| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include <cmath>
- #include <ctime>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- std::vector<float> softmax(const std::vector<float>& logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) max_logit = std::max(max_logit, v);
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
- return probs;
- }
- void perplexity(llama_context * ctx, const gpt_params & params) {
- // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
- // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
- // Output: `perplexity: 13.5106 [114/114]`
- // BOS tokens will be added for each chunk before eval
- auto tokens = ::llama_tokenize(ctx, params.prompt, true);
- int count = 0;
- const int n_chunk = tokens.size() / params.n_ctx;
- const int n_vocab = llama_n_vocab(ctx);
- const int n_batch = params.n_batch;
- double nll = 0.0;
- fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * params.n_ctx;
- const int end = start + params.n_ctx;
- const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (j == 0) {
- tokens[batch_start] = llama_token_bos();
- }
- if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return;
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- const auto batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%d minutes\n", total_seconds / 60);
- }
- // We get the logits for all the tokens in the context window (params.n_ctx)
- // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
- // calculate the perplexity over the last half of the window (so the model always has
- // some context to predict the token).
- //
- // We rely on the fact that attention in the forward pass only looks at previous
- // tokens here, so the logits returned for each token are an accurate representation
- // of what the model would have predicted at that point.
- //
- // Example, we have a context window of 512, we will compute perplexity for each of the
- // last 256 tokens. Then, we split the input up into context window size chunks to
- // process the entire prompt.
- for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[tokens[start + j + 1]];
- nll += -std::log(prob);
- ++count;
- }
- // perplexity is e^(average negative log-likelihood)
- printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
- fflush(stdout);
- }
- printf("\n");
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- params.n_batch = 512;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- params.perplexity = true;
- params.n_batch = std::min(params.n_batch, params.n_ctx);
- if (params.n_ctx > 2048) {
- fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
- "expect poor results\n", __func__, params.n_ctx);
- }
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.random_prompt) {
- params.prompt = gpt_random_prompt(rng);
- }
- llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- // load the model and apply lora adapter, if any
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
- params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
- }
- perplexity(ctx, params);
- llama_print_timings(ctx);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|