu(
  4506. const struct ggml_compute_params * params,
  4507. const struct ggml_tensor * src0,
  4508. struct ggml_tensor * dst) {
  4509. switch (src0->type) {
  4510. case GGML_TYPE_F32:
  4511. {
  4512. ggml_compute_forward_silu_f32(params, src0, dst);
  4513. } break;
  4514. case GGML_TYPE_Q4_0:
  4515. case GGML_TYPE_Q4_1:
  4516. case GGML_TYPE_I8:
  4517. case GGML_TYPE_I16:
  4518. case GGML_TYPE_I32:
  4519. case GGML_TYPE_F16:
  4520. case GGML_TYPE_COUNT:
  4521. {
  4522. GGML_ASSERT(false);
  4523. } break;
  4524. }
  4525. }
  4526. // ggml_compute_forward_norm
  4527. static void ggml_compute_forward_norm_f32(
  4528. const struct ggml_compute_params * params,
  4529. const struct ggml_tensor * src0,
  4530. struct ggml_tensor * dst) {
  4531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4533. return;
  4534. }
  4535. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4536. const int ith = params->ith;
  4537. const int nth = params->nth;
  4538. const int ne00 = src0->ne[0];
  4539. const int ne01 = src0->ne[1];
  4540. const int ne02 = src0->ne[2];
  4541. const int ne03 = src0->ne[3];
  4542. const size_t nb01 = src0->nb[1];
  4543. const size_t nb02 = src0->nb[2];
  4544. const size_t nb03 = src0->nb[3];
  4545. const size_t nb1 = dst->nb[1];
  4546. const size_t nb2 = dst->nb[2];
  4547. const size_t nb3 = dst->nb[3];
  4548. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4549. // TODO: optimize
  4550. for (int i03 = 0; i03 < ne03; i03++) {
  4551. for (int i02 = 0; i02 < ne02; i02++) {
  4552. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4553. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4554. ggml_float mean = 0.0;
  4555. for (int i00 = 0; i00 < ne00; i00++) {
  4556. mean += x[i00];
  4557. }
  4558. mean /= ne00;
  4559. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4560. ggml_float sum2 = 0.0;
  4561. for (int i00 = 0; i00 < ne00; i00++) {
  4562. ggml_float v = x[i00] - mean;
  4563. y[i00] = v;
  4564. sum2 += v*v;
  4565. }
  4566. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4567. ggml_vec_scale_f32(ne00, y, scale);
  4568. }
  4569. }
  4570. }
  4571. }
  4572. static void ggml_compute_forward_norm(
  4573. const struct ggml_compute_params * params,
  4574. const struct ggml_tensor * src0,
  4575. struct ggml_tensor * dst) {
  4576. switch (src0->type) {
  4577. case GGML_TYPE_F32:
  4578. {
  4579. ggml_compute_forward_norm_f32(params, src0, dst);
  4580. } break;
  4581. case GGML_TYPE_Q4_0:
  4582. case GGML_TYPE_Q4_1:
  4583. case GGML_TYPE_I8:
  4584. case GGML_TYPE_I16:
  4585. case GGML_TYPE_I32:
  4586. case GGML_TYPE_F16:
  4587. case GGML_TYPE_COUNT:
  4588. {
  4589. GGML_ASSERT(false);
  4590. } break;
  4591. }
  4592. }
  4593. static void ggml_compute_forward_rms_norm_f32(
  4594. const struct ggml_compute_params * params,
  4595. const struct ggml_tensor * src0,
  4596. struct ggml_tensor * dst) {
  4597. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4599. return;
  4600. }
  4601. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4602. const int ith = params->ith;
  4603. const int nth = params->nth;
  4604. const int ne00 = src0->ne[0];
  4605. const int ne01 = src0->ne[1];
  4606. const int ne02 = src0->ne[2];
  4607. const int ne03 = src0->ne[3];
  4608. const size_t nb01 = src0->nb[1];
  4609. const size_t nb02 = src0->nb[2];
  4610. const size_t nb03 = src0->nb[3];
  4611. const size_t nb1 = dst->nb[1];
  4612. const size_t nb2 = dst->nb[2];
  4613. const size_t nb3 = dst->nb[3];
  4614. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4615. // TODO: optimize
  4616. for (int i03 = 0; i03 < ne03; i03++) {
  4617. for (int i02 = 0; i02 < ne02; i02++) {
  4618. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4619. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4620. ggml_float mean = 0.0;
  4621. for (int i00 = 0; i00 < ne00; i00++) {
  4622. mean += x[i00] * x[i00];
  4623. }
  4624. mean /= ne00;
  4625. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4626. memcpy(y, x, ne00 * sizeof(float));
  4627. // for (int i00 = 0; i00 < ne00; i00++) {
  4628. // y[i00] = x[i00];
  4629. // }
  4630. const float scale = 1.0/sqrt(mean + eps);
  4631. ggml_vec_scale_f32(ne00, y, scale);
  4632. }
  4633. }
  4634. }
  4635. }
  4636. static void ggml_compute_forward_rms_norm(
  4637. const struct ggml_compute_params * params,
  4638. const struct ggml_tensor * src0,
  4639. struct ggml_tensor * dst) {
  4640. switch (src0->type) {
  4641. case GGML_TYPE_F32:
  4642. {
  4643. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4644. } break;
  4645. case GGML_TYPE_Q4_0:
  4646. case GGML_TYPE_Q4_1:
  4647. case GGML_TYPE_I8:
  4648. case GGML_TYPE_I16:
  4649. case GGML_TYPE_I32:
  4650. case GGML_TYPE_F16:
  4651. case GGML_TYPE_COUNT:
  4652. {
  4653. GGML_ASSERT(false);
  4654. } break;
  4655. }
  4656. }
  4657. // ggml_compute_forward_mul_mat
  4658. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4659. // helper function to determine if it is better to use BLAS or not
  4660. // for large matrices, BLAS is faster
  4661. static bool ggml_compute_forward_mul_mat_use_blas(
  4662. const struct ggml_tensor * src0,
  4663. const struct ggml_tensor * src1,
  4664. struct ggml_tensor * dst) {
  4665. UNUSED(src0);
  4666. const int ne10 = src1->ne[0];
  4667. const int ne0 = dst->ne[0];
  4668. const int ne1 = dst->ne[1];
  4669. // TODO: find the optimal values for these
  4670. if (ggml_is_contiguous(src0) &&
  4671. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4672. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4673. return true;
  4674. }
  4675. return false;
  4676. }
  4677. #endif
  4678. static void ggml_compute_forward_mul_mat_f32(
  4679. const struct ggml_compute_params * params,
  4680. const struct ggml_tensor * src0,
  4681. const struct ggml_tensor * src1,
  4682. struct ggml_tensor * dst) {
  4683. int64_t t0 = ggml_perf_time_us();
  4684. UNUSED(t0);
  4685. const int ne00 = src0->ne[0];
  4686. const int ne01 = src0->ne[1];
  4687. const int ne02 = src0->ne[2];
  4688. const int ne03 = src0->ne[3];
  4689. const int ne10 = src1->ne[0];
  4690. const int ne11 = src1->ne[1];
  4691. const int ne12 = src1->ne[2];
  4692. const int ne13 = src1->ne[3];
  4693. const int ne0 = dst->ne[0];
  4694. const int ne1 = dst->ne[1];
  4695. const int ne2 = dst->ne[2];
  4696. const int ne3 = dst->ne[3];
  4697. const int ne = ne0*ne1*ne2*ne3;
  4698. const int nb00 = src0->nb[0];
  4699. const int nb01 = src0->nb[1];
  4700. const int nb02 = src0->nb[2];
  4701. const int nb03 = src0->nb[3];
  4702. const int nb10 = src1->nb[0];
  4703. const int nb11 = src1->nb[1];
  4704. const int nb12 = src1->nb[2];
  4705. const int nb13 = src1->nb[3];
  4706. const int nb0 = dst->nb[0];
  4707. const int nb1 = dst->nb[1];
  4708. const int nb2 = dst->nb[2];
  4709. const int nb3 = dst->nb[3];
  4710. const int ith = params->ith;
  4711. const int nth = params->nth;
  4712. assert(ne02 == ne12);
  4713. assert(ne03 == ne13);
  4714. assert(ne2 == ne12);
  4715. assert(ne3 == ne13);
  4716. // TODO: we don't support permuted src0
  4717. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4718. // dst cannot be transposed or permuted
  4719. assert(nb0 == sizeof(float));
  4720. assert(nb0 <= nb1);
  4721. assert(nb1 <= nb2);
  4722. assert(nb2 <= nb3);
  4723. assert(ne0 == ne01);
  4724. assert(ne1 == ne11);
  4725. assert(ne2 == ne02);
  4726. assert(ne3 == ne03);
  4727. // nb01 >= nb00 - src0 is not transposed
  4728. // compute by src0 rows
  4729. //
  4730. // nb00 < nb01 - src0 is transposed
  4731. // compute by src0 columns
  4732. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4733. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4734. GGML_ASSERT(nb10 == sizeof(float));
  4735. if (params->ith != 0) {
  4736. return;
  4737. }
  4738. if (params->type == GGML_TASK_INIT) {
  4739. return;
  4740. }
  4741. if (params->type == GGML_TASK_FINALIZE) {
  4742. return;
  4743. }
  4744. for (int i03 = 0; i03 < ne03; i03++) {
  4745. for (int i02 = 0; i02 < ne02; i02++) {
  4746. const float * x = (float *) (src0->data);
  4747. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4748. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4749. // zT = y * xT
  4750. {
  4751. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4752. ne11, ne01, ne10,
  4753. 1.0f, y, ne10,
  4754. x, ne10,
  4755. 0.0f, d, ne01);
  4756. }
  4757. }
  4758. }
  4759. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4760. return;
  4761. }
  4762. #endif
  4763. if (params->type == GGML_TASK_INIT) {
  4764. if (nb01 >= nb00) {
  4765. return;
  4766. }
  4767. // TODO: fix this memset (wsize is overestimated)
  4768. memset(params->wdata, 0, params->wsize);
  4769. return;
  4770. }
  4771. if (params->type == GGML_TASK_FINALIZE) {
  4772. if (nb01 >= nb00) {
  4773. return;
  4774. }
  4775. // TODO: fix this memset (wsize is overestimated)
  4776. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4777. float * const wdata = params->wdata;
  4778. // cols per thread
  4779. const int dc = (ne + nth - 1)/nth;
  4780. // col range for this thread
  4781. const int ic0 = dc*ith;
  4782. const int ic1 = MIN(ic0 + dc, ne);
  4783. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4784. for (int k = 1; k < nth; k++) {
  4785. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4786. }
  4787. return;
  4788. }
  4789. if (nb01 >= nb00) {
  4790. // TODO: do not support transposed src1
  4791. assert(nb10 == sizeof(float));
  4792. // parallelize by src0 rows using ggml_vec_dot_f32
  4793. // total rows in src0
  4794. const int nr = ne01*ne02*ne03;
  4795. // rows per thread
  4796. const int dr = (nr + nth - 1)/nth;
  4797. // row range for this thread
  4798. const int ir0 = dr*ith;
  4799. const int ir1 = MIN(ir0 + dr, nr);
  4800. for (int ir = ir0; ir < ir1; ++ir) {
  4801. // src0 indices
  4802. const int i03 = ir/(ne02*ne01);
  4803. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4804. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4805. for (int ic = 0; ic < ne11; ++ic) {
  4806. // src1 indices
  4807. const int i13 = i03;
  4808. const int i12 = i02;
  4809. const int i11 = ic;
  4810. // dst indices
  4811. const int i0 = i01;
  4812. const int i1 = i11;
  4813. const int i2 = i02;
  4814. const int i3 = i03;
  4815. ggml_vec_dot_f32(ne00,
  4816. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4817. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4818. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4819. }
  4820. }
  4821. } else {
  4822. // parallelize by src1 columns using ggml_vec_mad_f32
  4823. // each thread has its own work data
  4824. // during FINALIZE we accumulate all work data into dst
  4825. // total columns in src1
  4826. const int nc = ne10;
  4827. // columns per thread
  4828. const int dc = (nc + nth - 1)/nth;
  4829. // column range for this thread
  4830. const int ic0 = dc*ith;
  4831. const int ic1 = MIN(ic0 + dc, nc);
  4832. // work data for thread
  4833. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4834. float * const wdata = params->wdata;
  4835. for (int i13 = 0; i13 < ne13; ++i13) {
  4836. for (int i12 = 0; i12 < ne12; ++i12) {
  4837. for (int i11 = 0; i11 < ne11; ++i11) {
  4838. for (int ic = ic0; ic < ic1; ++ic) {
  4839. // src1 indices
  4840. const int i10 = ic;
  4841. // src0 indices
  4842. const int i03 = i13;
  4843. const int i02 = i12;
  4844. const int i00 = ic;
  4845. // dst indices
  4846. const int i1 = i11;
  4847. const int i2 = i12;
  4848. const int i3 = i13;
  4849. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4850. ggml_vec_mad_f32(ne01,
  4851. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4852. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4853. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4854. }
  4855. }
  4856. }
  4857. }
  4858. }
  4859. //int64_t t1 = ggml_perf_time_us();
  4860. //static int64_t acc = 0;
  4861. //acc += t1 - t0;
  4862. //if (t1 - t0 > 10) {
  4863. // printf("\n");
  4864. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4865. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4866. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4867. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4868. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4869. //}
  4870. }
  4871. static void ggml_compute_forward_mul_mat_f16_f32(
  4872. const struct ggml_compute_params * params,
  4873. const struct ggml_tensor * src0,
  4874. const struct ggml_tensor * src1,
  4875. struct ggml_tensor * dst) {
  4876. int64_t t0 = ggml_perf_time_us();
  4877. UNUSED(t0);
  4878. const int ne00 = src0->ne[0];
  4879. const int ne01 = src0->ne[1];
  4880. const int ne02 = src0->ne[2];
  4881. const int ne03 = src0->ne[3];
  4882. const int ne10 = src1->ne[0];
  4883. const int ne11 = src1->ne[1];
  4884. const int ne12 = src1->ne[2];
  4885. const int ne13 = src1->ne[3];
  4886. const int ne0 = dst->ne[0];
  4887. const int ne1 = dst->ne[1];
  4888. const int ne2 = dst->ne[2];
  4889. const int ne3 = dst->ne[3];
  4890. const int ne = ne0*ne1*ne2*ne3;
  4891. const int nb00 = src0->nb[0];
  4892. const int nb01 = src0->nb[1];
  4893. const int nb02 = src0->nb[2];
  4894. const int nb03 = src0->nb[3];
  4895. const int nb10 = src1->nb[0];
  4896. const int nb11 = src1->nb[1];
  4897. const int nb12 = src1->nb[2];
  4898. const int nb13 = src1->nb[3];
  4899. const int nb0 = dst->nb[0];
  4900. const int nb1 = dst->nb[1];
  4901. const int nb2 = dst->nb[2];
  4902. const int nb3 = dst->nb[3];
  4903. const int ith = params->ith;
  4904. const int nth = params->nth;
  4905. GGML_ASSERT(ne02 == ne12);
  4906. GGML_ASSERT(ne03 == ne13);
  4907. GGML_ASSERT(ne2 == ne12);
  4908. GGML_ASSERT(ne3 == ne13);
  4909. // TODO: we don't support permuted src0
  4910. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4911. // dst cannot be transposed or permuted
  4912. GGML_ASSERT(nb0 == sizeof(float));
  4913. GGML_ASSERT(nb0 <= nb1);
  4914. GGML_ASSERT(nb1 <= nb2);
  4915. GGML_ASSERT(nb2 <= nb3);
  4916. GGML_ASSERT(ne0 == ne01);
  4917. GGML_ASSERT(ne1 == ne11);
  4918. GGML_ASSERT(ne2 == ne02);
  4919. GGML_ASSERT(ne3 == ne03);
  4920. // nb01 >= nb00 - src0 is not transposed
  4921. // compute by src0 rows
  4922. //
  4923. // nb00 < nb01 - src0 is transposed
  4924. // compute by src0 columns
  4925. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4926. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4927. GGML_ASSERT(nb10 == sizeof(float));
  4928. if (params->ith != 0) {
  4929. return;
  4930. }
  4931. if (params->type == GGML_TASK_INIT) {
  4932. return;
  4933. }
  4934. if (params->type == GGML_TASK_FINALIZE) {
  4935. return;
  4936. }
  4937. float * const wdata = params->wdata;
  4938. for (int i03 = 0; i03 < ne03; i03++) {
  4939. for (int i02 = 0; i02 < ne02; i02++) {
  4940. {
  4941. int id = 0;
  4942. for (int i01 = 0; i01 < ne01; ++i01) {
  4943. for (int i00 = 0; i00 < ne00; ++i00) {
  4944. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4945. }
  4946. }
  4947. }
  4948. const float * x = wdata;
  4949. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4950. // float * z = wdata + ne00*ne01;
  4951. // z = x * yT
  4952. //{
  4953. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4954. // ne01, ne11, ne00,
  4955. // 1.0f, x, ne00,
  4956. // y, ne00,
  4957. // 0.0f, z, ne11);
  4958. //}
  4959. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4960. // transpose z
  4961. //for (int j = 0; j < ne11; ++j) {
  4962. // for (int i = 0; i < ne01; ++i) {
  4963. // d[j*ne01 + i] = z[i*ne11 + j];
  4964. // }
  4965. //}
  4966. {
  4967. #if 1
  4968. // zT = y * xT
  4969. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4970. ne11, ne01, ne10,
  4971. 1.0f, y, ne00,
  4972. x, ne00,
  4973. 0.0f, d, ne01);
  4974. #else
  4975. // zT = (xT * y)T
  4976. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  4977. ne01, ne11, ne10,
  4978. 1.0f, x, ne00,
  4979. y, ne00,
  4980. 0.0f, d, ne01);
  4981. #endif
  4982. }
  4983. }
  4984. }
  4985. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4986. return;
  4987. }
  4988. #endif
  4989. if (params->type == GGML_TASK_INIT) {
  4990. if (nb01 >= nb00) {
  4991. ggml_fp16_t * const wdata = params->wdata;
  4992. int id = 0;
  4993. for (int i13 = 0; i13 < ne13; ++i13) {
  4994. for (int i12 = 0; i12 < ne12; ++i12) {
  4995. for (int i11 = 0; i11 < ne11; ++i11) {
  4996. for (int i10 = 0; i10 < ne10; ++i10) {
  4997. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4998. }
  4999. }
  5000. }
  5001. }
  5002. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5003. return;
  5004. }
  5005. // TODO: fix this memset (wsize is overestimated)
  5006. memset(params->wdata, 0, params->wsize);
  5007. return;
  5008. }
  5009. if (params->type == GGML_TASK_FINALIZE) {
  5010. if (nb01 >= nb00) {
  5011. return;
  5012. }
  5013. // TODO: fix this memset (wsize is overestimated)
  5014. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  5015. ggml_fp16_t * const wdata = params->wdata;
  5016. // cols per thread
  5017. const int dc = (ne + nth - 1)/nth;
  5018. // col range for this thread
  5019. const int ic0 = dc*ith;
  5020. const int ic1 = MIN(ic0 + dc, ne);
  5021. for (int i = ic0; i < ic1; ++i) {
  5022. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  5023. }
  5024. for (int k = 1; k < nth; k++) {
  5025. for (int i = ic0; i < ic1; ++i) {
  5026. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  5027. }
  5028. }
  5029. return;
  5030. }
  5031. if (nb01 >= nb00) {
  5032. // fp16 -> half the size, so divide by 2
  5033. // TODO: do not support transposed src1
  5034. assert(nb10/2 == sizeof(ggml_fp16_t));
  5035. // parallelize by src0 rows using ggml_vec_dot_f16
  5036. // total rows in src0
  5037. const int nr = ne01*ne02*ne03;
  5038. // rows per thread
  5039. const int dr = (nr + nth - 1)/nth;
  5040. // row range for this thread
  5041. const int ir0 = dr*ith;
  5042. const int ir1 = MIN(ir0 + dr, nr);
  5043. ggml_fp16_t * wdata = params->wdata;
  5044. for (int ir = ir0; ir < ir1; ++ir) {
  5045. // src0 indices
  5046. const int i03 = ir/(ne02*ne01);
  5047. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5048. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5049. const int i13 = i03;
  5050. const int i12 = i02;
  5051. const int i0 = i01;
  5052. const int i2 = i02;
  5053. const int i3 = i03;
  5054. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5055. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5056. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5057. assert(ne00 % 32 == 0);
  5058. for (int ic = 0; ic < ne11; ++ic) {
  5059. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5060. }
  5061. }
  5062. } else {
  5063. // parallelize by src1 columns using ggml_vec_mad_f16
  5064. // each thread has its own work data
  5065. // during FINALIZE we accumulate all work data into dst
  5066. // total columns in src1
  5067. const int nc = ne10;
  5068. // columns per thread
  5069. const int dc = (nc + nth - 1)/nth;
  5070. // column range for this thread
  5071. const int ic0 = dc*ith;
  5072. const int ic1 = MIN(ic0 + dc, nc);
  5073. // work data for thread
  5074. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5075. ggml_fp16_t * const wdata = params->wdata;
  5076. for (int i13 = 0; i13 < ne13; ++i13) {
  5077. for (int i12 = 0; i12 < ne12; ++i12) {
  5078. for (int i11 = 0; i11 < ne11; ++i11) {
  5079. // dst indices
  5080. const int i1 = i11;
  5081. const int i2 = i12;
  5082. const int i3 = i13;
  5083. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5084. for (int ic = ic0; ic < ic1; ++ic) {
  5085. // src1 indices
  5086. const int i10 = ic;
  5087. // src0 indices
  5088. const int i03 = i13;
  5089. const int i02 = i12;
  5090. const int i00 = ic;
  5091. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5092. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5093. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5094. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5095. }
  5096. }
  5097. }
  5098. }
  5099. }
  5100. //int64_t t1 = ggml_time_us();
  5101. //static int64_t acc = 0;
  5102. //acc += t1 - t0;
  5103. //if (t1 - t0 > 10) {
  5104. // printf("\n");
  5105. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5106. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5107. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5108. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5109. //}
  5110. }
  5111. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5112. const struct ggml_compute_params * params,
  5113. const struct ggml_tensor * src0,
  5114. const struct ggml_tensor * src1,
  5115. struct ggml_tensor * dst) {
  5116. int64_t t0 = ggml_perf_time_us();
  5117. UNUSED(t0);
  5118. const int ne00 = src0->ne[0];
  5119. const int ne01 = src0->ne[1];
  5120. const int ne02 = src0->ne[2];
  5121. const int ne03 = src0->ne[3];
  5122. const int ne10 = src1->ne[0];
  5123. const int ne11 = src1->ne[1];
  5124. const int ne12 = src1->ne[2];
  5125. const int ne13 = src1->ne[3];
  5126. const int ne0 = dst->ne[0];
  5127. const int ne1 = dst->ne[1];
  5128. const int ne2 = dst->ne[2];
  5129. const int ne3 = dst->ne[3];
  5130. const int ne = ne0*ne1*ne2*ne3;
  5131. const int nb00 = src0->nb[0];
  5132. const int nb01 = src0->nb[1];
  5133. const int nb02 = src0->nb[2];
  5134. const int nb03 = src0->nb[3];
  5135. const int nb10 = src1->nb[0];
  5136. const int nb11 = src1->nb[1];
  5137. const int nb12 = src1->nb[2];
  5138. const int nb13 = src1->nb[3];
  5139. const int nb0 = dst->nb[0];
  5140. const int nb1 = dst->nb[1];
  5141. const int nb2 = dst->nb[2];
  5142. const int nb3 = dst->nb[3];
  5143. const int ith = params->ith;
  5144. const int nth = params->nth;
  5145. GGML_ASSERT(ne02 == ne12);
  5146. GGML_ASSERT(ne03 == ne13);
  5147. GGML_ASSERT(ne2 == ne12);
  5148. GGML_ASSERT(ne3 == ne13);
  5149. // TODO: we don't support permuted src0
  5150. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5151. // dst cannot be transposed or permuted
  5152. GGML_ASSERT(nb0 == sizeof(float));
  5153. GGML_ASSERT(nb0 <= nb1);
  5154. GGML_ASSERT(nb1 <= nb2);
  5155. GGML_ASSERT(nb2 <= nb3);
  5156. GGML_ASSERT(ne0 == ne01);
  5157. GGML_ASSERT(ne1 == ne11);
  5158. GGML_ASSERT(ne2 == ne02);
  5159. GGML_ASSERT(ne3 == ne03);
  5160. // nb01 >= nb00 - src0 is not transposed
  5161. // compute by src0 rows
  5162. //
  5163. // nb00 < nb01 - src0 is transposed
  5164. // compute by src0 columns
  5165. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5166. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5167. GGML_ASSERT(nb10 == sizeof(float));
  5168. if (params->ith != 0) {
  5169. return;
  5170. }
  5171. if (params->type == GGML_TASK_INIT) {
  5172. return;
  5173. }
  5174. if (params->type == GGML_TASK_FINALIZE) {
  5175. return;
  5176. }
  5177. float * const wdata = params->wdata;
  5178. for (int i03 = 0; i03 < ne03; i03++) {
  5179. for (int i02 = 0; i02 < ne02; i02++) {
  5180. {
  5181. int id = 0;
  5182. for (int i01 = 0; i01 < ne01; ++i01) {
  5183. //for (int i00 = 0; i00 < ne00; ++i00) {
  5184. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5185. //}
  5186. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5187. id += ne00;
  5188. }
  5189. }
  5190. const float * x = wdata;
  5191. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5192. // float * z = wdata + ne00*ne01;
  5193. // z = x * yT
  5194. //{
  5195. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5196. // ne01, ne11, ne00,
  5197. // 1.0f, x, ne00,
  5198. // y, ne00,
  5199. // 0.0f, z, ne11);
  5200. //}
  5201. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5202. // transpose z
  5203. //for (int j = 0; j < ne11; ++j) {
  5204. // for (int i = 0; i < ne01; ++i) {
  5205. // d[j*ne01 + i] = z[i*ne11 + j];
  5206. // }
  5207. //}
  5208. {
  5209. #if 1
  5210. // zT = y * xT
  5211. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5212. ne11, ne01, ne10,
  5213. 1.0f, y, ne00,
  5214. x, ne00,
  5215. 0.0f, d, ne01);
  5216. #else
  5217. // zT = (xT * y)T
  5218. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5219. ne01, ne11, ne10,
  5220. 1.0f, x, ne00,
  5221. y, ne00,
  5222. 0.0f, d, ne01);
  5223. #endif
  5224. }
  5225. }
  5226. }
  5227. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5228. return;
  5229. }
  5230. #endif
  5231. if (params->type == GGML_TASK_INIT) {
  5232. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5233. if (nb01 >= nb00) {
  5234. char * wdata = params->wdata;
  5235. for (int i13 = 0; i13 < ne13; ++i13) {
  5236. for (int i12 = 0; i12 < ne12; ++i12) {
  5237. for (int i11 = 0; i11 < ne11; ++i11) {
  5238. //for (int i10 = 0; i10 < ne10; ++i10) {
  5239. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5240. //}
  5241. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5242. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5243. }
  5244. }
  5245. }
  5246. return;
  5247. }
  5248. // TODO: fix this memset (wsize is overestimated)
  5249. memset(params->wdata, 0, params->wsize);
  5250. return;
  5251. }
  5252. if (params->type == GGML_TASK_FINALIZE) {
  5253. if (nb01 >= nb00) {
  5254. return;
  5255. }
  5256. float * const wdata = params->wdata;
  5257. // cols per thread
  5258. const int dc = (ne + nth - 1)/nth;
  5259. // col range for this thread
  5260. const int ic0 = dc*ith;
  5261. const int ic1 = MIN(ic0 + dc, ne);
  5262. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5263. for (int k = 1; k < nth; k++) {
  5264. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5265. }
  5266. return;
  5267. }
  5268. if (nb01 >= nb00) {
  5269. // TODO: do not support transposed src1
  5270. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5271. // total rows in src0
  5272. const int nr = ne01*ne02*ne03;
  5273. // rows per thread
  5274. const int dr = (nr + nth - 1)/nth;
  5275. // row range for this thread
  5276. const int ir0 = dr*ith;
  5277. const int ir1 = MIN(ir0 + dr, nr);
  5278. void * wdata = params->wdata;
  5279. for (int ir = ir0; ir < ir1; ++ir) {
  5280. // src0 indices
  5281. const int i03 = ir/(ne02*ne01);
  5282. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5283. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5284. const int i13 = i03;
  5285. const int i12 = i02;
  5286. const int i0 = i01;
  5287. const int i2 = i02;
  5288. const int i3 = i03;
  5289. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5290. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5291. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5292. assert(ne00 % 32 == 0);
  5293. for (int ic = 0; ic < ne11; ++ic) {
  5294. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5295. }
  5296. }
  5297. } else {
  5298. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5299. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5300. // each thread has its own work data
  5301. // during FINALIZE we accumulate all work data into dst
  5302. // total columns in src1
  5303. const int nc = ne10;
  5304. // columns per thread
  5305. const int dc = (nc + nth - 1)/nth;
  5306. // column range for this thread
  5307. const int ic0 = dc*ith;
  5308. const int ic1 = MIN(ic0 + dc, nc);
  5309. // work data for thread
  5310. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5311. float * const wdata = params->wdata;
  5312. for (int i13 = 0; i13 < ne13; ++i13) {
  5313. for (int i12 = 0; i12 < ne12; ++i12) {
  5314. for (int i11 = 0; i11 < ne11; ++i11) {
  5315. // dst indices
  5316. const int i1 = i11;
  5317. const int i2 = i12;
  5318. const int i3 = i13;
  5319. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5320. for (int ic = ic0; ic < ic1; ++ic) {
  5321. // src1 indices
  5322. const int i10 = ic;
  5323. // src0 indices
  5324. const int i03 = i13;
  5325. const int i02 = i12;
  5326. const int i00 = ic;
  5327. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5328. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5329. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5330. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. //int64_t t1 = ggml_time_us();
  5337. //static int64_t acc = 0;
  5338. //acc += t1 - t0;
  5339. //if (t1 - t0 > 10) {
  5340. // printf("\n");
  5341. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5342. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5343. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5344. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5345. //}
  5346. }
  5347. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5348. const struct ggml_compute_params * params,
  5349. const struct ggml_tensor * src0,
  5350. const struct ggml_tensor * src1,
  5351. struct ggml_tensor * dst) {
  5352. int64_t t0 = ggml_perf_time_us();
  5353. UNUSED(t0);
  5354. const int ne00 = src0->ne[0];
  5355. const int ne01 = src0->ne[1];
  5356. const int ne02 = src0->ne[2];
  5357. const int ne03 = src0->ne[3];
  5358. const int ne10 = src1->ne[0];
  5359. const int ne11 = src1->ne[1];
  5360. const int ne12 = src1->ne[2];
  5361. const int ne13 = src1->ne[3];
  5362. const int ne0 = dst->ne[0];
  5363. const int ne1 = dst->ne[1];
  5364. const int ne2 = dst->ne[2];
  5365. const int ne3 = dst->ne[3];
  5366. const int ne = ne0*ne1*ne2*ne3;
  5367. const int nb00 = src0->nb[0];
  5368. const int nb01 = src0->nb[1];
  5369. const int nb02 = src0->nb[2];
  5370. const int nb03 = src0->nb[3];
  5371. const int nb10 = src1->nb[0];
  5372. const int nb11 = src1->nb[1];
  5373. const int nb12 = src1->nb[2];
  5374. const int nb13 = src1->nb[3];
  5375. const int nb0 = dst->nb[0];
  5376. const int nb1 = dst->nb[1];
  5377. const int nb2 = dst->nb[2];
  5378. const int nb3 = dst->nb[3];
  5379. const int ith = params->ith;
  5380. const int nth = params->nth;
  5381. GGML_ASSERT(ne02 == ne12);
  5382. GGML_ASSERT(ne03 == ne13);
  5383. GGML_ASSERT(ne2 == ne12);
  5384. GGML_ASSERT(ne3 == ne13);
  5385. // TODO: we don't support permuted src0
  5386. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5387. // dst cannot be transposed or permuted
  5388. GGML_ASSERT(nb0 == sizeof(float));
  5389. GGML_ASSERT(nb0 <= nb1);
  5390. GGML_ASSERT(nb1 <= nb2);
  5391. GGML_ASSERT(nb2 <= nb3);
  5392. GGML_ASSERT(ne0 == ne01);
  5393. GGML_ASSERT(ne1 == ne11);
  5394. GGML_ASSERT(ne2 == ne02);
  5395. GGML_ASSERT(ne3 == ne03);
  5396. // nb01 >= nb00 - src0 is not transposed
  5397. // compute by src0 rows
  5398. //
  5399. // nb00 < nb01 - src0 is transposed
  5400. // compute by src0 columns
  5401. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5402. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5403. GGML_ASSERT(nb10 == sizeof(float));
  5404. if (params->ith != 0) {
  5405. return;
  5406. }
  5407. if (params->type == GGML_TASK_INIT) {
  5408. return;
  5409. }
  5410. if (params->type == GGML_TASK_FINALIZE) {
  5411. return;
  5412. }
  5413. float * const wdata = params->wdata;
  5414. for (int i03 = 0; i03 < ne03; i03++) {
  5415. for (int i02 = 0; i02 < ne02; i02++) {
  5416. {
  5417. int id = 0;
  5418. for (int i01 = 0; i01 < ne01; ++i01) {
  5419. //for (int i00 = 0; i00 < ne00; ++i00) {
  5420. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5421. //}
  5422. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5423. id += ne00;
  5424. }
  5425. }
  5426. const float * x = wdata;
  5427. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5428. // float * z = wdata + ne00*ne01;
  5429. // z = x * yT
  5430. //{
  5431. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5432. // ne01, ne11, ne00,
  5433. // 1.0f, x, ne00,
  5434. // y, ne00,
  5435. // 0.0f, z, ne11);
  5436. //}
  5437. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5438. // transpose z
  5439. //for (int j = 0; j < ne11; ++j) {
  5440. // for (int i = 0; i < ne01; ++i) {
  5441. // d[j*ne01 + i] = z[i*ne11 + j];
  5442. // }
  5443. //}
  5444. {
  5445. #if 1
  5446. // zT = y * xT
  5447. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5448. ne11, ne01, ne10,
  5449. 1.0f, y, ne00,
  5450. x, ne00,
  5451. 0.0f, d, ne01);
  5452. #else
  5453. // zT = (xT * y)T
  5454. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5455. ne01, ne11, ne10,
  5456. 1.0f, x, ne00,
  5457. y, ne00,
  5458. 0.0f, d, ne01);
  5459. #endif
  5460. }
  5461. }
  5462. }
  5463. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5464. return;
  5465. }
  5466. #endif
  5467. if (params->type == GGML_TASK_INIT) {
  5468. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5469. if (nb01 >= nb00) {
  5470. char * wdata = params->wdata;
  5471. for (int i13 = 0; i13 < ne13; ++i13) {
  5472. for (int i12 = 0; i12 < ne12; ++i12) {
  5473. for (int i11 = 0; i11 < ne11; ++i11) {
  5474. //for (int i10 = 0; i10 < ne10; ++i10) {
  5475. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5476. //}
  5477. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5478. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5479. }
  5480. }
  5481. }
  5482. return;
  5483. }
  5484. // TODO: fix this memset (wsize is overestimated)
  5485. memset(params->wdata, 0, params->wsize);
  5486. return;
  5487. }
  5488. if (params->type == GGML_TASK_FINALIZE) {
  5489. if (nb01 >= nb00) {
  5490. return;
  5491. }
  5492. float * const wdata = params->wdata;
  5493. // cols per thread
  5494. const int dc = (ne + nth - 1)/nth;
  5495. // col range for this thread
  5496. const int ic0 = dc*ith;
  5497. const int ic1 = MIN(ic0 + dc, ne);
  5498. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5499. for (int k = 1; k < nth; k++) {
  5500. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5501. }
  5502. return;
  5503. }
  5504. if (nb01 >= nb00) {
  5505. // TODO: do not support transposed src1
  5506. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5507. // total rows in src0
  5508. const int nr = ne01*ne02*ne03;
  5509. // rows per thread
  5510. const int dr = (nr + nth - 1)/nth;
  5511. // row range for this thread
  5512. const int ir0 = dr*ith;
  5513. const int ir1 = MIN(ir0 + dr, nr);
  5514. void * wdata = params->wdata;
  5515. for (int ir = ir0; ir < ir1; ++ir) {
  5516. // src0 indices
  5517. const int i03 = ir/(ne02*ne01);
  5518. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5519. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5520. const int i13 = i03;
  5521. const int i12 = i02;
  5522. const int i0 = i01;
  5523. const int i2 = i02;
  5524. const int i3 = i03;
  5525. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5526. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5527. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5528. assert(ne00 % 32 == 0);
  5529. for (int ic = 0; ic < ne11; ++ic) {
  5530. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5531. }
  5532. }
  5533. } else {
  5534. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5535. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5536. // each thread has its own work data
  5537. // during FINALIZE we accumulate all work data into dst
  5538. // total columns in src1
  5539. const int nc = ne10;
  5540. // columns per thread
  5541. const int dc = (nc + nth - 1)/nth;
  5542. // column range for this thread
  5543. const int ic0 = dc*ith;
  5544. const int ic1 = MIN(ic0 + dc, nc);
  5545. // work data for thread
  5546. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5547. float * const wdata = params->wdata;
  5548. for (int i13 = 0; i13 < ne13; ++i13) {
  5549. for (int i12 = 0; i12 < ne12; ++i12) {
  5550. for (int i11 = 0; i11 < ne11; ++i11) {
  5551. // dst indices
  5552. const int i1 = i11;
  5553. const int i2 = i12;
  5554. const int i3 = i13;
  5555. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5556. for (int ic = ic0; ic < ic1; ++ic) {
  5557. // src1 indices
  5558. const int i10 = ic;
  5559. // src0 indices
  5560. const int i03 = i13;
  5561. const int i02 = i12;
  5562. const int i00 = ic;
  5563. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5564. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5565. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5566. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5567. }
  5568. }
  5569. }
  5570. }
  5571. }
  5572. //int64_t t1 = ggml_time_us();
  5573. //static int64_t acc = 0;
  5574. //acc += t1 - t0;
  5575. //if (t1 - t0 > 10) {
  5576. // printf("\n");
  5577. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5578. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5579. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5580. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5581. //}
  5582. }
  5583. static void ggml_compute_forward_mul_mat(
  5584. const struct ggml_compute_params * params,
  5585. const struct ggml_tensor * src0,
  5586. const struct ggml_tensor * src1,
  5587. struct ggml_tensor * dst) {
  5588. switch (src0->type) {
  5589. case GGML_TYPE_Q4_0:
  5590. {
  5591. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5592. } break;
  5593. case GGML_TYPE_Q4_1:
  5594. {
  5595. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5596. } break;
  5597. case GGML_TYPE_F16:
  5598. {
  5599. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5600. } break;
  5601. case GGML_TYPE_F32:
  5602. {
  5603. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5604. } break;
  5605. case GGML_TYPE_I8:
  5606. case GGML_TYPE_I16:
  5607. case GGML_TYPE_I32:
  5608. case GGML_TYPE_COUNT:
  5609. {
  5610. GGML_ASSERT(false);
  5611. } break;
  5612. }
  5613. #if 0
  5614. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5615. static int first = 8;
  5616. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5617. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5618. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5619. if (first) {
  5620. --first;
  5621. } else {
  5622. for (int k = 0; k < dst->ne[1]; ++k) {
  5623. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5624. for (int i = 0; i < 16; ++i) {
  5625. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5626. }
  5627. printf("\n");
  5628. }
  5629. printf("\n");
  5630. }
  5631. printf("\n");
  5632. exit(0);
  5633. }
  5634. } else {
  5635. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5636. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5637. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5638. }
  5639. #endif
  5640. }
  5641. // ggml_compute_forward_scale
  5642. static void ggml_compute_forward_scale_f32(
  5643. const struct ggml_compute_params * params,
  5644. const struct ggml_tensor * src0,
  5645. const struct ggml_tensor * src1,
  5646. struct ggml_tensor * dst) {
  5647. GGML_ASSERT(ggml_is_contiguous(src0));
  5648. GGML_ASSERT(ggml_is_contiguous(dst));
  5649. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5650. GGML_ASSERT(ggml_is_scalar(src1));
  5651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5652. return;
  5653. }
  5654. // scale factor
  5655. const float v = *(float *) src1->data;
  5656. const int ith = params->ith;
  5657. const int nth = params->nth;
  5658. const int nc = src0->ne[0];
  5659. const int nr = ggml_nrows(src0);
  5660. // rows per thread
  5661. const int dr = (nr + nth - 1)/nth;
  5662. // row range for this thread
  5663. const int ir0 = dr*ith;
  5664. const int ir1 = MIN(ir0 + dr, nr);
  5665. for (int i1 = ir0; i1 < ir1; i1++) {
  5666. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5667. }
  5668. }
  5669. static void ggml_compute_forward_scale(
  5670. const struct ggml_compute_params * params,
  5671. const struct ggml_tensor * src0,
  5672. const struct ggml_tensor * src1,
  5673. struct ggml_tensor * dst) {
  5674. switch (src0->type) {
  5675. case GGML_TYPE_F32:
  5676. {
  5677. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5678. } break;
  5679. case GGML_TYPE_Q4_0:
  5680. case GGML_TYPE_Q4_1:
  5681. case GGML_TYPE_I8:
  5682. case GGML_TYPE_I16:
  5683. case GGML_TYPE_I32:
  5684. case GGML_TYPE_F16:
  5685. case GGML_TYPE_COUNT:
  5686. {
  5687. GGML_ASSERT(false);
  5688. } break;
  5689. }
  5690. }
  5691. // ggml_compute_forward_cpy
  5692. static void ggml_compute_forward_cpy(
  5693. const struct ggml_compute_params * params,
  5694. const struct ggml_tensor * src0,
  5695. struct ggml_tensor * dst) {
  5696. ggml_compute_forward_dup(params, src0, dst);
  5697. }
  5698. // ggml_compute_forward_reshape
  5699. static void ggml_compute_forward_reshape(
  5700. const struct ggml_compute_params * params,
  5701. const struct ggml_tensor * src0,
  5702. struct ggml_tensor * dst) {
  5703. // NOP
  5704. UNUSED(params);
  5705. UNUSED(src0);
  5706. UNUSED(dst);
  5707. }
  5708. // ggml_compute_forward_view
  5709. static void ggml_compute_forward_view(
  5710. const struct ggml_compute_params * params,
  5711. const struct ggml_tensor * src0) {
  5712. // NOP
  5713. UNUSED(params);
  5714. UNUSED(src0);
  5715. }
  5716. // ggml_compute_forward_permute
  5717. static void ggml_compute_forward_permute(
  5718. const struct ggml_compute_params * params,
  5719. const struct ggml_tensor * src0) {
  5720. // NOP
  5721. UNUSED(params);
  5722. UNUSED(src0);
  5723. }
  5724. // ggml_compute_forward_transpose
  5725. static void ggml_compute_forward_transpose(
  5726. const struct ggml_compute_params * params,
  5727. const struct ggml_tensor * src0) {
  5728. // NOP
  5729. UNUSED(params);
  5730. UNUSED(src0);
  5731. }
  5732. // ggml_compute_forward_get_rows
  5733. static void ggml_compute_forward_get_rows_q4_0(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0,
  5736. const struct ggml_tensor * src1,
  5737. struct ggml_tensor * dst) {
  5738. assert(params->ith == 0);
  5739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5740. return;
  5741. }
  5742. const int nc = src0->ne[0];
  5743. const int nr = ggml_nelements(src1);
  5744. assert( dst->ne[0] == nc);
  5745. assert( dst->ne[1] == nr);
  5746. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5747. for (int i = 0; i < nr; ++i) {
  5748. const int r = ((int32_t *) src1->data)[i];
  5749. dequantize_row_q4_0(
  5750. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5751. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5752. }
  5753. }
  5754. static void ggml_compute_forward_get_rows_q4_1(
  5755. const struct ggml_compute_params * params,
  5756. const struct ggml_tensor * src0,
  5757. const struct ggml_tensor * src1,
  5758. struct ggml_tensor * dst) {
  5759. assert(params->ith == 0);
  5760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5761. return;
  5762. }
  5763. const int nc = src0->ne[0];
  5764. const int nr = ggml_nelements(src1);
  5765. assert( dst->ne[0] == nc);
  5766. assert( dst->ne[1] == nr);
  5767. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5768. for (int i = 0; i < nr; ++i) {
  5769. const int r = ((int32_t *) src1->data)[i];
  5770. dequantize_row_q4_1(
  5771. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5772. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5773. }
  5774. }
  5775. static void ggml_compute_forward_get_rows_f16(
  5776. const struct ggml_compute_params * params,
  5777. const struct ggml_tensor * src0,
  5778. const struct ggml_tensor * src1,
  5779. struct ggml_tensor * dst) {
  5780. assert(params->ith == 0);
  5781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5782. return;
  5783. }
  5784. const int nc = src0->ne[0];
  5785. const int nr = ggml_nelements(src1);
  5786. assert( dst->ne[0] == nc);
  5787. assert( dst->ne[1] == nr);
  5788. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5789. for (int i = 0; i < nr; ++i) {
  5790. const int r = ((int32_t *) src1->data)[i];
  5791. for (int j = 0; j < nc; ++j) {
  5792. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5793. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5794. }
  5795. }
  5796. }
  5797. static void ggml_compute_forward_get_rows_f32(
  5798. const struct ggml_compute_params * params,
  5799. const struct ggml_tensor * src0,
  5800. const struct ggml_tensor * src1,
  5801. struct ggml_tensor * dst) {
  5802. assert(params->ith == 0);
  5803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5804. return;
  5805. }
  5806. const int nc = src0->ne[0];
  5807. const int nr = ggml_nelements(src1);
  5808. assert( dst->ne[0] == nc);
  5809. assert( dst->ne[1] == nr);
  5810. assert(src0->nb[0] == sizeof(float));
  5811. for (int i = 0; i < nr; ++i) {
  5812. const int r = ((int32_t *) src1->data)[i];
  5813. ggml_vec_cpy_f32(nc,
  5814. (float *) ((char *) dst->data + i*dst->nb[1]),
  5815. (float *) ((char *) src0->data + r*src0->nb[1]));
  5816. }
  5817. }
  5818. static void ggml_compute_forward_get_rows(
  5819. const struct ggml_compute_params * params,
  5820. const struct ggml_tensor * src0,
  5821. const struct ggml_tensor * src1,
  5822. struct ggml_tensor * dst) {
  5823. switch (src0->type) {
  5824. case GGML_TYPE_Q4_0:
  5825. {
  5826. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5827. } break;
  5828. case GGML_TYPE_Q4_1:
  5829. {
  5830. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5831. } break;
  5832. case GGML_TYPE_F16:
  5833. {
  5834. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5835. } break;
  5836. case GGML_TYPE_F32:
  5837. {
  5838. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5839. } break;
  5840. case GGML_TYPE_I8:
  5841. case GGML_TYPE_I16:
  5842. case GGML_TYPE_I32:
  5843. case GGML_TYPE_COUNT:
  5844. {
  5845. GGML_ASSERT(false);
  5846. } break;
  5847. }
  5848. //static bool first = true;
  5849. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5850. //if (first) {
  5851. // first = false;
  5852. //} else {
  5853. // for (int k = 0; k < dst->ne[1]; ++k) {
  5854. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5855. // for (int i = 0; i < 16; ++i) {
  5856. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5857. // }
  5858. // printf("\n");
  5859. // }
  5860. // printf("\n");
  5861. // }
  5862. // printf("\n");
  5863. // exit(0);
  5864. //}
  5865. }
  5866. // ggml_compute_forward_diag_mask_inf
  5867. static void ggml_compute_forward_diag_mask_inf_f32(
  5868. const struct ggml_compute_params * params,
  5869. const struct ggml_tensor * src0,
  5870. const struct ggml_tensor * src1,
  5871. struct ggml_tensor * dst) {
  5872. assert(params->ith == 0);
  5873. assert(src1->type == GGML_TYPE_I32);
  5874. assert(ggml_nelements(src1) == 1);
  5875. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5876. return;
  5877. }
  5878. const int n_past = ((int32_t *) src1->data)[0];
  5879. // TODO: handle transposed/permuted matrices
  5880. const int n = ggml_nrows(src0);
  5881. const int nc = src0->ne[0];
  5882. const int nr = src0->ne[1];
  5883. const int nz = n/nr;
  5884. assert( dst->nb[0] == sizeof(float));
  5885. assert(src0->nb[0] == sizeof(float));
  5886. for (int k = 0; k < nz; k++) {
  5887. for (int j = 0; j < nr; j++) {
  5888. for (int i = n_past; i < nc; i++) {
  5889. if (i > n_past + j) {
  5890. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5891. }
  5892. }
  5893. }
  5894. }
  5895. }
  5896. static void ggml_compute_forward_diag_mask_inf(
  5897. const struct ggml_compute_params * params,
  5898. const struct ggml_tensor * src0,
  5899. const struct ggml_tensor * src1,
  5900. struct ggml_tensor * dst) {
  5901. switch (src0->type) {
  5902. case GGML_TYPE_F32:
  5903. {
  5904. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5905. } break;
  5906. case GGML_TYPE_Q4_0:
  5907. case GGML_TYPE_Q4_1:
  5908. case GGML_TYPE_I8:
  5909. case GGML_TYPE_I16:
  5910. case GGML_TYPE_I32:
  5911. case GGML_TYPE_F16:
  5912. case GGML_TYPE_COUNT:
  5913. {
  5914. GGML_ASSERT(false);
  5915. } break;
  5916. }
  5917. }
  5918. // ggml_compute_forward_soft_max
  5919. static void ggml_compute_forward_soft_max_f32(
  5920. const struct ggml_compute_params * params,
  5921. const struct ggml_tensor * src0,
  5922. struct ggml_tensor * dst) {
  5923. GGML_ASSERT(ggml_is_contiguous(src0));
  5924. GGML_ASSERT(ggml_is_contiguous(dst));
  5925. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5927. return;
  5928. }
  5929. // TODO: handle transposed/permuted matrices
  5930. const int ith = params->ith;
  5931. const int nth = params->nth;
  5932. const int nc = src0->ne[0];
  5933. const int nr = ggml_nrows(src0);
  5934. // rows per thread
  5935. const int dr = (nr + nth - 1)/nth;
  5936. // row range for this thread
  5937. const int ir0 = dr*ith;
  5938. const int ir1 = MIN(ir0 + dr, nr);
  5939. for (int i1 = ir0; i1 < ir1; i1++) {
  5940. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5941. #ifndef NDEBUG
  5942. for (int i = 0; i < nc; ++i) {
  5943. //printf("p[%d] = %f\n", i, p[i]);
  5944. assert(!isnan(p[i]));
  5945. }
  5946. #endif
  5947. float max = -INFINITY;
  5948. ggml_vec_max_f32(nc, &max, p);
  5949. ggml_float sum = 0.0;
  5950. uint16_t scvt;
  5951. for (int i = 0; i < nc; i++) {
  5952. if (p[i] == -INFINITY) {
  5953. p[i] = 0.0f;
  5954. } else {
  5955. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5956. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5957. memcpy(&scvt, &s, sizeof(scvt));
  5958. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5959. sum += val;
  5960. p[i] = val;
  5961. }
  5962. }
  5963. assert(sum > 0.0f);
  5964. sum = 1.0/sum;
  5965. ggml_vec_scale_f32(nc, p, sum);
  5966. #ifndef NDEBUG
  5967. for (int i = 0; i < nc; ++i) {
  5968. assert(!isnan(p[i]));
  5969. assert(!isinf(p[i]));
  5970. }
  5971. #endif
  5972. }
  5973. }
  5974. static void ggml_compute_forward_soft_max(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. struct ggml_tensor * dst) {
  5978. switch (src0->type) {
  5979. case GGML_TYPE_F32:
  5980. {
  5981. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5982. } break;
  5983. case GGML_TYPE_Q4_0:
  5984. case GGML_TYPE_Q4_1:
  5985. case GGML_TYPE_I8:
  5986. case GGML_TYPE_I16:
  5987. case GGML_TYPE_I32:
  5988. case GGML_TYPE_F16:
  5989. case GGML_TYPE_COUNT:
  5990. {
  5991. GGML_ASSERT(false);
  5992. } break;
  5993. }
  5994. }
  5995. // ggml_compute_forward_rope
  5996. static void ggml_compute_forward_rope_f32(
  5997. const struct ggml_compute_params * params,
  5998. const struct ggml_tensor * src0,
  5999. const struct ggml_tensor * src1,
  6000. struct ggml_tensor * dst) {
  6001. assert(params->ith == 0);
  6002. assert(src1->type == GGML_TYPE_I32);
  6003. assert(ggml_nelements(src1) == 3);
  6004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6005. return;
  6006. }
  6007. const int n_past = ((int32_t *) src1->data)[0];
  6008. const int n_dims = ((int32_t *) src1->data)[1];
  6009. const int mode = ((int32_t *) src1->data)[2];
  6010. //const int ne0 = src0->ne[0];
  6011. const int ne1 = src0->ne[1];
  6012. const int ne2 = src0->ne[2];
  6013. const int ne3 = src0->ne[3];
  6014. const int nb0 = src0->nb[0];
  6015. const int nb1 = src0->nb[1];
  6016. const int nb2 = src0->nb[2];
  6017. const int nb3 = src0->nb[3];
  6018. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6019. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6020. assert(nb0 == sizeof(float));
  6021. // TODO: optimize
  6022. for (int i3 = 0; i3 < ne3; i3++) {
  6023. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6024. const int p = (mode == 0 ? n_past + i2 : i2);
  6025. for (int i1 = 0; i1 < ne1; i1++) {
  6026. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6027. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6028. const double cos_theta = cos(p*theta);
  6029. const double sin_theta = sin(p*theta);
  6030. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6031. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6032. double x0 = src[0];
  6033. double x1 = src[1];
  6034. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6035. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6036. }
  6037. }
  6038. }
  6039. }
  6040. }
  6041. static void ggml_compute_forward_rope_f16(
  6042. const struct ggml_compute_params * params,
  6043. const struct ggml_tensor * src0,
  6044. const struct ggml_tensor * src1,
  6045. struct ggml_tensor * dst) {
  6046. assert(params->ith == 0);
  6047. assert(src1->type == GGML_TYPE_I32);
  6048. assert(ggml_nelements(src1) == 3);
  6049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6050. return;
  6051. }
  6052. const int n_past = ((int32_t *) src1->data)[0];
  6053. const int n_dims = ((int32_t *) src1->data)[1];
  6054. const int mode = ((int32_t *) src1->data)[2];
  6055. //const int ne0 = src0->ne[0];
  6056. const int ne1 = src0->ne[1];
  6057. const int ne2 = src0->ne[2];
  6058. const int ne3 = src0->ne[3];
  6059. const int nb0 = src0->nb[0];
  6060. const int nb1 = src0->nb[1];
  6061. const int nb2 = src0->nb[2];
  6062. const int nb3 = src0->nb[3];
  6063. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6064. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6065. assert(nb0 == sizeof(ggml_fp16_t));
  6066. for (int i3 = 0; i3 < ne3; i3++) {
  6067. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6068. const int p = (mode == 0 ? n_past + i2 : i2);
  6069. for (int i1 = 0; i1 < ne1; i1++) {
  6070. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6071. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6072. const double cos_theta = cos(p*theta);
  6073. const double sin_theta = sin(p*theta);
  6074. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6075. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6076. double x0 = ggml_fp16_to_fp32(src[0]);
  6077. double x1 = ggml_fp16_to_fp32(src[1]);
  6078. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6079. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6080. }
  6081. }
  6082. }
  6083. }
  6084. }
  6085. static void ggml_compute_forward_rope(
  6086. const struct ggml_compute_params * params,
  6087. const struct ggml_tensor * src0,
  6088. const struct ggml_tensor * src1,
  6089. struct ggml_tensor * dst) {
  6090. switch (src0->type) {
  6091. case GGML_TYPE_F16:
  6092. {
  6093. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6094. } break;
  6095. case GGML_TYPE_F32:
  6096. {
  6097. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6098. } break;
  6099. case GGML_TYPE_Q4_0:
  6100. case GGML_TYPE_Q4_1:
  6101. case GGML_TYPE_I8:
  6102. case GGML_TYPE_I16:
  6103. case GGML_TYPE_I32:
  6104. case GGML_TYPE_COUNT:
  6105. {
  6106. GGML_ASSERT(false);
  6107. } break;
  6108. }
  6109. }
  6110. // ggml_compute_forward_conv_1d_1s
  6111. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6112. const struct ggml_compute_params * params,
  6113. const struct ggml_tensor * src0,
  6114. const struct ggml_tensor * src1,
  6115. struct ggml_tensor * dst) {
  6116. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6117. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6118. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6119. int64_t t0 = ggml_perf_time_us();
  6120. UNUSED(t0);
  6121. const int ne00 = src0->ne[0];
  6122. const int ne01 = src0->ne[1];
  6123. const int ne02 = src0->ne[2];
  6124. //const int ne03 = src0->ne[3];
  6125. const int ne10 = src1->ne[0];
  6126. const int ne11 = src1->ne[1];
  6127. //const int ne12 = src1->ne[2];
  6128. //const int ne13 = src1->ne[3];
  6129. //const int ne0 = dst->ne[0];
  6130. //const int ne1 = dst->ne[1];
  6131. //const int ne2 = dst->ne[2];
  6132. //const int ne3 = dst->ne[3];
  6133. //const int ne = ne0*ne1*ne2*ne3;
  6134. const int nb00 = src0->nb[0];
  6135. const int nb01 = src0->nb[1];
  6136. const int nb02 = src0->nb[2];
  6137. //const int nb03 = src0->nb[3];
  6138. const int nb10 = src1->nb[0];
  6139. const int nb11 = src1->nb[1];
  6140. //const int nb12 = src1->nb[2];
  6141. //const int nb13 = src1->nb[3];
  6142. //const int nb0 = dst->nb[0];
  6143. const int nb1 = dst->nb[1];
  6144. //const int nb2 = dst->nb[2];
  6145. //const int nb3 = dst->nb[3];
  6146. const int ith = params->ith;
  6147. const int nth = params->nth;
  6148. const int nk = ne00;
  6149. const int nh = nk/2;
  6150. const int ew0 = ggml_up32(ne01);
  6151. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6152. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6153. GGML_ASSERT(nb10 == sizeof(float));
  6154. if (params->type == GGML_TASK_INIT) {
  6155. // TODO: fix this memset (wsize is overestimated)
  6156. memset(params->wdata, 0, params->wsize);
  6157. // prepare kernel data (src0)
  6158. {
  6159. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6160. for (int i02 = 0; i02 < ne02; i02++) {
  6161. for (int i01 = 0; i01 < ne01; i01++) {
  6162. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6163. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6164. for (int i00 = 0; i00 < ne00; i00++) {
  6165. dst_data[i00*ew0 + i01] = src[i00];
  6166. }
  6167. }
  6168. }
  6169. }
  6170. // prepare source data (src1)
  6171. {
  6172. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6173. for (int i11 = 0; i11 < ne11; i11++) {
  6174. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6175. ggml_fp16_t * dst_data = wdata;
  6176. for (int i10 = 0; i10 < ne10; i10++) {
  6177. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6178. }
  6179. }
  6180. }
  6181. return;
  6182. }
  6183. if (params->type == GGML_TASK_FINALIZE) {
  6184. return;
  6185. }
  6186. // total rows in dst
  6187. const int nr = ne02;
  6188. // rows per thread
  6189. const int dr = (nr + nth - 1)/nth;
  6190. // row range for this thread
  6191. const int ir0 = dr*ith;
  6192. const int ir1 = MIN(ir0 + dr, nr);
  6193. for (int i1 = ir0; i1 < ir1; i1++) {
  6194. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6195. for (int i0 = 0; i0 < ne10; ++i0) {
  6196. dst_data[i0] = 0;
  6197. for (int k = -nh; k <= nh; k++) {
  6198. float v = 0.0f;
  6199. ggml_vec_dot_f16(ew0, &v,
  6200. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6201. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6202. dst_data[i0] += v;
  6203. }
  6204. }
  6205. }
  6206. }
  6207. static void ggml_compute_forward_conv_1d_1s_f32(
  6208. const struct ggml_compute_params * params,
  6209. const struct ggml_tensor * src0,
  6210. const struct ggml_tensor * src1,
  6211. struct ggml_tensor * dst) {
  6212. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6213. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6214. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6215. int64_t t0 = ggml_perf_time_us();
  6216. UNUSED(t0);
  6217. const int ne00 = src0->ne[0];
  6218. const int ne01 = src0->ne[1];
  6219. const int ne02 = src0->ne[2];
  6220. //const int ne03 = src0->ne[3];
  6221. const int ne10 = src1->ne[0];
  6222. const int ne11 = src1->ne[1];
  6223. //const int ne12 = src1->ne[2];
  6224. //const int ne13 = src1->ne[3];
  6225. //const int ne0 = dst->ne[0];
  6226. //const int ne1 = dst->ne[1];
  6227. //const int ne2 = dst->ne[2];
  6228. //const int ne3 = dst->ne[3];
  6229. //const int ne = ne0*ne1*ne2*ne3;
  6230. const int nb00 = src0->nb[0];
  6231. const int nb01 = src0->nb[1];
  6232. const int nb02 = src0->nb[2];
  6233. //const int nb03 = src0->nb[3];
  6234. const int nb10 = src1->nb[0];
  6235. const int nb11 = src1->nb[1];
  6236. //const int nb12 = src1->nb[2];
  6237. //const int nb13 = src1->nb[3];
  6238. //const int nb0 = dst->nb[0];
  6239. const int nb1 = dst->nb[1];
  6240. //const int nb2 = dst->nb[2];
  6241. //const int nb3 = dst->nb[3];
  6242. const int ith = params->ith;
  6243. const int nth = params->nth;
  6244. const int nk = ne00;
  6245. const int nh = nk/2;
  6246. const int ew0 = ggml_up32(ne01);
  6247. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6248. GGML_ASSERT(nb00 == sizeof(float));
  6249. GGML_ASSERT(nb10 == sizeof(float));
  6250. if (params->type == GGML_TASK_INIT) {
  6251. // TODO: fix this memset (wsize is overestimated)
  6252. memset(params->wdata, 0, params->wsize);
  6253. // prepare kernel data (src0)
  6254. {
  6255. float * const wdata = (float *) params->wdata + 0;
  6256. for (int i02 = 0; i02 < ne02; i02++) {
  6257. for (int i01 = 0; i01 < ne01; i01++) {
  6258. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6259. float * dst_data = wdata + i02*ew0*ne00;
  6260. for (int i00 = 0; i00 < ne00; i00++) {
  6261. dst_data[i00*ew0 + i01] = src[i00];
  6262. }
  6263. }
  6264. }
  6265. }
  6266. // prepare source data (src1)
  6267. {
  6268. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6269. for (int i11 = 0; i11 < ne11; i11++) {
  6270. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6271. float * dst_data = wdata;
  6272. for (int i10 = 0; i10 < ne10; i10++) {
  6273. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6274. }
  6275. }
  6276. }
  6277. return;
  6278. }
  6279. if (params->type == GGML_TASK_FINALIZE) {
  6280. return;
  6281. }
  6282. // total rows in dst
  6283. const int nr = ne02;
  6284. // rows per thread
  6285. const int dr = (nr + nth - 1)/nth;
  6286. // row range for this thread
  6287. const int ir0 = dr*ith;
  6288. const int ir1 = MIN(ir0 + dr, nr);
  6289. for (int i1 = ir0; i1 < ir1; i1++) {
  6290. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6291. for (int i0 = 0; i0 < ne10; ++i0) {
  6292. dst_data[i0] = 0;
  6293. for (int k = -nh; k <= nh; k++) {
  6294. float v = 0.0f;
  6295. ggml_vec_dot_f32(ew0, &v,
  6296. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6297. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6298. dst_data[i0] += v;
  6299. }
  6300. }
  6301. }
  6302. }
  6303. static void ggml_compute_forward_conv_1d_1s(
  6304. const struct ggml_compute_params * params,
  6305. const struct ggml_tensor * src0,
  6306. const struct ggml_tensor * src1,
  6307. struct ggml_tensor * dst) {
  6308. switch (src0->type) {
  6309. case GGML_TYPE_F16:
  6310. {
  6311. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6312. } break;
  6313. case GGML_TYPE_F32:
  6314. {
  6315. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6316. } break;
  6317. case GGML_TYPE_Q4_0:
  6318. case GGML_TYPE_Q4_1:
  6319. case GGML_TYPE_I8:
  6320. case GGML_TYPE_I16:
  6321. case GGML_TYPE_I32:
  6322. case GGML_TYPE_COUNT:
  6323. {
  6324. GGML_ASSERT(false);
  6325. } break;
  6326. }
  6327. }
  6328. // ggml_compute_forward_conv_1d_2s
  6329. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6330. const struct ggml_compute_params * params,
  6331. const struct ggml_tensor * src0,
  6332. const struct ggml_tensor * src1,
  6333. struct ggml_tensor * dst) {
  6334. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6335. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6336. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6337. int64_t t0 = ggml_perf_time_us();
  6338. UNUSED(t0);
  6339. const int ne00 = src0->ne[0];
  6340. const int ne01 = src0->ne[1];
  6341. const int ne02 = src0->ne[2];
  6342. //const int ne03 = src0->ne[3];
  6343. const int ne10 = src1->ne[0];
  6344. const int ne11 = src1->ne[1];
  6345. //const int ne12 = src1->ne[2];
  6346. //const int ne13 = src1->ne[3];
  6347. //const int ne0 = dst->ne[0];
  6348. //const int ne1 = dst->ne[1];
  6349. //const int ne2 = dst->ne[2];
  6350. //const int ne3 = dst->ne[3];
  6351. //const int ne = ne0*ne1*ne2*ne3;
  6352. const int nb00 = src0->nb[0];
  6353. const int nb01 = src0->nb[1];
  6354. const int nb02 = src0->nb[2];
  6355. //const int nb03 = src0->nb[3];
  6356. const int nb10 = src1->nb[0];
  6357. const int nb11 = src1->nb[1];
  6358. //const int nb12 = src1->nb[2];
  6359. //const int nb13 = src1->nb[3];
  6360. //const int nb0 = dst->nb[0];
  6361. const int nb1 = dst->nb[1];
  6362. //const int nb2 = dst->nb[2];
  6363. //const int nb3 = dst->nb[3];
  6364. const int ith = params->ith;
  6365. const int nth = params->nth;
  6366. const int nk = ne00;
  6367. const int nh = nk/2;
  6368. const int ew0 = ggml_up32(ne01);
  6369. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6370. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6371. GGML_ASSERT(nb10 == sizeof(float));
  6372. if (params->type == GGML_TASK_INIT) {
  6373. // TODO: fix this memset (wsize is overestimated)
  6374. memset(params->wdata, 0, params->wsize);
  6375. // prepare kernel data (src0)
  6376. {
  6377. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6378. for (int i02 = 0; i02 < ne02; i02++) {
  6379. for (int i01 = 0; i01 < ne01; i01++) {
  6380. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6381. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6382. for (int i00 = 0; i00 < ne00; i00++) {
  6383. dst_data[i00*ew0 + i01] = src[i00];
  6384. }
  6385. }
  6386. }
  6387. }
  6388. // prepare source data (src1)
  6389. {
  6390. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6391. for (int i11 = 0; i11 < ne11; i11++) {
  6392. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6393. ggml_fp16_t * dst_data = wdata;
  6394. for (int i10 = 0; i10 < ne10; i10++) {
  6395. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6396. }
  6397. }
  6398. }
  6399. return;
  6400. }
  6401. if (params->type == GGML_TASK_FINALIZE) {
  6402. return;
  6403. }
  6404. // total rows in dst
  6405. const int nr = ne02;
  6406. // rows per thread
  6407. const int dr = (nr + nth - 1)/nth;
  6408. // row range for this thread
  6409. const int ir0 = dr*ith;
  6410. const int ir1 = MIN(ir0 + dr, nr);
  6411. for (int i1 = ir0; i1 < ir1; i1++) {
  6412. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6413. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6414. dst_data[i0/2] = 0;
  6415. for (int k = -nh; k <= nh; k++) {
  6416. float v = 0.0f;
  6417. ggml_vec_dot_f16(ew0, &v,
  6418. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6419. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6420. dst_data[i0/2] += v;
  6421. }
  6422. }
  6423. }
  6424. }
  6425. static void ggml_compute_forward_conv_1d_2s_f32(
  6426. const struct ggml_compute_params * params,
  6427. const struct ggml_tensor * src0,
  6428. const struct ggml_tensor * src1,
  6429. struct ggml_tensor * dst) {
  6430. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6431. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6432. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6433. int64_t t0 = ggml_perf_time_us();
  6434. UNUSED(t0);
  6435. const int ne00 = src0->ne[0];
  6436. const int ne01 = src0->ne[1];
  6437. const int ne02 = src0->ne[2];
  6438. //const int ne03 = src0->ne[3];
  6439. const int ne10 = src1->ne[0];
  6440. const int ne11 = src1->ne[1];
  6441. //const int ne12 = src1->ne[2];
  6442. //const int ne13 = src1->ne[3];
  6443. //const int ne0 = dst->ne[0];
  6444. //const int ne1 = dst->ne[1];
  6445. //const int ne2 = dst->ne[2];
  6446. //const int ne3 = dst->ne[3];
  6447. //const int ne = ne0*ne1*ne2*ne3;
  6448. const int nb00 = src0->nb[0];
  6449. const int nb01 = src0->nb[1];
  6450. const int nb02 = src0->nb[2];
  6451. //const int nb03 = src0->nb[3];
  6452. const int nb10 = src1->nb[0];
  6453. const int nb11 = src1->nb[1];
  6454. //const int nb12 = src1->nb[2];
  6455. //const int nb13 = src1->nb[3];
  6456. //const int nb0 = dst->nb[0];
  6457. const int nb1 = dst->nb[1];
  6458. //const int nb2 = dst->nb[2];
  6459. //const int nb3 = dst->nb[3];
  6460. const int ith = params->ith;
  6461. const int nth = params->nth;
  6462. const int nk = ne00;
  6463. const int nh = nk/2;
  6464. const int ew0 = ggml_up32(ne01);
  6465. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6466. GGML_ASSERT(nb00 == sizeof(float));
  6467. GGML_ASSERT(nb10 == sizeof(float));
  6468. if (params->type == GGML_TASK_INIT) {
  6469. // TODO: fix this memset (wsize is overestimated)
  6470. memset(params->wdata, 0, params->wsize);
  6471. // prepare kernel data (src0)
  6472. {
  6473. float * const wdata = (float *) params->wdata + 0;
  6474. for (int i02 = 0; i02 < ne02; i02++) {
  6475. for (int i01 = 0; i01 < ne01; i01++) {
  6476. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6477. float * dst_data = wdata + i02*ew0*ne00;
  6478. for (int i00 = 0; i00 < ne00; i00++) {
  6479. dst_data[i00*ew0 + i01] = src[i00];
  6480. }
  6481. }
  6482. }
  6483. }
  6484. // prepare source data (src1)
  6485. {
  6486. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6487. for (int i11 = 0; i11 < ne11; i11++) {
  6488. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6489. float * dst_data = wdata;
  6490. for (int i10 = 0; i10 < ne10; i10++) {
  6491. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6492. }
  6493. }
  6494. }
  6495. return;
  6496. }
  6497. if (params->type == GGML_TASK_FINALIZE) {
  6498. return;
  6499. }
  6500. // total rows in dst
  6501. const int nr = ne02;
  6502. // rows per thread
  6503. const int dr = (nr + nth - 1)/nth;
  6504. // row range for this thread
  6505. const int ir0 = dr*ith;
  6506. const int ir1 = MIN(ir0 + dr, nr);
  6507. for (int i1 = ir0; i1 < ir1; i1++) {
  6508. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6509. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6510. dst_data[i0/2] = 0;
  6511. for (int k = -nh; k <= nh; k++) {
  6512. float v = 0.0f;
  6513. ggml_vec_dot_f32(ew0, &v,
  6514. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6515. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6516. dst_data[i0/2] += v;
  6517. }
  6518. }
  6519. }
  6520. }
  6521. static void ggml_compute_forward_conv_1d_2s(
  6522. const struct ggml_compute_params * params,
  6523. const struct ggml_tensor * src0,
  6524. const struct ggml_tensor * src1,
  6525. struct ggml_tensor * dst) {
  6526. switch (src0->type) {
  6527. case GGML_TYPE_F16:
  6528. {
  6529. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6530. } break;
  6531. case GGML_TYPE_F32:
  6532. {
  6533. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6534. } break;
  6535. case GGML_TYPE_Q4_0:
  6536. case GGML_TYPE_Q4_1:
  6537. case GGML_TYPE_I8:
  6538. case GGML_TYPE_I16:
  6539. case GGML_TYPE_I32:
  6540. case GGML_TYPE_COUNT:
  6541. {
  6542. GGML_ASSERT(false);
  6543. } break;
  6544. }
  6545. }
  6546. // ggml_compute_forward_flash_attn
  6547. static void ggml_compute_forward_flash_attn_f32(
  6548. const struct ggml_compute_params * params,
  6549. const struct ggml_tensor * q,
  6550. const struct ggml_tensor * k,
  6551. const struct ggml_tensor * v,
  6552. const bool masked,
  6553. struct ggml_tensor * dst) {
  6554. int64_t t0 = ggml_perf_time_us();
  6555. UNUSED(t0);
  6556. const int neq0 = q->ne[0];
  6557. const int neq1 = q->ne[1];
  6558. const int neq2 = q->ne[2];
  6559. const int neq3 = q->ne[3];
  6560. const int nek0 = k->ne[0];
  6561. const int nek1 = k->ne[1];
  6562. //const int nek2 = k->ne[2];
  6563. //const int nek3 = k->ne[3];
  6564. //const int nev0 = v->ne[0];
  6565. const int nev1 = v->ne[1];
  6566. //const int nev2 = v->ne[2];
  6567. //const int nev3 = v->ne[3];
  6568. const int ne0 = dst->ne[0];
  6569. const int ne1 = dst->ne[1];
  6570. //const int ne2 = dst->ne[2];
  6571. //const int ne3 = dst->ne[3];
  6572. const int nbk0 = k->nb[0];
  6573. const int nbk1 = k->nb[1];
  6574. const int nbk2 = k->nb[2];
  6575. const int nbk3 = k->nb[3];
  6576. const int nbq0 = q->nb[0];
  6577. const int nbq1 = q->nb[1];
  6578. const int nbq2 = q->nb[2];
  6579. const int nbq3 = q->nb[3];
  6580. const int nbv0 = v->nb[0];
  6581. const int nbv1 = v->nb[1];
  6582. const int nbv2 = v->nb[2];
  6583. const int nbv3 = v->nb[3];
  6584. const int nb0 = dst->nb[0];
  6585. const int nb1 = dst->nb[1];
  6586. const int nb2 = dst->nb[2];
  6587. const int nb3 = dst->nb[3];
  6588. const int ith = params->ith;
  6589. const int nth = params->nth;
  6590. const int D = neq0;
  6591. const int N = neq1;
  6592. const int P = nek1 - N;
  6593. const int M = P + N;
  6594. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6595. GGML_ASSERT(ne0 == D);
  6596. GGML_ASSERT(ne1 == N);
  6597. GGML_ASSERT(P >= 0);
  6598. GGML_ASSERT(nbq0 == sizeof(float));
  6599. GGML_ASSERT(nbk0 == sizeof(float));
  6600. GGML_ASSERT(nbv0 == sizeof(float));
  6601. GGML_ASSERT(neq0 == D);
  6602. GGML_ASSERT(nek0 == D);
  6603. GGML_ASSERT(nev1 == D);
  6604. GGML_ASSERT(neq1 == N);
  6605. GGML_ASSERT(nek1 == N + P);
  6606. GGML_ASSERT(nev1 == D);
  6607. // dst cannot be transposed or permuted
  6608. GGML_ASSERT(nb0 == sizeof(float));
  6609. GGML_ASSERT(nb0 <= nb1);
  6610. GGML_ASSERT(nb1 <= nb2);
  6611. GGML_ASSERT(nb2 <= nb3);
  6612. if (params->type == GGML_TASK_INIT) {
  6613. return;
  6614. }
  6615. if (params->type == GGML_TASK_FINALIZE) {
  6616. return;
  6617. }
  6618. // parallelize by q rows using ggml_vec_dot_f32
  6619. // total rows in q
  6620. const int nr = neq1*neq2*neq3;
  6621. // rows per thread
  6622. const int dr = (nr + nth - 1)/nth;
  6623. // row range for this thread
  6624. const int ir0 = dr*ith;
  6625. const int ir1 = MIN(ir0 + dr, nr);
  6626. const float scale = 1.0/sqrt((double) D);
  6627. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6628. for (int ir = ir0; ir < ir1; ++ir) {
  6629. // q indices
  6630. const int iq3 = ir/(neq2*neq1);
  6631. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6632. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6633. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6634. for (int i = M; i < Mup; ++i) {
  6635. S[i] = -INFINITY;
  6636. }
  6637. for (int ic = 0; ic < nek1; ++ic) {
  6638. // k indices
  6639. const int ik3 = iq3;
  6640. const int ik2 = iq2;
  6641. const int ik1 = ic;
  6642. // S indices
  6643. const int i1 = ik1;
  6644. ggml_vec_dot_f32(neq0,
  6645. S + i1,
  6646. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6647. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6648. }
  6649. // scale
  6650. ggml_vec_scale_f32(nek1, S, scale);
  6651. if (masked) {
  6652. for (int i = P; i < M; i++) {
  6653. if (i > P + iq1) {
  6654. S[i] = -INFINITY;
  6655. }
  6656. }
  6657. }
  6658. // softmax
  6659. {
  6660. float max = -INFINITY;
  6661. ggml_vec_max_f32(M, &max, S);
  6662. float sum = 0.0f;
  6663. {
  6664. #ifdef GGML_SOFT_MAX_ACCELERATE
  6665. max = -max;
  6666. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6667. vvexpf(S, S, &Mup);
  6668. ggml_vec_sum_f32(Mup, &sum, S);
  6669. #else
  6670. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6671. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6672. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6673. float * SS = S + i;
  6674. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6675. if (SS[j] == -INFINITY) {
  6676. SS[j] = 0.0f;
  6677. } else {
  6678. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6679. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6680. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6681. sump[j] += val;
  6682. SS[j] = val;
  6683. }
  6684. }
  6685. }
  6686. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6687. sum += sump[i];
  6688. }
  6689. #endif
  6690. }
  6691. assert(sum > 0.0f);
  6692. sum = 1.0/sum;
  6693. ggml_vec_scale_f32(M, S, sum);
  6694. #ifndef NDEBUG
  6695. for (int i = 0; i < M; ++i) {
  6696. assert(!isnan(S[i]));
  6697. assert(!isinf(S[i]));
  6698. }
  6699. #endif
  6700. }
  6701. for (int ic = 0; ic < nev1; ++ic) {
  6702. // dst indices
  6703. const int i1 = iq1;
  6704. const int i2 = iq2;
  6705. const int i3 = iq3;
  6706. ggml_vec_dot_f32(nek1,
  6707. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6708. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6709. S);
  6710. }
  6711. }
  6712. }
  6713. static void ggml_compute_forward_flash_attn_f16(
  6714. const struct ggml_compute_params * params,
  6715. const struct ggml_tensor * q,
  6716. const struct ggml_tensor * k,
  6717. const struct ggml_tensor * v,
  6718. const bool masked,
  6719. struct ggml_tensor * dst) {
  6720. int64_t t0 = ggml_perf_time_us();
  6721. UNUSED(t0);
  6722. const int neq0 = q->ne[0];
  6723. const int neq1 = q->ne[1];
  6724. const int neq2 = q->ne[2];
  6725. const int neq3 = q->ne[3];
  6726. const int nek0 = k->ne[0];
  6727. const int nek1 = k->ne[1];
  6728. //const int nek2 = k->ne[2];
  6729. //const int nek3 = k->ne[3];
  6730. //const int nev0 = v->ne[0];
  6731. const int nev1 = v->ne[1];
  6732. //const int nev2 = v->ne[2];
  6733. //const int nev3 = v->ne[3];
  6734. const int ne0 = dst->ne[0];
  6735. const int ne1 = dst->ne[1];
  6736. //const int ne2 = dst->ne[2];
  6737. //const int ne3 = dst->ne[3];
  6738. const int nbk0 = k->nb[0];
  6739. const int nbk1 = k->nb[1];
  6740. const int nbk2 = k->nb[2];
  6741. const int nbk3 = k->nb[3];
  6742. const int nbq0 = q->nb[0];
  6743. const int nbq1 = q->nb[1];
  6744. const int nbq2 = q->nb[2];
  6745. const int nbq3 = q->nb[3];
  6746. const int nbv0 = v->nb[0];
  6747. const int nbv1 = v->nb[1];
  6748. const int nbv2 = v->nb[2];
  6749. const int nbv3 = v->nb[3];
  6750. const int nb0 = dst->nb[0];
  6751. const int nb1 = dst->nb[1];
  6752. const int nb2 = dst->nb[2];
  6753. const int nb3 = dst->nb[3];
  6754. const int ith = params->ith;
  6755. const int nth = params->nth;
  6756. const int D = neq0;
  6757. const int N = neq1;
  6758. const int P = nek1 - N;
  6759. const int M = P + N;
  6760. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6761. GGML_ASSERT(ne0 == D);
  6762. GGML_ASSERT(ne1 == N);
  6763. GGML_ASSERT(P >= 0);
  6764. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6765. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6766. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6767. GGML_ASSERT(neq0 == D);
  6768. GGML_ASSERT(nek0 == D);
  6769. GGML_ASSERT(nev1 == D);
  6770. GGML_ASSERT(neq1 == N);
  6771. GGML_ASSERT(nek1 == N + P);
  6772. GGML_ASSERT(nev1 == D);
  6773. // dst cannot be transposed or permuted
  6774. GGML_ASSERT(nb0 == sizeof(float));
  6775. GGML_ASSERT(nb0 <= nb1);
  6776. GGML_ASSERT(nb1 <= nb2);
  6777. GGML_ASSERT(nb2 <= nb3);
  6778. if (params->type == GGML_TASK_INIT) {
  6779. return;
  6780. }
  6781. if (params->type == GGML_TASK_FINALIZE) {
  6782. return;
  6783. }
  6784. // parallelize by q rows using ggml_vec_dot_f32
  6785. // total rows in q
  6786. const int nr = neq1*neq2*neq3;
  6787. // rows per thread
  6788. const int dr = (nr + nth - 1)/nth;
  6789. // row range for this thread
  6790. const int ir0 = dr*ith;
  6791. const int ir1 = MIN(ir0 + dr, nr);
  6792. const float scale = 1.0/sqrt((double) D);
  6793. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6794. for (int ir = ir0; ir < ir1; ++ir) {
  6795. // q indices
  6796. const int iq3 = ir/(neq2*neq1);
  6797. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6798. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6799. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6800. for (int i = M; i < Mup; ++i) {
  6801. S[i] = -INFINITY;
  6802. }
  6803. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6804. for (int ic = 0; ic < nek1; ++ic) {
  6805. // k indices
  6806. const int ik3 = iq3;
  6807. const int ik2 = iq2;
  6808. const int ik1 = ic;
  6809. // S indices
  6810. const int i1 = ik1;
  6811. ggml_vec_dot_f16(neq0,
  6812. S + i1,
  6813. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6814. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6815. }
  6816. } else {
  6817. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6818. // k indices
  6819. const int ik3 = iq3;
  6820. const int ik2 = iq2;
  6821. const int ik1 = ic;
  6822. // S indices
  6823. const int i1 = ik1;
  6824. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6825. S + i1,
  6826. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6827. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6828. }
  6829. }
  6830. // scale
  6831. ggml_vec_scale_f32(nek1, S, scale);
  6832. if (masked) {
  6833. for (int i = P; i < M; i++) {
  6834. if (i > P + iq1) {
  6835. S[i] = -INFINITY;
  6836. }
  6837. }
  6838. }
  6839. // softmax
  6840. {
  6841. float max = -INFINITY;
  6842. ggml_vec_max_f32(M, &max, S);
  6843. float sum = 0.0f;
  6844. {
  6845. #ifdef GGML_SOFT_MAX_ACCELERATE
  6846. max = -max;
  6847. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6848. vvexpf(S, S, &Mup);
  6849. ggml_vec_sum_f32(Mup, &sum, S);
  6850. #else
  6851. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6852. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6853. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6854. float * SS = S + i;
  6855. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6856. if (SS[j] == -INFINITY) {
  6857. SS[j] = 0.0f;
  6858. } else {
  6859. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6860. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6861. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6862. sump[j] += val;
  6863. SS[j] = val;
  6864. }
  6865. }
  6866. }
  6867. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6868. sum += sump[i];
  6869. }
  6870. #endif
  6871. }
  6872. assert(sum > 0.0f);
  6873. sum = 1.0/sum;
  6874. ggml_vec_scale_f32(M, S, sum);
  6875. #ifndef NDEBUG
  6876. for (int i = 0; i < M; ++i) {
  6877. assert(!isnan(S[i]));
  6878. assert(!isinf(S[i]));
  6879. }
  6880. #endif
  6881. }
  6882. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6883. for (int i = 0; i < M; i++) {
  6884. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6885. }
  6886. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6887. for (int ic = 0; ic < nev1; ++ic) {
  6888. // dst indices
  6889. const int i1 = iq1;
  6890. const int i2 = iq2;
  6891. const int i3 = iq3;
  6892. ggml_vec_dot_f16(nek1,
  6893. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6894. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6895. S16);
  6896. }
  6897. } else {
  6898. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6899. // dst indices
  6900. const int i1 = iq1;
  6901. const int i2 = iq2;
  6902. const int i3 = iq3;
  6903. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6905. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6906. S16);
  6907. }
  6908. }
  6909. }
  6910. }
  6911. static void ggml_compute_forward_flash_attn(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * q,
  6914. const struct ggml_tensor * k,
  6915. const struct ggml_tensor * v,
  6916. const bool masked,
  6917. struct ggml_tensor * dst) {
  6918. switch (q->type) {
  6919. case GGML_TYPE_F16:
  6920. {
  6921. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6922. } break;
  6923. case GGML_TYPE_F32:
  6924. {
  6925. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6926. } break;
  6927. case GGML_TYPE_Q4_0:
  6928. case GGML_TYPE_Q4_1:
  6929. case GGML_TYPE_I8:
  6930. case GGML_TYPE_I16:
  6931. case GGML_TYPE_I32:
  6932. case GGML_TYPE_COUNT:
  6933. {
  6934. GGML_ASSERT(false);
  6935. } break;
  6936. }
  6937. }
  6938. // ggml_compute_forward_flash_ff
  6939. static void ggml_compute_forward_flash_ff_f16(
  6940. const struct ggml_compute_params * params,
  6941. const struct ggml_tensor * a, // F16
  6942. const struct ggml_tensor * b0, // F16 fc_w
  6943. const struct ggml_tensor * b1, // F32 fc_b
  6944. const struct ggml_tensor * c0, // F16 proj_w
  6945. const struct ggml_tensor * c1, // F32 proj_b
  6946. struct ggml_tensor * dst) {
  6947. int64_t t0 = ggml_perf_time_us();
  6948. UNUSED(t0);
  6949. const int nea0 = a->ne[0];
  6950. const int nea1 = a->ne[1];
  6951. const int nea2 = a->ne[2];
  6952. const int nea3 = a->ne[3];
  6953. const int neb00 = b0->ne[0];
  6954. const int neb01 = b0->ne[1];
  6955. //const int neb02 = b0->ne[2];
  6956. //const int neb03 = b0->ne[3];
  6957. const int neb10 = b1->ne[0];
  6958. const int neb11 = b1->ne[1];
  6959. //const int neb12 = b1->ne[2];
  6960. //const int neb13 = b1->ne[3];
  6961. const int nec00 = c0->ne[0];
  6962. const int nec01 = c0->ne[1];
  6963. //const int nec02 = c0->ne[2];
  6964. //const int nec03 = c0->ne[3];
  6965. const int nec10 = c1->ne[0];
  6966. const int nec11 = c1->ne[1];
  6967. //const int nec12 = c1->ne[2];
  6968. //const int nec13 = c1->ne[3];
  6969. const int ne0 = dst->ne[0];
  6970. const int ne1 = dst->ne[1];
  6971. const int ne2 = dst->ne[2];
  6972. //const int ne3 = dst->ne[3];
  6973. const int nba0 = a->nb[0];
  6974. const int nba1 = a->nb[1];
  6975. const int nba2 = a->nb[2];
  6976. const int nba3 = a->nb[3];
  6977. const int nbb00 = b0->nb[0];
  6978. const int nbb01 = b0->nb[1];
  6979. const int nbb02 = b0->nb[2];
  6980. const int nbb03 = b0->nb[3];
  6981. const int nbb10 = b1->nb[0];
  6982. //const int nbb11 = b1->nb[1];
  6983. //const int nbb12 = b1->nb[2];
  6984. //const int nbb13 = b1->nb[3];
  6985. const int nbc00 = c0->nb[0];
  6986. const int nbc01 = c0->nb[1];
  6987. const int nbc02 = c0->nb[2];
  6988. const int nbc03 = c0->nb[3];
  6989. const int nbc10 = c1->nb[0];
  6990. //const int nbc11 = c1->nb[1];
  6991. //const int nbc12 = c1->nb[2];
  6992. //const int nbc13 = c1->nb[3];
  6993. const int nb0 = dst->nb[0];
  6994. const int nb1 = dst->nb[1];
  6995. const int nb2 = dst->nb[2];
  6996. const int nb3 = dst->nb[3];
  6997. const int ith = params->ith;
  6998. const int nth = params->nth;
  6999. const int D = nea0;
  7000. //const int N = nea1;
  7001. const int M = neb01;
  7002. GGML_ASSERT(ne0 == nea0);
  7003. GGML_ASSERT(ne1 == nea1);
  7004. GGML_ASSERT(ne2 == nea2);
  7005. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7006. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7007. GGML_ASSERT(nbb10 == sizeof(float));
  7008. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7009. GGML_ASSERT(nbc10 == sizeof(float));
  7010. GGML_ASSERT(neb00 == D);
  7011. GGML_ASSERT(neb01 == M);
  7012. GGML_ASSERT(neb10 == M);
  7013. GGML_ASSERT(neb11 == 1);
  7014. GGML_ASSERT(nec00 == M);
  7015. GGML_ASSERT(nec01 == D);
  7016. GGML_ASSERT(nec10 == D);
  7017. GGML_ASSERT(nec11 == 1);
  7018. // dst cannot be transposed or permuted
  7019. GGML_ASSERT(nb0 == sizeof(float));
  7020. GGML_ASSERT(nb0 <= nb1);
  7021. GGML_ASSERT(nb1 <= nb2);
  7022. GGML_ASSERT(nb2 <= nb3);
  7023. if (params->type == GGML_TASK_INIT) {
  7024. return;
  7025. }
  7026. if (params->type == GGML_TASK_FINALIZE) {
  7027. return;
  7028. }
  7029. // parallelize by a rows using ggml_vec_dot_f32
  7030. // total rows in a
  7031. const int nr = nea1*nea2*nea3;
  7032. // rows per thread
  7033. const int dr = (nr + nth - 1)/nth;
  7034. // row range for this thread
  7035. const int ir0 = dr*ith;
  7036. const int ir1 = MIN(ir0 + dr, nr);
  7037. for (int ir = ir0; ir < ir1; ++ir) {
  7038. // a indices
  7039. const int ia3 = ir/(nea2*nea1);
  7040. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7041. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7042. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7043. for (int ic = 0; ic < neb01; ++ic) {
  7044. // b0 indices
  7045. const int ib03 = ia3;
  7046. const int ib02 = ia2;
  7047. const int ib01 = ic;
  7048. // S indices
  7049. const int i1 = ib01;
  7050. ggml_vec_dot_f16(nea0,
  7051. S + i1,
  7052. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7053. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7054. }
  7055. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7056. //ggml_vec_gelu_f32(neb01, S, S);
  7057. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7058. for (int i = 0; i < M; i++) {
  7059. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7060. }
  7061. ggml_vec_gelu_f16(neb01, S16, S16);
  7062. {
  7063. // dst indices
  7064. const int i1 = ia1;
  7065. const int i2 = ia2;
  7066. const int i3 = ia3;
  7067. for (int ic = 0; ic < nec01; ++ic) {
  7068. ggml_vec_dot_f16(neb01,
  7069. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7070. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7071. S16);
  7072. }
  7073. ggml_vec_add_f32(nec01,
  7074. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7075. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7076. (float *) c1->data);
  7077. }
  7078. }
  7079. }
  7080. static void ggml_compute_forward_flash_ff(
  7081. const struct ggml_compute_params * params,
  7082. const struct ggml_tensor * a,
  7083. const struct ggml_tensor * b0,
  7084. const struct ggml_tensor * b1,
  7085. const struct ggml_tensor * c0,
  7086. const struct ggml_tensor * c1,
  7087. struct ggml_tensor * dst) {
  7088. switch (b0->type) {
  7089. case GGML_TYPE_F16:
  7090. {
  7091. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7092. } break;
  7093. case GGML_TYPE_F32:
  7094. {
  7095. GGML_ASSERT(false); // TODO
  7096. } break;
  7097. case GGML_TYPE_Q4_0:
  7098. case GGML_TYPE_Q4_1:
  7099. case GGML_TYPE_I8:
  7100. case GGML_TYPE_I16:
  7101. case GGML_TYPE_I32:
  7102. case GGML_TYPE_COUNT:
  7103. {
  7104. GGML_ASSERT(false);
  7105. } break;
  7106. }
  7107. }
  7108. /////////////////////////////////
  7109. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7110. GGML_ASSERT(params);
  7111. switch (tensor->op) {
  7112. case GGML_OP_DUP:
  7113. {
  7114. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7115. } break;
  7116. case GGML_OP_ADD:
  7117. {
  7118. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7119. } break;
  7120. case GGML_OP_SUB:
  7121. {
  7122. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7123. } break;
  7124. case GGML_OP_MUL:
  7125. {
  7126. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7127. } break;
  7128. case GGML_OP_DIV:
  7129. {
  7130. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7131. } break;
  7132. case GGML_OP_SQR:
  7133. {
  7134. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7135. } break;
  7136. case GGML_OP_SQRT:
  7137. {
  7138. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7139. } break;
  7140. case GGML_OP_SUM:
  7141. {
  7142. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7143. } break;
  7144. case GGML_OP_MEAN:
  7145. {
  7146. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7147. } break;
  7148. case GGML_OP_REPEAT:
  7149. {
  7150. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7151. } break;
  7152. case GGML_OP_ABS:
  7153. {
  7154. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7155. } break;
  7156. case GGML_OP_SGN:
  7157. {
  7158. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7159. } break;
  7160. case GGML_OP_NEG:
  7161. {
  7162. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7163. } break;
  7164. case GGML_OP_STEP:
  7165. {
  7166. ggml_compute_forward_step(params, tensor->src0, tensor);
  7167. } break;
  7168. case GGML_OP_RELU:
  7169. {
  7170. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7171. } break;
  7172. case GGML_OP_GELU:
  7173. {
  7174. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7175. } break;
  7176. case GGML_OP_SILU:
  7177. {
  7178. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7179. } break;
  7180. case GGML_OP_NORM:
  7181. {
  7182. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7183. } break;
  7184. case GGML_OP_RMS_NORM:
  7185. {
  7186. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7187. } break;
  7188. case GGML_OP_MUL_MAT:
  7189. {
  7190. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7191. } break;
  7192. case GGML_OP_SCALE:
  7193. {
  7194. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7195. } break;
  7196. case GGML_OP_CPY:
  7197. {
  7198. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7199. } break;
  7200. case GGML_OP_RESHAPE:
  7201. {
  7202. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7203. } break;
  7204. case GGML_OP_VIEW:
  7205. {
  7206. ggml_compute_forward_view(params, tensor->src0);
  7207. } break;
  7208. case GGML_OP_PERMUTE:
  7209. {
  7210. ggml_compute_forward_permute(params, tensor->src0);
  7211. } break;
  7212. case GGML_OP_TRANSPOSE:
  7213. {
  7214. ggml_compute_forward_transpose(params, tensor->src0);
  7215. } break;
  7216. case GGML_OP_GET_ROWS:
  7217. {
  7218. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7219. } break;
  7220. case GGML_OP_DIAG_MASK_INF:
  7221. {
  7222. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7223. } break;
  7224. case GGML_OP_SOFT_MAX:
  7225. {
  7226. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7227. } break;
  7228. case GGML_OP_ROPE:
  7229. {
  7230. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7231. } break;
  7232. case GGML_OP_CONV_1D_1S:
  7233. {
  7234. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7235. } break;
  7236. case GGML_OP_CONV_1D_2S:
  7237. {
  7238. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7239. } break;
  7240. case GGML_OP_FLASH_ATTN:
  7241. {
  7242. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7243. GGML_ASSERT(t == 0 || t == 1);
  7244. bool masked = t != 0;
  7245. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7246. } break;
  7247. case GGML_OP_FLASH_FF:
  7248. {
  7249. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7250. } break;
  7251. case GGML_OP_NONE:
  7252. {
  7253. // nop
  7254. } break;
  7255. case GGML_OP_COUNT:
  7256. {
  7257. GGML_ASSERT(false);
  7258. } break;
  7259. }
  7260. }
  7261. ////////////////////////////////////////////////////////////////////////////////
  7262. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7263. struct ggml_tensor * src0 = tensor->src0;
  7264. struct ggml_tensor * src1 = tensor->src1;
  7265. switch (tensor->op) {
  7266. case GGML_OP_DUP:
  7267. {
  7268. if (src0->grad) {
  7269. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7270. }
  7271. } break;
  7272. case GGML_OP_ADD:
  7273. {
  7274. if (src0->grad) {
  7275. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7276. }
  7277. if (src1->grad) {
  7278. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7279. }
  7280. } break;
  7281. case GGML_OP_SUB:
  7282. {
  7283. if (src0->grad) {
  7284. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7285. }
  7286. if (src1->grad) {
  7287. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7288. }
  7289. } break;
  7290. case GGML_OP_MUL:
  7291. {
  7292. if (src0->grad) {
  7293. src0->grad =
  7294. ggml_add_impl(ctx,
  7295. src0->grad,
  7296. ggml_mul(ctx, src1, tensor->grad),
  7297. inplace);
  7298. }
  7299. if (src1->grad) {
  7300. src1->grad =
  7301. ggml_add_impl(ctx,
  7302. src1->grad,
  7303. ggml_mul(ctx, src0, tensor->grad),
  7304. inplace);
  7305. }
  7306. } break;
  7307. case GGML_OP_DIV:
  7308. {
  7309. if (src0->grad) {
  7310. src0->grad =
  7311. ggml_add_impl(ctx,
  7312. src0->grad,
  7313. ggml_div(ctx, tensor->grad, src1),
  7314. inplace);
  7315. }
  7316. if (src1->grad) {
  7317. src1->grad =
  7318. ggml_sub_impl(ctx,
  7319. src1->grad,
  7320. ggml_mul(ctx,
  7321. tensor->grad,
  7322. ggml_div(ctx, tensor, src1)),
  7323. inplace);
  7324. }
  7325. } break;
  7326. case GGML_OP_SQR:
  7327. {
  7328. if (src0->grad) {
  7329. src0->grad =
  7330. ggml_add_impl(ctx,
  7331. src0->grad,
  7332. ggml_mul(ctx,
  7333. ggml_mul(ctx, src0, tensor->grad),
  7334. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7335. inplace);
  7336. }
  7337. } break;
  7338. case GGML_OP_SQRT:
  7339. {
  7340. if (src0->grad) {
  7341. src0->grad =
  7342. ggml_add_impl(ctx,
  7343. src0->grad,
  7344. ggml_div(ctx,
  7345. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7346. tensor),
  7347. inplace);
  7348. }
  7349. } break;
  7350. case GGML_OP_SUM:
  7351. {
  7352. if (src0->grad) {
  7353. src0->grad =
  7354. ggml_add_impl(ctx,
  7355. src0->grad,
  7356. ggml_repeat(ctx, tensor->grad, src0->grad),
  7357. inplace);
  7358. }
  7359. } break;
  7360. case GGML_OP_MEAN:
  7361. {
  7362. GGML_ASSERT(false); // TODO: implement
  7363. } break;
  7364. case GGML_OP_REPEAT:
  7365. {
  7366. if (src0->grad) {
  7367. src0->grad =
  7368. ggml_add_impl(ctx,
  7369. src0->grad,
  7370. ggml_sum(ctx, tensor->grad),
  7371. inplace);
  7372. }
  7373. } break;
  7374. case GGML_OP_ABS:
  7375. {
  7376. if (src0->grad) {
  7377. src0->grad =
  7378. ggml_add_impl(ctx,
  7379. src0->grad,
  7380. ggml_mul(ctx,
  7381. ggml_sgn(ctx, src0),
  7382. tensor->grad),
  7383. inplace);
  7384. }
  7385. } break;
  7386. case GGML_OP_SGN:
  7387. {
  7388. if (src0->grad) {
  7389. // noop
  7390. }
  7391. } break;
  7392. case GGML_OP_NEG:
  7393. {
  7394. if (src0->grad) {
  7395. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7396. }
  7397. } break;
  7398. case GGML_OP_STEP:
  7399. {
  7400. if (src0->grad) {
  7401. // noop
  7402. }
  7403. } break;
  7404. case GGML_OP_RELU:
  7405. {
  7406. if (src0->grad) {
  7407. src0->grad = ggml_sub_impl(ctx,
  7408. src0->grad,
  7409. ggml_mul(ctx,
  7410. ggml_step(ctx, src0),
  7411. tensor->grad),
  7412. inplace);
  7413. }
  7414. } break;
  7415. case GGML_OP_GELU:
  7416. {
  7417. GGML_ASSERT(false); // TODO: not implemented
  7418. } break;
  7419. case GGML_OP_SILU:
  7420. {
  7421. GGML_ASSERT(false); // TODO: not implemented
  7422. } break;
  7423. case GGML_OP_NORM:
  7424. {
  7425. GGML_ASSERT(false); // TODO: not implemented
  7426. } break;
  7427. case GGML_OP_RMS_NORM:
  7428. {
  7429. GGML_ASSERT(false); // TODO: not implemented
  7430. } break;
  7431. case GGML_OP_MUL_MAT:
  7432. {
  7433. if (src0->grad) {
  7434. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7435. GGML_ASSERT(false);
  7436. }
  7437. if (src1->grad) {
  7438. src1->grad =
  7439. ggml_add_impl(ctx,
  7440. src1->grad,
  7441. // TODO: fix transpose, the node will break the graph connections
  7442. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7443. inplace);
  7444. }
  7445. } break;
  7446. case GGML_OP_SCALE:
  7447. {
  7448. GGML_ASSERT(false); // TODO: not implemented
  7449. } break;
  7450. case GGML_OP_CPY:
  7451. {
  7452. GGML_ASSERT(false); // TODO: not implemented
  7453. } break;
  7454. case GGML_OP_RESHAPE:
  7455. {
  7456. GGML_ASSERT(false); // TODO: not implemented
  7457. } break;
  7458. case GGML_OP_VIEW:
  7459. {
  7460. GGML_ASSERT(false); // not supported
  7461. } break;
  7462. case GGML_OP_PERMUTE:
  7463. {
  7464. GGML_ASSERT(false); // TODO: not implemented
  7465. } break;
  7466. case GGML_OP_TRANSPOSE:
  7467. {
  7468. GGML_ASSERT(false); // TODO: not implemented
  7469. } break;
  7470. case GGML_OP_GET_ROWS:
  7471. {
  7472. GGML_ASSERT(false); // TODO: not implemented
  7473. } break;
  7474. case GGML_OP_DIAG_MASK_INF:
  7475. {
  7476. GGML_ASSERT(false); // TODO: not implemented
  7477. } break;
  7478. case GGML_OP_SOFT_MAX:
  7479. {
  7480. GGML_ASSERT(false); // TODO: not implemented
  7481. } break;
  7482. case GGML_OP_ROPE:
  7483. {
  7484. GGML_ASSERT(false); // TODO: not implemented
  7485. } break;
  7486. case GGML_OP_CONV_1D_1S:
  7487. {
  7488. GGML_ASSERT(false); // TODO: not implemented
  7489. } break;
  7490. case GGML_OP_CONV_1D_2S:
  7491. {
  7492. GGML_ASSERT(false); // TODO: not implemented
  7493. } break;
  7494. case GGML_OP_FLASH_ATTN:
  7495. {
  7496. GGML_ASSERT(false); // not supported
  7497. } break;
  7498. case GGML_OP_FLASH_FF:
  7499. {
  7500. GGML_ASSERT(false); // not supported
  7501. } break;
  7502. case GGML_OP_NONE:
  7503. {
  7504. // nop
  7505. } break;
  7506. case GGML_OP_COUNT:
  7507. {
  7508. GGML_ASSERT(false);
  7509. } break;
  7510. }
  7511. }
  7512. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7513. if (node->grad == NULL) {
  7514. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7515. // it can also happen during forward pass, if the user performs computations with constants
  7516. if (node->op != GGML_OP_NONE) {
  7517. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7518. }
  7519. }
  7520. // check if already visited
  7521. for (int i = 0; i < cgraph->n_nodes; i++) {
  7522. if (cgraph->nodes[i] == node) {
  7523. return;
  7524. }
  7525. }
  7526. for (int i = 0; i < cgraph->n_leafs; i++) {
  7527. if (cgraph->leafs[i] == node) {
  7528. return;
  7529. }
  7530. }
  7531. if (node->src0) {
  7532. ggml_visit_parents(cgraph, node->src0);
  7533. }
  7534. if (node->src1) {
  7535. ggml_visit_parents(cgraph, node->src1);
  7536. }
  7537. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7538. if (node->opt[i]) {
  7539. ggml_visit_parents(cgraph, node->opt[i]);
  7540. }
  7541. }
  7542. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7543. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7544. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7545. cgraph->leafs[cgraph->n_leafs] = node;
  7546. cgraph->n_leafs++;
  7547. } else {
  7548. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7549. cgraph->nodes[cgraph->n_nodes] = node;
  7550. cgraph->grads[cgraph->n_nodes] = node->grad;
  7551. cgraph->n_nodes++;
  7552. }
  7553. }
  7554. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7555. if (!expand) {
  7556. cgraph->n_nodes = 0;
  7557. cgraph->n_leafs = 0;
  7558. }
  7559. const int n0 = cgraph->n_nodes;
  7560. UNUSED(n0);
  7561. ggml_visit_parents(cgraph, tensor);
  7562. const int n_new = cgraph->n_nodes - n0;
  7563. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7564. if (n_new > 0) {
  7565. // the last added node should always be starting point
  7566. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7567. }
  7568. }
  7569. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7570. ggml_build_forward_impl(cgraph, tensor, true);
  7571. }
  7572. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7573. struct ggml_cgraph result = {
  7574. /*.n_nodes =*/ 0,
  7575. /*.n_leafs =*/ 0,
  7576. /*.n_threads =*/ 0,
  7577. /*.work_size =*/ 0,
  7578. /*.work =*/ NULL,
  7579. /*.nodes =*/ { NULL },
  7580. /*.grads =*/ { NULL },
  7581. /*.leafs =*/ { NULL },
  7582. /*.perf_runs =*/ 0,
  7583. /*.perf_cycles =*/ 0,
  7584. /*.perf_time_us =*/ 0,
  7585. };
  7586. ggml_build_forward_impl(&result, tensor, false);
  7587. return result;
  7588. }
  7589. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7590. struct ggml_cgraph result = *gf;
  7591. GGML_ASSERT(gf->n_nodes > 0);
  7592. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7593. if (keep) {
  7594. for (int i = 0; i < gf->n_nodes; i++) {
  7595. struct ggml_tensor * node = gf->nodes[i];
  7596. if (node->grad) {
  7597. node->grad = ggml_dup_tensor(ctx, node);
  7598. gf->grads[i] = node->grad;
  7599. }
  7600. }
  7601. }
  7602. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7603. struct ggml_tensor * node = gf->nodes[i];
  7604. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7605. if (node->grad) {
  7606. ggml_compute_backward(ctx, node, keep);
  7607. }
  7608. }
  7609. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7610. struct ggml_tensor * node = gf->nodes[i];
  7611. if (node->is_param) {
  7612. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7613. ggml_build_forward_impl(&result, node->grad, true);
  7614. }
  7615. }
  7616. return result;
  7617. }
  7618. //
  7619. // thread data
  7620. //
  7621. // synchronization is done via busy loops
  7622. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7623. //
  7624. #ifdef __APPLE__
  7625. //#include <os/lock.h>
  7626. //
  7627. //typedef os_unfair_lock ggml_lock_t;
  7628. //
  7629. //#define ggml_lock_init(x) UNUSED(x)
  7630. //#define ggml_lock_destroy(x) UNUSED(x)
  7631. //#define ggml_lock_lock os_unfair_lock_lock
  7632. //#define ggml_lock_unlock os_unfair_lock_unlock
  7633. //
  7634. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7635. typedef int ggml_lock_t;
  7636. #define ggml_lock_init(x) UNUSED(x)
  7637. #define ggml_lock_destroy(x) UNUSED(x)
  7638. #define ggml_lock_lock(x) UNUSED(x)
  7639. #define ggml_lock_unlock(x) UNUSED(x)
  7640. #define GGML_LOCK_INITIALIZER 0
  7641. typedef pthread_t ggml_thread_t;
  7642. #define ggml_thread_create pthread_create
  7643. #define ggml_thread_join pthread_join
  7644. #else
  7645. //typedef pthread_spinlock_t ggml_lock_t;
  7646. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7647. //#define ggml_lock_destroy pthread_spin_destroy
  7648. //#define ggml_lock_lock pthread_spin_lock
  7649. //#define ggml_lock_unlock pthread_spin_unlock
  7650. typedef int ggml_lock_t;
  7651. #define ggml_lock_init(x) UNUSED(x)
  7652. #define ggml_lock_destroy(x) UNUSED(x)
  7653. #define ggml_lock_lock(x) UNUSED(x)
  7654. #define ggml_lock_unlock(x) UNUSED(x)
  7655. #define GGML_LOCK_INITIALIZER 0
  7656. typedef pthread_t ggml_thread_t;
  7657. #define ggml_thread_create pthread_create
  7658. #define ggml_thread_join pthread_join
  7659. #endif
  7660. struct ggml_compute_state_shared {
  7661. ggml_lock_t spin;
  7662. int n_threads;
  7663. // synchronization primitives
  7664. atomic_int n_ready;
  7665. atomic_bool has_work;
  7666. atomic_bool stop; // stop all threads
  7667. };
  7668. struct ggml_compute_state {
  7669. ggml_thread_t thrd;
  7670. struct ggml_compute_params params;
  7671. struct ggml_tensor * node;
  7672. struct ggml_compute_state_shared * shared;
  7673. };
  7674. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7675. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7676. const int n_threads = state->shared->n_threads;
  7677. while (true) {
  7678. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7679. atomic_store(&state->shared->has_work, false);
  7680. } else {
  7681. while (atomic_load(&state->shared->has_work)) {
  7682. if (atomic_load(&state->shared->stop)) {
  7683. return 0;
  7684. }
  7685. ggml_lock_lock (&state->shared->spin);
  7686. ggml_lock_unlock(&state->shared->spin);
  7687. }
  7688. }
  7689. atomic_fetch_sub(&state->shared->n_ready, 1);
  7690. // wait for work
  7691. while (!atomic_load(&state->shared->has_work)) {
  7692. if (atomic_load(&state->shared->stop)) {
  7693. return 0;
  7694. }
  7695. ggml_lock_lock (&state->shared->spin);
  7696. ggml_lock_unlock(&state->shared->spin);
  7697. }
  7698. // check if we should stop
  7699. if (atomic_load(&state->shared->stop)) {
  7700. break;
  7701. }
  7702. if (state->node) {
  7703. if (state->params.ith < state->params.nth) {
  7704. ggml_compute_forward(&state->params, state->node);
  7705. }
  7706. state->node = NULL;
  7707. } else {
  7708. break;
  7709. }
  7710. }
  7711. return 0;
  7712. }
  7713. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7714. const int n_threads = cgraph->n_threads;
  7715. struct ggml_compute_state_shared state_shared = {
  7716. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7717. /*.n_threads =*/ n_threads,
  7718. /*.n_ready =*/ 0,
  7719. /*.has_work =*/ false,
  7720. /*.stop =*/ false,
  7721. };
  7722. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7723. // create thread pool
  7724. if (n_threads > 1) {
  7725. ggml_lock_init(&state_shared.spin);
  7726. atomic_store(&state_shared.has_work, true);
  7727. for (int j = 0; j < n_threads - 1; j++) {
  7728. workers[j] = (struct ggml_compute_state) {
  7729. .thrd = 0,
  7730. .params = {
  7731. .type = GGML_TASK_COMPUTE,
  7732. .ith = j + 1,
  7733. .nth = n_threads,
  7734. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7735. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7736. },
  7737. .node = NULL,
  7738. .shared = &state_shared,
  7739. };
  7740. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7741. GGML_ASSERT(rc == 0);
  7742. UNUSED(rc);
  7743. }
  7744. }
  7745. // initialize tasks + work buffer
  7746. {
  7747. size_t work_size = 0;
  7748. // thread scheduling for the different operations
  7749. for (int i = 0; i < cgraph->n_nodes; i++) {
  7750. struct ggml_tensor * node = cgraph->nodes[i];
  7751. switch (node->op) {
  7752. case GGML_OP_DUP:
  7753. {
  7754. node->n_tasks = 1;
  7755. } break;
  7756. case GGML_OP_ADD:
  7757. {
  7758. node->n_tasks = n_threads;
  7759. } break;
  7760. case GGML_OP_SUB:
  7761. case GGML_OP_MUL:
  7762. case GGML_OP_DIV:
  7763. case GGML_OP_SQR:
  7764. case GGML_OP_SQRT:
  7765. case GGML_OP_SUM:
  7766. case GGML_OP_MEAN:
  7767. case GGML_OP_REPEAT:
  7768. case GGML_OP_ABS:
  7769. case GGML_OP_SGN:
  7770. case GGML_OP_NEG:
  7771. case GGML_OP_STEP:
  7772. case GGML_OP_RELU:
  7773. {
  7774. node->n_tasks = 1;
  7775. } break;
  7776. case GGML_OP_GELU:
  7777. {
  7778. node->n_tasks = n_threads;
  7779. } break;
  7780. case GGML_OP_SILU:
  7781. {
  7782. node->n_tasks = n_threads;
  7783. } break;
  7784. case GGML_OP_NORM:
  7785. case GGML_OP_RMS_NORM:
  7786. {
  7787. node->n_tasks = n_threads;
  7788. } break;
  7789. case GGML_OP_MUL_MAT:
  7790. {
  7791. node->n_tasks = n_threads;
  7792. // TODO: use different scheduling for different matrix sizes
  7793. //const int nr0 = ggml_nrows(node->src0);
  7794. //const int nr1 = ggml_nrows(node->src1);
  7795. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7796. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7797. size_t cur = 0;
  7798. // TODO: better way to determine if the matrix is transposed
  7799. if (node->src0->nb[1] < node->src0->nb[0]) {
  7800. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7801. // TODO: overestimated by factor of x2 for FP16
  7802. } else {
  7803. if (node->src0->type == GGML_TYPE_F16 &&
  7804. node->src1->type == GGML_TYPE_F32) {
  7805. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7806. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7807. node->n_tasks = 1; // TODO: this actually is doing nothing
  7808. // the threads are still spinning
  7809. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7810. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7811. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7812. //printf("cur = %zu\n", cur);
  7813. } else {
  7814. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7815. }
  7816. #else
  7817. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7818. #endif
  7819. } else if (node->src0->type == GGML_TYPE_F32 &&
  7820. node->src1->type == GGML_TYPE_F32) {
  7821. cur = 0;
  7822. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7823. node->src1->type == GGML_TYPE_F32) {
  7824. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7825. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7826. node->n_tasks = 1;
  7827. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7828. } else {
  7829. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7830. }
  7831. #else
  7832. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7833. #endif
  7834. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7835. node->src1->type == GGML_TYPE_F32) {
  7836. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7837. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7838. node->n_tasks = 1;
  7839. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7840. } else {
  7841. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7842. }
  7843. #else
  7844. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7845. #endif
  7846. } else {
  7847. GGML_ASSERT(false);
  7848. }
  7849. }
  7850. work_size = MAX(work_size, cur);
  7851. } break;
  7852. case GGML_OP_SCALE:
  7853. {
  7854. node->n_tasks = n_threads;
  7855. } break;
  7856. case GGML_OP_CPY:
  7857. case GGML_OP_RESHAPE:
  7858. case GGML_OP_VIEW:
  7859. case GGML_OP_PERMUTE:
  7860. case GGML_OP_TRANSPOSE:
  7861. case GGML_OP_GET_ROWS:
  7862. case GGML_OP_DIAG_MASK_INF:
  7863. {
  7864. node->n_tasks = 1;
  7865. } break;
  7866. case GGML_OP_SOFT_MAX:
  7867. {
  7868. node->n_tasks = n_threads;
  7869. } break;
  7870. case GGML_OP_ROPE:
  7871. {
  7872. node->n_tasks = 1;
  7873. } break;
  7874. case GGML_OP_CONV_1D_1S:
  7875. case GGML_OP_CONV_1D_2S:
  7876. {
  7877. node->n_tasks = n_threads;
  7878. GGML_ASSERT(node->src0->ne[3] == 1);
  7879. GGML_ASSERT(node->src1->ne[2] == 1);
  7880. GGML_ASSERT(node->src1->ne[3] == 1);
  7881. size_t cur = 0;
  7882. const int nk = node->src0->ne[0];
  7883. if (node->src0->type == GGML_TYPE_F16 &&
  7884. node->src1->type == GGML_TYPE_F32) {
  7885. cur = sizeof(ggml_fp16_t)*(
  7886. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7887. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7888. );
  7889. } else if (node->src0->type == GGML_TYPE_F32 &&
  7890. node->src1->type == GGML_TYPE_F32) {
  7891. cur = sizeof(float)*(
  7892. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7893. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7894. );
  7895. } else {
  7896. GGML_ASSERT(false);
  7897. }
  7898. work_size = MAX(work_size, cur);
  7899. } break;
  7900. case GGML_OP_FLASH_ATTN:
  7901. {
  7902. node->n_tasks = n_threads;
  7903. size_t cur = 0;
  7904. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7905. if (node->src1->type == GGML_TYPE_F32) {
  7906. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7907. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7908. }
  7909. if (node->src1->type == GGML_TYPE_F16) {
  7910. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7911. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7912. }
  7913. work_size = MAX(work_size, cur);
  7914. } break;
  7915. case GGML_OP_FLASH_FF:
  7916. {
  7917. node->n_tasks = n_threads;
  7918. size_t cur = 0;
  7919. if (node->src1->type == GGML_TYPE_F32) {
  7920. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7921. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7922. }
  7923. if (node->src1->type == GGML_TYPE_F16) {
  7924. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7925. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7926. }
  7927. work_size = MAX(work_size, cur);
  7928. } break;
  7929. case GGML_OP_NONE:
  7930. {
  7931. node->n_tasks = 1;
  7932. } break;
  7933. case GGML_OP_COUNT:
  7934. {
  7935. GGML_ASSERT(false);
  7936. } break;
  7937. }
  7938. }
  7939. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7940. GGML_ASSERT(false); // TODO: better handling
  7941. }
  7942. if (work_size > 0 && cgraph->work == NULL) {
  7943. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7944. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7945. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7946. }
  7947. }
  7948. const int64_t perf_start_cycles = ggml_perf_cycles();
  7949. const int64_t perf_start_time_us = ggml_perf_time_us();
  7950. for (int i = 0; i < cgraph->n_nodes; i++) {
  7951. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7952. struct ggml_tensor * node = cgraph->nodes[i];
  7953. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7954. //if (node->grad == NULL && node->perf_runs > 0) {
  7955. // continue;
  7956. //}
  7957. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7958. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7959. // INIT
  7960. struct ggml_compute_params params = {
  7961. /*.type =*/ GGML_TASK_INIT,
  7962. /*.ith =*/ 0,
  7963. /*.nth =*/ node->n_tasks,
  7964. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7965. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7966. };
  7967. ggml_compute_forward(&params, node);
  7968. // COMPUTE
  7969. if (node->n_tasks > 1) {
  7970. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7971. atomic_store(&state_shared.has_work, false);
  7972. }
  7973. while (atomic_load(&state_shared.has_work)) {
  7974. ggml_lock_lock (&state_shared.spin);
  7975. ggml_lock_unlock(&state_shared.spin);
  7976. }
  7977. // launch thread pool
  7978. for (int j = 0; j < n_threads - 1; j++) {
  7979. workers[j].params = (struct ggml_compute_params) {
  7980. .type = GGML_TASK_COMPUTE,
  7981. .ith = j + 1,
  7982. .nth = node->n_tasks,
  7983. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7984. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7985. };
  7986. workers[j].node = node;
  7987. }
  7988. atomic_fetch_sub(&state_shared.n_ready, 1);
  7989. while (atomic_load(&state_shared.n_ready) > 0) {
  7990. ggml_lock_lock (&state_shared.spin);
  7991. ggml_lock_unlock(&state_shared.spin);
  7992. }
  7993. atomic_store(&state_shared.has_work, true);
  7994. }
  7995. params.type = GGML_TASK_COMPUTE;
  7996. ggml_compute_forward(&params, node);
  7997. // wait for thread pool
  7998. if (node->n_tasks > 1) {
  7999. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8000. atomic_store(&state_shared.has_work, false);
  8001. }
  8002. while (atomic_load(&state_shared.has_work)) {
  8003. ggml_lock_lock (&state_shared.spin);
  8004. ggml_lock_unlock(&state_shared.spin);
  8005. }
  8006. atomic_fetch_sub(&state_shared.n_ready, 1);
  8007. while (atomic_load(&state_shared.n_ready) != 0) {
  8008. ggml_lock_lock (&state_shared.spin);
  8009. ggml_lock_unlock(&state_shared.spin);
  8010. }
  8011. }
  8012. // FINALIZE
  8013. if (node->n_tasks > 1) {
  8014. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8015. atomic_store(&state_shared.has_work, false);
  8016. }
  8017. while (atomic_load(&state_shared.has_work)) {
  8018. ggml_lock_lock (&state_shared.spin);
  8019. ggml_lock_unlock(&state_shared.spin);
  8020. }
  8021. // launch thread pool
  8022. for (int j = 0; j < n_threads - 1; j++) {
  8023. workers[j].params = (struct ggml_compute_params) {
  8024. .type = GGML_TASK_FINALIZE,
  8025. .ith = j + 1,
  8026. .nth = node->n_tasks,
  8027. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8028. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8029. };
  8030. workers[j].node = node;
  8031. }
  8032. atomic_fetch_sub(&state_shared.n_ready, 1);
  8033. while (atomic_load(&state_shared.n_ready) > 0) {
  8034. ggml_lock_lock (&state_shared.spin);
  8035. ggml_lock_unlock(&state_shared.spin);
  8036. }
  8037. atomic_store(&state_shared.has_work, true);
  8038. }
  8039. params.type = GGML_TASK_FINALIZE;
  8040. ggml_compute_forward(&params, node);
  8041. // wait for thread pool
  8042. if (node->n_tasks > 1) {
  8043. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8044. atomic_store(&state_shared.has_work, false);
  8045. }
  8046. while (atomic_load(&state_shared.has_work)) {
  8047. ggml_lock_lock (&state_shared.spin);
  8048. ggml_lock_unlock(&state_shared.spin);
  8049. }
  8050. atomic_fetch_sub(&state_shared.n_ready, 1);
  8051. while (atomic_load(&state_shared.n_ready) != 0) {
  8052. ggml_lock_lock (&state_shared.spin);
  8053. ggml_lock_unlock(&state_shared.spin);
  8054. }
  8055. }
  8056. // performance stats (node)
  8057. {
  8058. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8059. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8060. node->perf_runs++;
  8061. node->perf_cycles += perf_cycles_cur;
  8062. node->perf_time_us += perf_time_us_cur;
  8063. }
  8064. }
  8065. // join thread pool
  8066. if (n_threads > 1) {
  8067. atomic_store(&state_shared.stop, true);
  8068. atomic_store(&state_shared.has_work, true);
  8069. for (int j = 0; j < n_threads - 1; j++) {
  8070. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8071. GGML_ASSERT(rc == 0);
  8072. UNUSED(rc);
  8073. }
  8074. ggml_lock_destroy(&state_shared.spin);
  8075. }
  8076. // performance stats (graph)
  8077. {
  8078. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8079. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8080. cgraph->perf_runs++;
  8081. cgraph->perf_cycles += perf_cycles_cur;
  8082. cgraph->perf_time_us += perf_time_us_cur;
  8083. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8084. __func__, cgraph->perf_runs,
  8085. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8086. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8087. (double) perf_time_us_cur / 1000.0,
  8088. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8089. }
  8090. }
  8091. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8092. for (int i = 0; i < cgraph->n_nodes; i++) {
  8093. struct ggml_tensor * grad = cgraph->grads[i];
  8094. if (grad) {
  8095. ggml_set_zero(grad);
  8096. }
  8097. }
  8098. }
  8099. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8100. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8101. GGML_PRINT("=== GRAPH ===\n");
  8102. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8103. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8104. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8105. for (int i = 0; i < cgraph->n_nodes; i++) {
  8106. struct ggml_tensor * node = cgraph->nodes[i];
  8107. perf_total_per_op_us[node->op] += node->perf_time_us;
  8108. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8109. i,
  8110. node->ne[0], node->ne[1], node->ne[2],
  8111. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8112. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8113. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8114. (double) node->perf_time_us / 1000.0,
  8115. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8116. }
  8117. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8118. for (int i = 0; i < cgraph->n_leafs; i++) {
  8119. struct ggml_tensor * node = cgraph->leafs[i];
  8120. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8121. i,
  8122. node->ne[0], node->ne[1],
  8123. GGML_OP_LABEL[node->op]);
  8124. }
  8125. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8126. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8127. }
  8128. GGML_PRINT("========================================\n");
  8129. }
  8130. // check if node is part of the graph
  8131. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8132. if (cgraph == NULL) {
  8133. return true;
  8134. }
  8135. for (int i = 0; i < cgraph->n_nodes; i++) {
  8136. if (cgraph->nodes[i] == node) {
  8137. return true;
  8138. }
  8139. }
  8140. return false;
  8141. }
  8142. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8143. for (int i = 0; i < cgraph->n_nodes; i++) {
  8144. struct ggml_tensor * parent = cgraph->nodes[i];
  8145. if (parent->grad == node) {
  8146. return parent;
  8147. }
  8148. }
  8149. return NULL;
  8150. }
  8151. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8152. char color[16];
  8153. FILE * fp = fopen(filename, "w");
  8154. GGML_ASSERT(fp);
  8155. fprintf(fp, "digraph G {\n");
  8156. fprintf(fp, " newrank = true;\n");
  8157. fprintf(fp, " rankdir = LR;\n");
  8158. for (int i = 0; i < gb->n_nodes; i++) {
  8159. struct ggml_tensor * node = gb->nodes[i];
  8160. if (ggml_graph_get_parent(gb, node) != NULL) {
  8161. continue;
  8162. }
  8163. if (node->is_param) {
  8164. snprintf(color, sizeof(color), "yellow");
  8165. } else if (node->grad) {
  8166. if (ggml_graph_find(gf, node)) {
  8167. snprintf(color, sizeof(color), "green");
  8168. } else {
  8169. snprintf(color, sizeof(color), "lightblue");
  8170. }
  8171. } else {
  8172. snprintf(color, sizeof(color), "white");
  8173. }
  8174. fprintf(fp, " \"%p\" [ \
  8175. style = filled; fillcolor = %s; shape = record; \
  8176. label=\"%d [%d, %d] | <x>%s",
  8177. (void *) node, color,
  8178. i, node->ne[0], node->ne[1],
  8179. GGML_OP_SYMBOL[node->op]);
  8180. if (node->grad) {
  8181. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8182. } else {
  8183. fprintf(fp, "\"; ]\n");
  8184. }
  8185. }
  8186. for (int i = 0; i < gb->n_leafs; i++) {
  8187. struct ggml_tensor * node = gb->leafs[i];
  8188. snprintf(color, sizeof(color), "pink");
  8189. if (ggml_nelements(node) == 1) {
  8190. fprintf(fp, " \"%p\" [ \
  8191. style = filled; fillcolor = %s; shape = record; \
  8192. label=\"<x>%.1e\"; ]\n",
  8193. (void *) node, color, ggml_get_f32_1d(node, 0));
  8194. } else {
  8195. fprintf(fp, " \"%p\" [ \
  8196. style = filled; fillcolor = %s; shape = record; \
  8197. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8198. (void *) node, color,
  8199. i, node->ne[0], node->ne[1]);
  8200. }
  8201. }
  8202. for (int i = 0; i < gb->n_nodes; i++) {
  8203. struct ggml_tensor * node = gb->nodes[i];
  8204. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8205. if (node->src0) {
  8206. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8207. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8208. parent0 ? (void *) parent0 : (void *) node->src0,
  8209. parent0 ? "g" : "x",
  8210. parent ? (void *) parent : (void *) node,
  8211. parent ? "g" : "x",
  8212. parent ? "empty" : "vee",
  8213. parent ? "dashed" : "solid");
  8214. }
  8215. if (node->src1) {
  8216. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8217. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8218. parent1 ? (void *) parent1 : (void *) node->src1,
  8219. parent1 ? "g" : "x",
  8220. parent ? (void *) parent : (void *) node,
  8221. parent ? "g" : "x",
  8222. parent ? "empty" : "vee",
  8223. parent ? "dashed" : "solid");
  8224. }
  8225. }
  8226. for (int i = 0; i < gb->n_leafs; i++) {
  8227. struct ggml_tensor * node = gb->leafs[i];
  8228. if (node->src0) {
  8229. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8230. (void *) node->src0, "x",
  8231. (void *) node, "x");
  8232. }
  8233. if (node->src1) {
  8234. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8235. (void *) node->src1, "x",
  8236. (void *) node, "x");
  8237. }
  8238. }
  8239. fprintf(fp, "}\n");
  8240. fclose(fp);
  8241. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8242. }
  8243. ////////////////////////////////////////////////////////////////////////////////
  8244. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8245. int i = 0;
  8246. for (int p = 0; p < np; ++p) {
  8247. const int ne = ggml_nelements(ps[p]) ;
  8248. // TODO: add function to set tensor from array
  8249. for (int j = 0; j < ne; ++j) {
  8250. ggml_set_f32_1d(ps[p], j, x[i++]);
  8251. }
  8252. }
  8253. }
  8254. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8255. int i = 0;
  8256. for (int p = 0; p < np; ++p) {
  8257. const int ne = ggml_nelements(ps[p]) ;
  8258. // TODO: add function to get all elements at once
  8259. for (int j = 0; j < ne; ++j) {
  8260. x[i++] = ggml_get_f32_1d(ps[p], j);
  8261. }
  8262. }
  8263. }
  8264. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8265. int i = 0;
  8266. for (int p = 0; p < np; ++p) {
  8267. const int ne = ggml_nelements(ps[p]) ;
  8268. // TODO: add function to get all elements at once
  8269. for (int j = 0; j < ne; ++j) {
  8270. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8271. }
  8272. }
  8273. }
  8274. //
  8275. // ADAM
  8276. //
  8277. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8278. //
  8279. static enum ggml_opt_result ggml_opt_adam(
  8280. struct ggml_context * ctx,
  8281. struct ggml_opt_params params,
  8282. struct ggml_tensor * f,
  8283. struct ggml_cgraph * gf,
  8284. struct ggml_cgraph * gb) {
  8285. GGML_ASSERT(ggml_is_scalar(f));
  8286. gf->n_threads = params.n_threads;
  8287. gb->n_threads = params.n_threads;
  8288. // these will store the parameters we want to optimize
  8289. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8290. int np = 0;
  8291. int nx = 0;
  8292. for (int i = 0; i < gf->n_nodes; ++i) {
  8293. if (gf->nodes[i]->is_param) {
  8294. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8295. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8296. ps[np++] = gf->nodes[i];
  8297. nx += ggml_nelements(gf->nodes[i]);
  8298. }
  8299. }
  8300. // constants
  8301. const float alpha = params.adam.alpha;
  8302. const float beta1 = params.adam.beta1;
  8303. const float beta2 = params.adam.beta2;
  8304. const float eps = params.adam.eps;
  8305. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8306. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8307. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8308. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8309. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8310. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8311. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8312. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8313. // initialize
  8314. ggml_vec_set_f32(nx, m, 0.0f);
  8315. ggml_vec_set_f32(nx, v, 0.0f);
  8316. // update view
  8317. ggml_opt_get_params(np, ps, x);
  8318. // compute the function value
  8319. ggml_graph_reset (gf);
  8320. ggml_set_f32 (f->grad, 1.0f);
  8321. ggml_graph_compute(ctx, gb);
  8322. float fx_prev = ggml_get_f32_1d(f, 0);
  8323. if (pf) {
  8324. pf[0] = fx_prev;
  8325. }
  8326. int n_no_improvement = 0;
  8327. float fx_best = fx_prev;
  8328. // run the optimizer
  8329. for (int t = 0; t < params.adam.n_iter; ++t) {
  8330. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8331. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8332. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8333. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8334. for (int i = 0; i < np; ++i) {
  8335. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8336. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8337. }
  8338. const int64_t t_start_wall = ggml_time_us();
  8339. const int64_t t_start_cpu = ggml_cycles();
  8340. UNUSED(t_start_wall);
  8341. UNUSED(t_start_cpu);
  8342. {
  8343. // update the gradient
  8344. ggml_opt_get_grad(np, ps, g1);
  8345. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8346. ggml_vec_scale_f32(nx, m, beta1);
  8347. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8348. // g2 = g1^2
  8349. ggml_vec_sqr_f32 (nx, g2, g1);
  8350. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8351. ggml_vec_scale_f32(nx, v, beta2);
  8352. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8353. // m^hat = m_t / (1 - beta1^t)
  8354. // v^hat = v_t / (1 - beta2^t)
  8355. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8356. ggml_vec_cpy_f32 (nx, mh, m);
  8357. ggml_vec_cpy_f32 (nx, vh, v);
  8358. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8359. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8360. ggml_vec_sqrt_f32 (nx, vh, vh);
  8361. ggml_vec_acc1_f32 (nx, vh, eps);
  8362. ggml_vec_div_f32 (nx, mh, mh, vh);
  8363. ggml_vec_sub_f32 (nx, x, x, mh);
  8364. // update the parameters
  8365. ggml_opt_set_params(np, ps, x);
  8366. }
  8367. ggml_graph_reset (gf);
  8368. ggml_set_f32 (f->grad, 1.0f);
  8369. ggml_graph_compute(ctx, gb);
  8370. const float fx = ggml_get_f32_1d(f, 0);
  8371. // check convergence
  8372. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8373. GGML_PRINT_DEBUG("converged\n");
  8374. return GGML_OPT_OK;
  8375. }
  8376. // delta-based convergence test
  8377. if (pf != NULL) {
  8378. // need at least params.past iterations to start checking for convergence
  8379. if (params.past <= t) {
  8380. const float rate = (pf[t%params.past] - fx)/fx;
  8381. if (fabs(rate) < params.delta) {
  8382. return GGML_OPT_OK;
  8383. }
  8384. }
  8385. pf[t%params.past] = fx;
  8386. }
  8387. // check for improvement
  8388. if (params.max_no_improvement > 0) {
  8389. if (fx_best > fx) {
  8390. fx_best = fx;
  8391. n_no_improvement = 0;
  8392. } else {
  8393. ++n_no_improvement;
  8394. if (n_no_improvement >= params.max_no_improvement) {
  8395. return GGML_OPT_OK;
  8396. }
  8397. }
  8398. }
  8399. fx_prev = fx;
  8400. {
  8401. const int64_t t_end_cpu = ggml_cycles();
  8402. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8403. UNUSED(t_end_cpu);
  8404. const int64_t t_end_wall = ggml_time_us();
  8405. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8406. UNUSED(t_end_wall);
  8407. }
  8408. }
  8409. return GGML_OPT_DID_NOT_CONVERGE;
  8410. }
  8411. //
  8412. // L-BFGS
  8413. //
  8414. // the L-BFGS implementation below is based on the following implementation:
  8415. //
  8416. // https://github.com/chokkan/liblbfgs
  8417. //
  8418. struct ggml_lbfgs_iteration_data {
  8419. float alpha;
  8420. float ys;
  8421. float * s;
  8422. float * y;
  8423. };
  8424. static enum ggml_opt_result linesearch_backtracking(
  8425. struct ggml_context * ctx,
  8426. const struct ggml_opt_params * params,
  8427. int nx,
  8428. float * x,
  8429. float * fx,
  8430. float * g,
  8431. float * d,
  8432. float * step,
  8433. const float * xp,
  8434. struct ggml_tensor * f,
  8435. struct ggml_cgraph * gf,
  8436. struct ggml_cgraph * gb,
  8437. const int np,
  8438. struct ggml_tensor * ps[]) {
  8439. int count = 0;
  8440. float width = 0.0f;
  8441. float dg = 0.0f;
  8442. float finit = 0.0f;
  8443. float dginit = 0.0f;
  8444. float dgtest = 0.0f;
  8445. const float dec = 0.5f;
  8446. const float inc = 2.1f;
  8447. if (*step <= 0.) {
  8448. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8449. }
  8450. // compute the initial gradient in the search direction
  8451. ggml_vec_dot_f32(nx, &dginit, g, d);
  8452. // make sure that d points to a descent direction
  8453. if (0 < dginit) {
  8454. return GGML_LINESEARCH_FAIL;
  8455. }
  8456. // initialize local variables
  8457. finit = *fx;
  8458. dgtest = params->lbfgs.ftol*dginit;
  8459. while (true) {
  8460. ggml_vec_cpy_f32(nx, x, xp);
  8461. ggml_vec_mad_f32(nx, x, d, *step);
  8462. // evaluate the function and gradient values
  8463. {
  8464. ggml_opt_set_params(np, ps, x);
  8465. ggml_graph_reset (gf);
  8466. ggml_set_f32 (f->grad, 1.0f);
  8467. ggml_graph_compute(ctx, gb);
  8468. ggml_opt_get_grad(np, ps, g);
  8469. *fx = ggml_get_f32_1d(f, 0);
  8470. }
  8471. ++count;
  8472. if (*fx > finit + (*step)*dgtest) {
  8473. width = dec;
  8474. } else {
  8475. // Armijo condition is satisfied
  8476. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8477. return count;
  8478. }
  8479. ggml_vec_dot_f32(nx, &dg, g, d);
  8480. // check the Wolfe condition
  8481. if (dg < params->lbfgs.wolfe * dginit) {
  8482. width = inc;
  8483. } else {
  8484. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8485. // regular Wolfe conditions
  8486. return count;
  8487. }
  8488. if(dg > -params->lbfgs.wolfe*dginit) {
  8489. width = dec;
  8490. } else {
  8491. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8492. return count;
  8493. }
  8494. return count;
  8495. }
  8496. }
  8497. if (*step < params->lbfgs.min_step) {
  8498. return GGML_LINESEARCH_MINIMUM_STEP;
  8499. }
  8500. if (*step > params->lbfgs.max_step) {
  8501. return GGML_LINESEARCH_MAXIMUM_STEP;
  8502. }
  8503. if (params->lbfgs.max_linesearch <= count) {
  8504. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8505. }
  8506. (*step) *= width;
  8507. }
  8508. return GGML_LINESEARCH_FAIL;
  8509. }
  8510. static enum ggml_opt_result ggml_opt_lbfgs(
  8511. struct ggml_context * ctx,
  8512. struct ggml_opt_params params,
  8513. struct ggml_tensor * f,
  8514. struct ggml_cgraph * gf,
  8515. struct ggml_cgraph * gb) {
  8516. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8517. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8518. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8519. return GGML_OPT_INVALID_WOLFE;
  8520. }
  8521. }
  8522. gf->n_threads = params.n_threads;
  8523. gb->n_threads = params.n_threads;
  8524. const int m = params.lbfgs.m;
  8525. // these will store the parameters we want to optimize
  8526. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8527. int np = 0;
  8528. int nx = 0;
  8529. for (int i = 0; i < gf->n_nodes; ++i) {
  8530. if (gf->nodes[i]->is_param) {
  8531. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8532. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8533. ps[np++] = gf->nodes[i];
  8534. nx += ggml_nelements(gf->nodes[i]);
  8535. }
  8536. }
  8537. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8538. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8539. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8540. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8541. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8542. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8543. float fx = 0.0f; // cost function value
  8544. float xnorm = 0.0f; // ||x||
  8545. float gnorm = 0.0f; // ||g||
  8546. float step = 0.0f;
  8547. // initialize x from the graph nodes
  8548. ggml_opt_get_params(np, ps, x);
  8549. // the L-BFGS memory
  8550. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8551. for (int i = 0; i < m; ++i) {
  8552. lm[i].alpha = 0.0f;
  8553. lm[i].ys = 0.0f;
  8554. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8555. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8556. }
  8557. // evaluate the function value and its gradient
  8558. {
  8559. ggml_opt_set_params(np, ps, x);
  8560. ggml_graph_reset (gf);
  8561. ggml_set_f32 (f->grad, 1.0f);
  8562. ggml_graph_compute(ctx, gb);
  8563. ggml_opt_get_grad(np, ps, g);
  8564. fx = ggml_get_f32_1d(f, 0);
  8565. }
  8566. if (pf) {
  8567. pf[0] = fx;
  8568. }
  8569. float fx_best = fx;
  8570. // search direction = -gradient
  8571. ggml_vec_neg_f32(nx, d, g);
  8572. // ||x||, ||g||
  8573. ggml_vec_norm_f32(nx, &xnorm, x);
  8574. ggml_vec_norm_f32(nx, &gnorm, g);
  8575. if (xnorm < 1.0f) {
  8576. xnorm = 1.0f;
  8577. }
  8578. // already optimized
  8579. if (gnorm/xnorm <= params.lbfgs.eps) {
  8580. return GGML_OPT_OK;
  8581. }
  8582. // initial step
  8583. ggml_vec_norm_inv_f32(nx, &step, d);
  8584. int j = 0;
  8585. int k = 1;
  8586. int ls = 0;
  8587. int end = 0;
  8588. int bound = 0;
  8589. int n_no_improvement = 0;
  8590. float ys = 0.0f;
  8591. float yy = 0.0f;
  8592. float beta = 0.0f;
  8593. while (true) {
  8594. // store the current position and gradient vectors
  8595. ggml_vec_cpy_f32(nx, xp, x);
  8596. ggml_vec_cpy_f32(nx, gp, g);
  8597. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8598. if (ls < 0) {
  8599. // linesearch failed - go back to the previous point and return
  8600. ggml_vec_cpy_f32(nx, x, xp);
  8601. ggml_vec_cpy_f32(nx, g, gp);
  8602. return ls;
  8603. }
  8604. ggml_vec_norm_f32(nx, &xnorm, x);
  8605. ggml_vec_norm_f32(nx, &gnorm, g);
  8606. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8607. if (xnorm < 1.0) {
  8608. xnorm = 1.0;
  8609. }
  8610. if (gnorm/xnorm <= params.lbfgs.eps) {
  8611. // converged
  8612. return GGML_OPT_OK;
  8613. }
  8614. // delta-based convergence test
  8615. if (pf != NULL) {
  8616. // need at least params.past iterations to start checking for convergence
  8617. if (params.past <= k) {
  8618. const float rate = (pf[k%params.past] - fx)/fx;
  8619. if (fabs(rate) < params.delta) {
  8620. return GGML_OPT_OK;
  8621. }
  8622. }
  8623. pf[k%params.past] = fx;
  8624. }
  8625. // check for improvement
  8626. if (params.max_no_improvement > 0) {
  8627. if (fx < fx_best) {
  8628. fx_best = fx;
  8629. n_no_improvement = 0;
  8630. } else {
  8631. n_no_improvement++;
  8632. if (n_no_improvement >= params.max_no_improvement) {
  8633. return GGML_OPT_OK;
  8634. }
  8635. }
  8636. }
  8637. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8638. // reached the maximum number of iterations
  8639. return GGML_OPT_DID_NOT_CONVERGE;
  8640. }
  8641. // update vectors s and y:
  8642. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8643. // y_{k+1} = g_{k+1} - g_{k}.
  8644. //
  8645. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8646. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8647. // compute scalars ys and yy:
  8648. // ys = y^t \cdot s -> 1 / \rho.
  8649. // yy = y^t \cdot y.
  8650. //
  8651. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8652. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8653. lm[end].ys = ys;
  8654. // find new search direction
  8655. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8656. bound = (m <= k) ? m : k;
  8657. k++;
  8658. end = (end + 1)%m;
  8659. // initialize search direction with -g
  8660. ggml_vec_neg_f32(nx, d, g);
  8661. j = end;
  8662. for (int i = 0; i < bound; ++i) {
  8663. j = (j + m - 1) % m;
  8664. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8665. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8666. lm[j].alpha /= lm[j].ys;
  8667. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8668. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8669. }
  8670. ggml_vec_scale_f32(nx, d, ys/yy);
  8671. for (int i = 0; i < bound; ++i) {
  8672. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8673. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8674. beta /= lm[j].ys;
  8675. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8676. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8677. j = (j + 1)%m;
  8678. }
  8679. step = 1.0;
  8680. }
  8681. return GGML_OPT_DID_NOT_CONVERGE;
  8682. }
  8683. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8684. struct ggml_opt_params result;
  8685. switch (type) {
  8686. case GGML_OPT_ADAM:
  8687. {
  8688. result = (struct ggml_opt_params) {
  8689. .type = GGML_OPT_ADAM,
  8690. .n_threads = 1,
  8691. .past = 0,
  8692. .delta = 1e-5f,
  8693. .max_no_improvement = 100,
  8694. .print_forward_graph = true,
  8695. .print_backward_graph = true,
  8696. .adam = {
  8697. .n_iter = 10000,
  8698. .alpha = 0.001f,
  8699. .beta1 = 0.9f,
  8700. .beta2 = 0.999f,
  8701. .eps = 1e-8f,
  8702. .eps_f = 1e-5f,
  8703. .eps_g = 1e-3f,
  8704. },
  8705. };
  8706. } break;
  8707. case GGML_OPT_LBFGS:
  8708. {
  8709. result = (struct ggml_opt_params) {
  8710. .type = GGML_OPT_LBFGS,
  8711. .n_threads = 1,
  8712. .past = 0,
  8713. .delta = 1e-5f,
  8714. .max_no_improvement = 0,
  8715. .print_forward_graph = true,
  8716. .print_backward_graph = true,
  8717. .lbfgs = {
  8718. .m = 6,
  8719. .n_iter = 100,
  8720. .max_linesearch = 20,
  8721. .eps = 1e-5f,
  8722. .ftol = 1e-4f,
  8723. .wolfe = 0.9f,
  8724. .min_step = 1e-20f,
  8725. .max_step = 1e+20f,
  8726. .linesearch = GGML_LINESEARCH_DEFAULT,
  8727. },
  8728. };
  8729. } break;
  8730. }
  8731. return result;
  8732. }
  8733. enum ggml_opt_result ggml_opt(
  8734. struct ggml_context * ctx,
  8735. struct ggml_opt_params params,
  8736. struct ggml_tensor * f) {
  8737. bool free_ctx = false;
  8738. if (ctx == NULL) {
  8739. struct ggml_init_params params_ctx = {
  8740. .mem_size = 16*1024*1024,
  8741. .mem_buffer = NULL,
  8742. };
  8743. ctx = ggml_init(params_ctx);
  8744. if (ctx == NULL) {
  8745. return GGML_OPT_NO_CONTEXT;
  8746. }
  8747. free_ctx = true;
  8748. }
  8749. enum ggml_opt_result result = GGML_OPT_OK;
  8750. // build forward + backward compute graphs
  8751. struct ggml_cgraph gf = ggml_build_forward (f);
  8752. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8753. switch (params.type) {
  8754. case GGML_OPT_ADAM:
  8755. {
  8756. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8757. } break;
  8758. case GGML_OPT_LBFGS:
  8759. {
  8760. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8761. } break;
  8762. }
  8763. if (params.print_forward_graph) {
  8764. ggml_graph_print (&gf);
  8765. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8766. }
  8767. if (params.print_backward_graph) {
  8768. ggml_graph_print (&gb);
  8769. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8770. }
  8771. if (free_ctx) {
  8772. ggml_free(ctx);
  8773. }
  8774. return result;
  8775. }
  8776. ////////////////////////////////////////////////////////////////////////////////
  8777. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8778. const int nb = k / qk;
  8779. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8780. const size_t row_size = nb*bs;
  8781. assert(k % qk == 0);
  8782. char * pdst = (char *) dst;
  8783. for (int j = 0; j < n; j += k) {
  8784. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8785. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8786. quantize_row_q4_0_reference(src + j, pd, k);
  8787. for (int i = 0; i < nb; i++) {
  8788. for (int l = 0; l < qk; l += 2) {
  8789. const uint8_t vi0 = pb[l/2] & 0xF;
  8790. const uint8_t vi1 = pb[l/2] >> 4;
  8791. hist[vi0]++;
  8792. hist[vi1]++;
  8793. }
  8794. pb += bs;
  8795. }
  8796. }
  8797. return (n/k)*row_size;
  8798. }
  8799. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8800. const int nb = k / qk;
  8801. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8802. const size_t row_size = nb*bs;
  8803. assert(k % qk == 0);
  8804. char * pdst = (char *) dst;
  8805. for (int j = 0; j < n; j += k) {
  8806. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8807. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8808. quantize_row_q4_1(src + j, pd, k);
  8809. for (int i = 0; i < nb; i++) {
  8810. for (int l = 0; l < qk; l += 2) {
  8811. const uint8_t vi0 = pb[l/2] & 0xF;
  8812. const uint8_t vi1 = pb[l/2] >> 4;
  8813. hist[vi0]++;
  8814. hist[vi1]++;
  8815. }
  8816. pb += bs;
  8817. }
  8818. }
  8819. return (n/k)*row_size;
  8820. }
  8821. ////////////////////////////////////////////////////////////////////////////////
  8822. int ggml_cpu_has_avx(void) {
  8823. #if defined(__AVX__)
  8824. return 1;
  8825. #else
  8826. return 0;
  8827. #endif
  8828. }
  8829. int ggml_cpu_has_avx2(void) {
  8830. #if defined(__AVX2__)
  8831. return 1;
  8832. #else
  8833. return 0;
  8834. #endif
  8835. }
  8836. int ggml_cpu_has_avx512(void) {
  8837. #if defined(__AVX512F__)
  8838. return 1;
  8839. #else
  8840. return 0;
  8841. #endif
  8842. }
  8843. int ggml_cpu_has_fma(void) {
  8844. #if defined(__FMA__)
  8845. return 1;
  8846. #else
  8847. return 0;
  8848. #endif
  8849. }
  8850. int ggml_cpu_has_neon(void) {
  8851. #if defined(__ARM_NEON)
  8852. return 1;
  8853. #else
  8854. return 0;
  8855. #endif
  8856. }
  8857. int ggml_cpu_has_arm_fma(void) {
  8858. #if defined(__ARM_FEATURE_FMA)
  8859. return 1;
  8860. #else
  8861. return 0;
  8862. #endif
  8863. }
  8864. int ggml_cpu_has_f16c(void) {
  8865. #if defined(__F16C__)
  8866. return 1;
  8867. #else
  8868. return 0;
  8869. #endif
  8870. }
  8871. int ggml_cpu_has_fp16_va(void) {
  8872. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8873. return 1;
  8874. #else
  8875. return 0;
  8876. #endif
  8877. }
  8878. int ggml_cpu_has_wasm_simd(void) {
  8879. #if defined(__wasm_simd128__)
  8880. return 1;
  8881. #else
  8882. return 0;
  8883. #endif
  8884. }
  8885. int ggml_cpu_has_blas(void) {
  8886. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8887. return 1;
  8888. #else
  8889. return 0;
  8890. #endif
  8891. }
  8892. int ggml_cpu_has_sse3(void) {
  8893. #if defined(__SSE3__)
  8894. return 1;
  8895. #else
  8896. return 0;
  8897. #endif
  8898. }
  8899. int ggml_cpu_has_vsx(void) {
  8900. #if defined(__POWER9_VECTOR__)
  8901. return 1;
  8902. #else
  8903. return 0;
  8904. #endif
  8905. }
  8906. ////////////////////////////////////////////////////////////////////////////////