ggml-opencl.cpp 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #include <limits>
  7. #define CL_TARGET_OPENCL_VERSION 110
  8. #include <clblast.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include <string.h>
  12. #include "ggml.h"
  13. #if defined(_MSC_VER)
  14. #pragma warning(disable: 4244 4267) // possible loss of data
  15. #endif
  16. #define CL_DMMV_BLOCK_SIZE 32
  17. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  18. static std::string program_source = MULTILINE_QUOTE(
  19. typedef char int8_t;
  20. typedef uchar uint8_t;
  21. typedef int int32_t;
  22. typedef uint uint32_t;
  23. struct __attribute__ ((packed)) block_q4_0
  24. {
  25. half d;
  26. uint8_t qs[QK4_0 / 2];
  27. };
  28. struct __attribute__ ((packed)) block_q4_1
  29. {
  30. half d;
  31. half m;
  32. uint8_t qs[QK4_1 / 2];
  33. };
  34. struct __attribute__ ((packed)) block_q5_0
  35. {
  36. half d;
  37. uint32_t qh;
  38. uint8_t qs[QK5_0 / 2];
  39. };
  40. struct __attribute__ ((packed)) block_q5_1
  41. {
  42. half d;
  43. half m;
  44. uint32_t qh;
  45. uint8_t qs[QK5_1 / 2];
  46. };
  47. struct __attribute__ ((packed)) block_q8_0
  48. {
  49. half d;
  50. int8_t qs[QK8_0];
  51. };
  52. struct __attribute__((packed)) block_q2_K
  53. {
  54. uint8_t scales[16];
  55. uint8_t qs[64];
  56. half d;
  57. half dmin;
  58. };
  59. struct __attribute__((packed)) block_q3_K
  60. {
  61. uint8_t hmask[32];
  62. uint8_t qs[64];
  63. uint8_t scales[12];
  64. half d;
  65. };
  66. struct __attribute__((packed)) block_q4_K
  67. {
  68. half d;
  69. half dmin;
  70. uint8_t scales[12];
  71. uint8_t qs[128];
  72. };
  73. struct __attribute__((packed)) block_q5_K
  74. {
  75. half d;
  76. half dmin;
  77. uint8_t scales[12];
  78. uint8_t qh[32];
  79. uint8_t qs[128];
  80. };
  81. struct __attribute__((packed)) block_q6_K
  82. {
  83. uint8_t ql[128];
  84. uint8_t qh[64];
  85. int8_t scales[16];
  86. half d;
  87. };
  88. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  89. const uint i = get_global_id(0);
  90. y[i] = vload_half(0, &x[i]);
  91. }
  92. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  93. const float d = vload_half(0, &x[ib].d);
  94. const uint8_t vui = x[ib].qs[iqs];
  95. const int8_t vi0 = vui & 0xF;
  96. const int8_t vi1 = vui >> 4;
  97. *v0 = (vi0 - 8)*d;
  98. *v1 = (vi1 - 8)*d;
  99. }
  100. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  101. const float d = vload_half(0, &x[ib].d);
  102. const float m = vload_half(0, &x[ib].m);
  103. const uint8_t vui = x[ib].qs[iqs];
  104. const int8_t vi0 = vui & 0xF;
  105. const int8_t vi1 = vui >> 4;
  106. *v0 = vi0*d + m;
  107. *v1 = vi1*d + m;
  108. }
  109. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  110. const float d = vload_half(0, &x[ib].d);
  111. uint32_t qh = x[ib].qh;
  112. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  113. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  114. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  115. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  116. *v0 = x0*d;
  117. *v1 = x1*d;
  118. }
  119. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  120. const float d = vload_half(0, &x[ib].d);
  121. const float m = vload_half(0, &x[ib].m);
  122. uint32_t qh = x[ib].qh;
  123. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  124. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  125. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  126. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  127. *v0 = x0*d + m;
  128. *v1 = x1*d + m;
  129. }
  130. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  131. const float d = vload_half(0, &x[ib].d);
  132. const int8_t vi0 = x[ib].qs[iqs + 0];
  133. const int8_t vi1 = x[ib].qs[iqs + 1];
  134. *v0 = vi0*d;
  135. *v1 = vi1*d;
  136. }
  137. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  138. *v0 = vload_half(0, &x[ib + 0]);
  139. *v1 = vload_half(0, &x[ib + 1]);
  140. }
  141. inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
  142. {
  143. if (j < 4)
  144. {
  145. *d = q[j] & 63;
  146. *m = q[j + 4] & 63;
  147. }
  148. else
  149. {
  150. *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
  151. *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
  152. }
  153. }
  154. __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
  155. {
  156. const int i = get_group_id(0);
  157. const int tid = get_local_id(0);
  158. const int n = tid / 32;
  159. const int l = tid - 32 * n;
  160. const int is = 8 * n + l / 16;
  161. const uint8_t q = x[i].qs[32 * n + l];
  162. __global float *y = yy + i * 256 + 128 * n;
  163. const float dall = vload_half(0, &x[i].d);
  164. const float dmin = vload_half(0, &x[i].dmin);
  165. y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
  166. y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
  167. y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
  168. y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
  169. }
  170. __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
  171. {
  172. int r = get_local_id(0) / 4;
  173. int i = get_group_id(0);
  174. int tid = r / 2;
  175. int is0 = r % 2;
  176. int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
  177. int n = tid / 4;
  178. int j = tid - 4 * n;
  179. uint8_t m = 1 << (4 * n + j);
  180. int is = 8 * n + 2 * j + is0;
  181. int shift = 2 * j;
  182. int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
  183. : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
  184. : is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
  185. : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
  186. float d_all = vload_half(0, &x[i].d);
  187. float dl = d_all * (us - 32);
  188. __global float *y = yy + i * 256 + 128 * n + 32 * j;
  189. const __global uint8_t *q = x[i].qs + 32 * n;
  190. const __global uint8_t *hm = x[i].hmask;
  191. for (int l = l0; l < l0 + 4; ++l)
  192. y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
  193. }
  194. __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
  195. {
  196. const int i = get_group_id(0);
  197. const int tid = get_local_id(0);
  198. const int il = tid / 8;
  199. const int ir = tid % 8;
  200. const int is = 2 * il;
  201. const int n = 4;
  202. __global float *y = yy + i * 256 + 64 * il + n * ir;
  203. const float dall = vload_half(0, &x[i].d);
  204. const float dmin = vload_half(0, &x[i].dmin);
  205. __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
  206. uint8_t sc, m;
  207. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  208. float d1 = dall * sc;
  209. float m1 = dmin * m;
  210. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  211. float d2 = dall * sc;
  212. float m2 = dmin * m;
  213. for (int l = 0; l < n; ++l)
  214. {
  215. y[l + 0] = d1 * (q[l] & 0xF) - m1;
  216. y[l + 32] = d2 * (q[l] >> 4) - m2;
  217. }
  218. }
  219. __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
  220. {
  221. const int i = get_group_id(0);
  222. const int tid = get_local_id(0);
  223. const int il = tid / 16;
  224. const int ir = tid % 16;
  225. const int is = 2 * il;
  226. __global float *y = yy + i * 256 + 64 * il + 2 * ir;
  227. const float dall = vload_half(0, &x[i].d);
  228. const float dmin = vload_half(0, &x[i].dmin);
  229. __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
  230. __global const uint8_t *qh = x[i].qh + 2 * ir;
  231. uint8_t sc, m;
  232. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  233. const float d1 = dall * sc;
  234. const float m1 = dmin * m;
  235. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  236. const float d2 = dall * sc;
  237. const float m2 = dmin * m;
  238. uint8_t hm = 1 << (2 * il);
  239. y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
  240. y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
  241. hm <<= 1;
  242. y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
  243. y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
  244. }
  245. __kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
  246. {
  247. const int i = get_group_id(0);
  248. const int tid = get_local_id(0);
  249. const int ip = tid / 32;
  250. const int il = tid - 32 * ip;
  251. const int is = 8 * ip + il / 16;
  252. __global float *y = yy + i * 256 + 128 * ip + il;
  253. const float d = vload_half(0, &x[i].d);
  254. __global const uint8_t *ql = x[i].ql + 64 * ip + il;
  255. const uint8_t qh = x[i].qh[32 * ip + il];
  256. __global const int8_t *sc = x[i].scales + is;
  257. y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
  258. y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
  259. y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
  260. y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
  261. }
  262. void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  263. int n = iqs / 128;
  264. int r = iqs - 128 * n;
  265. int l = r / 8;
  266. __global const float *y = yy + 128 * n + l;
  267. __global const uint8_t *q = x[ib].qs + 32 * n + l;
  268. __global const uint8_t *s = x[ib].scales + 8 * n;
  269. const float dall = vload_half(0, &x[ib].d);
  270. const float dmin = vload_half(0, &x[ib].dmin);
  271. float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
  272. + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
  273. + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
  274. + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
  275. + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
  276. + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
  277. + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
  278. + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
  279. *result = sum;
  280. }
  281. void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  282. const uint32_t kmask1 = 0x03030303;
  283. const uint32_t kmask2 = 0x0f0f0f0f;
  284. uint32_t aux[3];
  285. uint32_t utmp[4];
  286. int n = iqs/128;
  287. int r = iqs - 128*n;
  288. int l = r/8;
  289. __global const float * y = yy + 128*n + l;
  290. __global const uint8_t * q = x[ib].qs + 32*n + l;
  291. __global const uint8_t * hm = x[ib].hmask + l;
  292. const int8_t * s = (const int8_t *)utmp + 8*n;
  293. aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24;
  294. aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24;
  295. aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24;
  296. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  297. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  298. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  299. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  300. const float dall = vload_half(0, &x[ib].d);
  301. const uint8_t m = 1 << (4*n);
  302. float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
  303. + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
  304. + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
  305. + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
  306. + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
  307. + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
  308. + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
  309. + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
  310. *result = sum * dall;
  311. }
  312. void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  313. const int j = iqs / 64; // j is in 0...3
  314. const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
  315. const int is = 2*j; // is is in 0...6 in steps of 2
  316. __global const float * y = yy + 64*j + ir;
  317. __global const uint8_t * q = x[ib].qs + 32*j + ir;
  318. const float dall = vload_half(0, &x[ib].d);
  319. const float dmin = vload_half(0, &x[ib].dmin);
  320. uint8_t sc, m;
  321. get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
  322. const float d1 = dall * sc;
  323. const float m1 = dmin * m;
  324. get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
  325. const float d2 = dall * sc;
  326. const float m2 = dmin * m;
  327. float sum = 0;
  328. for (int k = 0; k < 4; ++k) {
  329. sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
  330. sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
  331. }
  332. *result = sum;
  333. }
  334. void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  335. const int j = iqs / 64;
  336. const int ir = (iqs - 64*j)/2;
  337. const int is = 2*j;
  338. __global const float * y = yy + 64*j + ir;
  339. __global const uint8_t * ql = x[ib].qs + 32*j + ir;
  340. __global const uint8_t * qh = x[ib].qh + ir;
  341. const float dall = vload_half(0, &x[ib].d);
  342. const float dmin = vload_half(0, &x[ib].dmin);
  343. uint8_t sc, m;
  344. get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
  345. const float d1 = dall * sc;
  346. const float m1 = dmin * m;
  347. get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
  348. const float d2 = dall * sc;
  349. const float m2 = dmin * m;
  350. uint8_t hm = 1 << is;
  351. float sum = 0;
  352. for (int k = 0; k < 4; ++k) {
  353. sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
  354. }
  355. hm <<= 1;
  356. for (int k = 0; k < 4; ++k) {
  357. sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
  358. }
  359. *result = sum;
  360. }
  361. void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
  362. const int ip = iqs / 128; // 0 or 1
  363. const int il = (iqs - 128*ip)/8; // 0...15
  364. const int is = 8*ip;
  365. __global const float * y = yy + 128*ip + il;
  366. const float d = vload_half(0, &x[ib].d);
  367. __global const uint8_t * ql = x[ib].ql + 64*ip + il;
  368. __global const uint8_t * qh = x[ib].qh + 32*ip + il;
  369. __global const int8_t * sc = x[ib].scales + is;
  370. *result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
  371. + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
  372. + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
  373. + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
  374. + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
  375. + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
  376. + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
  377. + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
  378. }
  379. );
  380. std::string dequant_template = MULTILINE_QUOTE(
  381. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  382. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  383. if (i >= get_global_size(0)) {
  384. return;
  385. }
  386. const uint qk = QUANT_K;
  387. const uint qr = QUANT_R;
  388. const int ib = i/qk; // block index
  389. const int iqs = (i%qk)/qr; // quant index
  390. const int iybs = i - i%qk; // y block start index
  391. const int y_offset = qr == 1 ? 1 : qk/2;
  392. // dequantize
  393. float v0, v1;
  394. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  395. y[iybs + iqs + 0] = v0;
  396. y[iybs + iqs + y_offset] = v1;
  397. }
  398. );
  399. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  400. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  401. const int block_size = get_local_size(0);
  402. const int row = get_group_id(0);
  403. const int tid = get_local_id(0);
  404. const uint qk = QUANT_K;
  405. const uint qr = QUANT_R;
  406. const int y_offset = qr == 1 ? 1 : qk/2;
  407. tmp[tid] = 0;
  408. for (int i = 0; i < ncols/block_size; i += 2) {
  409. const int col = i*block_size + 2*tid;
  410. const int ib = (row*ncols + col)/qk; // block index
  411. const int iqs = (col%qk)/qr; // quant index
  412. const int iybs = col - col%qk; // y block start index
  413. // dequantize
  414. float v0, v1;
  415. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  416. // matrix multiplication
  417. tmp[tid] += v0 * y[iybs + iqs + 0];
  418. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  419. }
  420. // sum up partial sums and write back result
  421. barrier(CLK_LOCAL_MEM_FENCE);
  422. for (int s=block_size/2; s>0; s>>=1) {
  423. if (tid < s) {
  424. tmp[tid] += tmp[tid + s];
  425. }
  426. barrier(CLK_LOCAL_MEM_FENCE);
  427. }
  428. if (tid == 0) {
  429. dst[row] = tmp[0];
  430. }
  431. }
  432. );
  433. std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE(
  434. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  435. const int block_size = get_local_size(0);
  436. const int row = get_group_id(0);
  437. const int tid = get_local_id(0);
  438. const int iter_stride = 256;
  439. const int vals_per_iter = iter_stride / block_size;
  440. const int num_blocks_per_row = ncols / 256;
  441. const int ib0 = row*num_blocks_per_row;
  442. tmp[tid] = 0;
  443. for (int i = 0; i < ncols; i += iter_stride) {
  444. const int col = i + vals_per_iter*tid;
  445. const int ib = ib0 + col/256; // x block index
  446. const int iqs = col%256; // x quant index
  447. const int iybs = col - col%256; // y block start index
  448. // dequantize
  449. float v;
  450. DOT_KERNEL(x, ib, iqs, y + iybs, &v);
  451. tmp[tid] += v;
  452. }
  453. // sum up partial sums and write back result
  454. barrier(CLK_LOCAL_MEM_FENCE);
  455. for (int s=block_size/2; s>0; s>>=1) {
  456. if (tid < s) {
  457. tmp[tid] += tmp[tid + s];
  458. }
  459. barrier(CLK_LOCAL_MEM_FENCE);
  460. }
  461. if (tid == 0) {
  462. dst[row] = tmp[0];
  463. }
  464. }
  465. );
  466. std::string mul_template = MULTILINE_QUOTE(
  467. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  468. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  469. if (i >= get_global_size(0)) {
  470. return;
  471. }
  472. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  473. }
  474. );
  475. #define CL_CHECK(err) \
  476. do { \
  477. cl_int err_ = (err); \
  478. if (err_ != CL_SUCCESS) { \
  479. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  480. #err, err_, __FILE__, __LINE__); \
  481. exit(1); \
  482. } \
  483. } while (0)
  484. #define CLBLAST_CHECK(err) \
  485. do { \
  486. CLBlastStatusCode err_ = (err); \
  487. if (err_ != CLBlastSuccess) { \
  488. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  489. #err, err_, __FILE__, __LINE__); \
  490. exit(1); \
  491. } \
  492. } while (0)
  493. std::array<std::string, 5> dequant_str_keys = {
  494. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  495. };
  496. std::array<std::string, 30> dequant_str_values = {
  497. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  498. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  499. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  500. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  501. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  502. "convert_row_f16", "half", "1", "1", "convert_f16"
  503. };
  504. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  505. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  506. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  507. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  508. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  509. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  510. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  511. };
  512. std::array<std::string, 2> mul_str_keys = {
  513. "KERNEL_NAME", "TYPE"
  514. };
  515. std::array<std::string, 2> mul_str_values = {
  516. "mul_f32", "float"
  517. };
  518. std::array<std::string, 3> dmmv_k_str_keys = {
  519. "KERNEL_NAME", "X_TYPE", "DOT_KERNEL"
  520. };
  521. std::array<std::string, 15> dmmv_k_str_values = {
  522. "dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K",
  523. "dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K",
  524. "dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K",
  525. "dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K",
  526. "dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K",
  527. };
  528. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  529. size_t pos = 0;
  530. while ((pos = s.find(from, pos)) != std::string::npos) {
  531. s.replace(pos, from.length(), to);
  532. pos += to.length();
  533. }
  534. return s;
  535. }
  536. std::string generate_kernels() {
  537. std::stringstream src;
  538. src << program_source << '\n';
  539. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  540. std::string dequant_kernel = dequant_template;
  541. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  542. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  543. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  544. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  545. }
  546. src << dequant_kernel << '\n';
  547. src << dmmv_kernel << '\n';
  548. }
  549. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  550. std::string mul_kernel = mul_template;
  551. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  552. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  553. }
  554. src << mul_kernel << '\n';
  555. }
  556. for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) {
  557. std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template;
  558. for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) {
  559. replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]);
  560. }
  561. src << dmmv_k_kernel << '\n';
  562. }
  563. return src.str();
  564. }
  565. static cl_platform_id platform;
  566. static cl_device_id device;
  567. static cl_context context;
  568. static cl_command_queue queue;
  569. static cl_program program;
  570. static cl_kernel convert_row_f16_cl;
  571. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  572. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  573. static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
  574. static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
  575. static cl_kernel mul_f32_cl;
  576. static bool fp16_support;
  577. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  578. cl_program p;
  579. char *program_log;
  580. size_t program_size;
  581. size_t log_size;
  582. int err;
  583. program_size = strlen(program_buffer);
  584. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  585. if(err < 0) {
  586. fprintf(stderr, "OpenCL error creating program");
  587. exit(1);
  588. }
  589. const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  590. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
  591. err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
  592. if(err < 0) {
  593. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  594. program_log = (char*) malloc(log_size + 1);
  595. program_log[log_size] = '\0';
  596. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  597. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  598. free(program_log);
  599. exit(1);
  600. }
  601. return p;
  602. }
  603. void ggml_cl_init(void) {
  604. cl_int err;
  605. struct cl_device;
  606. struct cl_platform {
  607. cl_platform_id id;
  608. unsigned number;
  609. char name[128];
  610. char vendor[128];
  611. struct cl_device * devices;
  612. unsigned n_devices;
  613. struct cl_device * default_device;
  614. };
  615. struct cl_device {
  616. struct cl_platform * platform;
  617. cl_device_id id;
  618. unsigned number;
  619. cl_device_type type;
  620. char name[128];
  621. };
  622. enum { NPLAT = 16, NDEV = 16 };
  623. struct cl_platform platforms[NPLAT];
  624. unsigned n_platforms = 0;
  625. struct cl_device devices[NDEV];
  626. unsigned n_devices = 0;
  627. struct cl_device * default_device = NULL;
  628. platform = NULL;
  629. device = NULL;
  630. cl_platform_id platform_ids[NPLAT];
  631. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  632. for (unsigned i = 0; i < n_platforms; i++) {
  633. struct cl_platform * p = &platforms[i];
  634. p->number = i;
  635. p->id = platform_ids[i];
  636. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  637. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  638. cl_device_id device_ids[NDEV];
  639. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  640. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  641. p->n_devices = 0;
  642. } else {
  643. CL_CHECK(clGetDeviceIDsError);
  644. }
  645. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  646. p->default_device = NULL;
  647. for (unsigned j = 0; j < p->n_devices; j++) {
  648. struct cl_device * d = &devices[n_devices];
  649. d->number = n_devices++;
  650. d->id = device_ids[j];
  651. d->platform = p;
  652. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  653. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  654. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  655. p->default_device = d;
  656. }
  657. }
  658. if (default_device == NULL && p->default_device != NULL) {
  659. default_device = p->default_device;
  660. }
  661. }
  662. if (n_devices == 0) {
  663. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  664. exit(1);
  665. }
  666. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  667. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  668. int user_platform_number = -1;
  669. int user_device_number = -1;
  670. unsigned n;
  671. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  672. user_platform_number = (int)n;
  673. }
  674. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  675. user_device_number = (int)n;
  676. }
  677. if (user_platform_number != -1 && user_device_number != -1) {
  678. cl_platform* platform = &platforms[user_platform_number];
  679. if ((unsigned)user_device_number >= platform->n_devices) {
  680. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  681. exit(1);
  682. }
  683. default_device = &platform->devices[user_device_number];
  684. } else {
  685. struct cl_device * selected_devices = devices;
  686. unsigned n_selected_devices = n_devices;
  687. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  688. for (unsigned i = 0; i < n_platforms; i++) {
  689. struct cl_platform * p = &platforms[i];
  690. if (strstr(p->name, user_platform_string) != NULL ||
  691. strstr(p->vendor, user_platform_string) != NULL) {
  692. user_platform_number = (int)i;
  693. break;
  694. }
  695. }
  696. if (user_platform_number == -1) {
  697. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  698. exit(1);
  699. }
  700. }
  701. if (user_platform_number != -1) {
  702. struct cl_platform * p = &platforms[user_platform_number];
  703. selected_devices = p->devices;
  704. n_selected_devices = p->n_devices;
  705. default_device = p->default_device;
  706. if (n_selected_devices == 0) {
  707. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  708. exit(1);
  709. }
  710. }
  711. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  712. for (unsigned i = 0; i < n_selected_devices; i++) {
  713. struct cl_device * d = &selected_devices[i];
  714. if (strstr(d->name, user_device_string) != NULL) {
  715. user_device_number = d->number;
  716. break;
  717. }
  718. }
  719. if (user_device_number == -1) {
  720. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  721. exit(1);
  722. }
  723. }
  724. if (user_device_number != -1) {
  725. selected_devices = &devices[user_device_number];
  726. n_selected_devices = 1;
  727. default_device = &selected_devices[0];
  728. }
  729. GGML_ASSERT(n_selected_devices > 0);
  730. if (default_device == NULL) {
  731. default_device = &selected_devices[0];
  732. }
  733. }
  734. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  735. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  736. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  737. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  738. }
  739. platform = default_device->platform->id;
  740. device = default_device->id;
  741. size_t ext_str_size;
  742. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  743. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  744. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  745. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  746. // Check if ext_buffer contains cl_khr_fp16
  747. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  748. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  749. cl_context_properties properties[] = {
  750. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  751. };
  752. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  753. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  754. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  755. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  756. )));
  757. const std::string kernel_src = generate_kernels();
  758. program = build_program_from_source(context, device, kernel_src.c_str());
  759. // FP16 to FP32 kernel
  760. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  761. // Dequantize kernels
  762. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  763. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  764. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  765. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  766. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  767. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  768. CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
  769. CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
  770. CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
  771. CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
  772. CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
  773. // dequant mul mat kernel
  774. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  775. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  776. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  777. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  778. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  779. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  780. CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
  781. CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
  782. CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
  783. CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
  784. CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
  785. // mul kernel
  786. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  787. }
  788. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  789. switch (type) {
  790. case GGML_TYPE_Q4_0:
  791. return &dequantize_row_q4_0_cl;
  792. case GGML_TYPE_Q4_1:
  793. return &dequantize_row_q4_1_cl;
  794. case GGML_TYPE_Q5_0:
  795. return &dequantize_row_q5_0_cl;
  796. case GGML_TYPE_Q5_1:
  797. return &dequantize_row_q5_1_cl;
  798. case GGML_TYPE_Q8_0:
  799. return &dequantize_row_q8_0_cl;
  800. case GGML_TYPE_Q2_K:
  801. return &dequantize_block_q2_k_cl;
  802. case GGML_TYPE_Q3_K:
  803. return &dequantize_block_q3_k_cl;
  804. case GGML_TYPE_Q4_K:
  805. return &dequantize_block_q4_k_cl;
  806. case GGML_TYPE_Q5_K:
  807. return &dequantize_block_q5_k_cl;
  808. case GGML_TYPE_Q6_K:
  809. return &dequantize_block_q6_k_cl;
  810. case GGML_TYPE_F16:
  811. return &convert_row_f16_cl;
  812. default:
  813. return nullptr;
  814. }
  815. }
  816. static size_t ggml_cl_global_denom(ggml_type type) {
  817. switch (type) {
  818. case GGML_TYPE_Q4_0:
  819. case GGML_TYPE_Q4_1:
  820. case GGML_TYPE_Q5_0:
  821. case GGML_TYPE_Q5_1:
  822. case GGML_TYPE_Q8_0:
  823. return 1;
  824. case GGML_TYPE_Q2_K:
  825. case GGML_TYPE_Q3_K:
  826. return 4;
  827. case GGML_TYPE_Q4_K:
  828. return 8;
  829. case GGML_TYPE_Q5_K:
  830. case GGML_TYPE_Q6_K:
  831. return 4;
  832. case GGML_TYPE_F16:
  833. default:
  834. return 1;
  835. }
  836. }
  837. static size_t ggml_cl_local_size(ggml_type type) {
  838. switch (type) {
  839. case GGML_TYPE_Q4_0:
  840. case GGML_TYPE_Q4_1:
  841. case GGML_TYPE_Q5_0:
  842. case GGML_TYPE_Q5_1:
  843. case GGML_TYPE_Q8_0:
  844. return 0;
  845. case GGML_TYPE_Q2_K:
  846. case GGML_TYPE_Q3_K:
  847. return 64;
  848. case GGML_TYPE_Q4_K:
  849. return 32;
  850. case GGML_TYPE_Q5_K:
  851. case GGML_TYPE_Q6_K:
  852. return 64;
  853. case GGML_TYPE_F16:
  854. default:
  855. return 0;
  856. }
  857. }
  858. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  859. switch (type) {
  860. case GGML_TYPE_Q4_0:
  861. return &dequantize_mul_mat_vec_q4_0_cl;
  862. case GGML_TYPE_Q4_1:
  863. return &dequantize_mul_mat_vec_q4_1_cl;
  864. case GGML_TYPE_Q5_0:
  865. return &dequantize_mul_mat_vec_q5_0_cl;
  866. case GGML_TYPE_Q5_1:
  867. return &dequantize_mul_mat_vec_q5_1_cl;
  868. case GGML_TYPE_Q8_0:
  869. return &dequantize_mul_mat_vec_q8_0_cl;
  870. case GGML_TYPE_F16:
  871. return &convert_mul_mat_vec_f16_cl;
  872. case GGML_TYPE_Q2_K:
  873. return &dequantize_mul_mat_vec_q2_K_cl;
  874. case GGML_TYPE_Q3_K:
  875. return &dequantize_mul_mat_vec_q3_K_cl;
  876. case GGML_TYPE_Q4_K:
  877. return &dequantize_mul_mat_vec_q4_K_cl;
  878. case GGML_TYPE_Q5_K:
  879. return &dequantize_mul_mat_vec_q5_K_cl;
  880. case GGML_TYPE_Q6_K:
  881. return &dequantize_mul_mat_vec_q6_K_cl;
  882. default:
  883. return nullptr;
  884. }
  885. }
  886. // buffer pool for cl
  887. #define MAX_CL_BUFFERS 256
  888. struct scoped_spin_lock {
  889. std::atomic_flag& lock;
  890. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  891. while (lock.test_and_set(std::memory_order_acquire)) {
  892. ; // spin
  893. }
  894. }
  895. ~scoped_spin_lock() {
  896. lock.clear(std::memory_order_release);
  897. }
  898. scoped_spin_lock(const scoped_spin_lock&) = delete;
  899. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  900. };
  901. struct cl_buffer {
  902. cl_mem mem;
  903. size_t size = 0;
  904. };
  905. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  906. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  907. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
  908. scoped_spin_lock lock(g_cl_pool_lock);
  909. cl_int err;
  910. int best_i = -1;
  911. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  912. int worst_i = -1;
  913. size_t worst_size = 0; //largest unused buffer seen so far
  914. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  915. cl_buffer &b = g_cl_buffer_pool[i];
  916. if (b.size > 0 && b.size >= size && b.size < best_size)
  917. {
  918. best_i = i;
  919. best_size = b.size;
  920. }
  921. if (b.size > 0 && b.size > worst_size)
  922. {
  923. worst_i = i;
  924. worst_size = b.size;
  925. }
  926. }
  927. if(best_i!=-1) //found the smallest buffer that fits our needs
  928. {
  929. cl_buffer& b = g_cl_buffer_pool[best_i];
  930. cl_mem mem = b.mem;
  931. *actual_size = b.size;
  932. b.size = 0;
  933. return mem;
  934. }
  935. if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
  936. {
  937. cl_buffer& b = g_cl_buffer_pool[worst_i];
  938. cl_mem mem = b.mem;
  939. b.size = 0;
  940. clReleaseMemObject(mem);
  941. }
  942. cl_mem mem;
  943. CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  944. *actual_size = size;
  945. return mem;
  946. }
  947. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  948. scoped_spin_lock lock(g_cl_pool_lock);
  949. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  950. cl_buffer& b = g_cl_buffer_pool[i];
  951. if (b.size == 0) {
  952. b.mem = mem;
  953. b.size = size;
  954. return;
  955. }
  956. }
  957. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  958. clReleaseMemObject(mem);
  959. }
  960. void ggml_cl_free_data(const struct ggml_tensor* tensor) {
  961. if (tensor->backend != GGML_BACKEND_GPU) {
  962. return;
  963. }
  964. cl_mem mem = (cl_mem)tensor->data;
  965. clReleaseMemObject(mem);
  966. }
  967. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  968. cl_int err;
  969. const uint64_t ne0 = src->ne[0];
  970. const uint64_t ne1 = src->ne[1];
  971. const uint64_t nb0 = src->nb[0];
  972. const uint64_t nb1 = src->nb[1];
  973. const uint64_t nb2 = src->nb[2];
  974. const uint64_t nb3 = src->nb[3];
  975. const enum ggml_type type = src->type;
  976. const size_t ts = ggml_type_size(type);
  977. const size_t bs = ggml_blck_size(type);
  978. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  979. if (nb0 == ts && nb1 == ts*ne0/bs) {
  980. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  981. return err;
  982. }
  983. if (nb0 == ts) {
  984. const size_t buffer_origin[3] = { offset, 0, 0 };
  985. const size_t host_origin[3] = { 0, 0, 0 };
  986. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  987. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  988. return err;
  989. }
  990. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  991. // pretend the row is a matrix with cols=1
  992. const size_t buffer_origin[3] = { offset, i1, 0 };
  993. const size_t host_origin[3] = { 0, 0, 0 };
  994. const size_t region[3] = { ts/bs, ne0, 1 };
  995. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  996. if (err != CL_SUCCESS) {
  997. break;
  998. }
  999. }
  1000. return err;
  1001. }
  1002. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1003. GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
  1004. const int64_t ne00 = src0->ne[0];
  1005. const int64_t ne01 = src0->ne[1];
  1006. const int64_t ne02 = src0->ne[2];
  1007. const int64_t ne03 = src0->ne[2];
  1008. const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
  1009. const int64_t ne10 = src1->ne[0];
  1010. const int64_t ne11 = src1->ne[1];
  1011. const int64_t ne12 = src1->ne[2];
  1012. const int64_t ne13 = src1->ne[3];
  1013. const int64_t nb10 = src1->nb[0];
  1014. const int nb2 = dst->nb[2];
  1015. const int nb3 = dst->nb[3];
  1016. size_t x_size;
  1017. size_t d_size;
  1018. cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
  1019. cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
  1020. cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
  1021. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1022. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1023. const int i0 = i03*ne02 + i02;
  1024. cl_event ev;
  1025. // copy src0 to device
  1026. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
  1027. if (nb10 == sizeof(float)) {
  1028. // Contiguous, avoid overhead from queueing many kernel runs
  1029. const int64_t i13 = i03%ne13;
  1030. const int64_t i12 = i02%ne12;
  1031. const int i1 = i13*ne12*ne11 + i12*ne11;
  1032. cl_int x_offset = 0;
  1033. cl_int y_offset = i1*ne10;
  1034. cl_int d_offset = 0;
  1035. size_t global = ne00 * ne01;
  1036. cl_int ky = ne10;
  1037. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1038. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1039. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1040. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1041. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1042. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1043. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1044. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1045. } else {
  1046. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1047. const int64_t i13 = i03%ne13;
  1048. const int64_t i12 = i02%ne12;
  1049. const int64_t i11 = i01%ne11;
  1050. const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
  1051. cl_int x_offset = i01*ne00;
  1052. cl_int y_offset = i1*ne10;
  1053. cl_int d_offset = i01*ne00;
  1054. // compute
  1055. size_t global = ne00;
  1056. cl_int ky = ne10;
  1057. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  1058. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  1059. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  1060. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  1061. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  1062. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  1063. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  1064. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  1065. }
  1066. }
  1067. CL_CHECK(clReleaseEvent(ev));
  1068. CL_CHECK(clFinish(queue));
  1069. // copy dst to host
  1070. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1071. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  1072. }
  1073. }
  1074. ggml_cl_pool_free(d_X, x_size);
  1075. ggml_cl_pool_free(d_D, d_size);
  1076. }
  1077. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1078. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  1079. ggml_cl_mul_f32(src0, src1, dst);
  1080. }
  1081. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1082. const int64_t ne00 = src0->ne[0];
  1083. const int64_t ne01 = src0->ne[1];
  1084. const int64_t ne02 = src0->ne[2];
  1085. const int64_t ne03 = src0->ne[3];
  1086. const int64_t ne10 = src1->ne[0];
  1087. const int64_t ne11 = src1->ne[1];
  1088. const int nb2 = dst->nb[2];
  1089. const int nb3 = dst->nb[3];
  1090. const float alpha = 1.0f;
  1091. const float beta = 0.0f;
  1092. const int x_ne = ne01 * ne00;
  1093. const int y_ne = ne11 * ne10;
  1094. const int d_ne = ne11 * ne01;
  1095. size_t x_size;
  1096. size_t y_size;
  1097. size_t d_size;
  1098. cl_mem d_X;
  1099. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1100. d_X = (cl_mem) src0->data;
  1101. } else {
  1102. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1103. }
  1104. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1105. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1108. // copy data to device
  1109. if (src0->backend != GGML_BACKEND_GPU) {
  1110. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1111. }
  1112. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1113. CL_CHECK(clFinish(queue));
  1114. // compute
  1115. cl_event ev_sgemm;
  1116. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1117. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1118. ne01, ne11, ne10,
  1119. alpha,
  1120. d_X, 0, ne00,
  1121. d_Y, 0, ne10,
  1122. beta,
  1123. d_D, 0, ne01,
  1124. &queue, &ev_sgemm);
  1125. if (status != clblast::StatusCode::kSuccess) {
  1126. GGML_ASSERT(false);
  1127. }
  1128. // copy dst to host
  1129. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1130. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  1131. }
  1132. }
  1133. if (src0->backend != GGML_BACKEND_GPU) {
  1134. ggml_cl_pool_free(d_X, x_size);
  1135. }
  1136. ggml_cl_pool_free(d_Y, y_size);
  1137. ggml_cl_pool_free(d_D, d_size);
  1138. }
  1139. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  1140. GGML_ASSERT(fp16_support);
  1141. const int64_t ne00 = src0->ne[0];
  1142. const int64_t ne01 = src0->ne[1];
  1143. const int64_t ne02 = src0->ne[2];
  1144. const int64_t ne03 = src0->ne[3];
  1145. const int64_t ne10 = src1->ne[0];
  1146. const int64_t ne11 = src1->ne[1];
  1147. const int nb10 = src1->nb[0];
  1148. const int nb11 = src1->nb[1];
  1149. const int nb12 = src1->nb[2];
  1150. const int nb13 = src1->nb[3];
  1151. const int nb2 = dst->nb[2];
  1152. const int nb3 = dst->nb[3];
  1153. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  1154. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  1155. const int x_ne = ne01 * ne00;
  1156. const int y_ne = ne11 * ne10;
  1157. const int d_ne = ne11 * ne01;
  1158. size_t x_size;
  1159. size_t y_size;
  1160. size_t d_size;
  1161. cl_mem d_X;
  1162. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  1163. d_X = (cl_mem) src0->data;
  1164. } else {
  1165. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  1166. }
  1167. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
  1168. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
  1169. bool src1_cont_rows = nb10 == sizeof(float);
  1170. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  1171. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1172. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1173. // copy src0 to device
  1174. if (src0->backend != GGML_BACKEND_GPU) {
  1175. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  1176. }
  1177. // convert src1 to fp16
  1178. // TODO: use multiple threads
  1179. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  1180. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  1181. if (src1_cont_rows) {
  1182. if (src1_cont_cols) {
  1183. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  1184. }
  1185. else {
  1186. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1187. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  1188. }
  1189. }
  1190. }
  1191. else {
  1192. for (int64_t i01 = 0; i01 < ne11; i01++) {
  1193. for (int64_t i00 = 0; i00 < ne10; i00++) {
  1194. // very slow due to no inlining
  1195. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  1196. }
  1197. }
  1198. }
  1199. // copy src1 to device
  1200. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  1201. CL_CHECK(clFinish(queue));
  1202. // compute
  1203. cl_event ev_sgemm;
  1204. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  1205. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1206. ne01, ne11, ne10,
  1207. alpha,
  1208. d_X, 0, ne00,
  1209. d_Y, 0, ne10,
  1210. beta,
  1211. d_D, 0, ne01,
  1212. &queue, &ev_sgemm);
  1213. if (status != clblast::StatusCode::kSuccess) {
  1214. GGML_ASSERT(false);
  1215. }
  1216. // copy dst to host, then convert to float
  1217. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  1218. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1219. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  1220. }
  1221. }
  1222. if (src0->backend != GGML_BACKEND_GPU) {
  1223. ggml_cl_pool_free(d_X, x_size);
  1224. }
  1225. ggml_cl_pool_free(d_Y, y_size);
  1226. ggml_cl_pool_free(d_D, d_size);
  1227. }
  1228. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1229. const int64_t ne00 = src0->ne[0];
  1230. const int64_t ne01 = src0->ne[1];
  1231. const int64_t ne02 = src0->ne[2];
  1232. const int64_t ne03 = src0->ne[3];
  1233. const int64_t ne10 = src1->ne[0];
  1234. const int64_t ne11 = src1->ne[1];
  1235. const int nb2 = dst->nb[2];
  1236. const int nb3 = dst->nb[3];
  1237. const ggml_type type = src0->type;
  1238. const bool mul_mat_vec = ne11 == 1;
  1239. const float alpha = 1.0f;
  1240. const float beta = 0.0f;
  1241. const int x_ne = ne01 * ne00;
  1242. const int y_ne = ne11 * ne10;
  1243. const int d_ne = ne11 * ne01;
  1244. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  1245. size_t x_size;
  1246. size_t y_size;
  1247. size_t d_size;
  1248. size_t q_size;
  1249. cl_mem d_X;
  1250. if (!mul_mat_vec) {
  1251. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  1252. }
  1253. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  1254. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  1255. cl_mem d_Q;
  1256. if (src0->backend == GGML_BACKEND_CPU) {
  1257. d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
  1258. }
  1259. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  1260. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  1261. GGML_ASSERT(to_fp32_cl != nullptr);
  1262. const size_t global_denom = ggml_cl_global_denom(type);
  1263. const size_t local = ggml_cl_local_size(type);
  1264. size_t ev_idx = 0;
  1265. std::vector<cl_event> events;
  1266. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1267. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1268. // copy src0 to device if necessary
  1269. if (src0->backend == GGML_BACKEND_CPU) {
  1270. events.emplace_back();
  1271. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  1272. } else if (src0->backend == GGML_BACKEND_GPU) {
  1273. d_Q = (cl_mem) src0->data;
  1274. } else {
  1275. GGML_ASSERT(false);
  1276. }
  1277. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  1278. // copy src1 to device
  1279. events.emplace_back();
  1280. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
  1281. // compute
  1282. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  1283. const size_t local = CL_DMMV_BLOCK_SIZE;
  1284. const cl_int ncols = ne00;
  1285. events.emplace_back();
  1286. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  1287. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  1288. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  1289. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  1290. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  1291. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  1292. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  1293. // convert src0 to fp32 on device
  1294. const size_t global = x_ne / global_denom;
  1295. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  1296. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  1297. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  1298. // copy src1 to device
  1299. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  1300. events.emplace_back();
  1301. // wait for conversion
  1302. CL_CHECK(clFinish(queue));
  1303. // compute
  1304. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  1305. clblast::Transpose::kYes, clblast::Transpose::kNo,
  1306. ne01, ne11, ne10,
  1307. alpha,
  1308. d_X, 0, ne00,
  1309. d_Y, 0, ne10,
  1310. beta,
  1311. d_D, 0, ne01,
  1312. &queue, events.data() + ev_idx++);
  1313. if (status != clblast::StatusCode::kSuccess) {
  1314. GGML_ASSERT(false);
  1315. }
  1316. }
  1317. // copy dst to host
  1318. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  1319. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  1320. for (auto *event : events) {
  1321. clReleaseEvent(event);
  1322. }
  1323. ev_idx = 0;
  1324. events.clear();
  1325. }
  1326. }
  1327. if (!mul_mat_vec) {
  1328. ggml_cl_pool_free(d_X, x_size);
  1329. }
  1330. ggml_cl_pool_free(d_Y, y_size);
  1331. ggml_cl_pool_free(d_D, d_size);
  1332. if (src0->backend == GGML_BACKEND_CPU) {
  1333. ggml_cl_pool_free(d_Q, q_size);
  1334. }
  1335. }
  1336. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1337. const int64_t ne10 = src1->ne[0];
  1338. const int64_t ne0 = dst->ne[0];
  1339. const int64_t ne1 = dst->ne[1];
  1340. // TODO: find the optimal values for these
  1341. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  1342. src1->type == GGML_TYPE_F32 &&
  1343. dst->type == GGML_TYPE_F32 &&
  1344. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
  1345. return true;
  1346. }
  1347. return false;
  1348. }
  1349. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  1350. // If device doesn't support FP16
  1351. if (!fp16_support) {
  1352. return false;
  1353. }
  1354. size_t src0_sz = ggml_nbytes(src0);
  1355. size_t src1_sz = ggml_nbytes(src1);
  1356. // mul_mat_q: src0 is converted to fp32 on device
  1357. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  1358. // mul_mat_f16: src1 is converted to fp16 on cpu
  1359. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  1360. // choose the smaller one to transfer to the device
  1361. // TODO: this is not always the best choice due to the overhead of converting to fp16
  1362. return mul_mat_f16_transfer < mul_mat_q_transfer;
  1363. }
  1364. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  1365. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  1366. if (src0->type == GGML_TYPE_F32) {
  1367. ggml_cl_mul_mat_f32(src0, src1, dst);
  1368. }
  1369. else if (src0->type == GGML_TYPE_F16) {
  1370. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1371. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  1372. }
  1373. else {
  1374. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1375. }
  1376. }
  1377. else if (ggml_is_quantized(src0->type)) {
  1378. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  1379. }
  1380. else {
  1381. GGML_ASSERT(false);
  1382. }
  1383. }
  1384. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1385. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  1386. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  1387. }
  1388. return 0;
  1389. }
  1390. void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
  1391. const int64_t ne0 = tensor->ne[0];
  1392. const int64_t ne1 = tensor->ne[1];
  1393. const int64_t ne2 = tensor->ne[2];
  1394. const int64_t ne3 = tensor->ne[3];
  1395. const ggml_type type = tensor->type;
  1396. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  1397. size_t q_size;
  1398. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
  1399. tensor->data = data;
  1400. // copy tensor to device
  1401. for (int64_t i3 = 0; i3 < ne3; i3++) {
  1402. for (int64_t i2 = 0; i2 < ne2; i2++) {
  1403. int i = i3*ne2 + i2;
  1404. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  1405. }
  1406. }
  1407. CL_CHECK(clFinish(queue));
  1408. tensor->data = dst;
  1409. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  1410. }