server.cpp 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  61. enum error_type {
  62. ERROR_TYPE_INVALID_REQUEST,
  63. ERROR_TYPE_AUTHENTICATION,
  64. ERROR_TYPE_SERVER,
  65. ERROR_TYPE_NOT_FOUND,
  66. ERROR_TYPE_PERMISSION,
  67. ERROR_TYPE_UNAVAILABLE, // custom error
  68. ERROR_TYPE_NOT_SUPPORTED, // custom error
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  73. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  74. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  75. int32_t n_predict = -1; // new tokens to predict
  76. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  77. int64_t t_max_prompt_ms = -1; // TODO: implement
  78. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  79. std::vector<std::string> antiprompt;
  80. bool timings_per_token = false;
  81. bool ignore_eos = false;
  82. struct common_params_sampling sampling;
  83. struct common_params_speculative speculative;
  84. // OAI-compat fields
  85. bool verbose = false;
  86. bool oaicompat = false;
  87. bool oaicompat_chat = true;
  88. std::string oaicompat_model;
  89. std::string oaicompat_cmpl_id;
  90. json to_json() const {
  91. std::vector<std::string> samplers;
  92. samplers.reserve(sampling.samplers.size());
  93. for (const auto & sampler : sampling.samplers) {
  94. samplers.emplace_back(common_sampler_type_to_str(sampler));
  95. }
  96. return json {
  97. {"n_predict", n_predict}, // Server configured n_predict
  98. {"seed", sampling.seed},
  99. {"temperature", sampling.temp},
  100. {"dynatemp_range", sampling.dynatemp_range},
  101. {"dynatemp_exponent", sampling.dynatemp_exponent},
  102. {"top_k", sampling.top_k},
  103. {"top_p", sampling.top_p},
  104. {"min_p", sampling.min_p},
  105. {"xtc_probability", sampling.xtc_probability},
  106. {"xtc_threshold", sampling.xtc_threshold},
  107. {"typical_p", sampling.typ_p},
  108. {"repeat_last_n", sampling.penalty_last_n},
  109. {"repeat_penalty", sampling.penalty_repeat},
  110. {"presence_penalty", sampling.penalty_present},
  111. {"frequency_penalty", sampling.penalty_freq},
  112. {"dry_multiplier", sampling.dry_multiplier},
  113. {"dry_base", sampling.dry_base},
  114. {"dry_allowed_length", sampling.dry_allowed_length},
  115. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  116. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  117. {"mirostat", sampling.mirostat},
  118. {"mirostat_tau", sampling.mirostat_tau},
  119. {"mirostat_eta", sampling.mirostat_eta},
  120. {"penalize_nl", sampling.penalize_nl},
  121. {"stop", antiprompt},
  122. {"max_tokens", n_predict}, // User configured n_predict
  123. {"n_keep", n_keep},
  124. {"n_discard", n_discard},
  125. {"ignore_eos", sampling.ignore_eos},
  126. {"stream", stream},
  127. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  128. {"n_probs", sampling.n_probs},
  129. {"min_keep", sampling.min_keep},
  130. {"grammar", sampling.grammar},
  131. {"samplers", samplers},
  132. {"speculative.n_max", speculative.n_max},
  133. {"speculative.n_min", speculative.n_min},
  134. {"speculative.p_min", speculative.p_min},
  135. {"timings_per_token", timings_per_token},
  136. };
  137. }
  138. };
  139. struct server_task {
  140. int id = -1; // to be filled by server_queue
  141. int index = -1; // used when there are multiple prompts (batch request)
  142. server_task_type type;
  143. // used by SERVER_TASK_TYPE_CANCEL
  144. int id_target = -1;
  145. // used by SERVER_TASK_TYPE_INFERENCE
  146. slot_params params;
  147. llama_tokens prompt_tokens;
  148. int id_selected_slot = -1;
  149. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  150. struct slot_action {
  151. int slot_id;
  152. std::string filename;
  153. std::string filepath;
  154. };
  155. slot_action slot_action;
  156. // used by SERVER_TASK_TYPE_METRICS
  157. bool metrics_reset_bucket = false;
  158. server_task(server_task_type type) : type(type) {}
  159. static slot_params params_from_json_cmpl(
  160. const llama_model * model,
  161. const common_params & params_base,
  162. const json & data) {
  163. slot_params params;
  164. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  165. slot_params defaults;
  166. defaults.sampling = params_base.sampling;
  167. defaults.speculative = params_base.speculative;
  168. // enabling this will output extra debug information in the HTTP responses from the server
  169. params.verbose = params_base.verbosity > 9;
  170. params.timings_per_token = json_value(data, "timings_per_token", false);
  171. params.stream = json_value(data, "stream", false);
  172. params.cache_prompt = json_value(data, "cache_prompt", true);
  173. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  174. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  175. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  176. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  177. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  178. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  179. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  180. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  181. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  182. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  183. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  184. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  185. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  186. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  187. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  188. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  189. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  190. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  191. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  192. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  193. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  194. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  195. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  196. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  197. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  198. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  199. params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl);
  200. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  201. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  202. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  203. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  204. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  205. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  206. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  207. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  208. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  209. if (params.sampling.dry_base < 1.0f) {
  210. params.sampling.dry_base = defaults.sampling.dry_base;
  211. }
  212. // sequence breakers for DRY
  213. {
  214. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  215. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  216. if (data.contains("dry_sequence_breakers")) {
  217. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  218. if (params.sampling.dry_sequence_breakers.empty()) {
  219. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  220. }
  221. }
  222. }
  223. // process "json_schema" and "grammar"
  224. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  225. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  226. }
  227. if (data.contains("json_schema") && !data.contains("grammar")) {
  228. try {
  229. auto schema = json_value(data, "json_schema", json::object());
  230. params.sampling.grammar = json_schema_to_grammar(schema);
  231. } catch (const std::exception & e) {
  232. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  233. }
  234. } else {
  235. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  236. }
  237. {
  238. params.sampling.logit_bias.clear();
  239. params.ignore_eos = json_value(data, "ignore_eos", false);
  240. const auto & logit_bias = data.find("logit_bias");
  241. if (logit_bias != data.end() && logit_bias->is_array()) {
  242. const int n_vocab = llama_n_vocab(model);
  243. for (const auto & el : *logit_bias) {
  244. // TODO: we may want to throw errors here, in case "el" is incorrect
  245. if (el.is_array() && el.size() == 2) {
  246. float bias;
  247. if (el[1].is_number()) {
  248. bias = el[1].get<float>();
  249. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  250. bias = -INFINITY;
  251. } else {
  252. continue;
  253. }
  254. if (el[0].is_number_integer()) {
  255. llama_token tok = el[0].get<llama_token>();
  256. if (tok >= 0 && tok < n_vocab) {
  257. params.sampling.logit_bias.push_back({tok, bias});
  258. }
  259. } else if (el[0].is_string()) {
  260. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  261. for (auto tok : toks) {
  262. params.sampling.logit_bias.push_back({tok, bias});
  263. }
  264. }
  265. }
  266. }
  267. }
  268. }
  269. {
  270. params.antiprompt.clear();
  271. const auto & stop = data.find("stop");
  272. if (stop != data.end() && stop->is_array()) {
  273. for (const auto & word : *stop) {
  274. if (!word.empty()) {
  275. params.antiprompt.push_back(word);
  276. }
  277. }
  278. }
  279. }
  280. {
  281. const auto & samplers = data.find("samplers");
  282. if (samplers != data.end()) {
  283. if (samplers->is_array()) {
  284. std::vector<std::string> sampler_names;
  285. for (const auto & name : *samplers) {
  286. if (name.is_string()) {
  287. sampler_names.emplace_back(name);
  288. }
  289. }
  290. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  291. } else if (samplers->is_string()){
  292. std::string sampler_string;
  293. for (const auto & name : *samplers) {
  294. sampler_string += name;
  295. }
  296. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  297. }
  298. } else {
  299. params.sampling.samplers = defaults.sampling.samplers;
  300. }
  301. }
  302. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  303. params.oaicompat_model = json_value(data, "model", model_name);
  304. return params;
  305. }
  306. // utility function
  307. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  308. std::unordered_set<int> ids(tasks.size());
  309. for (size_t i = 0; i < tasks.size(); i++) {
  310. ids.insert(tasks[i].id);
  311. }
  312. return ids;
  313. }
  314. };
  315. struct result_timings {
  316. int32_t prompt_n = -1;
  317. double prompt_ms;
  318. double prompt_per_token_ms;
  319. double prompt_per_second;
  320. int32_t predicted_n = -1;
  321. double predicted_ms;
  322. double predicted_per_token_ms;
  323. double predicted_per_second;
  324. json to_json() const {
  325. return {
  326. {"prompt_n", prompt_n},
  327. {"prompt_ms", prompt_ms},
  328. {"prompt_per_token_ms", prompt_per_token_ms},
  329. {"prompt_per_second", prompt_per_second},
  330. {"predicted_n", predicted_n},
  331. {"predicted_ms", predicted_ms},
  332. {"predicted_per_token_ms", predicted_per_token_ms},
  333. {"predicted_per_second", predicted_per_second},
  334. };
  335. }
  336. };
  337. struct server_task_result {
  338. int id = -1;
  339. int id_slot = -1;
  340. virtual bool is_error() {
  341. // only used by server_task_result_error
  342. return false;
  343. }
  344. virtual bool is_stop() {
  345. // only used by server_task_result_cmpl_*
  346. return false;
  347. }
  348. virtual int get_index() {
  349. return -1;
  350. }
  351. virtual json to_json() = 0;
  352. virtual ~server_task_result() = default;
  353. };
  354. // using shared_ptr for polymorphism of server_task_result
  355. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  356. inline std::string stop_type_to_str(stop_type type) {
  357. switch (type) {
  358. case STOP_TYPE_EOS: return "eos";
  359. case STOP_TYPE_WORD: return "word";
  360. case STOP_TYPE_LIMIT: return "limit";
  361. default: return "none";
  362. }
  363. }
  364. struct completion_token_output {
  365. llama_token tok;
  366. std::string text_to_send;
  367. struct token_prob {
  368. llama_token tok;
  369. std::string tok_str;
  370. float prob;
  371. };
  372. std::vector<token_prob> probs;
  373. json to_json() const {
  374. json probs_for_token = json::array();
  375. for (const auto & p : probs) {
  376. probs_for_token.push_back(json {
  377. {"tok_str", p.tok_str},
  378. {"prob", p.prob},
  379. });
  380. }
  381. return probs_for_token;
  382. }
  383. static json probs_vector_to_json(const std::vector<completion_token_output> & probs) {
  384. json out = json::array();
  385. for (const auto & prob : probs) {
  386. const std::string tok_str = prob.text_to_send;
  387. out.push_back(json {
  388. {"content", tok_str},
  389. {"probs", prob.to_json()},
  390. });
  391. }
  392. return out;
  393. }
  394. };
  395. struct server_task_result_cmpl_final : server_task_result {
  396. int index = 0;
  397. std::string content;
  398. bool stream;
  399. result_timings timings;
  400. std::string prompt;
  401. bool truncated;
  402. int32_t n_decoded;
  403. int32_t n_prompt_tokens;
  404. int32_t n_tokens_cached;
  405. int32_t has_new_line;
  406. std::string stopping_word;
  407. stop_type stop = STOP_TYPE_NONE;
  408. std::vector<completion_token_output> probs_output;
  409. slot_params generation_params;
  410. // OAI-compat fields
  411. bool verbose = false;
  412. bool oaicompat = false;
  413. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  414. std::string oaicompat_model;
  415. std::string oaicompat_cmpl_id;
  416. virtual int get_index() override {
  417. return index;
  418. }
  419. virtual bool is_stop() override {
  420. return true; // in stream mode, final responses are considered stop
  421. }
  422. virtual json to_json() override {
  423. return oaicompat
  424. ? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
  425. : to_json_non_oaicompat();
  426. }
  427. json to_json_non_oaicompat() {
  428. json res = json {
  429. {"index", index},
  430. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  431. {"id_slot", id_slot},
  432. {"stop", true},
  433. {"model", oaicompat_model},
  434. {"tokens_predicted", n_decoded},
  435. {"tokens_evaluated", n_prompt_tokens},
  436. {"generation_settings", generation_params.to_json()},
  437. {"prompt", prompt},
  438. {"has_new_line", has_new_line},
  439. {"truncated", truncated},
  440. {"stop_type", stop_type_to_str(stop)},
  441. {"stopping_word", stopping_word},
  442. {"tokens_cached", n_tokens_cached},
  443. {"timings", timings.to_json()},
  444. };
  445. if (!probs_output.empty()) {
  446. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  447. }
  448. return res;
  449. }
  450. json to_json_oaicompat_chat() {
  451. std::string finish_reason = "length";
  452. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  453. finish_reason = "stop";
  454. }
  455. json choices = json::array({json{
  456. {"finish_reason", finish_reason},
  457. {"index", 0},
  458. {"message", json{
  459. {"content", content},
  460. {"role", "assistant"}
  461. }
  462. }}});
  463. std::time_t t = std::time(0);
  464. json res = json {
  465. {"choices", choices},
  466. {"created", t},
  467. {"model", oaicompat_model},
  468. {"object", "chat.completion"},
  469. {"usage", json {
  470. {"completion_tokens", n_decoded},
  471. {"prompt_tokens", n_prompt_tokens},
  472. {"total_tokens", n_decoded + n_prompt_tokens}
  473. }},
  474. {"id", oaicompat_cmpl_id}
  475. };
  476. // extra fields for debugging purposes
  477. if (verbose) {
  478. res["__verbose"] = to_json_non_oaicompat();
  479. }
  480. if (timings.prompt_n >= 0) {
  481. res.push_back({"timings", timings.to_json()});
  482. }
  483. return res;
  484. }
  485. json to_json_oaicompat_chat_stream() {
  486. std::time_t t = std::time(0);
  487. std::string finish_reason = "length";
  488. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  489. finish_reason = "stop";
  490. }
  491. json choices = json::array({json{{"finish_reason", finish_reason},
  492. {"index", 0},
  493. {"delta", json::object()}}});
  494. json ret = json {
  495. {"choices", choices},
  496. {"created", t},
  497. {"id", oaicompat_cmpl_id},
  498. {"model", oaicompat_model},
  499. {"object", "chat.completion.chunk"},
  500. {"usage", json {
  501. {"completion_tokens", n_decoded},
  502. {"prompt_tokens", n_prompt_tokens},
  503. {"total_tokens", n_decoded + n_prompt_tokens},
  504. }},
  505. };
  506. if (timings.prompt_n >= 0) {
  507. ret.push_back({"timings", timings.to_json()});
  508. }
  509. return ret;
  510. }
  511. };
  512. struct server_task_result_cmpl_partial : server_task_result {
  513. int index = 0;
  514. std::string content;
  515. int32_t n_decoded;
  516. int32_t n_prompt_tokens;
  517. std::vector<completion_token_output> probs_output;
  518. result_timings timings;
  519. // OAI-compat fields
  520. bool verbose = false;
  521. bool oaicompat = false;
  522. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  523. std::string oaicompat_model;
  524. std::string oaicompat_cmpl_id;
  525. virtual int get_index() override {
  526. return index;
  527. }
  528. virtual bool is_stop() override {
  529. return false; // in stream mode, partial responses are not considered stop
  530. }
  531. virtual json to_json() override {
  532. return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
  533. }
  534. json to_json_non_oaicompat() {
  535. // non-OAI-compat JSON
  536. json res = json {
  537. {"index", index},
  538. {"content", content},
  539. {"stop", false},
  540. {"id_slot", id_slot},
  541. {"tokens_predicted", n_decoded},
  542. {"tokens_evaluated", n_prompt_tokens},
  543. };
  544. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  545. if (timings.prompt_n > 0) {
  546. res.push_back({"timings", timings.to_json()});
  547. }
  548. if (!probs_output.empty()) {
  549. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  550. }
  551. return res;
  552. }
  553. json to_json_oaicompat() {
  554. bool first = n_decoded == 0;
  555. std::time_t t = std::time(0);
  556. json choices;
  557. if (first) {
  558. if (content.empty()) {
  559. choices = json::array({json{{"finish_reason", nullptr},
  560. {"index", 0},
  561. {"delta", json{{"role", "assistant"}}}}});
  562. } else {
  563. // We have to send this as two updates to conform to openai behavior
  564. json initial_ret = json{{"choices", json::array({json{
  565. {"finish_reason", nullptr},
  566. {"index", 0},
  567. {"delta", json{
  568. {"role", "assistant"}
  569. }}}})},
  570. {"created", t},
  571. {"id", oaicompat_cmpl_id},
  572. {"model", oaicompat_model},
  573. {"object", "chat.completion.chunk"}};
  574. json second_ret = json{
  575. {"choices", json::array({json{{"finish_reason", nullptr},
  576. {"index", 0},
  577. {"delta", json{
  578. {"content", content}}}
  579. }})},
  580. {"created", t},
  581. {"id", oaicompat_cmpl_id},
  582. {"model", oaicompat_model},
  583. {"object", "chat.completion.chunk"}};
  584. return std::vector<json>({initial_ret, second_ret});
  585. }
  586. } else {
  587. choices = json::array({json{
  588. {"finish_reason", nullptr},
  589. {"index", 0},
  590. {"delta",
  591. json{
  592. {"content", content},
  593. }},
  594. }});
  595. }
  596. json ret = json {
  597. {"choices", choices},
  598. {"created", t},
  599. {"id", oaicompat_cmpl_id},
  600. {"model", oaicompat_model},
  601. {"object", "chat.completion.chunk"}
  602. };
  603. if (timings.prompt_n >= 0) {
  604. ret.push_back({"timings", timings.to_json()});
  605. }
  606. return std::vector<json>({ret});
  607. }
  608. };
  609. struct server_task_result_embd : server_task_result {
  610. int index = 0;
  611. std::vector<float> embedding;
  612. virtual int get_index() override {
  613. return index;
  614. }
  615. virtual json to_json() override {
  616. return json {
  617. {"index", index},
  618. {"embedding", embedding},
  619. };
  620. }
  621. };
  622. struct server_task_result_rerank : server_task_result {
  623. int index = 0;
  624. float score = -1e6;
  625. virtual int get_index() override {
  626. return index;
  627. }
  628. virtual json to_json() override {
  629. return json {
  630. {"index", index},
  631. {"score", score},
  632. };
  633. }
  634. };
  635. // this function maybe used outside of server_task_result_error
  636. static json format_error_response(const std::string & message, const enum error_type type) {
  637. std::string type_str;
  638. int code = 500;
  639. switch (type) {
  640. case ERROR_TYPE_INVALID_REQUEST:
  641. type_str = "invalid_request_error";
  642. code = 400;
  643. break;
  644. case ERROR_TYPE_AUTHENTICATION:
  645. type_str = "authentication_error";
  646. code = 401;
  647. break;
  648. case ERROR_TYPE_NOT_FOUND:
  649. type_str = "not_found_error";
  650. code = 404;
  651. break;
  652. case ERROR_TYPE_SERVER:
  653. type_str = "server_error";
  654. code = 500;
  655. break;
  656. case ERROR_TYPE_PERMISSION:
  657. type_str = "permission_error";
  658. code = 403;
  659. break;
  660. case ERROR_TYPE_NOT_SUPPORTED:
  661. type_str = "not_supported_error";
  662. code = 501;
  663. break;
  664. case ERROR_TYPE_UNAVAILABLE:
  665. type_str = "unavailable_error";
  666. code = 503;
  667. break;
  668. }
  669. return json {
  670. {"code", code},
  671. {"message", message},
  672. {"type", type_str},
  673. };
  674. }
  675. struct server_task_result_error : server_task_result {
  676. int index = 0;
  677. error_type err_type = ERROR_TYPE_SERVER;
  678. std::string err_msg;
  679. virtual bool is_error() override {
  680. return true;
  681. }
  682. virtual json to_json() override {
  683. return format_error_response(err_msg, err_type);
  684. }
  685. };
  686. struct server_task_result_metrics : server_task_result {
  687. int n_idle_slots;
  688. int n_processing_slots;
  689. int n_tasks_deferred;
  690. int64_t t_start;
  691. int32_t kv_cache_tokens_count;
  692. int32_t kv_cache_used_cells;
  693. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  694. uint64_t n_prompt_tokens_processed_total = 0;
  695. uint64_t t_prompt_processing_total = 0;
  696. uint64_t n_tokens_predicted_total = 0;
  697. uint64_t t_tokens_generation_total = 0;
  698. uint64_t n_prompt_tokens_processed = 0;
  699. uint64_t t_prompt_processing = 0;
  700. uint64_t n_tokens_predicted = 0;
  701. uint64_t t_tokens_generation = 0;
  702. uint64_t n_decode_total = 0;
  703. uint64_t n_busy_slots_total = 0;
  704. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  705. // therefore, we use json to temporarily store the slot.to_json() result
  706. json slots_data = json::array();
  707. virtual json to_json() override {
  708. return json {
  709. { "idle", n_idle_slots },
  710. { "processing", n_processing_slots },
  711. { "deferred", n_tasks_deferred },
  712. { "t_start", t_start },
  713. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  714. { "t_tokens_generation_total", t_tokens_generation_total },
  715. { "n_tokens_predicted_total", n_tokens_predicted_total },
  716. { "t_prompt_processing_total", t_prompt_processing_total },
  717. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  718. { "t_prompt_processing", t_prompt_processing },
  719. { "n_tokens_predicted", n_tokens_predicted },
  720. { "t_tokens_generation", t_tokens_generation },
  721. { "n_decode_total", n_decode_total },
  722. { "n_busy_slots_total", n_busy_slots_total },
  723. { "kv_cache_tokens_count", kv_cache_tokens_count },
  724. { "kv_cache_used_cells", kv_cache_used_cells },
  725. { "slots", slots_data },
  726. };
  727. }
  728. };
  729. struct server_task_result_slot_save_load : server_task_result {
  730. std::string filename;
  731. bool is_save; // true = save, false = load
  732. size_t n_tokens;
  733. size_t n_bytes;
  734. double t_ms;
  735. virtual json to_json() override {
  736. if (is_save) {
  737. return json {
  738. { "id_slot", id_slot },
  739. { "filename", filename },
  740. { "n_saved", n_tokens },
  741. { "n_written", n_bytes },
  742. { "timings", {
  743. { "save_ms", t_ms }
  744. }},
  745. };
  746. } else {
  747. return json {
  748. { "id_slot", id_slot },
  749. { "filename", filename },
  750. { "n_restored", n_tokens },
  751. { "n_read", n_bytes },
  752. { "timings", {
  753. { "restore_ms", t_ms }
  754. }},
  755. };
  756. }
  757. }
  758. };
  759. struct server_task_result_slot_erase : server_task_result {
  760. size_t n_erased;
  761. virtual json to_json() override {
  762. return json {
  763. { "id_slot", id_slot },
  764. { "n_erased", n_erased },
  765. };
  766. }
  767. };
  768. struct server_task_result_apply_lora : server_task_result {
  769. virtual json to_json() override {
  770. return json {{ "success", true }};
  771. }
  772. };
  773. struct server_slot {
  774. int id;
  775. int id_task = -1;
  776. // only used for completion/embedding/infill/rerank
  777. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  778. llama_batch batch_spec = {};
  779. llama_context * ctx = nullptr;
  780. llama_context * ctx_dft = nullptr;
  781. common_speculative * spec = nullptr;
  782. // the index relative to completion multi-task request
  783. size_t index = 0;
  784. struct slot_params params;
  785. slot_state state = SLOT_STATE_IDLE;
  786. // used to determine the slot that has been used the longest
  787. int64_t t_last_used = -1;
  788. // generation props
  789. int32_t n_ctx = 0; // context size per slot
  790. int32_t n_past = 0;
  791. int32_t n_decoded = 0;
  792. int32_t n_remaining = -1;
  793. int32_t i_batch = -1;
  794. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  795. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  796. int32_t n_prompt_tokens = 0;
  797. int32_t n_prompt_tokens_processed = 0;
  798. // input prompt tokens
  799. llama_tokens prompt_tokens;
  800. size_t last_nl_pos = 0;
  801. std::string generated_text;
  802. llama_tokens cache_tokens;
  803. std::vector<completion_token_output> generated_token_probs;
  804. bool has_next_token = true;
  805. bool has_new_line = false;
  806. bool truncated = false;
  807. stop_type stop;
  808. std::string stopping_word;
  809. // sampling
  810. json json_schema;
  811. struct common_sampler * smpl = nullptr;
  812. llama_token sampled;
  813. // stats
  814. size_t n_sent_text = 0; // number of sent text character
  815. size_t n_sent_token_probs = 0;
  816. int64_t t_start_process_prompt;
  817. int64_t t_start_generation;
  818. double t_prompt_processing; // ms
  819. double t_token_generation; // ms
  820. std::function<void(int)> callback_on_release;
  821. void reset() {
  822. SLT_DBG(*this, "%s", "\n");
  823. n_prompt_tokens = 0;
  824. last_nl_pos = 0;
  825. generated_text = "";
  826. has_new_line = false;
  827. truncated = false;
  828. stop = STOP_TYPE_NONE;
  829. stopping_word = "";
  830. n_past = 0;
  831. n_sent_text = 0;
  832. n_sent_token_probs = 0;
  833. task_type = SERVER_TASK_TYPE_COMPLETION;
  834. generated_token_probs.clear();
  835. }
  836. bool is_non_causal() const {
  837. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  838. }
  839. bool has_budget(const common_params & global_params) {
  840. if (params.n_predict == -1 && global_params.n_predict == -1) {
  841. return true; // limitless
  842. }
  843. n_remaining = -1;
  844. if (params.n_predict != -1) {
  845. n_remaining = params.n_predict - n_decoded;
  846. } else if (global_params.n_predict != -1) {
  847. n_remaining = global_params.n_predict - n_decoded;
  848. }
  849. return n_remaining > 0; // no budget
  850. }
  851. bool is_processing() const {
  852. return state != SLOT_STATE_IDLE;
  853. }
  854. bool can_speculate() const {
  855. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  856. }
  857. void add_token(const completion_token_output & token) {
  858. if (!is_processing()) {
  859. SLT_WRN(*this, "%s", "slot is not processing\n");
  860. return;
  861. }
  862. generated_token_probs.push_back(token);
  863. }
  864. void release() {
  865. if (is_processing()) {
  866. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  867. t_last_used = ggml_time_us();
  868. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  869. state = SLOT_STATE_IDLE;
  870. callback_on_release(id);
  871. }
  872. }
  873. result_timings get_timings() const {
  874. result_timings timings;
  875. timings.prompt_n = n_prompt_tokens_processed;
  876. timings.prompt_ms = t_prompt_processing;
  877. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  878. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  879. timings.predicted_n = n_decoded;
  880. timings.predicted_ms = t_token_generation;
  881. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  882. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  883. return timings;
  884. }
  885. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  886. size_t stop_pos = std::string::npos;
  887. for (const std::string & word : params.antiprompt) {
  888. size_t pos;
  889. if (is_full_stop) {
  890. const size_t tmp = word.size() + last_token_size;
  891. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  892. pos = text.find(word, from_pos);
  893. } else {
  894. // otherwise, partial stop
  895. pos = find_partial_stop_string(word, text);
  896. }
  897. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  898. if (is_full_stop) {
  899. stop = STOP_TYPE_WORD;
  900. stopping_word = word;
  901. has_next_token = false;
  902. }
  903. stop_pos = pos;
  904. }
  905. }
  906. return stop_pos;
  907. }
  908. void print_timings() const {
  909. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  910. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  911. const double t_gen = t_token_generation / n_decoded;
  912. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  913. SLT_INF(*this,
  914. "\n"
  915. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  916. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  917. " total time = %10.2f ms / %5d tokens\n",
  918. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  919. t_token_generation, n_decoded, t_gen, n_gen_second,
  920. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  921. }
  922. json to_json() const {
  923. return json {
  924. {"id", id},
  925. {"id_task", id_task},
  926. {"n_ctx", n_ctx},
  927. {"speculative", can_speculate()},
  928. {"is_processing", is_processing()},
  929. {"non_causal", is_non_causal()},
  930. {"params", params.to_json()},
  931. {"prompt", common_detokenize(ctx, prompt_tokens)},
  932. {"next_token",
  933. {
  934. {"has_next_token", has_next_token},
  935. {"has_new_line", has_new_line},
  936. {"n_remain", n_remaining},
  937. {"n_decoded", n_decoded},
  938. {"stopping_word", stopping_word},
  939. }
  940. },
  941. };
  942. }
  943. };
  944. struct server_metrics {
  945. int64_t t_start = 0;
  946. uint64_t n_prompt_tokens_processed_total = 0;
  947. uint64_t t_prompt_processing_total = 0;
  948. uint64_t n_tokens_predicted_total = 0;
  949. uint64_t t_tokens_generation_total = 0;
  950. uint64_t n_prompt_tokens_processed = 0;
  951. uint64_t t_prompt_processing = 0;
  952. uint64_t n_tokens_predicted = 0;
  953. uint64_t t_tokens_generation = 0;
  954. uint64_t n_decode_total = 0;
  955. uint64_t n_busy_slots_total = 0;
  956. void init() {
  957. t_start = ggml_time_us();
  958. }
  959. void on_prompt_eval(const server_slot & slot) {
  960. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  961. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  962. t_prompt_processing += slot.t_prompt_processing;
  963. t_prompt_processing_total += slot.t_prompt_processing;
  964. }
  965. void on_prediction(const server_slot & slot) {
  966. n_tokens_predicted_total += slot.n_decoded;
  967. n_tokens_predicted += slot.n_decoded;
  968. t_tokens_generation += slot.t_token_generation;
  969. t_tokens_generation_total += slot.t_token_generation;
  970. }
  971. void on_decoded(const std::vector<server_slot> & slots) {
  972. n_decode_total++;
  973. for (const auto & slot : slots) {
  974. if (slot.is_processing()) {
  975. n_busy_slots_total++;
  976. }
  977. }
  978. }
  979. void reset_bucket() {
  980. n_prompt_tokens_processed = 0;
  981. t_prompt_processing = 0;
  982. n_tokens_predicted = 0;
  983. t_tokens_generation = 0;
  984. }
  985. };
  986. struct server_queue {
  987. int id = 0;
  988. bool running;
  989. // queues
  990. std::deque<server_task> queue_tasks;
  991. std::deque<server_task> queue_tasks_deferred;
  992. std::mutex mutex_tasks;
  993. std::condition_variable condition_tasks;
  994. // callback functions
  995. std::function<void(server_task)> callback_new_task;
  996. std::function<void(void)> callback_update_slots;
  997. // Add a new task to the end of the queue
  998. int post(server_task task, bool front = false) {
  999. std::unique_lock<std::mutex> lock(mutex_tasks);
  1000. GGML_ASSERT(task.id != -1);
  1001. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1002. if (front) {
  1003. queue_tasks.push_front(std::move(task));
  1004. } else {
  1005. queue_tasks.push_back(std::move(task));
  1006. }
  1007. condition_tasks.notify_one();
  1008. return task.id;
  1009. }
  1010. // multi-task version of post()
  1011. int post(std::vector<server_task> & tasks, bool front = false) {
  1012. std::unique_lock<std::mutex> lock(mutex_tasks);
  1013. for (auto & task : tasks) {
  1014. if (task.id == -1) {
  1015. task.id = id++;
  1016. }
  1017. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1018. if (front) {
  1019. queue_tasks.push_front(std::move(task));
  1020. } else {
  1021. queue_tasks.push_back(std::move(task));
  1022. }
  1023. }
  1024. condition_tasks.notify_one();
  1025. return 0;
  1026. }
  1027. // Add a new task, but defer until one slot is available
  1028. void defer(server_task task) {
  1029. std::unique_lock<std::mutex> lock(mutex_tasks);
  1030. QUE_DBG("defer task, id = %d\n", task.id);
  1031. queue_tasks_deferred.push_back(std::move(task));
  1032. condition_tasks.notify_one();
  1033. }
  1034. // Get the next id for creating a new task
  1035. int get_new_id() {
  1036. std::unique_lock<std::mutex> lock(mutex_tasks);
  1037. int new_id = id++;
  1038. return new_id;
  1039. }
  1040. // Register function to process a new task
  1041. void on_new_task(std::function<void(server_task)> callback) {
  1042. callback_new_task = std::move(callback);
  1043. }
  1044. // Register the function to be called when all slots data is ready to be processed
  1045. void on_update_slots(std::function<void(void)> callback) {
  1046. callback_update_slots = std::move(callback);
  1047. }
  1048. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1049. void pop_deferred_task() {
  1050. std::unique_lock<std::mutex> lock(mutex_tasks);
  1051. if (!queue_tasks_deferred.empty()) {
  1052. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1053. queue_tasks_deferred.pop_front();
  1054. }
  1055. condition_tasks.notify_one();
  1056. }
  1057. // end the start_loop routine
  1058. void terminate() {
  1059. std::unique_lock<std::mutex> lock(mutex_tasks);
  1060. running = false;
  1061. condition_tasks.notify_all();
  1062. }
  1063. /**
  1064. * Main loop consists of these steps:
  1065. * - Wait until a new task arrives
  1066. * - Process the task (i.e. maybe copy data into slot)
  1067. * - Check if multitask is finished
  1068. * - Update all slots
  1069. */
  1070. void start_loop() {
  1071. running = true;
  1072. while (true) {
  1073. QUE_DBG("%s", "processing new tasks\n");
  1074. while (true) {
  1075. std::unique_lock<std::mutex> lock(mutex_tasks);
  1076. if (queue_tasks.empty()) {
  1077. lock.unlock();
  1078. break;
  1079. }
  1080. server_task task = queue_tasks.front();
  1081. queue_tasks.pop_front();
  1082. lock.unlock();
  1083. QUE_DBG("processing task, id = %d\n", task.id);
  1084. callback_new_task(std::move(task));
  1085. }
  1086. // all tasks in the current loop is processed, slots data is now ready
  1087. QUE_DBG("%s", "update slots\n");
  1088. callback_update_slots();
  1089. QUE_DBG("%s", "waiting for new tasks\n");
  1090. {
  1091. std::unique_lock<std::mutex> lock(mutex_tasks);
  1092. if (queue_tasks.empty()) {
  1093. if (!running) {
  1094. QUE_DBG("%s", "terminate\n");
  1095. return;
  1096. }
  1097. condition_tasks.wait(lock, [&]{
  1098. return (!queue_tasks.empty() || !running);
  1099. });
  1100. }
  1101. }
  1102. }
  1103. }
  1104. };
  1105. struct server_response {
  1106. // for keeping track of all tasks waiting for the result
  1107. std::unordered_set<int> waiting_task_ids;
  1108. // the main result queue (using ptr for polymorphism)
  1109. std::vector<server_task_result_ptr> queue_results;
  1110. std::mutex mutex_results;
  1111. std::condition_variable condition_results;
  1112. // add the id_task to the list of tasks waiting for response
  1113. void add_waiting_task_id(int id_task) {
  1114. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1115. std::unique_lock<std::mutex> lock(mutex_results);
  1116. waiting_task_ids.insert(id_task);
  1117. }
  1118. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1119. std::unique_lock<std::mutex> lock(mutex_results);
  1120. for (const auto & task : tasks) {
  1121. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1122. waiting_task_ids.insert(task.id);
  1123. }
  1124. }
  1125. // when the request is finished, we can remove task associated with it
  1126. void remove_waiting_task_id(int id_task) {
  1127. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1128. std::unique_lock<std::mutex> lock(mutex_results);
  1129. waiting_task_ids.erase(id_task);
  1130. }
  1131. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1132. std::unique_lock<std::mutex> lock(mutex_results);
  1133. for (const auto & id_task : id_tasks) {
  1134. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1135. waiting_task_ids.erase(id_task);
  1136. }
  1137. }
  1138. // This function blocks the thread until there is a response for one of the id_tasks
  1139. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1140. while (true) {
  1141. std::unique_lock<std::mutex> lock(mutex_results);
  1142. condition_results.wait(lock, [&]{
  1143. return !queue_results.empty();
  1144. });
  1145. for (int i = 0; i < (int) queue_results.size(); i++) {
  1146. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1147. server_task_result_ptr res = std::move(queue_results[i]);
  1148. queue_results.erase(queue_results.begin() + i);
  1149. return res;
  1150. }
  1151. }
  1152. }
  1153. // should never reach here
  1154. }
  1155. // single-task version of recv()
  1156. server_task_result_ptr recv(int id_task) {
  1157. std::unordered_set<int> id_tasks = {id_task};
  1158. return recv(id_tasks);
  1159. }
  1160. // Send a new result to a waiting id_task
  1161. void send(server_task_result_ptr && result) {
  1162. SRV_DBG("sending result for task id = %d\n", result->id);
  1163. std::unique_lock<std::mutex> lock(mutex_results);
  1164. for (const auto & id_task : waiting_task_ids) {
  1165. if (result->id == id_task) {
  1166. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1167. queue_results.emplace_back(std::move(result));
  1168. condition_results.notify_all();
  1169. return;
  1170. }
  1171. }
  1172. }
  1173. };
  1174. struct server_context {
  1175. common_params params_base;
  1176. llama_model * model = nullptr;
  1177. llama_context * ctx = nullptr;
  1178. std::vector<common_lora_adapter_container> loras;
  1179. llama_model * model_dft = nullptr;
  1180. llama_context_params cparams_dft;
  1181. llama_batch batch = {};
  1182. bool clean_kv_cache = true;
  1183. bool add_bos_token = true;
  1184. bool has_eos_token = false;
  1185. int32_t n_ctx; // total context for all clients / slots
  1186. // slots / clients
  1187. std::vector<server_slot> slots;
  1188. json default_generation_settings_for_props;
  1189. server_queue queue_tasks;
  1190. server_response queue_results;
  1191. server_metrics metrics;
  1192. // Necessary similarity of prompt for slot selection
  1193. float slot_prompt_similarity = 0.0f;
  1194. ~server_context() {
  1195. if (ctx) {
  1196. llama_free(ctx);
  1197. ctx = nullptr;
  1198. }
  1199. if (model) {
  1200. llama_free_model(model);
  1201. model = nullptr;
  1202. }
  1203. if (model_dft) {
  1204. llama_free_model(model_dft);
  1205. model_dft = nullptr;
  1206. }
  1207. // Clear any sampling context
  1208. for (server_slot & slot : slots) {
  1209. common_sampler_free(slot.smpl);
  1210. slot.smpl = nullptr;
  1211. llama_free(slot.ctx_dft);
  1212. slot.ctx_dft = nullptr;
  1213. common_speculative_free(slot.spec);
  1214. slot.spec = nullptr;
  1215. llama_batch_free(slot.batch_spec);
  1216. }
  1217. llama_batch_free(batch);
  1218. }
  1219. bool load_model(const common_params & params) {
  1220. SRV_INF("loading model '%s'\n", params.model.c_str());
  1221. params_base = params;
  1222. common_init_result llama_init = common_init_from_params(params_base);
  1223. model = llama_init.model;
  1224. ctx = llama_init.context;
  1225. loras = llama_init.lora_adapters;
  1226. if (model == nullptr) {
  1227. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1228. return false;
  1229. }
  1230. n_ctx = llama_n_ctx(ctx);
  1231. add_bos_token = llama_add_bos_token(model);
  1232. has_eos_token = !llama_add_eos_token(model);
  1233. if (!params_base.speculative.model.empty()) {
  1234. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1235. auto params_dft = params_base;
  1236. params_dft.devices = params_base.speculative.devices;
  1237. params_dft.model = params_base.speculative.model;
  1238. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1239. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1240. params_dft.n_parallel = 1;
  1241. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1242. model_dft = llama_init_dft.model;
  1243. if (model_dft == nullptr) {
  1244. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1245. return false;
  1246. }
  1247. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1248. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1249. llama_free (llama_init_dft.context);
  1250. llama_free_model(llama_init_dft.model);
  1251. return false;
  1252. }
  1253. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1254. cparams_dft = common_context_params_to_llama(params_dft);
  1255. cparams_dft.n_batch = n_ctx_dft;
  1256. // force F16 KV cache for the draft model for extra performance
  1257. cparams_dft.type_k = GGML_TYPE_F16;
  1258. cparams_dft.type_v = GGML_TYPE_F16;
  1259. // the context is not needed - we will create one for each slot
  1260. llama_free(llama_init_dft.context);
  1261. }
  1262. return true;
  1263. }
  1264. bool validate_model_chat_template() const {
  1265. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1266. std::string template_key = "tokenizer.chat_template";
  1267. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1268. if (res >= 0) {
  1269. llama_chat_message chat[] = {{"user", "test"}};
  1270. std::string tmpl = std::string(model_template.data(), model_template.size());
  1271. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1272. return chat_res > 0;
  1273. }
  1274. return false;
  1275. }
  1276. void init() {
  1277. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1278. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1279. for (int i = 0; i < params_base.n_parallel; i++) {
  1280. server_slot slot;
  1281. slot.id = i;
  1282. slot.ctx = ctx;
  1283. slot.n_ctx = n_ctx_slot;
  1284. slot.n_predict = params_base.n_predict;
  1285. if (model_dft) {
  1286. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1287. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1288. if (slot.ctx_dft == nullptr) {
  1289. SRV_ERR("%s", "failed to create draft context\n");
  1290. return;
  1291. }
  1292. slot.spec = common_speculative_init(slot.ctx_dft);
  1293. if (slot.spec == nullptr) {
  1294. SRV_ERR("%s", "failed to create speculator\n");
  1295. return;
  1296. }
  1297. }
  1298. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1299. slot.params.sampling = params_base.sampling;
  1300. slot.callback_on_release = [this](int) {
  1301. queue_tasks.pop_deferred_task();
  1302. };
  1303. slot.reset();
  1304. slots.push_back(slot);
  1305. }
  1306. default_generation_settings_for_props = slots[0].to_json();
  1307. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1308. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1309. {
  1310. const int32_t n_batch = llama_n_batch(ctx);
  1311. // only a single seq_id per token is needed
  1312. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1313. }
  1314. metrics.init();
  1315. }
  1316. server_slot * get_slot_by_id(int id) {
  1317. for (server_slot & slot : slots) {
  1318. if (slot.id == id) {
  1319. return &slot;
  1320. }
  1321. }
  1322. return nullptr;
  1323. }
  1324. server_slot * get_available_slot(const server_task & task) {
  1325. server_slot * ret = nullptr;
  1326. // find the slot that has at least n% prompt similarity
  1327. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1328. int lcs_len = 0;
  1329. float similarity = 0;
  1330. for (server_slot & slot : slots) {
  1331. // skip the slot if it is not available
  1332. if (slot.is_processing()) {
  1333. continue;
  1334. }
  1335. // skip the slot if it does not contains cached tokens
  1336. if (slot.cache_tokens.empty()) {
  1337. continue;
  1338. }
  1339. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1340. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1341. // fraction of the common subsequence length compared to the current slot's prompt length
  1342. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1343. // select the current slot if the criteria match
  1344. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1345. lcs_len = cur_lcs_len;
  1346. similarity = cur_similarity;
  1347. ret = &slot;
  1348. }
  1349. }
  1350. if (ret != nullptr) {
  1351. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1352. }
  1353. }
  1354. // find the slot that has been least recently used
  1355. if (ret == nullptr) {
  1356. int64_t t_last = ggml_time_us();
  1357. for (server_slot & slot : slots) {
  1358. // skip the slot if it is not available
  1359. if (slot.is_processing()) {
  1360. continue;
  1361. }
  1362. // select the current slot if the criteria match
  1363. if (slot.t_last_used < t_last) {
  1364. t_last = slot.t_last_used;
  1365. ret = &slot;
  1366. }
  1367. }
  1368. if (ret != nullptr) {
  1369. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1370. }
  1371. }
  1372. return ret;
  1373. }
  1374. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1375. slot.reset();
  1376. slot.id_task = task.id;
  1377. slot.index = task.index;
  1378. slot.task_type = task.type;
  1379. slot.params = std::move(task.params);
  1380. slot.prompt_tokens = std::move(task.prompt_tokens);
  1381. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1382. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1383. // Might be better to reject the request with a 400 ?
  1384. slot.params.n_predict = slot.n_predict;
  1385. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1386. }
  1387. if (slot.params.ignore_eos && has_eos_token) {
  1388. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1389. }
  1390. {
  1391. if (slot.smpl != nullptr) {
  1392. common_sampler_free(slot.smpl);
  1393. }
  1394. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1395. if (slot.smpl == nullptr) {
  1396. // for now, the only error that may happen here is invalid grammar
  1397. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1398. return false;
  1399. }
  1400. }
  1401. if (slot.ctx_dft) {
  1402. llama_batch_free(slot.batch_spec);
  1403. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1404. }
  1405. slot.state = SLOT_STATE_STARTED;
  1406. SLT_INF(slot, "%s", "processing task\n");
  1407. return true;
  1408. }
  1409. void kv_cache_clear() {
  1410. SRV_DBG("%s", "clearing KV cache\n");
  1411. // clear the entire KV cache
  1412. llama_kv_cache_clear(ctx);
  1413. clean_kv_cache = false;
  1414. }
  1415. bool process_token(completion_token_output & result, server_slot & slot) {
  1416. // remember which tokens were sampled - used for repetition penalties during sampling
  1417. const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
  1418. slot.sampled = result.tok;
  1419. // search stop word and delete it
  1420. slot.generated_text += token_str;
  1421. slot.has_next_token = true;
  1422. // check if there is incomplete UTF-8 character at the end
  1423. bool incomplete = false;
  1424. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  1425. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  1426. if ((c & 0xC0) == 0x80) {
  1427. // continuation byte: 10xxxxxx
  1428. continue;
  1429. }
  1430. if ((c & 0xE0) == 0xC0) {
  1431. // 2-byte character: 110xxxxx ...
  1432. incomplete = i < 2;
  1433. } else if ((c & 0xF0) == 0xE0) {
  1434. // 3-byte character: 1110xxxx ...
  1435. incomplete = i < 3;
  1436. } else if ((c & 0xF8) == 0xF0) {
  1437. // 4-byte character: 11110xxx ...
  1438. incomplete = i < 4;
  1439. }
  1440. // else 1-byte character or invalid byte
  1441. break;
  1442. }
  1443. if (!incomplete) {
  1444. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1445. const std::string str_test = slot.generated_text.substr(pos);
  1446. bool send_text = true;
  1447. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1448. if (stop_pos != std::string::npos) {
  1449. slot.generated_text.erase(
  1450. slot.generated_text.begin() + pos + stop_pos,
  1451. slot.generated_text.end());
  1452. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1453. } else if (slot.has_next_token) {
  1454. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1455. send_text = stop_pos == std::string::npos;
  1456. }
  1457. // check if there is any token to predict
  1458. if (send_text) {
  1459. // no send the stop word in the response
  1460. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1461. slot.n_sent_text += result.text_to_send.size();
  1462. // add the token to slot queue and cache
  1463. }
  1464. slot.add_token(result);
  1465. if (slot.params.stream) {
  1466. send_partial_response(slot, result);
  1467. }
  1468. }
  1469. if (incomplete) {
  1470. slot.has_next_token = true;
  1471. }
  1472. // check the limits
  1473. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1474. slot.stop = STOP_TYPE_LIMIT;
  1475. slot.has_next_token = false;
  1476. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1477. }
  1478. if (slot.has_new_line) {
  1479. // if we have already seen a new line, we stop after a certain time limit
  1480. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1481. slot.stop = STOP_TYPE_LIMIT;
  1482. slot.has_next_token = false;
  1483. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1484. }
  1485. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1486. if (slot.params.n_indent > 0) {
  1487. // check the current indentation
  1488. // TODO: improve by not doing it more than once for each new line
  1489. if (slot.last_nl_pos > 0) {
  1490. size_t pos = slot.last_nl_pos;
  1491. int n_indent = 0;
  1492. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1493. n_indent++;
  1494. pos++;
  1495. }
  1496. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1497. slot.stop = STOP_TYPE_LIMIT;
  1498. slot.has_next_token = false;
  1499. // cut the last line
  1500. slot.generated_text.erase(pos, std::string::npos);
  1501. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1502. }
  1503. }
  1504. // find the next new line
  1505. {
  1506. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1507. if (pos != std::string::npos) {
  1508. slot.last_nl_pos = pos + 1;
  1509. }
  1510. }
  1511. }
  1512. }
  1513. // check if there is a new line in the generated text
  1514. if (result.text_to_send.find('\n') != std::string::npos) {
  1515. slot.has_new_line = true;
  1516. }
  1517. // if context shift is disabled, we stop when it reaches the context limit
  1518. if (slot.n_past >= slot.n_ctx) {
  1519. slot.truncated = true;
  1520. slot.stop = STOP_TYPE_LIMIT;
  1521. slot.has_next_token = false;
  1522. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1523. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1524. }
  1525. if (llama_token_is_eog(model, result.tok)) {
  1526. slot.stop = STOP_TYPE_EOS;
  1527. slot.has_next_token = false;
  1528. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1529. }
  1530. const auto n_ctx_train = llama_n_ctx_train(model);
  1531. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1532. slot.truncated = true;
  1533. slot.stop = STOP_TYPE_LIMIT;
  1534. slot.has_next_token = false; // stop prediction
  1535. SLT_WRN(slot,
  1536. "n_predict (%d) is set for infinite generation. "
  1537. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1538. slot.params.n_predict, n_ctx_train);
  1539. }
  1540. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1541. return slot.has_next_token; // continue
  1542. }
  1543. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1544. send_error(task.id, error, type);
  1545. }
  1546. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1547. send_error(slot.id_task, error, type);
  1548. }
  1549. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1550. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1551. auto res = std::make_unique<server_task_result_error>();
  1552. res->id = id_task;
  1553. res->err_type = type;
  1554. res->err_msg = error;
  1555. queue_results.send(std::move(res));
  1556. }
  1557. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1558. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1559. res->id = slot.id_task;
  1560. res->index = slot.index;
  1561. res->content = tkn.text_to_send;
  1562. res->n_decoded = slot.n_decoded;
  1563. res->n_prompt_tokens = slot.n_prompt_tokens;
  1564. res->verbose = slot.params.verbose;
  1565. res->oaicompat = slot.params.oaicompat;
  1566. res->oaicompat_chat = slot.params.oaicompat_chat;
  1567. res->oaicompat_model = slot.params.oaicompat_model;
  1568. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1569. // populate res.probs_output
  1570. if (slot.params.sampling.n_probs > 0) {
  1571. const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  1572. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1573. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1574. std::vector<completion_token_output> probs_output;
  1575. if (probs_pos < probs_stop_pos) {
  1576. res->probs_output = std::vector<completion_token_output>(
  1577. slot.generated_token_probs.begin() + probs_pos,
  1578. slot.generated_token_probs.begin() + probs_stop_pos);
  1579. }
  1580. }
  1581. // populate timings if this is final response or timings_per_token is enabled
  1582. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1583. res->timings = slot.get_timings();
  1584. }
  1585. queue_results.send(std::move(res));
  1586. }
  1587. void send_final_response(server_slot & slot) {
  1588. auto res = std::make_unique<server_task_result_cmpl_final>();
  1589. res->id = slot.id_task;
  1590. res->id_slot = slot.id;
  1591. res->index = slot.index;
  1592. res->content = slot.generated_text;
  1593. res->timings = slot.get_timings();
  1594. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1595. res->truncated = slot.truncated;
  1596. res->n_decoded = slot.n_decoded;
  1597. res->n_prompt_tokens = slot.n_prompt_tokens;
  1598. res->n_tokens_cached = slot.n_past;
  1599. res->has_new_line = slot.has_new_line;
  1600. res->stopping_word = slot.stopping_word;
  1601. res->stop = slot.stop;
  1602. res->verbose = slot.params.verbose;
  1603. res->stream = slot.params.stream;
  1604. res->oaicompat = slot.params.oaicompat;
  1605. res->oaicompat_chat = slot.params.oaicompat_chat;
  1606. res->oaicompat_model = slot.params.oaicompat_model;
  1607. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1608. // populate res.probs_output
  1609. if (slot.params.sampling.n_probs > 0) {
  1610. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1611. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1612. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1613. res->probs_output = std::vector<completion_token_output>(
  1614. slot.generated_token_probs.begin(),
  1615. slot.generated_token_probs.end() - safe_offset);
  1616. } else {
  1617. res->probs_output = std::vector<completion_token_output>(
  1618. slot.generated_token_probs.begin(),
  1619. slot.generated_token_probs.end());
  1620. }
  1621. }
  1622. res->generation_params = slot.params; // copy the parameters
  1623. queue_results.send(std::move(res));
  1624. }
  1625. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1626. auto res = std::make_unique<server_task_result_embd>();
  1627. res->id = slot.id_task;
  1628. res->index = slot.index;
  1629. const int n_embd = llama_n_embd(model);
  1630. std::vector<float> embd_res(n_embd, 0.0f);
  1631. for (int i = 0; i < batch.n_tokens; ++i) {
  1632. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1633. continue;
  1634. }
  1635. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1636. if (embd == NULL) {
  1637. embd = llama_get_embeddings_ith(ctx, i);
  1638. }
  1639. if (embd == NULL) {
  1640. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1641. res->embedding = std::vector<float>(n_embd, 0.0f);
  1642. continue;
  1643. }
  1644. common_embd_normalize(embd, embd_res.data(), n_embd);
  1645. res->embedding = embd_res;
  1646. }
  1647. SLT_DBG(slot, "%s", "sending embeddings\n");
  1648. queue_results.send(std::move(res));
  1649. }
  1650. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1651. auto res = std::make_unique<server_task_result_rerank>();
  1652. res->id = slot.id_task;
  1653. res->index = slot.index;
  1654. for (int i = 0; i < batch.n_tokens; ++i) {
  1655. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1656. continue;
  1657. }
  1658. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1659. if (embd == NULL) {
  1660. embd = llama_get_embeddings_ith(ctx, i);
  1661. }
  1662. if (embd == NULL) {
  1663. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1664. res->score = -1e6;
  1665. continue;
  1666. }
  1667. res->score = embd[0];
  1668. }
  1669. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1670. queue_results.send(std::move(res));
  1671. }
  1672. //
  1673. // Functions to create new task(s) and receive result(s)
  1674. //
  1675. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1676. std::vector<server_task> cancel_tasks;
  1677. cancel_tasks.reserve(id_tasks.size());
  1678. for (const auto & id_task : id_tasks) {
  1679. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1680. server_task task(SERVER_TASK_TYPE_CANCEL);
  1681. task.id_target = id_task;
  1682. cancel_tasks.push_back(task);
  1683. queue_results.remove_waiting_task_id(id_task);
  1684. }
  1685. // push to beginning of the queue, so it has highest priority
  1686. queue_tasks.post(cancel_tasks, true);
  1687. }
  1688. // receive the results from task(s)
  1689. void receive_multi_results(
  1690. const std::unordered_set<int> & id_tasks,
  1691. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1692. const std::function<void(json)> & error_handler) {
  1693. std::vector<server_task_result_ptr> results(id_tasks.size());
  1694. for (size_t i = 0; i < id_tasks.size(); i++) {
  1695. server_task_result_ptr result = queue_results.recv(id_tasks);
  1696. if (result->is_error()) {
  1697. error_handler(result->to_json());
  1698. cancel_tasks(id_tasks);
  1699. return;
  1700. }
  1701. GGML_ASSERT(
  1702. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1703. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1704. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1705. );
  1706. const size_t idx = result->get_index();
  1707. GGML_ASSERT(idx < results.size() && "index out of range");
  1708. results[idx] = std::move(result);
  1709. }
  1710. result_handler(results);
  1711. }
  1712. // receive the results from task(s), in stream mode
  1713. void receive_cmpl_results_stream(
  1714. const std::unordered_set<int> & id_tasks,
  1715. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1716. const std::function<void(json)> & error_handler) {
  1717. size_t n_finished = 0;
  1718. while (true) {
  1719. server_task_result_ptr result = queue_results.recv(id_tasks);
  1720. if (result->is_error()) {
  1721. error_handler(result->to_json());
  1722. cancel_tasks(id_tasks);
  1723. return;
  1724. }
  1725. GGML_ASSERT(
  1726. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1727. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1728. );
  1729. if (!result_handler(result)) {
  1730. cancel_tasks(id_tasks);
  1731. break;
  1732. }
  1733. if (result->is_stop()) {
  1734. if (++n_finished == id_tasks.size()) {
  1735. break;
  1736. }
  1737. }
  1738. }
  1739. }
  1740. //
  1741. // Functions to process the task
  1742. //
  1743. void process_single_task(server_task task) {
  1744. switch (task.type) {
  1745. case SERVER_TASK_TYPE_COMPLETION:
  1746. case SERVER_TASK_TYPE_INFILL:
  1747. case SERVER_TASK_TYPE_EMBEDDING:
  1748. case SERVER_TASK_TYPE_RERANK:
  1749. {
  1750. const int id_slot = task.id_selected_slot;
  1751. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1752. if (slot == nullptr) {
  1753. // if no slot is available, we defer this task for processing later
  1754. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1755. queue_tasks.defer(task);
  1756. break;
  1757. }
  1758. if (slot->is_processing()) {
  1759. // if requested slot is unavailable, we defer this task for processing later
  1760. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1761. queue_tasks.defer(task);
  1762. break;
  1763. }
  1764. if (!launch_slot_with_task(*slot, task)) {
  1765. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1766. break;
  1767. }
  1768. } break;
  1769. case SERVER_TASK_TYPE_CANCEL:
  1770. {
  1771. // release slot linked with the task id
  1772. for (auto & slot : slots) {
  1773. if (slot.id_task == task.id_target) {
  1774. slot.release();
  1775. break;
  1776. }
  1777. }
  1778. } break;
  1779. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1780. {
  1781. // do nothing
  1782. } break;
  1783. case SERVER_TASK_TYPE_METRICS:
  1784. {
  1785. json slots_data = json::array();
  1786. int n_idle_slots = 0;
  1787. int n_processing_slots = 0;
  1788. for (server_slot & slot : slots) {
  1789. json slot_data = slot.to_json();
  1790. if (slot.is_processing()) {
  1791. n_processing_slots++;
  1792. } else {
  1793. n_idle_slots++;
  1794. }
  1795. slots_data.push_back(slot_data);
  1796. }
  1797. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1798. auto res = std::make_unique<server_task_result_metrics>();
  1799. res->id = task.id;
  1800. res->slots_data = std::move(slots_data);
  1801. res->n_idle_slots = n_idle_slots;
  1802. res->n_processing_slots = n_processing_slots;
  1803. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  1804. res->t_start = metrics.t_start;
  1805. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  1806. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  1807. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1808. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1809. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1810. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1811. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1812. res->t_prompt_processing = metrics.t_prompt_processing;
  1813. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1814. res->t_tokens_generation = metrics.t_tokens_generation;
  1815. res->n_decode_total = metrics.n_decode_total;
  1816. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1817. if (task.metrics_reset_bucket) {
  1818. metrics.reset_bucket();
  1819. }
  1820. queue_results.send(std::move(res));
  1821. } break;
  1822. case SERVER_TASK_TYPE_SLOT_SAVE:
  1823. {
  1824. int id_slot = task.slot_action.slot_id;
  1825. server_slot * slot = get_slot_by_id(id_slot);
  1826. if (slot == nullptr) {
  1827. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1828. break;
  1829. }
  1830. if (slot->is_processing()) {
  1831. // if requested slot is unavailable, we defer this task for processing later
  1832. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1833. queue_tasks.defer(task);
  1834. break;
  1835. }
  1836. const size_t token_count = slot->cache_tokens.size();
  1837. const int64_t t_start = ggml_time_us();
  1838. std::string filename = task.slot_action.filename;
  1839. std::string filepath = task.slot_action.filepath;
  1840. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  1841. const int64_t t_end = ggml_time_us();
  1842. const double t_save_ms = (t_end - t_start) / 1000.0;
  1843. auto res = std::make_unique<server_task_result_slot_save_load>();
  1844. res->id = task.id;
  1845. res->id_slot = id_slot;
  1846. res->filename = filename;
  1847. res->is_save = true;
  1848. res->n_tokens = token_count;
  1849. res->n_bytes = nwrite;
  1850. res->t_ms = t_save_ms;
  1851. queue_results.send(std::move(res));
  1852. } break;
  1853. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1854. {
  1855. int id_slot = task.slot_action.slot_id;
  1856. server_slot * slot = get_slot_by_id(id_slot);
  1857. if (slot == nullptr) {
  1858. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1859. break;
  1860. }
  1861. if (slot->is_processing()) {
  1862. // if requested slot is unavailable, we defer this task for processing later
  1863. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1864. queue_tasks.defer(task);
  1865. break;
  1866. }
  1867. const int64_t t_start = ggml_time_us();
  1868. std::string filename = task.slot_action.filename;
  1869. std::string filepath = task.slot_action.filepath;
  1870. slot->cache_tokens.resize(slot->n_ctx);
  1871. size_t token_count = 0;
  1872. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1873. if (nread == 0) {
  1874. slot->cache_tokens.resize(0);
  1875. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1876. break;
  1877. }
  1878. slot->cache_tokens.resize(token_count);
  1879. const int64_t t_end = ggml_time_us();
  1880. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1881. auto res = std::make_unique<server_task_result_slot_save_load>();
  1882. res->id = task.id;
  1883. res->id_slot = id_slot;
  1884. res->filename = filename;
  1885. res->is_save = false;
  1886. res->n_tokens = token_count;
  1887. res->n_bytes = nread;
  1888. res->t_ms = t_restore_ms;
  1889. queue_results.send(std::move(res));
  1890. } break;
  1891. case SERVER_TASK_TYPE_SLOT_ERASE:
  1892. {
  1893. int id_slot = task.slot_action.slot_id;
  1894. server_slot * slot = get_slot_by_id(id_slot);
  1895. if (slot == nullptr) {
  1896. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1897. break;
  1898. }
  1899. if (slot->is_processing()) {
  1900. // if requested slot is unavailable, we defer this task for processing later
  1901. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1902. queue_tasks.defer(task);
  1903. break;
  1904. }
  1905. // Erase token cache
  1906. const size_t n_erased = slot->cache_tokens.size();
  1907. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  1908. slot->cache_tokens.clear();
  1909. auto res = std::make_unique<server_task_result_slot_erase>();
  1910. res->id = task.id;
  1911. res->id_slot = id_slot;
  1912. res->n_erased = n_erased;
  1913. queue_results.send(std::move(res));
  1914. } break;
  1915. case SERVER_TASK_TYPE_SET_LORA:
  1916. {
  1917. common_lora_adapters_apply(ctx, loras);
  1918. auto res = std::make_unique<server_task_result_apply_lora>();
  1919. res->id = task.id;
  1920. queue_results.send(std::move(res));
  1921. } break;
  1922. }
  1923. }
  1924. void update_slots() {
  1925. // check if all slots are idle
  1926. {
  1927. bool all_idle = true;
  1928. for (auto & slot : slots) {
  1929. if (slot.is_processing()) {
  1930. all_idle = false;
  1931. break;
  1932. }
  1933. }
  1934. if (all_idle) {
  1935. SRV_INF("%s", "all slots are idle\n");
  1936. if (clean_kv_cache) {
  1937. kv_cache_clear();
  1938. }
  1939. return;
  1940. }
  1941. }
  1942. {
  1943. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1944. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  1945. task.id = queue_tasks.get_new_id();
  1946. queue_tasks.post(task);
  1947. }
  1948. // apply context-shift if needed
  1949. // TODO: simplify and improve
  1950. for (server_slot & slot : slots) {
  1951. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  1952. if (!params_base.ctx_shift) {
  1953. // this check is redundant (for good)
  1954. // we should never get here, because generation should already stopped in process_token()
  1955. slot.release();
  1956. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1957. continue;
  1958. }
  1959. // Shift context
  1960. const int n_keep = slot.params.n_keep + add_bos_token;
  1961. const int n_left = slot.n_past - n_keep;
  1962. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1963. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1964. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1965. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  1966. if (slot.params.cache_prompt) {
  1967. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1968. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1969. }
  1970. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1971. }
  1972. slot.n_past -= n_discard;
  1973. slot.truncated = true;
  1974. }
  1975. }
  1976. // start populating the batch for this iteration
  1977. common_batch_clear(batch);
  1978. // frist, add sampled tokens from any ongoing sequences
  1979. for (auto & slot : slots) {
  1980. if (slot.state != SLOT_STATE_GENERATING) {
  1981. continue;
  1982. }
  1983. slot.i_batch = batch.n_tokens;
  1984. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  1985. slot.n_past += 1;
  1986. if (slot.params.cache_prompt) {
  1987. slot.cache_tokens.push_back(slot.sampled);
  1988. }
  1989. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  1990. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  1991. }
  1992. // process in chunks of params.n_batch
  1993. int32_t n_batch = llama_n_batch(ctx);
  1994. int32_t n_ubatch = llama_n_ubatch(ctx);
  1995. // track if this is an embedding or non-embedding batch
  1996. // if we've added sampled tokens above, we are in non-embedding mode
  1997. // -1: none, 0: non-embedding, 1: embedding
  1998. // TODO: make enum
  1999. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2000. // next, batch any pending prompts without exceeding n_batch
  2001. if (params_base.cont_batching || batch.n_tokens == 0) {
  2002. for (auto & slot : slots) {
  2003. // this slot still has a prompt to be processed
  2004. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2005. auto & prompt_tokens = slot.prompt_tokens;
  2006. // TODO: maybe move branch to outside of this loop in the future
  2007. if (slot.state == SLOT_STATE_STARTED) {
  2008. slot.t_start_process_prompt = ggml_time_us();
  2009. slot.t_start_generation = 0;
  2010. slot.n_past = 0;
  2011. slot.n_prompt_tokens = prompt_tokens.size();
  2012. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2013. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2014. // print prompt tokens (for debugging)
  2015. if (1) {
  2016. // first 16 tokens (avoid flooding logs)
  2017. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2018. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2019. }
  2020. } else {
  2021. // all
  2022. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2023. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2024. }
  2025. }
  2026. // empty prompt passed -> release the slot and send empty response
  2027. if (prompt_tokens.empty()) {
  2028. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2029. slot.release();
  2030. slot.print_timings();
  2031. send_final_response(slot);
  2032. continue;
  2033. }
  2034. if (slot.is_non_causal()) {
  2035. if (slot.n_prompt_tokens > n_ubatch) {
  2036. slot.release();
  2037. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2038. continue;
  2039. }
  2040. if (slot.n_prompt_tokens > slot.n_ctx) {
  2041. slot.release();
  2042. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2043. continue;
  2044. }
  2045. } else {
  2046. if (!params_base.ctx_shift) {
  2047. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2048. // TODO: there should be a separate parameter that control prompt truncation
  2049. // context shift should be applied only during the generation phase
  2050. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2051. slot.release();
  2052. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2053. continue;
  2054. }
  2055. }
  2056. if (slot.params.n_keep < 0) {
  2057. slot.params.n_keep = slot.n_prompt_tokens;
  2058. }
  2059. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2060. // if input prompt is too big, truncate it
  2061. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2062. const int n_left = slot.n_ctx - slot.params.n_keep;
  2063. const int n_block_size = n_left / 2;
  2064. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2065. llama_tokens new_tokens(
  2066. prompt_tokens.begin(),
  2067. prompt_tokens.begin() + slot.params.n_keep);
  2068. new_tokens.insert(
  2069. new_tokens.end(),
  2070. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2071. prompt_tokens.end());
  2072. prompt_tokens = std::move(new_tokens);
  2073. slot.truncated = true;
  2074. slot.n_prompt_tokens = prompt_tokens.size();
  2075. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2076. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2077. }
  2078. if (slot.params.cache_prompt) {
  2079. // reuse any previously computed tokens that are common with the new prompt
  2080. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2081. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2082. if (params_base.n_cache_reuse > 0) {
  2083. size_t head_c = slot.n_past; // cache
  2084. size_t head_p = slot.n_past; // current prompt
  2085. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2086. while (head_c < slot.cache_tokens.size() &&
  2087. head_p < prompt_tokens.size()) {
  2088. size_t n_match = 0;
  2089. while (head_c + n_match < slot.cache_tokens.size() &&
  2090. head_p + n_match < prompt_tokens.size() &&
  2091. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2092. n_match++;
  2093. }
  2094. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2095. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2096. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2097. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2098. //}
  2099. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2100. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2101. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2102. for (size_t i = 0; i < n_match; i++) {
  2103. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2104. slot.n_past++;
  2105. }
  2106. head_c += n_match;
  2107. head_p += n_match;
  2108. } else {
  2109. head_c += 1;
  2110. }
  2111. }
  2112. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2113. }
  2114. }
  2115. }
  2116. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2117. // we have to evaluate at least 1 token to generate logits.
  2118. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2119. slot.n_past--;
  2120. }
  2121. slot.n_prompt_tokens_processed = 0;
  2122. }
  2123. // non-causal tasks require to fit the entire prompt in the physical batch
  2124. if (slot.is_non_causal()) {
  2125. // cannot fit the prompt in the current batch - will try next iter
  2126. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2127. continue;
  2128. }
  2129. }
  2130. // check that we are in the right batch_type, if not defer the slot
  2131. int slot_type = slot.is_non_causal();
  2132. if (batch_type == -1) {
  2133. batch_type = slot_type;
  2134. } else if (batch_type != slot_type) {
  2135. continue;
  2136. }
  2137. // keep only the common part
  2138. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2139. // could not partially delete (likely using a non-Transformer model)
  2140. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2141. // there is no common part left
  2142. slot.n_past = 0;
  2143. }
  2144. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2145. // remove the non-common part from the cache
  2146. slot.cache_tokens.resize(slot.n_past);
  2147. // add prompt tokens for processing in the current batch
  2148. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2149. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);
  2150. if (slot.params.cache_prompt) {
  2151. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2152. }
  2153. slot.n_prompt_tokens_processed++;
  2154. slot.n_past++;
  2155. }
  2156. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2157. // entire prompt has been processed
  2158. if (slot.n_past == slot.n_prompt_tokens) {
  2159. slot.state = SLOT_STATE_DONE_PROMPT;
  2160. GGML_ASSERT(batch.n_tokens > 0);
  2161. common_sampler_reset(slot.smpl);
  2162. // Process all prompt tokens through sampler system
  2163. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2164. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2165. }
  2166. // extract the logits only for the last token
  2167. batch.logits[batch.n_tokens - 1] = true;
  2168. slot.n_decoded = 0;
  2169. slot.i_batch = batch.n_tokens - 1;
  2170. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2171. }
  2172. }
  2173. if (batch.n_tokens >= n_batch) {
  2174. break;
  2175. }
  2176. }
  2177. }
  2178. if (batch.n_tokens == 0) {
  2179. SRV_WRN("%s", "no tokens to decode\n");
  2180. return;
  2181. }
  2182. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2183. // make sure we're in the right embedding mode
  2184. llama_set_embeddings(ctx, batch_type == 1);
  2185. // process the created batch of tokens
  2186. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2187. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2188. llama_batch batch_view = {
  2189. n_tokens,
  2190. batch.token + i,
  2191. nullptr,
  2192. batch.pos + i,
  2193. batch.n_seq_id + i,
  2194. batch.seq_id + i,
  2195. batch.logits + i,
  2196. };
  2197. const int ret = llama_decode(ctx, batch_view);
  2198. metrics.on_decoded(slots);
  2199. if (ret != 0) {
  2200. if (n_batch == 1 || ret < 0) {
  2201. // if you get here, it means the KV cache is full - try increasing it via the context size
  2202. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2203. for (auto & slot : slots) {
  2204. slot.release();
  2205. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2206. }
  2207. break; // break loop of n_batch
  2208. }
  2209. // retry with half the batch size to try to find a free slot in the KV cache
  2210. n_batch /= 2;
  2211. i -= n_batch;
  2212. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2213. continue; // continue loop of n_batch
  2214. }
  2215. for (auto & slot : slots) {
  2216. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2217. continue; // continue loop of slots
  2218. }
  2219. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2220. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2221. // prompt evaluated for embedding
  2222. send_embedding(slot, batch_view);
  2223. slot.release();
  2224. slot.i_batch = -1;
  2225. continue; // continue loop of slots
  2226. }
  2227. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2228. send_rerank(slot, batch_view);
  2229. slot.release();
  2230. slot.i_batch = -1;
  2231. continue; // continue loop of slots
  2232. }
  2233. // prompt evaluated for next-token prediction
  2234. slot.state = SLOT_STATE_GENERATING;
  2235. } else if (slot.state != SLOT_STATE_GENERATING) {
  2236. continue; // continue loop of slots
  2237. }
  2238. llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  2239. slot.i_batch = -1;
  2240. common_sampler_accept(slot.smpl, id, true);
  2241. slot.n_decoded += 1;
  2242. const int64_t t_current = ggml_time_us();
  2243. if (slot.n_decoded == 1) {
  2244. slot.t_start_generation = t_current;
  2245. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2246. metrics.on_prompt_eval(slot);
  2247. }
  2248. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2249. completion_token_output result;
  2250. result.tok = id;
  2251. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2252. for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
  2253. auto tok_id = cur_p->data[i].id;
  2254. result.probs.push_back({
  2255. tok_id,
  2256. tokens_to_output_formatted_string(ctx, tok_id),
  2257. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  2258. });
  2259. }
  2260. if (!process_token(result, slot)) {
  2261. // release slot because of stop condition
  2262. slot.release();
  2263. slot.print_timings();
  2264. send_final_response(slot);
  2265. metrics.on_prediction(slot);
  2266. continue;
  2267. }
  2268. }
  2269. // do speculative decoding
  2270. for (auto & slot : slots) {
  2271. if (!slot.is_processing() || !slot.can_speculate()) {
  2272. continue;
  2273. }
  2274. if (slot.state != SLOT_STATE_GENERATING) {
  2275. continue;
  2276. }
  2277. // determine the max draft that fits the current slot state
  2278. int n_draft_max = slot.params.speculative.n_max;
  2279. // note: n_past is not yet increased for the `id` token sampled above
  2280. // also, need to leave space for 1 extra token to allow context shifts
  2281. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2282. if (slot.n_remaining > 0) {
  2283. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2284. }
  2285. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2286. if (n_draft_max < slot.params.speculative.n_min) {
  2287. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2288. continue;
  2289. }
  2290. llama_token id = slot.sampled;
  2291. struct common_speculative_params params_spec;
  2292. params_spec.n_draft = n_draft_max;
  2293. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2294. params_spec.p_min = slot.params.speculative.p_min;
  2295. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2296. // ignore small drafts
  2297. if (slot.params.speculative.n_min > (int) draft.size()) {
  2298. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2299. continue;
  2300. }
  2301. // construct the speculation batch
  2302. common_batch_clear(slot.batch_spec);
  2303. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2304. for (size_t i = 0; i < draft.size(); ++i) {
  2305. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2306. }
  2307. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2308. llama_decode(ctx, slot.batch_spec);
  2309. // the accepted tokens from the speculation
  2310. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2311. slot.n_past += ids.size();
  2312. slot.n_decoded += ids.size();
  2313. slot.cache_tokens.push_back(id);
  2314. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2315. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2316. for (size_t i = 0; i < ids.size(); ++i) {
  2317. completion_token_output result;
  2318. result.tok = ids[i];
  2319. if (!process_token(result, slot)) {
  2320. // release slot because of stop condition
  2321. slot.release();
  2322. slot.print_timings();
  2323. send_final_response(slot);
  2324. metrics.on_prediction(slot);
  2325. break;
  2326. }
  2327. }
  2328. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2329. }
  2330. }
  2331. SRV_DBG("%s", "run slots completed\n");
  2332. }
  2333. json model_meta() const {
  2334. return json {
  2335. {"vocab_type", llama_vocab_type (model)},
  2336. {"n_vocab", llama_n_vocab (model)},
  2337. {"n_ctx_train", llama_n_ctx_train (model)},
  2338. {"n_embd", llama_n_embd (model)},
  2339. {"n_params", llama_model_n_params(model)},
  2340. {"size", llama_model_size (model)},
  2341. };
  2342. }
  2343. };
  2344. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2345. // skip GH copilot requests when using default port
  2346. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2347. return;
  2348. }
  2349. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2350. LOG_DBG("request: %s\n", req.body.c_str());
  2351. LOG_DBG("response: %s\n", res.body.c_str());
  2352. }
  2353. std::function<void(int)> shutdown_handler;
  2354. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2355. inline void signal_handler(int signal) {
  2356. if (is_terminating.test_and_set()) {
  2357. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2358. // this is for better developer experience, we can remove when the server is stable enough
  2359. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2360. exit(1);
  2361. }
  2362. shutdown_handler(signal);
  2363. }
  2364. int main(int argc, char ** argv) {
  2365. // own arguments required by this example
  2366. common_params params;
  2367. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2368. return 1;
  2369. }
  2370. common_init();
  2371. // struct that contains llama context and inference
  2372. server_context ctx_server;
  2373. llama_backend_init();
  2374. llama_numa_init(params.numa);
  2375. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2376. LOG_INF("\n");
  2377. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2378. LOG_INF("\n");
  2379. std::unique_ptr<httplib::Server> svr;
  2380. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2381. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2382. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2383. svr.reset(
  2384. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2385. );
  2386. } else {
  2387. LOG_INF("Running without SSL\n");
  2388. svr.reset(new httplib::Server());
  2389. }
  2390. #else
  2391. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2392. LOG_ERR("Server is built without SSL support\n");
  2393. return 1;
  2394. }
  2395. svr.reset(new httplib::Server());
  2396. #endif
  2397. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2398. svr->set_default_headers({{"Server", "llama.cpp"}});
  2399. svr->set_logger(log_server_request);
  2400. auto res_error = [](httplib::Response & res, const json & error_data) {
  2401. json final_response {{"error", error_data}};
  2402. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2403. res.status = json_value(error_data, "code", 500);
  2404. };
  2405. auto res_ok = [](httplib::Response & res, const json & data) {
  2406. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2407. res.status = 200;
  2408. };
  2409. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2410. std::string message;
  2411. try {
  2412. std::rethrow_exception(ep);
  2413. } catch (const std::exception & e) {
  2414. message = e.what();
  2415. } catch (...) {
  2416. message = "Unknown Exception";
  2417. }
  2418. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2419. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2420. res_error(res, formatted_error);
  2421. });
  2422. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2423. if (res.status == 404) {
  2424. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2425. }
  2426. // for other error codes, we skip processing here because it's already done by res_error()
  2427. });
  2428. // set timeouts and change hostname and port
  2429. svr->set_read_timeout (params.timeout_read);
  2430. svr->set_write_timeout(params.timeout_write);
  2431. std::unordered_map<std::string, std::string> log_data;
  2432. log_data["hostname"] = params.hostname;
  2433. log_data["port"] = std::to_string(params.port);
  2434. if (params.api_keys.size() == 1) {
  2435. auto key = params.api_keys[0];
  2436. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2437. } else if (params.api_keys.size() > 1) {
  2438. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2439. }
  2440. // Necessary similarity of prompt for slot selection
  2441. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2442. //
  2443. // Middlewares
  2444. //
  2445. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2446. static const std::unordered_set<std::string> public_endpoints = {
  2447. "/health",
  2448. "/models",
  2449. "/v1/models",
  2450. };
  2451. // If API key is not set, skip validation
  2452. if (params.api_keys.empty()) {
  2453. return true;
  2454. }
  2455. // If path is public or is static file, skip validation
  2456. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2457. return true;
  2458. }
  2459. // Check for API key in the header
  2460. auto auth_header = req.get_header_value("Authorization");
  2461. std::string prefix = "Bearer ";
  2462. if (auth_header.substr(0, prefix.size()) == prefix) {
  2463. std::string received_api_key = auth_header.substr(prefix.size());
  2464. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2465. return true; // API key is valid
  2466. }
  2467. }
  2468. // API key is invalid or not provided
  2469. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2470. LOG_WRN("Unauthorized: Invalid API Key\n");
  2471. return false;
  2472. };
  2473. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2474. server_state current_state = state.load();
  2475. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2476. auto tmp = string_split<std::string>(req.path, '.');
  2477. if (req.path == "/" || tmp.back() == "html") {
  2478. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2479. res.status = 503;
  2480. } else {
  2481. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2482. }
  2483. return false;
  2484. }
  2485. return true;
  2486. };
  2487. // register server middlewares
  2488. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2489. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2490. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2491. if (req.method == "OPTIONS") {
  2492. res.set_header("Access-Control-Allow-Credentials", "true");
  2493. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2494. res.set_header("Access-Control-Allow-Headers", "*");
  2495. res.set_content("", "text/html"); // blank response, no data
  2496. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2497. }
  2498. if (!middleware_server_state(req, res)) {
  2499. return httplib::Server::HandlerResponse::Handled;
  2500. }
  2501. if (!middleware_validate_api_key(req, res)) {
  2502. return httplib::Server::HandlerResponse::Handled;
  2503. }
  2504. return httplib::Server::HandlerResponse::Unhandled;
  2505. });
  2506. //
  2507. // Route handlers (or controllers)
  2508. //
  2509. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2510. // error and loading states are handled by middleware
  2511. json health = {{"status", "ok"}};
  2512. res_ok(res, health);
  2513. };
  2514. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2515. if (!params.endpoint_slots) {
  2516. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2517. return;
  2518. }
  2519. // request slots data using task queue
  2520. server_task task(SERVER_TASK_TYPE_METRICS);
  2521. task.id = ctx_server.queue_tasks.get_new_id();
  2522. ctx_server.queue_results.add_waiting_task_id(task.id);
  2523. ctx_server.queue_tasks.post(task, true); // high-priority task
  2524. // get the result
  2525. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2526. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2527. if (result->is_error()) {
  2528. res_error(res, result->to_json());
  2529. return;
  2530. }
  2531. // TODO: get rid of this dynamic_cast
  2532. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2533. GGML_ASSERT(res_metrics != nullptr);
  2534. // optionally return "fail_on_no_slot" error
  2535. if (req.has_param("fail_on_no_slot")) {
  2536. if (res_metrics->n_idle_slots == 0) {
  2537. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2538. return;
  2539. }
  2540. }
  2541. res_ok(res, res_metrics->slots_data);
  2542. };
  2543. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2544. if (!params.endpoint_metrics) {
  2545. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2546. return;
  2547. }
  2548. // request slots data using task queue
  2549. server_task task(SERVER_TASK_TYPE_METRICS);
  2550. task.id = ctx_server.queue_tasks.get_new_id();
  2551. task.metrics_reset_bucket = true;
  2552. ctx_server.queue_results.add_waiting_task_id(task.id);
  2553. ctx_server.queue_tasks.post(task, true); // high-priority task
  2554. // get the result
  2555. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2556. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2557. if (result->is_error()) {
  2558. res_error(res, result->to_json());
  2559. return;
  2560. }
  2561. // TODO: get rid of this dynamic_cast
  2562. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2563. GGML_ASSERT(res_metrics != nullptr);
  2564. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2565. json all_metrics_def = json {
  2566. {"counter", {{
  2567. {"name", "prompt_tokens_total"},
  2568. {"help", "Number of prompt tokens processed."},
  2569. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2570. }, {
  2571. {"name", "prompt_seconds_total"},
  2572. {"help", "Prompt process time"},
  2573. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2574. }, {
  2575. {"name", "tokens_predicted_total"},
  2576. {"help", "Number of generation tokens processed."},
  2577. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2578. }, {
  2579. {"name", "tokens_predicted_seconds_total"},
  2580. {"help", "Predict process time"},
  2581. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2582. }, {
  2583. {"name", "n_decode_total"},
  2584. {"help", "Total number of llama_decode() calls"},
  2585. {"value", res_metrics->n_decode_total}
  2586. }, {
  2587. {"name", "n_busy_slots_per_decode"},
  2588. {"help", "Average number of busy slots per llama_decode() call"},
  2589. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2590. }}},
  2591. {"gauge", {{
  2592. {"name", "prompt_tokens_seconds"},
  2593. {"help", "Average prompt throughput in tokens/s."},
  2594. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2595. },{
  2596. {"name", "predicted_tokens_seconds"},
  2597. {"help", "Average generation throughput in tokens/s."},
  2598. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2599. },{
  2600. {"name", "kv_cache_usage_ratio"},
  2601. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2602. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2603. },{
  2604. {"name", "kv_cache_tokens"},
  2605. {"help", "KV-cache tokens."},
  2606. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2607. },{
  2608. {"name", "requests_processing"},
  2609. {"help", "Number of request processing."},
  2610. {"value", (uint64_t) res_metrics->n_processing_slots}
  2611. },{
  2612. {"name", "requests_deferred"},
  2613. {"help", "Number of request deferred."},
  2614. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2615. }}}
  2616. };
  2617. std::stringstream prometheus;
  2618. for (const auto & el : all_metrics_def.items()) {
  2619. const auto & type = el.key();
  2620. const auto & metrics_def = el.value();
  2621. for (const auto & metric_def : metrics_def) {
  2622. const std::string name = metric_def.at("name");
  2623. const std::string help = metric_def.at("help");
  2624. auto value = json_value(metric_def, "value", 0.);
  2625. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2626. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2627. << "llamacpp:" << name << " " << value << "\n";
  2628. }
  2629. }
  2630. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2631. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2632. res.status = 200; // HTTP OK
  2633. };
  2634. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2635. json request_data = json::parse(req.body);
  2636. std::string filename = request_data.at("filename");
  2637. if (!fs_validate_filename(filename)) {
  2638. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2639. return;
  2640. }
  2641. std::string filepath = params.slot_save_path + filename;
  2642. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2643. task.id = ctx_server.queue_tasks.get_new_id();
  2644. task.slot_action.slot_id = id_slot;
  2645. task.slot_action.filename = filename;
  2646. task.slot_action.filepath = filepath;
  2647. ctx_server.queue_results.add_waiting_task_id(task.id);
  2648. ctx_server.queue_tasks.post(task);
  2649. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2650. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2651. if (result->is_error()) {
  2652. res_error(res, result->to_json());
  2653. return;
  2654. }
  2655. res_ok(res, result->to_json());
  2656. };
  2657. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2658. json request_data = json::parse(req.body);
  2659. std::string filename = request_data.at("filename");
  2660. if (!fs_validate_filename(filename)) {
  2661. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2662. return;
  2663. }
  2664. std::string filepath = params.slot_save_path + filename;
  2665. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2666. task.id = ctx_server.queue_tasks.get_new_id();
  2667. task.slot_action.slot_id = id_slot;
  2668. task.slot_action.filename = filename;
  2669. task.slot_action.filepath = filepath;
  2670. ctx_server.queue_results.add_waiting_task_id(task.id);
  2671. ctx_server.queue_tasks.post(task);
  2672. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2673. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2674. if (result->is_error()) {
  2675. res_error(res, result->to_json());
  2676. return;
  2677. }
  2678. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2679. res_ok(res, result->to_json());
  2680. };
  2681. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2682. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2683. task.id = ctx_server.queue_tasks.get_new_id();
  2684. task.slot_action.slot_id = id_slot;
  2685. ctx_server.queue_results.add_waiting_task_id(task.id);
  2686. ctx_server.queue_tasks.post(task);
  2687. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2688. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2689. if (result->is_error()) {
  2690. res_error(res, result->to_json());
  2691. return;
  2692. }
  2693. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2694. res_ok(res, result->to_json());
  2695. };
  2696. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2697. if (params.slot_save_path.empty()) {
  2698. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2699. return;
  2700. }
  2701. std::string id_slot_str = req.path_params.at("id_slot");
  2702. int id_slot;
  2703. try {
  2704. id_slot = std::stoi(id_slot_str);
  2705. } catch (const std::exception &) {
  2706. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2707. return;
  2708. }
  2709. std::string action = req.get_param_value("action");
  2710. if (action == "save") {
  2711. handle_slots_save(req, res, id_slot);
  2712. } else if (action == "restore") {
  2713. handle_slots_restore(req, res, id_slot);
  2714. } else if (action == "erase") {
  2715. handle_slots_erase(req, res, id_slot);
  2716. } else {
  2717. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2718. }
  2719. };
  2720. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2721. // this endpoint is publicly available, please only return what is safe to be exposed
  2722. json data = {
  2723. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2724. { "total_slots", ctx_server.params_base.n_parallel },
  2725. { "model_path", ctx_server.params_base.model },
  2726. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2727. };
  2728. res_ok(res, data);
  2729. };
  2730. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2731. if (!ctx_server.params_base.endpoint_props) {
  2732. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2733. return;
  2734. }
  2735. json data = json::parse(req.body);
  2736. // update any props here
  2737. res_ok(res, {{ "success", true }});
  2738. };
  2739. // handle completion-like requests (completion, chat, infill)
  2740. // we can optionally provide a custom format for partial results and final results
  2741. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
  2742. server_task_type type,
  2743. json & data,
  2744. httplib::Response & res,
  2745. bool oaicompat = false,
  2746. bool oaicompat_chat = false) {
  2747. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2748. if (ctx_server.params_base.embedding) {
  2749. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2750. return;
  2751. }
  2752. auto completion_id = gen_chatcmplid();
  2753. std::vector<server_task> tasks;
  2754. try {
  2755. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2756. tasks.reserve(tokenized_prompts.size());
  2757. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2758. server_task task = server_task(type);
  2759. task.id = ctx_server.queue_tasks.get_new_id();
  2760. task.index = i;
  2761. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2762. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.params_base, data);
  2763. task.id_selected_slot = json_value(data, "id_slot", -1);
  2764. // OAI-compat
  2765. task.params.oaicompat = oaicompat;
  2766. task.params.oaicompat_chat = oaicompat_chat;
  2767. task.params.oaicompat_cmpl_id = completion_id;
  2768. // oaicompat_model is already populated by params_from_json_cmpl
  2769. tasks.push_back(task);
  2770. }
  2771. } catch (const std::exception & e) {
  2772. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2773. return;
  2774. }
  2775. ctx_server.queue_results.add_waiting_tasks(tasks);
  2776. ctx_server.queue_tasks.post(tasks);
  2777. bool stream = json_value(data, "stream", false);
  2778. const auto task_ids = server_task::get_list_id(tasks);
  2779. if (!stream) {
  2780. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2781. if (results.size() == 1) {
  2782. // single result
  2783. res_ok(res, results[0]->to_json());
  2784. } else {
  2785. // multiple results (multitask)
  2786. json arr = json::array();
  2787. for (auto & res : results) {
  2788. arr.push_back(res->to_json());
  2789. }
  2790. res_ok(res, arr);
  2791. }
  2792. }, [&](const json & error_data) {
  2793. res_error(res, error_data);
  2794. });
  2795. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2796. } else {
  2797. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  2798. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  2799. json res_json = result->to_json();
  2800. if (res_json.is_array()) {
  2801. for (const auto & res : res_json) {
  2802. if (!server_sent_event(sink, "data", res)) {
  2803. return false;
  2804. }
  2805. }
  2806. return true;
  2807. } else {
  2808. return server_sent_event(sink, "data", res_json);
  2809. }
  2810. }, [&](const json & error_data) {
  2811. server_sent_event(sink, "error", error_data);
  2812. });
  2813. if (oaicompat) {
  2814. static const std::string ev_done = "data: [DONE]\n\n";
  2815. sink.write(ev_done.data(), ev_done.size());
  2816. }
  2817. sink.done();
  2818. return false;
  2819. };
  2820. auto on_complete = [task_ids, &ctx_server] (bool) {
  2821. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2822. };
  2823. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2824. }
  2825. };
  2826. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2827. json data = json::parse(req.body);
  2828. return handle_completions_generic(
  2829. SERVER_TASK_TYPE_COMPLETION,
  2830. data,
  2831. res,
  2832. /* oaicompat */ false,
  2833. /* oaicompat_chat */ false);
  2834. };
  2835. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2836. // check model compatibility
  2837. std::string err;
  2838. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2839. err += "prefix token is missing. ";
  2840. }
  2841. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2842. err += "suffix token is missing. ";
  2843. }
  2844. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2845. err += "middle token is missing. ";
  2846. }
  2847. if (!err.empty()) {
  2848. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2849. return;
  2850. }
  2851. json data = json::parse(req.body);
  2852. // validate input
  2853. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  2854. // prompt is optional
  2855. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2856. }
  2857. if (!data.contains("input_prefix")) {
  2858. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2859. }
  2860. if (!data.contains("input_suffix")) {
  2861. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2862. }
  2863. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2864. // input_extra is optional
  2865. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2866. return;
  2867. }
  2868. json input_extra = json_value(data, "input_extra", json::array());
  2869. for (const auto & chunk : input_extra) {
  2870. // { "text": string, "filename": string }
  2871. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2872. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2873. return;
  2874. }
  2875. // filename is optional
  2876. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2877. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2878. return;
  2879. }
  2880. }
  2881. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2882. std::string prompt = json_value(data, "prompt", std::string());
  2883. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  2884. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  2885. data["prompt"] = format_infill(
  2886. ctx_server.ctx,
  2887. data.at("input_prefix"),
  2888. data.at("input_suffix"),
  2889. data.at("input_extra"),
  2890. ctx_server.params_base.n_batch,
  2891. ctx_server.params_base.n_predict,
  2892. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  2893. ctx_server.params_base.spm_infill,
  2894. tokenized_prompts[0]
  2895. );
  2896. return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
  2897. };
  2898. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2899. if (ctx_server.params_base.embedding) {
  2900. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2901. return;
  2902. }
  2903. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2904. return handle_completions_generic(
  2905. SERVER_TASK_TYPE_COMPLETION,
  2906. data,
  2907. res,
  2908. /* oaicompat */ true,
  2909. /* oaicompat_chat */ true);
  2910. };
  2911. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2912. json models = {
  2913. {"object", "list"},
  2914. {"data", {
  2915. {
  2916. {"id", params.model_alias},
  2917. {"object", "model"},
  2918. {"created", std::time(0)},
  2919. {"owned_by", "llamacpp"},
  2920. {"meta", ctx_server.model_meta()}
  2921. },
  2922. }}
  2923. };
  2924. res_ok(res, models);
  2925. };
  2926. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2927. const json body = json::parse(req.body);
  2928. json tokens_response = json::array();
  2929. if (body.count("content") != 0) {
  2930. const bool add_special = json_value(body, "add_special", false);
  2931. const bool with_pieces = json_value(body, "with_pieces", false);
  2932. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  2933. if (with_pieces) {
  2934. for (const auto& token : tokens) {
  2935. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2936. json piece_json;
  2937. // Check if the piece is valid UTF-8
  2938. if (is_valid_utf8(piece)) {
  2939. piece_json = piece;
  2940. } else {
  2941. // If not valid UTF-8, store as array of byte values
  2942. piece_json = json::array();
  2943. for (unsigned char c : piece) {
  2944. piece_json.push_back(static_cast<int>(c));
  2945. }
  2946. }
  2947. tokens_response.push_back({
  2948. {"id", token},
  2949. {"piece", piece_json}
  2950. });
  2951. }
  2952. } else {
  2953. tokens_response = tokens;
  2954. }
  2955. }
  2956. const json data = format_tokenizer_response(tokens_response);
  2957. res_ok(res, data);
  2958. };
  2959. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2960. const json body = json::parse(req.body);
  2961. std::string content;
  2962. if (body.count("tokens") != 0) {
  2963. const llama_tokens tokens = body.at("tokens");
  2964. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2965. }
  2966. const json data = format_detokenized_response(content);
  2967. res_ok(res, data);
  2968. };
  2969. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2970. const json body = json::parse(req.body);
  2971. bool oaicompat = false;
  2972. // an input prompt can be a string or a list of tokens (integer)
  2973. json prompt;
  2974. if (body.count("input") != 0) {
  2975. oaicompat = true;
  2976. prompt = body.at("input");
  2977. } else if (body.count("content") != 0) {
  2978. // with "content", we only support single prompt
  2979. prompt = std::vector<std::string>{body.at("content")};
  2980. } else {
  2981. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2982. return;
  2983. }
  2984. // create and queue the task
  2985. json responses = json::array();
  2986. bool error = false;
  2987. {
  2988. std::vector<server_task> tasks;
  2989. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true);
  2990. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2991. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  2992. task.id = ctx_server.queue_tasks.get_new_id();
  2993. task.index = i;
  2994. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2995. tasks.push_back(task);
  2996. }
  2997. ctx_server.queue_results.add_waiting_tasks(tasks);
  2998. ctx_server.queue_tasks.post(tasks);
  2999. // get the result
  3000. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3001. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3002. for (auto & res : results) {
  3003. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3004. responses.push_back(res->to_json());
  3005. }
  3006. }, [&](const json & error_data) {
  3007. res_error(res, error_data);
  3008. error = true;
  3009. });
  3010. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3011. }
  3012. if (error) {
  3013. return;
  3014. }
  3015. // write JSON response
  3016. json root = oaicompat
  3017. ? format_embeddings_response_oaicompat(body, responses)
  3018. : responses.size() == 1 ? responses[0] : json(responses);
  3019. res_ok(res, root);
  3020. };
  3021. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3022. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3023. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3024. return;
  3025. }
  3026. const json body = json::parse(req.body);
  3027. // TODO: implement
  3028. //int top_n = 1;
  3029. //if (body.count("top_n") != 1) {
  3030. // top_n = body.at("top_n");
  3031. //} else {
  3032. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3033. // return;
  3034. //}
  3035. json query;
  3036. if (body.count("query") == 1) {
  3037. query = body.at("query");
  3038. if (!query.is_string()) {
  3039. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3040. return;
  3041. }
  3042. } else {
  3043. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3044. return;
  3045. }
  3046. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3047. if (documents.empty()) {
  3048. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3049. return;
  3050. }
  3051. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3052. // create and queue the task
  3053. json responses = json::array();
  3054. bool error = false;
  3055. {
  3056. std::vector<server_task> tasks;
  3057. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3058. tasks.reserve(tokenized_docs.size());
  3059. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3060. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3061. task.id = ctx_server.queue_tasks.get_new_id();
  3062. task.index = i;
  3063. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3064. tasks.push_back(task);
  3065. }
  3066. ctx_server.queue_results.add_waiting_tasks(tasks);
  3067. ctx_server.queue_tasks.post(tasks);
  3068. // get the result
  3069. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3070. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3071. for (auto & res : results) {
  3072. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3073. responses.push_back(res->to_json());
  3074. }
  3075. }, [&](const json & error_data) {
  3076. res_error(res, error_data);
  3077. error = true;
  3078. });
  3079. }
  3080. if (error) {
  3081. return;
  3082. }
  3083. // write JSON response
  3084. json root = format_response_rerank(body, responses);
  3085. res_ok(res, root);
  3086. };
  3087. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3088. json result = json::array();
  3089. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3090. auto & lora = ctx_server.loras[i];
  3091. result.push_back({
  3092. {"id", i},
  3093. {"path", lora.path},
  3094. {"scale", lora.scale},
  3095. });
  3096. }
  3097. res_ok(res, result);
  3098. res.status = 200; // HTTP OK
  3099. };
  3100. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3101. const std::vector<json> body = json::parse(req.body);
  3102. int max_idx = ctx_server.loras.size();
  3103. // clear existing value
  3104. for (auto & lora : ctx_server.loras) {
  3105. lora.scale = 0.0f;
  3106. }
  3107. // set value
  3108. for (auto entry : body) {
  3109. int id = entry.at("id");
  3110. float scale = entry.at("scale");
  3111. if (0 <= id && id < max_idx) {
  3112. ctx_server.loras[id].scale = scale;
  3113. } else {
  3114. throw std::runtime_error("invalid adapter id");
  3115. }
  3116. }
  3117. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3118. task.id = ctx_server.queue_tasks.get_new_id();
  3119. ctx_server.queue_results.add_waiting_task_id(task.id);
  3120. ctx_server.queue_tasks.post(task);
  3121. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3122. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3123. if (result->is_error()) {
  3124. res_error(res, result->to_json());
  3125. return;
  3126. }
  3127. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3128. res_ok(res, result->to_json());
  3129. };
  3130. //
  3131. // Router
  3132. //
  3133. if (!params.webui) {
  3134. LOG_INF("Web UI is disabled\n");
  3135. } else {
  3136. // register static assets routes
  3137. if (!params.public_path.empty()) {
  3138. // Set the base directory for serving static files
  3139. bool is_found = svr->set_mount_point("/", params.public_path);
  3140. if (!is_found) {
  3141. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3142. return 1;
  3143. }
  3144. } else {
  3145. // using embedded static index.html
  3146. svr->Get("/", [](const httplib::Request &, httplib::Response & res) {
  3147. res.set_content(reinterpret_cast<const char*>(index_html), index_html_len, "text/html; charset=utf-8");
  3148. return false;
  3149. });
  3150. }
  3151. }
  3152. // register API routes
  3153. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3154. svr->Get ("/metrics", handle_metrics);
  3155. svr->Get ("/props", handle_props);
  3156. svr->Post("/props", handle_props_change);
  3157. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3158. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3159. svr->Post("/completion", handle_completions); // legacy
  3160. svr->Post("/completions", handle_completions);
  3161. svr->Post("/v1/completions", handle_completions);
  3162. svr->Post("/chat/completions", handle_chat_completions);
  3163. svr->Post("/v1/chat/completions", handle_chat_completions);
  3164. svr->Post("/infill", handle_infill);
  3165. svr->Post("/embedding", handle_embeddings); // legacy
  3166. svr->Post("/embeddings", handle_embeddings);
  3167. svr->Post("/v1/embeddings", handle_embeddings);
  3168. svr->Post("/rerank", handle_rerank);
  3169. svr->Post("/reranking", handle_rerank);
  3170. svr->Post("/v1/rerank", handle_rerank);
  3171. svr->Post("/v1/reranking", handle_rerank);
  3172. svr->Post("/tokenize", handle_tokenize);
  3173. svr->Post("/detokenize", handle_detokenize);
  3174. // LoRA adapters hotswap
  3175. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3176. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3177. // Save & load slots
  3178. svr->Get ("/slots", handle_slots);
  3179. svr->Post("/slots/:id_slot", handle_slots_action);
  3180. //
  3181. // Start the server
  3182. //
  3183. if (params.n_threads_http < 1) {
  3184. // +2 threads for monitoring endpoints
  3185. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3186. }
  3187. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3188. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3189. // clean up function, to be called before exit
  3190. auto clean_up = [&svr]() {
  3191. svr->stop();
  3192. llama_backend_free();
  3193. };
  3194. // bind HTTP listen port
  3195. bool was_bound = false;
  3196. if (params.port == 0) {
  3197. int bound_port = svr->bind_to_any_port(params.hostname);
  3198. if ((was_bound = (bound_port >= 0))) {
  3199. params.port = bound_port;
  3200. }
  3201. } else {
  3202. was_bound = svr->bind_to_port(params.hostname, params.port);
  3203. }
  3204. if (!was_bound) {
  3205. //LOG_ERROR("couldn't bind HTTP server socket", {
  3206. // {"hostname", params.hostname},
  3207. // {"port", params.port},
  3208. //});
  3209. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3210. clean_up();
  3211. return 1;
  3212. }
  3213. // run the HTTP server in a thread
  3214. std::thread t([&]() { svr->listen_after_bind(); });
  3215. svr->wait_until_ready();
  3216. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3217. // load the model
  3218. LOG_INF("%s: loading model\n", __func__);
  3219. if (!ctx_server.load_model(params)) {
  3220. clean_up();
  3221. t.join();
  3222. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3223. return 1;
  3224. }
  3225. ctx_server.init();
  3226. state.store(SERVER_STATE_READY);
  3227. LOG_INF("%s: model loaded\n", __func__);
  3228. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3229. if (params.chat_template.empty()) {
  3230. if (!ctx_server.validate_model_chat_template()) {
  3231. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3232. params.chat_template = "chatml";
  3233. }
  3234. }
  3235. // print sample chat example to make it clear which template is used
  3236. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3237. ctx_server.queue_tasks.on_new_task(std::bind(
  3238. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3239. ctx_server.queue_tasks.on_update_slots(std::bind(
  3240. &server_context::update_slots, &ctx_server));
  3241. shutdown_handler = [&](int) {
  3242. ctx_server.queue_tasks.terminate();
  3243. };
  3244. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3245. ctx_server.queue_tasks.start_loop();
  3246. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3247. struct sigaction sigint_action;
  3248. sigint_action.sa_handler = signal_handler;
  3249. sigemptyset (&sigint_action.sa_mask);
  3250. sigint_action.sa_flags = 0;
  3251. sigaction(SIGINT, &sigint_action, NULL);
  3252. sigaction(SIGTERM, &sigint_action, NULL);
  3253. #elif defined (_WIN32)
  3254. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3255. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3256. };
  3257. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3258. #endif
  3259. clean_up();
  3260. t.join();
  3261. return 0;
  3262. }