ggml.c 605 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #endif
  78. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  79. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  80. #ifndef __FMA__
  81. #define __FMA__
  82. #endif
  83. #ifndef __F16C__
  84. #define __F16C__
  85. #endif
  86. #ifndef __SSE3__
  87. #define __SSE3__
  88. #endif
  89. #endif
  90. #ifdef __HAIKU__
  91. #define static_assert(cond, msg) _Static_assert(cond, msg)
  92. #endif
  93. /*#define GGML_PERF*/
  94. #define GGML_DEBUG 0
  95. #define GGML_GELU_FP16
  96. #define GGML_GELU_QUICK_FP16
  97. #define GGML_SILU_FP16
  98. #define GGML_SOFT_MAX_UNROLL 4
  99. #define GGML_VEC_DOT_UNROLL 2
  100. #ifdef GGML_USE_ACCELERATE
  101. // uncomment to use vDSP for soft max computation
  102. // note: not sure if it is actually faster
  103. //#define GGML_SOFT_MAX_ACCELERATE
  104. #endif
  105. #if UINTPTR_MAX == 0xFFFFFFFF
  106. #define GGML_MEM_ALIGN 4
  107. #else
  108. #define GGML_MEM_ALIGN 16
  109. #endif
  110. //
  111. // logging
  112. //
  113. #if (GGML_DEBUG >= 1)
  114. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  115. #else
  116. #define GGML_PRINT_DEBUG(...)
  117. #endif
  118. #if (GGML_DEBUG >= 5)
  119. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  120. #else
  121. #define GGML_PRINT_DEBUG_5(...)
  122. #endif
  123. #if (GGML_DEBUG >= 10)
  124. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  125. #else
  126. #define GGML_PRINT_DEBUG_10(...)
  127. #endif
  128. #define GGML_PRINT(...) printf(__VA_ARGS__)
  129. //
  130. // end of logging block
  131. //
  132. #if defined(_MSC_VER) || defined(__MINGW32__)
  133. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  134. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  135. #else
  136. inline static void* ggml_aligned_malloc(size_t size) {
  137. void* aligned_memory = NULL;
  138. #ifdef GGML_USE_METAL
  139. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  140. #else
  141. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  142. #endif
  143. if (result != 0) {
  144. // Handle allocation failure
  145. const char *error_desc = "unknown allocation error";
  146. switch (result) {
  147. case EINVAL:
  148. error_desc = "invalid alignment value";
  149. break;
  150. case ENOMEM:
  151. error_desc = "insufficient memory";
  152. break;
  153. }
  154. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  155. __func__, error_desc, size/(1024.0*1024.0));
  156. return NULL;
  157. }
  158. return aligned_memory;
  159. }
  160. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  161. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  162. #endif
  163. #define UNUSED(x) (void)(x)
  164. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  165. #if defined(GGML_USE_ACCELERATE)
  166. #include <Accelerate/Accelerate.h>
  167. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  168. #include "ggml-opencl.h"
  169. #endif
  170. #elif defined(GGML_USE_OPENBLAS)
  171. #include <cblas.h>
  172. #elif defined(GGML_USE_CUBLAS)
  173. #include "ggml-cuda.h"
  174. #elif defined(GGML_USE_CLBLAST)
  175. #include "ggml-opencl.h"
  176. #endif
  177. #undef MIN
  178. #undef MAX
  179. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  180. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  181. // floating point type used to accumulate sums
  182. typedef double ggml_float;
  183. // 16-bit float
  184. // on Arm, we use __fp16
  185. // on x86, we use uint16_t
  186. #ifdef __ARM_NEON
  187. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  188. //
  189. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  190. //
  191. #include <arm_neon.h>
  192. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  193. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  194. #define GGML_FP16_TO_FP32(x) ((float) (x))
  195. #define GGML_FP32_TO_FP16(x) (x)
  196. #else
  197. #ifdef __wasm_simd128__
  198. #include <wasm_simd128.h>
  199. #else
  200. #ifdef __POWER9_VECTOR__
  201. #include <altivec.h>
  202. #undef bool
  203. #define bool _Bool
  204. #else
  205. #if defined(_MSC_VER) || defined(__MINGW32__)
  206. #include <intrin.h>
  207. #else
  208. #if !defined(__riscv)
  209. #include <immintrin.h>
  210. #endif
  211. #endif
  212. #endif
  213. #endif
  214. #ifdef __F16C__
  215. #ifdef _MSC_VER
  216. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  217. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  218. #else
  219. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  220. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  221. #endif
  222. #elif defined(__POWER9_VECTOR__)
  223. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  224. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  225. /* the inline asm below is about 12% faster than the lookup method */
  226. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  227. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  228. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  229. register float f;
  230. register double d;
  231. __asm__(
  232. "mtfprd %0,%2\n"
  233. "xscvhpdp %0,%0\n"
  234. "frsp %1,%0\n" :
  235. /* temp */ "=d"(d),
  236. /* out */ "=f"(f):
  237. /* in */ "r"(h));
  238. return f;
  239. }
  240. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  241. register double d;
  242. register ggml_fp16_t r;
  243. __asm__( /* xscvdphp can work on double or single precision */
  244. "xscvdphp %0,%2\n"
  245. "mffprd %1,%0\n" :
  246. /* temp */ "=d"(d),
  247. /* out */ "=r"(r):
  248. /* in */ "f"(f));
  249. return r;
  250. }
  251. #else
  252. // FP16 <-> FP32
  253. // ref: https://github.com/Maratyszcza/FP16
  254. static inline float fp32_from_bits(uint32_t w) {
  255. union {
  256. uint32_t as_bits;
  257. float as_value;
  258. } fp32;
  259. fp32.as_bits = w;
  260. return fp32.as_value;
  261. }
  262. static inline uint32_t fp32_to_bits(float f) {
  263. union {
  264. float as_value;
  265. uint32_t as_bits;
  266. } fp32;
  267. fp32.as_value = f;
  268. return fp32.as_bits;
  269. }
  270. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  271. const uint32_t w = (uint32_t) h << 16;
  272. const uint32_t sign = w & UINT32_C(0x80000000);
  273. const uint32_t two_w = w + w;
  274. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  275. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  276. const float exp_scale = 0x1.0p-112f;
  277. #else
  278. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  279. #endif
  280. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  281. const uint32_t magic_mask = UINT32_C(126) << 23;
  282. const float magic_bias = 0.5f;
  283. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  284. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  285. const uint32_t result = sign |
  286. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  287. return fp32_from_bits(result);
  288. }
  289. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  290. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  291. const float scale_to_inf = 0x1.0p+112f;
  292. const float scale_to_zero = 0x1.0p-110f;
  293. #else
  294. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  295. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  296. #endif
  297. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  298. const uint32_t w = fp32_to_bits(f);
  299. const uint32_t shl1_w = w + w;
  300. const uint32_t sign = w & UINT32_C(0x80000000);
  301. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  302. if (bias < UINT32_C(0x71000000)) {
  303. bias = UINT32_C(0x71000000);
  304. }
  305. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  306. const uint32_t bits = fp32_to_bits(base);
  307. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  308. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  309. const uint32_t nonsign = exp_bits + mantissa_bits;
  310. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  311. }
  312. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  313. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  314. #endif // __F16C__
  315. #endif // __ARM_NEON
  316. //
  317. // global data
  318. //
  319. // precomputed gelu table for f16 (128 KB)
  320. static ggml_fp16_t table_gelu_f16[1 << 16];
  321. // precomputed quick gelu table for f16 (128 KB)
  322. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  323. // precomputed silu table for f16 (128 KB)
  324. static ggml_fp16_t table_silu_f16[1 << 16];
  325. // precomputed exp table for f16 (128 KB)
  326. static ggml_fp16_t table_exp_f16[1 << 16];
  327. // precomputed f32 table for f16 (256 KB)
  328. static float table_f32_f16[1 << 16];
  329. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  330. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  331. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  332. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  333. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  334. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  335. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  336. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  337. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  338. // precomputed tables for expanding 8bits to 8 bytes:
  339. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  340. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  341. #endif
  342. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  343. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  344. // This is also true for POWER9.
  345. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  346. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  347. uint16_t s;
  348. memcpy(&s, &f, sizeof(uint16_t));
  349. return table_f32_f16[s];
  350. }
  351. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  352. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  353. #endif
  354. // note: do not use these inside ggml.c
  355. // these are meant to be used via the ggml.h API
  356. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  357. return (float) GGML_FP16_TO_FP32(x);
  358. }
  359. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  360. return GGML_FP32_TO_FP16(x);
  361. }
  362. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  363. for (size_t i = 0; i < n; i++) {
  364. y[i] = GGML_FP16_TO_FP32(x[i]);
  365. }
  366. }
  367. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  368. size_t i = 0;
  369. #if defined(__F16C__)
  370. for (; i + 7 < n; i += 8) {
  371. __m256 x_vec = _mm256_loadu_ps(x + i);
  372. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  373. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  374. }
  375. for(; i + 3 < n; i += 4) {
  376. __m128 x_vec = _mm_loadu_ps(x + i);
  377. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  378. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  379. }
  380. #endif
  381. for (; i < n; i++) {
  382. y[i] = GGML_FP32_TO_FP16(x[i]);
  383. }
  384. }
  385. //
  386. // timing
  387. //
  388. #if defined(_MSC_VER) || defined(__MINGW32__)
  389. static int64_t timer_freq, timer_start;
  390. void ggml_time_init(void) {
  391. LARGE_INTEGER t;
  392. QueryPerformanceFrequency(&t);
  393. timer_freq = t.QuadPart;
  394. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  395. // and the uptime is high enough.
  396. // We subtract the program start time to reduce the likelihood of that happening.
  397. QueryPerformanceCounter(&t);
  398. timer_start = t.QuadPart;
  399. }
  400. int64_t ggml_time_ms(void) {
  401. LARGE_INTEGER t;
  402. QueryPerformanceCounter(&t);
  403. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  404. }
  405. int64_t ggml_time_us(void) {
  406. LARGE_INTEGER t;
  407. QueryPerformanceCounter(&t);
  408. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  409. }
  410. #else
  411. void ggml_time_init(void) {}
  412. int64_t ggml_time_ms(void) {
  413. struct timespec ts;
  414. clock_gettime(CLOCK_MONOTONIC, &ts);
  415. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  416. }
  417. int64_t ggml_time_us(void) {
  418. struct timespec ts;
  419. clock_gettime(CLOCK_MONOTONIC, &ts);
  420. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  421. }
  422. #endif
  423. int64_t ggml_cycles(void) {
  424. return clock();
  425. }
  426. int64_t ggml_cycles_per_ms(void) {
  427. return CLOCKS_PER_SEC/1000;
  428. }
  429. #ifdef GGML_PERF
  430. #define ggml_perf_time_ms() ggml_time_ms()
  431. #define ggml_perf_time_us() ggml_time_us()
  432. #define ggml_perf_cycles() ggml_cycles()
  433. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  434. #else
  435. #define ggml_perf_time_ms() 0
  436. #define ggml_perf_time_us() 0
  437. #define ggml_perf_cycles() 0
  438. #define ggml_perf_cycles_per_ms() 0
  439. #endif
  440. //
  441. // cache line
  442. //
  443. #if defined(__cpp_lib_hardware_interference_size)
  444. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  445. #else
  446. #if defined(__POWER9_VECTOR__)
  447. #define CACHE_LINE_SIZE 128
  448. #else
  449. #define CACHE_LINE_SIZE 64
  450. #endif
  451. #endif
  452. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  453. //
  454. // quantization
  455. //
  456. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  457. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  458. // multiply int8_t, add results pairwise twice
  459. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  460. // Get absolute values of x vectors
  461. const __m128i ax = _mm_sign_epi8(x, x);
  462. // Sign the values of the y vectors
  463. const __m128i sy = _mm_sign_epi8(y, x);
  464. // Perform multiplication and create 16-bit values
  465. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  466. const __m128i ones = _mm_set1_epi16(1);
  467. return _mm_madd_epi16(ones, dot);
  468. }
  469. #if __AVX__ || __AVX2__ || __AVX512F__
  470. // horizontally add 8 floats
  471. static inline float hsum_float_8(const __m256 x) {
  472. __m128 res = _mm256_extractf128_ps(x, 1);
  473. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  474. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  475. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  476. return _mm_cvtss_f32(res);
  477. }
  478. // horizontally add 8 int32_t
  479. static inline int hsum_i32_8(const __m256i a) {
  480. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  481. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  482. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  483. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  484. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  485. }
  486. // horizontally add 4 int32_t
  487. static inline int hsum_i32_4(const __m128i a) {
  488. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  489. const __m128i sum64 = _mm_add_epi32(hi64, a);
  490. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  491. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  492. }
  493. #if defined(__AVX2__) || defined(__AVX512F__)
  494. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  495. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  496. uint32_t x32;
  497. memcpy(&x32, x, sizeof(uint32_t));
  498. const __m256i shuf_mask = _mm256_set_epi64x(
  499. 0x0303030303030303, 0x0202020202020202,
  500. 0x0101010101010101, 0x0000000000000000);
  501. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  502. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  503. bytes = _mm256_or_si256(bytes, bit_mask);
  504. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  505. }
  506. // Unpack 32 4-bit fields into 32 bytes
  507. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  508. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  509. {
  510. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  511. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  512. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  513. return _mm256_and_si256(lowMask, bytes);
  514. }
  515. // add int16_t pairwise and return as float vector
  516. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  517. const __m256i ones = _mm256_set1_epi16(1);
  518. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  519. return _mm256_cvtepi32_ps(summed_pairs);
  520. }
  521. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  522. #if __AVXVNNI__
  523. const __m256i zero = _mm256_setzero_si256();
  524. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  525. return _mm256_cvtepi32_ps(summed_pairs);
  526. #else
  527. // Perform multiplication and create 16-bit values
  528. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  529. return sum_i16_pairs_float(dot);
  530. #endif
  531. }
  532. // multiply int8_t, add results pairwise twice and return as float vector
  533. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  534. #if __AVXVNNIINT8__
  535. const __m256i zero = _mm256_setzero_si256();
  536. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  537. return _mm256_cvtepi32_ps(summed_pairs);
  538. #else
  539. // Get absolute values of x vectors
  540. const __m256i ax = _mm256_sign_epi8(x, x);
  541. // Sign the values of the y vectors
  542. const __m256i sy = _mm256_sign_epi8(y, x);
  543. return mul_sum_us8_pairs_float(ax, sy);
  544. #endif
  545. }
  546. static inline __m128i packNibbles( __m256i bytes )
  547. {
  548. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  549. #if __AVX512F__
  550. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  551. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  552. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  553. #else
  554. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  555. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  556. __m256i low = _mm256_and_si256( lowByte, bytes );
  557. high = _mm256_srli_epi16( high, 4 );
  558. bytes = _mm256_or_si256( low, high );
  559. // Compress uint16_t lanes into bytes
  560. __m128i r0 = _mm256_castsi256_si128( bytes );
  561. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  562. return _mm_packus_epi16( r0, r1 );
  563. #endif
  564. }
  565. #elif defined(__AVX__)
  566. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  567. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  568. uint32_t x32;
  569. memcpy(&x32, x, sizeof(uint32_t));
  570. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  571. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  572. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  573. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  574. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  575. bytesl = _mm_or_si128(bytesl, bit_mask);
  576. bytesh = _mm_or_si128(bytesh, bit_mask);
  577. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  578. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  579. return MM256_SET_M128I(bytesh, bytesl);
  580. }
  581. // Unpack 32 4-bit fields into 32 bytes
  582. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  583. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  584. {
  585. // Load 16 bytes from memory
  586. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  587. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  588. const __m128i lowMask = _mm_set1_epi8(0xF);
  589. tmpl = _mm_and_si128(lowMask, tmpl);
  590. tmph = _mm_and_si128(lowMask, tmph);
  591. return MM256_SET_M128I(tmph, tmpl);
  592. }
  593. // add int16_t pairwise and return as float vector
  594. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  595. const __m128i ones = _mm_set1_epi16(1);
  596. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  597. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  598. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  599. return _mm256_cvtepi32_ps(summed_pairs);
  600. }
  601. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  602. const __m128i axl = _mm256_castsi256_si128(ax);
  603. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  604. const __m128i syl = _mm256_castsi256_si128(sy);
  605. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  606. // Perform multiplication and create 16-bit values
  607. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  608. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  609. return sum_i16_pairs_float(doth, dotl);
  610. }
  611. // multiply int8_t, add results pairwise twice and return as float vector
  612. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  613. const __m128i xl = _mm256_castsi256_si128(x);
  614. const __m128i xh = _mm256_extractf128_si256(x, 1);
  615. const __m128i yl = _mm256_castsi256_si128(y);
  616. const __m128i yh = _mm256_extractf128_si256(y, 1);
  617. // Get absolute values of x vectors
  618. const __m128i axl = _mm_sign_epi8(xl, xl);
  619. const __m128i axh = _mm_sign_epi8(xh, xh);
  620. // Sign the values of the y vectors
  621. const __m128i syl = _mm_sign_epi8(yl, xl);
  622. const __m128i syh = _mm_sign_epi8(yh, xh);
  623. // Perform multiplication and create 16-bit values
  624. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  625. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  626. return sum_i16_pairs_float(doth, dotl);
  627. }
  628. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  629. {
  630. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  631. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  632. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  633. __m128i low = _mm_and_si128( lowByte, bytes1 );
  634. high = _mm_srli_epi16( high, 4 );
  635. bytes1 = _mm_or_si128( low, high );
  636. high = _mm_andnot_si128( lowByte, bytes2 );
  637. low = _mm_and_si128( lowByte, bytes2 );
  638. high = _mm_srli_epi16( high, 4 );
  639. bytes2 = _mm_or_si128( low, high );
  640. return _mm_packus_epi16( bytes1, bytes2);
  641. }
  642. #endif
  643. #elif defined(__SSSE3__)
  644. // horizontally add 4x4 floats
  645. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  646. __m128 res_0 =_mm_hadd_ps(a, b);
  647. __m128 res_1 =_mm_hadd_ps(c, d);
  648. __m128 res =_mm_hadd_ps(res_0, res_1);
  649. res =_mm_hadd_ps(res, res);
  650. res =_mm_hadd_ps(res, res);
  651. return _mm_cvtss_f32(res);
  652. }
  653. #endif // __AVX__ || __AVX2__ || __AVX512F__
  654. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  655. #if defined(__ARM_NEON)
  656. #if !defined(__aarch64__)
  657. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  658. return
  659. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  660. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  661. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  662. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  663. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  664. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  665. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  666. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  667. }
  668. inline static int16_t vaddvq_s8(int8x16_t v) {
  669. return
  670. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  671. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  672. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  673. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  674. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  675. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  676. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  677. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  678. }
  679. inline static int32_t vaddvq_s16(int16x8_t v) {
  680. return
  681. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  682. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  683. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  684. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  685. }
  686. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  687. return
  688. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  689. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  690. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  691. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  692. }
  693. inline static int32_t vaddvq_s32(int32x4_t v) {
  694. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  695. }
  696. inline static float vaddvq_f32(float32x4_t v) {
  697. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  698. }
  699. inline static float vminvq_f32(float32x4_t v) {
  700. return
  701. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  702. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  703. }
  704. inline static float vmaxvq_f32(float32x4_t v) {
  705. return
  706. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  707. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  708. }
  709. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  710. int32x4_t res;
  711. res[0] = roundf(vgetq_lane_f32(v, 0));
  712. res[1] = roundf(vgetq_lane_f32(v, 1));
  713. res[2] = roundf(vgetq_lane_f32(v, 2));
  714. res[3] = roundf(vgetq_lane_f32(v, 3));
  715. return res;
  716. }
  717. #endif
  718. #endif
  719. #define QK4_0 32
  720. typedef struct {
  721. ggml_fp16_t d; // delta
  722. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  723. } block_q4_0;
  724. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  725. #define QK4_1 32
  726. typedef struct {
  727. ggml_fp16_t d; // delta
  728. ggml_fp16_t m; // min
  729. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  730. } block_q4_1;
  731. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  732. #define QK5_0 32
  733. typedef struct {
  734. ggml_fp16_t d; // delta
  735. uint8_t qh[4]; // 5-th bit of quants
  736. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  737. } block_q5_0;
  738. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  739. #define QK5_1 32
  740. typedef struct {
  741. ggml_fp16_t d; // delta
  742. ggml_fp16_t m; // min
  743. uint8_t qh[4]; // 5-th bit of quants
  744. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  745. } block_q5_1;
  746. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  747. #define QK8_0 32
  748. typedef struct {
  749. ggml_fp16_t d; // delta
  750. int8_t qs[QK8_0]; // quants
  751. } block_q8_0;
  752. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  753. #define QK8_1 32
  754. typedef struct {
  755. float d; // delta
  756. float s; // d * sum(qs[i])
  757. int8_t qs[QK8_1]; // quants
  758. } block_q8_1;
  759. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  760. // reference implementation for deterministic creation of model files
  761. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  762. static const int qk = QK4_0;
  763. assert(k % qk == 0);
  764. const int nb = k / qk;
  765. for (int i = 0; i < nb; i++) {
  766. float amax = 0.0f; // absolute max
  767. float max = 0.0f;
  768. for (int j = 0; j < qk; j++) {
  769. const float v = x[i*qk + j];
  770. if (amax < fabsf(v)) {
  771. amax = fabsf(v);
  772. max = v;
  773. }
  774. }
  775. const float d = max / -8;
  776. const float id = d ? 1.0f/d : 0.0f;
  777. y[i].d = GGML_FP32_TO_FP16(d);
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  782. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  783. y[i].qs[j] = xi0;
  784. y[i].qs[j] |= xi1 << 4;
  785. }
  786. }
  787. }
  788. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  789. quantize_row_q4_0_reference(x, y, k);
  790. }
  791. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  792. const int qk = QK4_1;
  793. assert(k % qk == 0);
  794. const int nb = k / qk;
  795. for (int i = 0; i < nb; i++) {
  796. float min = FLT_MAX;
  797. float max = -FLT_MAX;
  798. for (int j = 0; j < qk; j++) {
  799. const float v = x[i*qk + j];
  800. if (v < min) min = v;
  801. if (v > max) max = v;
  802. }
  803. const float d = (max - min) / ((1 << 4) - 1);
  804. const float id = d ? 1.0f/d : 0.0f;
  805. y[i].d = GGML_FP32_TO_FP16(d);
  806. y[i].m = GGML_FP32_TO_FP16(min);
  807. for (int j = 0; j < qk/2; ++j) {
  808. const float x0 = (x[i*qk + 0 + j] - min)*id;
  809. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  810. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  811. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  812. y[i].qs[j] = xi0;
  813. y[i].qs[j] |= xi1 << 4;
  814. }
  815. }
  816. }
  817. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  818. quantize_row_q4_1_reference(x, y, k);
  819. }
  820. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  821. static const int qk = QK5_0;
  822. assert(k % qk == 0);
  823. const int nb = k / qk;
  824. for (int i = 0; i < nb; i++) {
  825. float amax = 0.0f; // absolute max
  826. float max = 0.0f;
  827. for (int j = 0; j < qk; j++) {
  828. const float v = x[i*qk + j];
  829. if (amax < fabsf(v)) {
  830. amax = fabsf(v);
  831. max = v;
  832. }
  833. }
  834. const float d = max / -16;
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].d = GGML_FP32_TO_FP16(d);
  837. uint32_t qh = 0;
  838. for (int j = 0; j < qk/2; ++j) {
  839. const float x0 = x[i*qk + 0 + j]*id;
  840. const float x1 = x[i*qk + qk/2 + j]*id;
  841. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  842. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  843. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  844. // get the 5-th bit and store it in qh at the right position
  845. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  846. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  847. }
  848. memcpy(&y[i].qh, &qh, sizeof(qh));
  849. }
  850. }
  851. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  852. quantize_row_q5_0_reference(x, y, k);
  853. }
  854. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  855. const int qk = QK5_1;
  856. assert(k % qk == 0);
  857. const int nb = k / qk;
  858. for (int i = 0; i < nb; i++) {
  859. float min = FLT_MAX;
  860. float max = -FLT_MAX;
  861. for (int j = 0; j < qk; j++) {
  862. const float v = x[i*qk + j];
  863. if (v < min) min = v;
  864. if (v > max) max = v;
  865. }
  866. const float d = (max - min) / ((1 << 5) - 1);
  867. const float id = d ? 1.0f/d : 0.0f;
  868. y[i].d = GGML_FP32_TO_FP16(d);
  869. y[i].m = GGML_FP32_TO_FP16(min);
  870. uint32_t qh = 0;
  871. for (int j = 0; j < qk/2; ++j) {
  872. const float x0 = (x[i*qk + 0 + j] - min)*id;
  873. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  874. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  875. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  876. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  877. // get the 5-th bit and store it in qh at the right position
  878. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  879. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  880. }
  881. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  882. }
  883. }
  884. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  885. quantize_row_q5_1_reference(x, y, k);
  886. }
  887. // reference implementation for deterministic creation of model files
  888. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  889. assert(k % QK8_0 == 0);
  890. const int nb = k / QK8_0;
  891. for (int i = 0; i < nb; i++) {
  892. float amax = 0.0f; // absolute max
  893. for (int j = 0; j < QK8_0; j++) {
  894. const float v = x[i*QK8_0 + j];
  895. amax = MAX(amax, fabsf(v));
  896. }
  897. const float d = amax / ((1 << 7) - 1);
  898. const float id = d ? 1.0f/d : 0.0f;
  899. y[i].d = GGML_FP32_TO_FP16(d);
  900. for (int j = 0; j < QK8_0; ++j) {
  901. const float x0 = x[i*QK8_0 + j]*id;
  902. y[i].qs[j] = roundf(x0);
  903. }
  904. }
  905. }
  906. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  907. assert(QK8_0 == 32);
  908. assert(k % QK8_0 == 0);
  909. const int nb = k / QK8_0;
  910. block_q8_0 * restrict y = vy;
  911. #if defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. float32x4_t srcv [8];
  914. float32x4_t asrcv[8];
  915. float32x4_t amaxv[8];
  916. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  917. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  918. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  919. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  920. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  921. const float amax = vmaxvq_f32(amaxv[0]);
  922. const float d = amax / ((1 << 7) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = GGML_FP32_TO_FP16(d);
  925. for (int j = 0; j < 8; j++) {
  926. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  927. const int32x4_t vi = vcvtnq_s32_f32(v);
  928. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  929. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  930. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  931. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  932. }
  933. }
  934. #elif defined(__wasm_simd128__)
  935. for (int i = 0; i < nb; i++) {
  936. v128_t srcv [8];
  937. v128_t asrcv[8];
  938. v128_t amaxv[8];
  939. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  940. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  941. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  942. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  943. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  944. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  945. wasm_f32x4_extract_lane(amaxv[0], 1)),
  946. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  947. wasm_f32x4_extract_lane(amaxv[0], 3)));
  948. const float d = amax / ((1 << 7) - 1);
  949. const float id = d ? 1.0f/d : 0.0f;
  950. y[i].d = GGML_FP32_TO_FP16(d);
  951. for (int j = 0; j < 8; j++) {
  952. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  953. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  954. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  955. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  956. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  957. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  958. }
  959. }
  960. #elif defined(__AVX2__) || defined(__AVX__)
  961. for (int i = 0; i < nb; i++) {
  962. // Load elements into 4 AVX vectors
  963. __m256 v0 = _mm256_loadu_ps( x );
  964. __m256 v1 = _mm256_loadu_ps( x + 8 );
  965. __m256 v2 = _mm256_loadu_ps( x + 16 );
  966. __m256 v3 = _mm256_loadu_ps( x + 24 );
  967. x += 32;
  968. // Compute max(abs(e)) for the block
  969. const __m256 signBit = _mm256_set1_ps( -0.0f );
  970. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  971. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  972. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  973. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  974. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  975. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  976. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  977. const float maxScalar = _mm_cvtss_f32( max4 );
  978. // Quantize these floats
  979. const float d = maxScalar / 127.f;
  980. y[i].d = GGML_FP32_TO_FP16(d);
  981. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  982. const __m256 mul = _mm256_set1_ps( id );
  983. // Apply the multiplier
  984. v0 = _mm256_mul_ps( v0, mul );
  985. v1 = _mm256_mul_ps( v1, mul );
  986. v2 = _mm256_mul_ps( v2, mul );
  987. v3 = _mm256_mul_ps( v3, mul );
  988. // Round to nearest integer
  989. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  990. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  991. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  992. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  993. // Convert floats to integers
  994. __m256i i0 = _mm256_cvtps_epi32( v0 );
  995. __m256i i1 = _mm256_cvtps_epi32( v1 );
  996. __m256i i2 = _mm256_cvtps_epi32( v2 );
  997. __m256i i3 = _mm256_cvtps_epi32( v3 );
  998. #if defined(__AVX2__)
  999. // Convert int32 to int16
  1000. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1001. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1002. // Convert int16 to int8
  1003. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1004. // We got our precious signed bytes, but the order is now wrong
  1005. // These AVX2 pack instructions process 16-byte pieces independently
  1006. // The following instruction is fixing the order
  1007. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1008. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1009. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1010. #else
  1011. // Since we don't have in AVX some necessary functions,
  1012. // we split the registers in half and call AVX2 analogs from SSE
  1013. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1014. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1015. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1016. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1017. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1018. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1019. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1020. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1021. // Convert int32 to int16
  1022. ni0 = _mm_packs_epi32( ni0, ni1 );
  1023. ni2 = _mm_packs_epi32( ni2, ni3 );
  1024. ni4 = _mm_packs_epi32( ni4, ni5 );
  1025. ni6 = _mm_packs_epi32( ni6, ni7 );
  1026. // Convert int16 to int8
  1027. ni0 = _mm_packs_epi16( ni0, ni2 );
  1028. ni4 = _mm_packs_epi16( ni4, ni6 );
  1029. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1030. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1031. #endif
  1032. }
  1033. #else
  1034. // scalar
  1035. quantize_row_q8_0_reference(x, y, k);
  1036. #endif
  1037. }
  1038. // reference implementation for deterministic creation of model files
  1039. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1040. assert(QK8_1 == 32);
  1041. assert(k % QK8_1 == 0);
  1042. const int nb = k / QK8_1;
  1043. for (int i = 0; i < nb; i++) {
  1044. float amax = 0.0f; // absolute max
  1045. for (int j = 0; j < QK8_1; j++) {
  1046. const float v = x[i*QK8_1 + j];
  1047. amax = MAX(amax, fabsf(v));
  1048. }
  1049. const float d = amax / ((1 << 7) - 1);
  1050. const float id = d ? 1.0f/d : 0.0f;
  1051. y[i].d = d;
  1052. int sum = 0;
  1053. for (int j = 0; j < QK8_1/2; ++j) {
  1054. const float v0 = x[i*QK8_1 + j]*id;
  1055. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1056. y[i].qs[ j] = roundf(v0);
  1057. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1058. sum += y[i].qs[ j];
  1059. sum += y[i].qs[QK8_1/2 + j];
  1060. }
  1061. y[i].s = sum*d;
  1062. }
  1063. }
  1064. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1065. assert(k % QK8_1 == 0);
  1066. const int nb = k / QK8_1;
  1067. block_q8_1 * restrict y = vy;
  1068. #if defined(__ARM_NEON)
  1069. for (int i = 0; i < nb; i++) {
  1070. float32x4_t srcv [8];
  1071. float32x4_t asrcv[8];
  1072. float32x4_t amaxv[8];
  1073. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1074. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1075. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1076. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1077. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1078. const float amax = vmaxvq_f32(amaxv[0]);
  1079. const float d = amax / ((1 << 7) - 1);
  1080. const float id = d ? 1.0f/d : 0.0f;
  1081. y[i].d = d;
  1082. int32x4_t accv = vdupq_n_s32(0);
  1083. for (int j = 0; j < 8; j++) {
  1084. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1085. const int32x4_t vi = vcvtnq_s32_f32(v);
  1086. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1087. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1088. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1089. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1090. accv = vaddq_s32(accv, vi);
  1091. }
  1092. y[i].s = d * vaddvq_s32(accv);
  1093. }
  1094. #elif defined(__wasm_simd128__)
  1095. for (int i = 0; i < nb; i++) {
  1096. v128_t srcv [8];
  1097. v128_t asrcv[8];
  1098. v128_t amaxv[8];
  1099. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1100. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1101. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1102. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1103. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1104. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1105. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1106. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1107. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1108. const float d = amax / ((1 << 7) - 1);
  1109. const float id = d ? 1.0f/d : 0.0f;
  1110. y[i].d = d;
  1111. v128_t accv = wasm_i32x4_splat(0);
  1112. for (int j = 0; j < 8; j++) {
  1113. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1114. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1115. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1116. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1117. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1118. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1119. accv = wasm_i32x4_add(accv, vi);
  1120. }
  1121. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1122. wasm_i32x4_extract_lane(accv, 1) +
  1123. wasm_i32x4_extract_lane(accv, 2) +
  1124. wasm_i32x4_extract_lane(accv, 3));
  1125. }
  1126. #elif defined(__AVX2__) || defined(__AVX__)
  1127. for (int i = 0; i < nb; i++) {
  1128. // Load elements into 4 AVX vectors
  1129. __m256 v0 = _mm256_loadu_ps( x );
  1130. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1131. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1132. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1133. x += 32;
  1134. // Compute max(abs(e)) for the block
  1135. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1136. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1137. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1138. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1139. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1140. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1141. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1142. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1143. const float maxScalar = _mm_cvtss_f32( max4 );
  1144. // Quantize these floats
  1145. const float d = maxScalar / 127.f;
  1146. y[i].d = d;
  1147. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1148. const __m256 mul = _mm256_set1_ps( id );
  1149. // Apply the multiplier
  1150. v0 = _mm256_mul_ps( v0, mul );
  1151. v1 = _mm256_mul_ps( v1, mul );
  1152. v2 = _mm256_mul_ps( v2, mul );
  1153. v3 = _mm256_mul_ps( v3, mul );
  1154. // Round to nearest integer
  1155. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1156. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1157. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1158. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1159. // Convert floats to integers
  1160. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1161. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1162. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1163. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1164. #if defined(__AVX2__)
  1165. // Compute the sum of the quants and set y[i].s
  1166. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1167. // Convert int32 to int16
  1168. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1169. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1170. // Convert int16 to int8
  1171. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1172. // We got our precious signed bytes, but the order is now wrong
  1173. // These AVX2 pack instructions process 16-byte pieces independently
  1174. // The following instruction is fixing the order
  1175. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1176. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1177. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1178. #else
  1179. // Since we don't have in AVX some necessary functions,
  1180. // we split the registers in half and call AVX2 analogs from SSE
  1181. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1182. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1183. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1184. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1185. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1186. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1187. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1188. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1189. // Compute the sum of the quants and set y[i].s
  1190. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1191. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1192. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1193. // Convert int32 to int16
  1194. ni0 = _mm_packs_epi32( ni0, ni1 );
  1195. ni2 = _mm_packs_epi32( ni2, ni3 );
  1196. ni4 = _mm_packs_epi32( ni4, ni5 );
  1197. ni6 = _mm_packs_epi32( ni6, ni7 );
  1198. // Convert int16 to int8
  1199. ni0 = _mm_packs_epi16( ni0, ni2 );
  1200. ni4 = _mm_packs_epi16( ni4, ni6 );
  1201. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1202. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1203. #endif
  1204. }
  1205. #else
  1206. // scalar
  1207. quantize_row_q8_1_reference(x, y, k);
  1208. #endif
  1209. }
  1210. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1211. static const int qk = QK4_0;
  1212. assert(k % qk == 0);
  1213. const int nb = k / qk;
  1214. for (int i = 0; i < nb; i++) {
  1215. const float d = GGML_FP16_TO_FP32(x[i].d);
  1216. for (int j = 0; j < qk/2; ++j) {
  1217. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1218. const int x1 = (x[i].qs[j] >> 4) - 8;
  1219. y[i*qk + j + 0 ] = x0*d;
  1220. y[i*qk + j + qk/2] = x1*d;
  1221. }
  1222. }
  1223. }
  1224. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1225. static const int qk = QK4_1;
  1226. assert(k % qk == 0);
  1227. const int nb = k / qk;
  1228. for (int i = 0; i < nb; i++) {
  1229. const float d = GGML_FP16_TO_FP32(x[i].d);
  1230. const float m = GGML_FP16_TO_FP32(x[i].m);
  1231. for (int j = 0; j < qk/2; ++j) {
  1232. const int x0 = (x[i].qs[j] & 0x0F);
  1233. const int x1 = (x[i].qs[j] >> 4);
  1234. y[i*qk + j + 0 ] = x0*d + m;
  1235. y[i*qk + j + qk/2] = x1*d + m;
  1236. }
  1237. }
  1238. }
  1239. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1240. static const int qk = QK5_0;
  1241. assert(k % qk == 0);
  1242. const int nb = k / qk;
  1243. for (int i = 0; i < nb; i++) {
  1244. const float d = GGML_FP16_TO_FP32(x[i].d);
  1245. uint32_t qh;
  1246. memcpy(&qh, x[i].qh, sizeof(qh));
  1247. for (int j = 0; j < qk/2; ++j) {
  1248. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1249. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1250. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1251. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1252. y[i*qk + j + 0 ] = x0*d;
  1253. y[i*qk + j + qk/2] = x1*d;
  1254. }
  1255. }
  1256. }
  1257. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1258. static const int qk = QK5_1;
  1259. assert(k % qk == 0);
  1260. const int nb = k / qk;
  1261. for (int i = 0; i < nb; i++) {
  1262. const float d = GGML_FP16_TO_FP32(x[i].d);
  1263. const float m = GGML_FP16_TO_FP32(x[i].m);
  1264. uint32_t qh;
  1265. memcpy(&qh, x[i].qh, sizeof(qh));
  1266. for (int j = 0; j < qk/2; ++j) {
  1267. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1268. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1269. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1270. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1271. y[i*qk + j + 0 ] = x0*d + m;
  1272. y[i*qk + j + qk/2] = x1*d + m;
  1273. }
  1274. }
  1275. }
  1276. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1277. static const int qk = QK8_0;
  1278. assert(k % qk == 0);
  1279. const int nb = k / qk;
  1280. const block_q8_0 * restrict x = vx;
  1281. for (int i = 0; i < nb; i++) {
  1282. const float d = GGML_FP16_TO_FP32(x[i].d);
  1283. for (int j = 0; j < qk; ++j) {
  1284. y[i*qk + j] = x[i].qs[j]*d;
  1285. }
  1286. }
  1287. }
  1288. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1289. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1290. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1291. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1292. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1293. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1294. [GGML_TYPE_Q4_0] = {
  1295. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1296. .quantize_row_q = quantize_row_q4_0,
  1297. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1298. .quantize_row_q_dot = quantize_row_q8_0,
  1299. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1300. .vec_dot_type = GGML_TYPE_Q8_0,
  1301. },
  1302. [GGML_TYPE_Q4_1] = {
  1303. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1304. .quantize_row_q = quantize_row_q4_1,
  1305. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1306. .quantize_row_q_dot = quantize_row_q8_1,
  1307. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1308. .vec_dot_type = GGML_TYPE_Q8_1,
  1309. },
  1310. [GGML_TYPE_Q5_0] = {
  1311. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1312. .quantize_row_q = quantize_row_q5_0,
  1313. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1314. .quantize_row_q_dot = quantize_row_q8_0,
  1315. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1316. .vec_dot_type = GGML_TYPE_Q8_0,
  1317. },
  1318. [GGML_TYPE_Q5_1] = {
  1319. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1320. .quantize_row_q = quantize_row_q5_1,
  1321. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1322. .quantize_row_q_dot = quantize_row_q8_1,
  1323. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1324. .vec_dot_type = GGML_TYPE_Q8_1,
  1325. },
  1326. [GGML_TYPE_Q8_0] = {
  1327. .dequantize_row_q = dequantize_row_q8_0,
  1328. .quantize_row_q = quantize_row_q8_0,
  1329. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1330. .quantize_row_q_dot = quantize_row_q8_0,
  1331. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1332. .vec_dot_type = GGML_TYPE_Q8_0,
  1333. },
  1334. [GGML_TYPE_Q8_1] = {
  1335. .dequantize_row_q = NULL, // TODO
  1336. .quantize_row_q = quantize_row_q8_1,
  1337. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1338. .quantize_row_q_dot = quantize_row_q8_1,
  1339. .vec_dot_q = NULL, // TODO
  1340. .vec_dot_type = GGML_TYPE_Q8_1,
  1341. },
  1342. #ifdef GGML_USE_K_QUANTS
  1343. [GGML_TYPE_Q2_K] = {
  1344. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1345. .quantize_row_q = quantize_row_q2_K,
  1346. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1347. .quantize_row_q_dot = quantize_row_q8_K,
  1348. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1349. .vec_dot_type = GGML_TYPE_Q8_K,
  1350. },
  1351. [GGML_TYPE_Q3_K] = {
  1352. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1353. .quantize_row_q = quantize_row_q3_K,
  1354. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1355. .quantize_row_q_dot = quantize_row_q8_K,
  1356. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1357. .vec_dot_type = GGML_TYPE_Q8_K,
  1358. },
  1359. [GGML_TYPE_Q4_K] = {
  1360. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1361. .quantize_row_q = quantize_row_q4_K,
  1362. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1363. .quantize_row_q_dot = quantize_row_q8_K,
  1364. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1365. .vec_dot_type = GGML_TYPE_Q8_K,
  1366. },
  1367. [GGML_TYPE_Q5_K] = {
  1368. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1369. .quantize_row_q = quantize_row_q5_K,
  1370. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1371. .quantize_row_q_dot = quantize_row_q8_K,
  1372. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1373. .vec_dot_type = GGML_TYPE_Q8_K,
  1374. },
  1375. [GGML_TYPE_Q6_K] = {
  1376. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1377. .quantize_row_q = quantize_row_q6_K,
  1378. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1379. .quantize_row_q_dot = quantize_row_q8_K,
  1380. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1381. .vec_dot_type = GGML_TYPE_Q8_K,
  1382. },
  1383. #endif
  1384. };
  1385. // For internal test use
  1386. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1387. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1388. return quantize_fns[i];
  1389. }
  1390. //
  1391. // simd mappings
  1392. //
  1393. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1394. // we then implement the fundamental computation operations below using only these macros
  1395. // adding support for new architectures requires to define the corresponding SIMD macros
  1396. //
  1397. // GGML_F32_STEP / GGML_F16_STEP
  1398. // number of elements to process in a single step
  1399. //
  1400. // GGML_F32_EPR / GGML_F16_EPR
  1401. // number of elements to fit in a single register
  1402. //
  1403. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1404. #define GGML_SIMD
  1405. // F32 NEON
  1406. #define GGML_F32_STEP 16
  1407. #define GGML_F32_EPR 4
  1408. #define GGML_F32x4 float32x4_t
  1409. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1410. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1411. #define GGML_F32x4_LOAD vld1q_f32
  1412. #define GGML_F32x4_STORE vst1q_f32
  1413. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1414. #define GGML_F32x4_ADD vaddq_f32
  1415. #define GGML_F32x4_MUL vmulq_f32
  1416. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1417. #define GGML_F32x4_REDUCE(res, x) \
  1418. { \
  1419. int offset = GGML_F32_ARR >> 1; \
  1420. for (int i = 0; i < offset; ++i) { \
  1421. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1422. } \
  1423. offset >>= 1; \
  1424. for (int i = 0; i < offset; ++i) { \
  1425. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1426. } \
  1427. offset >>= 1; \
  1428. for (int i = 0; i < offset; ++i) { \
  1429. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1430. } \
  1431. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1432. }
  1433. #define GGML_F32_VEC GGML_F32x4
  1434. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1435. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1436. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1437. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1438. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1439. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1440. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1441. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1442. // F16 NEON
  1443. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1444. #define GGML_F16_STEP 32
  1445. #define GGML_F16_EPR 8
  1446. #define GGML_F16x8 float16x8_t
  1447. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1448. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1449. #define GGML_F16x8_LOAD vld1q_f16
  1450. #define GGML_F16x8_STORE vst1q_f16
  1451. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1452. #define GGML_F16x8_ADD vaddq_f16
  1453. #define GGML_F16x8_MUL vmulq_f16
  1454. #define GGML_F16x8_REDUCE(res, x) \
  1455. { \
  1456. int offset = GGML_F16_ARR >> 1; \
  1457. for (int i = 0; i < offset; ++i) { \
  1458. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1459. } \
  1460. offset >>= 1; \
  1461. for (int i = 0; i < offset; ++i) { \
  1462. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1463. } \
  1464. offset >>= 1; \
  1465. for (int i = 0; i < offset; ++i) { \
  1466. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1467. } \
  1468. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1469. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1470. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1471. }
  1472. #define GGML_F16_VEC GGML_F16x8
  1473. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1474. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1475. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1476. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1477. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1478. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1479. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1480. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1481. #else
  1482. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1483. // and take advantage of the vcvt_ functions to convert to/from FP16
  1484. #define GGML_F16_STEP 16
  1485. #define GGML_F16_EPR 4
  1486. #define GGML_F32Cx4 float32x4_t
  1487. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1488. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1489. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1490. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1491. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1492. #define GGML_F32Cx4_ADD vaddq_f32
  1493. #define GGML_F32Cx4_MUL vmulq_f32
  1494. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1495. #define GGML_F16_VEC GGML_F32Cx4
  1496. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1497. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1498. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1499. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1500. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1501. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1502. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1503. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1504. #endif
  1505. #elif defined(__AVX__)
  1506. #define GGML_SIMD
  1507. // F32 AVX
  1508. #define GGML_F32_STEP 32
  1509. #define GGML_F32_EPR 8
  1510. #define GGML_F32x8 __m256
  1511. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1512. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1513. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1514. #define GGML_F32x8_STORE _mm256_storeu_ps
  1515. #if defined(__FMA__)
  1516. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1517. #else
  1518. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1519. #endif
  1520. #define GGML_F32x8_ADD _mm256_add_ps
  1521. #define GGML_F32x8_MUL _mm256_mul_ps
  1522. #define GGML_F32x8_REDUCE(res, x) \
  1523. { \
  1524. int offset = GGML_F32_ARR >> 1; \
  1525. for (int i = 0; i < offset; ++i) { \
  1526. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1527. } \
  1528. offset >>= 1; \
  1529. for (int i = 0; i < offset; ++i) { \
  1530. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1531. } \
  1532. offset >>= 1; \
  1533. for (int i = 0; i < offset; ++i) { \
  1534. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1535. } \
  1536. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1537. _mm256_extractf128_ps(x[0], 1)); \
  1538. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1539. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1540. }
  1541. // TODO: is this optimal ?
  1542. #define GGML_F32_VEC GGML_F32x8
  1543. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1544. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1545. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1546. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1547. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1548. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1549. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1550. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1551. // F16 AVX
  1552. #define GGML_F16_STEP 32
  1553. #define GGML_F16_EPR 8
  1554. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1555. #define GGML_F32Cx8 __m256
  1556. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1557. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1558. #if defined(__F16C__)
  1559. // the _mm256_cvt intrinsics require F16C
  1560. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1561. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1562. #else
  1563. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1564. float tmp[8];
  1565. for (int i = 0; i < 8; i++) {
  1566. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1567. }
  1568. return _mm256_loadu_ps(tmp);
  1569. }
  1570. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1571. float arr[8];
  1572. _mm256_storeu_ps(arr, y);
  1573. for (int i = 0; i < 8; i++)
  1574. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1575. }
  1576. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1577. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1578. #endif
  1579. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1580. #define GGML_F32Cx8_ADD _mm256_add_ps
  1581. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1582. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1583. #define GGML_F16_VEC GGML_F32Cx8
  1584. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1585. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1586. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1587. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1588. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1589. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1590. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1591. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1592. #elif defined(__POWER9_VECTOR__)
  1593. #define GGML_SIMD
  1594. // F32 POWER9
  1595. #define GGML_F32_STEP 32
  1596. #define GGML_F32_EPR 4
  1597. #define GGML_F32x4 vector float
  1598. #define GGML_F32x4_ZERO 0.0f
  1599. #define GGML_F32x4_SET1 vec_splats
  1600. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1601. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1602. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1603. #define GGML_F32x4_ADD vec_add
  1604. #define GGML_F32x4_MUL vec_mul
  1605. #define GGML_F32x4_REDUCE(res, x) \
  1606. { \
  1607. int offset = GGML_F32_ARR >> 1; \
  1608. for (int i = 0; i < offset; ++i) { \
  1609. x[i] = vec_add(x[i], x[offset+i]); \
  1610. } \
  1611. offset >>= 1; \
  1612. for (int i = 0; i < offset; ++i) { \
  1613. x[i] = vec_add(x[i], x[offset+i]); \
  1614. } \
  1615. offset >>= 1; \
  1616. for (int i = 0; i < offset; ++i) { \
  1617. x[i] = vec_add(x[i], x[offset+i]); \
  1618. } \
  1619. res = vec_extract(x[0], 0) + \
  1620. vec_extract(x[0], 1) + \
  1621. vec_extract(x[0], 2) + \
  1622. vec_extract(x[0], 3); \
  1623. }
  1624. #define GGML_F32_VEC GGML_F32x4
  1625. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1626. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1627. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1628. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1629. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1630. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1631. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1632. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1633. // F16 POWER9
  1634. #define GGML_F16_STEP GGML_F32_STEP
  1635. #define GGML_F16_EPR GGML_F32_EPR
  1636. #define GGML_F16_VEC GGML_F32x4
  1637. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1638. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1639. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1640. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1641. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1642. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1643. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1644. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1645. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1646. #define GGML_F16_VEC_STORE(p, r, i) \
  1647. if (i & 0x1) \
  1648. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1649. r[i - GGML_ENDIAN_BYTE(0)]), \
  1650. 0, p - GGML_F16_EPR)
  1651. #elif defined(__wasm_simd128__)
  1652. #define GGML_SIMD
  1653. // F32 WASM
  1654. #define GGML_F32_STEP 16
  1655. #define GGML_F32_EPR 4
  1656. #define GGML_F32x4 v128_t
  1657. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1658. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1659. #define GGML_F32x4_LOAD wasm_v128_load
  1660. #define GGML_F32x4_STORE wasm_v128_store
  1661. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1662. #define GGML_F32x4_ADD wasm_f32x4_add
  1663. #define GGML_F32x4_MUL wasm_f32x4_mul
  1664. #define GGML_F32x4_REDUCE(res, x) \
  1665. { \
  1666. int offset = GGML_F32_ARR >> 1; \
  1667. for (int i = 0; i < offset; ++i) { \
  1668. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1669. } \
  1670. offset >>= 1; \
  1671. for (int i = 0; i < offset; ++i) { \
  1672. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1673. } \
  1674. offset >>= 1; \
  1675. for (int i = 0; i < offset; ++i) { \
  1676. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1677. } \
  1678. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1679. wasm_f32x4_extract_lane(x[0], 1) + \
  1680. wasm_f32x4_extract_lane(x[0], 2) + \
  1681. wasm_f32x4_extract_lane(x[0], 3); \
  1682. }
  1683. #define GGML_F32_VEC GGML_F32x4
  1684. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1685. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1686. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1687. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1688. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1689. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1690. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1691. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1692. // F16 WASM
  1693. #define GGML_F16_STEP 16
  1694. #define GGML_F16_EPR 4
  1695. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1696. float tmp[4];
  1697. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1698. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1699. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1700. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1701. return wasm_v128_load(tmp);
  1702. }
  1703. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1704. float tmp[4];
  1705. wasm_v128_store(tmp, x);
  1706. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1707. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1708. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1709. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1710. }
  1711. #define GGML_F16x4 v128_t
  1712. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1713. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1714. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1715. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1716. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1717. #define GGML_F16x4_ADD wasm_f32x4_add
  1718. #define GGML_F16x4_MUL wasm_f32x4_mul
  1719. #define GGML_F16x4_REDUCE(res, x) \
  1720. { \
  1721. int offset = GGML_F16_ARR >> 1; \
  1722. for (int i = 0; i < offset; ++i) { \
  1723. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1724. } \
  1725. offset >>= 1; \
  1726. for (int i = 0; i < offset; ++i) { \
  1727. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1728. } \
  1729. offset >>= 1; \
  1730. for (int i = 0; i < offset; ++i) { \
  1731. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1732. } \
  1733. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1734. wasm_f32x4_extract_lane(x[0], 1) + \
  1735. wasm_f32x4_extract_lane(x[0], 2) + \
  1736. wasm_f32x4_extract_lane(x[0], 3); \
  1737. }
  1738. #define GGML_F16_VEC GGML_F16x4
  1739. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1740. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1741. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1742. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1743. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1744. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1745. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1746. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1747. #elif defined(__SSE3__)
  1748. #define GGML_SIMD
  1749. // F32 SSE
  1750. #define GGML_F32_STEP 32
  1751. #define GGML_F32_EPR 4
  1752. #define GGML_F32x4 __m128
  1753. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1754. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1755. #define GGML_F32x4_LOAD _mm_loadu_ps
  1756. #define GGML_F32x4_STORE _mm_storeu_ps
  1757. #if defined(__FMA__)
  1758. // TODO: Does this work?
  1759. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1760. #else
  1761. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1762. #endif
  1763. #define GGML_F32x4_ADD _mm_add_ps
  1764. #define GGML_F32x4_MUL _mm_mul_ps
  1765. #define GGML_F32x4_REDUCE(res, x) \
  1766. { \
  1767. int offset = GGML_F32_ARR >> 1; \
  1768. for (int i = 0; i < offset; ++i) { \
  1769. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1770. } \
  1771. offset >>= 1; \
  1772. for (int i = 0; i < offset; ++i) { \
  1773. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1774. } \
  1775. offset >>= 1; \
  1776. for (int i = 0; i < offset; ++i) { \
  1777. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1778. } \
  1779. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1780. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1781. }
  1782. // TODO: is this optimal ?
  1783. #define GGML_F32_VEC GGML_F32x4
  1784. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1785. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1786. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1787. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1788. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1789. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1790. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1791. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1792. // F16 SSE
  1793. #define GGML_F16_STEP 32
  1794. #define GGML_F16_EPR 4
  1795. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1796. float tmp[4];
  1797. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1798. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1799. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1800. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1801. return _mm_loadu_ps(tmp);
  1802. }
  1803. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1804. float arr[4];
  1805. _mm_storeu_ps(arr, y);
  1806. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1807. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1808. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1809. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1810. }
  1811. #define GGML_F32Cx4 __m128
  1812. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1813. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1814. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1815. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1816. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1817. #define GGML_F32Cx4_ADD _mm_add_ps
  1818. #define GGML_F32Cx4_MUL _mm_mul_ps
  1819. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1820. #define GGML_F16_VEC GGML_F32Cx4
  1821. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1822. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1823. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1824. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1825. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1826. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1827. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1828. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1829. #endif
  1830. // GGML_F32_ARR / GGML_F16_ARR
  1831. // number of registers to use per step
  1832. #ifdef GGML_SIMD
  1833. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1834. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1835. #endif
  1836. //
  1837. // fundamental operations
  1838. //
  1839. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1840. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1841. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1842. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1843. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1844. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1845. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1846. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1847. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1848. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1849. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1850. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1851. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1852. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1853. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1854. #ifdef GGML_SIMD
  1855. float sumf = 0.0f;
  1856. const int np = (n & ~(GGML_F32_STEP - 1));
  1857. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1858. GGML_F32_VEC ax[GGML_F32_ARR];
  1859. GGML_F32_VEC ay[GGML_F32_ARR];
  1860. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1861. for (int j = 0; j < GGML_F32_ARR; j++) {
  1862. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1863. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1864. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1865. }
  1866. }
  1867. // reduce sum0..sum3 to sum0
  1868. GGML_F32_VEC_REDUCE(sumf, sum);
  1869. // leftovers
  1870. for (int i = np; i < n; ++i) {
  1871. sumf += x[i]*y[i];
  1872. }
  1873. #else
  1874. // scalar
  1875. ggml_float sumf = 0.0;
  1876. for (int i = 0; i < n; ++i) {
  1877. sumf += (ggml_float)(x[i]*y[i]);
  1878. }
  1879. #endif
  1880. *s = sumf;
  1881. }
  1882. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1883. ggml_float sumf = 0.0;
  1884. #if defined(GGML_SIMD)
  1885. const int np = (n & ~(GGML_F16_STEP - 1));
  1886. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1887. GGML_F16_VEC ax[GGML_F16_ARR];
  1888. GGML_F16_VEC ay[GGML_F16_ARR];
  1889. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1890. for (int j = 0; j < GGML_F16_ARR; j++) {
  1891. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1892. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1893. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1894. }
  1895. }
  1896. // reduce sum0..sum3 to sum0
  1897. GGML_F16_VEC_REDUCE(sumf, sum);
  1898. // leftovers
  1899. for (int i = np; i < n; ++i) {
  1900. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1901. }
  1902. #else
  1903. for (int i = 0; i < n; ++i) {
  1904. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1905. }
  1906. #endif
  1907. *s = sumf;
  1908. }
  1909. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1910. const int qk = QK8_0;
  1911. const int nb = n / qk;
  1912. assert(n % qk == 0);
  1913. assert(nb % 2 == 0);
  1914. const block_q4_0 * restrict x = vx;
  1915. const block_q8_0 * restrict y = vy;
  1916. #if defined(__ARM_NEON)
  1917. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1918. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1919. for (int i = 0; i < nb; i += 2) {
  1920. const block_q4_0 * restrict x0 = &x[i + 0];
  1921. const block_q4_0 * restrict x1 = &x[i + 1];
  1922. const block_q8_0 * restrict y0 = &y[i + 0];
  1923. const block_q8_0 * restrict y1 = &y[i + 1];
  1924. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1925. const int8x16_t s8b = vdupq_n_s8(0x8);
  1926. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1927. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1928. // 4-bit -> 8-bit
  1929. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1930. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1931. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1932. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1933. // sub 8
  1934. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1935. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1936. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1937. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1938. // load y
  1939. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1940. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1941. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1942. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1943. #if defined(__ARM_FEATURE_DOTPROD)
  1944. // dot product into int32x4_t
  1945. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1946. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1947. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1948. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1949. #else
  1950. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1951. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1952. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1953. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1954. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1955. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1956. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1957. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1958. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1959. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1960. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1961. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1962. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1963. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1964. #endif
  1965. }
  1966. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1967. #elif defined(__AVX2__)
  1968. // Initialize accumulator with zeros
  1969. __m256 acc = _mm256_setzero_ps();
  1970. // Main loop
  1971. for (int i = 0; i < nb; ++i) {
  1972. /* Compute combined scale for the block */
  1973. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1974. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1975. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1976. const __m256i off = _mm256_set1_epi8( 8 );
  1977. bx = _mm256_sub_epi8( bx, off );
  1978. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1979. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1980. /* Multiply q with scale and accumulate */
  1981. acc = _mm256_fmadd_ps( d, q, acc );
  1982. }
  1983. *s = hsum_float_8(acc);
  1984. #elif defined(__AVX__)
  1985. // Initialize accumulator with zeros
  1986. __m256 acc = _mm256_setzero_ps();
  1987. // Main loop
  1988. for (int i = 0; i < nb; ++i) {
  1989. // Compute combined scale for the block
  1990. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1991. const __m128i lowMask = _mm_set1_epi8(0xF);
  1992. const __m128i off = _mm_set1_epi8(8);
  1993. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1994. __m128i bx = _mm_and_si128(lowMask, tmp);
  1995. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1996. bx = _mm_sub_epi8(bx, off);
  1997. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1998. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1999. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2000. bx = _mm_sub_epi8(bx, off);
  2001. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2002. // Convert int32_t to float
  2003. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2004. // Apply the scale, and accumulate
  2005. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2006. }
  2007. *s = hsum_float_8(acc);
  2008. #elif defined(__SSSE3__)
  2009. // set constants
  2010. const __m128i lowMask = _mm_set1_epi8(0xF);
  2011. const __m128i off = _mm_set1_epi8(8);
  2012. // Initialize accumulator with zeros
  2013. __m128 acc_0 = _mm_setzero_ps();
  2014. __m128 acc_1 = _mm_setzero_ps();
  2015. __m128 acc_2 = _mm_setzero_ps();
  2016. __m128 acc_3 = _mm_setzero_ps();
  2017. // First round without accumulation
  2018. {
  2019. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2020. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2021. // Compute combined scale for the block 0 and 1
  2022. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2023. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2024. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2025. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2026. bx_0 = _mm_sub_epi8(bx_0, off);
  2027. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2028. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2029. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2030. bx_1 = _mm_sub_epi8(bx_1, off);
  2031. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2032. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2033. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2034. // Compute combined scale for the block 2 and 3
  2035. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2036. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2037. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2038. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2039. bx_2 = _mm_sub_epi8(bx_2, off);
  2040. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2041. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2042. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2043. bx_3 = _mm_sub_epi8(bx_3, off);
  2044. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2045. // Convert int32_t to float
  2046. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2047. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2048. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2049. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2050. // Apply the scale
  2051. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2052. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2053. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2054. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2055. }
  2056. // Main loop
  2057. for (int i = 2; i < nb; i+=2) {
  2058. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2059. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2060. // Compute combined scale for the block 0 and 1
  2061. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2062. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2063. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2064. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2065. bx_0 = _mm_sub_epi8(bx_0, off);
  2066. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2067. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2068. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2069. bx_1 = _mm_sub_epi8(bx_1, off);
  2070. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2071. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2072. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2073. // Compute combined scale for the block 2 and 3
  2074. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2075. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2076. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2077. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2078. bx_2 = _mm_sub_epi8(bx_2, off);
  2079. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2080. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2081. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2082. bx_3 = _mm_sub_epi8(bx_3, off);
  2083. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2084. // Convert int32_t to float
  2085. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2086. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2087. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2088. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2089. // Apply the scale
  2090. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2091. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2092. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2093. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2094. // Acummulate
  2095. acc_0 = _mm_add_ps(p0_d, acc_0);
  2096. acc_1 = _mm_add_ps(p1_d, acc_1);
  2097. acc_2 = _mm_add_ps(p2_d, acc_2);
  2098. acc_3 = _mm_add_ps(p3_d, acc_3);
  2099. }
  2100. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2101. #else
  2102. // scalar
  2103. float sumf = 0.0;
  2104. for (int i = 0; i < nb; i++) {
  2105. int sumi = 0;
  2106. for (int j = 0; j < qk/2; ++j) {
  2107. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2108. const int v1 = (x[i].qs[j] >> 4) - 8;
  2109. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2110. }
  2111. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2112. }
  2113. *s = sumf;
  2114. #endif
  2115. }
  2116. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2117. const int qk = QK8_1;
  2118. const int nb = n / qk;
  2119. assert(n % qk == 0);
  2120. assert(nb % 2 == 0);
  2121. const block_q4_1 * restrict x = vx;
  2122. const block_q8_1 * restrict y = vy;
  2123. // TODO: add WASM SIMD
  2124. #if defined(__ARM_NEON)
  2125. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2126. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2127. float summs = 0;
  2128. for (int i = 0; i < nb; i += 2) {
  2129. const block_q4_1 * restrict x0 = &x[i + 0];
  2130. const block_q4_1 * restrict x1 = &x[i + 1];
  2131. const block_q8_1 * restrict y0 = &y[i + 0];
  2132. const block_q8_1 * restrict y1 = &y[i + 1];
  2133. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2134. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2135. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2136. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2137. // 4-bit -> 8-bit
  2138. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2139. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2140. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2141. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2142. // load y
  2143. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2144. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2145. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2146. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2147. #if defined(__ARM_FEATURE_DOTPROD)
  2148. // dot product into int32x4_t
  2149. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2150. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2151. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2152. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2153. #else
  2154. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2155. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2156. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2157. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2158. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2159. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2160. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2161. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2162. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2163. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2164. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2165. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2166. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2167. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2168. #endif
  2169. }
  2170. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2171. #elif defined(__AVX2__) || defined(__AVX__)
  2172. // Initialize accumulator with zeros
  2173. __m256 acc = _mm256_setzero_ps();
  2174. float summs = 0;
  2175. // Main loop
  2176. for (int i = 0; i < nb; ++i) {
  2177. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2178. const float d1 = y[i].d;
  2179. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2180. const __m256 d0v = _mm256_set1_ps( d0 );
  2181. const __m256 d1v = _mm256_set1_ps( d1 );
  2182. // Compute combined scales
  2183. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2184. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2185. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2186. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2187. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2188. // Accumulate d0*d1*x*y
  2189. #if defined(__AVX2__)
  2190. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2191. #else
  2192. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2193. #endif
  2194. }
  2195. *s = hsum_float_8(acc) + summs;
  2196. #else
  2197. // scalar
  2198. float sumf = 0.0;
  2199. for (int i = 0; i < nb; i++) {
  2200. int sumi = 0;
  2201. for (int j = 0; j < qk/2; ++j) {
  2202. const int v0 = (x[i].qs[j] & 0x0F);
  2203. const int v1 = (x[i].qs[j] >> 4);
  2204. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2205. }
  2206. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2207. }
  2208. *s = sumf;
  2209. #endif
  2210. }
  2211. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2212. const int qk = QK8_0;
  2213. const int nb = n / qk;
  2214. assert(n % qk == 0);
  2215. assert(nb % 2 == 0);
  2216. assert(qk == QK5_0);
  2217. const block_q5_0 * restrict x = vx;
  2218. const block_q8_0 * restrict y = vy;
  2219. #if defined(__ARM_NEON)
  2220. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2221. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2222. uint32_t qh0;
  2223. uint32_t qh1;
  2224. uint64_t tmp0[4];
  2225. uint64_t tmp1[4];
  2226. for (int i = 0; i < nb; i += 2) {
  2227. const block_q5_0 * restrict x0 = &x[i];
  2228. const block_q5_0 * restrict x1 = &x[i + 1];
  2229. const block_q8_0 * restrict y0 = &y[i];
  2230. const block_q8_0 * restrict y1 = &y[i + 1];
  2231. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2232. // extract the 5th bit via lookup table ((!b) << 4)
  2233. memcpy(&qh0, x0->qh, sizeof(qh0));
  2234. memcpy(&qh1, x1->qh, sizeof(qh1));
  2235. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2236. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2237. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2238. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2239. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2240. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2241. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2242. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2243. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2244. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2245. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2246. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2247. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2248. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2249. // 4-bit -> 8-bit
  2250. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2251. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2252. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2253. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2254. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2255. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2256. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2257. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2258. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2259. // load y
  2260. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2261. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2262. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2263. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2264. #if defined(__ARM_FEATURE_DOTPROD)
  2265. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2266. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2267. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2268. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2269. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2270. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2271. #else
  2272. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2273. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2274. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2275. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2276. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2277. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2278. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2279. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2280. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2281. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2282. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2283. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2284. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2285. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2286. #endif
  2287. }
  2288. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2289. #elif defined(__wasm_simd128__)
  2290. v128_t sumv = wasm_f32x4_splat(0.0f);
  2291. uint32_t qh;
  2292. uint64_t tmp[4];
  2293. // TODO: check if unrolling this is better
  2294. for (int i = 0; i < nb; ++i) {
  2295. const block_q5_0 * restrict x0 = &x[i];
  2296. const block_q8_0 * restrict y0 = &y[i];
  2297. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2298. // extract the 5th bit
  2299. memcpy(&qh, x0->qh, sizeof(qh));
  2300. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2301. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2302. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2303. tmp[3] = table_b2b_1[(qh >> 24) ];
  2304. const v128_t qhl = wasm_v128_load(tmp + 0);
  2305. const v128_t qhh = wasm_v128_load(tmp + 2);
  2306. const v128_t v0 = wasm_v128_load(x0->qs);
  2307. // 4-bit -> 8-bit
  2308. const v128_t v0l = wasm_v128_and (v0, m4b);
  2309. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2310. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2311. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2312. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2313. // load y
  2314. const v128_t v1l = wasm_v128_load(y0->qs);
  2315. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2316. // int8x16 -> int16x8
  2317. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2318. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2319. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2320. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2321. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2322. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2323. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2324. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2325. // dot product
  2326. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2327. wasm_i32x4_add(
  2328. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2329. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2330. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2331. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2332. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2333. }
  2334. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2335. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2336. #elif defined(__AVX2__)
  2337. // Initialize accumulator with zeros
  2338. __m256 acc = _mm256_setzero_ps();
  2339. // Main loop
  2340. for (int i = 0; i < nb; i++) {
  2341. /* Compute combined scale for the block */
  2342. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2343. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2344. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2345. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2346. bx = _mm256_or_si256(bx, bxhi);
  2347. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2348. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2349. /* Multiply q with scale and accumulate */
  2350. acc = _mm256_fmadd_ps(d, q, acc);
  2351. }
  2352. *s = hsum_float_8(acc);
  2353. #elif defined(__AVX__)
  2354. // Initialize accumulator with zeros
  2355. __m256 acc = _mm256_setzero_ps();
  2356. __m128i mask = _mm_set1_epi8((char)0xF0);
  2357. // Main loop
  2358. for (int i = 0; i < nb; i++) {
  2359. /* Compute combined scale for the block */
  2360. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2361. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2362. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2363. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2364. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2365. bxhil = _mm_andnot_si128(bxhil, mask);
  2366. bxhih = _mm_andnot_si128(bxhih, mask);
  2367. __m128i bxl = _mm256_castsi256_si128(bx);
  2368. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2369. bxl = _mm_or_si128(bxl, bxhil);
  2370. bxh = _mm_or_si128(bxh, bxhih);
  2371. bx = MM256_SET_M128I(bxh, bxl);
  2372. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2373. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2374. /* Multiply q with scale and accumulate */
  2375. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2376. }
  2377. *s = hsum_float_8(acc);
  2378. #else
  2379. // scalar
  2380. float sumf = 0.0;
  2381. for (int i = 0; i < nb; i++) {
  2382. uint32_t qh;
  2383. memcpy(&qh, x[i].qh, sizeof(qh));
  2384. int sumi = 0;
  2385. for (int j = 0; j < qk/2; ++j) {
  2386. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2387. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2388. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2389. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2390. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2391. }
  2392. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2393. }
  2394. *s = sumf;
  2395. #endif
  2396. }
  2397. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2398. const int qk = QK8_1;
  2399. const int nb = n / qk;
  2400. assert(n % qk == 0);
  2401. assert(nb % 2 == 0);
  2402. assert(qk == QK5_1);
  2403. const block_q5_1 * restrict x = vx;
  2404. const block_q8_1 * restrict y = vy;
  2405. #if defined(__ARM_NEON)
  2406. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2407. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2408. float summs0 = 0.0f;
  2409. float summs1 = 0.0f;
  2410. uint32_t qh0;
  2411. uint32_t qh1;
  2412. uint64_t tmp0[4];
  2413. uint64_t tmp1[4];
  2414. for (int i = 0; i < nb; i += 2) {
  2415. const block_q5_1 * restrict x0 = &x[i];
  2416. const block_q5_1 * restrict x1 = &x[i + 1];
  2417. const block_q8_1 * restrict y0 = &y[i];
  2418. const block_q8_1 * restrict y1 = &y[i + 1];
  2419. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2420. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2421. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2422. // extract the 5th bit via lookup table ((b) << 4)
  2423. memcpy(&qh0, x0->qh, sizeof(qh0));
  2424. memcpy(&qh1, x1->qh, sizeof(qh1));
  2425. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2426. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2427. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2428. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2429. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2430. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2431. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2432. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2433. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2434. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2435. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2436. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2437. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2438. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2439. // 4-bit -> 8-bit
  2440. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2441. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2442. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2443. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2444. // add high bit
  2445. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2446. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2447. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2448. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2449. // load y
  2450. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2451. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2452. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2453. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2454. #if defined(__ARM_FEATURE_DOTPROD)
  2455. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2456. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2457. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2458. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2459. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2460. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2461. #else
  2462. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2463. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2464. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2465. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2466. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2467. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2468. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2469. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2470. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2471. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2472. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2473. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2474. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2475. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2476. #endif
  2477. }
  2478. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2479. #elif defined(__wasm_simd128__)
  2480. v128_t sumv = wasm_f32x4_splat(0.0f);
  2481. float summs = 0.0f;
  2482. uint32_t qh;
  2483. uint64_t tmp[4];
  2484. // TODO: check if unrolling this is better
  2485. for (int i = 0; i < nb; ++i) {
  2486. const block_q5_1 * restrict x0 = &x[i];
  2487. const block_q8_1 * restrict y0 = &y[i];
  2488. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2489. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2490. // extract the 5th bit
  2491. memcpy(&qh, x0->qh, sizeof(qh));
  2492. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2493. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2494. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2495. tmp[3] = table_b2b_0[(qh >> 24) ];
  2496. const v128_t qhl = wasm_v128_load(tmp + 0);
  2497. const v128_t qhh = wasm_v128_load(tmp + 2);
  2498. const v128_t v0 = wasm_v128_load(x0->qs);
  2499. // 4-bit -> 8-bit
  2500. const v128_t v0l = wasm_v128_and (v0, m4b);
  2501. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2502. // add high bit
  2503. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2504. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2505. // load y
  2506. const v128_t v1l = wasm_v128_load(y0->qs);
  2507. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2508. // int8x16 -> int16x8
  2509. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2510. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2511. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2512. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2513. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2514. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2515. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2516. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2517. // dot product
  2518. sumv = wasm_f32x4_add(sumv,
  2519. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2520. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2521. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2522. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2523. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2524. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2525. }
  2526. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2527. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2528. #elif defined(__AVX2__)
  2529. // Initialize accumulator with zeros
  2530. __m256 acc = _mm256_setzero_ps();
  2531. float summs = 0.0f;
  2532. // Main loop
  2533. for (int i = 0; i < nb; i++) {
  2534. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2535. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2536. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2537. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2538. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2539. bx = _mm256_or_si256(bx, bxhi);
  2540. const __m256 dy = _mm256_set1_ps(y[i].d);
  2541. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2542. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2543. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2544. }
  2545. *s = hsum_float_8(acc) + summs;
  2546. #elif defined(__AVX__)
  2547. // Initialize accumulator with zeros
  2548. __m256 acc = _mm256_setzero_ps();
  2549. __m128i mask = _mm_set1_epi8(0x10);
  2550. float summs = 0.0f;
  2551. // Main loop
  2552. for (int i = 0; i < nb; i++) {
  2553. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2554. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2555. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2556. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2557. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2558. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2559. bxhil = _mm_and_si128(bxhil, mask);
  2560. bxhih = _mm_and_si128(bxhih, mask);
  2561. __m128i bxl = _mm256_castsi256_si128(bx);
  2562. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2563. bxl = _mm_or_si128(bxl, bxhil);
  2564. bxh = _mm_or_si128(bxh, bxhih);
  2565. bx = MM256_SET_M128I(bxh, bxl);
  2566. const __m256 dy = _mm256_set1_ps(y[i].d);
  2567. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2568. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2569. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2570. }
  2571. *s = hsum_float_8(acc) + summs;
  2572. #else
  2573. // scalar
  2574. float sumf = 0.0;
  2575. for (int i = 0; i < nb; i++) {
  2576. uint32_t qh;
  2577. memcpy(&qh, x[i].qh, sizeof(qh));
  2578. int sumi = 0;
  2579. for (int j = 0; j < qk/2; ++j) {
  2580. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2581. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2582. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2583. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2584. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2585. }
  2586. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2587. }
  2588. *s = sumf;
  2589. #endif
  2590. }
  2591. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2592. const int qk = QK8_0;
  2593. const int nb = n / qk;
  2594. assert(n % qk == 0);
  2595. assert(nb % 2 == 0);
  2596. const block_q8_0 * restrict x = vx;
  2597. const block_q8_0 * restrict y = vy;
  2598. #if defined(__ARM_NEON)
  2599. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2600. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2601. for (int i = 0; i < nb; i += 2) {
  2602. const block_q8_0 * restrict x0 = &x[i + 0];
  2603. const block_q8_0 * restrict x1 = &x[i + 1];
  2604. const block_q8_0 * restrict y0 = &y[i + 0];
  2605. const block_q8_0 * restrict y1 = &y[i + 1];
  2606. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2607. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2608. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2609. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2610. // load y
  2611. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2612. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2613. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2614. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2615. #if defined(__ARM_FEATURE_DOTPROD)
  2616. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2617. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2618. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2619. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2620. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2621. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2622. #else
  2623. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2624. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2625. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2626. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2627. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2628. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2629. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2630. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2631. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2632. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2633. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2634. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2635. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2636. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2637. #endif
  2638. }
  2639. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2640. #elif defined(__AVX2__) || defined(__AVX__)
  2641. // Initialize accumulator with zeros
  2642. __m256 acc = _mm256_setzero_ps();
  2643. // Main loop
  2644. for (int i = 0; i < nb; ++i) {
  2645. // Compute combined scale for the block
  2646. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2647. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2648. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2649. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2650. // Multiply q with scale and accumulate
  2651. #if defined(__AVX2__)
  2652. acc = _mm256_fmadd_ps( d, q, acc );
  2653. #else
  2654. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2655. #endif
  2656. }
  2657. *s = hsum_float_8(acc);
  2658. #else
  2659. // scalar
  2660. float sumf = 0.0;
  2661. for (int i = 0; i < nb; i++) {
  2662. int sumi = 0;
  2663. for (int j = 0; j < qk; j++) {
  2664. sumi += x[i].qs[j]*y[i].qs[j];
  2665. }
  2666. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2667. }
  2668. *s = sumf;
  2669. #endif
  2670. }
  2671. // compute GGML_VEC_DOT_UNROLL dot products at once
  2672. // xs - x row stride in bytes
  2673. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2674. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2675. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2676. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2677. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2678. }
  2679. #if defined(GGML_SIMD)
  2680. const int np = (n & ~(GGML_F16_STEP - 1));
  2681. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2682. GGML_F16_VEC ax[GGML_F16_ARR];
  2683. GGML_F16_VEC ay[GGML_F16_ARR];
  2684. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2685. for (int j = 0; j < GGML_F16_ARR; j++) {
  2686. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2687. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2688. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2689. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2690. }
  2691. }
  2692. }
  2693. // reduce sum0..sum3 to sum0
  2694. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2695. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2696. }
  2697. // leftovers
  2698. for (int i = np; i < n; ++i) {
  2699. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2700. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2701. }
  2702. }
  2703. #else
  2704. for (int i = 0; i < n; ++i) {
  2705. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2706. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2707. }
  2708. }
  2709. #endif
  2710. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2711. s[i] = sumf[i];
  2712. }
  2713. }
  2714. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2715. #if defined(GGML_SIMD)
  2716. const int np = (n & ~(GGML_F32_STEP - 1));
  2717. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2718. GGML_F32_VEC ax[GGML_F32_ARR];
  2719. GGML_F32_VEC ay[GGML_F32_ARR];
  2720. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2721. for (int j = 0; j < GGML_F32_ARR; j++) {
  2722. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2723. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2724. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2725. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2726. }
  2727. }
  2728. // leftovers
  2729. for (int i = np; i < n; ++i) {
  2730. y[i] += x[i]*v;
  2731. }
  2732. #else
  2733. // scalar
  2734. for (int i = 0; i < n; ++i) {
  2735. y[i] += x[i]*v;
  2736. }
  2737. #endif
  2738. }
  2739. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2740. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2741. #if defined(GGML_SIMD)
  2742. const int np = (n & ~(GGML_F32_STEP - 1));
  2743. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2744. GGML_F32_VEC ay[GGML_F32_ARR];
  2745. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2746. for (int j = 0; j < GGML_F32_ARR; j++) {
  2747. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2748. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2749. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2750. }
  2751. }
  2752. // leftovers
  2753. for (int i = np; i < n; ++i) {
  2754. y[i] *= v;
  2755. }
  2756. #else
  2757. // scalar
  2758. for (int i = 0; i < n; ++i) {
  2759. y[i] *= v;
  2760. }
  2761. #endif
  2762. }
  2763. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2764. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2765. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2766. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2767. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2768. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2769. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2770. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2771. static const float GELU_COEF_A = 0.044715f;
  2772. static const float GELU_QUICK_COEF = -1.702f;
  2773. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2774. inline static float ggml_gelu_f32(float x) {
  2775. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2776. }
  2777. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2778. const uint16_t * i16 = (const uint16_t *) x;
  2779. for (int i = 0; i < n; ++i) {
  2780. y[i] = table_gelu_f16[i16[i]];
  2781. }
  2782. }
  2783. #ifdef GGML_GELU_FP16
  2784. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2785. uint16_t t;
  2786. for (int i = 0; i < n; ++i) {
  2787. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2788. memcpy(&t, &fp16, sizeof(uint16_t));
  2789. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2790. }
  2791. }
  2792. #else
  2793. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2794. for (int i = 0; i < n; ++i) {
  2795. y[i] = ggml_gelu_f32(x[i]);
  2796. }
  2797. }
  2798. #endif
  2799. inline static float ggml_gelu_quick_f32(float x) {
  2800. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2801. }
  2802. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2803. // const uint16_t * i16 = (const uint16_t *) x;
  2804. // for (int i = 0; i < n; ++i) {
  2805. // y[i] = table_gelu_quick_f16[i16[i]];
  2806. // }
  2807. //}
  2808. #ifdef GGML_GELU_QUICK_FP16
  2809. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2810. uint16_t t;
  2811. for (int i = 0; i < n; ++i) {
  2812. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2813. memcpy(&t, &fp16, sizeof(uint16_t));
  2814. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2815. }
  2816. }
  2817. #else
  2818. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2819. for (int i = 0; i < n; ++i) {
  2820. y[i] = ggml_gelu_quick_f32(x[i]);
  2821. }
  2822. }
  2823. #endif
  2824. // Sigmoid Linear Unit (SiLU) function
  2825. inline static float ggml_silu_f32(float x) {
  2826. return x/(1.0f + expf(-x));
  2827. }
  2828. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2829. // const uint16_t * i16 = (const uint16_t *) x;
  2830. // for (int i = 0; i < n; ++i) {
  2831. // y[i] = table_silu_f16[i16[i]];
  2832. // }
  2833. //}
  2834. #ifdef GGML_SILU_FP16
  2835. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2836. uint16_t t;
  2837. for (int i = 0; i < n; ++i) {
  2838. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2839. memcpy(&t, &fp16, sizeof(uint16_t));
  2840. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2841. }
  2842. }
  2843. #else
  2844. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2845. for (int i = 0; i < n; ++i) {
  2846. y[i] = ggml_silu_f32(x[i]);
  2847. }
  2848. }
  2849. #endif
  2850. inline static float ggml_silu_backward_f32(float x, float dy) {
  2851. const float s = 1.0f/(1.0f + expf(-x));
  2852. return dy*s*(1.0f + x*(1.0f - s));
  2853. }
  2854. #ifdef GGML_SILU_FP16
  2855. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2856. for (int i = 0; i < n; ++i) {
  2857. // we did not use x[i] to compute forward silu but its f16 equivalent
  2858. // take derivative at f16 of x[i]:
  2859. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2860. float usedx = GGML_FP16_TO_FP32(fp16);
  2861. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2862. }
  2863. }
  2864. #else
  2865. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2866. for (int i = 0; i < n; ++i) {
  2867. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2868. }
  2869. }
  2870. #endif
  2871. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2872. #ifndef GGML_USE_ACCELERATE
  2873. ggml_float sum = 0.0;
  2874. for (int i = 0; i < n; ++i) {
  2875. sum += (ggml_float)x[i];
  2876. }
  2877. *s = sum;
  2878. #else
  2879. vDSP_sve(x, 1, s, n);
  2880. #endif
  2881. }
  2882. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2883. ggml_float sum = 0.0;
  2884. for (int i = 0; i < n; ++i) {
  2885. sum += (ggml_float)x[i];
  2886. }
  2887. *s = sum;
  2888. }
  2889. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2890. #ifndef GGML_USE_ACCELERATE
  2891. float max = -INFINITY;
  2892. for (int i = 0; i < n; ++i) {
  2893. max = MAX(max, x[i]);
  2894. }
  2895. *s = max;
  2896. #else
  2897. vDSP_maxv(x, 1, s, n);
  2898. #endif
  2899. }
  2900. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2901. ggml_vec_norm_f32(n, s, x);
  2902. *s = 1.f/(*s);
  2903. }
  2904. //
  2905. // data types
  2906. //
  2907. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2908. [GGML_TYPE_F32] = 1,
  2909. [GGML_TYPE_F16] = 1,
  2910. [GGML_TYPE_Q4_0] = QK4_0,
  2911. [GGML_TYPE_Q4_1] = QK4_1,
  2912. [GGML_TYPE_Q5_0] = QK5_0,
  2913. [GGML_TYPE_Q5_1] = QK5_1,
  2914. [GGML_TYPE_Q8_0] = QK8_0,
  2915. [GGML_TYPE_Q8_1] = QK8_1,
  2916. #ifdef GGML_USE_K_QUANTS
  2917. [GGML_TYPE_Q2_K] = QK_K,
  2918. [GGML_TYPE_Q3_K] = QK_K,
  2919. [GGML_TYPE_Q4_K] = QK_K,
  2920. [GGML_TYPE_Q5_K] = QK_K,
  2921. [GGML_TYPE_Q6_K] = QK_K,
  2922. [GGML_TYPE_Q8_K] = QK_K,
  2923. #endif
  2924. [GGML_TYPE_I8] = 1,
  2925. [GGML_TYPE_I16] = 1,
  2926. [GGML_TYPE_I32] = 1,
  2927. };
  2928. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2929. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2930. [GGML_TYPE_F32] = sizeof(float),
  2931. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2932. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2933. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2934. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2935. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2936. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2937. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2938. #ifdef GGML_USE_K_QUANTS
  2939. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2940. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2941. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2942. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2943. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2944. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2945. #endif
  2946. [GGML_TYPE_I8] = sizeof(int8_t),
  2947. [GGML_TYPE_I16] = sizeof(int16_t),
  2948. [GGML_TYPE_I32] = sizeof(int32_t),
  2949. };
  2950. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2951. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2952. [GGML_TYPE_F32] = "f32",
  2953. [GGML_TYPE_F16] = "f16",
  2954. [GGML_TYPE_Q4_0] = "q4_0",
  2955. [GGML_TYPE_Q4_1] = "q4_1",
  2956. [GGML_TYPE_Q5_0] = "q5_0",
  2957. [GGML_TYPE_Q5_1] = "q5_1",
  2958. [GGML_TYPE_Q8_0] = "q8_0",
  2959. [GGML_TYPE_Q8_1] = "q8_1",
  2960. [GGML_TYPE_Q2_K] = "q2_K",
  2961. [GGML_TYPE_Q3_K] = "q3_K",
  2962. [GGML_TYPE_Q4_K] = "q4_K",
  2963. [GGML_TYPE_Q5_K] = "q5_K",
  2964. [GGML_TYPE_Q6_K] = "q6_K",
  2965. [GGML_TYPE_Q8_K] = "q8_K",
  2966. [GGML_TYPE_I8] = "i8",
  2967. [GGML_TYPE_I16] = "i16",
  2968. [GGML_TYPE_I32] = "i32",
  2969. };
  2970. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2971. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2972. [GGML_TYPE_F32] = false,
  2973. [GGML_TYPE_F16] = false,
  2974. [GGML_TYPE_Q4_0] = true,
  2975. [GGML_TYPE_Q4_1] = true,
  2976. [GGML_TYPE_Q5_0] = true,
  2977. [GGML_TYPE_Q5_1] = true,
  2978. [GGML_TYPE_Q8_0] = true,
  2979. [GGML_TYPE_Q8_1] = true,
  2980. [GGML_TYPE_Q2_K] = true,
  2981. [GGML_TYPE_Q3_K] = true,
  2982. [GGML_TYPE_Q4_K] = true,
  2983. [GGML_TYPE_Q5_K] = true,
  2984. [GGML_TYPE_Q6_K] = true,
  2985. [GGML_TYPE_Q8_K] = true,
  2986. [GGML_TYPE_I8] = false,
  2987. [GGML_TYPE_I16] = false,
  2988. [GGML_TYPE_I32] = false,
  2989. };
  2990. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2991. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2992. "NONE",
  2993. "DUP",
  2994. "ADD",
  2995. "ADD1",
  2996. "ACC",
  2997. "SUB",
  2998. "MUL",
  2999. "DIV",
  3000. "SQR",
  3001. "SQRT",
  3002. "LOG",
  3003. "SUM",
  3004. "SUM_ROWS",
  3005. "MEAN",
  3006. "REPEAT",
  3007. "REPEAT_BACK",
  3008. "ABS",
  3009. "SGN",
  3010. "NEG",
  3011. "STEP",
  3012. "RELU",
  3013. "GELU",
  3014. "GELU_QUICK",
  3015. "SILU",
  3016. "SILU_BACK",
  3017. "NORM",
  3018. "RMS_NORM",
  3019. "RMS_NORM_BACK",
  3020. "MUL_MAT",
  3021. "OUT_PROD",
  3022. "SCALE",
  3023. "SET",
  3024. "CPY",
  3025. "CONT",
  3026. "RESHAPE",
  3027. "VIEW",
  3028. "PERMUTE",
  3029. "TRANSPOSE",
  3030. "GET_ROWS",
  3031. "GET_ROWS_BACK",
  3032. "DIAG",
  3033. "DIAG_MASK_INF",
  3034. "DIAG_MASK_ZERO",
  3035. "SOFT_MAX",
  3036. "SOFT_MAX_BACK",
  3037. "ROPE",
  3038. "ROPE_BACK",
  3039. "ALIBI",
  3040. "CLAMP",
  3041. "CONV_1D_S1_PH",
  3042. "CONV_1D_S2_PH",
  3043. "CONV_2D_SK_P0",
  3044. "FLASH_ATTN",
  3045. "FLASH_FF",
  3046. "FLASH_ATTN_BACK",
  3047. "WIN_PART",
  3048. "WIN_UNPART",
  3049. "MAP_UNARY",
  3050. "MAP_BINARY",
  3051. "MAP_CUSTOM1",
  3052. "MAP_CUSTOM2",
  3053. "MAP_CUSTOM3",
  3054. "CROSS_ENTROPY_LOSS",
  3055. "CROSS_ENTROPY_LOSS_BACK",
  3056. };
  3057. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3058. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3059. "none",
  3060. "x",
  3061. "x+y",
  3062. "x+y",
  3063. "view(x,nb,offset)+=y->x",
  3064. "x-y",
  3065. "x*y",
  3066. "x/y",
  3067. "x^2",
  3068. "√x",
  3069. "log(x)",
  3070. "Σx",
  3071. "Σx_k",
  3072. "Σx/n",
  3073. "repeat(x)",
  3074. "repeat_back(x)",
  3075. "abs(x)",
  3076. "sgn(x)",
  3077. "-x",
  3078. "step(x)",
  3079. "relu(x)",
  3080. "gelu(x)",
  3081. "gelu_quick(x)",
  3082. "silu(x)",
  3083. "silu_back(x)",
  3084. "norm(x)",
  3085. "rms_norm(x)",
  3086. "rms_norm_back(x)",
  3087. "X*Y",
  3088. "X*Y",
  3089. "x*v",
  3090. "y-\\>view(x)",
  3091. "x-\\>y",
  3092. "cont(x)",
  3093. "reshape(x)",
  3094. "view(x)",
  3095. "permute(x)",
  3096. "transpose(x)",
  3097. "get_rows(x)",
  3098. "get_rows_back(x)",
  3099. "diag(x)",
  3100. "diag_mask_inf(x)",
  3101. "diag_mask_zero(x)",
  3102. "soft_max(x)",
  3103. "soft_max_back(x)",
  3104. "rope(x)",
  3105. "rope_back(x)",
  3106. "alibi(x)",
  3107. "clamp(x)",
  3108. "conv_1d_s1_ph(x)",
  3109. "conv_1d_s2_ph(x)",
  3110. "conv_2d_sk_p0(x)",
  3111. "flash_attn(x)",
  3112. "flash_ff(x)",
  3113. "flash_attn_back(x)",
  3114. "win_part(x)",
  3115. "win_unpart(x)",
  3116. "f(x)",
  3117. "f(x,y)",
  3118. "custom(x)",
  3119. "custom(x,y)",
  3120. "custom(x,y,z)",
  3121. "cross_entropy_loss(x,y)",
  3122. "cross_entropy_loss_back(x,y)",
  3123. };
  3124. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3125. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3126. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3127. //
  3128. // ggml context
  3129. //
  3130. struct ggml_context {
  3131. size_t mem_size;
  3132. void * mem_buffer;
  3133. bool mem_buffer_owned;
  3134. bool no_alloc;
  3135. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3136. int n_objects;
  3137. struct ggml_object * objects_begin;
  3138. struct ggml_object * objects_end;
  3139. struct ggml_scratch scratch;
  3140. struct ggml_scratch scratch_save;
  3141. };
  3142. struct ggml_context_container {
  3143. bool used;
  3144. struct ggml_context context;
  3145. };
  3146. //
  3147. // ggml state
  3148. //
  3149. struct ggml_state {
  3150. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3151. };
  3152. // global state
  3153. static struct ggml_state g_state;
  3154. static atomic_int g_state_barrier = 0;
  3155. // barrier via spin lock
  3156. inline static void ggml_critical_section_start(void) {
  3157. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3158. while (processing > 0) {
  3159. // wait for other threads to finish
  3160. atomic_fetch_sub(&g_state_barrier, 1);
  3161. sched_yield(); // TODO: reconsider this
  3162. processing = atomic_fetch_add(&g_state_barrier, 1);
  3163. }
  3164. }
  3165. // TODO: make this somehow automatically executed
  3166. // some sort of "sentry" mechanism
  3167. inline static void ggml_critical_section_end(void) {
  3168. atomic_fetch_sub(&g_state_barrier, 1);
  3169. }
  3170. ////////////////////////////////////////////////////////////////////////////////
  3171. void ggml_print_object(const struct ggml_object * obj) {
  3172. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3173. obj->offs, obj->size, (const void *) obj->next);
  3174. }
  3175. void ggml_print_objects(const struct ggml_context * ctx) {
  3176. struct ggml_object * obj = ctx->objects_begin;
  3177. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3178. while (obj != NULL) {
  3179. ggml_print_object(obj);
  3180. obj = obj->next;
  3181. }
  3182. GGML_PRINT("%s: --- end ---\n", __func__);
  3183. }
  3184. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3185. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3186. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3187. }
  3188. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3189. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3190. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3191. }
  3192. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3193. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3194. // this should handle cases where the tensor is not contiguous in memory
  3195. // probaby just:
  3196. //
  3197. // return tensor->ne[3]*tensor->nb[3]
  3198. //
  3199. // is enough, but just in case, adding the second part
  3200. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3201. }
  3202. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3203. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3204. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3205. }
  3206. int ggml_blck_size(enum ggml_type type) {
  3207. return GGML_BLCK_SIZE[type];
  3208. }
  3209. size_t ggml_type_size(enum ggml_type type) {
  3210. return GGML_TYPE_SIZE[type];
  3211. }
  3212. float ggml_type_sizef(enum ggml_type type) {
  3213. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3214. }
  3215. const char * ggml_type_name(enum ggml_type type) {
  3216. return GGML_TYPE_NAME[type];
  3217. }
  3218. const char * ggml_op_name(enum ggml_op op) {
  3219. return GGML_OP_NAME[op];
  3220. }
  3221. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3222. return GGML_TYPE_SIZE[tensor->type];
  3223. }
  3224. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3225. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3226. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3227. }
  3228. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3229. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3230. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3231. }
  3232. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3233. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3234. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3235. }
  3236. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3237. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3238. return
  3239. (t0->ne[0] == t1->ne[0]) &&
  3240. (t0->ne[2] == t1->ne[2]) &&
  3241. (t0->ne[3] == t1->ne[3]);
  3242. }
  3243. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3244. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3245. return
  3246. (t0->ne[1] == t1->ne[1]) &&
  3247. (t0->ne[2] == t1->ne[2]) &&
  3248. (t0->ne[3] == t1->ne[3]);
  3249. }
  3250. bool ggml_is_quantized(enum ggml_type type) {
  3251. return GGML_IS_QUANTIZED[type];
  3252. }
  3253. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3254. enum ggml_type wtype = GGML_TYPE_COUNT;
  3255. switch (ftype) {
  3256. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3257. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3258. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3259. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3260. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3261. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3262. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3263. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3264. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3265. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3266. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3267. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3268. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3269. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3270. }
  3271. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3272. return wtype;
  3273. }
  3274. size_t ggml_tensor_overhead(void) {
  3275. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3276. }
  3277. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3278. return tensor->nb[0] > tensor->nb[1];
  3279. }
  3280. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3281. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3282. return
  3283. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3284. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3285. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3286. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3287. }
  3288. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3289. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3290. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3291. }
  3292. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3293. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3294. return
  3295. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3296. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3297. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3298. }
  3299. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3300. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3301. return
  3302. (t0->ne[0] == t1->ne[0] ) &&
  3303. (t0->ne[1] == t1->ne[1] ) &&
  3304. (t0->ne[2] == t1->ne[2] ) &&
  3305. (t0->ne[3] == t1->ne[3] );
  3306. }
  3307. // check if t1 can be represented as a repeatition of t0
  3308. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3309. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3310. return
  3311. (t1->ne[0]%t0->ne[0] == 0) &&
  3312. (t1->ne[1]%t0->ne[1] == 0) &&
  3313. (t1->ne[2]%t0->ne[2] == 0) &&
  3314. (t1->ne[3]%t0->ne[3] == 0);
  3315. }
  3316. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3317. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3318. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3319. }
  3320. static inline int ggml_up32(int n) {
  3321. return (n + 31) & ~31;
  3322. }
  3323. //static inline int ggml_up64(int n) {
  3324. // return (n + 63) & ~63;
  3325. //}
  3326. static inline int ggml_up(int n, int m) {
  3327. // assert m is a power of 2
  3328. GGML_ASSERT((m & (m - 1)) == 0);
  3329. return (n + m - 1) & ~(m - 1);
  3330. }
  3331. // assert that pointer is aligned to GGML_MEM_ALIGN
  3332. #define ggml_assert_aligned(ptr) \
  3333. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3334. ////////////////////////////////////////////////////////////////////////////////
  3335. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3336. // make this function thread safe
  3337. ggml_critical_section_start();
  3338. static bool is_first_call = true;
  3339. if (is_first_call) {
  3340. // initialize time system (required on Windows)
  3341. ggml_time_init();
  3342. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3343. {
  3344. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3345. ggml_fp16_t ii;
  3346. for (int i = 0; i < (1 << 16); ++i) {
  3347. uint16_t ui = i;
  3348. memcpy(&ii, &ui, sizeof(ii));
  3349. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3350. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3351. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3352. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3353. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3354. }
  3355. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3356. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3357. }
  3358. // initialize g_state
  3359. {
  3360. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3361. g_state = (struct ggml_state) {
  3362. /*.contexts =*/ { { 0 } },
  3363. };
  3364. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3365. g_state.contexts[i].used = false;
  3366. }
  3367. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3368. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3369. }
  3370. #if defined(GGML_USE_CUBLAS)
  3371. ggml_init_cublas();
  3372. #elif defined(GGML_USE_CLBLAST)
  3373. ggml_cl_init();
  3374. #endif
  3375. is_first_call = false;
  3376. }
  3377. // find non-used context in g_state
  3378. struct ggml_context * ctx = NULL;
  3379. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3380. if (!g_state.contexts[i].used) {
  3381. g_state.contexts[i].used = true;
  3382. ctx = &g_state.contexts[i].context;
  3383. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3384. break;
  3385. }
  3386. }
  3387. if (ctx == NULL) {
  3388. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3389. ggml_critical_section_end();
  3390. return NULL;
  3391. }
  3392. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3393. *ctx = (struct ggml_context) {
  3394. /*.mem_size =*/ mem_size,
  3395. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3396. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3397. /*.no_alloc =*/ params.no_alloc,
  3398. /*.no_alloc_save =*/ params.no_alloc,
  3399. /*.n_objects =*/ 0,
  3400. /*.objects_begin =*/ NULL,
  3401. /*.objects_end =*/ NULL,
  3402. /*.scratch =*/ { 0, 0, NULL, },
  3403. /*.scratch_save =*/ { 0, 0, NULL, },
  3404. };
  3405. GGML_ASSERT(ctx->mem_buffer != NULL);
  3406. ggml_assert_aligned(ctx->mem_buffer);
  3407. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3408. ggml_critical_section_end();
  3409. return ctx;
  3410. }
  3411. void ggml_free(struct ggml_context * ctx) {
  3412. // make this function thread safe
  3413. ggml_critical_section_start();
  3414. bool found = false;
  3415. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3416. if (&g_state.contexts[i].context == ctx) {
  3417. g_state.contexts[i].used = false;
  3418. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3419. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3420. if (ctx->mem_buffer_owned) {
  3421. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3422. }
  3423. found = true;
  3424. break;
  3425. }
  3426. }
  3427. if (!found) {
  3428. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3429. }
  3430. ggml_critical_section_end();
  3431. }
  3432. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3433. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3434. }
  3435. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3436. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3437. ctx->scratch = scratch;
  3438. return result;
  3439. }
  3440. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3441. ctx->no_alloc = no_alloc;
  3442. }
  3443. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3444. return ctx->mem_buffer;
  3445. }
  3446. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3447. return ctx->mem_size;
  3448. }
  3449. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3450. size_t max_size = 0;
  3451. struct ggml_object * obj = ctx->objects_begin;
  3452. while (obj != NULL) {
  3453. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3454. const size_t size = ggml_nbytes(tensor);
  3455. if (max_size < size) {
  3456. max_size = size;
  3457. }
  3458. obj = obj->next;
  3459. }
  3460. return max_size;
  3461. }
  3462. // IMPORTANT:
  3463. // when creating "opt" tensors, always save and load the scratch buffer
  3464. // this is an error prone process, but it is necessary to support inplace
  3465. // operators when using scratch buffers
  3466. // TODO: implement a better way
  3467. void ggml_scratch_save(struct ggml_context * ctx) {
  3468. // this is needed to allow opt tensors to store their data
  3469. // TODO: again, need to find a better way
  3470. ctx->no_alloc_save = ctx->no_alloc;
  3471. ctx->no_alloc = false;
  3472. ctx->scratch_save = ctx->scratch;
  3473. ctx->scratch.data = NULL;
  3474. }
  3475. void ggml_scratch_load(struct ggml_context * ctx) {
  3476. ctx->no_alloc = ctx->no_alloc_save;
  3477. ctx->scratch = ctx->scratch_save;
  3478. }
  3479. ////////////////////////////////////////////////////////////////////////////////
  3480. struct ggml_tensor * ggml_new_tensor_impl(
  3481. struct ggml_context * ctx,
  3482. enum ggml_type type,
  3483. int n_dims,
  3484. const int64_t* ne,
  3485. void* data) {
  3486. // always insert objects at the end of the context's memory pool
  3487. struct ggml_object * obj_cur = ctx->objects_end;
  3488. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3489. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3490. const size_t cur_end = cur_offs + cur_size;
  3491. size_t size_needed = 0;
  3492. if (data == NULL && !ctx->no_alloc) {
  3493. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3494. for (int i = 1; i < n_dims; i++) {
  3495. size_needed *= ne[i];
  3496. }
  3497. // align to GGML_MEM_ALIGN
  3498. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3499. }
  3500. char * const mem_buffer = ctx->mem_buffer;
  3501. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3502. if (ctx->scratch.data == NULL || data != NULL) {
  3503. size_needed += GGML_TENSOR_SIZE;
  3504. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3505. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3506. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3507. assert(false);
  3508. return NULL;
  3509. }
  3510. *obj_new = (struct ggml_object) {
  3511. .offs = cur_end + GGML_OBJECT_SIZE,
  3512. .size = size_needed,
  3513. .next = NULL,
  3514. };
  3515. } else {
  3516. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3517. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3518. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3519. assert(false);
  3520. return NULL;
  3521. }
  3522. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3523. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3524. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3525. assert(false);
  3526. return NULL;
  3527. }
  3528. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3529. *obj_new = (struct ggml_object) {
  3530. .offs = cur_end + GGML_OBJECT_SIZE,
  3531. .size = GGML_TENSOR_SIZE,
  3532. .next = NULL,
  3533. };
  3534. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3535. ctx->scratch.offs += size_needed;
  3536. }
  3537. if (obj_cur != NULL) {
  3538. obj_cur->next = obj_new;
  3539. } else {
  3540. // this is the first object in this context
  3541. ctx->objects_begin = obj_new;
  3542. }
  3543. ctx->objects_end = obj_new;
  3544. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3545. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3546. ggml_assert_aligned(result);
  3547. *result = (struct ggml_tensor) {
  3548. /*.type =*/ type,
  3549. /*.backend =*/ GGML_BACKEND_CPU,
  3550. /*.n_dims =*/ n_dims,
  3551. /*.ne =*/ { 1, 1, 1, 1 },
  3552. /*.nb =*/ { 0, 0, 0, 0 },
  3553. /*.op =*/ GGML_OP_NONE,
  3554. /*.is_param =*/ false,
  3555. /*.grad =*/ NULL,
  3556. /*.src0 =*/ NULL,
  3557. /*.src1 =*/ NULL,
  3558. /*.opt =*/ { NULL },
  3559. /*.n_tasks =*/ 0,
  3560. /*.perf_runs =*/ 0,
  3561. /*.perf_cycles =*/ 0,
  3562. /*.perf_time_us =*/ 0,
  3563. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3564. /*.name =*/ { 0 },
  3565. /*.extra =*/ NULL,
  3566. /*.pad =*/ { 0 },
  3567. };
  3568. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3569. //ggml_assert_aligned(result->data);
  3570. for (int i = 0; i < n_dims; i++) {
  3571. result->ne[i] = ne[i];
  3572. }
  3573. result->nb[0] = GGML_TYPE_SIZE[type];
  3574. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3575. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3576. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3577. }
  3578. ctx->n_objects++;
  3579. return result;
  3580. }
  3581. struct ggml_tensor * ggml_new_tensor(
  3582. struct ggml_context * ctx,
  3583. enum ggml_type type,
  3584. int n_dims,
  3585. const int64_t * ne) {
  3586. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3587. }
  3588. struct ggml_tensor * ggml_new_tensor_1d(
  3589. struct ggml_context * ctx,
  3590. enum ggml_type type,
  3591. int64_t ne0) {
  3592. return ggml_new_tensor(ctx, type, 1, &ne0);
  3593. }
  3594. struct ggml_tensor * ggml_new_tensor_2d(
  3595. struct ggml_context * ctx,
  3596. enum ggml_type type,
  3597. int64_t ne0,
  3598. int64_t ne1) {
  3599. const int64_t ne[2] = { ne0, ne1 };
  3600. return ggml_new_tensor(ctx, type, 2, ne);
  3601. }
  3602. struct ggml_tensor * ggml_new_tensor_3d(
  3603. struct ggml_context * ctx,
  3604. enum ggml_type type,
  3605. int64_t ne0,
  3606. int64_t ne1,
  3607. int64_t ne2) {
  3608. const int64_t ne[3] = { ne0, ne1, ne2 };
  3609. return ggml_new_tensor(ctx, type, 3, ne);
  3610. }
  3611. struct ggml_tensor * ggml_new_tensor_4d(
  3612. struct ggml_context * ctx,
  3613. enum ggml_type type,
  3614. int64_t ne0,
  3615. int64_t ne1,
  3616. int64_t ne2,
  3617. int64_t ne3) {
  3618. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3619. return ggml_new_tensor(ctx, type, 4, ne);
  3620. }
  3621. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3622. ggml_scratch_save(ctx);
  3623. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3624. ggml_scratch_load(ctx);
  3625. ggml_set_i32(result, value);
  3626. return result;
  3627. }
  3628. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3629. ggml_scratch_save(ctx);
  3630. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3631. ggml_scratch_load(ctx);
  3632. ggml_set_f32(result, value);
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3636. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3637. }
  3638. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3639. memset(tensor->data, 0, ggml_nbytes(tensor));
  3640. return tensor;
  3641. }
  3642. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3643. const int n = ggml_nrows(tensor);
  3644. const int nc = tensor->ne[0];
  3645. const size_t n1 = tensor->nb[1];
  3646. char * const data = tensor->data;
  3647. switch (tensor->type) {
  3648. case GGML_TYPE_I8:
  3649. {
  3650. assert(tensor->nb[0] == sizeof(int8_t));
  3651. for (int i = 0; i < n; i++) {
  3652. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3653. }
  3654. } break;
  3655. case GGML_TYPE_I16:
  3656. {
  3657. assert(tensor->nb[0] == sizeof(int16_t));
  3658. for (int i = 0; i < n; i++) {
  3659. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3660. }
  3661. } break;
  3662. case GGML_TYPE_I32:
  3663. {
  3664. assert(tensor->nb[0] == sizeof(int32_t));
  3665. for (int i = 0; i < n; i++) {
  3666. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3667. }
  3668. } break;
  3669. case GGML_TYPE_F16:
  3670. {
  3671. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3672. for (int i = 0; i < n; i++) {
  3673. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3674. }
  3675. } break;
  3676. case GGML_TYPE_F32:
  3677. {
  3678. assert(tensor->nb[0] == sizeof(float));
  3679. for (int i = 0; i < n; i++) {
  3680. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3681. }
  3682. } break;
  3683. default:
  3684. {
  3685. GGML_ASSERT(false);
  3686. } break;
  3687. }
  3688. return tensor;
  3689. }
  3690. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3691. const int n = ggml_nrows(tensor);
  3692. const int nc = tensor->ne[0];
  3693. const size_t n1 = tensor->nb[1];
  3694. char * const data = tensor->data;
  3695. switch (tensor->type) {
  3696. case GGML_TYPE_I8:
  3697. {
  3698. assert(tensor->nb[0] == sizeof(int8_t));
  3699. for (int i = 0; i < n; i++) {
  3700. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3701. }
  3702. } break;
  3703. case GGML_TYPE_I16:
  3704. {
  3705. assert(tensor->nb[0] == sizeof(int16_t));
  3706. for (int i = 0; i < n; i++) {
  3707. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3708. }
  3709. } break;
  3710. case GGML_TYPE_I32:
  3711. {
  3712. assert(tensor->nb[0] == sizeof(int32_t));
  3713. for (int i = 0; i < n; i++) {
  3714. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3715. }
  3716. } break;
  3717. case GGML_TYPE_F16:
  3718. {
  3719. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3720. for (int i = 0; i < n; i++) {
  3721. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3722. }
  3723. } break;
  3724. case GGML_TYPE_F32:
  3725. {
  3726. assert(tensor->nb[0] == sizeof(float));
  3727. for (int i = 0; i < n; i++) {
  3728. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3729. }
  3730. } break;
  3731. default:
  3732. {
  3733. GGML_ASSERT(false);
  3734. } break;
  3735. }
  3736. return tensor;
  3737. }
  3738. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3739. switch (tensor->type) {
  3740. case GGML_TYPE_I8:
  3741. {
  3742. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3743. return ((int8_t *)(tensor->data))[i];
  3744. } break;
  3745. case GGML_TYPE_I16:
  3746. {
  3747. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3748. return ((int16_t *)(tensor->data))[i];
  3749. } break;
  3750. case GGML_TYPE_I32:
  3751. {
  3752. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3753. return ((int32_t *)(tensor->data))[i];
  3754. } break;
  3755. case GGML_TYPE_F16:
  3756. {
  3757. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3758. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3759. } break;
  3760. case GGML_TYPE_F32:
  3761. {
  3762. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3763. return ((float *)(tensor->data))[i];
  3764. } break;
  3765. default:
  3766. {
  3767. GGML_ASSERT(false);
  3768. } break;
  3769. }
  3770. return 0.0f;
  3771. }
  3772. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3773. switch (tensor->type) {
  3774. case GGML_TYPE_I8:
  3775. {
  3776. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3777. ((int8_t *)(tensor->data))[i] = value;
  3778. } break;
  3779. case GGML_TYPE_I16:
  3780. {
  3781. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3782. ((int16_t *)(tensor->data))[i] = value;
  3783. } break;
  3784. case GGML_TYPE_I32:
  3785. {
  3786. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3787. ((int32_t *)(tensor->data))[i] = value;
  3788. } break;
  3789. case GGML_TYPE_F16:
  3790. {
  3791. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3792. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3793. } break;
  3794. case GGML_TYPE_F32:
  3795. {
  3796. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3797. ((float *)(tensor->data))[i] = value;
  3798. } break;
  3799. default:
  3800. {
  3801. GGML_ASSERT(false);
  3802. } break;
  3803. }
  3804. }
  3805. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3806. switch (tensor->type) {
  3807. case GGML_TYPE_I8:
  3808. {
  3809. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3810. return ((int8_t *)(tensor->data))[i];
  3811. } break;
  3812. case GGML_TYPE_I16:
  3813. {
  3814. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3815. return ((int16_t *)(tensor->data))[i];
  3816. } break;
  3817. case GGML_TYPE_I32:
  3818. {
  3819. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3820. return ((int32_t *)(tensor->data))[i];
  3821. } break;
  3822. case GGML_TYPE_F16:
  3823. {
  3824. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3825. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3826. } break;
  3827. case GGML_TYPE_F32:
  3828. {
  3829. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3830. return ((float *)(tensor->data))[i];
  3831. } break;
  3832. default:
  3833. {
  3834. GGML_ASSERT(false);
  3835. } break;
  3836. }
  3837. return 0.0f;
  3838. }
  3839. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3840. switch (tensor->type) {
  3841. case GGML_TYPE_I8:
  3842. {
  3843. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3844. ((int8_t *)(tensor->data))[i] = value;
  3845. } break;
  3846. case GGML_TYPE_I16:
  3847. {
  3848. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3849. ((int16_t *)(tensor->data))[i] = value;
  3850. } break;
  3851. case GGML_TYPE_I32:
  3852. {
  3853. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3854. ((int32_t *)(tensor->data))[i] = value;
  3855. } break;
  3856. case GGML_TYPE_F16:
  3857. {
  3858. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3859. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3860. } break;
  3861. case GGML_TYPE_F32:
  3862. {
  3863. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3864. ((float *)(tensor->data))[i] = value;
  3865. } break;
  3866. default:
  3867. {
  3868. GGML_ASSERT(false);
  3869. } break;
  3870. }
  3871. }
  3872. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3873. return tensor->data;
  3874. }
  3875. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3876. assert(tensor->type == GGML_TYPE_F32);
  3877. return (float *)(tensor->data);
  3878. }
  3879. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3880. return tensor->name;
  3881. }
  3882. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3883. strncpy(tensor->name, name, sizeof(tensor->name));
  3884. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3885. return tensor;
  3886. }
  3887. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3888. va_list args;
  3889. va_start(args, fmt);
  3890. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3891. va_end(args);
  3892. return tensor;
  3893. }
  3894. struct ggml_tensor * ggml_view_tensor(
  3895. struct ggml_context * ctx,
  3896. const struct ggml_tensor * src) {
  3897. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3898. ggml_format_name(result, "%s (view)", src->name);
  3899. result->nb[0] = src->nb[0];
  3900. result->nb[1] = src->nb[1];
  3901. result->nb[2] = src->nb[2];
  3902. result->nb[3] = src->nb[3];
  3903. return result;
  3904. }
  3905. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3906. struct ggml_object * obj = ctx->objects_begin;
  3907. char * const mem_buffer = ctx->mem_buffer;
  3908. while (obj != NULL) {
  3909. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3910. if (strcmp(cur->name, name) == 0) {
  3911. return cur;
  3912. }
  3913. obj = obj->next;
  3914. }
  3915. return NULL;
  3916. }
  3917. ////////////////////////////////////////////////////////////////////////////////
  3918. // ggml_dup
  3919. struct ggml_tensor * ggml_dup_impl(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. bool inplace) {
  3923. bool is_node = false;
  3924. if (!inplace && (a->grad)) {
  3925. is_node = true;
  3926. }
  3927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3928. result->op = GGML_OP_DUP;
  3929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3930. result->src0 = a;
  3931. result->src1 = NULL;
  3932. return result;
  3933. }
  3934. struct ggml_tensor * ggml_dup(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a) {
  3937. return ggml_dup_impl(ctx, a, false);
  3938. }
  3939. struct ggml_tensor * ggml_dup_inplace(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a) {
  3942. return ggml_dup_impl(ctx, a, true);
  3943. }
  3944. // ggml_add
  3945. struct ggml_tensor * ggml_add_impl(
  3946. struct ggml_context * ctx,
  3947. struct ggml_tensor * a,
  3948. struct ggml_tensor * b,
  3949. bool inplace) {
  3950. GGML_ASSERT(ggml_are_same_shape(a, b));
  3951. bool is_node = false;
  3952. if (a->grad || b->grad) {
  3953. is_node = true;
  3954. }
  3955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3956. result->op = GGML_OP_ADD;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src0 = a;
  3959. result->src1 = b;
  3960. return result;
  3961. }
  3962. struct ggml_tensor * ggml_add(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. return ggml_add_impl(ctx, a, b, false);
  3967. }
  3968. struct ggml_tensor * ggml_add_inplace(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b) {
  3972. return ggml_add_impl(ctx, a, b, true);
  3973. }
  3974. // ggml_add1
  3975. struct ggml_tensor * ggml_add1_impl(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b,
  3979. bool inplace) {
  3980. GGML_ASSERT(ggml_is_scalar(b));
  3981. GGML_ASSERT(ggml_is_padded_1d(a));
  3982. bool is_node = false;
  3983. if (a->grad || b->grad) {
  3984. is_node = true;
  3985. }
  3986. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3987. result->op = GGML_OP_ADD1;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src0 = a;
  3990. result->src1 = b;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_add1(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. struct ggml_tensor * b) {
  3997. return ggml_add1_impl(ctx, a, b, false);
  3998. }
  3999. struct ggml_tensor * ggml_add1_inplace(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. struct ggml_tensor * b) {
  4003. return ggml_add1_impl(ctx, a, b, true);
  4004. }
  4005. // ggml_acc
  4006. struct ggml_tensor * ggml_acc_impl(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. struct ggml_tensor * b,
  4010. size_t nb1,
  4011. size_t nb2,
  4012. size_t nb3,
  4013. size_t offset,
  4014. bool inplace) {
  4015. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4016. GGML_ASSERT(ggml_is_contiguous(a));
  4017. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4018. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4019. bool is_node = false;
  4020. if (!inplace && (a->grad || b->grad)) {
  4021. is_node = true;
  4022. }
  4023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4024. ggml_scratch_save(ctx);
  4025. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4026. ((int32_t *) c->data)[0] = nb1;
  4027. ((int32_t *) c->data)[1] = nb2;
  4028. ((int32_t *) c->data)[2] = nb3;
  4029. ((int32_t *) c->data)[3] = offset;
  4030. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4031. ggml_scratch_load(ctx);
  4032. result->op = GGML_OP_ACC;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src0 = a;
  4035. result->src1 = b;
  4036. result->opt[0] = c;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_acc(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b,
  4043. size_t nb1,
  4044. size_t nb2,
  4045. size_t nb3,
  4046. size_t offset) {
  4047. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4048. }
  4049. struct ggml_tensor * ggml_acc_inplace(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. struct ggml_tensor * b,
  4053. size_t nb1,
  4054. size_t nb2,
  4055. size_t nb3,
  4056. size_t offset) {
  4057. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4058. }
  4059. // ggml_sub
  4060. struct ggml_tensor * ggml_sub_impl(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. struct ggml_tensor * b,
  4064. bool inplace) {
  4065. GGML_ASSERT(ggml_are_same_shape(a, b));
  4066. bool is_node = false;
  4067. if (!inplace && (a->grad || b->grad)) {
  4068. is_node = true;
  4069. }
  4070. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4071. result->op = GGML_OP_SUB;
  4072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4073. result->src0 = a;
  4074. result->src1 = b;
  4075. return result;
  4076. }
  4077. struct ggml_tensor * ggml_sub(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. struct ggml_tensor * b) {
  4081. return ggml_sub_impl(ctx, a, b, false);
  4082. }
  4083. struct ggml_tensor * ggml_sub_inplace(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a,
  4086. struct ggml_tensor * b) {
  4087. return ggml_sub_impl(ctx, a, b, true);
  4088. }
  4089. // ggml_mul
  4090. struct ggml_tensor * ggml_mul_impl(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a,
  4093. struct ggml_tensor * b,
  4094. bool inplace) {
  4095. // TODO: support less-strict constraint
  4096. // GGML_ASSERT(ggml_can_repeat(b, a));
  4097. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4098. bool is_node = false;
  4099. if (!inplace && (a->grad || b->grad)) {
  4100. // TODO: support backward pass for broadcasting
  4101. GGML_ASSERT(ggml_are_same_shape(a, b));
  4102. is_node = true;
  4103. }
  4104. if (inplace) {
  4105. GGML_ASSERT(is_node == false);
  4106. }
  4107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. result->op = GGML_OP_MUL;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src0 = a;
  4111. result->src1 = b;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_mul(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b) {
  4118. return ggml_mul_impl(ctx, a, b, false);
  4119. }
  4120. struct ggml_tensor * ggml_mul_inplace(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a,
  4123. struct ggml_tensor * b) {
  4124. return ggml_mul_impl(ctx, a, b, true);
  4125. }
  4126. // ggml_div
  4127. struct ggml_tensor * ggml_div_impl(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. struct ggml_tensor * b,
  4131. bool inplace) {
  4132. GGML_ASSERT(ggml_are_same_shape(a, b));
  4133. bool is_node = false;
  4134. if (!inplace && (a->grad || b->grad)) {
  4135. is_node = true;
  4136. }
  4137. if (inplace) {
  4138. GGML_ASSERT(is_node == false);
  4139. }
  4140. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4141. result->op = GGML_OP_DIV;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src0 = a;
  4144. result->src1 = b;
  4145. return result;
  4146. }
  4147. struct ggml_tensor * ggml_div(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. struct ggml_tensor * b) {
  4151. return ggml_div_impl(ctx, a, b, false);
  4152. }
  4153. struct ggml_tensor * ggml_div_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. struct ggml_tensor * b) {
  4157. return ggml_div_impl(ctx, a, b, true);
  4158. }
  4159. // ggml_sqr
  4160. struct ggml_tensor * ggml_sqr_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. bool inplace) {
  4164. bool is_node = false;
  4165. if (!inplace && (a->grad)) {
  4166. is_node = true;
  4167. }
  4168. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4169. result->op = GGML_OP_SQR;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src0 = a;
  4172. result->src1 = NULL;
  4173. return result;
  4174. }
  4175. struct ggml_tensor * ggml_sqr(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_sqr_impl(ctx, a, false);
  4179. }
  4180. struct ggml_tensor * ggml_sqr_inplace(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a) {
  4183. return ggml_sqr_impl(ctx, a, true);
  4184. }
  4185. // ggml_sqrt
  4186. struct ggml_tensor * ggml_sqrt_impl(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. bool inplace) {
  4190. bool is_node = false;
  4191. if (!inplace && (a->grad)) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. result->op = GGML_OP_SQRT;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src0 = a;
  4198. result->src1 = NULL;
  4199. return result;
  4200. }
  4201. struct ggml_tensor * ggml_sqrt(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_sqrt_impl(ctx, a, false);
  4205. }
  4206. struct ggml_tensor * ggml_sqrt_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. return ggml_sqrt_impl(ctx, a, true);
  4210. }
  4211. // ggml_log
  4212. struct ggml_tensor * ggml_log_impl(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. bool inplace) {
  4216. bool is_node = false;
  4217. if (!inplace && (a->grad)) {
  4218. is_node = true;
  4219. }
  4220. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4221. result->op = GGML_OP_LOG;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src0 = a;
  4224. result->src1 = NULL;
  4225. return result;
  4226. }
  4227. struct ggml_tensor * ggml_log(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a) {
  4230. return ggml_log_impl(ctx, a, false);
  4231. }
  4232. struct ggml_tensor * ggml_log_inplace(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_log_impl(ctx, a, true);
  4236. }
  4237. // ggml_sum
  4238. struct ggml_tensor * ggml_sum(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. bool is_node = false;
  4242. if (a->grad) {
  4243. is_node = true;
  4244. }
  4245. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4246. result->op = GGML_OP_SUM;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src0 = a;
  4249. result->src1 = NULL;
  4250. return result;
  4251. }
  4252. // ggml_sum_rows
  4253. struct ggml_tensor * ggml_sum_rows(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a) {
  4256. bool is_node = false;
  4257. if (a->grad) {
  4258. is_node = true;
  4259. }
  4260. int64_t ne[4] = {1,1,1,1};
  4261. for (int i=1; i<a->n_dims; ++i) {
  4262. ne[i] = a->ne[i];
  4263. }
  4264. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4265. result->op = GGML_OP_SUM_ROWS;
  4266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4267. result->src0 = a;
  4268. result->src1 = NULL;
  4269. return result;
  4270. }
  4271. // ggml_mean
  4272. struct ggml_tensor * ggml_mean(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. bool is_node = false;
  4276. if (a->grad) {
  4277. GGML_ASSERT(false); // TODO: implement
  4278. is_node = true;
  4279. }
  4280. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4281. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4282. result->op = GGML_OP_MEAN;
  4283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4284. result->src0 = a;
  4285. result->src1 = NULL;
  4286. return result;
  4287. }
  4288. // ggml_repeat
  4289. struct ggml_tensor * ggml_repeat(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b) {
  4293. GGML_ASSERT(ggml_can_repeat(a, b));
  4294. bool is_node = false;
  4295. if (a->grad) {
  4296. is_node = true;
  4297. }
  4298. if (ggml_are_same_shape(a, b) && !is_node) {
  4299. return a;
  4300. }
  4301. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4302. result->op = GGML_OP_REPEAT;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src0 = a;
  4305. result->src1 = b;
  4306. return result;
  4307. }
  4308. // ggml_repeat_back
  4309. struct ggml_tensor * ggml_repeat_back(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. GGML_ASSERT(ggml_can_repeat(b, a));
  4314. bool is_node = false;
  4315. if (a->grad) {
  4316. is_node = true;
  4317. }
  4318. if (ggml_are_same_shape(a, b) && !is_node) {
  4319. return a;
  4320. }
  4321. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4322. result->op = GGML_OP_REPEAT_BACK;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src0 = a;
  4325. result->src1 = b;
  4326. return result;
  4327. }
  4328. // ggml_abs
  4329. struct ggml_tensor * ggml_abs_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. bool inplace) {
  4333. bool is_node = false;
  4334. if (!inplace && (a->grad)) {
  4335. is_node = true;
  4336. }
  4337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. result->op = GGML_OP_ABS;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src0 = a;
  4341. result->src1 = NULL;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_abs(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_abs_impl(ctx, a, false);
  4348. }
  4349. struct ggml_tensor * ggml_abs_inplace(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a) {
  4352. return ggml_abs_impl(ctx, a, true);
  4353. }
  4354. // ggml_sgn
  4355. struct ggml_tensor * ggml_sgn_impl(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. bool inplace) {
  4359. bool is_node = false;
  4360. if (!inplace && (a->grad)) {
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. result->op = GGML_OP_SGN;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src0 = a;
  4367. result->src1 = NULL;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_sgn(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a) {
  4373. return ggml_sgn_impl(ctx, a, false);
  4374. }
  4375. struct ggml_tensor * ggml_sgn_inplace(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a) {
  4378. return ggml_sgn_impl(ctx, a, true);
  4379. }
  4380. // ggml_neg
  4381. struct ggml_tensor * ggml_neg_impl(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. bool inplace) {
  4385. bool is_node = false;
  4386. if (!inplace && (a->grad)) {
  4387. is_node = true;
  4388. }
  4389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4390. result->op = GGML_OP_NEG;
  4391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4392. result->src0 = a;
  4393. result->src1 = NULL;
  4394. return result;
  4395. }
  4396. struct ggml_tensor * ggml_neg(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a) {
  4399. return ggml_neg_impl(ctx, a, false);
  4400. }
  4401. struct ggml_tensor * ggml_neg_inplace(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_neg_impl(ctx, a, true);
  4405. }
  4406. // ggml_step
  4407. struct ggml_tensor * ggml_step_impl(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. bool inplace) {
  4411. bool is_node = false;
  4412. if (!inplace && (a->grad)) {
  4413. is_node = true;
  4414. }
  4415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4416. result->op = GGML_OP_STEP;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src0 = a;
  4419. result->src1 = NULL;
  4420. return result;
  4421. }
  4422. struct ggml_tensor * ggml_step(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a) {
  4425. return ggml_step_impl(ctx, a, false);
  4426. }
  4427. struct ggml_tensor * ggml_step_inplace(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a) {
  4430. return ggml_step_impl(ctx, a, true);
  4431. }
  4432. // ggml_relu
  4433. struct ggml_tensor * ggml_relu_impl(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. bool inplace) {
  4437. bool is_node = false;
  4438. if (!inplace && (a->grad)) {
  4439. is_node = true;
  4440. }
  4441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4442. result->op = GGML_OP_RELU;
  4443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4444. result->src0 = a;
  4445. result->src1 = NULL;
  4446. return result;
  4447. }
  4448. struct ggml_tensor * ggml_relu(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a) {
  4451. return ggml_relu_impl(ctx, a, false);
  4452. }
  4453. struct ggml_tensor * ggml_relu_inplace(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a) {
  4456. return ggml_relu_impl(ctx, a, true);
  4457. }
  4458. // ggml_gelu
  4459. struct ggml_tensor * ggml_gelu_impl(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. bool inplace) {
  4463. bool is_node = false;
  4464. if (!inplace && (a->grad)) {
  4465. is_node = true;
  4466. }
  4467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4468. result->op = GGML_OP_GELU;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src0 = a;
  4471. result->src1 = NULL;
  4472. return result;
  4473. }
  4474. struct ggml_tensor * ggml_gelu(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a) {
  4477. return ggml_gelu_impl(ctx, a, false);
  4478. }
  4479. struct ggml_tensor * ggml_gelu_inplace(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a) {
  4482. return ggml_gelu_impl(ctx, a, true);
  4483. }
  4484. // ggml_gelu_quick
  4485. struct ggml_tensor * ggml_gelu_quick_impl(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. bool inplace) {
  4489. bool is_node = false;
  4490. if (!inplace && (a->grad)) {
  4491. is_node = true;
  4492. }
  4493. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4494. result->op = GGML_OP_GELU_QUICK;
  4495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4496. result->src0 = a;
  4497. result->src1 = NULL;
  4498. return result;
  4499. }
  4500. struct ggml_tensor * ggml_gelu_quick(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a) {
  4503. return ggml_gelu_quick_impl(ctx, a, false);
  4504. }
  4505. struct ggml_tensor * ggml_gelu_quick_inplace(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a) {
  4508. return ggml_gelu_quick_impl(ctx, a, true);
  4509. }
  4510. // ggml_silu
  4511. struct ggml_tensor * ggml_silu_impl(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. bool inplace) {
  4515. bool is_node = false;
  4516. if (!inplace && (a->grad)) {
  4517. is_node = true;
  4518. }
  4519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4520. result->op = GGML_OP_SILU;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src0 = a;
  4523. result->src1 = NULL;
  4524. return result;
  4525. }
  4526. struct ggml_tensor * ggml_silu(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a) {
  4529. return ggml_silu_impl(ctx, a, false);
  4530. }
  4531. struct ggml_tensor * ggml_silu_inplace(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. return ggml_silu_impl(ctx, a, true);
  4535. }
  4536. // ggml_silu_back
  4537. struct ggml_tensor * ggml_silu_back(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b) {
  4541. bool is_node = false;
  4542. if (a->grad || b->grad) {
  4543. // TODO: implement backward
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4547. result->op = GGML_OP_SILU_BACK;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src0 = a;
  4550. result->src1 = b;
  4551. return result;
  4552. }
  4553. // ggml_norm
  4554. struct ggml_tensor * ggml_norm_impl(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. bool inplace) {
  4558. bool is_node = false;
  4559. if (!inplace && (a->grad)) {
  4560. GGML_ASSERT(false); // TODO: implement backward
  4561. is_node = true;
  4562. }
  4563. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4564. result->op = GGML_OP_NORM;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src0 = a;
  4567. result->src1 = NULL; // TODO: maybe store epsilon here?
  4568. return result;
  4569. }
  4570. struct ggml_tensor * ggml_norm(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a) {
  4573. return ggml_norm_impl(ctx, a, false);
  4574. }
  4575. struct ggml_tensor * ggml_norm_inplace(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_norm_impl(ctx, a, true);
  4579. }
  4580. struct ggml_tensor * ggml_rms_norm_impl(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a,
  4583. bool inplace) {
  4584. bool is_node = false;
  4585. if (!inplace && (a->grad)) {
  4586. is_node = true;
  4587. }
  4588. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4589. result->op = GGML_OP_RMS_NORM;
  4590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4591. result->src0 = a;
  4592. result->src1 = NULL; // TODO: maybe store epsilon here?
  4593. return result;
  4594. }
  4595. struct ggml_tensor * ggml_rms_norm(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_rms_norm_impl(ctx, a, false);
  4599. }
  4600. struct ggml_tensor * ggml_rms_norm_inplace(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_rms_norm_impl(ctx, a, true);
  4604. }
  4605. struct ggml_tensor * ggml_rms_norm_back(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4615. result->op = GGML_OP_RMS_NORM_BACK;
  4616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4617. result->src0 = a;
  4618. result->src1 = b;
  4619. return result;
  4620. }
  4621. // ggml_mul_mat
  4622. struct ggml_tensor * ggml_mul_mat(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. struct ggml_tensor * b) {
  4626. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4627. GGML_ASSERT(!ggml_is_transposed(a));
  4628. bool is_node = false;
  4629. if (a->grad || b->grad) {
  4630. is_node = true;
  4631. }
  4632. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4633. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4634. result->op = GGML_OP_MUL_MAT;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src0 = a;
  4637. result->src1 = b;
  4638. return result;
  4639. }
  4640. // ggml_out_prod
  4641. struct ggml_tensor * ggml_out_prod(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b) {
  4645. GGML_ASSERT(ggml_can_out_prod(a, b));
  4646. GGML_ASSERT(!ggml_is_transposed(a));
  4647. bool is_node = false;
  4648. if (a->grad || b->grad) {
  4649. is_node = true;
  4650. }
  4651. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4652. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4653. result->op = GGML_OP_OUT_PROD;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src0 = a;
  4656. result->src1 = b;
  4657. return result;
  4658. }
  4659. // ggml_scale
  4660. struct ggml_tensor * ggml_scale_impl(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. struct ggml_tensor * b,
  4664. bool inplace) {
  4665. GGML_ASSERT(ggml_is_scalar(b));
  4666. GGML_ASSERT(ggml_is_padded_1d(a));
  4667. bool is_node = false;
  4668. if (a->grad || b->grad) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4672. result->op = GGML_OP_SCALE;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src0 = a;
  4675. result->src1 = b;
  4676. return result;
  4677. }
  4678. struct ggml_tensor * ggml_scale(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. struct ggml_tensor * b) {
  4682. return ggml_scale_impl(ctx, a, b, false);
  4683. }
  4684. struct ggml_tensor * ggml_scale_inplace(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a,
  4687. struct ggml_tensor * b) {
  4688. return ggml_scale_impl(ctx, a, b, true);
  4689. }
  4690. // ggml_set
  4691. struct ggml_tensor * ggml_set_impl(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. struct ggml_tensor * b,
  4695. size_t nb1,
  4696. size_t nb2,
  4697. size_t nb3,
  4698. size_t offset,
  4699. bool inplace) {
  4700. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4701. bool is_node = false;
  4702. if (a->grad || b->grad) {
  4703. is_node = true;
  4704. }
  4705. // make a view of the destination
  4706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4707. ggml_scratch_save(ctx);
  4708. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4709. (( int32_t * ) c->data)[0] = nb1;
  4710. (( int32_t * ) c->data)[1] = nb2;
  4711. (( int32_t * ) c->data)[2] = nb3;
  4712. (( int32_t * ) c->data)[3] = offset;
  4713. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4714. ggml_scratch_load(ctx);
  4715. result->op = GGML_OP_SET;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src0 = a;
  4718. result->src1 = b;
  4719. result->opt[0] = c;
  4720. return result;
  4721. }
  4722. struct ggml_tensor * ggml_set(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b,
  4726. size_t nb1,
  4727. size_t nb2,
  4728. size_t nb3,
  4729. size_t offset) {
  4730. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4731. }
  4732. struct ggml_tensor * ggml_set_inplace(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. struct ggml_tensor * b,
  4736. size_t nb1,
  4737. size_t nb2,
  4738. size_t nb3,
  4739. size_t offset) {
  4740. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4741. }
  4742. struct ggml_tensor * ggml_set_1d(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. struct ggml_tensor * b,
  4746. size_t offset) {
  4747. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4748. }
  4749. struct ggml_tensor * ggml_set_1d_inplace(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a,
  4752. struct ggml_tensor * b,
  4753. size_t offset) {
  4754. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4755. }
  4756. struct ggml_tensor * ggml_set_2d(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. struct ggml_tensor * b,
  4760. size_t nb1,
  4761. size_t offset) {
  4762. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4763. }
  4764. struct ggml_tensor * ggml_set_2d_inplace(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. struct ggml_tensor * b,
  4768. size_t nb1,
  4769. size_t offset) {
  4770. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4771. }
  4772. // ggml_cpy
  4773. struct ggml_tensor * ggml_cpy_impl(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. struct ggml_tensor * b,
  4777. bool inplace) {
  4778. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4779. bool is_node = false;
  4780. if (!inplace && (a->grad || b->grad)) {
  4781. is_node = true;
  4782. }
  4783. // make a view of the destination
  4784. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4785. if (strlen(b->name) > 0) {
  4786. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4787. } else {
  4788. ggml_format_name(result, "%s (copy)", a->name);
  4789. }
  4790. result->op = GGML_OP_CPY;
  4791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4792. result->src0 = a;
  4793. result->src1 = b;
  4794. return result;
  4795. }
  4796. struct ggml_tensor * ggml_cpy(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a,
  4799. struct ggml_tensor * b) {
  4800. return ggml_cpy_impl(ctx, a, b, false);
  4801. }
  4802. struct ggml_tensor * ggml_cpy_inplace(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a,
  4805. struct ggml_tensor * b) {
  4806. return ggml_cpy_impl(ctx, a, b, true);
  4807. }
  4808. // ggml_cont
  4809. struct ggml_tensor * ggml_cont_impl(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. bool inplace) {
  4813. bool is_node = false;
  4814. if (!inplace && a->grad) {
  4815. is_node = true;
  4816. }
  4817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4818. ggml_format_name(result, "%s (cont)", a->name);
  4819. result->op = GGML_OP_CONT;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src0 = a;
  4822. result->src1 = NULL;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_cont(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a) {
  4828. return ggml_cont_impl(ctx, a, false);
  4829. }
  4830. struct ggml_tensor * ggml_cont_inplace(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a) {
  4833. return ggml_cont_impl(ctx, a, true);
  4834. }
  4835. // ggml_reshape
  4836. struct ggml_tensor * ggml_reshape(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b) {
  4840. GGML_ASSERT(ggml_is_contiguous(a));
  4841. GGML_ASSERT(ggml_is_contiguous(b));
  4842. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4843. bool is_node = false;
  4844. if (a->grad) {
  4845. is_node = true;
  4846. }
  4847. if (b->grad) {
  4848. // gradient propagation is not supported
  4849. //GGML_ASSERT(false);
  4850. }
  4851. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4852. ggml_format_name(result, "%s (reshaped)", a->name);
  4853. result->op = GGML_OP_RESHAPE;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src0 = a;
  4856. result->src1 = NULL;
  4857. return result;
  4858. }
  4859. struct ggml_tensor * ggml_reshape_1d(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. int64_t ne0) {
  4863. GGML_ASSERT(ggml_is_contiguous(a));
  4864. GGML_ASSERT(ggml_nelements(a) == ne0);
  4865. bool is_node = false;
  4866. if (a->grad) {
  4867. is_node = true;
  4868. }
  4869. const int64_t ne[1] = { ne0 };
  4870. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4871. ggml_format_name(result, "%s (reshaped)", a->name);
  4872. result->op = GGML_OP_RESHAPE;
  4873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4874. result->src0 = a;
  4875. result->src1 = NULL;
  4876. return result;
  4877. }
  4878. struct ggml_tensor * ggml_reshape_2d(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. int64_t ne0,
  4882. int64_t ne1) {
  4883. GGML_ASSERT(ggml_is_contiguous(a));
  4884. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = true;
  4888. }
  4889. const int64_t ne[2] = { ne0, ne1 };
  4890. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4891. ggml_format_name(result, "%s (reshaped)", a->name);
  4892. result->op = GGML_OP_RESHAPE;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src0 = a;
  4895. result->src1 = NULL;
  4896. return result;
  4897. }
  4898. struct ggml_tensor * ggml_reshape_3d(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. int64_t ne0,
  4902. int64_t ne1,
  4903. int64_t ne2) {
  4904. GGML_ASSERT(ggml_is_contiguous(a));
  4905. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4906. bool is_node = false;
  4907. if (a->grad) {
  4908. is_node = true;
  4909. }
  4910. const int64_t ne[3] = { ne0, ne1, ne2 };
  4911. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4912. ggml_format_name(result, "%s (reshaped)", a->name);
  4913. result->op = GGML_OP_RESHAPE;
  4914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4915. result->src0 = a;
  4916. result->src1 = NULL;
  4917. return result;
  4918. }
  4919. struct ggml_tensor * ggml_reshape_4d(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. int64_t ne0,
  4923. int64_t ne1,
  4924. int64_t ne2,
  4925. int64_t ne3) {
  4926. GGML_ASSERT(ggml_is_contiguous(a));
  4927. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4928. bool is_node = false;
  4929. if (a->grad) {
  4930. is_node = true;
  4931. }
  4932. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4933. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4934. ggml_format_name(result, "%s (reshaped)", a->name);
  4935. result->op = GGML_OP_RESHAPE;
  4936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4937. result->src0 = a;
  4938. result->src1 = NULL;
  4939. return result;
  4940. }
  4941. // ggml_view_1d
  4942. struct ggml_tensor * ggml_view_1d(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. int64_t ne0,
  4946. size_t offset) {
  4947. bool is_node = false;
  4948. if (a->grad) {
  4949. is_node = true;
  4950. }
  4951. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4952. ggml_format_name(result, "%s (view)", a->name);
  4953. ggml_scratch_save(ctx);
  4954. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4955. ggml_set_name(offs, "offset");
  4956. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4957. ggml_scratch_load(ctx);
  4958. result->op = GGML_OP_VIEW;
  4959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4960. result->src0 = a;
  4961. result->src1 = NULL;
  4962. result->opt[0] = offs;
  4963. return result;
  4964. }
  4965. // ggml_view_2d
  4966. struct ggml_tensor * ggml_view_2d(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. int64_t ne0,
  4970. int64_t ne1,
  4971. size_t nb1,
  4972. size_t offset) {
  4973. bool is_node = false;
  4974. if (a->grad) {
  4975. is_node = true;
  4976. }
  4977. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4978. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4979. ggml_format_name(result, "%s (view)", a->name);
  4980. ggml_scratch_save(ctx);
  4981. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4982. ggml_set_name(offs, "offset");
  4983. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4984. ggml_scratch_load(ctx);
  4985. result->nb[1] = nb1;
  4986. result->nb[2] = result->nb[1]*ne1;
  4987. result->nb[3] = result->nb[2];
  4988. result->op = GGML_OP_VIEW;
  4989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4990. result->src0 = a;
  4991. result->src1 = NULL;
  4992. result->opt[0] = offs;
  4993. return result;
  4994. }
  4995. // ggml_view_3d
  4996. struct ggml_tensor * ggml_view_3d(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. int64_t ne0,
  5000. int64_t ne1,
  5001. int64_t ne2,
  5002. size_t nb1,
  5003. size_t nb2,
  5004. size_t offset) {
  5005. bool is_node = false;
  5006. if (a->grad) {
  5007. is_node = true;
  5008. }
  5009. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5010. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5011. ggml_format_name(result, "%s (view)", a->name);
  5012. ggml_scratch_save(ctx);
  5013. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5014. ggml_set_name(offs, "offset");
  5015. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5016. ggml_scratch_load(ctx);
  5017. result->nb[1] = nb1;
  5018. result->nb[2] = nb2;
  5019. result->nb[3] = result->nb[2]*ne2;
  5020. result->op = GGML_OP_VIEW;
  5021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5022. result->src0 = a;
  5023. result->src1 = NULL;
  5024. result->opt[0] = offs;
  5025. return result;
  5026. }
  5027. // ggml_view_4d
  5028. struct ggml_tensor * ggml_view_4d(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int64_t ne0,
  5032. int64_t ne1,
  5033. int64_t ne2,
  5034. int64_t ne3,
  5035. size_t nb1,
  5036. size_t nb2,
  5037. size_t nb3,
  5038. size_t offset) {
  5039. bool is_node = false;
  5040. if (a->grad) {
  5041. is_node = true;
  5042. }
  5043. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5044. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5045. ggml_format_name(result, "%s (view)", a->name);
  5046. ggml_scratch_save(ctx);
  5047. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5048. ggml_set_name(offs, "offset");
  5049. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5050. ggml_scratch_load(ctx);
  5051. result->nb[1] = nb1;
  5052. result->nb[2] = nb2;
  5053. result->nb[3] = nb3;
  5054. result->op = GGML_OP_VIEW;
  5055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5056. result->src0 = a;
  5057. result->src1 = NULL;
  5058. result->opt[0] = offs;
  5059. return result;
  5060. }
  5061. // ggml_permute
  5062. struct ggml_tensor * ggml_permute(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int axis0,
  5066. int axis1,
  5067. int axis2,
  5068. int axis3) {
  5069. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5070. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5071. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5072. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5073. GGML_ASSERT(axis0 != axis1);
  5074. GGML_ASSERT(axis0 != axis2);
  5075. GGML_ASSERT(axis0 != axis3);
  5076. GGML_ASSERT(axis1 != axis2);
  5077. GGML_ASSERT(axis1 != axis3);
  5078. GGML_ASSERT(axis2 != axis3);
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5084. ggml_format_name(result, "%s (permuted)", a->name);
  5085. int ne[GGML_MAX_DIMS];
  5086. int nb[GGML_MAX_DIMS];
  5087. ne[axis0] = a->ne[0];
  5088. ne[axis1] = a->ne[1];
  5089. ne[axis2] = a->ne[2];
  5090. ne[axis3] = a->ne[3];
  5091. nb[axis0] = a->nb[0];
  5092. nb[axis1] = a->nb[1];
  5093. nb[axis2] = a->nb[2];
  5094. nb[axis3] = a->nb[3];
  5095. result->ne[0] = ne[0];
  5096. result->ne[1] = ne[1];
  5097. result->ne[2] = ne[2];
  5098. result->ne[3] = ne[3];
  5099. result->nb[0] = nb[0];
  5100. result->nb[1] = nb[1];
  5101. result->nb[2] = nb[2];
  5102. result->nb[3] = nb[3];
  5103. result->op = GGML_OP_PERMUTE;
  5104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5105. result->src0 = a;
  5106. result->src1 = NULL;
  5107. if (is_node) {
  5108. ggml_scratch_save(ctx);
  5109. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5110. ((int32_t *) b->data)[0] = axis0;
  5111. ((int32_t *) b->data)[1] = axis1;
  5112. ((int32_t *) b->data)[2] = axis2;
  5113. ((int32_t *) b->data)[3] = axis3;
  5114. ggml_scratch_load(ctx);
  5115. result->opt[0] = b;
  5116. }
  5117. return result;
  5118. }
  5119. // ggml_transpose
  5120. struct ggml_tensor * ggml_transpose(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a) {
  5123. bool is_node = false;
  5124. if (a->grad) {
  5125. is_node = true;
  5126. }
  5127. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5128. ggml_format_name(result, "%s (transposed)", a->name);
  5129. result->ne[0] = a->ne[1];
  5130. result->ne[1] = a->ne[0];
  5131. result->nb[0] = a->nb[1];
  5132. result->nb[1] = a->nb[0];
  5133. result->op = GGML_OP_TRANSPOSE;
  5134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5135. result->src0 = a;
  5136. result->src1 = NULL;
  5137. return result;
  5138. }
  5139. // ggml_get_rows
  5140. struct ggml_tensor * ggml_get_rows(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a,
  5143. struct ggml_tensor * b) {
  5144. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5145. bool is_node = false;
  5146. if (a->grad || b->grad) {
  5147. is_node = true;
  5148. }
  5149. // TODO: implement non F32 return
  5150. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5151. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5152. result->op = GGML_OP_GET_ROWS;
  5153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5154. result->src0 = a;
  5155. result->src1 = b;
  5156. return result;
  5157. }
  5158. // ggml_get_rows_back
  5159. struct ggml_tensor * ggml_get_rows_back(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. struct ggml_tensor * b,
  5163. struct ggml_tensor * c) {
  5164. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5165. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5166. bool is_node = false;
  5167. if (a->grad || b->grad) {
  5168. is_node = true;
  5169. }
  5170. // TODO: implement non F32 return
  5171. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5172. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5173. result->op = GGML_OP_GET_ROWS_BACK;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src0 = a;
  5176. result->src1 = b;
  5177. result->opt[0] = c;
  5178. return result;
  5179. }
  5180. // ggml_diag
  5181. struct ggml_tensor * ggml_diag(
  5182. struct ggml_context * ctx,
  5183. struct ggml_tensor * a) {
  5184. GGML_ASSERT(a->ne[1] == 1);
  5185. bool is_node = false;
  5186. if (a->grad) {
  5187. is_node = true;
  5188. }
  5189. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5190. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5191. result->op = GGML_OP_DIAG;
  5192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5193. result->src0 = a;
  5194. result->src1 = NULL;
  5195. return result;
  5196. }
  5197. // ggml_diag_mask_inf
  5198. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. int n_past,
  5202. bool inplace) {
  5203. bool is_node = false;
  5204. if (a->grad) {
  5205. is_node = true;
  5206. }
  5207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5208. ggml_scratch_save(ctx);
  5209. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5210. ((int32_t *) b->data)[0] = n_past;
  5211. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5212. ggml_scratch_load(ctx);
  5213. result->op = GGML_OP_DIAG_MASK_INF;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src0 = a;
  5216. result->src1 = b;
  5217. return result;
  5218. }
  5219. struct ggml_tensor * ggml_diag_mask_inf(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. int n_past) {
  5223. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5224. }
  5225. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5226. struct ggml_context * ctx,
  5227. struct ggml_tensor * a,
  5228. int n_past) {
  5229. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5230. }
  5231. // ggml_diag_mask_zero
  5232. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. int n_past,
  5236. bool inplace) {
  5237. bool is_node = false;
  5238. if (a->grad) {
  5239. is_node = true;
  5240. }
  5241. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5242. ggml_scratch_save(ctx);
  5243. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5244. ggml_set_name(b, "n_past, inplace");
  5245. ((int32_t *) b->data)[0] = n_past;
  5246. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5247. ggml_scratch_load(ctx);
  5248. result->op = GGML_OP_DIAG_MASK_ZERO;
  5249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5250. result->src0 = a;
  5251. result->src1 = b;
  5252. return result;
  5253. }
  5254. struct ggml_tensor * ggml_diag_mask_zero(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * a,
  5257. int n_past) {
  5258. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5259. }
  5260. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. int n_past) {
  5264. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5265. }
  5266. // ggml_soft_max
  5267. struct ggml_tensor * ggml_soft_max_impl(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. bool inplace) {
  5271. bool is_node = false;
  5272. if (a->grad) {
  5273. is_node = true;
  5274. }
  5275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5276. result->op = GGML_OP_SOFT_MAX;
  5277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5278. result->src0 = a;
  5279. result->src1 = NULL;
  5280. return result;
  5281. }
  5282. struct ggml_tensor * ggml_soft_max(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a) {
  5285. return ggml_soft_max_impl(ctx, a, false);
  5286. }
  5287. struct ggml_tensor * ggml_soft_max_inplace(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a) {
  5290. return ggml_soft_max_impl(ctx, a, true);
  5291. }
  5292. // ggml_soft_max_back
  5293. struct ggml_tensor * ggml_soft_max_back_impl(
  5294. struct ggml_context * ctx,
  5295. struct ggml_tensor * a,
  5296. struct ggml_tensor * b,
  5297. bool inplace) {
  5298. bool is_node = false;
  5299. if (a->grad || b->grad) {
  5300. is_node = true; // TODO : implement backward pass
  5301. }
  5302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5303. result->op = GGML_OP_SOFT_MAX_BACK;
  5304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5305. result->src0 = a;
  5306. result->src1 = b;
  5307. return result;
  5308. }
  5309. struct ggml_tensor * ggml_soft_max_back(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. struct ggml_tensor * b) {
  5313. return ggml_soft_max_back_impl(ctx, a, b, false);
  5314. }
  5315. struct ggml_tensor * ggml_soft_max_back_inplace(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. struct ggml_tensor * b) {
  5319. return ggml_soft_max_back_impl(ctx, a, b, true);
  5320. }
  5321. // ggml_rope
  5322. struct ggml_tensor * ggml_rope_impl(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. int n_past,
  5326. int n_dims,
  5327. int mode,
  5328. bool inplace) {
  5329. GGML_ASSERT(n_past >= 0);
  5330. bool is_node = false;
  5331. if (a->grad) {
  5332. is_node = true;
  5333. }
  5334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5335. ggml_scratch_save(ctx);
  5336. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5337. ((int32_t *) b->data)[0] = n_past;
  5338. ((int32_t *) b->data)[1] = n_dims;
  5339. ((int32_t *) b->data)[2] = mode;
  5340. ggml_scratch_load(ctx);
  5341. result->op = GGML_OP_ROPE;
  5342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5343. result->src0 = a;
  5344. result->src1 = b;
  5345. return result;
  5346. }
  5347. struct ggml_tensor * ggml_rope(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. int n_past,
  5351. int n_dims,
  5352. int mode) {
  5353. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5354. }
  5355. struct ggml_tensor * ggml_rope_inplace(
  5356. struct ggml_context * ctx,
  5357. struct ggml_tensor * a,
  5358. int n_past,
  5359. int n_dims,
  5360. int mode) {
  5361. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5362. }
  5363. // ggml_rope_back
  5364. struct ggml_tensor * ggml_rope_back(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a,
  5367. int n_past,
  5368. int n_dims,
  5369. int mode) {
  5370. GGML_ASSERT(n_past >= 0);
  5371. bool is_node = false;
  5372. if (a->grad) {
  5373. is_node = false; // TODO: implement backward
  5374. }
  5375. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5376. ggml_scratch_save(ctx);
  5377. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5378. ggml_set_name(b, "n_past, n_dims, mode");
  5379. ((int32_t *) b->data)[0] = n_past;
  5380. ((int32_t *) b->data)[1] = n_dims;
  5381. ((int32_t *) b->data)[2] = mode;
  5382. ggml_scratch_load(ctx);
  5383. result->op = GGML_OP_ROPE_BACK;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src0 = a;
  5386. result->src1 = b;
  5387. return result;
  5388. }
  5389. // ggml_alibi
  5390. struct ggml_tensor * ggml_alibi(
  5391. struct ggml_context * ctx,
  5392. struct ggml_tensor * a,
  5393. int n_past,
  5394. int n_head,
  5395. float bias_max) {
  5396. GGML_ASSERT(n_past >= 0);
  5397. bool is_node = false;
  5398. if (a->grad) {
  5399. GGML_ASSERT(false); // TODO: implement backward
  5400. is_node = true;
  5401. }
  5402. // TODO: when implement backward, fix this:
  5403. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5404. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5405. ggml_scratch_save(ctx);
  5406. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5407. ((int32_t *) b->data)[0] = n_past;
  5408. ((int32_t *) b->data)[1] = n_head;
  5409. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5410. (((float *) b->data)[2]) = bias_max;
  5411. ggml_scratch_load(ctx);
  5412. result->op = GGML_OP_ALIBI;
  5413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5414. result->src0 = a;
  5415. result->src1 = b;
  5416. return result;
  5417. }
  5418. // ggml_clamp
  5419. struct ggml_tensor * ggml_clamp(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. float min,
  5423. float max) {
  5424. bool is_node = false;
  5425. if (a->grad) {
  5426. GGML_ASSERT(false); // TODO: implement backward
  5427. is_node = true;
  5428. }
  5429. // TODO: when implement backward, fix this:
  5430. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5431. ggml_scratch_save(ctx);
  5432. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5433. ((float *) b->data)[0] = min;
  5434. ((float *) b->data)[1] = max;
  5435. ggml_scratch_load(ctx);
  5436. result->op = GGML_OP_CLAMP;
  5437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5438. result->src0 = a;
  5439. result->src1 = b;
  5440. return result;
  5441. }
  5442. // ggml_conv_1d_s1_ph
  5443. struct ggml_tensor * ggml_conv_1d_s1_ph(
  5444. struct ggml_context * ctx,
  5445. struct ggml_tensor * a,
  5446. struct ggml_tensor * b) {
  5447. GGML_ASSERT(ggml_is_matrix(b));
  5448. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5449. GGML_ASSERT(a->ne[3] == 1);
  5450. bool is_node = false;
  5451. if (a->grad || b->grad) {
  5452. GGML_ASSERT(false); // TODO: implement backward
  5453. is_node = true;
  5454. }
  5455. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5456. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5457. result->op = GGML_OP_CONV_1D_S1_PH;
  5458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5459. result->src0 = a;
  5460. result->src1 = b;
  5461. return result;
  5462. }
  5463. // ggml_conv_1d_s2_ph
  5464. struct ggml_tensor * ggml_conv_1d_s2_ph(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. struct ggml_tensor * b) {
  5468. GGML_ASSERT(ggml_is_matrix(b));
  5469. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5470. GGML_ASSERT(a->ne[3] == 1);
  5471. bool is_node = false;
  5472. if (a->grad || b->grad) {
  5473. GGML_ASSERT(false); // TODO: implement backward
  5474. is_node = true;
  5475. }
  5476. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5477. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5478. result->op = GGML_OP_CONV_1D_S2_PH;
  5479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5480. result->src0 = a;
  5481. result->src1 = b;
  5482. return result;
  5483. }
  5484. // ggml_conv_2d_sk_p0
  5485. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5486. struct ggml_context * ctx,
  5487. struct ggml_tensor * a,
  5488. struct ggml_tensor * b) {
  5489. GGML_ASSERT(b->ne[3] == 1);
  5490. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5491. GGML_ASSERT(b->ne[0] % a->ne[0] == 0);
  5492. GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
  5493. bool is_node = false;
  5494. if (a->grad || b->grad) {
  5495. GGML_ASSERT(false); // TODO: implement backward
  5496. is_node = true;
  5497. }
  5498. const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, };
  5499. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5500. result->op = GGML_OP_CONV_2D_SK_P0;
  5501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5502. result->src0 = a;
  5503. result->src1 = b;
  5504. return result;
  5505. }
  5506. // ggml_flash_attn
  5507. struct ggml_tensor * ggml_flash_attn(
  5508. struct ggml_context * ctx,
  5509. struct ggml_tensor * q,
  5510. struct ggml_tensor * k,
  5511. struct ggml_tensor * v,
  5512. bool masked) {
  5513. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5514. // TODO: check if vT can be multiplied by (k*qT)
  5515. bool is_node = false;
  5516. if (q->grad || k->grad || v->grad) {
  5517. is_node = true;
  5518. }
  5519. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5520. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5521. result->op = GGML_OP_FLASH_ATTN;
  5522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5523. result->src0 = q;
  5524. result->src1 = k;
  5525. result->opt[0] = v;
  5526. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5527. return result;
  5528. }
  5529. // ggml_flash_ff
  5530. struct ggml_tensor * ggml_flash_ff(
  5531. struct ggml_context * ctx,
  5532. struct ggml_tensor * a,
  5533. struct ggml_tensor * b0,
  5534. struct ggml_tensor * b1,
  5535. struct ggml_tensor * c0,
  5536. struct ggml_tensor * c1) {
  5537. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5538. // TODO: more checks
  5539. bool is_node = false;
  5540. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5541. is_node = true;
  5542. }
  5543. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5544. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5545. result->op = GGML_OP_FLASH_FF;
  5546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5547. result->src0 = a;
  5548. result->src1 = b0;
  5549. result->opt[0] = b1;
  5550. result->opt[1] = c0;
  5551. result->opt[2] = c1;
  5552. return result;
  5553. }
  5554. // ggml_flash_attn_back
  5555. struct ggml_tensor * ggml_flash_attn_back(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * q,
  5558. struct ggml_tensor * k,
  5559. struct ggml_tensor * v,
  5560. struct ggml_tensor * d,
  5561. bool masked) {
  5562. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5563. // TODO: check if vT can be multiplied by (k*qT)
  5564. // d shape [D,N,ne2,ne3]
  5565. // q shape [D,N,ne2,ne3]
  5566. // k shape [D,M,ne2,ne3]
  5567. // v shape [M,D,ne2,ne3]
  5568. const int64_t D = q->ne[0];
  5569. const int64_t N = q->ne[1];
  5570. const int64_t M = k->ne[1];
  5571. const int64_t ne2 = q->ne[2];
  5572. const int64_t ne3 = q->ne[3];
  5573. GGML_ASSERT(k->ne[0] == D);
  5574. GGML_ASSERT(v->ne[0] == M);
  5575. GGML_ASSERT(v->ne[1] == D);
  5576. GGML_ASSERT(d->ne[0] == D);
  5577. GGML_ASSERT(d->ne[1] == N);
  5578. GGML_ASSERT(k->ne[2] == ne2);
  5579. GGML_ASSERT(k->ne[3] == ne3);
  5580. GGML_ASSERT(v->ne[2] == ne2);
  5581. GGML_ASSERT(v->ne[3] == ne3);
  5582. GGML_ASSERT(d->ne[2] == ne2);
  5583. GGML_ASSERT(d->ne[3] == ne3);
  5584. bool is_node = false;
  5585. if (q->grad || k->grad || v->grad) {
  5586. // when using this operation (in backwards pass) these grads are set.
  5587. // we don't want to create (big) grad of our result, so is_node is false.
  5588. is_node = false;
  5589. }
  5590. // store gradients of q, k and v as continuous tensors concatenated in result.
  5591. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5592. // gradq->data = result->data
  5593. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5594. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5595. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5596. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5597. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5598. result->op = GGML_OP_FLASH_ATTN_BACK;
  5599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5600. result->src0 = q;
  5601. result->src1 = k;
  5602. result->opt[0] = v;
  5603. result->opt[1] = d;
  5604. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5605. return result;
  5606. }
  5607. // ggml_win_part
  5608. struct ggml_tensor * ggml_win_part(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. int w) {
  5612. GGML_ASSERT(a->ne[3] == 1);
  5613. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5614. bool is_node = false;
  5615. if (a->grad) {
  5616. GGML_ASSERT(false); // TODO: implement backward
  5617. is_node = true;
  5618. }
  5619. // padding
  5620. const int px = (w - a->ne[1]%w)%w;
  5621. const int py = (w - a->ne[2]%w)%w;
  5622. const int npx = (px + a->ne[1])/w;
  5623. const int npy = (py + a->ne[2])/w;
  5624. const int np = npx*npy;
  5625. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5626. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5627. ggml_scratch_save(ctx);
  5628. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5629. ((int32_t *) b->data)[0] = npx;
  5630. ((int32_t *) b->data)[1] = npy;
  5631. ((int32_t *) b->data)[2] = w;
  5632. ggml_scratch_load(ctx);
  5633. result->op = GGML_OP_WIN_PART;
  5634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5635. result->src0 = a;
  5636. result->src1 = NULL;
  5637. result->opt[0] = b;
  5638. return result;
  5639. }
  5640. // ggml_win_unpart
  5641. struct ggml_tensor * ggml_win_unpart(
  5642. struct ggml_context * ctx,
  5643. struct ggml_tensor * a,
  5644. int w0,
  5645. int h0,
  5646. int w) {
  5647. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5648. bool is_node = false;
  5649. if (a->grad) {
  5650. GGML_ASSERT(false); // TODO: implement backward
  5651. is_node = true;
  5652. }
  5653. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5654. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5655. ggml_scratch_save(ctx);
  5656. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5657. ((int32_t *) b->data)[0] = w;
  5658. ggml_scratch_load(ctx);
  5659. result->op = GGML_OP_WIN_UNPART;
  5660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5661. result->src0 = a;
  5662. result->src1 = NULL;
  5663. result->opt[0] = b;
  5664. return result;
  5665. }
  5666. // ggml_map_unary
  5667. struct ggml_tensor * ggml_map_unary_impl_f32(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. const ggml_unary_op_f32_t fun,
  5671. bool inplace) {
  5672. bool is_node = false;
  5673. if (!inplace && a->grad) {
  5674. is_node = true;
  5675. }
  5676. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5677. ggml_scratch_save(ctx);
  5678. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5679. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5680. ggml_scratch_load(ctx);
  5681. result->op = GGML_OP_MAP_UNARY;
  5682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5683. result->src0 = a;
  5684. result->opt[0] = addr_tensor;
  5685. return result;
  5686. }
  5687. struct ggml_tensor * ggml_map_unary_f32(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. const ggml_unary_op_f32_t fun) {
  5691. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5692. }
  5693. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5694. struct ggml_context * ctx,
  5695. struct ggml_tensor * a,
  5696. const ggml_unary_op_f32_t fun) {
  5697. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5698. }
  5699. // ggml_map_binary
  5700. struct ggml_tensor * ggml_map_binary_impl_f32(
  5701. struct ggml_context * ctx,
  5702. struct ggml_tensor * a,
  5703. struct ggml_tensor * b,
  5704. const ggml_binary_op_f32_t fun,
  5705. bool inplace) {
  5706. GGML_ASSERT(ggml_are_same_shape(a, b));
  5707. bool is_node = false;
  5708. if (!inplace && (a->grad || b->grad)) {
  5709. is_node = true;
  5710. }
  5711. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5712. ggml_scratch_save(ctx);
  5713. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5714. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5715. ggml_scratch_load(ctx);
  5716. result->op = GGML_OP_MAP_BINARY;
  5717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5718. result->src0 = a;
  5719. result->src1 = b;
  5720. result->opt[0] = addr_tensor;
  5721. return result;
  5722. }
  5723. struct ggml_tensor * ggml_map_binary_f32(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. struct ggml_tensor * b,
  5727. const ggml_binary_op_f32_t fun) {
  5728. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5729. }
  5730. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5731. struct ggml_context * ctx,
  5732. struct ggml_tensor * a,
  5733. struct ggml_tensor * b,
  5734. const ggml_binary_op_f32_t fun) {
  5735. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5736. }
  5737. // ggml_map_custom1
  5738. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5739. struct ggml_context * ctx,
  5740. struct ggml_tensor * a,
  5741. const ggml_custom1_op_f32_t fun,
  5742. bool inplace) {
  5743. bool is_node = false;
  5744. if (!inplace && a->grad) {
  5745. is_node = true;
  5746. }
  5747. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5748. ggml_scratch_save(ctx);
  5749. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5750. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5751. ggml_scratch_load(ctx);
  5752. result->op = GGML_OP_MAP_CUSTOM1;
  5753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5754. result->src0 = a;
  5755. result->opt[0] = addr_tensor;
  5756. return result;
  5757. }
  5758. struct ggml_tensor * ggml_map_custom1_f32(
  5759. struct ggml_context * ctx,
  5760. struct ggml_tensor * a,
  5761. const ggml_custom1_op_f32_t fun) {
  5762. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5763. }
  5764. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * a,
  5767. const ggml_custom1_op_f32_t fun) {
  5768. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5769. }
  5770. // ggml_map_custom2
  5771. struct ggml_tensor * ggml_map_custom2_impl_f32(
  5772. struct ggml_context * ctx,
  5773. struct ggml_tensor * a,
  5774. struct ggml_tensor * b,
  5775. const ggml_custom2_op_f32_t fun,
  5776. bool inplace) {
  5777. bool is_node = false;
  5778. if (!inplace && (a->grad || b->grad)) {
  5779. is_node = true;
  5780. }
  5781. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5782. ggml_scratch_save(ctx);
  5783. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5784. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5785. ggml_scratch_load(ctx);
  5786. result->op = GGML_OP_MAP_CUSTOM2;
  5787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5788. result->src0 = a;
  5789. result->src1 = b;
  5790. result->opt[0] = addr_tensor;
  5791. return result;
  5792. }
  5793. struct ggml_tensor * ggml_map_custom2_f32(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. struct ggml_tensor * b,
  5797. const ggml_custom2_op_f32_t fun) {
  5798. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5799. }
  5800. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. const ggml_custom2_op_f32_t fun) {
  5805. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5806. }
  5807. // ggml_map_custom3
  5808. struct ggml_tensor * ggml_map_custom3_impl_f32(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. struct ggml_tensor * b,
  5812. struct ggml_tensor * c,
  5813. const ggml_custom3_op_f32_t fun,
  5814. bool inplace) {
  5815. bool is_node = false;
  5816. if (!inplace && (a->grad || b->grad || c->grad)) {
  5817. is_node = true;
  5818. }
  5819. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5820. ggml_scratch_save(ctx);
  5821. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5822. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5823. ggml_scratch_load(ctx);
  5824. result->op = GGML_OP_MAP_CUSTOM3;
  5825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5826. result->src0 = a;
  5827. result->src1 = b;
  5828. result->opt[0] = addr_tensor;
  5829. result->opt[1] = c;
  5830. return result;
  5831. }
  5832. struct ggml_tensor * ggml_map_custom3_f32(
  5833. struct ggml_context * ctx,
  5834. struct ggml_tensor * a,
  5835. struct ggml_tensor * b,
  5836. struct ggml_tensor * c,
  5837. const ggml_custom3_op_f32_t fun) {
  5838. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5839. }
  5840. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5841. struct ggml_context * ctx,
  5842. struct ggml_tensor * a,
  5843. struct ggml_tensor * b,
  5844. struct ggml_tensor * c,
  5845. const ggml_custom3_op_f32_t fun) {
  5846. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5847. }
  5848. // ggml_cross_entropy_loss
  5849. struct ggml_tensor * ggml_cross_entropy_loss(
  5850. struct ggml_context * ctx,
  5851. struct ggml_tensor * a,
  5852. struct ggml_tensor * b) {
  5853. GGML_ASSERT(ggml_are_same_shape(a, b));
  5854. bool is_node = false;
  5855. if (a->grad || b->grad) {
  5856. is_node = true;
  5857. }
  5858. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5859. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5861. result->src0 = a;
  5862. result->src1 = b;
  5863. return result;
  5864. }
  5865. // ggml_cross_entropy_loss_back
  5866. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. struct ggml_tensor * b,
  5870. struct ggml_tensor * c) {
  5871. GGML_ASSERT(ggml_are_same_shape(a, b));
  5872. GGML_ASSERT(ggml_is_scalar(c));
  5873. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5874. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5875. result->grad = NULL;
  5876. result->src0 = a;
  5877. result->src1 = b;
  5878. result->opt[0] = c;
  5879. return result;
  5880. }
  5881. ////////////////////////////////////////////////////////////////////////////////
  5882. void ggml_set_param(
  5883. struct ggml_context * ctx,
  5884. struct ggml_tensor * tensor) {
  5885. tensor->is_param = true;
  5886. GGML_ASSERT(tensor->grad == NULL);
  5887. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5888. }
  5889. // ggml_compute_forward_dup
  5890. static void ggml_compute_forward_dup_same_cont(
  5891. const struct ggml_compute_params * params,
  5892. const struct ggml_tensor * src0,
  5893. struct ggml_tensor * dst) {
  5894. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5895. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5896. GGML_ASSERT(src0->type == dst->type);
  5897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5898. return;
  5899. }
  5900. const size_t nb00 = src0->nb[0];
  5901. const size_t nb0 = dst->nb[0];
  5902. const int ith = params->ith; // thread index
  5903. const int nth = params->nth; // number of threads
  5904. // parallelize by elements
  5905. const int ne = ggml_nelements(dst);
  5906. const int dr = (ne + nth - 1) / nth;
  5907. const int ie0 = dr * ith;
  5908. const int ie1 = MIN(ie0 + dr, ne);
  5909. if (ie0 < ie1) {
  5910. memcpy(
  5911. ((char *) dst->data + ie0*nb0),
  5912. ((char *) src0->data + ie0*nb00),
  5913. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5914. }
  5915. }
  5916. static void ggml_compute_forward_dup_f16(
  5917. const struct ggml_compute_params * params,
  5918. const struct ggml_tensor * src0,
  5919. struct ggml_tensor * dst) {
  5920. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5922. return;
  5923. }
  5924. const int64_t ne00 = src0->ne[0];
  5925. const int64_t ne01 = src0->ne[1];
  5926. const int64_t ne02 = src0->ne[2];
  5927. const int64_t ne03 = src0->ne[3];
  5928. const int64_t ne0 = dst->ne[0];
  5929. const int64_t ne1 = dst->ne[1];
  5930. const int64_t ne2 = dst->ne[2];
  5931. const int64_t ne3 = dst->ne[3];
  5932. const size_t nb00 = src0->nb[0];
  5933. const size_t nb01 = src0->nb[1];
  5934. const size_t nb02 = src0->nb[2];
  5935. const size_t nb03 = src0->nb[3];
  5936. const size_t nb0 = dst->nb[0];
  5937. const size_t nb1 = dst->nb[1];
  5938. const size_t nb2 = dst->nb[2];
  5939. const size_t nb3 = dst->nb[3];
  5940. const int ith = params->ith; // thread index
  5941. const int nth = params->nth; // number of threads
  5942. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5943. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5944. return;
  5945. }
  5946. // parallelize by rows
  5947. const int nr = ne01;
  5948. // number of rows per thread
  5949. const int dr = (nr + nth - 1) / nth;
  5950. // row range for this thread
  5951. const int ir0 = dr * ith;
  5952. const int ir1 = MIN(ir0 + dr, nr);
  5953. if (src0->type == dst->type &&
  5954. ne00 == ne0 &&
  5955. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5956. // copy by rows
  5957. const size_t rs = ne00*nb00;
  5958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5960. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5961. memcpy(
  5962. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5963. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5964. rs);
  5965. }
  5966. }
  5967. }
  5968. return;
  5969. }
  5970. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5971. if (ggml_is_contiguous(dst)) {
  5972. if (nb00 == sizeof(ggml_fp16_t)) {
  5973. if (dst->type == GGML_TYPE_F16) {
  5974. size_t id = 0;
  5975. const size_t rs = ne00 * nb00;
  5976. char * dst_ptr = (char *) dst->data;
  5977. for (int i03 = 0; i03 < ne03; i03++) {
  5978. for (int i02 = 0; i02 < ne02; i02++) {
  5979. id += rs * ir0;
  5980. for (int i01 = ir0; i01 < ir1; i01++) {
  5981. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5982. memcpy(dst_ptr + id, src0_ptr, rs);
  5983. id += rs;
  5984. }
  5985. id += rs * (ne01 - ir1);
  5986. }
  5987. }
  5988. } else if (dst->type == GGML_TYPE_F32) {
  5989. size_t id = 0;
  5990. float * dst_ptr = (float *) dst->data;
  5991. for (int i03 = 0; i03 < ne03; i03++) {
  5992. for (int i02 = 0; i02 < ne02; i02++) {
  5993. id += ne00 * ir0;
  5994. for (int i01 = ir0; i01 < ir1; i01++) {
  5995. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5996. for (int i00 = 0; i00 < ne00; i00++) {
  5997. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5998. id++;
  5999. }
  6000. }
  6001. id += ne00 * (ne01 - ir1);
  6002. }
  6003. }
  6004. } else if (ggml_is_quantized(dst->type)) {
  6005. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6006. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6007. size_t id = 0;
  6008. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6009. char * dst_ptr = (char *) dst->data;
  6010. for (int i03 = 0; i03 < ne03; i03++) {
  6011. for (int i02 = 0; i02 < ne02; i02++) {
  6012. id += rs * ir0;
  6013. for (int i01 = ir0; i01 < ir1; i01++) {
  6014. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6015. for (int i00 = 0; i00 < ne00; i00++) {
  6016. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6017. }
  6018. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6019. id += rs;
  6020. }
  6021. id += rs * (ne01 - ir1);
  6022. }
  6023. }
  6024. } else {
  6025. GGML_ASSERT(false); // TODO: implement
  6026. }
  6027. } else {
  6028. //printf("%s: this is not optimal - fix me\n", __func__);
  6029. if (dst->type == GGML_TYPE_F32) {
  6030. size_t id = 0;
  6031. float * dst_ptr = (float *) dst->data;
  6032. for (int i03 = 0; i03 < ne03; i03++) {
  6033. for (int i02 = 0; i02 < ne02; i02++) {
  6034. id += ne00 * ir0;
  6035. for (int i01 = ir0; i01 < ir1; i01++) {
  6036. for (int i00 = 0; i00 < ne00; i00++) {
  6037. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6038. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6039. id++;
  6040. }
  6041. }
  6042. id += ne00 * (ne01 - ir1);
  6043. }
  6044. }
  6045. } else if (dst->type == GGML_TYPE_F16) {
  6046. size_t id = 0;
  6047. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6048. for (int i03 = 0; i03 < ne03; i03++) {
  6049. for (int i02 = 0; i02 < ne02; i02++) {
  6050. id += ne00 * ir0;
  6051. for (int i01 = ir0; i01 < ir1; i01++) {
  6052. for (int i00 = 0; i00 < ne00; i00++) {
  6053. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6054. dst_ptr[id] = *src0_ptr;
  6055. id++;
  6056. }
  6057. }
  6058. id += ne00 * (ne01 - ir1);
  6059. }
  6060. }
  6061. } else {
  6062. GGML_ASSERT(false); // TODO: implement
  6063. }
  6064. }
  6065. return;
  6066. }
  6067. // dst counters
  6068. int64_t i10 = 0;
  6069. int64_t i11 = 0;
  6070. int64_t i12 = 0;
  6071. int64_t i13 = 0;
  6072. if (dst->type == GGML_TYPE_F16) {
  6073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6075. i10 += ne00 * ir0;
  6076. while (i10 >= ne0) {
  6077. i10 -= ne0;
  6078. if (++i11 == ne1) {
  6079. i11 = 0;
  6080. if (++i12 == ne2) {
  6081. i12 = 0;
  6082. if (++i13 == ne3) {
  6083. i13 = 0;
  6084. }
  6085. }
  6086. }
  6087. }
  6088. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6089. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6090. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6091. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6092. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6093. if (++i10 == ne00) {
  6094. i10 = 0;
  6095. if (++i11 == ne01) {
  6096. i11 = 0;
  6097. if (++i12 == ne02) {
  6098. i12 = 0;
  6099. if (++i13 == ne03) {
  6100. i13 = 0;
  6101. }
  6102. }
  6103. }
  6104. }
  6105. }
  6106. }
  6107. i10 += ne00 * (ne01 - ir1);
  6108. while (i10 >= ne0) {
  6109. i10 -= ne0;
  6110. if (++i11 == ne1) {
  6111. i11 = 0;
  6112. if (++i12 == ne2) {
  6113. i12 = 0;
  6114. if (++i13 == ne3) {
  6115. i13 = 0;
  6116. }
  6117. }
  6118. }
  6119. }
  6120. }
  6121. }
  6122. } else if (dst->type == GGML_TYPE_F32) {
  6123. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6124. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6125. i10 += ne00 * ir0;
  6126. while (i10 >= ne0) {
  6127. i10 -= ne0;
  6128. if (++i11 == ne1) {
  6129. i11 = 0;
  6130. if (++i12 == ne2) {
  6131. i12 = 0;
  6132. if (++i13 == ne3) {
  6133. i13 = 0;
  6134. }
  6135. }
  6136. }
  6137. }
  6138. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6139. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6140. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6141. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6142. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6143. if (++i10 == ne0) {
  6144. i10 = 0;
  6145. if (++i11 == ne1) {
  6146. i11 = 0;
  6147. if (++i12 == ne2) {
  6148. i12 = 0;
  6149. if (++i13 == ne3) {
  6150. i13 = 0;
  6151. }
  6152. }
  6153. }
  6154. }
  6155. }
  6156. }
  6157. i10 += ne00 * (ne01 - ir1);
  6158. while (i10 >= ne0) {
  6159. i10 -= ne0;
  6160. if (++i11 == ne1) {
  6161. i11 = 0;
  6162. if (++i12 == ne2) {
  6163. i12 = 0;
  6164. if (++i13 == ne3) {
  6165. i13 = 0;
  6166. }
  6167. }
  6168. }
  6169. }
  6170. }
  6171. }
  6172. } else {
  6173. GGML_ASSERT(false); // TODO: implement
  6174. }
  6175. }
  6176. static void ggml_compute_forward_dup_f32(
  6177. const struct ggml_compute_params * params,
  6178. const struct ggml_tensor * src0,
  6179. struct ggml_tensor * dst) {
  6180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6182. return;
  6183. }
  6184. const int64_t ne00 = src0->ne[0];
  6185. const int64_t ne01 = src0->ne[1];
  6186. const int64_t ne02 = src0->ne[2];
  6187. const int64_t ne03 = src0->ne[3];
  6188. const int64_t ne0 = dst->ne[0];
  6189. const int64_t ne1 = dst->ne[1];
  6190. const int64_t ne2 = dst->ne[2];
  6191. const int64_t ne3 = dst->ne[3];
  6192. const size_t nb00 = src0->nb[0];
  6193. const size_t nb01 = src0->nb[1];
  6194. const size_t nb02 = src0->nb[2];
  6195. const size_t nb03 = src0->nb[3];
  6196. const size_t nb0 = dst->nb[0];
  6197. const size_t nb1 = dst->nb[1];
  6198. const size_t nb2 = dst->nb[2];
  6199. const size_t nb3 = dst->nb[3];
  6200. const int ith = params->ith; // thread index
  6201. const int nth = params->nth; // number of threads
  6202. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6203. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6204. return;
  6205. }
  6206. // parallelize by rows
  6207. const int nr = ne01;
  6208. // number of rows per thread
  6209. const int dr = (nr + nth - 1) / nth;
  6210. // row range for this thread
  6211. const int ir0 = dr * ith;
  6212. const int ir1 = MIN(ir0 + dr, nr);
  6213. if (src0->type == dst->type &&
  6214. ne00 == ne0 &&
  6215. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6216. // copy by rows
  6217. const size_t rs = ne00*nb00;
  6218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6220. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6221. memcpy(
  6222. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6223. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6224. rs);
  6225. }
  6226. }
  6227. }
  6228. return;
  6229. }
  6230. if (ggml_is_contiguous(dst)) {
  6231. // TODO: simplify
  6232. if (nb00 == sizeof(float)) {
  6233. if (dst->type == GGML_TYPE_F32) {
  6234. size_t id = 0;
  6235. const size_t rs = ne00 * nb00;
  6236. char * dst_ptr = (char *) dst->data;
  6237. for (int i03 = 0; i03 < ne03; i03++) {
  6238. for (int i02 = 0; i02 < ne02; i02++) {
  6239. id += rs * ir0;
  6240. for (int i01 = ir0; i01 < ir1; i01++) {
  6241. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6242. memcpy(dst_ptr + id, src0_ptr, rs);
  6243. id += rs;
  6244. }
  6245. id += rs * (ne01 - ir1);
  6246. }
  6247. }
  6248. } else if (dst->type == GGML_TYPE_F16) {
  6249. size_t id = 0;
  6250. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6251. for (int i03 = 0; i03 < ne03; i03++) {
  6252. for (int i02 = 0; i02 < ne02; i02++) {
  6253. id += ne00 * ir0;
  6254. for (int i01 = ir0; i01 < ir1; i01++) {
  6255. for (int i00 = 0; i00 < ne00; i00++) {
  6256. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6257. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6258. id++;
  6259. }
  6260. }
  6261. id += ne00 * (ne01 - ir1);
  6262. }
  6263. }
  6264. } else if (ggml_is_quantized(dst->type)) {
  6265. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6266. size_t id = 0;
  6267. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6268. char * dst_ptr = (char *) dst->data;
  6269. for (int i03 = 0; i03 < ne03; i03++) {
  6270. for (int i02 = 0; i02 < ne02; i02++) {
  6271. id += rs * ir0;
  6272. for (int i01 = ir0; i01 < ir1; i01++) {
  6273. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6274. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6275. id += rs;
  6276. }
  6277. id += rs * (ne01 - ir1);
  6278. }
  6279. }
  6280. } else {
  6281. GGML_ASSERT(false); // TODO: implement
  6282. }
  6283. } else {
  6284. //printf("%s: this is not optimal - fix me\n", __func__);
  6285. if (dst->type == GGML_TYPE_F32) {
  6286. size_t id = 0;
  6287. float * dst_ptr = (float *) dst->data;
  6288. for (int i03 = 0; i03 < ne03; i03++) {
  6289. for (int i02 = 0; i02 < ne02; i02++) {
  6290. id += ne00 * ir0;
  6291. for (int i01 = ir0; i01 < ir1; i01++) {
  6292. for (int i00 = 0; i00 < ne00; i00++) {
  6293. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6294. dst_ptr[id] = *src0_ptr;
  6295. id++;
  6296. }
  6297. }
  6298. id += ne00 * (ne01 - ir1);
  6299. }
  6300. }
  6301. } else if (dst->type == GGML_TYPE_F16) {
  6302. size_t id = 0;
  6303. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6304. for (int i03 = 0; i03 < ne03; i03++) {
  6305. for (int i02 = 0; i02 < ne02; i02++) {
  6306. id += ne00 * ir0;
  6307. for (int i01 = ir0; i01 < ir1; i01++) {
  6308. for (int i00 = 0; i00 < ne00; i00++) {
  6309. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6310. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6311. id++;
  6312. }
  6313. }
  6314. id += ne00 * (ne01 - ir1);
  6315. }
  6316. }
  6317. } else {
  6318. GGML_ASSERT(false); // TODO: implement
  6319. }
  6320. }
  6321. return;
  6322. }
  6323. // dst counters
  6324. int64_t i10 = 0;
  6325. int64_t i11 = 0;
  6326. int64_t i12 = 0;
  6327. int64_t i13 = 0;
  6328. if (dst->type == GGML_TYPE_F32) {
  6329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6331. i10 += ne00 * ir0;
  6332. while (i10 >= ne0) {
  6333. i10 -= ne0;
  6334. if (++i11 == ne1) {
  6335. i11 = 0;
  6336. if (++i12 == ne2) {
  6337. i12 = 0;
  6338. if (++i13 == ne3) {
  6339. i13 = 0;
  6340. }
  6341. }
  6342. }
  6343. }
  6344. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6345. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6346. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6347. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6348. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6349. if (++i10 == ne0) {
  6350. i10 = 0;
  6351. if (++i11 == ne1) {
  6352. i11 = 0;
  6353. if (++i12 == ne2) {
  6354. i12 = 0;
  6355. if (++i13 == ne3) {
  6356. i13 = 0;
  6357. }
  6358. }
  6359. }
  6360. }
  6361. }
  6362. }
  6363. i10 += ne00 * (ne01 - ir1);
  6364. while (i10 >= ne0) {
  6365. i10 -= ne0;
  6366. if (++i11 == ne1) {
  6367. i11 = 0;
  6368. if (++i12 == ne2) {
  6369. i12 = 0;
  6370. if (++i13 == ne3) {
  6371. i13 = 0;
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. }
  6378. } else if (dst->type == GGML_TYPE_F16) {
  6379. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6380. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6381. i10 += ne00 * ir0;
  6382. while (i10 >= ne0) {
  6383. i10 -= ne0;
  6384. if (++i11 == ne1) {
  6385. i11 = 0;
  6386. if (++i12 == ne2) {
  6387. i12 = 0;
  6388. if (++i13 == ne3) {
  6389. i13 = 0;
  6390. }
  6391. }
  6392. }
  6393. }
  6394. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6396. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6397. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6398. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6399. if (++i10 == ne0) {
  6400. i10 = 0;
  6401. if (++i11 == ne1) {
  6402. i11 = 0;
  6403. if (++i12 == ne2) {
  6404. i12 = 0;
  6405. if (++i13 == ne3) {
  6406. i13 = 0;
  6407. }
  6408. }
  6409. }
  6410. }
  6411. }
  6412. }
  6413. i10 += ne00 * (ne01 - ir1);
  6414. while (i10 >= ne0) {
  6415. i10 -= ne0;
  6416. if (++i11 == ne1) {
  6417. i11 = 0;
  6418. if (++i12 == ne2) {
  6419. i12 = 0;
  6420. if (++i13 == ne3) {
  6421. i13 = 0;
  6422. }
  6423. }
  6424. }
  6425. }
  6426. }
  6427. }
  6428. } else {
  6429. GGML_ASSERT(false); // TODO: implement
  6430. }
  6431. }
  6432. static void ggml_compute_forward_dup(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. struct ggml_tensor * dst) {
  6436. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6437. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6438. return;
  6439. }
  6440. switch (src0->type) {
  6441. case GGML_TYPE_F16:
  6442. {
  6443. ggml_compute_forward_dup_f16(params, src0, dst);
  6444. } break;
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_dup_f32(params, src0, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_add
  6456. static void ggml_compute_forward_add_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. const struct ggml_tensor * src1,
  6460. struct ggml_tensor * dst) {
  6461. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. const int ith = params->ith;
  6466. const int nth = params->nth;
  6467. const int nr = ggml_nrows(src0);
  6468. const int64_t ne0 = src0->ne[0];
  6469. const int64_t ne1 = src0->ne[1];
  6470. const int64_t ne2 = src0->ne[2];
  6471. const size_t nb00 = src0->nb[0];
  6472. const size_t nb01 = src0->nb[1];
  6473. const size_t nb02 = src0->nb[2];
  6474. const size_t nb03 = src0->nb[3];
  6475. const size_t nb10 = src1->nb[0];
  6476. const size_t nb11 = src1->nb[1];
  6477. const size_t nb12 = src1->nb[2];
  6478. const size_t nb13 = src1->nb[3];
  6479. const size_t nb0 = dst->nb[0];
  6480. const size_t nb1 = dst->nb[1];
  6481. const size_t nb2 = dst->nb[2];
  6482. const size_t nb3 = dst->nb[3];
  6483. GGML_ASSERT( nb0 == sizeof(float));
  6484. GGML_ASSERT(nb00 == sizeof(float));
  6485. // rows per thread
  6486. const int dr = (nr + nth - 1)/nth;
  6487. // row range for this thread
  6488. const int ir0 = dr*ith;
  6489. const int ir1 = MIN(ir0 + dr, nr);
  6490. if (nb10 == sizeof(float)) {
  6491. for (int ir = ir0; ir < ir1; ++ir) {
  6492. // src0, src1 and dst are same shape => same indices
  6493. const int i3 = ir/(ne2*ne1);
  6494. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6495. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6496. #ifdef GGML_USE_ACCELERATE
  6497. vDSP_vadd(
  6498. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6499. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6500. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6501. ne0);
  6502. #else
  6503. ggml_vec_add_f32(ne0,
  6504. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6505. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6506. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6507. #endif
  6508. // }
  6509. // }
  6510. }
  6511. } else {
  6512. // src1 is not contiguous
  6513. for (int ir = ir0; ir < ir1; ++ir) {
  6514. // src0, src1 and dst are same shape => same indices
  6515. const int i3 = ir/(ne2*ne1);
  6516. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6517. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6518. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6519. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6520. for (int i0 = 0; i0 < ne0; i0++) {
  6521. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6522. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6523. }
  6524. }
  6525. }
  6526. }
  6527. static void ggml_compute_forward_add_f16_f32(
  6528. const struct ggml_compute_params * params,
  6529. const struct ggml_tensor * src0,
  6530. const struct ggml_tensor * src1,
  6531. struct ggml_tensor * dst) {
  6532. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6534. return;
  6535. }
  6536. const int ith = params->ith;
  6537. const int nth = params->nth;
  6538. const int nr = ggml_nrows(src0);
  6539. const int64_t ne0 = src0->ne[0];
  6540. const int64_t ne1 = src0->ne[1];
  6541. const int64_t ne2 = src0->ne[2];
  6542. const size_t nb00 = src0->nb[0];
  6543. const size_t nb01 = src0->nb[1];
  6544. const size_t nb02 = src0->nb[2];
  6545. const size_t nb03 = src0->nb[3];
  6546. const size_t nb10 = src1->nb[0];
  6547. const size_t nb11 = src1->nb[1];
  6548. const size_t nb12 = src1->nb[2];
  6549. const size_t nb13 = src1->nb[3];
  6550. const size_t nb0 = dst->nb[0];
  6551. const size_t nb1 = dst->nb[1];
  6552. const size_t nb2 = dst->nb[2];
  6553. const size_t nb3 = dst->nb[3];
  6554. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6555. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6556. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6557. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6558. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6559. // rows per thread
  6560. const int dr = (nr + nth - 1)/nth;
  6561. // row range for this thread
  6562. const int ir0 = dr*ith;
  6563. const int ir1 = MIN(ir0 + dr, nr);
  6564. if (nb10 == sizeof(float)) {
  6565. for (int ir = ir0; ir < ir1; ++ir) {
  6566. // src0, src1 and dst are same shape => same indices
  6567. const int i3 = ir/(ne2*ne1);
  6568. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6569. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6570. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6571. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6572. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6573. for (int i = 0; i < ne0; i++) {
  6574. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6575. }
  6576. }
  6577. }
  6578. else {
  6579. // src1 is not contiguous
  6580. GGML_ASSERT(false);
  6581. }
  6582. }
  6583. static void ggml_compute_forward_add_f16_f16(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. const struct ggml_tensor * src1,
  6587. struct ggml_tensor * dst) {
  6588. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6590. return;
  6591. }
  6592. const int ith = params->ith;
  6593. const int nth = params->nth;
  6594. const int nr = ggml_nrows(src0);
  6595. const int64_t ne0 = src0->ne[0];
  6596. const int64_t ne1 = src0->ne[1];
  6597. const int64_t ne2 = src0->ne[2];
  6598. const size_t nb00 = src0->nb[0];
  6599. const size_t nb01 = src0->nb[1];
  6600. const size_t nb02 = src0->nb[2];
  6601. const size_t nb03 = src0->nb[3];
  6602. const size_t nb10 = src1->nb[0];
  6603. const size_t nb11 = src1->nb[1];
  6604. const size_t nb12 = src1->nb[2];
  6605. const size_t nb13 = src1->nb[3];
  6606. const size_t nb0 = dst->nb[0];
  6607. const size_t nb1 = dst->nb[1];
  6608. const size_t nb2 = dst->nb[2];
  6609. const size_t nb3 = dst->nb[3];
  6610. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6611. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6612. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6613. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6614. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6615. // rows per thread
  6616. const int dr = (nr + nth - 1)/nth;
  6617. // row range for this thread
  6618. const int ir0 = dr*ith;
  6619. const int ir1 = MIN(ir0 + dr, nr);
  6620. if (nb10 == sizeof(ggml_fp16_t)) {
  6621. for (int ir = ir0; ir < ir1; ++ir) {
  6622. // src0, src1 and dst are same shape => same indices
  6623. const int i3 = ir/(ne2*ne1);
  6624. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6625. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6626. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6627. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6628. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6629. for (int i = 0; i < ne0; i++) {
  6630. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6631. }
  6632. }
  6633. }
  6634. else {
  6635. // src1 is not contiguous
  6636. GGML_ASSERT(false);
  6637. }
  6638. }
  6639. static void ggml_compute_forward_add_q_f32(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. const struct ggml_tensor * src1,
  6643. struct ggml_tensor * dst) {
  6644. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6646. return;
  6647. }
  6648. const int nr = ggml_nrows(src0);
  6649. const int64_t ne00 = src0->ne[0];
  6650. const int64_t ne01 = src0->ne[1];
  6651. const int64_t ne02 = src0->ne[2];
  6652. //const int64_t ne03 = src0->ne[3];
  6653. const size_t nb00 = src0->nb[0];
  6654. const size_t nb01 = src0->nb[1];
  6655. const size_t nb02 = src0->nb[2];
  6656. const size_t nb03 = src0->nb[3];
  6657. const size_t nb10 = src1->nb[0];
  6658. const size_t nb11 = src1->nb[1];
  6659. const size_t nb12 = src1->nb[2];
  6660. const size_t nb13 = src1->nb[3];
  6661. const size_t nb0 = dst->nb[0];
  6662. const size_t nb1 = dst->nb[1];
  6663. const size_t nb2 = dst->nb[2];
  6664. const size_t nb3 = dst->nb[3];
  6665. const int ith = params->ith;
  6666. const int nth = params->nth;
  6667. const enum ggml_type type = src0->type;
  6668. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6669. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6670. // we don't support permuted src0 or src1
  6671. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6672. GGML_ASSERT(nb10 == sizeof(float));
  6673. // dst cannot be transposed or permuted
  6674. GGML_ASSERT(nb0 <= nb1);
  6675. GGML_ASSERT(nb1 <= nb2);
  6676. GGML_ASSERT(nb2 <= nb3);
  6677. GGML_ASSERT(ggml_is_quantized(src0->type));
  6678. GGML_ASSERT(dst->type == src0->type);
  6679. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6680. // rows per thread
  6681. const int dr = (nr + nth - 1)/nth;
  6682. // row range for this thread
  6683. const int ir0 = dr*ith;
  6684. const int ir1 = MIN(ir0 + dr, nr);
  6685. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6686. for (int ir = ir0; ir < ir1; ++ir) {
  6687. // src0 indices
  6688. const int i03 = ir/(ne02*ne01);
  6689. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6690. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6691. // src1 and dst are same shape as src0 => same indices
  6692. const int i13 = i03;
  6693. const int i12 = i02;
  6694. const int i11 = i01;
  6695. const int i3 = i03;
  6696. const int i2 = i02;
  6697. const int i1 = i01;
  6698. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6699. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6700. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6701. assert(ne00 % 32 == 0);
  6702. // unquantize row from src0 to temp buffer
  6703. dequantize_row_q(src0_row, wdata, ne00);
  6704. // add src1
  6705. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6706. // quantize row to dst
  6707. quantize_row_q(wdata, dst_row, ne00);
  6708. }
  6709. }
  6710. static void ggml_compute_forward_add(
  6711. const struct ggml_compute_params * params,
  6712. const struct ggml_tensor * src0,
  6713. const struct ggml_tensor * src1,
  6714. struct ggml_tensor * dst) {
  6715. switch (src0->type) {
  6716. case GGML_TYPE_F32:
  6717. {
  6718. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6719. } break;
  6720. case GGML_TYPE_F16:
  6721. {
  6722. if (src1->type == GGML_TYPE_F16) {
  6723. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6724. }
  6725. else if (src1->type == GGML_TYPE_F32) {
  6726. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6727. }
  6728. else {
  6729. GGML_ASSERT(false);
  6730. }
  6731. } break;
  6732. case GGML_TYPE_Q4_0:
  6733. case GGML_TYPE_Q4_1:
  6734. case GGML_TYPE_Q5_0:
  6735. case GGML_TYPE_Q5_1:
  6736. case GGML_TYPE_Q8_0:
  6737. case GGML_TYPE_Q2_K:
  6738. case GGML_TYPE_Q3_K:
  6739. case GGML_TYPE_Q4_K:
  6740. case GGML_TYPE_Q5_K:
  6741. case GGML_TYPE_Q6_K:
  6742. {
  6743. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6744. } break;
  6745. default:
  6746. {
  6747. GGML_ASSERT(false);
  6748. } break;
  6749. }
  6750. }
  6751. // ggml_compute_forward_add1
  6752. static void ggml_compute_forward_add1_f32(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. const struct ggml_tensor * src1,
  6756. struct ggml_tensor * dst) {
  6757. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6758. GGML_ASSERT(ggml_is_scalar(src1));
  6759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6760. return;
  6761. }
  6762. const int ith = params->ith;
  6763. const int nth = params->nth;
  6764. const int nr = ggml_nrows(src0);
  6765. const int64_t ne0 = src0->ne[0];
  6766. const int64_t ne1 = src0->ne[1];
  6767. const int64_t ne2 = src0->ne[2];
  6768. const size_t nb00 = src0->nb[0];
  6769. const size_t nb01 = src0->nb[1];
  6770. const size_t nb02 = src0->nb[2];
  6771. const size_t nb03 = src0->nb[3];
  6772. const size_t nb0 = dst->nb[0];
  6773. const size_t nb1 = dst->nb[1];
  6774. const size_t nb2 = dst->nb[2];
  6775. const size_t nb3 = dst->nb[3];
  6776. GGML_ASSERT( nb0 == sizeof(float));
  6777. GGML_ASSERT(nb00 == sizeof(float));
  6778. // rows per thread
  6779. const int dr = (nr + nth - 1)/nth;
  6780. // row range for this thread
  6781. const int ir0 = dr*ith;
  6782. const int ir1 = MIN(ir0 + dr, nr);
  6783. for (int ir = ir0; ir < ir1; ++ir) {
  6784. // src0 and dst are same shape => same indices
  6785. const int i3 = ir/(ne2*ne1);
  6786. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6787. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6788. #ifdef GGML_USE_ACCELERATE
  6789. UNUSED(ggml_vec_add1_f32);
  6790. vDSP_vadd(
  6791. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6792. (float *) ((char *) src1->data), 0,
  6793. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6794. ne0);
  6795. #else
  6796. ggml_vec_add1_f32(ne0,
  6797. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6798. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6799. *(float *) src1->data);
  6800. #endif
  6801. }
  6802. }
  6803. static void ggml_compute_forward_add1_f16_f32(
  6804. const struct ggml_compute_params * params,
  6805. const struct ggml_tensor * src0,
  6806. const struct ggml_tensor * src1,
  6807. struct ggml_tensor * dst) {
  6808. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6809. GGML_ASSERT(ggml_is_scalar(src1));
  6810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6811. return;
  6812. }
  6813. // scalar to add
  6814. const float v = *(float *) src1->data;
  6815. const int ith = params->ith;
  6816. const int nth = params->nth;
  6817. const int nr = ggml_nrows(src0);
  6818. const int64_t ne0 = src0->ne[0];
  6819. const int64_t ne1 = src0->ne[1];
  6820. const int64_t ne2 = src0->ne[2];
  6821. const size_t nb00 = src0->nb[0];
  6822. const size_t nb01 = src0->nb[1];
  6823. const size_t nb02 = src0->nb[2];
  6824. const size_t nb03 = src0->nb[3];
  6825. const size_t nb0 = dst->nb[0];
  6826. const size_t nb1 = dst->nb[1];
  6827. const size_t nb2 = dst->nb[2];
  6828. const size_t nb3 = dst->nb[3];
  6829. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6830. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6831. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6832. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6833. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6834. // rows per thread
  6835. const int dr = (nr + nth - 1)/nth;
  6836. // row range for this thread
  6837. const int ir0 = dr*ith;
  6838. const int ir1 = MIN(ir0 + dr, nr);
  6839. for (int ir = ir0; ir < ir1; ++ir) {
  6840. // src0 and dst are same shape => same indices
  6841. const int i3 = ir/(ne2*ne1);
  6842. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6843. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6844. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6845. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6846. for (int i = 0; i < ne0; i++) {
  6847. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6848. }
  6849. }
  6850. }
  6851. static void ggml_compute_forward_add1_f16_f16(
  6852. const struct ggml_compute_params * params,
  6853. const struct ggml_tensor * src0,
  6854. const struct ggml_tensor * src1,
  6855. struct ggml_tensor * dst) {
  6856. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6857. GGML_ASSERT(ggml_is_scalar(src1));
  6858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6859. return;
  6860. }
  6861. // scalar to add
  6862. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6863. const int ith = params->ith;
  6864. const int nth = params->nth;
  6865. const int nr = ggml_nrows(src0);
  6866. const int64_t ne0 = src0->ne[0];
  6867. const int64_t ne1 = src0->ne[1];
  6868. const int64_t ne2 = src0->ne[2];
  6869. const size_t nb00 = src0->nb[0];
  6870. const size_t nb01 = src0->nb[1];
  6871. const size_t nb02 = src0->nb[2];
  6872. const size_t nb03 = src0->nb[3];
  6873. const size_t nb0 = dst->nb[0];
  6874. const size_t nb1 = dst->nb[1];
  6875. const size_t nb2 = dst->nb[2];
  6876. const size_t nb3 = dst->nb[3];
  6877. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6878. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6879. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6880. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6881. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6882. // rows per thread
  6883. const int dr = (nr + nth - 1)/nth;
  6884. // row range for this thread
  6885. const int ir0 = dr*ith;
  6886. const int ir1 = MIN(ir0 + dr, nr);
  6887. for (int ir = ir0; ir < ir1; ++ir) {
  6888. // src0 and dst are same shape => same indices
  6889. const int i3 = ir/(ne2*ne1);
  6890. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6891. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6892. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6893. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6894. for (int i = 0; i < ne0; i++) {
  6895. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6896. }
  6897. }
  6898. }
  6899. static void ggml_compute_forward_add1_q_f32(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. const struct ggml_tensor * src1,
  6903. struct ggml_tensor * dst) {
  6904. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6905. GGML_ASSERT(ggml_is_scalar(src1));
  6906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6907. return;
  6908. }
  6909. // scalar to add
  6910. const float v = *(float *) src1->data;
  6911. const int ith = params->ith;
  6912. const int nth = params->nth;
  6913. const int nr = ggml_nrows(src0);
  6914. const int64_t ne0 = src0->ne[0];
  6915. const int64_t ne1 = src0->ne[1];
  6916. const int64_t ne2 = src0->ne[2];
  6917. const size_t nb00 = src0->nb[0];
  6918. const size_t nb01 = src0->nb[1];
  6919. const size_t nb02 = src0->nb[2];
  6920. const size_t nb03 = src0->nb[3];
  6921. const size_t nb0 = dst->nb[0];
  6922. const size_t nb1 = dst->nb[1];
  6923. const size_t nb2 = dst->nb[2];
  6924. const size_t nb3 = dst->nb[3];
  6925. const enum ggml_type type = src0->type;
  6926. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6927. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6928. // we don't support permuted src0
  6929. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6930. // dst cannot be transposed or permuted
  6931. GGML_ASSERT(nb0 <= nb1);
  6932. GGML_ASSERT(nb1 <= nb2);
  6933. GGML_ASSERT(nb2 <= nb3);
  6934. GGML_ASSERT(ggml_is_quantized(src0->type));
  6935. GGML_ASSERT(dst->type == src0->type);
  6936. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6937. // rows per thread
  6938. const int dr = (nr + nth - 1)/nth;
  6939. // row range for this thread
  6940. const int ir0 = dr*ith;
  6941. const int ir1 = MIN(ir0 + dr, nr);
  6942. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6943. for (int ir = ir0; ir < ir1; ++ir) {
  6944. // src0 and dst are same shape => same indices
  6945. const int i3 = ir/(ne2*ne1);
  6946. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6947. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6948. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6949. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6950. assert(ne0 % 32 == 0);
  6951. // unquantize row from src0 to temp buffer
  6952. dequantize_row_q(src0_row, wdata, ne0);
  6953. // add src1
  6954. ggml_vec_acc1_f32(ne0, wdata, v);
  6955. // quantize row to dst
  6956. quantize_row_q(wdata, dst_row, ne0);
  6957. }
  6958. }
  6959. static void ggml_compute_forward_add1(
  6960. const struct ggml_compute_params * params,
  6961. const struct ggml_tensor * src0,
  6962. const struct ggml_tensor * src1,
  6963. struct ggml_tensor * dst) {
  6964. switch (src0->type) {
  6965. case GGML_TYPE_F32:
  6966. {
  6967. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6968. } break;
  6969. case GGML_TYPE_F16:
  6970. {
  6971. if (src1->type == GGML_TYPE_F16) {
  6972. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6973. }
  6974. else if (src1->type == GGML_TYPE_F32) {
  6975. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6976. }
  6977. else {
  6978. GGML_ASSERT(false);
  6979. }
  6980. } break;
  6981. case GGML_TYPE_Q4_0:
  6982. case GGML_TYPE_Q4_1:
  6983. case GGML_TYPE_Q5_0:
  6984. case GGML_TYPE_Q5_1:
  6985. case GGML_TYPE_Q8_0:
  6986. case GGML_TYPE_Q8_1:
  6987. case GGML_TYPE_Q2_K:
  6988. case GGML_TYPE_Q3_K:
  6989. case GGML_TYPE_Q4_K:
  6990. case GGML_TYPE_Q5_K:
  6991. case GGML_TYPE_Q6_K:
  6992. {
  6993. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6994. } break;
  6995. default:
  6996. {
  6997. GGML_ASSERT(false);
  6998. } break;
  6999. }
  7000. }
  7001. // ggml_compute_forward_acc
  7002. static void ggml_compute_forward_acc_f32(
  7003. const struct ggml_compute_params * params,
  7004. const struct ggml_tensor * src0,
  7005. const struct ggml_tensor * src1,
  7006. const struct ggml_tensor * opt0,
  7007. struct ggml_tensor * dst) {
  7008. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7009. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7010. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7011. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7012. // view src0 and dst with these strides and data offset inbytes during acc
  7013. // nb0 is implicitely element_size because src0 and dst are contiguous
  7014. size_t nb1 = ((int32_t *) opt0->data)[0];
  7015. size_t nb2 = ((int32_t *) opt0->data)[1];
  7016. size_t nb3 = ((int32_t *) opt0->data)[2];
  7017. size_t offset = ((int32_t *) opt0->data)[3];
  7018. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7019. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7020. // memcpy needs to be synchronized across threads to avoid race conditions.
  7021. // => do it in INIT phase
  7022. memcpy(
  7023. ((char *) dst->data),
  7024. ((char *) src0->data),
  7025. ggml_nbytes(dst));
  7026. }
  7027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7028. return;
  7029. }
  7030. const int ith = params->ith;
  7031. const int nth = params->nth;
  7032. const int nr = ggml_nrows(src1);
  7033. const int nc = src1->ne[0];
  7034. const int64_t ne10 = src1->ne[0];
  7035. const int64_t ne11 = src1->ne[1];
  7036. const int64_t ne12 = src1->ne[2];
  7037. const int64_t ne13 = src1->ne[3];
  7038. const size_t nb10 = src1->nb[0];
  7039. const size_t nb11 = src1->nb[1];
  7040. const size_t nb12 = src1->nb[2];
  7041. const size_t nb13 = src1->nb[3];
  7042. // src0 and dst as viewed during acc
  7043. const size_t nb0 = ggml_element_size(src0);
  7044. const size_t nb00 = nb0;
  7045. const size_t nb01 = nb1;
  7046. const size_t nb02 = nb2;
  7047. const size_t nb03 = nb3;
  7048. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7049. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7050. GGML_ASSERT(nb10 == sizeof(float));
  7051. // rows per thread
  7052. const int dr = (nr + nth - 1)/nth;
  7053. // row range for this thread
  7054. const int ir0 = dr*ith;
  7055. const int ir1 = MIN(ir0 + dr, nr);
  7056. for (int ir = ir0; ir < ir1; ++ir) {
  7057. // src0 and dst are viewed with shape of src1 and offset
  7058. // => same indices
  7059. const int i3 = ir/(ne12*ne11);
  7060. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7061. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7062. #ifdef GGML_USE_ACCELERATE
  7063. vDSP_vadd(
  7064. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7065. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7066. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7067. #else
  7068. ggml_vec_add_f32(nc,
  7069. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7070. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7071. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7072. #endif
  7073. }
  7074. }
  7075. static void ggml_compute_forward_acc(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. const struct ggml_tensor * src1,
  7079. const struct ggml_tensor * opt0,
  7080. struct ggml_tensor * dst) {
  7081. switch (src0->type) {
  7082. case GGML_TYPE_F32:
  7083. {
  7084. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7085. } break;
  7086. case GGML_TYPE_F16:
  7087. case GGML_TYPE_Q4_0:
  7088. case GGML_TYPE_Q4_1:
  7089. case GGML_TYPE_Q5_0:
  7090. case GGML_TYPE_Q5_1:
  7091. case GGML_TYPE_Q8_0:
  7092. case GGML_TYPE_Q8_1:
  7093. case GGML_TYPE_Q2_K:
  7094. case GGML_TYPE_Q3_K:
  7095. case GGML_TYPE_Q4_K:
  7096. case GGML_TYPE_Q5_K:
  7097. case GGML_TYPE_Q6_K:
  7098. default:
  7099. {
  7100. GGML_ASSERT(false);
  7101. } break;
  7102. }
  7103. }
  7104. // ggml_compute_forward_sub
  7105. static void ggml_compute_forward_sub_f32(
  7106. const struct ggml_compute_params * params,
  7107. const struct ggml_tensor * src0,
  7108. const struct ggml_tensor * src1,
  7109. struct ggml_tensor * dst) {
  7110. assert(params->ith == 0);
  7111. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7113. return;
  7114. }
  7115. const int nr = ggml_nrows(src0);
  7116. const int64_t ne0 = src0->ne[0];
  7117. const int64_t ne1 = src0->ne[1];
  7118. const int64_t ne2 = src0->ne[2];
  7119. const size_t nb00 = src0->nb[0];
  7120. const size_t nb01 = src0->nb[1];
  7121. const size_t nb02 = src0->nb[2];
  7122. const size_t nb03 = src0->nb[3];
  7123. const size_t nb10 = src1->nb[0];
  7124. const size_t nb11 = src1->nb[1];
  7125. const size_t nb12 = src1->nb[2];
  7126. const size_t nb13 = src1->nb[3];
  7127. const size_t nb0 = dst->nb[0];
  7128. const size_t nb1 = dst->nb[1];
  7129. const size_t nb2 = dst->nb[2];
  7130. const size_t nb3 = dst->nb[3];
  7131. GGML_ASSERT( nb0 == sizeof(float));
  7132. GGML_ASSERT(nb00 == sizeof(float));
  7133. if (nb10 == sizeof(float)) {
  7134. for (int ir = 0; ir < nr; ++ir) {
  7135. // src0, src1 and dst are same shape => same indices
  7136. const int i3 = ir/(ne2*ne1);
  7137. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7138. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7139. #ifdef GGML_USE_ACCELERATE
  7140. vDSP_vsub(
  7141. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7142. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7143. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7144. ne0);
  7145. #else
  7146. ggml_vec_sub_f32(ne0,
  7147. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7148. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7149. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7150. #endif
  7151. // }
  7152. // }
  7153. }
  7154. } else {
  7155. // src1 is not contiguous
  7156. for (int ir = 0; ir < nr; ++ir) {
  7157. // src0, src1 and dst are same shape => same indices
  7158. const int i3 = ir/(ne2*ne1);
  7159. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7160. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7161. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7162. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7163. for (int i0 = 0; i0 < ne0; i0++) {
  7164. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7165. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7166. }
  7167. }
  7168. }
  7169. }
  7170. static void ggml_compute_forward_sub(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0,
  7173. const struct ggml_tensor * src1,
  7174. struct ggml_tensor * dst) {
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. {
  7178. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_mul
  7187. static void ggml_compute_forward_mul_f32(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. const struct ggml_tensor * src1,
  7191. struct ggml_tensor * dst) {
  7192. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7194. return;
  7195. }
  7196. const int ith = params->ith;
  7197. const int nth = params->nth;
  7198. #ifdef GGML_USE_CLBLAST
  7199. if (src1->backend == GGML_BACKEND_GPU) {
  7200. if (ith == 0) {
  7201. ggml_cl_mul(src0, src1, dst);
  7202. }
  7203. return;
  7204. }
  7205. #endif
  7206. const int64_t nr = ggml_nrows(src0);
  7207. const int64_t ne00 = src0->ne[0];
  7208. const int64_t ne01 = src0->ne[1];
  7209. const int64_t ne02 = src0->ne[2];
  7210. const int64_t ne10 = src1->ne[0];
  7211. const int64_t ne11 = src1->ne[1];
  7212. const int64_t ne12 = src1->ne[2];
  7213. const int64_t ne13 = src1->ne[3];
  7214. const size_t nb00 = src0->nb[0];
  7215. const size_t nb01 = src0->nb[1];
  7216. const size_t nb02 = src0->nb[2];
  7217. const size_t nb03 = src0->nb[3];
  7218. const size_t nb10 = src1->nb[0];
  7219. const size_t nb11 = src1->nb[1];
  7220. const size_t nb12 = src1->nb[2];
  7221. const size_t nb13 = src1->nb[3];
  7222. const size_t nb0 = dst->nb[0];
  7223. const size_t nb1 = dst->nb[1];
  7224. const size_t nb2 = dst->nb[2];
  7225. const size_t nb3 = dst->nb[3];
  7226. GGML_ASSERT( nb0 == sizeof(float));
  7227. GGML_ASSERT(nb00 == sizeof(float));
  7228. GGML_ASSERT(ne00 == ne10);
  7229. if (nb10 == sizeof(float)) {
  7230. for (int64_t ir = ith; ir < nr; ir += nth) {
  7231. // src0 and dst are same shape => same indices
  7232. const int64_t i03 = ir/(ne02*ne01);
  7233. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7234. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7235. const int64_t i13 = i03 % ne13;
  7236. const int64_t i12 = i02 % ne12;
  7237. const int64_t i11 = i01 % ne11;
  7238. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7239. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7240. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7241. #ifdef GGML_USE_ACCELERATE
  7242. UNUSED(ggml_vec_mul_f32);
  7243. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7244. #else
  7245. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7246. #endif
  7247. // }
  7248. // }
  7249. }
  7250. } else {
  7251. // src1 is not contiguous
  7252. for (int64_t ir = ith; ir < nr; ir += nth) {
  7253. // src0 and dst are same shape => same indices
  7254. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7255. const int64_t i03 = ir/(ne02*ne01);
  7256. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7257. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7258. const int64_t i13 = i03 % ne13;
  7259. const int64_t i12 = i02 % ne12;
  7260. const int64_t i11 = i01 % ne11;
  7261. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7262. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7263. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7264. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7265. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7266. }
  7267. }
  7268. }
  7269. }
  7270. static void ggml_compute_forward_mul(
  7271. const struct ggml_compute_params * params,
  7272. const struct ggml_tensor * src0,
  7273. const struct ggml_tensor * src1,
  7274. struct ggml_tensor * dst) {
  7275. switch (src0->type) {
  7276. case GGML_TYPE_F32:
  7277. {
  7278. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7279. } break;
  7280. default:
  7281. {
  7282. GGML_ASSERT(false);
  7283. } break;
  7284. }
  7285. }
  7286. // ggml_compute_forward_div
  7287. static void ggml_compute_forward_div_f32(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. const struct ggml_tensor * src1,
  7291. struct ggml_tensor * dst) {
  7292. assert(params->ith == 0);
  7293. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7295. return;
  7296. }
  7297. const int nr = ggml_nrows(src0);
  7298. const int64_t ne0 = src0->ne[0];
  7299. const int64_t ne1 = src0->ne[1];
  7300. const int64_t ne2 = src0->ne[2];
  7301. const size_t nb00 = src0->nb[0];
  7302. const size_t nb01 = src0->nb[1];
  7303. const size_t nb02 = src0->nb[2];
  7304. const size_t nb03 = src0->nb[3];
  7305. const size_t nb10 = src1->nb[0];
  7306. const size_t nb11 = src1->nb[1];
  7307. const size_t nb12 = src1->nb[2];
  7308. const size_t nb13 = src1->nb[3];
  7309. const size_t nb0 = dst->nb[0];
  7310. const size_t nb1 = dst->nb[1];
  7311. const size_t nb2 = dst->nb[2];
  7312. const size_t nb3 = dst->nb[3];
  7313. GGML_ASSERT( nb0 == sizeof(float));
  7314. GGML_ASSERT(nb00 == sizeof(float));
  7315. if (nb10 == sizeof(float)) {
  7316. for (int ir = 0; ir < nr; ++ir) {
  7317. // src0, src1 and dst are same shape => same indices
  7318. const int i3 = ir/(ne2*ne1);
  7319. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7320. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7321. #ifdef GGML_USE_ACCELERATE
  7322. vDSP_vdiv(
  7323. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7324. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7325. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7326. ne0);
  7327. #else
  7328. ggml_vec_div_f32(ne0,
  7329. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7330. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7331. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7332. #endif
  7333. // }
  7334. // }
  7335. }
  7336. } else {
  7337. // src1 is not contiguous
  7338. for (int ir = 0; ir < nr; ++ir) {
  7339. // src0, src1 and dst are same shape => same indices
  7340. const int i3 = ir/(ne2*ne1);
  7341. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7342. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7343. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7344. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7345. for (int i0 = 0; i0 < ne0; i0++) {
  7346. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7347. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7348. }
  7349. }
  7350. }
  7351. }
  7352. static void ggml_compute_forward_div(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. const struct ggml_tensor * src1,
  7356. struct ggml_tensor * dst) {
  7357. switch (src0->type) {
  7358. case GGML_TYPE_F32:
  7359. {
  7360. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7361. } break;
  7362. default:
  7363. {
  7364. GGML_ASSERT(false);
  7365. } break;
  7366. }
  7367. }
  7368. // ggml_compute_forward_sqr
  7369. static void ggml_compute_forward_sqr_f32(
  7370. const struct ggml_compute_params * params,
  7371. const struct ggml_tensor * src0,
  7372. struct ggml_tensor * dst) {
  7373. assert(params->ith == 0);
  7374. assert(ggml_are_same_shape(src0, dst));
  7375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7376. return;
  7377. }
  7378. const int n = ggml_nrows(src0);
  7379. const int nc = src0->ne[0];
  7380. assert( dst->nb[0] == sizeof(float));
  7381. assert(src0->nb[0] == sizeof(float));
  7382. for (int i = 0; i < n; i++) {
  7383. ggml_vec_sqr_f32(nc,
  7384. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7385. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7386. }
  7387. }
  7388. static void ggml_compute_forward_sqr(
  7389. const struct ggml_compute_params * params,
  7390. const struct ggml_tensor * src0,
  7391. struct ggml_tensor * dst) {
  7392. switch (src0->type) {
  7393. case GGML_TYPE_F32:
  7394. {
  7395. ggml_compute_forward_sqr_f32(params, src0, dst);
  7396. } break;
  7397. default:
  7398. {
  7399. GGML_ASSERT(false);
  7400. } break;
  7401. }
  7402. }
  7403. // ggml_compute_forward_sqrt
  7404. static void ggml_compute_forward_sqrt_f32(
  7405. const struct ggml_compute_params * params,
  7406. const struct ggml_tensor * src0,
  7407. struct ggml_tensor * dst) {
  7408. assert(params->ith == 0);
  7409. assert(ggml_are_same_shape(src0, dst));
  7410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7411. return;
  7412. }
  7413. const int n = ggml_nrows(src0);
  7414. const int nc = src0->ne[0];
  7415. assert( dst->nb[0] == sizeof(float));
  7416. assert(src0->nb[0] == sizeof(float));
  7417. for (int i = 0; i < n; i++) {
  7418. ggml_vec_sqrt_f32(nc,
  7419. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7420. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7421. }
  7422. }
  7423. static void ggml_compute_forward_sqrt(
  7424. const struct ggml_compute_params * params,
  7425. const struct ggml_tensor * src0,
  7426. struct ggml_tensor * dst) {
  7427. switch (src0->type) {
  7428. case GGML_TYPE_F32:
  7429. {
  7430. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7431. } break;
  7432. default:
  7433. {
  7434. GGML_ASSERT(false);
  7435. } break;
  7436. }
  7437. }
  7438. // ggml_compute_forward_log
  7439. static void ggml_compute_forward_log_f32(
  7440. const struct ggml_compute_params * params,
  7441. const struct ggml_tensor * src0,
  7442. struct ggml_tensor * dst) {
  7443. GGML_ASSERT(params->ith == 0);
  7444. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7445. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7446. return;
  7447. }
  7448. const int n = ggml_nrows(src0);
  7449. const int nc = src0->ne[0];
  7450. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7451. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7452. for (int i = 0; i < n; i++) {
  7453. ggml_vec_log_f32(nc,
  7454. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7455. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7456. }
  7457. }
  7458. static void ggml_compute_forward_log(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. struct ggml_tensor * dst) {
  7462. switch (src0->type) {
  7463. case GGML_TYPE_F32:
  7464. {
  7465. ggml_compute_forward_log_f32(params, src0, dst);
  7466. } break;
  7467. default:
  7468. {
  7469. GGML_ASSERT(false);
  7470. } break;
  7471. }
  7472. }
  7473. // ggml_compute_forward_sum
  7474. static void ggml_compute_forward_sum_f32(
  7475. const struct ggml_compute_params * params,
  7476. const struct ggml_tensor * src0,
  7477. struct ggml_tensor * dst) {
  7478. assert(params->ith == 0);
  7479. assert(ggml_is_scalar(dst));
  7480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7481. return;
  7482. }
  7483. assert(ggml_is_scalar(dst));
  7484. assert(src0->nb[0] == sizeof(float));
  7485. const int64_t ne00 = src0->ne[0];
  7486. const int64_t ne01 = src0->ne[1];
  7487. const int64_t ne02 = src0->ne[2];
  7488. const int64_t ne03 = src0->ne[3];
  7489. const size_t nb01 = src0->nb[1];
  7490. const size_t nb02 = src0->nb[2];
  7491. const size_t nb03 = src0->nb[3];
  7492. ggml_float sum = 0;
  7493. ggml_float row_sum = 0;
  7494. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7495. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7496. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7497. ggml_vec_sum_ggf(ne00,
  7498. &row_sum,
  7499. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7500. sum += row_sum;
  7501. }
  7502. }
  7503. }
  7504. ((float *) dst->data)[0] = sum;
  7505. }
  7506. static void ggml_compute_forward_sum(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. struct ggml_tensor * dst) {
  7510. switch (src0->type) {
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_sum_f32(params, src0, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_sum_rows
  7522. static void ggml_compute_forward_sum_rows_f32(
  7523. const struct ggml_compute_params * params,
  7524. const struct ggml_tensor * src0,
  7525. struct ggml_tensor * dst) {
  7526. GGML_ASSERT(params->ith == 0);
  7527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7528. return;
  7529. }
  7530. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7531. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7532. const int64_t ne00 = src0->ne[0];
  7533. const int64_t ne01 = src0->ne[1];
  7534. const int64_t ne02 = src0->ne[2];
  7535. const int64_t ne03 = src0->ne[3];
  7536. const int64_t ne0 = dst->ne[0];
  7537. const int64_t ne1 = dst->ne[1];
  7538. const int64_t ne2 = dst->ne[2];
  7539. const int64_t ne3 = dst->ne[3];
  7540. GGML_ASSERT(ne0 == 1);
  7541. GGML_ASSERT(ne1 == ne01);
  7542. GGML_ASSERT(ne2 == ne02);
  7543. GGML_ASSERT(ne3 == ne03);
  7544. const size_t nb01 = src0->nb[1];
  7545. const size_t nb02 = src0->nb[2];
  7546. const size_t nb03 = src0->nb[3];
  7547. const size_t nb1 = dst->nb[1];
  7548. const size_t nb2 = dst->nb[2];
  7549. const size_t nb3 = dst->nb[3];
  7550. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7551. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7552. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7553. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7554. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7555. float row_sum = 0;
  7556. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7557. dst_row[0] = row_sum;
  7558. }
  7559. }
  7560. }
  7561. }
  7562. static void ggml_compute_forward_sum_rows(
  7563. const struct ggml_compute_params * params,
  7564. const struct ggml_tensor * src0,
  7565. struct ggml_tensor * dst) {
  7566. switch (src0->type) {
  7567. case GGML_TYPE_F32:
  7568. {
  7569. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7570. } break;
  7571. default:
  7572. {
  7573. GGML_ASSERT(false);
  7574. } break;
  7575. }
  7576. }
  7577. // ggml_compute_forward_mean
  7578. static void ggml_compute_forward_mean_f32(
  7579. const struct ggml_compute_params * params,
  7580. const struct ggml_tensor * src0,
  7581. struct ggml_tensor * dst) {
  7582. assert(params->ith == 0);
  7583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7584. return;
  7585. }
  7586. assert(src0->nb[0] == sizeof(float));
  7587. const int64_t ne00 = src0->ne[0];
  7588. const int64_t ne01 = src0->ne[1];
  7589. const int64_t ne02 = src0->ne[2];
  7590. const int64_t ne03 = src0->ne[3];
  7591. const size_t nb01 = src0->nb[1];
  7592. const size_t nb02 = src0->nb[2];
  7593. const size_t nb03 = src0->nb[3];
  7594. const int64_t ne0 = dst->ne[0];
  7595. const int64_t ne1 = dst->ne[1];
  7596. const int64_t ne2 = dst->ne[2];
  7597. const int64_t ne3 = dst->ne[3];
  7598. assert(ne0 == 1);
  7599. assert(ne1 == ne01);
  7600. assert(ne2 == ne02);
  7601. assert(ne3 == ne03);
  7602. UNUSED(ne0);
  7603. UNUSED(ne1);
  7604. UNUSED(ne2);
  7605. UNUSED(ne3);
  7606. const size_t nb1 = dst->nb[1];
  7607. const size_t nb2 = dst->nb[2];
  7608. const size_t nb3 = dst->nb[3];
  7609. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7610. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7611. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7612. ggml_vec_sum_f32(ne00,
  7613. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7614. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7615. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7616. }
  7617. }
  7618. }
  7619. }
  7620. static void ggml_compute_forward_mean(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. struct ggml_tensor * dst) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. {
  7627. ggml_compute_forward_mean_f32(params, src0, dst);
  7628. } break;
  7629. default:
  7630. {
  7631. GGML_ASSERT(false);
  7632. } break;
  7633. }
  7634. }
  7635. // ggml_compute_forward_repeat
  7636. static void ggml_compute_forward_repeat_f32(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. struct ggml_tensor * dst) {
  7640. GGML_ASSERT(params->ith == 0);
  7641. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. const int64_t ne0 = dst->ne[0];
  7646. const int64_t ne1 = dst->ne[1];
  7647. const int64_t ne2 = dst->ne[2];
  7648. const int64_t ne3 = dst->ne[3];
  7649. const int64_t ne00 = src0->ne[0];
  7650. const int64_t ne01 = src0->ne[1];
  7651. const int64_t ne02 = src0->ne[2];
  7652. const int64_t ne03 = src0->ne[3];
  7653. const size_t nb0 = dst->nb[0];
  7654. const size_t nb1 = dst->nb[1];
  7655. const size_t nb2 = dst->nb[2];
  7656. const size_t nb3 = dst->nb[3];
  7657. const size_t nb00 = src0->nb[0];
  7658. const size_t nb01 = src0->nb[1];
  7659. const size_t nb02 = src0->nb[2];
  7660. const size_t nb03 = src0->nb[3];
  7661. // guaranteed to be an integer due to the check in ggml_can_repeat
  7662. const int nr0 = (int)(ne0/ne00);
  7663. const int nr1 = (int)(ne1/ne01);
  7664. const int nr2 = (int)(ne2/ne02);
  7665. const int nr3 = (int)(ne3/ne03);
  7666. // TODO: support for transposed / permuted tensors
  7667. GGML_ASSERT(nb0 == sizeof(float));
  7668. GGML_ASSERT(nb00 == sizeof(float));
  7669. // TODO: maybe this is not optimal?
  7670. for (int i3 = 0; i3 < nr3; i3++) {
  7671. for (int k3 = 0; k3 < ne03; k3++) {
  7672. for (int i2 = 0; i2 < nr2; i2++) {
  7673. for (int k2 = 0; k2 < ne02; k2++) {
  7674. for (int i1 = 0; i1 < nr1; i1++) {
  7675. for (int k1 = 0; k1 < ne01; k1++) {
  7676. for (int i0 = 0; i0 < nr0; i0++) {
  7677. ggml_vec_cpy_f32(ne00,
  7678. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7679. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7680. }
  7681. }
  7682. }
  7683. }
  7684. }
  7685. }
  7686. }
  7687. }
  7688. static void ggml_compute_forward_repeat(
  7689. const struct ggml_compute_params * params,
  7690. const struct ggml_tensor * src0,
  7691. struct ggml_tensor * dst) {
  7692. switch (src0->type) {
  7693. case GGML_TYPE_F32:
  7694. {
  7695. ggml_compute_forward_repeat_f32(params, src0, dst);
  7696. } break;
  7697. default:
  7698. {
  7699. GGML_ASSERT(false);
  7700. } break;
  7701. }
  7702. }
  7703. // ggml_compute_forward_repeat_back
  7704. static void ggml_compute_forward_repeat_back_f32(
  7705. const struct ggml_compute_params * params,
  7706. const struct ggml_tensor * src0,
  7707. struct ggml_tensor * dst) {
  7708. GGML_ASSERT(params->ith == 0);
  7709. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7710. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7711. return;
  7712. }
  7713. const int64_t ne0 = dst->ne[0];
  7714. const int64_t ne1 = dst->ne[1];
  7715. const int64_t ne2 = dst->ne[2];
  7716. const int64_t ne3 = dst->ne[3];
  7717. const int64_t ne00 = src0->ne[0];
  7718. const int64_t ne01 = src0->ne[1];
  7719. const int64_t ne02 = src0->ne[2];
  7720. const int64_t ne03 = src0->ne[3];
  7721. const size_t nb0 = dst->nb[0];
  7722. const size_t nb1 = dst->nb[1];
  7723. const size_t nb2 = dst->nb[2];
  7724. const size_t nb3 = dst->nb[3];
  7725. const size_t nb00 = src0->nb[0];
  7726. const size_t nb01 = src0->nb[1];
  7727. const size_t nb02 = src0->nb[2];
  7728. const size_t nb03 = src0->nb[3];
  7729. // guaranteed to be an integer due to the check in ggml_can_repeat
  7730. const int nr0 = (int)(ne00/ne0);
  7731. const int nr1 = (int)(ne01/ne1);
  7732. const int nr2 = (int)(ne02/ne2);
  7733. const int nr3 = (int)(ne03/ne3);
  7734. // TODO: support for transposed / permuted tensors
  7735. GGML_ASSERT(nb0 == sizeof(float));
  7736. GGML_ASSERT(nb00 == sizeof(float));
  7737. if (ggml_is_contiguous(dst)) {
  7738. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7739. } else {
  7740. for (int k3 = 0; k3 < ne3; k3++) {
  7741. for (int k2 = 0; k2 < ne2; k2++) {
  7742. for (int k1 = 0; k1 < ne1; k1++) {
  7743. ggml_vec_set_f32(ne0,
  7744. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7745. 0);
  7746. }
  7747. }
  7748. }
  7749. }
  7750. // TODO: maybe this is not optimal?
  7751. for (int i3 = 0; i3 < nr3; i3++) {
  7752. for (int k3 = 0; k3 < ne3; k3++) {
  7753. for (int i2 = 0; i2 < nr2; i2++) {
  7754. for (int k2 = 0; k2 < ne2; k2++) {
  7755. for (int i1 = 0; i1 < nr1; i1++) {
  7756. for (int k1 = 0; k1 < ne1; k1++) {
  7757. for (int i0 = 0; i0 < nr0; i0++) {
  7758. ggml_vec_acc_f32(ne0,
  7759. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7760. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7761. }
  7762. }
  7763. }
  7764. }
  7765. }
  7766. }
  7767. }
  7768. }
  7769. static void ggml_compute_forward_repeat_back(
  7770. const struct ggml_compute_params * params,
  7771. const struct ggml_tensor * src0,
  7772. struct ggml_tensor * dst) {
  7773. switch (src0->type) {
  7774. case GGML_TYPE_F32:
  7775. {
  7776. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7777. } break;
  7778. default:
  7779. {
  7780. GGML_ASSERT(false);
  7781. } break;
  7782. }
  7783. }
  7784. // ggml_compute_forward_abs
  7785. static void ggml_compute_forward_abs_f32(
  7786. const struct ggml_compute_params * params,
  7787. const struct ggml_tensor * src0,
  7788. struct ggml_tensor * dst) {
  7789. assert(params->ith == 0);
  7790. assert(ggml_are_same_shape(src0, dst));
  7791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7792. return;
  7793. }
  7794. const int n = ggml_nrows(src0);
  7795. const int nc = src0->ne[0];
  7796. assert(dst->nb[0] == sizeof(float));
  7797. assert(src0->nb[0] == sizeof(float));
  7798. for (int i = 0; i < n; i++) {
  7799. ggml_vec_abs_f32(nc,
  7800. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7801. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7802. }
  7803. }
  7804. static void ggml_compute_forward_abs(
  7805. const struct ggml_compute_params * params,
  7806. const struct ggml_tensor * src0,
  7807. struct ggml_tensor * dst) {
  7808. switch (src0->type) {
  7809. case GGML_TYPE_F32:
  7810. {
  7811. ggml_compute_forward_abs_f32(params, src0, dst);
  7812. } break;
  7813. default:
  7814. {
  7815. GGML_ASSERT(false);
  7816. } break;
  7817. }
  7818. }
  7819. // ggml_compute_forward_sgn
  7820. static void ggml_compute_forward_sgn_f32(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. assert(params->ith == 0);
  7825. assert(ggml_are_same_shape(src0, dst));
  7826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7827. return;
  7828. }
  7829. const int n = ggml_nrows(src0);
  7830. const int nc = src0->ne[0];
  7831. assert(dst->nb[0] == sizeof(float));
  7832. assert(src0->nb[0] == sizeof(float));
  7833. for (int i = 0; i < n; i++) {
  7834. ggml_vec_sgn_f32(nc,
  7835. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7836. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7837. }
  7838. }
  7839. static void ggml_compute_forward_sgn(
  7840. const struct ggml_compute_params * params,
  7841. const struct ggml_tensor * src0,
  7842. struct ggml_tensor * dst) {
  7843. switch (src0->type) {
  7844. case GGML_TYPE_F32:
  7845. {
  7846. ggml_compute_forward_sgn_f32(params, src0, dst);
  7847. } break;
  7848. default:
  7849. {
  7850. GGML_ASSERT(false);
  7851. } break;
  7852. }
  7853. }
  7854. // ggml_compute_forward_neg
  7855. static void ggml_compute_forward_neg_f32(
  7856. const struct ggml_compute_params * params,
  7857. const struct ggml_tensor * src0,
  7858. struct ggml_tensor * dst) {
  7859. assert(params->ith == 0);
  7860. assert(ggml_are_same_shape(src0, dst));
  7861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7862. return;
  7863. }
  7864. const int n = ggml_nrows(src0);
  7865. const int nc = src0->ne[0];
  7866. assert(dst->nb[0] == sizeof(float));
  7867. assert(src0->nb[0] == sizeof(float));
  7868. for (int i = 0; i < n; i++) {
  7869. ggml_vec_neg_f32(nc,
  7870. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7871. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7872. }
  7873. }
  7874. static void ggml_compute_forward_neg(
  7875. const struct ggml_compute_params * params,
  7876. const struct ggml_tensor * src0,
  7877. struct ggml_tensor * dst) {
  7878. switch (src0->type) {
  7879. case GGML_TYPE_F32:
  7880. {
  7881. ggml_compute_forward_neg_f32(params, src0, dst);
  7882. } break;
  7883. default:
  7884. {
  7885. GGML_ASSERT(false);
  7886. } break;
  7887. }
  7888. }
  7889. // ggml_compute_forward_step
  7890. static void ggml_compute_forward_step_f32(
  7891. const struct ggml_compute_params * params,
  7892. const struct ggml_tensor * src0,
  7893. struct ggml_tensor * dst) {
  7894. assert(params->ith == 0);
  7895. assert(ggml_are_same_shape(src0, dst));
  7896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7897. return;
  7898. }
  7899. const int n = ggml_nrows(src0);
  7900. const int nc = src0->ne[0];
  7901. assert(dst->nb[0] == sizeof(float));
  7902. assert(src0->nb[0] == sizeof(float));
  7903. for (int i = 0; i < n; i++) {
  7904. ggml_vec_step_f32(nc,
  7905. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7906. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7907. }
  7908. }
  7909. static void ggml_compute_forward_step(
  7910. const struct ggml_compute_params * params,
  7911. const struct ggml_tensor * src0,
  7912. struct ggml_tensor * dst) {
  7913. switch (src0->type) {
  7914. case GGML_TYPE_F32:
  7915. {
  7916. ggml_compute_forward_step_f32(params, src0, dst);
  7917. } break;
  7918. default:
  7919. {
  7920. GGML_ASSERT(false);
  7921. } break;
  7922. }
  7923. }
  7924. // ggml_compute_forward_relu
  7925. static void ggml_compute_forward_relu_f32(
  7926. const struct ggml_compute_params * params,
  7927. const struct ggml_tensor * src0,
  7928. struct ggml_tensor * dst) {
  7929. assert(params->ith == 0);
  7930. assert(ggml_are_same_shape(src0, dst));
  7931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7932. return;
  7933. }
  7934. const int n = ggml_nrows(src0);
  7935. const int nc = src0->ne[0];
  7936. assert(dst->nb[0] == sizeof(float));
  7937. assert(src0->nb[0] == sizeof(float));
  7938. for (int i = 0; i < n; i++) {
  7939. ggml_vec_relu_f32(nc,
  7940. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7941. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7942. }
  7943. }
  7944. static void ggml_compute_forward_relu(
  7945. const struct ggml_compute_params * params,
  7946. const struct ggml_tensor * src0,
  7947. struct ggml_tensor * dst) {
  7948. switch (src0->type) {
  7949. case GGML_TYPE_F32:
  7950. {
  7951. ggml_compute_forward_relu_f32(params, src0, dst);
  7952. } break;
  7953. default:
  7954. {
  7955. GGML_ASSERT(false);
  7956. } break;
  7957. }
  7958. }
  7959. // ggml_compute_forward_gelu
  7960. static void ggml_compute_forward_gelu_f32(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. struct ggml_tensor * dst) {
  7964. GGML_ASSERT(ggml_is_contiguous(src0));
  7965. GGML_ASSERT(ggml_is_contiguous(dst));
  7966. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7968. return;
  7969. }
  7970. const int ith = params->ith;
  7971. const int nth = params->nth;
  7972. const int nc = src0->ne[0];
  7973. const int nr = ggml_nrows(src0);
  7974. // rows per thread
  7975. const int dr = (nr + nth - 1)/nth;
  7976. // row range for this thread
  7977. const int ir0 = dr*ith;
  7978. const int ir1 = MIN(ir0 + dr, nr);
  7979. for (int i1 = ir0; i1 < ir1; i1++) {
  7980. ggml_vec_gelu_f32(nc,
  7981. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7982. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7983. #ifndef NDEBUG
  7984. for (int k = 0; k < nc; k++) {
  7985. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7986. UNUSED(x);
  7987. assert(!isnan(x));
  7988. assert(!isinf(x));
  7989. }
  7990. #endif
  7991. }
  7992. }
  7993. static void ggml_compute_forward_gelu(
  7994. const struct ggml_compute_params * params,
  7995. const struct ggml_tensor * src0,
  7996. struct ggml_tensor * dst) {
  7997. switch (src0->type) {
  7998. case GGML_TYPE_F32:
  7999. {
  8000. ggml_compute_forward_gelu_f32(params, src0, dst);
  8001. } break;
  8002. default:
  8003. {
  8004. GGML_ASSERT(false);
  8005. } break;
  8006. }
  8007. }
  8008. // ggml_compute_forward_gelu_quick
  8009. static void ggml_compute_forward_gelu_quick_f32(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. GGML_ASSERT(ggml_is_contiguous(src0));
  8014. GGML_ASSERT(ggml_is_contiguous(dst));
  8015. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8017. return;
  8018. }
  8019. const int ith = params->ith;
  8020. const int nth = params->nth;
  8021. const int nc = src0->ne[0];
  8022. const int nr = ggml_nrows(src0);
  8023. // rows per thread
  8024. const int dr = (nr + nth - 1)/nth;
  8025. // row range for this thread
  8026. const int ir0 = dr*ith;
  8027. const int ir1 = MIN(ir0 + dr, nr);
  8028. for (int i1 = ir0; i1 < ir1; i1++) {
  8029. ggml_vec_gelu_quick_f32(nc,
  8030. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8031. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8032. #ifndef NDEBUG
  8033. for (int k = 0; k < nc; k++) {
  8034. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8035. UNUSED(x);
  8036. assert(!isnan(x));
  8037. assert(!isinf(x));
  8038. }
  8039. #endif
  8040. }
  8041. }
  8042. static void ggml_compute_forward_gelu_quick(
  8043. const struct ggml_compute_params * params,
  8044. const struct ggml_tensor * src0,
  8045. struct ggml_tensor * dst) {
  8046. switch (src0->type) {
  8047. case GGML_TYPE_F32:
  8048. {
  8049. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8050. } break;
  8051. default:
  8052. {
  8053. GGML_ASSERT(false);
  8054. } break;
  8055. }
  8056. }
  8057. // ggml_compute_forward_silu
  8058. static void ggml_compute_forward_silu_f32(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * src0,
  8061. struct ggml_tensor * dst) {
  8062. GGML_ASSERT(ggml_is_contiguous(src0));
  8063. GGML_ASSERT(ggml_is_contiguous(dst));
  8064. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8066. return;
  8067. }
  8068. const int ith = params->ith;
  8069. const int nth = params->nth;
  8070. const int nc = src0->ne[0];
  8071. const int nr = ggml_nrows(src0);
  8072. // rows per thread
  8073. const int dr = (nr + nth - 1)/nth;
  8074. // row range for this thread
  8075. const int ir0 = dr*ith;
  8076. const int ir1 = MIN(ir0 + dr, nr);
  8077. for (int i1 = ir0; i1 < ir1; i1++) {
  8078. ggml_vec_silu_f32(nc,
  8079. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8080. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8081. #ifndef NDEBUG
  8082. for (int k = 0; k < nc; k++) {
  8083. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8084. UNUSED(x);
  8085. assert(!isnan(x));
  8086. assert(!isinf(x));
  8087. }
  8088. #endif
  8089. }
  8090. }
  8091. static void ggml_compute_forward_silu(
  8092. const struct ggml_compute_params * params,
  8093. const struct ggml_tensor * src0,
  8094. struct ggml_tensor * dst) {
  8095. switch (src0->type) {
  8096. case GGML_TYPE_F32:
  8097. {
  8098. ggml_compute_forward_silu_f32(params, src0, dst);
  8099. } break;
  8100. default:
  8101. {
  8102. GGML_ASSERT(false);
  8103. } break;
  8104. }
  8105. }
  8106. // ggml_compute_forward_silu_back
  8107. static void ggml_compute_forward_silu_back_f32(
  8108. const struct ggml_compute_params * params,
  8109. const struct ggml_tensor * src0,
  8110. const struct ggml_tensor * grad,
  8111. struct ggml_tensor * dst) {
  8112. GGML_ASSERT(ggml_is_contiguous(grad));
  8113. GGML_ASSERT(ggml_is_contiguous(src0));
  8114. GGML_ASSERT(ggml_is_contiguous(dst));
  8115. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8116. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8118. return;
  8119. }
  8120. const int ith = params->ith;
  8121. const int nth = params->nth;
  8122. const int nc = src0->ne[0];
  8123. const int nr = ggml_nrows(src0);
  8124. // rows per thread
  8125. const int dr = (nr + nth - 1)/nth;
  8126. // row range for this thread
  8127. const int ir0 = dr*ith;
  8128. const int ir1 = MIN(ir0 + dr, nr);
  8129. for (int i1 = ir0; i1 < ir1; i1++) {
  8130. ggml_vec_silu_backward_f32(nc,
  8131. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8132. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8133. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8134. #ifndef NDEBUG
  8135. for (int k = 0; k < nc; k++) {
  8136. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8137. UNUSED(x);
  8138. assert(!isnan(x));
  8139. assert(!isinf(x));
  8140. }
  8141. #endif
  8142. }
  8143. }
  8144. static void ggml_compute_forward_silu_back(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. const struct ggml_tensor * grad,
  8148. struct ggml_tensor * dst) {
  8149. switch (src0->type) {
  8150. case GGML_TYPE_F32:
  8151. {
  8152. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8153. } break;
  8154. default:
  8155. {
  8156. GGML_ASSERT(false);
  8157. } break;
  8158. }
  8159. }
  8160. // ggml_compute_forward_norm
  8161. static void ggml_compute_forward_norm_f32(
  8162. const struct ggml_compute_params * params,
  8163. const struct ggml_tensor * src0,
  8164. struct ggml_tensor * dst) {
  8165. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8167. return;
  8168. }
  8169. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8170. const int ith = params->ith;
  8171. const int nth = params->nth;
  8172. const int64_t ne00 = src0->ne[0];
  8173. const int64_t ne01 = src0->ne[1];
  8174. const int64_t ne02 = src0->ne[2];
  8175. const int64_t ne03 = src0->ne[3];
  8176. const size_t nb01 = src0->nb[1];
  8177. const size_t nb02 = src0->nb[2];
  8178. const size_t nb03 = src0->nb[3];
  8179. const size_t nb1 = dst->nb[1];
  8180. const size_t nb2 = dst->nb[2];
  8181. const size_t nb3 = dst->nb[3];
  8182. const float eps = 1e-5f; // TODO: make this a parameter
  8183. // TODO: optimize
  8184. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8185. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8186. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8187. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8188. ggml_float sum = 0.0;
  8189. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8190. sum += (ggml_float)x[i00];
  8191. }
  8192. float mean = sum/ne00;
  8193. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8194. ggml_float sum2 = 0.0;
  8195. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8196. float v = x[i00] - mean;
  8197. y[i00] = v;
  8198. sum2 += (ggml_float)(v*v);
  8199. }
  8200. float variance = sum2/ne00;
  8201. const float scale = 1.0f/sqrtf(variance + eps);
  8202. ggml_vec_scale_f32(ne00, y, scale);
  8203. }
  8204. }
  8205. }
  8206. }
  8207. static void ggml_compute_forward_norm(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. struct ggml_tensor * dst) {
  8211. switch (src0->type) {
  8212. case GGML_TYPE_F32:
  8213. {
  8214. ggml_compute_forward_norm_f32(params, src0, dst);
  8215. } break;
  8216. default:
  8217. {
  8218. GGML_ASSERT(false);
  8219. } break;
  8220. }
  8221. }
  8222. static void ggml_compute_forward_rms_norm_f32(
  8223. const struct ggml_compute_params * params,
  8224. const struct ggml_tensor * src0,
  8225. struct ggml_tensor * dst) {
  8226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8228. return;
  8229. }
  8230. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8231. const int ith = params->ith;
  8232. const int nth = params->nth;
  8233. const int64_t ne00 = src0->ne[0];
  8234. const int64_t ne01 = src0->ne[1];
  8235. const int64_t ne02 = src0->ne[2];
  8236. const int64_t ne03 = src0->ne[3];
  8237. const size_t nb01 = src0->nb[1];
  8238. const size_t nb02 = src0->nb[2];
  8239. const size_t nb03 = src0->nb[3];
  8240. const size_t nb1 = dst->nb[1];
  8241. const size_t nb2 = dst->nb[2];
  8242. const size_t nb3 = dst->nb[3];
  8243. const float eps = 1e-6f; // TODO: make this a parameter
  8244. // TODO: optimize
  8245. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8246. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8247. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8248. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8249. ggml_float sum = 0.0;
  8250. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8251. sum += (ggml_float)(x[i00] * x[i00]);
  8252. }
  8253. const float mean = sum/ne00;
  8254. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8255. memcpy(y, x, ne00 * sizeof(float));
  8256. // for (int i00 = 0; i00 < ne00; i00++) {
  8257. // y[i00] = x[i00];
  8258. // }
  8259. const float scale = 1.0f/sqrtf(mean + eps);
  8260. ggml_vec_scale_f32(ne00, y, scale);
  8261. }
  8262. }
  8263. }
  8264. }
  8265. static void ggml_compute_forward_rms_norm(
  8266. const struct ggml_compute_params * params,
  8267. const struct ggml_tensor * src0,
  8268. struct ggml_tensor * dst) {
  8269. switch (src0->type) {
  8270. case GGML_TYPE_F32:
  8271. {
  8272. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8273. } break;
  8274. default:
  8275. {
  8276. GGML_ASSERT(false);
  8277. } break;
  8278. }
  8279. }
  8280. static void ggml_compute_forward_rms_norm_back_f32(
  8281. const struct ggml_compute_params * params,
  8282. const struct ggml_tensor * src0,
  8283. const struct ggml_tensor * src1,
  8284. struct ggml_tensor * dst) {
  8285. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8287. return;
  8288. }
  8289. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8290. const int ith = params->ith;
  8291. const int nth = params->nth;
  8292. const int64_t ne00 = src0->ne[0];
  8293. const int64_t ne01 = src0->ne[1];
  8294. const int64_t ne02 = src0->ne[2];
  8295. const int64_t ne03 = src0->ne[3];
  8296. const size_t nb01 = src0->nb[1];
  8297. const size_t nb02 = src0->nb[2];
  8298. const size_t nb03 = src0->nb[3];
  8299. const size_t nb11 = src1->nb[1];
  8300. const size_t nb12 = src1->nb[2];
  8301. const size_t nb13 = src1->nb[3];
  8302. const size_t nb1 = dst->nb[1];
  8303. const size_t nb2 = dst->nb[2];
  8304. const size_t nb3 = dst->nb[3];
  8305. const float eps = 1e-6f; // TODO: make this a parameter
  8306. // TODO: optimize
  8307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8309. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8310. // src1 is same shape as src0 => same indices
  8311. const int64_t i11 = i01;
  8312. const int64_t i12 = i02;
  8313. const int64_t i13 = i03;
  8314. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8315. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8316. ggml_float sum_xx = 0.0;
  8317. ggml_float sum_xdz = 0.0;
  8318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8319. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8320. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8321. }
  8322. //const float mean = (float)(sum_xx)/ne00;
  8323. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8324. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8325. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8326. // we could cache rms from forward pass to improve performance.
  8327. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8328. //const float rms = sqrtf(mean_eps);
  8329. const float rrms = 1.0f / sqrtf(mean_eps);
  8330. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8331. {
  8332. // z = rms_norm(x)
  8333. //
  8334. // rms_norm(src0) =
  8335. // scale(
  8336. // src0,
  8337. // div(
  8338. // 1,
  8339. // sqrt(
  8340. // add(
  8341. // scale(
  8342. // sum(
  8343. // sqr(
  8344. // src0)),
  8345. // (1.0/N)),
  8346. // eps))));
  8347. // postorder:
  8348. // ## op args grad
  8349. // 00 param src0 grad[#00]
  8350. // 01 const 1
  8351. // 02 sqr (#00) grad[#02]
  8352. // 03 sum (#02) grad[#03]
  8353. // 04 const 1/N
  8354. // 05 scale (#03, #04) grad[#05]
  8355. // 06 const eps
  8356. // 07 add (#05, #06) grad[#07]
  8357. // 08 sqrt (#07) grad[#08]
  8358. // 09 div (#01,#08) grad[#09]
  8359. // 10 scale (#00,#09) grad[#10]
  8360. //
  8361. // backward pass, given grad[#10]
  8362. // #10: scale
  8363. // grad[#00] += scale(grad[#10],#09)
  8364. // grad[#09] += sum(mul(grad[#10],#00))
  8365. // #09: div
  8366. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8367. // #08: sqrt
  8368. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8369. // #07: add
  8370. // grad[#05] += grad[#07]
  8371. // #05: scale
  8372. // grad[#03] += scale(grad[#05],#04)
  8373. // #03: sum
  8374. // grad[#02] += repeat(grad[#03], #02)
  8375. // #02:
  8376. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8377. //
  8378. // substitute and simplify:
  8379. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8380. // grad[#02] = repeat(grad[#03], #02)
  8381. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8382. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8383. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8384. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8385. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8386. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8387. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8388. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8389. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8390. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8391. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8392. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8393. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8394. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8395. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8396. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8397. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8398. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8399. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8400. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8401. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8402. // a = b*c + d*e
  8403. // a = b*c*f/f + d*e*f/f
  8404. // a = (b*c*f + d*e*f)*(1/f)
  8405. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8406. // a = (b + d*e/c)*c
  8407. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8408. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8409. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8410. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8411. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8412. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8413. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8414. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8415. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8416. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8417. }
  8418. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8419. // post-order:
  8420. // dx := x
  8421. // dx := scale(dx,-mean_xdz/mean_eps)
  8422. // dx := add(dx, dz)
  8423. // dx := scale(dx, rrms)
  8424. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8425. ggml_vec_cpy_f32 (ne00, dx, x);
  8426. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8427. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8428. ggml_vec_acc_f32 (ne00, dx, dz);
  8429. ggml_vec_scale_f32(ne00, dx, rrms);
  8430. }
  8431. }
  8432. }
  8433. }
  8434. static void ggml_compute_forward_rms_norm_back(
  8435. const struct ggml_compute_params * params,
  8436. const struct ggml_tensor * src0,
  8437. const struct ggml_tensor * src1,
  8438. struct ggml_tensor * dst) {
  8439. switch (src0->type) {
  8440. case GGML_TYPE_F32:
  8441. {
  8442. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8443. } break;
  8444. default:
  8445. {
  8446. GGML_ASSERT(false);
  8447. } break;
  8448. }
  8449. }
  8450. // ggml_compute_forward_mul_mat
  8451. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8452. // helper function to determine if it is better to use BLAS or not
  8453. // for large matrices, BLAS is faster
  8454. static bool ggml_compute_forward_mul_mat_use_blas(
  8455. const struct ggml_tensor * src0,
  8456. const struct ggml_tensor * src1,
  8457. struct ggml_tensor * dst) {
  8458. //const int64_t ne00 = src0->ne[0];
  8459. //const int64_t ne01 = src0->ne[1];
  8460. const int64_t ne10 = src1->ne[0];
  8461. const int64_t ne0 = dst->ne[0];
  8462. const int64_t ne1 = dst->ne[1];
  8463. // TODO: find the optimal values for these
  8464. if (ggml_is_contiguous(src0) &&
  8465. ggml_is_contiguous(src1) &&
  8466. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8467. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8468. return true;
  8469. }
  8470. return false;
  8471. }
  8472. #endif
  8473. static void ggml_compute_forward_mul_mat_f32(
  8474. const struct ggml_compute_params * params,
  8475. const struct ggml_tensor * src0,
  8476. const struct ggml_tensor * src1,
  8477. struct ggml_tensor * dst) {
  8478. int64_t t0 = ggml_perf_time_us();
  8479. UNUSED(t0);
  8480. const int64_t ne00 = src0->ne[0];
  8481. const int64_t ne01 = src0->ne[1];
  8482. const int64_t ne02 = src0->ne[2];
  8483. const int64_t ne03 = src0->ne[3];
  8484. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8485. const int64_t ne10 = src1->ne[0];
  8486. #endif
  8487. const int64_t ne11 = src1->ne[1];
  8488. #ifndef NDEBUG
  8489. const int64_t ne12 = src1->ne[2];
  8490. const int64_t ne13 = src1->ne[3];
  8491. const int64_t ne0 = dst->ne[0];
  8492. const int64_t ne1 = dst->ne[1];
  8493. const int64_t ne2 = dst->ne[2];
  8494. const int64_t ne3 = dst->ne[3];
  8495. const int nb00 = src0->nb[0];
  8496. #endif
  8497. const int nb01 = src0->nb[1];
  8498. const int nb02 = src0->nb[2];
  8499. const int nb03 = src0->nb[3];
  8500. #ifndef NDEBUG
  8501. const int nb10 = src1->nb[0];
  8502. #endif
  8503. const int nb11 = src1->nb[1];
  8504. const int nb12 = src1->nb[2];
  8505. const int nb13 = src1->nb[3];
  8506. const int nb0 = dst->nb[0];
  8507. const int nb1 = dst->nb[1];
  8508. const int nb2 = dst->nb[2];
  8509. const int nb3 = dst->nb[3];
  8510. const int ith = params->ith;
  8511. const int nth = params->nth;
  8512. assert(ne02 == ne12);
  8513. assert(ne03 == ne13);
  8514. assert(ne2 == ne12);
  8515. assert(ne3 == ne13);
  8516. // we don't support permuted src0 or src1
  8517. assert(nb00 == sizeof(float));
  8518. assert(nb10 == sizeof(float));
  8519. // dst cannot be transposed or permuted
  8520. assert(nb0 == sizeof(float));
  8521. assert(nb0 <= nb1);
  8522. assert(nb1 <= nb2);
  8523. assert(nb2 <= nb3);
  8524. assert(ne0 == ne01);
  8525. assert(ne1 == ne11);
  8526. assert(ne2 == ne02);
  8527. assert(ne3 == ne03);
  8528. // nb01 >= nb00 - src0 is not transposed
  8529. // compute by src0 rows
  8530. #if defined(GGML_USE_CLBLAST)
  8531. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8532. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8533. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8534. }
  8535. return;
  8536. }
  8537. #endif
  8538. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8539. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8540. if (params->ith != 0) {
  8541. return;
  8542. }
  8543. if (params->type == GGML_TASK_INIT) {
  8544. return;
  8545. }
  8546. if (params->type == GGML_TASK_FINALIZE) {
  8547. return;
  8548. }
  8549. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8550. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8551. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8552. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8553. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8554. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8555. ne11, ne01, ne10,
  8556. 1.0f, y, ne10,
  8557. x, ne00,
  8558. 0.0f, d, ne01);
  8559. }
  8560. }
  8561. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8562. return;
  8563. }
  8564. #endif
  8565. if (params->type == GGML_TASK_INIT) {
  8566. return;
  8567. }
  8568. if (params->type == GGML_TASK_FINALIZE) {
  8569. return;
  8570. }
  8571. // parallelize by src0 rows using ggml_vec_dot_f32
  8572. // total rows in src0
  8573. const int nr = ne01*ne02*ne03;
  8574. // rows per thread
  8575. const int dr = (nr + nth - 1)/nth;
  8576. // row range for this thread
  8577. const int ir0 = dr*ith;
  8578. const int ir1 = MIN(ir0 + dr, nr);
  8579. for (int ir = ir0; ir < ir1; ++ir) {
  8580. // src0 indices
  8581. const int i03 = ir/(ne02*ne01);
  8582. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8583. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8584. for (int64_t ic = 0; ic < ne11; ++ic) {
  8585. // src1 indices
  8586. const int i13 = i03;
  8587. const int i12 = i02;
  8588. const int i11 = ic;
  8589. // dst indices
  8590. const int i0 = i01;
  8591. const int i1 = i11;
  8592. const int i2 = i02;
  8593. const int i3 = i03;
  8594. ggml_vec_dot_f32(ne00,
  8595. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8596. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8597. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8598. }
  8599. }
  8600. //int64_t t1 = ggml_perf_time_us();
  8601. //static int64_t acc = 0;
  8602. //acc += t1 - t0;
  8603. //if (t1 - t0 > 10) {
  8604. // printf("\n");
  8605. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8606. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8607. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8608. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8609. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8610. //}
  8611. }
  8612. static void ggml_compute_forward_mul_mat_f16_f32(
  8613. const struct ggml_compute_params * params,
  8614. const struct ggml_tensor * src0,
  8615. const struct ggml_tensor * src1,
  8616. struct ggml_tensor * dst) {
  8617. int64_t t0 = ggml_perf_time_us();
  8618. UNUSED(t0);
  8619. const int64_t ne00 = src0->ne[0];
  8620. const int64_t ne01 = src0->ne[1];
  8621. const int64_t ne02 = src0->ne[2];
  8622. const int64_t ne03 = src0->ne[3];
  8623. const int64_t ne10 = src1->ne[0];
  8624. const int64_t ne11 = src1->ne[1];
  8625. const int64_t ne12 = src1->ne[2];
  8626. const int64_t ne13 = src1->ne[3];
  8627. const int64_t ne0 = dst->ne[0];
  8628. const int64_t ne1 = dst->ne[1];
  8629. const int64_t ne2 = dst->ne[2];
  8630. const int64_t ne3 = dst->ne[3];
  8631. //const int64_t ne = ne0*ne1*ne2*ne3;
  8632. const int nb00 = src0->nb[0];
  8633. const int nb01 = src0->nb[1];
  8634. const int nb02 = src0->nb[2];
  8635. const int nb03 = src0->nb[3];
  8636. const int nb10 = src1->nb[0];
  8637. const int nb11 = src1->nb[1];
  8638. const int nb12 = src1->nb[2];
  8639. const int nb13 = src1->nb[3];
  8640. const int nb0 = dst->nb[0];
  8641. const int nb1 = dst->nb[1];
  8642. const int nb2 = dst->nb[2];
  8643. const int nb3 = dst->nb[3];
  8644. const int ith = params->ith;
  8645. const int nth = params->nth;
  8646. GGML_ASSERT(ne02 == ne12);
  8647. GGML_ASSERT(ne03 == ne13);
  8648. GGML_ASSERT(ne2 == ne12);
  8649. GGML_ASSERT(ne3 == ne13);
  8650. // TODO: we don't support permuted src0
  8651. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8652. // dst cannot be transposed or permuted
  8653. GGML_ASSERT(nb0 == sizeof(float));
  8654. GGML_ASSERT(nb0 <= nb1);
  8655. GGML_ASSERT(nb1 <= nb2);
  8656. GGML_ASSERT(nb2 <= nb3);
  8657. GGML_ASSERT(ne0 == ne01);
  8658. GGML_ASSERT(ne1 == ne11);
  8659. GGML_ASSERT(ne2 == ne02);
  8660. GGML_ASSERT(ne3 == ne03);
  8661. // nb01 >= nb00 - src0 is not transposed
  8662. // compute by src0 rows
  8663. #if defined(GGML_USE_CLBLAST)
  8664. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8665. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8666. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8667. }
  8668. return;
  8669. }
  8670. #endif
  8671. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8672. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8673. GGML_ASSERT(nb10 == sizeof(float));
  8674. if (params->ith != 0) {
  8675. return;
  8676. }
  8677. if (params->type == GGML_TASK_INIT) {
  8678. return;
  8679. }
  8680. if (params->type == GGML_TASK_FINALIZE) {
  8681. return;
  8682. }
  8683. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8684. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8685. float * const wdata = params->wdata;
  8686. {
  8687. size_t id = 0;
  8688. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8689. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8690. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8691. }
  8692. }
  8693. assert(id*sizeof(float) <= params->wsize);
  8694. }
  8695. const float * x = wdata;
  8696. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8697. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8698. // zT = y * xT
  8699. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8700. ne11, ne01, ne10,
  8701. 1.0f, y, ne10,
  8702. x, ne00,
  8703. 0.0f, d, ne01);
  8704. }
  8705. }
  8706. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8707. return;
  8708. }
  8709. #endif
  8710. if (params->type == GGML_TASK_INIT) {
  8711. ggml_fp16_t * const wdata = params->wdata;
  8712. size_t id = 0;
  8713. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8714. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8715. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8716. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8717. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8718. }
  8719. }
  8720. }
  8721. }
  8722. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8723. return;
  8724. }
  8725. if (params->type == GGML_TASK_FINALIZE) {
  8726. return;
  8727. }
  8728. // fp16 -> half the size, so divide by 2
  8729. // TODO: do not support transposed src1
  8730. assert(nb10/2 == sizeof(ggml_fp16_t));
  8731. // parallelize by src0 rows using ggml_vec_dot_f16
  8732. // total rows in src0
  8733. const int nr = ne01*ne02*ne03;
  8734. // rows per thread
  8735. const int dr = (nr + nth - 1)/nth;
  8736. // row range for this thread
  8737. const int ir0 = dr*ith;
  8738. const int ir1 = MIN(ir0 + dr, nr);
  8739. ggml_fp16_t * wdata = params->wdata;
  8740. for (int ir = ir0; ir < ir1; ++ir) {
  8741. // src0 indices
  8742. const int i03 = ir/(ne02*ne01);
  8743. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8744. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8745. const int i13 = i03;
  8746. const int i12 = i02;
  8747. const int i0 = i01;
  8748. const int i2 = i02;
  8749. const int i3 = i03;
  8750. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8751. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8752. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8753. for (int64_t ic = 0; ic < ne11; ++ic) {
  8754. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8755. }
  8756. }
  8757. //int64_t t1 = ggml_time_us();
  8758. //static int64_t acc = 0;
  8759. //acc += t1 - t0;
  8760. //if (t1 - t0 > 10) {
  8761. // printf("\n");
  8762. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8763. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8764. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8765. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8766. //}
  8767. }
  8768. static void ggml_compute_forward_mul_mat_q_f32(
  8769. const struct ggml_compute_params * params,
  8770. const struct ggml_tensor * src0,
  8771. const struct ggml_tensor * src1,
  8772. struct ggml_tensor * dst) {
  8773. int64_t t0 = ggml_perf_time_us();
  8774. UNUSED(t0);
  8775. const int64_t ne00 = src0->ne[0];
  8776. const int64_t ne01 = src0->ne[1];
  8777. const int64_t ne02 = src0->ne[2];
  8778. const int64_t ne03 = src0->ne[3];
  8779. const int64_t ne10 = src1->ne[0];
  8780. const int64_t ne11 = src1->ne[1];
  8781. const int64_t ne12 = src1->ne[2];
  8782. const int64_t ne13 = src1->ne[3];
  8783. const int64_t ne0 = dst->ne[0];
  8784. const int64_t ne1 = dst->ne[1];
  8785. const int64_t ne2 = dst->ne[2];
  8786. const int64_t ne3 = dst->ne[3];
  8787. const int nb00 = src0->nb[0];
  8788. const int nb01 = src0->nb[1];
  8789. const int nb02 = src0->nb[2];
  8790. const int nb03 = src0->nb[3];
  8791. const int nb10 = src1->nb[0];
  8792. const int nb11 = src1->nb[1];
  8793. const int nb12 = src1->nb[2];
  8794. const int nb13 = src1->nb[3];
  8795. const int nb0 = dst->nb[0];
  8796. const int nb1 = dst->nb[1];
  8797. const int nb2 = dst->nb[2];
  8798. const int nb3 = dst->nb[3];
  8799. const int ith = params->ith;
  8800. const int nth = params->nth;
  8801. GGML_ASSERT(ne02 == ne12);
  8802. GGML_ASSERT(ne03 == ne13);
  8803. GGML_ASSERT(ne2 == ne12);
  8804. GGML_ASSERT(ne3 == ne13);
  8805. const enum ggml_type type = src0->type;
  8806. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8807. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8808. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8809. // we don't support permuted src0 or src1
  8810. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8811. GGML_ASSERT(nb10 == sizeof(float));
  8812. // dst cannot be transposed or permuted
  8813. GGML_ASSERT(nb0 == sizeof(float));
  8814. GGML_ASSERT(nb0 <= nb1);
  8815. GGML_ASSERT(nb1 <= nb2);
  8816. GGML_ASSERT(nb2 <= nb3);
  8817. GGML_ASSERT(ne0 == ne01);
  8818. GGML_ASSERT(ne1 == ne11);
  8819. GGML_ASSERT(ne2 == ne02);
  8820. GGML_ASSERT(ne3 == ne03);
  8821. // nb01 >= nb00 - src0 is not transposed
  8822. // compute by src0 rows
  8823. #if defined(GGML_USE_CLBLAST)
  8824. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8825. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8826. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8827. }
  8828. return;
  8829. }
  8830. #endif
  8831. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8832. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8833. if (params->ith != 0) {
  8834. return;
  8835. }
  8836. if (params->type == GGML_TASK_INIT) {
  8837. return;
  8838. }
  8839. if (params->type == GGML_TASK_FINALIZE) {
  8840. return;
  8841. }
  8842. float * const wdata = params->wdata;
  8843. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8844. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8845. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8846. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8847. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8848. {
  8849. size_t id = 0;
  8850. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8851. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8852. id += ne00;
  8853. }
  8854. assert(id*sizeof(float) <= params->wsize);
  8855. }
  8856. const float * x = wdata;
  8857. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8858. ne11, ne01, ne10,
  8859. 1.0f, y, ne10,
  8860. x, ne00,
  8861. 0.0f, d, ne01);
  8862. }
  8863. }
  8864. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8865. return;
  8866. }
  8867. #endif
  8868. if (params->type == GGML_TASK_INIT) {
  8869. char * wdata = params->wdata;
  8870. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8871. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8872. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8873. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8874. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8875. wdata += row_size;
  8876. }
  8877. }
  8878. }
  8879. return;
  8880. }
  8881. if (params->type == GGML_TASK_FINALIZE) {
  8882. return;
  8883. }
  8884. // parallelize by src0 rows using ggml_vec_dot_q
  8885. // total rows in src0
  8886. const int nr = ne01*ne02*ne03;
  8887. // rows per thread
  8888. const int dr = (nr + nth - 1)/nth;
  8889. // row range for this thread
  8890. const int ir0 = dr*ith;
  8891. const int ir1 = MIN(ir0 + dr, nr);
  8892. void * wdata = params->wdata;
  8893. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8894. for (int ir = ir0; ir < ir1; ++ir) {
  8895. // src0 indices
  8896. const int i03 = ir/(ne02*ne01);
  8897. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8898. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8899. const int i13 = i03;
  8900. const int i12 = i02;
  8901. const int i0 = i01;
  8902. const int i2 = i02;
  8903. const int i3 = i03;
  8904. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8905. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8906. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8907. assert(ne00 % 32 == 0);
  8908. for (int64_t ic = 0; ic < ne11; ++ic) {
  8909. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8910. }
  8911. }
  8912. //int64_t t1 = ggml_time_us();
  8913. //static int64_t acc = 0;
  8914. //acc += t1 - t0;
  8915. //if (t1 - t0 > 10) {
  8916. // printf("\n");
  8917. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8918. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8919. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8920. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8921. //}
  8922. }
  8923. static void ggml_compute_forward_mul_mat(
  8924. const struct ggml_compute_params * params,
  8925. const struct ggml_tensor * src0,
  8926. const struct ggml_tensor * src1,
  8927. struct ggml_tensor * dst) {
  8928. switch (src0->type) {
  8929. case GGML_TYPE_Q4_0:
  8930. case GGML_TYPE_Q4_1:
  8931. case GGML_TYPE_Q5_0:
  8932. case GGML_TYPE_Q5_1:
  8933. case GGML_TYPE_Q8_0:
  8934. case GGML_TYPE_Q8_1:
  8935. case GGML_TYPE_Q2_K:
  8936. case GGML_TYPE_Q3_K:
  8937. case GGML_TYPE_Q4_K:
  8938. case GGML_TYPE_Q5_K:
  8939. case GGML_TYPE_Q6_K:
  8940. {
  8941. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8942. } break;
  8943. case GGML_TYPE_F16:
  8944. {
  8945. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8946. } break;
  8947. case GGML_TYPE_F32:
  8948. {
  8949. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8950. } break;
  8951. default:
  8952. {
  8953. GGML_ASSERT(false);
  8954. } break;
  8955. }
  8956. }
  8957. // ggml_compute_forward_out_prod
  8958. static void ggml_compute_forward_out_prod_f32(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. const struct ggml_tensor * src1,
  8962. struct ggml_tensor * dst) {
  8963. int64_t t0 = ggml_perf_time_us();
  8964. UNUSED(t0);
  8965. const int64_t ne00 = src0->ne[0];
  8966. const int64_t ne01 = src0->ne[1];
  8967. const int64_t ne02 = src0->ne[2];
  8968. const int64_t ne03 = src0->ne[3];
  8969. const int64_t ne10 = src1->ne[0];
  8970. //const int64_t ne11 = src1->ne[1];
  8971. const int64_t ne12 = src1->ne[2];
  8972. const int64_t ne13 = src1->ne[3];
  8973. const int64_t ne0 = dst->ne[0];
  8974. const int64_t ne1 = dst->ne[1];
  8975. const int64_t ne2 = dst->ne[2];
  8976. const int64_t ne3 = dst->ne[3];
  8977. const int nb00 = src0->nb[0];
  8978. const int nb01 = src0->nb[1];
  8979. const int nb02 = src0->nb[2];
  8980. const int nb03 = src0->nb[3];
  8981. const int nb10 = src1->nb[0];
  8982. const int nb11 = src1->nb[1];
  8983. const int nb12 = src1->nb[2];
  8984. const int nb13 = src1->nb[3];
  8985. const int nb0 = dst->nb[0];
  8986. const int nb1 = dst->nb[1];
  8987. const int nb2 = dst->nb[2];
  8988. const int nb3 = dst->nb[3];
  8989. const int ith = params->ith;
  8990. const int nth = params->nth;
  8991. GGML_ASSERT(ne02 == ne12);
  8992. GGML_ASSERT(ne03 == ne13);
  8993. GGML_ASSERT(ne2 == ne12);
  8994. GGML_ASSERT(ne3 == ne13);
  8995. // we don't support permuted src0 or src1
  8996. GGML_ASSERT(nb00 == sizeof(float));
  8997. // dst cannot be transposed or permuted
  8998. GGML_ASSERT(nb0 == sizeof(float));
  8999. // GGML_ASSERT(nb0 <= nb1);
  9000. // GGML_ASSERT(nb1 <= nb2);
  9001. // GGML_ASSERT(nb2 <= nb3);
  9002. GGML_ASSERT(ne0 == ne00);
  9003. GGML_ASSERT(ne1 == ne10);
  9004. GGML_ASSERT(ne2 == ne02);
  9005. GGML_ASSERT(ne3 == ne03);
  9006. // nb01 >= nb00 - src0 is not transposed
  9007. // compute by src0 rows
  9008. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9009. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9010. if (params->type == GGML_TASK_INIT) {
  9011. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9012. return;
  9013. }
  9014. if (params->type == GGML_TASK_FINALIZE) {
  9015. return;
  9016. }
  9017. // parallelize by last three dimensions
  9018. // total rows in dst
  9019. const int64_t nr = ne1*ne2*ne3;
  9020. // rows per thread
  9021. const int64_t dr = (nr + nth - 1)/nth;
  9022. // row range for this thread
  9023. const int64_t ir0 = dr*ith;
  9024. const int64_t ir1 = MIN(ir0 + dr, nr);
  9025. // dst[:,:,:,:] = 0
  9026. // for i2,i3:
  9027. // for i1:
  9028. // for i01:
  9029. // for i0:
  9030. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9031. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9032. // dst indices
  9033. const int64_t i3 = ir/(ne2*ne1);
  9034. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9035. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9036. const int64_t i02 = i2;
  9037. const int64_t i03 = i3;
  9038. //const int64_t i10 = i1;
  9039. const int64_t i12 = i2;
  9040. const int64_t i13 = i3;
  9041. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9042. const int64_t i11 = i01;
  9043. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9044. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9045. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9046. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9047. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9048. // d[i0] += s0[i0] * s1[i1];
  9049. // }
  9050. }
  9051. }
  9052. //int64_t t1 = ggml_perf_time_us();
  9053. //static int64_t acc = 0;
  9054. //acc += t1 - t0;
  9055. //if (t1 - t0 > 10) {
  9056. // printf("\n");
  9057. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9058. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9059. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9060. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9061. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9062. //}
  9063. }
  9064. static void ggml_compute_forward_out_prod(
  9065. const struct ggml_compute_params * params,
  9066. const struct ggml_tensor * src0,
  9067. const struct ggml_tensor * src1,
  9068. struct ggml_tensor * dst) {
  9069. switch (src0->type) {
  9070. case GGML_TYPE_Q4_0:
  9071. case GGML_TYPE_Q4_1:
  9072. case GGML_TYPE_Q5_0:
  9073. case GGML_TYPE_Q5_1:
  9074. case GGML_TYPE_Q8_0:
  9075. case GGML_TYPE_Q8_1:
  9076. {
  9077. GGML_ASSERT(false); // todo
  9078. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9079. } break;
  9080. case GGML_TYPE_F16:
  9081. {
  9082. GGML_ASSERT(false); // todo
  9083. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9084. } break;
  9085. case GGML_TYPE_F32:
  9086. {
  9087. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9088. } break;
  9089. default:
  9090. {
  9091. GGML_ASSERT(false);
  9092. } break;
  9093. }
  9094. }
  9095. // ggml_compute_forward_scale
  9096. static void ggml_compute_forward_scale_f32(
  9097. const struct ggml_compute_params * params,
  9098. const struct ggml_tensor * src0,
  9099. const struct ggml_tensor * src1,
  9100. struct ggml_tensor * dst) {
  9101. GGML_ASSERT(ggml_is_contiguous(src0));
  9102. GGML_ASSERT(ggml_is_contiguous(dst));
  9103. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9104. GGML_ASSERT(ggml_is_scalar(src1));
  9105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9106. return;
  9107. }
  9108. // scale factor
  9109. const float v = *(float *) src1->data;
  9110. const int ith = params->ith;
  9111. const int nth = params->nth;
  9112. const int nc = src0->ne[0];
  9113. const int nr = ggml_nrows(src0);
  9114. // rows per thread
  9115. const int dr = (nr + nth - 1)/nth;
  9116. // row range for this thread
  9117. const int ir0 = dr*ith;
  9118. const int ir1 = MIN(ir0 + dr, nr);
  9119. const size_t nb01 = src0->nb[1];
  9120. const size_t nb1 = dst->nb[1];
  9121. for (int i1 = ir0; i1 < ir1; i1++) {
  9122. if (dst->data != src0->data) {
  9123. // src0 is same shape as dst => same indices
  9124. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9125. }
  9126. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9127. }
  9128. }
  9129. static void ggml_compute_forward_scale(
  9130. const struct ggml_compute_params * params,
  9131. const struct ggml_tensor * src0,
  9132. const struct ggml_tensor * src1,
  9133. struct ggml_tensor * dst) {
  9134. switch (src0->type) {
  9135. case GGML_TYPE_F32:
  9136. {
  9137. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9138. } break;
  9139. default:
  9140. {
  9141. GGML_ASSERT(false);
  9142. } break;
  9143. }
  9144. }
  9145. // ggml_compute_forward_set
  9146. static void ggml_compute_forward_set_f32(
  9147. const struct ggml_compute_params * params,
  9148. const struct ggml_tensor * src0,
  9149. const struct ggml_tensor * src1,
  9150. const struct ggml_tensor * opt0,
  9151. struct ggml_tensor * dst) {
  9152. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9153. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9154. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  9155. GGML_ASSERT(ggml_nelements(opt0) == 5);
  9156. // view src0 and dst with these strides and data offset inbytes during set
  9157. // nb0 is implicitely element_size because src0 and dst are contiguous
  9158. size_t nb1 = ((int32_t *) opt0->data)[0];
  9159. size_t nb2 = ((int32_t *) opt0->data)[1];
  9160. size_t nb3 = ((int32_t *) opt0->data)[2];
  9161. size_t offset = ((int32_t *) opt0->data)[3];
  9162. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  9163. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9164. // memcpy needs to be synchronized across threads to avoid race conditions.
  9165. // => do it in INIT phase
  9166. memcpy(
  9167. ((char *) dst->data),
  9168. ((char *) src0->data),
  9169. ggml_nbytes(dst));
  9170. }
  9171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9172. return;
  9173. }
  9174. const int ith = params->ith;
  9175. const int nth = params->nth;
  9176. const int nr = ggml_nrows(src1);
  9177. const int nc = src1->ne[0];
  9178. const int64_t ne10 = src1->ne[0];
  9179. const int64_t ne11 = src1->ne[1];
  9180. const int64_t ne12 = src1->ne[2];
  9181. const int64_t ne13 = src1->ne[3];
  9182. const size_t nb10 = src1->nb[0];
  9183. const size_t nb11 = src1->nb[1];
  9184. const size_t nb12 = src1->nb[2];
  9185. const size_t nb13 = src1->nb[3];
  9186. // src0 and dst as viewed during set
  9187. const size_t nb0 = ggml_element_size(src0);
  9188. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9189. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9190. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9191. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9192. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9193. GGML_ASSERT(nb10 == sizeof(float));
  9194. // rows per thread
  9195. const int dr = (nr + nth - 1)/nth;
  9196. // row range for this thread
  9197. const int ir0 = dr*ith;
  9198. const int ir1 = MIN(ir0 + dr, nr);
  9199. for (int ir = ir0; ir < ir1; ++ir) {
  9200. // src0 and dst are viewed with shape of src1 and offset
  9201. // => same indices
  9202. const int i3 = ir/(ne12*ne11);
  9203. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9204. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9205. ggml_vec_cpy_f32(nc,
  9206. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9207. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9208. }
  9209. }
  9210. static void ggml_compute_forward_set(
  9211. const struct ggml_compute_params * params,
  9212. const struct ggml_tensor * src0,
  9213. const struct ggml_tensor * src1,
  9214. const struct ggml_tensor * opt0,
  9215. struct ggml_tensor * dst) {
  9216. switch (src0->type) {
  9217. case GGML_TYPE_F32:
  9218. {
  9219. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9220. } break;
  9221. case GGML_TYPE_F16:
  9222. case GGML_TYPE_Q4_0:
  9223. case GGML_TYPE_Q4_1:
  9224. case GGML_TYPE_Q5_0:
  9225. case GGML_TYPE_Q5_1:
  9226. case GGML_TYPE_Q8_0:
  9227. case GGML_TYPE_Q8_1:
  9228. case GGML_TYPE_Q2_K:
  9229. case GGML_TYPE_Q3_K:
  9230. case GGML_TYPE_Q4_K:
  9231. case GGML_TYPE_Q5_K:
  9232. case GGML_TYPE_Q6_K:
  9233. default:
  9234. {
  9235. GGML_ASSERT(false);
  9236. } break;
  9237. }
  9238. }
  9239. // ggml_compute_forward_cpy
  9240. static void ggml_compute_forward_cpy(
  9241. const struct ggml_compute_params * params,
  9242. const struct ggml_tensor * src0,
  9243. struct ggml_tensor * dst) {
  9244. ggml_compute_forward_dup(params, src0, dst);
  9245. }
  9246. // ggml_compute_forward_cont
  9247. static void ggml_compute_forward_cont(
  9248. const struct ggml_compute_params * params,
  9249. const struct ggml_tensor * src0,
  9250. struct ggml_tensor * dst) {
  9251. ggml_compute_forward_dup(params, src0, dst);
  9252. }
  9253. // ggml_compute_forward_reshape
  9254. static void ggml_compute_forward_reshape(
  9255. const struct ggml_compute_params * params,
  9256. const struct ggml_tensor * src0,
  9257. struct ggml_tensor * dst) {
  9258. // NOP
  9259. UNUSED(params);
  9260. UNUSED(src0);
  9261. UNUSED(dst);
  9262. }
  9263. // ggml_compute_forward_view
  9264. static void ggml_compute_forward_view(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0) {
  9267. // NOP
  9268. UNUSED(params);
  9269. UNUSED(src0);
  9270. }
  9271. // ggml_compute_forward_permute
  9272. static void ggml_compute_forward_permute(
  9273. const struct ggml_compute_params * params,
  9274. const struct ggml_tensor * src0) {
  9275. // NOP
  9276. UNUSED(params);
  9277. UNUSED(src0);
  9278. }
  9279. // ggml_compute_forward_transpose
  9280. static void ggml_compute_forward_transpose(
  9281. const struct ggml_compute_params * params,
  9282. const struct ggml_tensor * src0) {
  9283. // NOP
  9284. UNUSED(params);
  9285. UNUSED(src0);
  9286. }
  9287. // ggml_compute_forward_get_rows
  9288. static void ggml_compute_forward_get_rows_q(
  9289. const struct ggml_compute_params * params,
  9290. const struct ggml_tensor * src0,
  9291. const struct ggml_tensor * src1,
  9292. struct ggml_tensor * dst) {
  9293. assert(params->ith == 0);
  9294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9295. return;
  9296. }
  9297. const int nc = src0->ne[0];
  9298. const int nr = ggml_nelements(src1);
  9299. const enum ggml_type type = src0->type;
  9300. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9301. assert( dst->ne[0] == nc);
  9302. assert( dst->ne[1] == nr);
  9303. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9304. for (int i = 0; i < nr; ++i) {
  9305. const int r = ((int32_t *) src1->data)[i];
  9306. dequantize_row_q(
  9307. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9308. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9309. }
  9310. }
  9311. static void ggml_compute_forward_get_rows_f16(
  9312. const struct ggml_compute_params * params,
  9313. const struct ggml_tensor * src0,
  9314. const struct ggml_tensor * src1,
  9315. struct ggml_tensor * dst) {
  9316. assert(params->ith == 0);
  9317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9318. return;
  9319. }
  9320. const int nc = src0->ne[0];
  9321. const int nr = ggml_nelements(src1);
  9322. assert( dst->ne[0] == nc);
  9323. assert( dst->ne[1] == nr);
  9324. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9325. for (int i = 0; i < nr; ++i) {
  9326. const int r = ((int32_t *) src1->data)[i];
  9327. for (int j = 0; j < nc; ++j) {
  9328. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9329. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9330. }
  9331. }
  9332. }
  9333. static void ggml_compute_forward_get_rows_f32(
  9334. const struct ggml_compute_params * params,
  9335. const struct ggml_tensor * src0,
  9336. const struct ggml_tensor * src1,
  9337. struct ggml_tensor * dst) {
  9338. assert(params->ith == 0);
  9339. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9340. return;
  9341. }
  9342. const int nc = src0->ne[0];
  9343. const int nr = ggml_nelements(src1);
  9344. assert( dst->ne[0] == nc);
  9345. assert( dst->ne[1] == nr);
  9346. assert(src0->nb[0] == sizeof(float));
  9347. for (int i = 0; i < nr; ++i) {
  9348. const int r = ((int32_t *) src1->data)[i];
  9349. ggml_vec_cpy_f32(nc,
  9350. (float *) ((char *) dst->data + i*dst->nb[1]),
  9351. (float *) ((char *) src0->data + r*src0->nb[1]));
  9352. }
  9353. }
  9354. static void ggml_compute_forward_get_rows(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * src0,
  9357. const struct ggml_tensor * src1,
  9358. struct ggml_tensor * dst) {
  9359. switch (src0->type) {
  9360. case GGML_TYPE_Q4_0:
  9361. case GGML_TYPE_Q4_1:
  9362. case GGML_TYPE_Q5_0:
  9363. case GGML_TYPE_Q5_1:
  9364. case GGML_TYPE_Q8_0:
  9365. case GGML_TYPE_Q8_1:
  9366. case GGML_TYPE_Q2_K:
  9367. case GGML_TYPE_Q3_K:
  9368. case GGML_TYPE_Q4_K:
  9369. case GGML_TYPE_Q5_K:
  9370. case GGML_TYPE_Q6_K:
  9371. {
  9372. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9373. } break;
  9374. case GGML_TYPE_F16:
  9375. {
  9376. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9377. } break;
  9378. case GGML_TYPE_F32:
  9379. {
  9380. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9381. } break;
  9382. default:
  9383. {
  9384. GGML_ASSERT(false);
  9385. } break;
  9386. }
  9387. //static bool first = true;
  9388. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9389. //if (first) {
  9390. // first = false;
  9391. //} else {
  9392. // for (int k = 0; k < dst->ne[1]; ++k) {
  9393. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9394. // for (int i = 0; i < 16; ++i) {
  9395. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9396. // }
  9397. // printf("\n");
  9398. // }
  9399. // printf("\n");
  9400. // }
  9401. // printf("\n");
  9402. // exit(0);
  9403. //}
  9404. }
  9405. // ggml_compute_forward_get_rows_back
  9406. static void ggml_compute_forward_get_rows_back_f32_f16(
  9407. const struct ggml_compute_params * params,
  9408. const struct ggml_tensor * src0,
  9409. const struct ggml_tensor * src1,
  9410. const struct ggml_tensor * opt0,
  9411. struct ggml_tensor * dst) {
  9412. GGML_ASSERT(params->ith == 0);
  9413. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9414. GGML_ASSERT(ggml_is_contiguous(opt0));
  9415. GGML_ASSERT(ggml_is_contiguous(dst));
  9416. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9418. return;
  9419. }
  9420. const int nc = src0->ne[0];
  9421. const int nr = ggml_nelements(src1);
  9422. GGML_ASSERT( dst->ne[0] == nc);
  9423. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9424. for (int i = 0; i < nr; ++i) {
  9425. const int r = ((int32_t *) src1->data)[i];
  9426. for (int j = 0; j < nc; ++j) {
  9427. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9428. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9429. }
  9430. }
  9431. }
  9432. static void ggml_compute_forward_get_rows_back_f32(
  9433. const struct ggml_compute_params * params,
  9434. const struct ggml_tensor * src0,
  9435. const struct ggml_tensor * src1,
  9436. const struct ggml_tensor * opt0,
  9437. struct ggml_tensor * dst) {
  9438. GGML_ASSERT(params->ith == 0);
  9439. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9440. GGML_ASSERT(ggml_is_contiguous(opt0));
  9441. GGML_ASSERT(ggml_is_contiguous(dst));
  9442. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9443. if (params->type == GGML_TASK_INIT) {
  9444. memset(dst->data, 0, ggml_nbytes(dst));
  9445. }
  9446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9447. return;
  9448. }
  9449. const int nc = src0->ne[0];
  9450. const int nr = ggml_nelements(src1);
  9451. GGML_ASSERT( dst->ne[0] == nc);
  9452. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9453. for (int i = 0; i < nr; ++i) {
  9454. const int r = ((int32_t *) src1->data)[i];
  9455. ggml_vec_add_f32(nc,
  9456. (float *) ((char *) dst->data + r*dst->nb[1]),
  9457. (float *) ((char *) dst->data + r*dst->nb[1]),
  9458. (float *) ((char *) src0->data + i*src0->nb[1]));
  9459. }
  9460. }
  9461. static void ggml_compute_forward_get_rows_back(
  9462. const struct ggml_compute_params * params,
  9463. const struct ggml_tensor * src0,
  9464. const struct ggml_tensor * src1,
  9465. const struct ggml_tensor * opt0,
  9466. struct ggml_tensor * dst) {
  9467. switch (src0->type) {
  9468. case GGML_TYPE_F16:
  9469. {
  9470. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9471. } break;
  9472. case GGML_TYPE_F32:
  9473. {
  9474. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9475. } break;
  9476. default:
  9477. {
  9478. GGML_ASSERT(false);
  9479. } break;
  9480. }
  9481. //static bool first = true;
  9482. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9483. //if (first) {
  9484. // first = false;
  9485. //} else {
  9486. // for (int k = 0; k < dst->ne[1]; ++k) {
  9487. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9488. // for (int i = 0; i < 16; ++i) {
  9489. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9490. // }
  9491. // printf("\n");
  9492. // }
  9493. // printf("\n");
  9494. // }
  9495. // printf("\n");
  9496. // exit(0);
  9497. //}
  9498. }
  9499. // ggml_compute_forward_diag
  9500. static void ggml_compute_forward_diag_f32(
  9501. const struct ggml_compute_params * params,
  9502. const struct ggml_tensor * src0,
  9503. struct ggml_tensor * dst) {
  9504. GGML_ASSERT(params->ith == 0);
  9505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9506. return;
  9507. }
  9508. // TODO: handle transposed/permuted matrices
  9509. const int ne00 = src0->ne[0];
  9510. const int ne01 = src0->ne[1];
  9511. const int ne02 = src0->ne[2];
  9512. const int ne03 = src0->ne[3];
  9513. const int ne0 = dst->ne[0];
  9514. const int ne1 = dst->ne[1];
  9515. const int ne2 = dst->ne[2];
  9516. const int ne3 = dst->ne[3];
  9517. GGML_ASSERT(ne00 == ne0);
  9518. GGML_ASSERT(ne00 == ne1);
  9519. GGML_ASSERT(ne01 == 1);
  9520. GGML_ASSERT(ne02 == ne2);
  9521. GGML_ASSERT(ne03 == ne3);
  9522. const int nb00 = src0->nb[0];
  9523. //const int nb01 = src0->nb[1];
  9524. const int nb02 = src0->nb[2];
  9525. const int nb03 = src0->nb[3];
  9526. const int nb0 = dst->nb[0];
  9527. const int nb1 = dst->nb[1];
  9528. const int nb2 = dst->nb[2];
  9529. const int nb3 = dst->nb[3];
  9530. GGML_ASSERT(nb00 == sizeof(float));
  9531. GGML_ASSERT(nb0 == sizeof(float));
  9532. for (int i3 = 0; i3 < ne3; i3++) {
  9533. for (int i2 = 0; i2 < ne2; i2++) {
  9534. for (int i1 = 0; i1 < ne1; i1++) {
  9535. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9536. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9537. for (int i0 = 0; i0 < i1; i0++) {
  9538. d[i0] = 0;
  9539. }
  9540. d[i1] = s[i1];
  9541. for (int i0 = i1+1; i0 < ne0; i0++) {
  9542. d[i0] = 0;
  9543. }
  9544. }
  9545. }
  9546. }
  9547. }
  9548. static void ggml_compute_forward_diag(
  9549. const struct ggml_compute_params * params,
  9550. const struct ggml_tensor * src0,
  9551. struct ggml_tensor * dst) {
  9552. switch (src0->type) {
  9553. case GGML_TYPE_F32:
  9554. {
  9555. ggml_compute_forward_diag_f32(params, src0, dst);
  9556. } break;
  9557. default:
  9558. {
  9559. GGML_ASSERT(false);
  9560. } break;
  9561. }
  9562. }
  9563. // ggml_compute_forward_diag_mask_inf
  9564. static void ggml_compute_forward_diag_mask_f32(
  9565. const struct ggml_compute_params * params,
  9566. const struct ggml_tensor * src0,
  9567. const struct ggml_tensor * src1,
  9568. struct ggml_tensor * dst,
  9569. const float value) {
  9570. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9571. GGML_ASSERT(ggml_nelements(src1) == 2);
  9572. const int ith = params->ith;
  9573. const int nth = params->nth;
  9574. const int n_past = ((int32_t *) src1->data)[0];
  9575. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9576. GGML_ASSERT(n_past >= 0);
  9577. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9578. // memcpy needs to be synchronized across threads to avoid race conditions.
  9579. // => do it in INIT phase
  9580. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9581. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9582. memcpy(
  9583. ((char *) dst->data),
  9584. ((char *) src0->data),
  9585. ggml_nbytes(dst));
  9586. }
  9587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9588. return;
  9589. }
  9590. // TODO: handle transposed/permuted matrices
  9591. const int n = ggml_nrows(src0);
  9592. const int nc = src0->ne[0];
  9593. const int nr = src0->ne[1];
  9594. const int nz = n/nr;
  9595. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9596. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9597. for (int k = 0; k < nz; k++) {
  9598. for (int j = ith; j < nr; j += nth) {
  9599. for (int i = n_past; i < nc; i++) {
  9600. if (i > n_past + j) {
  9601. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9602. }
  9603. }
  9604. }
  9605. }
  9606. }
  9607. static void ggml_compute_forward_diag_mask_inf(
  9608. const struct ggml_compute_params * params,
  9609. const struct ggml_tensor * src0,
  9610. const struct ggml_tensor * src1,
  9611. struct ggml_tensor * dst) {
  9612. switch (src0->type) {
  9613. case GGML_TYPE_F32:
  9614. {
  9615. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9616. } break;
  9617. default:
  9618. {
  9619. GGML_ASSERT(false);
  9620. } break;
  9621. }
  9622. }
  9623. static void ggml_compute_forward_diag_mask_zero(
  9624. const struct ggml_compute_params * params,
  9625. const struct ggml_tensor * src0,
  9626. const struct ggml_tensor * src1,
  9627. struct ggml_tensor * dst) {
  9628. switch (src0->type) {
  9629. case GGML_TYPE_F32:
  9630. {
  9631. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9632. } break;
  9633. default:
  9634. {
  9635. GGML_ASSERT(false);
  9636. } break;
  9637. }
  9638. }
  9639. // ggml_compute_forward_soft_max
  9640. static void ggml_compute_forward_soft_max_f32(
  9641. const struct ggml_compute_params * params,
  9642. const struct ggml_tensor * src0,
  9643. struct ggml_tensor * dst) {
  9644. GGML_ASSERT(ggml_is_contiguous(src0));
  9645. GGML_ASSERT(ggml_is_contiguous(dst));
  9646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9648. return;
  9649. }
  9650. // TODO: handle transposed/permuted matrices
  9651. const int ith = params->ith;
  9652. const int nth = params->nth;
  9653. const int nc = src0->ne[0];
  9654. const int nr = ggml_nrows(src0);
  9655. // rows per thread
  9656. const int dr = (nr + nth - 1)/nth;
  9657. // row range for this thread
  9658. const int ir0 = dr*ith;
  9659. const int ir1 = MIN(ir0 + dr, nr);
  9660. for (int i1 = ir0; i1 < ir1; i1++) {
  9661. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9662. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9663. #ifndef NDEBUG
  9664. for (int i = 0; i < nc; ++i) {
  9665. //printf("p[%d] = %f\n", i, p[i]);
  9666. assert(!isnan(sp[i]));
  9667. }
  9668. #endif
  9669. float max = -INFINITY;
  9670. ggml_vec_max_f32(nc, &max, sp);
  9671. ggml_float sum = 0.0;
  9672. uint16_t scvt;
  9673. for (int i = 0; i < nc; i++) {
  9674. if (sp[i] == -INFINITY) {
  9675. dp[i] = 0.0f;
  9676. } else {
  9677. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9678. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9679. memcpy(&scvt, &s, sizeof(scvt));
  9680. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9681. sum += (ggml_float)val;
  9682. dp[i] = val;
  9683. }
  9684. }
  9685. assert(sum > 0.0);
  9686. sum = 1.0/sum;
  9687. ggml_vec_scale_f32(nc, dp, sum);
  9688. #ifndef NDEBUG
  9689. for (int i = 0; i < nc; ++i) {
  9690. assert(!isnan(dp[i]));
  9691. assert(!isinf(dp[i]));
  9692. }
  9693. #endif
  9694. }
  9695. }
  9696. static void ggml_compute_forward_soft_max(
  9697. const struct ggml_compute_params * params,
  9698. const struct ggml_tensor * src0,
  9699. struct ggml_tensor * dst) {
  9700. switch (src0->type) {
  9701. case GGML_TYPE_F32:
  9702. {
  9703. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9704. } break;
  9705. default:
  9706. {
  9707. GGML_ASSERT(false);
  9708. } break;
  9709. }
  9710. }
  9711. // ggml_compute_forward_soft_max_back
  9712. static void ggml_compute_forward_soft_max_back_f32(
  9713. const struct ggml_compute_params * params,
  9714. const struct ggml_tensor * src0,
  9715. const struct ggml_tensor * src1,
  9716. struct ggml_tensor * dst) {
  9717. GGML_ASSERT(ggml_is_contiguous(src0));
  9718. GGML_ASSERT(ggml_is_contiguous(src1));
  9719. GGML_ASSERT(ggml_is_contiguous(dst));
  9720. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9721. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9723. return;
  9724. }
  9725. // TODO: handle transposed/permuted matrices
  9726. const int ith = params->ith;
  9727. const int nth = params->nth;
  9728. const int nc = src0->ne[0];
  9729. const int nr = ggml_nrows(src0);
  9730. // rows per thread
  9731. const int dr = (nr + nth - 1)/nth;
  9732. // row range for this thread
  9733. const int ir0 = dr*ith;
  9734. const int ir1 = MIN(ir0 + dr, nr);
  9735. for (int i1 = ir0; i1 < ir1; i1++) {
  9736. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9737. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9738. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9739. #ifndef NDEBUG
  9740. for (int i = 0; i < nc; ++i) {
  9741. //printf("p[%d] = %f\n", i, p[i]);
  9742. assert(!isnan(dy[i]));
  9743. assert(!isnan(y[i]));
  9744. }
  9745. #endif
  9746. // Jii = yi - yi*yi
  9747. // Jij = -yi*yj
  9748. // J = diag(y)-y.T*y
  9749. // dx = J * dy
  9750. // dxk = sum_i(Jki * dyi)
  9751. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9752. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9753. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9754. // dxk = -yk * dot(y, dy) + yk*dyk
  9755. // dxk = yk * (- dot(y, dy) + dyk)
  9756. // dxk = yk * (dyk - dot(y, dy))
  9757. //
  9758. // post-order:
  9759. // dot_y_dy := dot(y, dy)
  9760. // dx := dy
  9761. // dx := dx - dot_y_dy
  9762. // dx := dx * y
  9763. // linear runtime, no additional memory
  9764. float dot_y_dy = 0;
  9765. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9766. ggml_vec_cpy_f32 (nc, dx, dy);
  9767. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9768. ggml_vec_mul_f32 (nc, dx, dx, y);
  9769. #ifndef NDEBUG
  9770. for (int i = 0; i < nc; ++i) {
  9771. assert(!isnan(dx[i]));
  9772. assert(!isinf(dx[i]));
  9773. }
  9774. #endif
  9775. }
  9776. }
  9777. static void ggml_compute_forward_soft_max_back(
  9778. const struct ggml_compute_params * params,
  9779. const struct ggml_tensor * src0,
  9780. const struct ggml_tensor * src1,
  9781. struct ggml_tensor * dst) {
  9782. switch (src0->type) {
  9783. case GGML_TYPE_F32:
  9784. {
  9785. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9786. } break;
  9787. default:
  9788. {
  9789. GGML_ASSERT(false);
  9790. } break;
  9791. }
  9792. }
  9793. // ggml_compute_forward_alibi
  9794. static void ggml_compute_forward_alibi_f32(
  9795. const struct ggml_compute_params * params,
  9796. const struct ggml_tensor * src0,
  9797. const struct ggml_tensor * src1,
  9798. struct ggml_tensor * dst) {
  9799. assert(params->ith == 0);
  9800. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9801. GGML_ASSERT(ggml_nelements(src1) == 3);
  9802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9803. return;
  9804. }
  9805. const int n_past = ((int32_t *) src1->data)[0];
  9806. const int n_head = ((int32_t *) src1->data)[1];
  9807. const float max_bias = ((float *) src1->data)[2];
  9808. assert(n_past >= 0);
  9809. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9810. const int ne1 = src0->ne[1]; // seq_len_without_past
  9811. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9812. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9813. const int n = ggml_nrows(src0);
  9814. const int ne2_ne3 = n/ne1; // ne2*ne3
  9815. const int nb0 = src0->nb[0];
  9816. const int nb1 = src0->nb[1];
  9817. const int nb2 = src0->nb[2];
  9818. //const int nb3 = src0->nb[3];
  9819. assert(nb0 == sizeof(float));
  9820. assert(ne1 + n_past == ne0); (void) n_past;
  9821. // add alibi to src0 (KQ_scaled)
  9822. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9823. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9824. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9825. for (int i = 0; i < ne0; i++) {
  9826. for (int j = 0; j < ne1; j++) {
  9827. for (int k = 0; k < ne2_ne3; k++) {
  9828. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9829. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9830. // TODO: k*nb2 or k*nb3
  9831. float m_k;
  9832. if (k < n_heads_log2_floor) {
  9833. m_k = powf(m0, k + 1);
  9834. } else {
  9835. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9836. }
  9837. pdst[0] = (i-ne0+1) * m_k + src[0];
  9838. }
  9839. }
  9840. }
  9841. }
  9842. static void ggml_compute_forward_alibi_f16(
  9843. const struct ggml_compute_params * params,
  9844. const struct ggml_tensor * src0,
  9845. const struct ggml_tensor * src1,
  9846. struct ggml_tensor * dst) {
  9847. assert(params->ith == 0);
  9848. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9849. GGML_ASSERT(ggml_nelements(src1) == 3);
  9850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9851. return;
  9852. }
  9853. const int n_past = ((int32_t *) src1->data)[0];
  9854. const int n_head = ((int32_t *) src1->data)[1];
  9855. const float max_bias = ((float *) src1->data)[2];
  9856. assert(n_past >= 0);
  9857. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9858. const int ne1 = src0->ne[1]; // seq_len_without_past
  9859. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9860. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9861. const int n = ggml_nrows(src0);
  9862. const int ne2_ne3 = n/ne1; // ne2*ne3
  9863. const int nb0 = src0->nb[0];
  9864. const int nb1 = src0->nb[1];
  9865. const int nb2 = src0->nb[2];
  9866. //const int nb3 = src0->nb[3];
  9867. assert(nb0 == sizeof(ggml_fp16_t));
  9868. assert(ne1 + n_past == ne0); (void) n_past;
  9869. // add alibi to src0 (KQ_scaled)
  9870. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9871. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9872. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9873. for (int i = 0; i < ne0; i++) {
  9874. for (int j = 0; j < ne1; j++) {
  9875. for (int k = 0; k < ne2_ne3; k++) {
  9876. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9877. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9878. // TODO: k*nb2 or k*nb3
  9879. float m_k;
  9880. if (k < n_heads_log2_floor) {
  9881. m_k = powf(m0, k + 1);
  9882. } else {
  9883. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9884. }
  9885. // we return F32
  9886. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9887. }
  9888. }
  9889. }
  9890. }
  9891. static void ggml_compute_forward_alibi(
  9892. const struct ggml_compute_params * params,
  9893. const struct ggml_tensor * src0,
  9894. const struct ggml_tensor * src1,
  9895. struct ggml_tensor * dst) {
  9896. switch (src0->type) {
  9897. case GGML_TYPE_F16:
  9898. {
  9899. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9900. } break;
  9901. case GGML_TYPE_F32:
  9902. {
  9903. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9904. } break;
  9905. case GGML_TYPE_Q4_0:
  9906. case GGML_TYPE_Q4_1:
  9907. case GGML_TYPE_Q5_0:
  9908. case GGML_TYPE_Q5_1:
  9909. case GGML_TYPE_Q8_0:
  9910. case GGML_TYPE_Q8_1:
  9911. case GGML_TYPE_Q2_K:
  9912. case GGML_TYPE_Q3_K:
  9913. case GGML_TYPE_Q4_K:
  9914. case GGML_TYPE_Q5_K:
  9915. case GGML_TYPE_Q6_K:
  9916. case GGML_TYPE_Q8_K:
  9917. case GGML_TYPE_I8:
  9918. case GGML_TYPE_I16:
  9919. case GGML_TYPE_I32:
  9920. case GGML_TYPE_COUNT:
  9921. {
  9922. GGML_ASSERT(false);
  9923. } break;
  9924. }
  9925. }
  9926. // ggml_compute_forward_clamp
  9927. static void ggml_compute_forward_clamp_f32(
  9928. const struct ggml_compute_params * params,
  9929. const struct ggml_tensor * src0,
  9930. const struct ggml_tensor * src1,
  9931. struct ggml_tensor * dst) {
  9932. assert(params->ith == 0);
  9933. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9934. GGML_ASSERT(ggml_nelements(src1) == 2);
  9935. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9936. return;
  9937. }
  9938. const float min = ((float *) src1->data)[0];
  9939. const float max = ((float *) src1->data)[1];
  9940. const int ith = params->ith;
  9941. const int nth = params->nth;
  9942. const int n = ggml_nrows(src0);
  9943. const int nc = src0->ne[0];
  9944. const size_t nb00 = src0->nb[0];
  9945. const size_t nb01 = src0->nb[1];
  9946. const size_t nb0 = dst->nb[0];
  9947. const size_t nb1 = dst->nb[1];
  9948. GGML_ASSERT( nb0 == sizeof(float));
  9949. GGML_ASSERT(nb00 == sizeof(float));
  9950. for (int j = ith; j < n; j += nth) {
  9951. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9952. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9953. for (int i = 0; i < nc; i++) {
  9954. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9955. }
  9956. }
  9957. }
  9958. static void ggml_compute_forward_clamp(
  9959. const struct ggml_compute_params * params,
  9960. const struct ggml_tensor * src0,
  9961. const struct ggml_tensor * src1,
  9962. struct ggml_tensor * dst) {
  9963. switch (src0->type) {
  9964. case GGML_TYPE_F32:
  9965. {
  9966. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9967. } break;
  9968. case GGML_TYPE_F16:
  9969. case GGML_TYPE_Q4_0:
  9970. case GGML_TYPE_Q4_1:
  9971. case GGML_TYPE_Q5_0:
  9972. case GGML_TYPE_Q5_1:
  9973. case GGML_TYPE_Q8_0:
  9974. case GGML_TYPE_Q8_1:
  9975. case GGML_TYPE_Q2_K:
  9976. case GGML_TYPE_Q3_K:
  9977. case GGML_TYPE_Q4_K:
  9978. case GGML_TYPE_Q5_K:
  9979. case GGML_TYPE_Q6_K:
  9980. case GGML_TYPE_Q8_K:
  9981. case GGML_TYPE_I8:
  9982. case GGML_TYPE_I16:
  9983. case GGML_TYPE_I32:
  9984. case GGML_TYPE_COUNT:
  9985. {
  9986. GGML_ASSERT(false);
  9987. } break;
  9988. }
  9989. }
  9990. // ggml_compute_forward_rope
  9991. static void ggml_compute_forward_rope_f32(
  9992. const struct ggml_compute_params * params,
  9993. const struct ggml_tensor * src0,
  9994. const struct ggml_tensor * src1,
  9995. struct ggml_tensor * dst) {
  9996. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9997. GGML_ASSERT(ggml_nelements(src1) == 3);
  9998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9999. return;
  10000. }
  10001. const int n_past = ((int32_t *) src1->data)[0];
  10002. const int n_dims = ((int32_t *) src1->data)[1];
  10003. const int mode = ((int32_t *) src1->data)[2];
  10004. assert(n_past >= 0);
  10005. const size_t nb00 = src0->nb[0];
  10006. const size_t nb01 = src0->nb[1];
  10007. const size_t nb02 = src0->nb[2];
  10008. const size_t nb03 = src0->nb[3];
  10009. const int64_t ne0 = dst->ne[0];
  10010. const int64_t ne1 = dst->ne[1];
  10011. const int64_t ne2 = dst->ne[2];
  10012. const int64_t ne3 = dst->ne[3];
  10013. const size_t nb0 = dst->nb[0];
  10014. const size_t nb1 = dst->nb[1];
  10015. const size_t nb2 = dst->nb[2];
  10016. const size_t nb3 = dst->nb[3];
  10017. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10018. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10019. GGML_ASSERT(nb00 == sizeof(float));
  10020. const int ith = params->ith;
  10021. const int nth = params->nth;
  10022. const int nr = ggml_nrows(dst);
  10023. GGML_ASSERT(n_dims <= ne0);
  10024. GGML_ASSERT(n_dims % 2 == 0);
  10025. // rows per thread
  10026. const int dr = (nr + nth - 1)/nth;
  10027. // row range for this thread
  10028. const int ir0 = dr*ith;
  10029. const int ir1 = MIN(ir0 + dr, nr);
  10030. // row index used to determine which thread to use
  10031. int ir = 0;
  10032. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10033. const bool is_neox = mode & 2;
  10034. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10035. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10036. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10037. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10038. if (ir++ < ir0) continue;
  10039. if (ir > ir1) break;
  10040. float theta = (float)p;
  10041. if (!is_neox) {
  10042. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10043. const float cos_theta = cosf(theta);
  10044. const float sin_theta = sinf(theta);
  10045. theta *= theta_scale;
  10046. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10047. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10048. const float x0 = src[0];
  10049. const float x1 = src[1];
  10050. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10051. dst_data[1] = x0*sin_theta + x1*cos_theta;
  10052. }
  10053. } else {
  10054. // TODO: this is probably wrong, but I can't figure it out ..
  10055. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10056. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10057. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10058. const float cos_theta = cosf(theta);
  10059. const float sin_theta = sinf(theta);
  10060. theta *= theta_scale;
  10061. const int64_t i0 = ib*n_dims + ic/2;
  10062. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10063. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10064. const float x0 = src[0];
  10065. const float x1 = src[n_dims/2];
  10066. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10067. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10068. }
  10069. }
  10070. }
  10071. }
  10072. }
  10073. }
  10074. }
  10075. static void ggml_compute_forward_rope_f16(
  10076. const struct ggml_compute_params * params,
  10077. const struct ggml_tensor * src0,
  10078. const struct ggml_tensor * src1,
  10079. struct ggml_tensor * dst) {
  10080. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10081. GGML_ASSERT(ggml_nelements(src1) == 3);
  10082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10083. return;
  10084. }
  10085. const int n_past = ((int32_t *) src1->data)[0];
  10086. const int n_dims = ((int32_t *) src1->data)[1];
  10087. const int mode = ((int32_t *) src1->data)[2];
  10088. assert(n_past >= 0);
  10089. const size_t nb00 = src0->nb[0];
  10090. const size_t nb01 = src0->nb[1];
  10091. const size_t nb02 = src0->nb[2];
  10092. const size_t nb03 = src0->nb[3];
  10093. const int64_t ne0 = dst->ne[0];
  10094. const int64_t ne1 = dst->ne[1];
  10095. const int64_t ne2 = dst->ne[2];
  10096. const int64_t ne3 = dst->ne[3];
  10097. const size_t nb0 = dst->nb[0];
  10098. const size_t nb1 = dst->nb[1];
  10099. const size_t nb2 = dst->nb[2];
  10100. const size_t nb3 = dst->nb[3];
  10101. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10102. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10103. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10104. const int ith = params->ith;
  10105. const int nth = params->nth;
  10106. const int nr = ggml_nrows(dst);
  10107. GGML_ASSERT(n_dims <= ne0);
  10108. GGML_ASSERT(n_dims % 2 == 0);
  10109. // rows per thread
  10110. const int dr = (nr + nth - 1)/nth;
  10111. // row range for this thread
  10112. const int ir0 = dr*ith;
  10113. const int ir1 = MIN(ir0 + dr, nr);
  10114. // row index used to determine which thread to use
  10115. int ir = 0;
  10116. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10117. const bool is_neox = mode & 2;
  10118. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10119. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10120. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10121. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10122. if (ir++ < ir0) continue;
  10123. if (ir > ir1) break;
  10124. float theta = (float)p;
  10125. if (!is_neox) {
  10126. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10127. const float cos_theta = cosf(theta);
  10128. const float sin_theta = sinf(theta);
  10129. theta *= theta_scale;
  10130. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10131. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10132. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10133. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10134. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10135. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10136. }
  10137. } else {
  10138. // TODO: this is probably wrong, but I can't figure it out ..
  10139. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10140. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10141. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10142. const float cos_theta = cosf(theta);
  10143. const float sin_theta = sinf(theta);
  10144. theta *= theta_scale;
  10145. const int64_t i0 = ib*n_dims + ic/2;
  10146. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10147. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10148. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10149. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10150. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10151. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10152. }
  10153. }
  10154. }
  10155. }
  10156. }
  10157. }
  10158. }
  10159. static void ggml_compute_forward_rope(
  10160. const struct ggml_compute_params * params,
  10161. const struct ggml_tensor * src0,
  10162. const struct ggml_tensor * src1,
  10163. struct ggml_tensor * dst) {
  10164. switch (src0->type) {
  10165. case GGML_TYPE_F16:
  10166. {
  10167. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10168. } break;
  10169. case GGML_TYPE_F32:
  10170. {
  10171. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10172. } break;
  10173. default:
  10174. {
  10175. GGML_ASSERT(false);
  10176. } break;
  10177. }
  10178. }
  10179. // ggml_compute_forward_rope_back
  10180. static void ggml_compute_forward_rope_back_f32(
  10181. const struct ggml_compute_params * params,
  10182. const struct ggml_tensor * src0,
  10183. const struct ggml_tensor * src1,
  10184. struct ggml_tensor * dst) {
  10185. assert(src1->type == GGML_TYPE_I32);
  10186. assert(ggml_nelements(src1) == 3);
  10187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10188. return;
  10189. }
  10190. // y = rope(x, src1)
  10191. // dx = rope_back(dy, src1)
  10192. // src0 is dy, src1 contains options
  10193. const int n_past = ((int32_t *) src1->data)[0];
  10194. const int n_dims = ((int32_t *) src1->data)[1];
  10195. const int mode = ((int32_t *) src1->data)[2];
  10196. assert(n_past >= 0);
  10197. const size_t nb00 = src0->nb[0];
  10198. const size_t nb01 = src0->nb[1];
  10199. const size_t nb02 = src0->nb[2];
  10200. const size_t nb03 = src0->nb[3];
  10201. const int64_t ne0 = dst->ne[0];
  10202. const int64_t ne1 = dst->ne[1];
  10203. const int64_t ne2 = dst->ne[2];
  10204. const int64_t ne3 = dst->ne[3];
  10205. const size_t nb0 = dst->nb[0];
  10206. const size_t nb1 = dst->nb[1];
  10207. const size_t nb2 = dst->nb[2];
  10208. const size_t nb3 = dst->nb[3];
  10209. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10210. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10211. assert(nb0 == sizeof(float));
  10212. const int ith = params->ith;
  10213. const int nth = params->nth;
  10214. const int nr = ggml_nrows(dst);
  10215. // rows per thread
  10216. const int dr = (nr + nth - 1)/nth;
  10217. // row range for this thread
  10218. const int ir0 = dr*ith;
  10219. const int ir1 = MIN(ir0 + dr, nr);
  10220. // row index used to determine which thread to use
  10221. int ir = 0;
  10222. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10223. const bool is_neox = mode & 2;
  10224. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10225. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10226. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10227. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10228. if (ir++ < ir0) continue;
  10229. if (ir > ir1) break;
  10230. float theta = (float)p;
  10231. if (!is_neox) {
  10232. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10233. const float cos_theta = cosf(theta);
  10234. const float sin_theta = sinf(theta);
  10235. theta *= theta_scale;
  10236. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10237. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10238. const float dy0 = dy[0];
  10239. const float dy1 = dy[1];
  10240. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10241. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10242. }
  10243. } else {
  10244. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10245. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10246. const float cos_theta = cosf(theta);
  10247. const float sin_theta = sinf(theta);
  10248. theta *= theta_scale;
  10249. const int64_t i0 = ib*n_dims + ic/2;
  10250. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10251. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10252. const float dy0 = dy[0];
  10253. const float dy1 = dy[n_dims/2];
  10254. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10255. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10256. }
  10257. }
  10258. }
  10259. }
  10260. }
  10261. }
  10262. }
  10263. static void ggml_compute_forward_rope_back_f16(
  10264. const struct ggml_compute_params * params,
  10265. const struct ggml_tensor * src0,
  10266. const struct ggml_tensor * src1,
  10267. struct ggml_tensor * dst) {
  10268. assert(src1->type == GGML_TYPE_I32);
  10269. assert(ggml_nelements(src1) == 3);
  10270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10271. return;
  10272. }
  10273. // y = rope(x, src1)
  10274. // dx = rope_back(dy, src1)
  10275. // src0 is dy, src1 contains options
  10276. const int n_past = ((int32_t *) src1->data)[0];
  10277. const int n_dims = ((int32_t *) src1->data)[1];
  10278. const int mode = ((int32_t *) src1->data)[2];
  10279. assert(n_past >= 0);
  10280. const size_t nb00 = src0->nb[0];
  10281. const size_t nb01 = src0->nb[1];
  10282. const size_t nb02 = src0->nb[2];
  10283. const size_t nb03 = src0->nb[3];
  10284. const int64_t ne0 = dst->ne[0];
  10285. const int64_t ne1 = dst->ne[1];
  10286. const int64_t ne2 = dst->ne[2];
  10287. const int64_t ne3 = dst->ne[3];
  10288. const size_t nb0 = dst->nb[0];
  10289. const size_t nb1 = dst->nb[1];
  10290. const size_t nb2 = dst->nb[2];
  10291. const size_t nb3 = dst->nb[3];
  10292. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10293. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10294. assert(nb0 == sizeof(ggml_fp16_t));
  10295. const int ith = params->ith;
  10296. const int nth = params->nth;
  10297. const int nr = ggml_nrows(dst);
  10298. // rows per thread
  10299. const int dr = (nr + nth - 1)/nth;
  10300. // row range for this thread
  10301. const int ir0 = dr*ith;
  10302. const int ir1 = MIN(ir0 + dr, nr);
  10303. // row index used to determine which thread to use
  10304. int ir = 0;
  10305. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10306. const bool is_neox = mode & 2;
  10307. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10308. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10309. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10310. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10311. if (ir++ < ir0) continue;
  10312. if (ir > ir1) break;
  10313. float theta = (float)p;
  10314. if (!is_neox) {
  10315. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10316. const float cos_theta = cosf(theta);
  10317. const float sin_theta = sinf(theta);
  10318. theta *= theta_scale;
  10319. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10320. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10321. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10322. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10323. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10324. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10325. }
  10326. } else {
  10327. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10328. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10329. const float cos_theta = cosf(theta);
  10330. const float sin_theta = sinf(theta);
  10331. theta *= theta_scale;
  10332. const int64_t i0 = ib*n_dims + ic/2;
  10333. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10334. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10335. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10336. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10337. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10338. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10339. }
  10340. }
  10341. }
  10342. }
  10343. }
  10344. }
  10345. }
  10346. static void ggml_compute_forward_rope_back(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. const struct ggml_tensor * src1,
  10350. struct ggml_tensor * dst) {
  10351. switch (src0->type) {
  10352. case GGML_TYPE_F16:
  10353. {
  10354. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10355. } break;
  10356. case GGML_TYPE_F32:
  10357. {
  10358. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10359. } break;
  10360. default:
  10361. {
  10362. GGML_ASSERT(false);
  10363. } break;
  10364. }
  10365. }
  10366. // ggml_compute_forward_conv_1d_s1_ph
  10367. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10368. const struct ggml_compute_params * params,
  10369. const struct ggml_tensor * src0,
  10370. const struct ggml_tensor * src1,
  10371. struct ggml_tensor * dst) {
  10372. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10373. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10374. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10375. int64_t t0 = ggml_perf_time_us();
  10376. UNUSED(t0);
  10377. const int64_t ne00 = src0->ne[0];
  10378. const int64_t ne01 = src0->ne[1];
  10379. const int64_t ne02 = src0->ne[2];
  10380. //const int64_t ne03 = src0->ne[3];
  10381. const int64_t ne10 = src1->ne[0];
  10382. const int64_t ne11 = src1->ne[1];
  10383. //const int64_t ne12 = src1->ne[2];
  10384. //const int64_t ne13 = src1->ne[3];
  10385. //const int64_t ne0 = dst->ne[0];
  10386. //const int64_t ne1 = dst->ne[1];
  10387. //const int64_t ne2 = dst->ne[2];
  10388. //const int64_t ne3 = dst->ne[3];
  10389. //const int64_t ne = ne0*ne1*ne2*ne3;
  10390. const int nb00 = src0->nb[0];
  10391. const int nb01 = src0->nb[1];
  10392. const int nb02 = src0->nb[2];
  10393. //const int nb03 = src0->nb[3];
  10394. const int nb10 = src1->nb[0];
  10395. const int nb11 = src1->nb[1];
  10396. //const int nb12 = src1->nb[2];
  10397. //const int nb13 = src1->nb[3];
  10398. //const int nb0 = dst->nb[0];
  10399. const int nb1 = dst->nb[1];
  10400. //const int nb2 = dst->nb[2];
  10401. //const int nb3 = dst->nb[3];
  10402. const int ith = params->ith;
  10403. const int nth = params->nth;
  10404. const int nk = ne00;
  10405. const int nh = nk/2;
  10406. const int ew0 = ggml_up32(ne01);
  10407. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10408. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10409. GGML_ASSERT(nb10 == sizeof(float));
  10410. if (params->type == GGML_TASK_INIT) {
  10411. // TODO: fix this memset (wsize is overestimated)
  10412. memset(params->wdata, 0, params->wsize);
  10413. // prepare kernel data (src0)
  10414. {
  10415. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10416. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10417. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10418. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10419. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10420. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10421. dst_data[i00*ew0 + i01] = src[i00];
  10422. }
  10423. }
  10424. }
  10425. }
  10426. // prepare source data (src1)
  10427. {
  10428. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10429. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10430. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10431. ggml_fp16_t * dst_data = wdata;
  10432. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10433. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10434. }
  10435. }
  10436. }
  10437. return;
  10438. }
  10439. if (params->type == GGML_TASK_FINALIZE) {
  10440. return;
  10441. }
  10442. // total rows in dst
  10443. const int nr = ne02;
  10444. // rows per thread
  10445. const int dr = (nr + nth - 1)/nth;
  10446. // row range for this thread
  10447. const int ir0 = dr*ith;
  10448. const int ir1 = MIN(ir0 + dr, nr);
  10449. for (int i1 = ir0; i1 < ir1; i1++) {
  10450. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10451. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10452. dst_data[i0] = 0;
  10453. for (int k = -nh; k <= nh; k++) {
  10454. float v = 0.0f;
  10455. ggml_vec_dot_f16(ew0, &v,
  10456. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10457. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10458. dst_data[i0] += v;
  10459. }
  10460. }
  10461. }
  10462. }
  10463. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10464. const struct ggml_compute_params * params,
  10465. const struct ggml_tensor * src0,
  10466. const struct ggml_tensor * src1,
  10467. struct ggml_tensor * dst) {
  10468. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10469. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10470. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10471. int64_t t0 = ggml_perf_time_us();
  10472. UNUSED(t0);
  10473. const int64_t ne00 = src0->ne[0];
  10474. const int64_t ne01 = src0->ne[1];
  10475. const int64_t ne02 = src0->ne[2];
  10476. //const int64_t ne03 = src0->ne[3];
  10477. const int64_t ne10 = src1->ne[0];
  10478. const int64_t ne11 = src1->ne[1];
  10479. //const int64_t ne12 = src1->ne[2];
  10480. //const int64_t ne13 = src1->ne[3];
  10481. //const int64_t ne0 = dst->ne[0];
  10482. //const int64_t ne1 = dst->ne[1];
  10483. //const int64_t ne2 = dst->ne[2];
  10484. //const int64_t ne3 = dst->ne[3];
  10485. //const int64_t ne = ne0*ne1*ne2*ne3;
  10486. const int nb00 = src0->nb[0];
  10487. const int nb01 = src0->nb[1];
  10488. const int nb02 = src0->nb[2];
  10489. //const int nb03 = src0->nb[3];
  10490. const int nb10 = src1->nb[0];
  10491. const int nb11 = src1->nb[1];
  10492. //const int nb12 = src1->nb[2];
  10493. //const int nb13 = src1->nb[3];
  10494. //const int nb0 = dst->nb[0];
  10495. const int nb1 = dst->nb[1];
  10496. //const int nb2 = dst->nb[2];
  10497. //const int nb3 = dst->nb[3];
  10498. const int ith = params->ith;
  10499. const int nth = params->nth;
  10500. const int nk = ne00;
  10501. const int nh = nk/2;
  10502. const int ew0 = ggml_up32(ne01);
  10503. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10504. GGML_ASSERT(nb00 == sizeof(float));
  10505. GGML_ASSERT(nb10 == sizeof(float));
  10506. if (params->type == GGML_TASK_INIT) {
  10507. // TODO: fix this memset (wsize is overestimated)
  10508. memset(params->wdata, 0, params->wsize);
  10509. // prepare kernel data (src0)
  10510. {
  10511. float * const wdata = (float *) params->wdata + 0;
  10512. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10513. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10514. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10515. float * dst_data = wdata + i02*ew0*ne00;
  10516. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10517. dst_data[i00*ew0 + i01] = src[i00];
  10518. }
  10519. }
  10520. }
  10521. }
  10522. // prepare source data (src1)
  10523. {
  10524. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10525. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10526. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10527. float * dst_data = wdata;
  10528. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10529. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10530. }
  10531. }
  10532. }
  10533. return;
  10534. }
  10535. if (params->type == GGML_TASK_FINALIZE) {
  10536. return;
  10537. }
  10538. // total rows in dst
  10539. const int nr = ne02;
  10540. // rows per thread
  10541. const int dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int ir0 = dr*ith;
  10544. const int ir1 = MIN(ir0 + dr, nr);
  10545. for (int i1 = ir0; i1 < ir1; i1++) {
  10546. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10547. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10548. dst_data[i0] = 0;
  10549. for (int k = -nh; k <= nh; k++) {
  10550. float v = 0.0f;
  10551. ggml_vec_dot_f32(ew0, &v,
  10552. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10553. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10554. dst_data[i0] += v;
  10555. }
  10556. }
  10557. }
  10558. }
  10559. static void ggml_compute_forward_conv_1d_s1_ph(
  10560. const struct ggml_compute_params * params,
  10561. const struct ggml_tensor * src0,
  10562. const struct ggml_tensor * src1,
  10563. struct ggml_tensor * dst) {
  10564. switch (src0->type) {
  10565. case GGML_TYPE_F16:
  10566. {
  10567. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10568. } break;
  10569. case GGML_TYPE_F32:
  10570. {
  10571. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10572. } break;
  10573. default:
  10574. {
  10575. GGML_ASSERT(false);
  10576. } break;
  10577. }
  10578. }
  10579. // ggml_compute_forward_conv_1d_s2_ph
  10580. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10581. const struct ggml_compute_params * params,
  10582. const struct ggml_tensor * src0,
  10583. const struct ggml_tensor * src1,
  10584. struct ggml_tensor * dst) {
  10585. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10586. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10587. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10588. int64_t t0 = ggml_perf_time_us();
  10589. UNUSED(t0);
  10590. const int64_t ne00 = src0->ne[0];
  10591. const int64_t ne01 = src0->ne[1];
  10592. const int64_t ne02 = src0->ne[2];
  10593. //const int64_t ne03 = src0->ne[3];
  10594. const int64_t ne10 = src1->ne[0];
  10595. const int64_t ne11 = src1->ne[1];
  10596. //const int64_t ne12 = src1->ne[2];
  10597. //const int64_t ne13 = src1->ne[3];
  10598. //const int64_t ne0 = dst->ne[0];
  10599. //const int64_t ne1 = dst->ne[1];
  10600. //const int64_t ne2 = dst->ne[2];
  10601. //const int64_t ne3 = dst->ne[3];
  10602. //const int64_t ne = ne0*ne1*ne2*ne3;
  10603. const int nb00 = src0->nb[0];
  10604. const int nb01 = src0->nb[1];
  10605. const int nb02 = src0->nb[2];
  10606. //const int nb03 = src0->nb[3];
  10607. const int nb10 = src1->nb[0];
  10608. const int nb11 = src1->nb[1];
  10609. //const int nb12 = src1->nb[2];
  10610. //const int nb13 = src1->nb[3];
  10611. //const int nb0 = dst->nb[0];
  10612. const int nb1 = dst->nb[1];
  10613. //const int nb2 = dst->nb[2];
  10614. //const int nb3 = dst->nb[3];
  10615. const int ith = params->ith;
  10616. const int nth = params->nth;
  10617. const int nk = ne00;
  10618. const int nh = nk/2;
  10619. const int ew0 = ggml_up32(ne01);
  10620. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10621. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10622. GGML_ASSERT(nb10 == sizeof(float));
  10623. if (params->type == GGML_TASK_INIT) {
  10624. // TODO: fix this memset (wsize is overestimated)
  10625. memset(params->wdata, 0, params->wsize);
  10626. // prepare kernel data (src0)
  10627. {
  10628. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10629. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10630. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10631. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10632. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10633. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10634. dst_data[i00*ew0 + i01] = src[i00];
  10635. }
  10636. }
  10637. }
  10638. }
  10639. // prepare source data (src1)
  10640. {
  10641. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10642. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10643. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10644. ggml_fp16_t * dst_data = wdata;
  10645. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10646. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10647. }
  10648. }
  10649. }
  10650. return;
  10651. }
  10652. if (params->type == GGML_TASK_FINALIZE) {
  10653. return;
  10654. }
  10655. // total rows in dst
  10656. const int nr = ne02;
  10657. // rows per thread
  10658. const int dr = (nr + nth - 1)/nth;
  10659. // row range for this thread
  10660. const int ir0 = dr*ith;
  10661. const int ir1 = MIN(ir0 + dr, nr);
  10662. for (int i1 = ir0; i1 < ir1; i1++) {
  10663. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10664. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10665. dst_data[i0/2] = 0;
  10666. for (int k = -nh; k <= nh; k++) {
  10667. float v = 0.0f;
  10668. ggml_vec_dot_f16(ew0, &v,
  10669. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10670. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10671. dst_data[i0/2] += v;
  10672. }
  10673. }
  10674. }
  10675. }
  10676. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10677. const struct ggml_compute_params * params,
  10678. const struct ggml_tensor * src0,
  10679. const struct ggml_tensor * src1,
  10680. struct ggml_tensor * dst) {
  10681. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10682. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10683. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10684. int64_t t0 = ggml_perf_time_us();
  10685. UNUSED(t0);
  10686. const int64_t ne00 = src0->ne[0];
  10687. const int64_t ne01 = src0->ne[1];
  10688. const int64_t ne02 = src0->ne[2];
  10689. //const int64_t ne03 = src0->ne[3];
  10690. const int64_t ne10 = src1->ne[0];
  10691. const int64_t ne11 = src1->ne[1];
  10692. //const int64_t ne12 = src1->ne[2];
  10693. //const int64_t ne13 = src1->ne[3];
  10694. //const int64_t ne0 = dst->ne[0];
  10695. //const int64_t ne1 = dst->ne[1];
  10696. //const int64_t ne2 = dst->ne[2];
  10697. //const int64_t ne3 = dst->ne[3];
  10698. //const int64_t ne = ne0*ne1*ne2*ne3;
  10699. const int nb00 = src0->nb[0];
  10700. const int nb01 = src0->nb[1];
  10701. const int nb02 = src0->nb[2];
  10702. //const int nb03 = src0->nb[3];
  10703. const int nb10 = src1->nb[0];
  10704. const int nb11 = src1->nb[1];
  10705. //const int nb12 = src1->nb[2];
  10706. //const int nb13 = src1->nb[3];
  10707. //const int nb0 = dst->nb[0];
  10708. const int nb1 = dst->nb[1];
  10709. //const int nb2 = dst->nb[2];
  10710. //const int nb3 = dst->nb[3];
  10711. const int ith = params->ith;
  10712. const int nth = params->nth;
  10713. const int nk = ne00;
  10714. const int nh = nk/2;
  10715. const int ew0 = ggml_up32(ne01);
  10716. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10717. GGML_ASSERT(nb00 == sizeof(float));
  10718. GGML_ASSERT(nb10 == sizeof(float));
  10719. if (params->type == GGML_TASK_INIT) {
  10720. // TODO: fix this memset (wsize is overestimated)
  10721. memset(params->wdata, 0, params->wsize);
  10722. // prepare kernel data (src0)
  10723. {
  10724. float * const wdata = (float *) params->wdata + 0;
  10725. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10726. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10727. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10728. float * dst_data = wdata + i02*ew0*ne00;
  10729. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10730. dst_data[i00*ew0 + i01] = src[i00];
  10731. }
  10732. }
  10733. }
  10734. }
  10735. // prepare source data (src1)
  10736. {
  10737. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10738. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10739. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10740. float * dst_data = wdata;
  10741. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10742. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10743. }
  10744. }
  10745. }
  10746. return;
  10747. }
  10748. if (params->type == GGML_TASK_FINALIZE) {
  10749. return;
  10750. }
  10751. // total rows in dst
  10752. const int nr = ne02;
  10753. // rows per thread
  10754. const int dr = (nr + nth - 1)/nth;
  10755. // row range for this thread
  10756. const int ir0 = dr*ith;
  10757. const int ir1 = MIN(ir0 + dr, nr);
  10758. for (int i1 = ir0; i1 < ir1; i1++) {
  10759. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10760. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10761. dst_data[i0/2] = 0;
  10762. for (int k = -nh; k <= nh; k++) {
  10763. float v = 0.0f;
  10764. ggml_vec_dot_f32(ew0, &v,
  10765. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10766. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10767. dst_data[i0/2] += v;
  10768. }
  10769. }
  10770. }
  10771. }
  10772. static void ggml_compute_forward_conv_1d_s2_ph(
  10773. const struct ggml_compute_params * params,
  10774. const struct ggml_tensor * src0,
  10775. const struct ggml_tensor * src1,
  10776. struct ggml_tensor * dst) {
  10777. switch (src0->type) {
  10778. case GGML_TYPE_F16:
  10779. {
  10780. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10781. } break;
  10782. case GGML_TYPE_F32:
  10783. {
  10784. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10785. } break;
  10786. default:
  10787. {
  10788. GGML_ASSERT(false);
  10789. } break;
  10790. }
  10791. }
  10792. // ggml_compute_forward_conv_2d_sk_p0
  10793. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10794. const struct ggml_compute_params * params,
  10795. const struct ggml_tensor * src0,
  10796. const struct ggml_tensor * src1,
  10797. struct ggml_tensor * dst) {
  10798. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10799. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10800. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10801. int64_t t0 = ggml_perf_time_us();
  10802. UNUSED(t0);
  10803. const int ne00 = src0->ne[0];
  10804. const int ne01 = src0->ne[1];
  10805. const int ne02 = src0->ne[2];
  10806. //const int ne03 = src0->ne[3];
  10807. const int ne10 = src1->ne[0];
  10808. //const int ne11 = src1->ne[1];
  10809. const int ne12 = src1->ne[2];
  10810. //const int ne13 = src1->ne[3];
  10811. const int ne0 = dst->ne[0];
  10812. const int ne1 = dst->ne[1];
  10813. const int ne2 = dst->ne[2];
  10814. //const int ne3 = dst->ne[3];
  10815. //const int ne = ne0*ne1*ne2*ne3;
  10816. const int nb00 = src0->nb[0];
  10817. //const int nb01 = src0->nb[1];
  10818. //const int nb02 = src0->nb[2];
  10819. const int nb03 = src0->nb[3];
  10820. const int nb10 = src1->nb[0];
  10821. //const int nb11 = src1->nb[1];
  10822. const int nb12 = src1->nb[2];
  10823. //const int nb13 = src1->nb[3];
  10824. //const int nb0 = dst->nb[0];
  10825. //const int nb1 = dst->nb[1];
  10826. const int nb2 = dst->nb[2];
  10827. //const int nb3 = dst->nb[3];
  10828. const int ith = params->ith;
  10829. const int nth = params->nth;
  10830. const int nk0 = ne00;
  10831. const int nk1 = ne01;
  10832. // size of the convolution row - the kernel size unrolled across all channels
  10833. // round-up so it is more suitable for SIMD
  10834. const int ew0 = ggml_up32(nk0*nk1*ne02);
  10835. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10836. GGML_ASSERT(nb10 == sizeof(float));
  10837. if (params->type == GGML_TASK_INIT) {
  10838. // TODO: fix this memset (wsize is overestimated)
  10839. memset(params->wdata, 0, params->wsize);
  10840. // prepare source data (src1)
  10841. {
  10842. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10843. for (int i12 = 0; i12 < ne12; i12++) {
  10844. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10845. ggml_fp16_t * dst_data = wdata;
  10846. for (int i1 = 0; i1 < ne1; i1++) {
  10847. for (int i0 = 0; i0 < ne0; i0++) {
  10848. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10849. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10850. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10851. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10852. }
  10853. }
  10854. }
  10855. }
  10856. }
  10857. }
  10858. return;
  10859. }
  10860. if (params->type == GGML_TASK_FINALIZE) {
  10861. return;
  10862. }
  10863. // total patches in dst
  10864. const int np = ne2;
  10865. // patches per thread
  10866. const int dp = (np + nth - 1)/nth;
  10867. // patch range for this thread
  10868. const int ip0 = dp*ith;
  10869. const int ip1 = MIN(ip0 + dp, np);
  10870. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10871. for (int i2 = ip0; i2 < ip1; i2++) {
  10872. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10873. for (int i1 = 0; i1 < ne1; ++i1) {
  10874. for (int i0 = 0; i0 < ne0; ++i0) {
  10875. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10876. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10877. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10878. }
  10879. }
  10880. }
  10881. }
  10882. static void ggml_compute_forward_conv_2d_sk_p0(
  10883. const struct ggml_compute_params * params,
  10884. const struct ggml_tensor * src0,
  10885. const struct ggml_tensor * src1,
  10886. struct ggml_tensor * dst) {
  10887. switch (src0->type) {
  10888. case GGML_TYPE_F16:
  10889. {
  10890. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10891. } break;
  10892. case GGML_TYPE_F32:
  10893. {
  10894. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10895. GGML_ASSERT(false);
  10896. } break;
  10897. default:
  10898. {
  10899. GGML_ASSERT(false);
  10900. } break;
  10901. }
  10902. }
  10903. // ggml_compute_forward_flash_attn
  10904. static void ggml_compute_forward_flash_attn_f32(
  10905. const struct ggml_compute_params * params,
  10906. const struct ggml_tensor * q,
  10907. const struct ggml_tensor * k,
  10908. const struct ggml_tensor * v,
  10909. const bool masked,
  10910. struct ggml_tensor * dst) {
  10911. int64_t t0 = ggml_perf_time_us();
  10912. UNUSED(t0);
  10913. const int64_t neq0 = q->ne[0];
  10914. const int64_t neq1 = q->ne[1];
  10915. const int64_t neq2 = q->ne[2];
  10916. const int64_t neq3 = q->ne[3];
  10917. const int64_t nek0 = k->ne[0];
  10918. const int64_t nek1 = k->ne[1];
  10919. //const int64_t nek2 = k->ne[2];
  10920. //const int64_t nek3 = k->ne[3];
  10921. //const int64_t nev0 = v->ne[0];
  10922. const int64_t nev1 = v->ne[1];
  10923. //const int64_t nev2 = v->ne[2];
  10924. //const int64_t nev3 = v->ne[3];
  10925. const int64_t ne0 = dst->ne[0];
  10926. const int64_t ne1 = dst->ne[1];
  10927. //const int64_t ne2 = dst->ne[2];
  10928. //const int64_t ne3 = dst->ne[3];
  10929. const int nbk0 = k->nb[0];
  10930. const int nbk1 = k->nb[1];
  10931. const int nbk2 = k->nb[2];
  10932. const int nbk3 = k->nb[3];
  10933. const int nbq0 = q->nb[0];
  10934. const int nbq1 = q->nb[1];
  10935. const int nbq2 = q->nb[2];
  10936. const int nbq3 = q->nb[3];
  10937. const int nbv0 = v->nb[0];
  10938. const int nbv1 = v->nb[1];
  10939. const int nbv2 = v->nb[2];
  10940. const int nbv3 = v->nb[3];
  10941. const int nb0 = dst->nb[0];
  10942. const int nb1 = dst->nb[1];
  10943. const int nb2 = dst->nb[2];
  10944. const int nb3 = dst->nb[3];
  10945. const int ith = params->ith;
  10946. const int nth = params->nth;
  10947. const int64_t D = neq0;
  10948. const int64_t N = neq1;
  10949. const int64_t P = nek1 - N;
  10950. const int64_t M = P + N;
  10951. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10952. GGML_ASSERT(ne0 == D);
  10953. GGML_ASSERT(ne1 == N);
  10954. GGML_ASSERT(P >= 0);
  10955. GGML_ASSERT(nbq0 == sizeof(float));
  10956. GGML_ASSERT(nbk0 == sizeof(float));
  10957. GGML_ASSERT(nbv0 == sizeof(float));
  10958. GGML_ASSERT(neq0 == D);
  10959. GGML_ASSERT(nek0 == D);
  10960. GGML_ASSERT(nev1 == D);
  10961. GGML_ASSERT(neq1 == N);
  10962. GGML_ASSERT(nek1 == N + P);
  10963. GGML_ASSERT(nev1 == D);
  10964. // dst cannot be transposed or permuted
  10965. GGML_ASSERT(nb0 == sizeof(float));
  10966. GGML_ASSERT(nb0 <= nb1);
  10967. GGML_ASSERT(nb1 <= nb2);
  10968. GGML_ASSERT(nb2 <= nb3);
  10969. if (params->type == GGML_TASK_INIT) {
  10970. return;
  10971. }
  10972. if (params->type == GGML_TASK_FINALIZE) {
  10973. return;
  10974. }
  10975. // parallelize by q rows using ggml_vec_dot_f32
  10976. // total rows in q
  10977. const int nr = neq1*neq2*neq3;
  10978. // rows per thread
  10979. const int dr = (nr + nth - 1)/nth;
  10980. // row range for this thread
  10981. const int ir0 = dr*ith;
  10982. const int ir1 = MIN(ir0 + dr, nr);
  10983. const float scale = 1.0f/sqrtf(D);
  10984. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10985. for (int ir = ir0; ir < ir1; ++ir) {
  10986. // q indices
  10987. const int iq3 = ir/(neq2*neq1);
  10988. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10989. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10990. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10991. for (int i = M; i < Mup; ++i) {
  10992. S[i] = -INFINITY;
  10993. }
  10994. for (int64_t ic = 0; ic < nek1; ++ic) {
  10995. // k indices
  10996. const int ik3 = iq3;
  10997. const int ik2 = iq2;
  10998. const int ik1 = ic;
  10999. // S indices
  11000. const int i1 = ik1;
  11001. ggml_vec_dot_f32(neq0,
  11002. S + i1,
  11003. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11004. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11005. }
  11006. // scale
  11007. ggml_vec_scale_f32(nek1, S, scale);
  11008. if (masked) {
  11009. for (int64_t i = P; i < M; i++) {
  11010. if (i > P + iq1) {
  11011. S[i] = -INFINITY;
  11012. }
  11013. }
  11014. }
  11015. // softmax
  11016. {
  11017. float max = -INFINITY;
  11018. ggml_vec_max_f32(M, &max, S);
  11019. ggml_float sum = 0.0;
  11020. {
  11021. #ifdef GGML_SOFT_MAX_ACCELERATE
  11022. max = -max;
  11023. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11024. vvexpf(S, S, &Mup);
  11025. ggml_vec_sum_f32(Mup, &sum, S);
  11026. #else
  11027. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11028. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11029. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11030. float * SS = S + i;
  11031. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11032. if (SS[j] == -INFINITY) {
  11033. SS[j] = 0.0f;
  11034. } else {
  11035. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11036. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11037. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11038. sump[j] += (ggml_float)val;
  11039. SS[j] = val;
  11040. }
  11041. }
  11042. }
  11043. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11044. sum += sump[i];
  11045. }
  11046. #endif
  11047. }
  11048. assert(sum > 0.0);
  11049. sum = 1.0/sum;
  11050. ggml_vec_scale_f32(M, S, sum);
  11051. #ifndef NDEBUG
  11052. for (int i = 0; i < M; ++i) {
  11053. assert(!isnan(S[i]));
  11054. assert(!isinf(S[i]));
  11055. }
  11056. #endif
  11057. }
  11058. for (int64_t ic = 0; ic < nev1; ++ic) {
  11059. // dst indices
  11060. const int i1 = iq1;
  11061. const int i2 = iq2;
  11062. const int i3 = iq3;
  11063. ggml_vec_dot_f32(nek1,
  11064. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11065. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11066. S);
  11067. }
  11068. }
  11069. }
  11070. static void ggml_compute_forward_flash_attn_f16(
  11071. const struct ggml_compute_params * params,
  11072. const struct ggml_tensor * q,
  11073. const struct ggml_tensor * k,
  11074. const struct ggml_tensor * v,
  11075. const bool masked,
  11076. struct ggml_tensor * dst) {
  11077. int64_t t0 = ggml_perf_time_us();
  11078. UNUSED(t0);
  11079. const int64_t neq0 = q->ne[0];
  11080. const int64_t neq1 = q->ne[1];
  11081. const int64_t neq2 = q->ne[2];
  11082. const int64_t neq3 = q->ne[3];
  11083. const int64_t nek0 = k->ne[0];
  11084. const int64_t nek1 = k->ne[1];
  11085. //const int64_t nek2 = k->ne[2];
  11086. //const int64_t nek3 = k->ne[3];
  11087. //const int64_t nev0 = v->ne[0];
  11088. const int64_t nev1 = v->ne[1];
  11089. //const int64_t nev2 = v->ne[2];
  11090. //const int64_t nev3 = v->ne[3];
  11091. const int64_t ne0 = dst->ne[0];
  11092. const int64_t ne1 = dst->ne[1];
  11093. //const int64_t ne2 = dst->ne[2];
  11094. //const int64_t ne3 = dst->ne[3];
  11095. const int nbk0 = k->nb[0];
  11096. const int nbk1 = k->nb[1];
  11097. const int nbk2 = k->nb[2];
  11098. const int nbk3 = k->nb[3];
  11099. const int nbq0 = q->nb[0];
  11100. const int nbq1 = q->nb[1];
  11101. const int nbq2 = q->nb[2];
  11102. const int nbq3 = q->nb[3];
  11103. const int nbv0 = v->nb[0];
  11104. const int nbv1 = v->nb[1];
  11105. const int nbv2 = v->nb[2];
  11106. const int nbv3 = v->nb[3];
  11107. const int nb0 = dst->nb[0];
  11108. const int nb1 = dst->nb[1];
  11109. const int nb2 = dst->nb[2];
  11110. const int nb3 = dst->nb[3];
  11111. const int ith = params->ith;
  11112. const int nth = params->nth;
  11113. const int64_t D = neq0;
  11114. const int64_t N = neq1;
  11115. const int64_t P = nek1 - N;
  11116. const int64_t M = P + N;
  11117. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11118. GGML_ASSERT(ne0 == D);
  11119. GGML_ASSERT(ne1 == N);
  11120. GGML_ASSERT(P >= 0);
  11121. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11122. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11123. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11124. GGML_ASSERT(neq0 == D);
  11125. GGML_ASSERT(nek0 == D);
  11126. GGML_ASSERT(nev1 == D);
  11127. GGML_ASSERT(neq1 == N);
  11128. GGML_ASSERT(nek1 == N + P);
  11129. GGML_ASSERT(nev1 == D);
  11130. // dst cannot be transposed or permuted
  11131. GGML_ASSERT(nb0 == sizeof(float));
  11132. GGML_ASSERT(nb0 <= nb1);
  11133. GGML_ASSERT(nb1 <= nb2);
  11134. GGML_ASSERT(nb2 <= nb3);
  11135. if (params->type == GGML_TASK_INIT) {
  11136. return;
  11137. }
  11138. if (params->type == GGML_TASK_FINALIZE) {
  11139. return;
  11140. }
  11141. // parallelize by q rows using ggml_vec_dot_f32
  11142. // total rows in q
  11143. const int nr = neq1*neq2*neq3;
  11144. // rows per thread
  11145. const int dr = (nr + nth - 1)/nth;
  11146. // row range for this thread
  11147. const int ir0 = dr*ith;
  11148. const int ir1 = MIN(ir0 + dr, nr);
  11149. const float scale = 1.0f/sqrtf(D);
  11150. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11151. for (int ir = ir0; ir < ir1; ++ir) {
  11152. // q indices
  11153. const int iq3 = ir/(neq2*neq1);
  11154. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11155. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11156. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11157. for (int i = M; i < Mup; ++i) {
  11158. S[i] = -INFINITY;
  11159. }
  11160. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11161. for (int64_t ic = 0; ic < nek1; ++ic) {
  11162. // k indices
  11163. const int ik3 = iq3;
  11164. const int ik2 = iq2;
  11165. const int ik1 = ic;
  11166. // S indices
  11167. const int i1 = ik1;
  11168. ggml_vec_dot_f16(neq0,
  11169. S + i1,
  11170. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11171. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11172. }
  11173. } else {
  11174. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11175. // k indices
  11176. const int ik3 = iq3;
  11177. const int ik2 = iq2;
  11178. const int ik1 = ic;
  11179. // S indices
  11180. const int i1 = ik1;
  11181. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11182. S + i1,
  11183. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11184. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11185. }
  11186. }
  11187. // scale
  11188. ggml_vec_scale_f32(nek1, S, scale);
  11189. if (masked) {
  11190. for (int64_t i = P; i < M; i++) {
  11191. if (i > P + iq1) {
  11192. S[i] = -INFINITY;
  11193. }
  11194. }
  11195. }
  11196. // softmax
  11197. {
  11198. float max = -INFINITY;
  11199. ggml_vec_max_f32(M, &max, S);
  11200. ggml_float sum = 0.0;
  11201. {
  11202. #ifdef GGML_SOFT_MAX_ACCELERATE
  11203. max = -max;
  11204. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11205. vvexpf(S, S, &Mup);
  11206. ggml_vec_sum_f32(Mup, &sum, S);
  11207. #else
  11208. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11209. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11210. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11211. float * SS = S + i;
  11212. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11213. if (SS[j] == -INFINITY) {
  11214. SS[j] = 0.0f;
  11215. } else {
  11216. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11217. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11218. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11219. sump[j] += (ggml_float)val;
  11220. SS[j] = val;
  11221. }
  11222. }
  11223. }
  11224. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11225. sum += sump[i];
  11226. }
  11227. #endif
  11228. }
  11229. assert(sum > 0.0);
  11230. sum = 1.0/sum;
  11231. ggml_vec_scale_f32(M, S, sum);
  11232. #ifndef NDEBUG
  11233. for (int i = 0; i < M; ++i) {
  11234. assert(!isnan(S[i]));
  11235. assert(!isinf(S[i]));
  11236. }
  11237. #endif
  11238. }
  11239. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11240. for (int64_t i = 0; i < M; i++) {
  11241. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11242. }
  11243. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11244. for (int64_t ic = 0; ic < nev1; ++ic) {
  11245. // dst indices
  11246. const int i1 = iq1;
  11247. const int i2 = iq2;
  11248. const int i3 = iq3;
  11249. ggml_vec_dot_f16(nek1,
  11250. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11251. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11252. S16);
  11253. }
  11254. } else {
  11255. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11256. // dst indices
  11257. const int i1 = iq1;
  11258. const int i2 = iq2;
  11259. const int i3 = iq3;
  11260. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11261. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11262. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11263. S16);
  11264. }
  11265. }
  11266. }
  11267. }
  11268. static void ggml_compute_forward_flash_attn(
  11269. const struct ggml_compute_params * params,
  11270. const struct ggml_tensor * q,
  11271. const struct ggml_tensor * k,
  11272. const struct ggml_tensor * v,
  11273. const bool masked,
  11274. struct ggml_tensor * dst) {
  11275. switch (q->type) {
  11276. case GGML_TYPE_F16:
  11277. {
  11278. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11279. } break;
  11280. case GGML_TYPE_F32:
  11281. {
  11282. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11283. } break;
  11284. default:
  11285. {
  11286. GGML_ASSERT(false);
  11287. } break;
  11288. }
  11289. }
  11290. // ggml_compute_forward_flash_ff
  11291. static void ggml_compute_forward_flash_ff_f16(
  11292. const struct ggml_compute_params * params,
  11293. const struct ggml_tensor * a, // F16
  11294. const struct ggml_tensor * b0, // F16 fc_w
  11295. const struct ggml_tensor * b1, // F32 fc_b
  11296. const struct ggml_tensor * c0, // F16 proj_w
  11297. const struct ggml_tensor * c1, // F32 proj_b
  11298. struct ggml_tensor * dst) {
  11299. int64_t t0 = ggml_perf_time_us();
  11300. UNUSED(t0);
  11301. const int64_t nea0 = a->ne[0];
  11302. const int64_t nea1 = a->ne[1];
  11303. const int64_t nea2 = a->ne[2];
  11304. const int64_t nea3 = a->ne[3];
  11305. const int64_t neb00 = b0->ne[0];
  11306. const int64_t neb01 = b0->ne[1];
  11307. //const int64_t neb02 = b0->ne[2];
  11308. //const int64_t neb03 = b0->ne[3];
  11309. const int64_t neb10 = b1->ne[0];
  11310. const int64_t neb11 = b1->ne[1];
  11311. //const int64_t neb12 = b1->ne[2];
  11312. //const int64_t neb13 = b1->ne[3];
  11313. const int64_t nec00 = c0->ne[0];
  11314. const int64_t nec01 = c0->ne[1];
  11315. //const int64_t nec02 = c0->ne[2];
  11316. //const int64_t nec03 = c0->ne[3];
  11317. const int64_t nec10 = c1->ne[0];
  11318. const int64_t nec11 = c1->ne[1];
  11319. //const int64_t nec12 = c1->ne[2];
  11320. //const int64_t nec13 = c1->ne[3];
  11321. const int64_t ne0 = dst->ne[0];
  11322. const int64_t ne1 = dst->ne[1];
  11323. const int64_t ne2 = dst->ne[2];
  11324. //const int64_t ne3 = dst->ne[3];
  11325. const int nba0 = a->nb[0];
  11326. const int nba1 = a->nb[1];
  11327. const int nba2 = a->nb[2];
  11328. const int nba3 = a->nb[3];
  11329. const int nbb00 = b0->nb[0];
  11330. const int nbb01 = b0->nb[1];
  11331. const int nbb02 = b0->nb[2];
  11332. const int nbb03 = b0->nb[3];
  11333. const int nbb10 = b1->nb[0];
  11334. //const int nbb11 = b1->nb[1];
  11335. //const int nbb12 = b1->nb[2];
  11336. //const int nbb13 = b1->nb[3];
  11337. const int nbc00 = c0->nb[0];
  11338. const int nbc01 = c0->nb[1];
  11339. const int nbc02 = c0->nb[2];
  11340. const int nbc03 = c0->nb[3];
  11341. const int nbc10 = c1->nb[0];
  11342. //const int nbc11 = c1->nb[1];
  11343. //const int nbc12 = c1->nb[2];
  11344. //const int nbc13 = c1->nb[3];
  11345. const int nb0 = dst->nb[0];
  11346. const int nb1 = dst->nb[1];
  11347. const int nb2 = dst->nb[2];
  11348. const int nb3 = dst->nb[3];
  11349. const int ith = params->ith;
  11350. const int nth = params->nth;
  11351. const int64_t D = nea0;
  11352. //const int64_t N = nea1;
  11353. const int64_t M = neb01;
  11354. GGML_ASSERT(ne0 == nea0);
  11355. GGML_ASSERT(ne1 == nea1);
  11356. GGML_ASSERT(ne2 == nea2);
  11357. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11358. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11359. GGML_ASSERT(nbb10 == sizeof(float));
  11360. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11361. GGML_ASSERT(nbc10 == sizeof(float));
  11362. GGML_ASSERT(neb00 == D);
  11363. GGML_ASSERT(neb01 == M);
  11364. GGML_ASSERT(neb10 == M);
  11365. GGML_ASSERT(neb11 == 1);
  11366. GGML_ASSERT(nec00 == M);
  11367. GGML_ASSERT(nec01 == D);
  11368. GGML_ASSERT(nec10 == D);
  11369. GGML_ASSERT(nec11 == 1);
  11370. // dst cannot be transposed or permuted
  11371. GGML_ASSERT(nb0 == sizeof(float));
  11372. GGML_ASSERT(nb0 <= nb1);
  11373. GGML_ASSERT(nb1 <= nb2);
  11374. GGML_ASSERT(nb2 <= nb3);
  11375. if (params->type == GGML_TASK_INIT) {
  11376. return;
  11377. }
  11378. if (params->type == GGML_TASK_FINALIZE) {
  11379. return;
  11380. }
  11381. // parallelize by a rows using ggml_vec_dot_f32
  11382. // total rows in a
  11383. const int nr = nea1*nea2*nea3;
  11384. // rows per thread
  11385. const int dr = (nr + nth - 1)/nth;
  11386. // row range for this thread
  11387. const int ir0 = dr*ith;
  11388. const int ir1 = MIN(ir0 + dr, nr);
  11389. for (int ir = ir0; ir < ir1; ++ir) {
  11390. // a indices
  11391. const int ia3 = ir/(nea2*nea1);
  11392. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11393. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11394. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11395. for (int64_t ic = 0; ic < neb01; ++ic) {
  11396. // b0 indices
  11397. const int ib03 = ia3;
  11398. const int ib02 = ia2;
  11399. const int ib01 = ic;
  11400. // S indices
  11401. const int i1 = ib01;
  11402. ggml_vec_dot_f16(nea0,
  11403. S + i1,
  11404. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11405. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11406. }
  11407. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11408. //ggml_vec_gelu_f32(neb01, S, S);
  11409. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11410. for (int64_t i = 0; i < M; i++) {
  11411. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11412. }
  11413. ggml_vec_gelu_f16(neb01, S16, S16);
  11414. {
  11415. // dst indices
  11416. const int i1 = ia1;
  11417. const int i2 = ia2;
  11418. const int i3 = ia3;
  11419. for (int64_t ic = 0; ic < nec01; ++ic) {
  11420. ggml_vec_dot_f16(neb01,
  11421. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11422. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11423. S16);
  11424. }
  11425. ggml_vec_add_f32(nec01,
  11426. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11427. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11428. (float *) c1->data);
  11429. }
  11430. }
  11431. }
  11432. static void ggml_compute_forward_flash_ff(
  11433. const struct ggml_compute_params * params,
  11434. const struct ggml_tensor * a,
  11435. const struct ggml_tensor * b0,
  11436. const struct ggml_tensor * b1,
  11437. const struct ggml_tensor * c0,
  11438. const struct ggml_tensor * c1,
  11439. struct ggml_tensor * dst) {
  11440. switch (b0->type) {
  11441. case GGML_TYPE_F16:
  11442. {
  11443. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11444. } break;
  11445. case GGML_TYPE_F32:
  11446. {
  11447. GGML_ASSERT(false); // TODO
  11448. } break;
  11449. default:
  11450. {
  11451. GGML_ASSERT(false);
  11452. } break;
  11453. }
  11454. }
  11455. // ggml_compute_forward_flash_attn_back
  11456. static void ggml_compute_forward_flash_attn_back_f32(
  11457. const struct ggml_compute_params * params,
  11458. const struct ggml_tensor * q,
  11459. const struct ggml_tensor * k,
  11460. const struct ggml_tensor * v,
  11461. const struct ggml_tensor * d,
  11462. const bool masked,
  11463. struct ggml_tensor * dst) {
  11464. int64_t t0 = ggml_perf_time_us();
  11465. UNUSED(t0);
  11466. const int64_t neq0 = q->ne[0];
  11467. const int64_t neq1 = q->ne[1];
  11468. const int64_t neq2 = q->ne[2];
  11469. const int64_t neq3 = q->ne[3];
  11470. const int64_t nek0 = k->ne[0];
  11471. const int64_t nek1 = k->ne[1];
  11472. //const int64_t nek2 = k->ne[2];
  11473. //const int64_t nek3 = k->ne[3];
  11474. const int64_t nev0 = v->ne[0];
  11475. const int64_t nev1 = v->ne[1];
  11476. //const int64_t nev2 = v->ne[2];
  11477. //const int64_t nev3 = v->ne[3];
  11478. const int64_t ned0 = d->ne[0];
  11479. const int64_t ned1 = d->ne[1];
  11480. //const int64_t ned2 = d->ne[2];
  11481. //const int64_t ned3 = d->ne[3];
  11482. const int64_t ne0 = dst->ne[0];
  11483. const int64_t ne1 = dst->ne[1];
  11484. const int64_t ne2 = dst->ne[2];
  11485. const int64_t ne3 = dst->ne[3];
  11486. const int nbk0 = k->nb[0];
  11487. const int nbk1 = k->nb[1];
  11488. const int nbk2 = k->nb[2];
  11489. const int nbk3 = k->nb[3];
  11490. const int nbq0 = q->nb[0];
  11491. const int nbq1 = q->nb[1];
  11492. const int nbq2 = q->nb[2];
  11493. const int nbq3 = q->nb[3];
  11494. const int nbv0 = v->nb[0];
  11495. const int nbv1 = v->nb[1];
  11496. const int nbv2 = v->nb[2];
  11497. const int nbv3 = v->nb[3];
  11498. const int nbd0 = d->nb[0];
  11499. const int nbd1 = d->nb[1];
  11500. const int nbd2 = d->nb[2];
  11501. const int nbd3 = d->nb[3];
  11502. const int nb0 = dst->nb[0];
  11503. const int nb1 = dst->nb[1];
  11504. const int nb2 = dst->nb[2];
  11505. const int nb3 = dst->nb[3];
  11506. const int ith = params->ith;
  11507. const int nth = params->nth;
  11508. const int64_t D = neq0;
  11509. const int64_t N = neq1;
  11510. const int64_t P = nek1 - N;
  11511. const int64_t M = P + N;
  11512. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11513. const int mxDM = MAX(D, Mup);
  11514. // GGML_ASSERT(ne0 == D);
  11515. // GGML_ASSERT(ne1 == N);
  11516. GGML_ASSERT(P >= 0);
  11517. GGML_ASSERT(nbq0 == sizeof(float));
  11518. GGML_ASSERT(nbk0 == sizeof(float));
  11519. GGML_ASSERT(nbv0 == sizeof(float));
  11520. GGML_ASSERT(neq0 == D);
  11521. GGML_ASSERT(nek0 == D);
  11522. GGML_ASSERT(nev1 == D);
  11523. GGML_ASSERT(ned0 == D);
  11524. GGML_ASSERT(neq1 == N);
  11525. GGML_ASSERT(nek1 == N + P);
  11526. GGML_ASSERT(nev1 == D);
  11527. GGML_ASSERT(ned1 == N);
  11528. // dst cannot be transposed or permuted
  11529. GGML_ASSERT(nb0 == sizeof(float));
  11530. GGML_ASSERT(nb0 <= nb1);
  11531. GGML_ASSERT(nb1 <= nb2);
  11532. GGML_ASSERT(nb2 <= nb3);
  11533. if (params->type == GGML_TASK_INIT) {
  11534. if (ith == 0) {
  11535. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11536. }
  11537. return;
  11538. }
  11539. if (params->type == GGML_TASK_FINALIZE) {
  11540. return;
  11541. }
  11542. // parallelize by q rows using ggml_vec_dot_f32
  11543. // total rows in q
  11544. const int nr = neq2*neq3;
  11545. // rows per thread
  11546. const int dr = (nr + nth - 1)/nth;
  11547. // row range for this thread
  11548. const int ir0 = dr*ith;
  11549. const int ir1 = MIN(ir0 + dr, nr);
  11550. const float scale = 1.0f/sqrtf(D);
  11551. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11552. for (int ir = ir0; ir < ir1; ++ir) {
  11553. // q indices
  11554. const int iq3 = ir/(neq2);
  11555. const int iq2 = ir - iq3*neq2;
  11556. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11557. // not sure about CACHE_LINE_SIZE_F32..
  11558. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11559. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11560. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11561. for (int i = M; i < Mup; ++i) {
  11562. S[i] = -INFINITY;
  11563. }
  11564. for (int64_t ic = 0; ic < nek1; ++ic) {
  11565. // k indices
  11566. const int ik3 = iq3;
  11567. const int ik2 = iq2;
  11568. const int ik1 = ic;
  11569. // S indices
  11570. const int i1 = ik1;
  11571. ggml_vec_dot_f32(neq0,
  11572. S + i1,
  11573. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11574. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11575. }
  11576. // scale
  11577. ggml_vec_scale_f32(nek1, S, scale);
  11578. if (masked) {
  11579. for (int64_t i = P; i < M; i++) {
  11580. if (i > P + iq1) {
  11581. S[i] = -INFINITY;
  11582. }
  11583. }
  11584. }
  11585. // softmax
  11586. {
  11587. float max = -INFINITY;
  11588. ggml_vec_max_f32(M, &max, S);
  11589. ggml_float sum = 0.0;
  11590. {
  11591. #ifdef GGML_SOFT_MAX_ACCELERATE
  11592. max = -max;
  11593. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11594. vvexpf(SM, SM, &Mup);
  11595. ggml_vec_sum_f32(Mup, &sum, SM);
  11596. #else
  11597. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11598. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11599. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11600. float * SR = S + i;
  11601. float * SW = SM + i;
  11602. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11603. if (SR[j] == -INFINITY) {
  11604. SW[j] = 0.0f;
  11605. } else {
  11606. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11607. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11608. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11609. sump[j] += (ggml_float)val;
  11610. SW[j] = val;
  11611. }
  11612. }
  11613. }
  11614. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11615. sum += sump[i];
  11616. }
  11617. #endif
  11618. }
  11619. assert(sum > 0.0);
  11620. sum = 1.0/sum;
  11621. ggml_vec_scale_f32(M, SM, sum);
  11622. }
  11623. // step-by-step explanation
  11624. {
  11625. // forward-process shape grads from backward process
  11626. // parallel_for iq2,iq3:
  11627. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11628. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11629. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11630. // for iq1:
  11631. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11632. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11633. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11634. // S0 = -Inf [D,1,1,1]
  11635. // ~S1[i] = dot(kcur[:D,i], qcur)
  11636. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11637. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11638. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11639. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11640. // ~S5[i] = dot(vcur[:,i], S4)
  11641. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11642. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11643. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11644. // dst backward-/ grad[dst] = d
  11645. //
  11646. // output gradients with their dependencies:
  11647. //
  11648. // grad[kcur] = grad[S1].T @ qcur
  11649. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11650. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11651. // grad[S4] = grad[S5] @ vcur
  11652. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11653. // grad[qcur] = grad[S1] @ kcur
  11654. // grad[vcur] = grad[S5].T @ S4
  11655. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11656. //
  11657. // in post-order:
  11658. //
  11659. // S1 = qcur @ kcur.T
  11660. // S2 = S1 * scale
  11661. // S3 = diag_mask_inf(S2, P)
  11662. // S4 = softmax(S3)
  11663. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11664. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11665. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11666. // grad[qcur] = grad[S1] @ kcur
  11667. // grad[kcur] = grad[S1].T @ qcur
  11668. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11669. //
  11670. // using less variables (SM=S4):
  11671. //
  11672. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11673. // SM = softmax(S)
  11674. // S = d[:D,iq1,iq2,iq3] @ vcur
  11675. // dot_SM_gradSM = dot(SM, S)
  11676. // S = SM * (S - dot(SM, S))
  11677. // S = diag_mask_zero(S, P) * scale
  11678. //
  11679. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11680. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11681. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11682. }
  11683. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11684. // S = d[:D,iq1,iq2,iq3] @ vcur
  11685. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11686. ggml_vec_set_f32(M, S, 0);
  11687. for (int64_t ic = 0; ic < D; ++ic) {
  11688. // dst indices
  11689. const int i1 = iq1;
  11690. const int i2 = iq2;
  11691. const int i3 = iq3;
  11692. ggml_vec_mad_f32(M,
  11693. S,
  11694. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11695. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11696. }
  11697. // S = SM * (S - dot(SM, S))
  11698. float dot_SM_gradSM = 0;
  11699. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11700. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11701. ggml_vec_mul_f32 (M, S, S, SM);
  11702. // S = diag_mask_zero(S, P) * scale
  11703. if (masked) {
  11704. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11705. // S[i] = 0;
  11706. // }
  11707. for (int64_t i = P; i < M; i++) {
  11708. if (i > P + iq1) {
  11709. S[i] = 0;
  11710. }
  11711. }
  11712. }
  11713. ggml_vec_scale_f32(M, S, scale);
  11714. void * grad_q = (char *) dst->data;
  11715. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11716. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11717. const size_t nbgq1 = nb0*neq0;
  11718. const size_t nbgq2 = nb0*neq0*neq1;
  11719. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11720. const size_t nbgk1 = nb0*nek0;
  11721. const size_t nbgk2 = nb0*nek0*nek1;
  11722. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11723. const size_t nbgv1 = nb0*nev0;
  11724. const size_t nbgv2 = nb0*nev0*nev1;
  11725. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11726. // S shape [M,1]
  11727. // SM shape [M,1]
  11728. // kcur shape [D,M]
  11729. // qcur shape [D,1]
  11730. // vcur shape [M,D]
  11731. //
  11732. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11733. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11734. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11735. //
  11736. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11737. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11738. for (int64_t ic = 0; ic < M; ++ic) {
  11739. // dst indices
  11740. const int i1 = iq1;
  11741. const int i2 = iq2;
  11742. const int i3 = iq3;
  11743. ggml_vec_mad_f32(D,
  11744. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11745. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11746. S[ic]);
  11747. }
  11748. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11749. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11750. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11751. for (int64_t ic = 0; ic < M; ++ic) {
  11752. // dst indices
  11753. const int i1 = iq1;
  11754. const int i2 = iq2;
  11755. const int i3 = iq3;
  11756. // ggml_vec_set_f32(D,
  11757. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11758. // 0);
  11759. ggml_vec_mad_f32(D,
  11760. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11761. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11762. S[ic]);
  11763. }
  11764. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11765. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11766. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11767. for (int64_t ic = 0; ic < D; ++ic) {
  11768. // dst indices
  11769. const int i1 = iq1;
  11770. const int i2 = iq2;
  11771. const int i3 = iq3;
  11772. // ggml_vec_set_f32(M,
  11773. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11774. // 0);
  11775. ggml_vec_mad_f32(M,
  11776. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11777. SM,
  11778. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11779. }
  11780. }
  11781. }
  11782. }
  11783. static void ggml_compute_forward_flash_attn_back(
  11784. const struct ggml_compute_params * params,
  11785. const struct ggml_tensor * q,
  11786. const struct ggml_tensor * k,
  11787. const struct ggml_tensor * v,
  11788. const struct ggml_tensor * d,
  11789. const bool masked,
  11790. struct ggml_tensor * dst) {
  11791. switch (q->type) {
  11792. case GGML_TYPE_F32:
  11793. {
  11794. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11795. } break;
  11796. default:
  11797. {
  11798. GGML_ASSERT(false);
  11799. } break;
  11800. }
  11801. }
  11802. // ggml_compute_forward_win_part
  11803. static void ggml_compute_forward_win_part_f32(
  11804. const struct ggml_compute_params * params,
  11805. const struct ggml_tensor * src0,
  11806. const struct ggml_tensor * opt0,
  11807. struct ggml_tensor * dst) {
  11808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11809. return;
  11810. }
  11811. const int64_t ne00 = src0->ne[0]; UNUSED(ne00);
  11812. const int64_t ne01 = src0->ne[1];
  11813. const int64_t ne02 = src0->ne[2];
  11814. const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
  11815. const int64_t ne0 = dst->ne[0];
  11816. const int64_t ne1 = dst->ne[1];
  11817. const int64_t ne2 = dst->ne[2];
  11818. const int64_t ne3 = dst->ne[3]; UNUSED(ne3);
  11819. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11820. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11821. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11822. assert(ne00 == ne0);
  11823. assert(ne3 == nep0*nep1);
  11824. // TODO: optimize / multi-thread
  11825. for (int py = 0; py < nep1; ++py) {
  11826. for (int px = 0; px < nep0; ++px) {
  11827. const int64_t i3 = py*nep0 + px;
  11828. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11829. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11830. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11831. const int64_t i02 = py*w + i2;
  11832. const int64_t i01 = px*w + i1;
  11833. const int64_t i00 = i0;
  11834. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11835. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11836. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11837. ((float *) dst->data)[i] = 0.0f;
  11838. } else {
  11839. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11840. }
  11841. }
  11842. }
  11843. }
  11844. }
  11845. }
  11846. }
  11847. static void ggml_compute_forward_win_part(
  11848. const struct ggml_compute_params * params,
  11849. const struct ggml_tensor * src0,
  11850. const struct ggml_tensor * opt0,
  11851. struct ggml_tensor * dst) {
  11852. switch (src0->type) {
  11853. case GGML_TYPE_F32:
  11854. {
  11855. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11856. } break;
  11857. default:
  11858. {
  11859. GGML_ASSERT(false);
  11860. } break;
  11861. }
  11862. }
  11863. // ggml_compute_forward_win_unpart
  11864. static void ggml_compute_forward_win_unpart_f32(
  11865. const struct ggml_compute_params * params,
  11866. const struct ggml_tensor * src0,
  11867. const struct ggml_tensor * opt0,
  11868. struct ggml_tensor * dst) {
  11869. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11870. return;
  11871. }
  11872. const int64_t ne00 = src0->ne[0];
  11873. const int64_t ne01 = src0->ne[1];
  11874. const int64_t ne02 = src0->ne[2];
  11875. //const int64_t ne03 = src0->ne[3];
  11876. const int64_t ne0 = dst->ne[0];
  11877. const int64_t ne1 = dst->ne[1];
  11878. const int64_t ne2 = dst->ne[2];
  11879. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11880. // padding
  11881. const int px = (w - ne1%w)%w;
  11882. //const int py = (w - ne2%w)%w;
  11883. const int npx = (px + ne1)/w;
  11884. //const int npy = (py + ne2)/w;
  11885. assert(ne0 == ne00);
  11886. // TODO: optimize / multi-thread
  11887. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11888. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11889. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11890. const int ip2 = i2/w;
  11891. const int ip1 = i1/w;
  11892. const int64_t i02 = i2%w;
  11893. const int64_t i01 = i1%w;
  11894. const int64_t i00 = i0;
  11895. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11896. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11897. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11898. }
  11899. }
  11900. }
  11901. }
  11902. static void ggml_compute_forward_win_unpart(
  11903. const struct ggml_compute_params * params,
  11904. const struct ggml_tensor * src0,
  11905. const struct ggml_tensor * opt0,
  11906. struct ggml_tensor * dst) {
  11907. switch (src0->type) {
  11908. case GGML_TYPE_F32:
  11909. {
  11910. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11911. } break;
  11912. default:
  11913. {
  11914. GGML_ASSERT(false);
  11915. } break;
  11916. }
  11917. }
  11918. // ggml_compute_forward_map_unary
  11919. static void ggml_compute_forward_map_unary_f32(
  11920. const struct ggml_compute_params * params,
  11921. const struct ggml_tensor * src0,
  11922. struct ggml_tensor * dst,
  11923. const ggml_unary_op_f32_t fun) {
  11924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11926. return;
  11927. }
  11928. const int n = ggml_nrows(src0);
  11929. const int nc = src0->ne[0];
  11930. assert( dst->nb[0] == sizeof(float));
  11931. assert(src0->nb[0] == sizeof(float));
  11932. for (int i = 0; i < n; i++) {
  11933. fun(nc,
  11934. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11935. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11936. }
  11937. }
  11938. static void ggml_compute_forward_map_unary(
  11939. const struct ggml_compute_params * params,
  11940. const struct ggml_tensor * src0,
  11941. struct ggml_tensor * dst,
  11942. const ggml_unary_op_f32_t fun) {
  11943. switch (src0->type) {
  11944. case GGML_TYPE_F32:
  11945. {
  11946. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11947. } break;
  11948. default:
  11949. {
  11950. GGML_ASSERT(false);
  11951. } break;
  11952. }
  11953. }
  11954. // ggml_compute_forward_map_binary
  11955. static void ggml_compute_forward_map_binary_f32(
  11956. const struct ggml_compute_params * params,
  11957. const struct ggml_tensor * src0,
  11958. const struct ggml_tensor * src1,
  11959. struct ggml_tensor * dst,
  11960. const ggml_binary_op_f32_t fun) {
  11961. assert(params->ith == 0);
  11962. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11964. return;
  11965. }
  11966. const int n = ggml_nrows(src0);
  11967. const int nc = src0->ne[0];
  11968. assert( dst->nb[0] == sizeof(float));
  11969. assert(src0->nb[0] == sizeof(float));
  11970. assert(src1->nb[0] == sizeof(float));
  11971. for (int i = 0; i < n; i++) {
  11972. fun(nc,
  11973. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11974. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11975. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11976. }
  11977. }
  11978. static void ggml_compute_forward_map_binary(
  11979. const struct ggml_compute_params * params,
  11980. const struct ggml_tensor * src0,
  11981. const struct ggml_tensor * src1,
  11982. struct ggml_tensor * dst,
  11983. const ggml_binary_op_f32_t fun) {
  11984. switch (src0->type) {
  11985. case GGML_TYPE_F32:
  11986. {
  11987. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11988. } break;
  11989. default:
  11990. {
  11991. GGML_ASSERT(false);
  11992. } break;
  11993. }
  11994. }
  11995. // ggml_compute_forward_map_custom1
  11996. static void ggml_compute_forward_map_custom1_f32(
  11997. const struct ggml_compute_params * params,
  11998. const struct ggml_tensor * a,
  11999. struct ggml_tensor * dst,
  12000. const ggml_custom1_op_f32_t fun) {
  12001. assert(params->ith == 0);
  12002. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12003. return;
  12004. }
  12005. fun(dst, a);
  12006. }
  12007. static void ggml_compute_forward_map_custom1(
  12008. const struct ggml_compute_params * params,
  12009. const struct ggml_tensor * a,
  12010. struct ggml_tensor * dst,
  12011. const ggml_custom1_op_f32_t fun) {
  12012. switch (a->type) {
  12013. case GGML_TYPE_F32:
  12014. {
  12015. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  12016. } break;
  12017. default:
  12018. {
  12019. GGML_ASSERT(false);
  12020. } break;
  12021. }
  12022. }
  12023. // ggml_compute_forward_map_custom2
  12024. static void ggml_compute_forward_map_custom2_f32(
  12025. const struct ggml_compute_params * params,
  12026. const struct ggml_tensor * a,
  12027. const struct ggml_tensor * b,
  12028. struct ggml_tensor * dst,
  12029. const ggml_custom2_op_f32_t fun) {
  12030. assert(params->ith == 0);
  12031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12032. return;
  12033. }
  12034. fun(dst, a, b);
  12035. }
  12036. static void ggml_compute_forward_map_custom2(
  12037. const struct ggml_compute_params * params,
  12038. const struct ggml_tensor * a,
  12039. const struct ggml_tensor * b,
  12040. struct ggml_tensor * dst,
  12041. const ggml_custom2_op_f32_t fun) {
  12042. switch (a->type) {
  12043. case GGML_TYPE_F32:
  12044. {
  12045. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  12046. } break;
  12047. default:
  12048. {
  12049. GGML_ASSERT(false);
  12050. } break;
  12051. }
  12052. }
  12053. // ggml_compute_forward_map_custom3
  12054. static void ggml_compute_forward_map_custom3_f32(
  12055. const struct ggml_compute_params * params,
  12056. const struct ggml_tensor * a,
  12057. const struct ggml_tensor * b,
  12058. const struct ggml_tensor * c,
  12059. struct ggml_tensor * dst,
  12060. const ggml_custom3_op_f32_t fun) {
  12061. assert(params->ith == 0);
  12062. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12063. return;
  12064. }
  12065. fun(dst, a, b, c);
  12066. }
  12067. static void ggml_compute_forward_map_custom3(
  12068. const struct ggml_compute_params * params,
  12069. const struct ggml_tensor * a,
  12070. const struct ggml_tensor * b,
  12071. const struct ggml_tensor * c,
  12072. struct ggml_tensor * dst,
  12073. const ggml_custom3_op_f32_t fun) {
  12074. switch (a->type) {
  12075. case GGML_TYPE_F32:
  12076. {
  12077. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  12078. } break;
  12079. default:
  12080. {
  12081. GGML_ASSERT(false);
  12082. } break;
  12083. }
  12084. }
  12085. // ggml_compute_forward_cross_entropy_loss
  12086. static void ggml_compute_forward_cross_entropy_loss_f32(
  12087. const struct ggml_compute_params * params,
  12088. const struct ggml_tensor * src0,
  12089. const struct ggml_tensor * src1,
  12090. struct ggml_tensor * dst) {
  12091. GGML_ASSERT(ggml_is_contiguous(src0));
  12092. GGML_ASSERT(ggml_is_contiguous(src1));
  12093. GGML_ASSERT(ggml_is_scalar(dst));
  12094. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12095. const int ith = params->ith;
  12096. const int nth = params->nth;
  12097. float * sums = (float *) params->wdata;
  12098. // TODO: handle transposed/permuted matrices
  12099. const int nc = src0->ne[0];
  12100. const int nr = ggml_nrows(src0);
  12101. if (params->type == GGML_TASK_INIT) {
  12102. if (ith == 0) {
  12103. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12104. }
  12105. return;
  12106. }
  12107. if (params->type == GGML_TASK_FINALIZE) {
  12108. if (ith == 0) {
  12109. float * dp = (float *) dst->data;
  12110. ggml_vec_sum_f32(nth, dp, sums);
  12111. dp[0] *= -1.0f;
  12112. }
  12113. return;
  12114. }
  12115. const double eps = 1e-9;
  12116. // rows per thread
  12117. const int dr = (nr + nth - 1)/nth;
  12118. // row range for this thread
  12119. const int ir0 = dr*ith;
  12120. const int ir1 = MIN(ir0 + dr, nr);
  12121. for (int i1 = ir0; i1 < ir1; i1++) {
  12122. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12123. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12124. float * st = (float *) params->wdata + nth + ith*nc;
  12125. #ifndef NDEBUG
  12126. for (int i = 0; i < nc; ++i) {
  12127. //printf("p[%d] = %f\n", i, p[i]);
  12128. assert(!isnan(s0[i]));
  12129. assert(!isnan(s1[i]));
  12130. }
  12131. #endif
  12132. // soft_max
  12133. ggml_float sum = 0.0;
  12134. {
  12135. float max = -INFINITY;
  12136. ggml_vec_max_f32(nc, &max, s0);
  12137. uint16_t scvt;
  12138. for (int i = 0; i < nc; i++) {
  12139. if (s0[i] == -INFINITY) {
  12140. st[i] = 0.0f;
  12141. } else {
  12142. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12143. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12144. memcpy(&scvt, &s, sizeof(scvt));
  12145. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12146. sum += (ggml_float)val;
  12147. st[i] = val;
  12148. }
  12149. }
  12150. assert(sum > 0.0);
  12151. // sum = 1.0/sum;
  12152. }
  12153. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12154. sum = (1.0 - eps) / sum;
  12155. ggml_vec_scale_f32(nc, st, sum);
  12156. ggml_vec_add1_f32(nc, st, st, eps);
  12157. ggml_vec_log_f32(nc, st, st);
  12158. ggml_vec_mul_f32(nc, st, st, s1);
  12159. ggml_vec_sum_f32(nc, sums + ith, st);
  12160. #ifndef NDEBUG
  12161. for (int i = 0; i < nc; ++i) {
  12162. assert(!isnan(st[i]));
  12163. assert(!isinf(st[i]));
  12164. }
  12165. #endif
  12166. }
  12167. }
  12168. static void ggml_compute_forward_cross_entropy_loss(
  12169. const struct ggml_compute_params * params,
  12170. const struct ggml_tensor * src0,
  12171. const struct ggml_tensor * src1,
  12172. struct ggml_tensor * dst) {
  12173. switch (src0->type) {
  12174. case GGML_TYPE_F32:
  12175. {
  12176. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12177. } break;
  12178. default:
  12179. {
  12180. GGML_ASSERT(false);
  12181. } break;
  12182. }
  12183. }
  12184. // ggml_compute_forward_cross_entropy_loss_back
  12185. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12186. const struct ggml_compute_params * params,
  12187. const struct ggml_tensor * src0,
  12188. const struct ggml_tensor * src1,
  12189. const struct ggml_tensor * opt0,
  12190. struct ggml_tensor * dst) {
  12191. GGML_ASSERT(ggml_is_contiguous(dst));
  12192. GGML_ASSERT(ggml_is_contiguous(src0));
  12193. GGML_ASSERT(ggml_is_contiguous(src1));
  12194. GGML_ASSERT(ggml_is_contiguous(opt0));
  12195. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12196. const int64_t ith = params->ith;
  12197. const int64_t nth = params->nth;
  12198. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12199. return;
  12200. }
  12201. const float eps = 1e-9f;
  12202. // TODO: handle transposed/permuted matrices
  12203. const int64_t nc = src0->ne[0];
  12204. const int64_t nr = ggml_nrows(src0);
  12205. // rows per thread
  12206. const int64_t dr = (nr + nth - 1)/nth;
  12207. // row range for this thread
  12208. const int64_t ir0 = dr*ith;
  12209. const int64_t ir1 = MIN(ir0 + dr, nr);
  12210. float * d = (float *) opt0->data;
  12211. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12212. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12213. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12214. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12215. float * sm = (float *) params->wdata + ith*nc;
  12216. #ifndef NDEBUG
  12217. for (int i = 0; i < nc; ++i) {
  12218. //printf("p[%d] = %f\n", i, p[i]);
  12219. assert(!isnan(s0[i]));
  12220. assert(!isnan(s1[i]));
  12221. }
  12222. #endif
  12223. // step by step explanation:
  12224. {
  12225. //float * sums = (float *) params->wdata;
  12226. // forward pass with annotated gradients from backward pass
  12227. // (built by going in reverse operation order, adding to gradients of current operation args)
  12228. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12229. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12230. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12231. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12232. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12233. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12234. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12235. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12236. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12237. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12238. // postorder:
  12239. // grad[st1] := softmax(s0)
  12240. // grad[st1] := grad[st1]*(1.0 - eps)
  12241. // grad[st1] := grad[st1] + eps
  12242. // grad[st1] := s1 / grad[st1]
  12243. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12244. // src0 gradients by going through softmax_back
  12245. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12246. // from softmax_back:
  12247. // dxk = yk * (dyk - dot(y, dy))
  12248. // dot_y_dy := dot(y, dy)
  12249. // dx := dy
  12250. // dx := dx - dot_y_dy
  12251. // dx := dx * y
  12252. // postorder:
  12253. // dot_st1_dst1 := dot(st1, grad[st1])
  12254. // grad[s0] := grad[st1]
  12255. // grad[s0] := grad[s0] - dot_st1_dst1
  12256. // grad[s0] := grad[s0] * st1
  12257. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12258. // sm := softmax(s0)
  12259. // grad[s0] := sm*(1.0 - eps)
  12260. // grad[s0] := grad[s0] + eps
  12261. // grad[s0] := s1 / grad[s0]
  12262. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12263. // dot_st1_dst1 := dot(sm, grad[s0])
  12264. // grad[s0] := grad[s0] - dot_st1_dst1
  12265. // grad[s0] := grad[s0] * sm
  12266. }
  12267. // soft_max
  12268. ggml_float sum = 0.0;
  12269. {
  12270. float max = -INFINITY;
  12271. ggml_vec_max_f32(nc, &max, s0);
  12272. uint16_t scvt;
  12273. for (int i = 0; i < nc; i++) {
  12274. if (s0[i] == -INFINITY) {
  12275. sm[i] = 0.0f;
  12276. } else {
  12277. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12278. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12279. memcpy(&scvt, &s, sizeof(scvt));
  12280. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12281. sum += (ggml_float)val;
  12282. sm[i] = val;
  12283. }
  12284. }
  12285. assert(sum > 0.0);
  12286. sum = 1.0/sum;
  12287. }
  12288. float dot_st1_dst1 = 0;
  12289. ggml_vec_scale_f32(nc, sm, sum);
  12290. ggml_vec_cpy_f32 (nc, ds0, sm);
  12291. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12292. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12293. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12294. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12295. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12296. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12297. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12298. #ifndef NDEBUG
  12299. for (int i = 0; i < nc; ++i) {
  12300. assert(!isnan(sm[i]));
  12301. assert(!isinf(sm[i]));
  12302. assert(!isnan(ds0[i]));
  12303. assert(!isinf(ds0[i]));
  12304. }
  12305. #endif
  12306. }
  12307. }
  12308. static void ggml_compute_forward_cross_entropy_loss_back(
  12309. const struct ggml_compute_params * params,
  12310. const struct ggml_tensor * src0,
  12311. const struct ggml_tensor * src1,
  12312. const struct ggml_tensor * opt0,
  12313. struct ggml_tensor * dst) {
  12314. switch (src0->type) {
  12315. case GGML_TYPE_F32:
  12316. {
  12317. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12318. } break;
  12319. default:
  12320. {
  12321. GGML_ASSERT(false);
  12322. } break;
  12323. }
  12324. }
  12325. /////////////////////////////////
  12326. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12327. GGML_ASSERT(params);
  12328. #ifdef GGML_USE_CUBLAS
  12329. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12330. if (skip_cpu) {
  12331. return;
  12332. }
  12333. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  12334. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12335. #endif // GGML_USE_CUBLAS
  12336. switch (tensor->op) {
  12337. case GGML_OP_DUP:
  12338. {
  12339. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12340. } break;
  12341. case GGML_OP_ADD:
  12342. {
  12343. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12344. } break;
  12345. case GGML_OP_ADD1:
  12346. {
  12347. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12348. } break;
  12349. case GGML_OP_ACC:
  12350. {
  12351. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12352. } break;
  12353. case GGML_OP_SUB:
  12354. {
  12355. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12356. } break;
  12357. case GGML_OP_MUL:
  12358. {
  12359. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12360. } break;
  12361. case GGML_OP_DIV:
  12362. {
  12363. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12364. } break;
  12365. case GGML_OP_SQR:
  12366. {
  12367. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12368. } break;
  12369. case GGML_OP_SQRT:
  12370. {
  12371. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12372. } break;
  12373. case GGML_OP_LOG:
  12374. {
  12375. ggml_compute_forward_log(params, tensor->src0, tensor);
  12376. } break;
  12377. case GGML_OP_SUM:
  12378. {
  12379. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12380. } break;
  12381. case GGML_OP_SUM_ROWS:
  12382. {
  12383. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12384. } break;
  12385. case GGML_OP_MEAN:
  12386. {
  12387. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12388. } break;
  12389. case GGML_OP_REPEAT:
  12390. {
  12391. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12392. } break;
  12393. case GGML_OP_REPEAT_BACK:
  12394. {
  12395. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12396. } break;
  12397. case GGML_OP_ABS:
  12398. {
  12399. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12400. } break;
  12401. case GGML_OP_SGN:
  12402. {
  12403. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12404. } break;
  12405. case GGML_OP_NEG:
  12406. {
  12407. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12408. } break;
  12409. case GGML_OP_STEP:
  12410. {
  12411. ggml_compute_forward_step(params, tensor->src0, tensor);
  12412. } break;
  12413. case GGML_OP_RELU:
  12414. {
  12415. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12416. } break;
  12417. case GGML_OP_GELU:
  12418. {
  12419. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12420. } break;
  12421. case GGML_OP_GELU_QUICK:
  12422. {
  12423. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12424. } break;
  12425. case GGML_OP_SILU:
  12426. {
  12427. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12428. } break;
  12429. case GGML_OP_SILU_BACK:
  12430. {
  12431. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12432. } break;
  12433. case GGML_OP_NORM:
  12434. {
  12435. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12436. } break;
  12437. case GGML_OP_RMS_NORM:
  12438. {
  12439. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12440. } break;
  12441. case GGML_OP_RMS_NORM_BACK:
  12442. {
  12443. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12444. } break;
  12445. case GGML_OP_MUL_MAT:
  12446. {
  12447. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12448. } break;
  12449. case GGML_OP_OUT_PROD:
  12450. {
  12451. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12452. } break;
  12453. case GGML_OP_SCALE:
  12454. {
  12455. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12456. } break;
  12457. case GGML_OP_SET:
  12458. {
  12459. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12460. } break;
  12461. case GGML_OP_CPY:
  12462. {
  12463. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12464. } break;
  12465. case GGML_OP_CONT:
  12466. {
  12467. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12468. } break;
  12469. case GGML_OP_RESHAPE:
  12470. {
  12471. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12472. } break;
  12473. case GGML_OP_VIEW:
  12474. {
  12475. ggml_compute_forward_view(params, tensor->src0);
  12476. } break;
  12477. case GGML_OP_PERMUTE:
  12478. {
  12479. ggml_compute_forward_permute(params, tensor->src0);
  12480. } break;
  12481. case GGML_OP_TRANSPOSE:
  12482. {
  12483. ggml_compute_forward_transpose(params, tensor->src0);
  12484. } break;
  12485. case GGML_OP_GET_ROWS:
  12486. {
  12487. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12488. } break;
  12489. case GGML_OP_GET_ROWS_BACK:
  12490. {
  12491. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12492. } break;
  12493. case GGML_OP_DIAG:
  12494. {
  12495. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12496. } break;
  12497. case GGML_OP_DIAG_MASK_INF:
  12498. {
  12499. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12500. } break;
  12501. case GGML_OP_DIAG_MASK_ZERO:
  12502. {
  12503. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12504. } break;
  12505. case GGML_OP_SOFT_MAX:
  12506. {
  12507. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12508. } break;
  12509. case GGML_OP_SOFT_MAX_BACK:
  12510. {
  12511. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12512. } break;
  12513. case GGML_OP_ROPE:
  12514. {
  12515. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12516. } break;
  12517. case GGML_OP_ROPE_BACK:
  12518. {
  12519. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12520. } break;
  12521. case GGML_OP_ALIBI:
  12522. {
  12523. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12524. } break;
  12525. case GGML_OP_CLAMP:
  12526. {
  12527. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12528. } break;
  12529. case GGML_OP_CONV_1D_S1_PH:
  12530. {
  12531. ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor);
  12532. } break;
  12533. case GGML_OP_CONV_1D_S2_PH:
  12534. {
  12535. ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor);
  12536. } break;
  12537. case GGML_OP_CONV_2D_SK_P0:
  12538. {
  12539. ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor);
  12540. } break;
  12541. case GGML_OP_FLASH_ATTN:
  12542. {
  12543. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12544. GGML_ASSERT(t == 0 || t == 1);
  12545. const bool masked = t != 0;
  12546. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12547. } break;
  12548. case GGML_OP_FLASH_FF:
  12549. {
  12550. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12551. } break;
  12552. case GGML_OP_FLASH_ATTN_BACK:
  12553. {
  12554. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12555. GGML_ASSERT(t == 0 || t == 1);
  12556. bool masked = t != 0;
  12557. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12558. } break;
  12559. case GGML_OP_WIN_PART:
  12560. {
  12561. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12562. } break;
  12563. case GGML_OP_WIN_UNPART:
  12564. {
  12565. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12566. } break;
  12567. case GGML_OP_MAP_UNARY:
  12568. {
  12569. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12570. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12571. }
  12572. break;
  12573. case GGML_OP_MAP_BINARY:
  12574. {
  12575. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12576. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12577. }
  12578. break;
  12579. case GGML_OP_MAP_CUSTOM1:
  12580. {
  12581. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12582. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12583. }
  12584. break;
  12585. case GGML_OP_MAP_CUSTOM2:
  12586. {
  12587. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12588. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12589. }
  12590. break;
  12591. case GGML_OP_MAP_CUSTOM3:
  12592. {
  12593. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12594. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12595. }
  12596. break;
  12597. case GGML_OP_CROSS_ENTROPY_LOSS:
  12598. {
  12599. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12600. }
  12601. break;
  12602. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12603. {
  12604. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12605. }
  12606. break;
  12607. case GGML_OP_NONE:
  12608. {
  12609. // nop
  12610. } break;
  12611. case GGML_OP_COUNT:
  12612. {
  12613. GGML_ASSERT(false);
  12614. } break;
  12615. }
  12616. }
  12617. ////////////////////////////////////////////////////////////////////////////////
  12618. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12619. struct ggml_tensor * src0 = tensor->src0;
  12620. struct ggml_tensor * src1 = tensor->src1;
  12621. switch (tensor->op) {
  12622. case GGML_OP_DUP:
  12623. {
  12624. if (src0->grad) {
  12625. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12626. }
  12627. } break;
  12628. case GGML_OP_ADD:
  12629. {
  12630. if (src0->grad) {
  12631. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12632. }
  12633. if (src1->grad) {
  12634. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12635. }
  12636. } break;
  12637. case GGML_OP_ADD1:
  12638. {
  12639. if (src0->grad) {
  12640. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12641. }
  12642. if (src1->grad) {
  12643. src1->grad = ggml_add_impl(ctx,
  12644. src1->grad,
  12645. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12646. inplace);
  12647. }
  12648. } break;
  12649. case GGML_OP_ACC:
  12650. {
  12651. if (src0->grad) {
  12652. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12653. }
  12654. if (src1->grad) {
  12655. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12656. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12657. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12658. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12659. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12660. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12661. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12662. tensor->grad,
  12663. src1->grad->ne[0],
  12664. src1->grad->ne[1],
  12665. src1->grad->ne[2],
  12666. src1->grad->ne[3],
  12667. nb1, nb2, nb3, offset);
  12668. src1->grad =
  12669. ggml_add_impl(ctx,
  12670. src1->grad,
  12671. ggml_reshape(ctx,
  12672. ggml_cont(ctx, tensor_grad_view),
  12673. src1->grad),
  12674. inplace);
  12675. }
  12676. } break;
  12677. case GGML_OP_SUB:
  12678. {
  12679. if (src0->grad) {
  12680. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12681. }
  12682. if (src1->grad) {
  12683. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12684. }
  12685. } break;
  12686. case GGML_OP_MUL:
  12687. {
  12688. if (src0->grad) {
  12689. src0->grad =
  12690. ggml_add_impl(ctx,
  12691. src0->grad,
  12692. ggml_mul(ctx, src1, tensor->grad),
  12693. inplace);
  12694. }
  12695. if (src1->grad) {
  12696. src1->grad =
  12697. ggml_add_impl(ctx,
  12698. src1->grad,
  12699. ggml_mul(ctx, src0, tensor->grad),
  12700. inplace);
  12701. }
  12702. } break;
  12703. case GGML_OP_DIV:
  12704. {
  12705. if (src0->grad) {
  12706. src0->grad =
  12707. ggml_add_impl(ctx,
  12708. src0->grad,
  12709. ggml_div(ctx, tensor->grad, src1),
  12710. inplace);
  12711. }
  12712. if (src1->grad) {
  12713. src1->grad =
  12714. ggml_sub_impl(ctx,
  12715. src1->grad,
  12716. ggml_mul(ctx,
  12717. tensor->grad,
  12718. ggml_div(ctx, tensor, src1)),
  12719. inplace);
  12720. }
  12721. } break;
  12722. case GGML_OP_SQR:
  12723. {
  12724. if (src0->grad) {
  12725. src0->grad =
  12726. ggml_add_impl(ctx,
  12727. src0->grad,
  12728. ggml_scale(ctx,
  12729. ggml_mul(ctx, src0, tensor->grad),
  12730. ggml_new_f32(ctx, 2.0f)),
  12731. inplace);
  12732. }
  12733. } break;
  12734. case GGML_OP_SQRT:
  12735. {
  12736. if (src0->grad) {
  12737. src0->grad =
  12738. ggml_add_impl(ctx,
  12739. src0->grad,
  12740. ggml_scale(ctx,
  12741. ggml_div(ctx,
  12742. tensor->grad,
  12743. tensor),
  12744. ggml_new_f32(ctx, 0.5f)),
  12745. inplace);
  12746. }
  12747. } break;
  12748. case GGML_OP_LOG:
  12749. {
  12750. if (src0->grad) {
  12751. src0->grad =
  12752. ggml_add_impl(ctx,
  12753. src0->grad,
  12754. ggml_div(ctx,
  12755. tensor->grad,
  12756. src0),
  12757. inplace);
  12758. }
  12759. } break;
  12760. case GGML_OP_SUM:
  12761. {
  12762. if (src0->grad) {
  12763. src0->grad =
  12764. ggml_add1_impl(ctx,
  12765. src0->grad,
  12766. tensor->grad,
  12767. inplace);
  12768. }
  12769. } break;
  12770. case GGML_OP_SUM_ROWS:
  12771. {
  12772. if (src0->grad) {
  12773. src0->grad =
  12774. ggml_add_impl(ctx,
  12775. src0->grad,
  12776. ggml_repeat(ctx,
  12777. tensor->grad,
  12778. src0->grad),
  12779. inplace);
  12780. }
  12781. } break;
  12782. case GGML_OP_MEAN:
  12783. {
  12784. GGML_ASSERT(false); // TODO: implement
  12785. } break;
  12786. case GGML_OP_REPEAT:
  12787. {
  12788. // necessary for llama
  12789. if (src0->grad) {
  12790. src0->grad = ggml_add_impl(ctx,
  12791. src0->grad,
  12792. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12793. inplace);
  12794. }
  12795. } break;
  12796. case GGML_OP_REPEAT_BACK:
  12797. {
  12798. if (src0->grad) {
  12799. // TODO: test this
  12800. src0->grad = ggml_add_impl(ctx,
  12801. src0->grad,
  12802. ggml_repeat(ctx, tensor->grad, src0->grad),
  12803. inplace);
  12804. }
  12805. } break;
  12806. case GGML_OP_ABS:
  12807. {
  12808. if (src0->grad) {
  12809. src0->grad =
  12810. ggml_add_impl(ctx,
  12811. src0->grad,
  12812. ggml_mul(ctx,
  12813. ggml_sgn(ctx, src0),
  12814. tensor->grad),
  12815. inplace);
  12816. }
  12817. } break;
  12818. case GGML_OP_SGN:
  12819. {
  12820. if (src0->grad) {
  12821. // noop
  12822. }
  12823. } break;
  12824. case GGML_OP_NEG:
  12825. {
  12826. if (src0->grad) {
  12827. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12828. }
  12829. } break;
  12830. case GGML_OP_STEP:
  12831. {
  12832. if (src0->grad) {
  12833. // noop
  12834. }
  12835. } break;
  12836. case GGML_OP_RELU:
  12837. {
  12838. if (src0->grad) {
  12839. src0->grad = ggml_sub_impl(ctx,
  12840. src0->grad,
  12841. ggml_mul(ctx,
  12842. ggml_step(ctx, src0),
  12843. tensor->grad),
  12844. inplace);
  12845. }
  12846. } break;
  12847. case GGML_OP_GELU:
  12848. {
  12849. GGML_ASSERT(false); // TODO: not implemented
  12850. } break;
  12851. case GGML_OP_GELU_QUICK:
  12852. {
  12853. GGML_ASSERT(false); // TODO: not implemented
  12854. } break;
  12855. case GGML_OP_ALIBI:
  12856. {
  12857. GGML_ASSERT(false); // TODO: not implemented
  12858. } break;
  12859. case GGML_OP_CLAMP:
  12860. {
  12861. GGML_ASSERT(false); // TODO: not implemented
  12862. } break;
  12863. case GGML_OP_SILU:
  12864. {
  12865. // necessary for llama
  12866. if (src0->grad) {
  12867. src0->grad = ggml_add_impl(ctx,
  12868. src0->grad,
  12869. ggml_silu_back(ctx, src0, tensor->grad),
  12870. inplace);
  12871. }
  12872. } break;
  12873. case GGML_OP_SILU_BACK:
  12874. {
  12875. GGML_ASSERT(false); // TODO: not implemented
  12876. } break;
  12877. case GGML_OP_NORM:
  12878. {
  12879. GGML_ASSERT(false); // TODO: not implemented
  12880. } break;
  12881. case GGML_OP_RMS_NORM:
  12882. {
  12883. // necessary for llama
  12884. if (src0->grad) {
  12885. src0->grad = ggml_add_impl(ctx,
  12886. src0->grad,
  12887. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12888. inplace);
  12889. }
  12890. } break;
  12891. case GGML_OP_RMS_NORM_BACK:
  12892. {
  12893. GGML_ASSERT(false); // TODO: not implemented
  12894. } break;
  12895. case GGML_OP_MUL_MAT:
  12896. {
  12897. // https://cs231n.github.io/optimization-2/#staged
  12898. // # forward pass
  12899. // s0 = np.random.randn(5, 10)
  12900. // s1 = np.random.randn(10, 3)
  12901. // t = s0.dot(s1)
  12902. // # now suppose we had the gradient on t from above in the circuit
  12903. // dt = np.random.randn(*t.shape) # same shape as t
  12904. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12905. // ds1 = t.T.dot(dt)
  12906. // tensor.shape [m,p]
  12907. // src0.shape [n,m]
  12908. // src1.shape [n,p]
  12909. // necessary for llama
  12910. if (src0->grad) {
  12911. src0->grad =
  12912. ggml_add_impl(ctx,
  12913. src0->grad,
  12914. ggml_out_prod(ctx, // [n,m]
  12915. src1, // [n,p]
  12916. tensor->grad), // [m,p]
  12917. inplace);
  12918. }
  12919. if (src1->grad) {
  12920. src1->grad =
  12921. ggml_add_impl(ctx,
  12922. src1->grad,
  12923. // ggml_mul_mat(ctx, // [n,p]
  12924. // ggml_cont(ctx, // [m,n]
  12925. // ggml_transpose(ctx, src0)), // [m,n]
  12926. // tensor->grad), // [m,p]
  12927. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12928. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12929. // // and then use ggml_out_prod
  12930. ggml_out_prod(ctx, // [n,p]
  12931. src0, // [n,m]
  12932. ggml_transpose(ctx, // [p,m]
  12933. tensor->grad)), // [m,p]
  12934. inplace);
  12935. }
  12936. } break;
  12937. case GGML_OP_OUT_PROD:
  12938. {
  12939. GGML_ASSERT(false); // TODO: not implemented
  12940. } break;
  12941. case GGML_OP_SCALE:
  12942. {
  12943. // necessary for llama
  12944. if (src0->grad) {
  12945. src0->grad =
  12946. ggml_add_impl(ctx,
  12947. src0->grad,
  12948. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12949. inplace);
  12950. }
  12951. if (src1->grad) {
  12952. src1->grad =
  12953. ggml_add_impl(ctx,
  12954. src1->grad,
  12955. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12956. inplace);
  12957. }
  12958. } break;
  12959. case GGML_OP_SET:
  12960. {
  12961. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12962. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12963. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12964. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12965. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12966. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12967. struct ggml_tensor * tensor_grad_view = NULL;
  12968. if (src0->grad || src1->grad) {
  12969. GGML_ASSERT(src0->type == tensor->type);
  12970. GGML_ASSERT(tensor->grad->type == tensor->type);
  12971. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12972. tensor_grad_view = ggml_view_4d(ctx,
  12973. tensor->grad,
  12974. src1->grad->ne[0],
  12975. src1->grad->ne[1],
  12976. src1->grad->ne[2],
  12977. src1->grad->ne[3],
  12978. nb1, nb2, nb3, offset);
  12979. }
  12980. if (src0->grad) {
  12981. src0->grad = ggml_add_impl(ctx,
  12982. src0->grad,
  12983. ggml_acc_impl(ctx,
  12984. tensor->grad,
  12985. ggml_neg(ctx, tensor_grad_view),
  12986. nb1, nb2, nb3, offset, false),
  12987. inplace);
  12988. }
  12989. if (src1->grad) {
  12990. src1->grad =
  12991. ggml_add_impl(ctx,
  12992. src1->grad,
  12993. ggml_reshape(ctx,
  12994. ggml_cont(ctx, tensor_grad_view),
  12995. src1->grad),
  12996. inplace);
  12997. }
  12998. } break;
  12999. case GGML_OP_CPY:
  13000. {
  13001. // necessary for llama
  13002. // cpy overwrites value of src1 by src0 and returns view(src1)
  13003. // the overwriting is mathematically equivalent to:
  13004. // tensor = src0 * 1 + src1 * 0
  13005. if (src0->grad) {
  13006. // dsrc0 = dtensor * 1
  13007. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13008. }
  13009. if (src1->grad) {
  13010. // dsrc1 = dtensor * 0 -> noop
  13011. }
  13012. } break;
  13013. case GGML_OP_CONT:
  13014. {
  13015. // same as cpy
  13016. if (src0->grad) {
  13017. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13018. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13019. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13020. }
  13021. } break;
  13022. case GGML_OP_RESHAPE:
  13023. {
  13024. // necessary for llama
  13025. if (src0->grad) {
  13026. src0->grad =
  13027. ggml_add_impl(ctx, src0->grad,
  13028. ggml_reshape(ctx, tensor->grad, src0->grad),
  13029. inplace);
  13030. }
  13031. } break;
  13032. case GGML_OP_VIEW:
  13033. {
  13034. // necessary for llama
  13035. if (src0->grad) {
  13036. size_t offset;
  13037. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  13038. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  13039. size_t nb1 = tensor->nb[1];
  13040. size_t nb2 = tensor->nb[2];
  13041. size_t nb3 = tensor->nb[3];
  13042. if (src0->type != src0->grad->type) {
  13043. // gradient is typically F32, but src0 could be other type
  13044. size_t ng = ggml_element_size(src0->grad);
  13045. size_t n0 = ggml_element_size(src0);
  13046. GGML_ASSERT(offset % n0 == 0);
  13047. GGML_ASSERT(nb1 % n0 == 0);
  13048. GGML_ASSERT(nb2 % n0 == 0);
  13049. GGML_ASSERT(nb3 % n0 == 0);
  13050. offset = (offset / n0) * ng;
  13051. nb1 = (nb1 / n0) * ng;
  13052. nb2 = (nb2 / n0) * ng;
  13053. nb3 = (nb3 / n0) * ng;
  13054. }
  13055. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13056. }
  13057. } break;
  13058. case GGML_OP_PERMUTE:
  13059. {
  13060. // necessary for llama
  13061. if (src0->grad) {
  13062. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  13063. int axis0 = axes[0] & 0x3;
  13064. int axis1 = axes[1] & 0x3;
  13065. int axis2 = axes[2] & 0x3;
  13066. int axis3 = axes[3] & 0x3;
  13067. int axes_backward[4] = {0,0,0,0};
  13068. axes_backward[axis0] = 0;
  13069. axes_backward[axis1] = 1;
  13070. axes_backward[axis2] = 2;
  13071. axes_backward[axis3] = 3;
  13072. src0->grad =
  13073. ggml_add_impl(ctx, src0->grad,
  13074. ggml_permute(ctx,
  13075. tensor->grad,
  13076. axes_backward[0],
  13077. axes_backward[1],
  13078. axes_backward[2],
  13079. axes_backward[3]),
  13080. inplace);
  13081. }
  13082. } break;
  13083. case GGML_OP_TRANSPOSE:
  13084. {
  13085. // necessary for llama
  13086. if (src0->grad) {
  13087. src0->grad =
  13088. ggml_add_impl(ctx, src0->grad,
  13089. ggml_transpose(ctx, tensor->grad),
  13090. inplace);
  13091. }
  13092. } break;
  13093. case GGML_OP_GET_ROWS:
  13094. {
  13095. // necessary for llama (only for tokenizer)
  13096. if (src0->grad) {
  13097. src0->grad =
  13098. ggml_add_impl(ctx, src0->grad,
  13099. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13100. inplace);
  13101. }
  13102. if (src1->grad) {
  13103. // noop
  13104. }
  13105. } break;
  13106. case GGML_OP_GET_ROWS_BACK:
  13107. {
  13108. GGML_ASSERT(false); // TODO: not implemented
  13109. } break;
  13110. case GGML_OP_DIAG:
  13111. {
  13112. GGML_ASSERT(false); // TODO: not implemented
  13113. } break;
  13114. case GGML_OP_DIAG_MASK_INF:
  13115. {
  13116. // necessary for llama
  13117. if (src0->grad) {
  13118. assert(src1->type == GGML_TYPE_I32);
  13119. assert(ggml_nelements(src1) == 2);
  13120. const int n_past = ((int32_t *) src1->data)[0];
  13121. src0->grad =
  13122. ggml_add_impl(ctx, src0->grad,
  13123. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13124. inplace);
  13125. }
  13126. if (src1->grad) {
  13127. // noop
  13128. }
  13129. } break;
  13130. case GGML_OP_DIAG_MASK_ZERO:
  13131. {
  13132. // necessary for llama
  13133. if (src0->grad) {
  13134. assert(src1->type == GGML_TYPE_I32);
  13135. assert(ggml_nelements(src1) == 2);
  13136. const int n_past = ((int32_t *) src1->data)[0];
  13137. src0->grad =
  13138. ggml_add_impl(ctx, src0->grad,
  13139. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13140. inplace);
  13141. }
  13142. if (src1->grad) {
  13143. // noop
  13144. }
  13145. } break;
  13146. case GGML_OP_SOFT_MAX:
  13147. {
  13148. // necessary for llama
  13149. if (src0->grad) {
  13150. src0->grad =
  13151. ggml_add_impl(ctx, src0->grad,
  13152. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13153. inplace);
  13154. }
  13155. } break;
  13156. case GGML_OP_SOFT_MAX_BACK:
  13157. {
  13158. GGML_ASSERT(false); // TODO: not implemented
  13159. } break;
  13160. case GGML_OP_ROPE:
  13161. {
  13162. // necessary for llama
  13163. if (src0->grad) {
  13164. assert(src1->type == GGML_TYPE_I32);
  13165. assert(ggml_nelements(src1) == 3);
  13166. const int n_past = ((int32_t *) src1->data)[0];
  13167. const int n_dims = ((int32_t *) src1->data)[1];
  13168. const int mode = ((int32_t *) src1->data)[2];
  13169. src0->grad = ggml_add_impl(ctx,
  13170. src0->grad,
  13171. ggml_rope_back(ctx,
  13172. tensor->grad,
  13173. n_past,
  13174. n_dims,
  13175. mode),
  13176. inplace);
  13177. }
  13178. if (src1->grad) {
  13179. // noop
  13180. }
  13181. } break;
  13182. case GGML_OP_ROPE_BACK:
  13183. {
  13184. if (src0->grad) {
  13185. assert(src1->type == GGML_TYPE_I32);
  13186. assert(ggml_nelements(src1) == 3);
  13187. const int n_past = ((int32_t *) src1->data)[0];
  13188. const int n_dims = ((int32_t *) src1->data)[1];
  13189. const int mode = ((int32_t *) src1->data)[2];
  13190. src0->grad = ggml_add_impl(ctx,
  13191. src0->grad,
  13192. ggml_rope(ctx,
  13193. tensor->grad,
  13194. n_past,
  13195. n_dims,
  13196. mode),
  13197. inplace);
  13198. }
  13199. if (src1->grad) {
  13200. // noop
  13201. }
  13202. } break;
  13203. case GGML_OP_CONV_1D_S1_PH:
  13204. {
  13205. GGML_ASSERT(false); // TODO: not implemented
  13206. } break;
  13207. case GGML_OP_CONV_1D_S2_PH:
  13208. {
  13209. GGML_ASSERT(false); // TODO: not implemented
  13210. } break;
  13211. case GGML_OP_CONV_2D_SK_P0:
  13212. {
  13213. GGML_ASSERT(false); // TODO: not implemented
  13214. } break;
  13215. case GGML_OP_FLASH_ATTN:
  13216. {
  13217. struct ggml_tensor * flash_grad = NULL;
  13218. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  13219. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  13220. GGML_ASSERT(t == 0 || t == 1);
  13221. bool masked = t != 0;
  13222. flash_grad =
  13223. ggml_flash_attn_back(ctx,
  13224. src0,
  13225. src1,
  13226. tensor->opt[0],
  13227. tensor->grad,
  13228. masked);
  13229. }
  13230. if (src0->grad) {
  13231. struct ggml_tensor * grad_q = NULL;
  13232. const size_t nb0 = flash_grad->nb[0];
  13233. const size_t offset = 0;
  13234. switch(src0->n_dims) {
  13235. case 2:
  13236. {
  13237. grad_q = ggml_view_2d(ctx,
  13238. flash_grad,
  13239. src0->ne[0],
  13240. src0->ne[1],
  13241. nb0*src0->ne[0],
  13242. offset);
  13243. } break;
  13244. case 3:
  13245. {
  13246. grad_q = ggml_view_3d(ctx,
  13247. flash_grad,
  13248. src0->ne[0],
  13249. src0->ne[1],
  13250. src0->ne[2],
  13251. nb0*src0->ne[0],
  13252. nb0*src0->ne[0]*src0->ne[1],
  13253. offset);
  13254. } break;
  13255. case 4:
  13256. {
  13257. grad_q = ggml_view_4d(ctx,
  13258. flash_grad,
  13259. src0->ne[0],
  13260. src0->ne[1],
  13261. src0->ne[2],
  13262. src0->ne[3],
  13263. nb0*src0->ne[0],
  13264. nb0*src0->ne[0]*src0->ne[1],
  13265. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13266. offset);
  13267. } break;
  13268. }
  13269. src0->grad = ggml_add_impl(ctx,
  13270. src0->grad,
  13271. grad_q,
  13272. inplace);
  13273. }
  13274. if (src1->grad) {
  13275. struct ggml_tensor * grad_k = NULL;
  13276. const size_t nb0 = flash_grad->nb[0];
  13277. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13278. switch(src1->n_dims) {
  13279. case 2:
  13280. {
  13281. grad_k = ggml_view_2d(ctx,
  13282. flash_grad,
  13283. src1->ne[0],
  13284. src1->ne[1],
  13285. nb0*src1->ne[0],
  13286. offset);
  13287. } break;
  13288. case 3:
  13289. {
  13290. grad_k = ggml_view_3d(ctx,
  13291. flash_grad,
  13292. src1->ne[0],
  13293. src1->ne[1],
  13294. src1->ne[2],
  13295. nb0*src1->ne[0],
  13296. nb0*src1->ne[0]*src1->ne[1],
  13297. offset);
  13298. } break;
  13299. case 4:
  13300. {
  13301. grad_k = ggml_view_4d(ctx,
  13302. flash_grad,
  13303. src1->ne[0],
  13304. src1->ne[1],
  13305. src1->ne[2],
  13306. src1->ne[3],
  13307. nb0*src1->ne[0],
  13308. nb0*src1->ne[0]*src1->ne[1],
  13309. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13310. offset);
  13311. } break;
  13312. }
  13313. src1->grad = ggml_add_impl(ctx,
  13314. src1->grad,
  13315. grad_k,
  13316. inplace);
  13317. }
  13318. struct ggml_tensor * opt0 = tensor->opt[0];
  13319. if (opt0->grad) {
  13320. struct ggml_tensor * grad_v = NULL;
  13321. const size_t nb0 = flash_grad->nb[0];
  13322. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13323. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13324. switch(opt0->n_dims) {
  13325. case 2:
  13326. {
  13327. grad_v = ggml_view_2d(ctx,
  13328. flash_grad,
  13329. opt0->ne[0],
  13330. opt0->ne[1],
  13331. nb0*opt0->ne[0],
  13332. offset);
  13333. } break;
  13334. case 3:
  13335. {
  13336. grad_v = ggml_view_3d(ctx,
  13337. flash_grad,
  13338. opt0->ne[0],
  13339. opt0->ne[1],
  13340. opt0->ne[2],
  13341. nb0*opt0->ne[0],
  13342. nb0*opt0->ne[0]*opt0->ne[1],
  13343. offset);
  13344. } break;
  13345. case 4:
  13346. {
  13347. grad_v = ggml_view_4d(ctx,
  13348. flash_grad,
  13349. opt0->ne[0],
  13350. opt0->ne[1],
  13351. opt0->ne[2],
  13352. opt0->ne[3],
  13353. nb0*opt0->ne[0],
  13354. nb0*opt0->ne[0]*opt0->ne[1],
  13355. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13356. offset);
  13357. } break;
  13358. }
  13359. opt0->grad = ggml_add_impl(ctx,
  13360. opt0->grad,
  13361. grad_v,
  13362. inplace);
  13363. }
  13364. } break;
  13365. case GGML_OP_FLASH_FF:
  13366. {
  13367. GGML_ASSERT(false); // not supported
  13368. } break;
  13369. case GGML_OP_FLASH_ATTN_BACK:
  13370. {
  13371. GGML_ASSERT(false); // not supported
  13372. } break;
  13373. case GGML_OP_WIN_PART:
  13374. case GGML_OP_WIN_UNPART:
  13375. case GGML_OP_MAP_UNARY:
  13376. case GGML_OP_MAP_BINARY:
  13377. case GGML_OP_MAP_CUSTOM1:
  13378. case GGML_OP_MAP_CUSTOM2:
  13379. case GGML_OP_MAP_CUSTOM3:
  13380. {
  13381. GGML_ASSERT(false); // not supported
  13382. } break;
  13383. case GGML_OP_CROSS_ENTROPY_LOSS:
  13384. {
  13385. if (src0->grad) {
  13386. src0->grad = ggml_add_impl(ctx,
  13387. src0->grad,
  13388. ggml_cross_entropy_loss_back(ctx,
  13389. src0,
  13390. src1,
  13391. tensor->grad),
  13392. inplace);
  13393. }
  13394. } break;
  13395. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13396. {
  13397. GGML_ASSERT(false); // not supported
  13398. } break;
  13399. case GGML_OP_NONE:
  13400. {
  13401. // nop
  13402. } break;
  13403. case GGML_OP_COUNT:
  13404. {
  13405. GGML_ASSERT(false);
  13406. } break;
  13407. }
  13408. }
  13409. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13410. if (node->grad == NULL) {
  13411. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13412. // it can also happen during forward pass, if the user performs computations with constants
  13413. if (node->op != GGML_OP_NONE) {
  13414. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13415. }
  13416. }
  13417. // check if already visited
  13418. for (int i = 0; i < cgraph->n_nodes; i++) {
  13419. if (cgraph->nodes[i] == node) {
  13420. return;
  13421. }
  13422. }
  13423. for (int i = 0; i < cgraph->n_leafs; i++) {
  13424. if (cgraph->leafs[i] == node) {
  13425. return;
  13426. }
  13427. }
  13428. if (node->src0) {
  13429. ggml_visit_parents(cgraph, node->src0);
  13430. }
  13431. if (node->src1) {
  13432. ggml_visit_parents(cgraph, node->src1);
  13433. }
  13434. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13435. if (node->opt[i]) {
  13436. ggml_visit_parents(cgraph, node->opt[i]);
  13437. }
  13438. }
  13439. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13440. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13441. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13442. if (strlen(node->name) == 0) {
  13443. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13444. }
  13445. cgraph->leafs[cgraph->n_leafs] = node;
  13446. cgraph->n_leafs++;
  13447. } else {
  13448. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13449. if (strlen(node->name) == 0) {
  13450. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13451. }
  13452. cgraph->nodes[cgraph->n_nodes] = node;
  13453. cgraph->grads[cgraph->n_nodes] = node->grad;
  13454. cgraph->n_nodes++;
  13455. }
  13456. }
  13457. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13458. if (!expand) {
  13459. cgraph->n_nodes = 0;
  13460. cgraph->n_leafs = 0;
  13461. }
  13462. const int n0 = cgraph->n_nodes;
  13463. UNUSED(n0);
  13464. ggml_visit_parents(cgraph, tensor);
  13465. const int n_new = cgraph->n_nodes - n0;
  13466. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13467. if (n_new > 0) {
  13468. // the last added node should always be starting point
  13469. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13470. }
  13471. }
  13472. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13473. ggml_build_forward_impl(cgraph, tensor, true);
  13474. }
  13475. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13476. struct ggml_cgraph result = {
  13477. /*.n_nodes =*/ 0,
  13478. /*.n_leafs =*/ 0,
  13479. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13480. /*.work_size =*/ 0,
  13481. /*.work =*/ NULL,
  13482. /*.nodes =*/ { NULL },
  13483. /*.grads =*/ { NULL },
  13484. /*.leafs =*/ { NULL },
  13485. /*.perf_runs =*/ 0,
  13486. /*.perf_cycles =*/ 0,
  13487. /*.perf_time_us =*/ 0,
  13488. };
  13489. ggml_build_forward_impl(&result, tensor, false);
  13490. return result;
  13491. }
  13492. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13493. struct ggml_cgraph result = *gf;
  13494. GGML_ASSERT(gf->n_nodes > 0);
  13495. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13496. if (keep) {
  13497. for (int i = 0; i < gf->n_nodes; i++) {
  13498. struct ggml_tensor * node = gf->nodes[i];
  13499. if (node->grad) {
  13500. node->grad = ggml_dup_tensor(ctx, node);
  13501. gf->grads[i] = node->grad;
  13502. }
  13503. }
  13504. }
  13505. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13506. struct ggml_tensor * node = gf->nodes[i];
  13507. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13508. if (node->grad) {
  13509. ggml_compute_backward(ctx, node, keep);
  13510. }
  13511. }
  13512. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13513. struct ggml_tensor * node = gf->nodes[i];
  13514. if (node->is_param) {
  13515. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13516. ggml_build_forward_impl(&result, node->grad, true);
  13517. }
  13518. }
  13519. return result;
  13520. }
  13521. //
  13522. // thread data
  13523. //
  13524. // synchronization is done via busy loops
  13525. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13526. //
  13527. #ifdef __APPLE__
  13528. //#include <os/lock.h>
  13529. //
  13530. //typedef os_unfair_lock ggml_lock_t;
  13531. //
  13532. //#define ggml_lock_init(x) UNUSED(x)
  13533. //#define ggml_lock_destroy(x) UNUSED(x)
  13534. //#define ggml_lock_lock os_unfair_lock_lock
  13535. //#define ggml_lock_unlock os_unfair_lock_unlock
  13536. //
  13537. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13538. typedef int ggml_lock_t;
  13539. #define ggml_lock_init(x) UNUSED(x)
  13540. #define ggml_lock_destroy(x) UNUSED(x)
  13541. #define ggml_lock_lock(x) UNUSED(x)
  13542. #define ggml_lock_unlock(x) UNUSED(x)
  13543. #define GGML_LOCK_INITIALIZER 0
  13544. typedef pthread_t ggml_thread_t;
  13545. #define ggml_thread_create pthread_create
  13546. #define ggml_thread_join pthread_join
  13547. #else
  13548. //typedef pthread_spinlock_t ggml_lock_t;
  13549. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13550. //#define ggml_lock_destroy pthread_spin_destroy
  13551. //#define ggml_lock_lock pthread_spin_lock
  13552. //#define ggml_lock_unlock pthread_spin_unlock
  13553. typedef int ggml_lock_t;
  13554. #define ggml_lock_init(x) UNUSED(x)
  13555. #define ggml_lock_destroy(x) UNUSED(x)
  13556. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13557. #define ggml_lock_lock(x) _mm_pause()
  13558. #else
  13559. #define ggml_lock_lock(x) UNUSED(x)
  13560. #endif
  13561. #define ggml_lock_unlock(x) UNUSED(x)
  13562. #define GGML_LOCK_INITIALIZER 0
  13563. typedef pthread_t ggml_thread_t;
  13564. #define ggml_thread_create pthread_create
  13565. #define ggml_thread_join pthread_join
  13566. #endif
  13567. struct ggml_compute_state_shared {
  13568. ggml_lock_t spin;
  13569. int n_threads;
  13570. // synchronization primitives
  13571. atomic_int n_ready;
  13572. atomic_bool has_work;
  13573. atomic_bool stop; // stop all threads
  13574. };
  13575. struct ggml_compute_state {
  13576. ggml_thread_t thrd;
  13577. struct ggml_compute_params params;
  13578. struct ggml_tensor * node;
  13579. struct ggml_compute_state_shared * shared;
  13580. };
  13581. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13582. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13583. const int n_threads = state->shared->n_threads;
  13584. while (true) {
  13585. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  13586. atomic_store(&state->shared->has_work, false);
  13587. } else {
  13588. while (atomic_load(&state->shared->has_work)) {
  13589. if (atomic_load(&state->shared->stop)) {
  13590. return 0;
  13591. }
  13592. ggml_lock_lock (&state->shared->spin);
  13593. ggml_lock_unlock(&state->shared->spin);
  13594. }
  13595. }
  13596. atomic_fetch_sub(&state->shared->n_ready, 1);
  13597. // wait for work
  13598. while (!atomic_load(&state->shared->has_work)) {
  13599. if (atomic_load(&state->shared->stop)) {
  13600. return 0;
  13601. }
  13602. ggml_lock_lock (&state->shared->spin);
  13603. ggml_lock_unlock(&state->shared->spin);
  13604. }
  13605. // check if we should stop
  13606. if (atomic_load(&state->shared->stop)) {
  13607. break;
  13608. }
  13609. if (state->node) {
  13610. if (state->params.ith < state->params.nth) {
  13611. ggml_compute_forward(&state->params, state->node);
  13612. }
  13613. state->node = NULL;
  13614. } else {
  13615. break;
  13616. }
  13617. }
  13618. return 0;
  13619. }
  13620. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13621. const int n_threads = cgraph->n_threads;
  13622. struct ggml_compute_state_shared state_shared = {
  13623. /*.spin =*/ GGML_LOCK_INITIALIZER,
  13624. /*.n_threads =*/ n_threads,
  13625. /*.n_ready =*/ 0,
  13626. /*.has_work =*/ false,
  13627. /*.stop =*/ false,
  13628. };
  13629. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  13630. // create thread pool
  13631. if (n_threads > 1) {
  13632. ggml_lock_init(&state_shared.spin);
  13633. atomic_store(&state_shared.has_work, true);
  13634. for (int j = 0; j < n_threads - 1; j++) {
  13635. workers[j] = (struct ggml_compute_state) {
  13636. .thrd = 0,
  13637. .params = {
  13638. .type = GGML_TASK_COMPUTE,
  13639. .ith = j + 1,
  13640. .nth = n_threads,
  13641. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13642. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13643. },
  13644. .node = NULL,
  13645. .shared = &state_shared,
  13646. };
  13647. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13648. GGML_ASSERT(rc == 0);
  13649. UNUSED(rc);
  13650. }
  13651. }
  13652. // initialize tasks + work buffer
  13653. {
  13654. size_t work_size = 0;
  13655. // thread scheduling for the different operations
  13656. for (int i = 0; i < cgraph->n_nodes; i++) {
  13657. struct ggml_tensor * node = cgraph->nodes[i];
  13658. switch (node->op) {
  13659. case GGML_OP_CPY:
  13660. case GGML_OP_DUP:
  13661. {
  13662. node->n_tasks = n_threads;
  13663. size_t cur = 0;
  13664. if (ggml_is_quantized(node->type)) {
  13665. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13666. }
  13667. work_size = MAX(work_size, cur);
  13668. } break;
  13669. case GGML_OP_ADD:
  13670. case GGML_OP_ADD1:
  13671. {
  13672. node->n_tasks = n_threads;
  13673. size_t cur = 0;
  13674. if (ggml_is_quantized(node->src0->type)) {
  13675. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13676. }
  13677. work_size = MAX(work_size, cur);
  13678. } break;
  13679. case GGML_OP_ACC:
  13680. {
  13681. node->n_tasks = n_threads;
  13682. size_t cur = 0;
  13683. if (ggml_is_quantized(node->src0->type)) {
  13684. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13685. }
  13686. work_size = MAX(work_size, cur);
  13687. } break;
  13688. case GGML_OP_SUB:
  13689. case GGML_OP_DIV:
  13690. case GGML_OP_SQR:
  13691. case GGML_OP_SQRT:
  13692. case GGML_OP_LOG:
  13693. case GGML_OP_SUM:
  13694. case GGML_OP_SUM_ROWS:
  13695. case GGML_OP_MEAN:
  13696. case GGML_OP_REPEAT:
  13697. case GGML_OP_REPEAT_BACK:
  13698. case GGML_OP_ABS:
  13699. case GGML_OP_SGN:
  13700. case GGML_OP_NEG:
  13701. case GGML_OP_STEP:
  13702. case GGML_OP_RELU:
  13703. {
  13704. node->n_tasks = 1;
  13705. } break;
  13706. case GGML_OP_MUL:
  13707. case GGML_OP_GELU:
  13708. case GGML_OP_GELU_QUICK:
  13709. case GGML_OP_SILU:
  13710. case GGML_OP_SILU_BACK:
  13711. case GGML_OP_NORM:
  13712. case GGML_OP_RMS_NORM:
  13713. case GGML_OP_RMS_NORM_BACK:
  13714. {
  13715. node->n_tasks = n_threads;
  13716. } break;
  13717. case GGML_OP_MUL_MAT:
  13718. case GGML_OP_OUT_PROD:
  13719. {
  13720. node->n_tasks = n_threads;
  13721. // TODO: use different scheduling for different matrix sizes
  13722. //const int nr0 = ggml_nrows(node->src0);
  13723. //const int nr1 = ggml_nrows(node->src1);
  13724. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13725. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13726. size_t cur = 0;
  13727. #if defined(GGML_USE_CUBLAS)
  13728. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13729. node->n_tasks = 1; // TODO: this actually is doing nothing
  13730. // the threads are still spinning
  13731. }
  13732. else
  13733. #elif defined(GGML_USE_CLBLAST)
  13734. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13735. node->n_tasks = 1; // TODO: this actually is doing nothing
  13736. // the threads are still spinning
  13737. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13738. }
  13739. else
  13740. #endif
  13741. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13742. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13743. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13744. node->n_tasks = 1; // TODO: this actually is doing nothing
  13745. // the threads are still spinning
  13746. // here we need memory just for single 2D matrix from src0
  13747. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13748. } else {
  13749. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13750. }
  13751. #else
  13752. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13753. #endif
  13754. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13755. cur = 0;
  13756. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13757. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13758. node->n_tasks = 1;
  13759. }
  13760. #endif
  13761. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13762. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13763. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13764. node->n_tasks = 1;
  13765. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13766. } else
  13767. #endif
  13768. {
  13769. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13770. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13771. }
  13772. } else {
  13773. GGML_ASSERT(false);
  13774. }
  13775. work_size = MAX(work_size, cur);
  13776. } break;
  13777. case GGML_OP_SCALE:
  13778. {
  13779. node->n_tasks = n_threads;
  13780. } break;
  13781. case GGML_OP_SET:
  13782. case GGML_OP_CONT:
  13783. case GGML_OP_RESHAPE:
  13784. case GGML_OP_VIEW:
  13785. case GGML_OP_PERMUTE:
  13786. case GGML_OP_TRANSPOSE:
  13787. case GGML_OP_GET_ROWS:
  13788. case GGML_OP_GET_ROWS_BACK:
  13789. case GGML_OP_DIAG:
  13790. case GGML_OP_DIAG_MASK_ZERO:
  13791. {
  13792. node->n_tasks = 1;
  13793. } break;
  13794. case GGML_OP_DIAG_MASK_INF:
  13795. case GGML_OP_SOFT_MAX:
  13796. case GGML_OP_SOFT_MAX_BACK:
  13797. case GGML_OP_ROPE:
  13798. case GGML_OP_ROPE_BACK:
  13799. {
  13800. node->n_tasks = n_threads;
  13801. } break;
  13802. case GGML_OP_ALIBI:
  13803. {
  13804. node->n_tasks = 1; //TODO
  13805. } break;
  13806. case GGML_OP_CLAMP:
  13807. {
  13808. node->n_tasks = 1; //TODO
  13809. } break;
  13810. case GGML_OP_CONV_1D_S1_PH:
  13811. case GGML_OP_CONV_1D_S2_PH:
  13812. {
  13813. node->n_tasks = n_threads;
  13814. GGML_ASSERT(node->src0->ne[3] == 1);
  13815. GGML_ASSERT(node->src1->ne[2] == 1);
  13816. GGML_ASSERT(node->src1->ne[3] == 1);
  13817. size_t cur = 0;
  13818. const int nk = node->src0->ne[0];
  13819. if (node->src0->type == GGML_TYPE_F16 &&
  13820. node->src1->type == GGML_TYPE_F32) {
  13821. cur = sizeof(ggml_fp16_t)*(
  13822. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13823. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13824. );
  13825. } else if (node->src0->type == GGML_TYPE_F32 &&
  13826. node->src1->type == GGML_TYPE_F32) {
  13827. cur = sizeof(float)*(
  13828. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13829. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13830. );
  13831. } else {
  13832. GGML_ASSERT(false);
  13833. }
  13834. work_size = MAX(work_size, cur);
  13835. } break;
  13836. case GGML_OP_CONV_2D_SK_P0:
  13837. {
  13838. node->n_tasks = n_threads;
  13839. GGML_ASSERT(node->src1->ne[3] == 1);
  13840. const int64_t ne00 = node->src0->ne[0]; // W
  13841. const int64_t ne01 = node->src0->ne[1]; // H
  13842. const int64_t ne02 = node->src0->ne[2]; // C
  13843. const int64_t ne03 = node->src0->ne[3]; // N
  13844. const int64_t ne10 = node->src1->ne[0]; // W
  13845. const int64_t ne11 = node->src1->ne[1]; // H
  13846. const int64_t ne12 = node->src1->ne[2]; // C
  13847. const int64_t nk = ne00*ne01;
  13848. UNUSED(ne02);
  13849. UNUSED(ne03);
  13850. UNUSED(nk);
  13851. size_t cur = 0;
  13852. if (node->src0->type == GGML_TYPE_F16 &&
  13853. node->src1->type == GGML_TYPE_F32) {
  13854. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13855. } else if (node->src0->type == GGML_TYPE_F32 &&
  13856. node->src1->type == GGML_TYPE_F32) {
  13857. cur = sizeof(float)* (ne10*ne11*ne12);
  13858. } else {
  13859. GGML_ASSERT(false);
  13860. }
  13861. work_size = MAX(work_size, cur);
  13862. } break;
  13863. case GGML_OP_FLASH_ATTN:
  13864. {
  13865. node->n_tasks = n_threads;
  13866. size_t cur = 0;
  13867. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13868. if (node->src1->type == GGML_TYPE_F32) {
  13869. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13870. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13871. }
  13872. if (node->src1->type == GGML_TYPE_F16) {
  13873. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13874. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13875. }
  13876. work_size = MAX(work_size, cur);
  13877. } break;
  13878. case GGML_OP_FLASH_FF:
  13879. {
  13880. node->n_tasks = n_threads;
  13881. size_t cur = 0;
  13882. if (node->src1->type == GGML_TYPE_F32) {
  13883. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13884. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13885. }
  13886. if (node->src1->type == GGML_TYPE_F16) {
  13887. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13888. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13889. }
  13890. work_size = MAX(work_size, cur);
  13891. } break;
  13892. case GGML_OP_FLASH_ATTN_BACK:
  13893. {
  13894. node->n_tasks = n_threads;
  13895. size_t cur = 0;
  13896. const int64_t D = node->src0->ne[0];
  13897. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13898. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13899. if (node->src1->type == GGML_TYPE_F32) {
  13900. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13901. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13902. }
  13903. if (node->src1->type == GGML_TYPE_F16) {
  13904. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13905. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13906. }
  13907. work_size = MAX(work_size, cur);
  13908. } break;
  13909. case GGML_OP_WIN_PART:
  13910. case GGML_OP_WIN_UNPART:
  13911. case GGML_OP_MAP_UNARY:
  13912. case GGML_OP_MAP_BINARY:
  13913. case GGML_OP_MAP_CUSTOM1:
  13914. case GGML_OP_MAP_CUSTOM2:
  13915. case GGML_OP_MAP_CUSTOM3:
  13916. {
  13917. node->n_tasks = 1;
  13918. } break;
  13919. case GGML_OP_CROSS_ENTROPY_LOSS:
  13920. {
  13921. node->n_tasks = n_threads;
  13922. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13923. work_size = MAX(work_size, cur);
  13924. } break;
  13925. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13926. {
  13927. node->n_tasks = n_threads;
  13928. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13929. work_size = MAX(work_size, cur);
  13930. } break;
  13931. case GGML_OP_NONE:
  13932. {
  13933. node->n_tasks = 1;
  13934. } break;
  13935. case GGML_OP_COUNT:
  13936. {
  13937. GGML_ASSERT(false);
  13938. } break;
  13939. }
  13940. }
  13941. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13942. GGML_ASSERT(false); // TODO: better handling
  13943. }
  13944. if (work_size > 0 && cgraph->work == NULL) {
  13945. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13946. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13947. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13948. }
  13949. }
  13950. const int64_t perf_start_cycles = ggml_perf_cycles();
  13951. const int64_t perf_start_time_us = ggml_perf_time_us();
  13952. for (int i = 0; i < cgraph->n_nodes; i++) {
  13953. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13954. struct ggml_tensor * node = cgraph->nodes[i];
  13955. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13956. //if (node->grad == NULL && node->perf_runs > 0) {
  13957. // continue;
  13958. //}
  13959. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13960. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13961. // INIT
  13962. struct ggml_compute_params params = {
  13963. /*.type =*/ GGML_TASK_INIT,
  13964. /*.ith =*/ 0,
  13965. /*.nth =*/ node->n_tasks,
  13966. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13967. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13968. };
  13969. ggml_compute_forward(&params, node);
  13970. // COMPUTE
  13971. if (node->n_tasks > 1) {
  13972. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13973. atomic_store(&state_shared.has_work, false);
  13974. }
  13975. while (atomic_load(&state_shared.has_work)) {
  13976. ggml_lock_lock (&state_shared.spin);
  13977. ggml_lock_unlock(&state_shared.spin);
  13978. }
  13979. // launch thread pool
  13980. for (int j = 0; j < n_threads - 1; j++) {
  13981. workers[j].params = (struct ggml_compute_params) {
  13982. .type = GGML_TASK_COMPUTE,
  13983. .ith = j + 1,
  13984. .nth = node->n_tasks,
  13985. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13986. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13987. };
  13988. workers[j].node = node;
  13989. }
  13990. atomic_fetch_sub(&state_shared.n_ready, 1);
  13991. while (atomic_load(&state_shared.n_ready) > 0) {
  13992. ggml_lock_lock (&state_shared.spin);
  13993. ggml_lock_unlock(&state_shared.spin);
  13994. }
  13995. atomic_store(&state_shared.has_work, true);
  13996. }
  13997. params.type = GGML_TASK_COMPUTE;
  13998. ggml_compute_forward(&params, node);
  13999. // wait for thread pool
  14000. if (node->n_tasks > 1) {
  14001. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  14002. atomic_store(&state_shared.has_work, false);
  14003. }
  14004. while (atomic_load(&state_shared.has_work)) {
  14005. ggml_lock_lock (&state_shared.spin);
  14006. ggml_lock_unlock(&state_shared.spin);
  14007. }
  14008. atomic_fetch_sub(&state_shared.n_ready, 1);
  14009. while (atomic_load(&state_shared.n_ready) != 0) {
  14010. ggml_lock_lock (&state_shared.spin);
  14011. ggml_lock_unlock(&state_shared.spin);
  14012. }
  14013. }
  14014. // FINALIZE
  14015. if (node->n_tasks > 1) {
  14016. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  14017. atomic_store(&state_shared.has_work, false);
  14018. }
  14019. while (atomic_load(&state_shared.has_work)) {
  14020. ggml_lock_lock (&state_shared.spin);
  14021. ggml_lock_unlock(&state_shared.spin);
  14022. }
  14023. // launch thread pool
  14024. for (int j = 0; j < n_threads - 1; j++) {
  14025. workers[j].params = (struct ggml_compute_params) {
  14026. .type = GGML_TASK_FINALIZE,
  14027. .ith = j + 1,
  14028. .nth = node->n_tasks,
  14029. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  14030. .wdata = cgraph->work ? cgraph->work->data : NULL,
  14031. };
  14032. workers[j].node = node;
  14033. }
  14034. atomic_fetch_sub(&state_shared.n_ready, 1);
  14035. while (atomic_load(&state_shared.n_ready) > 0) {
  14036. ggml_lock_lock (&state_shared.spin);
  14037. ggml_lock_unlock(&state_shared.spin);
  14038. }
  14039. atomic_store(&state_shared.has_work, true);
  14040. }
  14041. params.type = GGML_TASK_FINALIZE;
  14042. ggml_compute_forward(&params, node);
  14043. // wait for thread pool
  14044. if (node->n_tasks > 1) {
  14045. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  14046. atomic_store(&state_shared.has_work, false);
  14047. }
  14048. while (atomic_load(&state_shared.has_work)) {
  14049. ggml_lock_lock (&state_shared.spin);
  14050. ggml_lock_unlock(&state_shared.spin);
  14051. }
  14052. atomic_fetch_sub(&state_shared.n_ready, 1);
  14053. while (atomic_load(&state_shared.n_ready) != 0) {
  14054. ggml_lock_lock (&state_shared.spin);
  14055. ggml_lock_unlock(&state_shared.spin);
  14056. }
  14057. }
  14058. // performance stats (node)
  14059. {
  14060. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  14061. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  14062. node->perf_runs++;
  14063. node->perf_cycles += perf_cycles_cur;
  14064. node->perf_time_us += perf_time_us_cur;
  14065. }
  14066. }
  14067. // join thread pool
  14068. if (n_threads > 1) {
  14069. atomic_store(&state_shared.stop, true);
  14070. atomic_store(&state_shared.has_work, true);
  14071. for (int j = 0; j < n_threads - 1; j++) {
  14072. int rc = ggml_thread_join(workers[j].thrd, NULL);
  14073. GGML_ASSERT(rc == 0);
  14074. UNUSED(rc);
  14075. }
  14076. ggml_lock_destroy(&state_shared.spin);
  14077. }
  14078. // performance stats (graph)
  14079. {
  14080. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14081. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14082. cgraph->perf_runs++;
  14083. cgraph->perf_cycles += perf_cycles_cur;
  14084. cgraph->perf_time_us += perf_time_us_cur;
  14085. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14086. __func__, cgraph->perf_runs,
  14087. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14088. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14089. (double) perf_time_us_cur / 1000.0,
  14090. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14091. }
  14092. }
  14093. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14094. for (int i = 0; i < cgraph->n_nodes; i++) {
  14095. struct ggml_tensor * grad = cgraph->grads[i];
  14096. if (grad) {
  14097. ggml_set_zero(grad);
  14098. }
  14099. }
  14100. }
  14101. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14102. for (int i = 0; i < cgraph->n_leafs; i++) {
  14103. struct ggml_tensor * leaf = cgraph->leafs[i];
  14104. if (strcmp(leaf->name, name) == 0) {
  14105. return leaf;
  14106. }
  14107. }
  14108. for (int i = 0; i < cgraph->n_nodes; i++) {
  14109. struct ggml_tensor * node = cgraph->nodes[i];
  14110. if (strcmp(node->name, name) == 0) {
  14111. return node;
  14112. }
  14113. }
  14114. return NULL;
  14115. }
  14116. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14117. const int64_t * ne = tensor->ne;
  14118. const size_t * nb = tensor->nb;
  14119. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14120. ggml_type_name(tensor->type),
  14121. ggml_op_name (tensor->op),
  14122. tensor->n_dims,
  14123. ne[0], ne[1], ne[2], ne[3],
  14124. nb[0], nb[1], nb[2], nb[3],
  14125. tensor->data,
  14126. tensor->name);
  14127. }
  14128. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14129. const int64_t * ne = tensor->ne;
  14130. const size_t * nb = tensor->nb;
  14131. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  14132. arg,
  14133. ggml_type_name(tensor->type),
  14134. ggml_op_name (tensor->op),
  14135. tensor->n_dims,
  14136. ne[0], ne[1], ne[2], ne[3],
  14137. nb[0], nb[1], nb[2], nb[3],
  14138. tensor->n_tasks,
  14139. tensor->data,
  14140. tensor->name);
  14141. }
  14142. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14143. //assert(cgraph->work == NULL);
  14144. //assert(cgraph->work_size == 0);
  14145. uint64_t size_eval = 0;
  14146. // compute size of intermediate results
  14147. // TODO: does not take into account scratch buffers !!!!
  14148. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14149. size_eval += ggml_nbytes(cgraph->nodes[i]);
  14150. }
  14151. // print
  14152. {
  14153. FILE * fout = stdout;
  14154. fprintf(fout, "\n");
  14155. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14156. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14157. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14158. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14159. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14160. // header
  14161. fprintf(fout, "\n");
  14162. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14163. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14164. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14165. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14166. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14167. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  14168. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  14169. }
  14170. // header
  14171. fprintf(fout, "\n");
  14172. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14173. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14174. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14175. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14176. if (cgraph->nodes[i]->src0) {
  14177. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  14178. }
  14179. if (cgraph->nodes[i]->src1) {
  14180. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  14181. }
  14182. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14183. if (cgraph->nodes[i]->opt[j]) {
  14184. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  14185. }
  14186. }
  14187. fprintf(fout, "\n");
  14188. }
  14189. fprintf(fout, "\n");
  14190. }
  14191. // write binary data
  14192. {
  14193. FILE * fout = fopen(fname, "wb");
  14194. if (!fout) {
  14195. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14196. return;
  14197. }
  14198. // header
  14199. {
  14200. const uint32_t magic = GGML_FILE_MAGIC;
  14201. const uint32_t version = GGML_FILE_VERSION;
  14202. const uint32_t n_leafs = cgraph->n_leafs;
  14203. const uint32_t nodes = cgraph->n_nodes;
  14204. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14205. fwrite(&version, sizeof(uint32_t), 1, fout);
  14206. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14207. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14208. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14209. }
  14210. // leafs
  14211. {
  14212. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14213. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14214. const uint32_t type = tensor->type;
  14215. const uint32_t op = tensor->op;
  14216. const uint32_t n_dims = tensor->n_dims;
  14217. fwrite(&type, sizeof(uint32_t), 1, fout);
  14218. fwrite(&op, sizeof(uint32_t), 1, fout);
  14219. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14220. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14221. const uint64_t ne = tensor->ne[j];
  14222. const uint64_t nb = tensor->nb[j];
  14223. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14224. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14225. }
  14226. // store the pointer address
  14227. {
  14228. const uint64_t ptr = (uint64_t) tensor->data;
  14229. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14230. }
  14231. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14232. // dump the data
  14233. // TODO: pad this to 32 byte boundary
  14234. {
  14235. const size_t size = ggml_nbytes(tensor);
  14236. fwrite(tensor->data, sizeof(char), size, fout);
  14237. }
  14238. }
  14239. }
  14240. // nodes
  14241. {
  14242. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14243. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14244. const uint32_t type = tensor->type;
  14245. const uint32_t op = tensor->op;
  14246. const uint32_t n_dims = tensor->n_dims;
  14247. fwrite(&type, sizeof(uint32_t), 1, fout);
  14248. fwrite(&op, sizeof(uint32_t), 1, fout);
  14249. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14250. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14251. const uint64_t ne = tensor->ne[j];
  14252. const uint64_t nb = tensor->nb[j];
  14253. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14254. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14255. }
  14256. // store the pointer address
  14257. {
  14258. const uint64_t ptr = (uint64_t) tensor->data;
  14259. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14260. }
  14261. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14262. // output the op arguments
  14263. {
  14264. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14265. args[0] = tensor->src0;
  14266. args[1] = tensor->src1;
  14267. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14268. args[2 + j] = tensor->opt[j];
  14269. }
  14270. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14271. if (args[j]) {
  14272. int32_t idx = -1;
  14273. // check if leaf
  14274. {
  14275. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14276. if (args[j] == cgraph->leafs[k]) {
  14277. idx = k;
  14278. break;
  14279. }
  14280. }
  14281. }
  14282. // check if node
  14283. if (idx == -1) {
  14284. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14285. if (args[j] == cgraph->nodes[k]) {
  14286. idx = GGML_MAX_NODES + k;
  14287. break;
  14288. }
  14289. }
  14290. }
  14291. if (idx == -1) {
  14292. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14293. return;
  14294. }
  14295. fwrite(&idx, sizeof(int32_t), 1, fout);
  14296. } else {
  14297. const int32_t nul = -1;
  14298. fwrite(&nul, sizeof(int32_t), 1, fout);
  14299. }
  14300. }
  14301. }
  14302. }
  14303. }
  14304. fclose(fout);
  14305. }
  14306. }
  14307. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14308. assert(*ctx_data == NULL);
  14309. assert(*ctx_eval == NULL);
  14310. struct ggml_cgraph result = { 0 };
  14311. struct ggml_tensor * data = NULL;
  14312. // read file into data
  14313. {
  14314. FILE * fin = fopen(fname, "rb");
  14315. if (!fin) {
  14316. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14317. return result;
  14318. }
  14319. size_t fsize = 0;
  14320. fseek(fin, 0, SEEK_END);
  14321. fsize = ftell(fin);
  14322. fseek(fin, 0, SEEK_SET);
  14323. // create the data context
  14324. {
  14325. const size_t overhead = 1*ggml_tensor_overhead();
  14326. struct ggml_init_params params = {
  14327. .mem_size = fsize + overhead,
  14328. .mem_buffer = NULL,
  14329. .no_alloc = false,
  14330. };
  14331. *ctx_data = ggml_init(params);
  14332. if (!*ctx_data) {
  14333. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14334. fclose(fin);
  14335. return result;
  14336. }
  14337. }
  14338. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14339. {
  14340. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14341. if (ret != fsize) {
  14342. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14343. fclose(fin);
  14344. return result;
  14345. }
  14346. }
  14347. fclose(fin);
  14348. }
  14349. // populate result
  14350. {
  14351. char * ptr = (char *) data->data;
  14352. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14353. if (magic != GGML_FILE_MAGIC) {
  14354. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14355. return result;
  14356. }
  14357. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14358. if (version != GGML_FILE_VERSION) {
  14359. fprintf(stderr, "%s: invalid version number\n", __func__);
  14360. return result;
  14361. }
  14362. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14363. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14364. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14365. result.n_leafs = n_leafs;
  14366. result.n_nodes = n_nodes;
  14367. // create the data context
  14368. {
  14369. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14370. struct ggml_init_params params = {
  14371. .mem_size = size_eval + overhead,
  14372. .mem_buffer = NULL,
  14373. .no_alloc = true,
  14374. };
  14375. *ctx_eval = ggml_init(params);
  14376. if (!*ctx_eval) {
  14377. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14378. return result;
  14379. }
  14380. }
  14381. // leafs
  14382. {
  14383. uint32_t type;
  14384. uint32_t op;
  14385. uint32_t n_dims;
  14386. for (uint32_t i = 0; i < n_leafs; ++i) {
  14387. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14388. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14389. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14390. int64_t ne[GGML_MAX_DIMS];
  14391. size_t nb[GGML_MAX_DIMS];
  14392. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14393. uint64_t ne_cur;
  14394. uint64_t nb_cur;
  14395. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14396. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14397. ne[j] = ne_cur;
  14398. nb[j] = nb_cur;
  14399. }
  14400. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14401. tensor->op = (enum ggml_op) op;
  14402. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  14403. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14404. tensor->data = (void *) ptr;
  14405. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14406. tensor->nb[j] = nb[j];
  14407. }
  14408. result.leafs[i] = tensor;
  14409. ptr += ggml_nbytes(tensor);
  14410. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14411. }
  14412. }
  14413. ggml_set_no_alloc(*ctx_eval, false);
  14414. // nodes
  14415. {
  14416. uint32_t type;
  14417. uint32_t op;
  14418. uint32_t n_dims;
  14419. for (uint32_t i = 0; i < n_nodes; ++i) {
  14420. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14421. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14422. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14423. enum ggml_op eop = (enum ggml_op) op;
  14424. int64_t ne[GGML_MAX_DIMS];
  14425. size_t nb[GGML_MAX_DIMS];
  14426. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14427. uint64_t ne_cur;
  14428. uint64_t nb_cur;
  14429. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14430. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14431. ne[j] = ne_cur;
  14432. nb[j] = nb_cur;
  14433. }
  14434. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  14435. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14436. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14437. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14438. // parse args
  14439. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14440. const int32_t arg_idx = ptr_arg_idx[j];
  14441. if (arg_idx == -1) {
  14442. continue;
  14443. }
  14444. if (arg_idx < GGML_MAX_NODES) {
  14445. args[j] = result.leafs[arg_idx];
  14446. } else {
  14447. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14448. }
  14449. }
  14450. // create the tensor
  14451. // "view" operations are handled differently
  14452. // TODO: handle inplace ops - currently a copy is always made
  14453. struct ggml_tensor * tensor = NULL;
  14454. switch (eop) {
  14455. // TODO: implement other view ops
  14456. case GGML_OP_RESHAPE:
  14457. {
  14458. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14459. } break;
  14460. case GGML_OP_VIEW:
  14461. {
  14462. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14463. uint64_t offs;
  14464. memcpy(&offs, args[2]->data, sizeof(offs));
  14465. tensor->data = ((char *) tensor->data) + offs;
  14466. } break;
  14467. case GGML_OP_TRANSPOSE:
  14468. {
  14469. tensor = ggml_transpose(*ctx_eval, args[0]);
  14470. } break;
  14471. case GGML_OP_PERMUTE:
  14472. {
  14473. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14474. } break;
  14475. default:
  14476. {
  14477. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14478. tensor->op = eop;
  14479. } break;
  14480. }
  14481. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14482. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14483. tensor->nb[j] = nb[j];
  14484. }
  14485. tensor->src0 = args[0];
  14486. tensor->src1 = args[1];
  14487. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14488. tensor->opt[j] = args[2 + j];
  14489. }
  14490. result.nodes[i] = tensor;
  14491. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14492. }
  14493. }
  14494. }
  14495. return result;
  14496. }
  14497. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14498. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14499. GGML_PRINT("=== GRAPH ===\n");
  14500. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14501. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14502. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14503. for (int i = 0; i < cgraph->n_nodes; i++) {
  14504. struct ggml_tensor * node = cgraph->nodes[i];
  14505. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14506. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14507. i,
  14508. node->ne[0], node->ne[1], node->ne[2],
  14509. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14510. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14511. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14512. (double) node->perf_time_us / 1000.0,
  14513. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14514. }
  14515. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14516. for (int i = 0; i < cgraph->n_leafs; i++) {
  14517. struct ggml_tensor * node = cgraph->leafs[i];
  14518. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14519. i,
  14520. node->ne[0], node->ne[1],
  14521. GGML_OP_NAME[node->op]);
  14522. }
  14523. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14524. if (perf_total_per_op_us[i] == 0) {
  14525. continue;
  14526. }
  14527. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14528. }
  14529. GGML_PRINT("========================================\n");
  14530. }
  14531. // check if node is part of the graph
  14532. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14533. if (cgraph == NULL) {
  14534. return true;
  14535. }
  14536. for (int i = 0; i < cgraph->n_nodes; i++) {
  14537. if (cgraph->nodes[i] == node) {
  14538. return true;
  14539. }
  14540. }
  14541. return false;
  14542. }
  14543. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14544. for (int i = 0; i < cgraph->n_nodes; i++) {
  14545. struct ggml_tensor * parent = cgraph->nodes[i];
  14546. if (parent->grad == node) {
  14547. return parent;
  14548. }
  14549. }
  14550. return NULL;
  14551. }
  14552. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14553. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14554. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14555. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14556. gparent0 ? (void *) gparent0 : (void *) parent,
  14557. gparent0 ? "g" : "x",
  14558. gparent ? (void *) gparent : (void *) node,
  14559. gparent ? "g" : "x",
  14560. gparent ? "empty" : "vee",
  14561. gparent ? "dashed" : "solid",
  14562. label);
  14563. }
  14564. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14565. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14566. (void *) parent, "x",
  14567. (void *) node, "x",
  14568. label);
  14569. }
  14570. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14571. char color[16];
  14572. FILE * fp = fopen(filename, "w");
  14573. GGML_ASSERT(fp);
  14574. fprintf(fp, "digraph G {\n");
  14575. fprintf(fp, " newrank = true;\n");
  14576. fprintf(fp, " rankdir = LR;\n");
  14577. for (int i = 0; i < gb->n_nodes; i++) {
  14578. struct ggml_tensor * node = gb->nodes[i];
  14579. if (ggml_graph_get_parent(gb, node) != NULL) {
  14580. continue;
  14581. }
  14582. if (node->is_param) {
  14583. snprintf(color, sizeof(color), "yellow");
  14584. } else if (node->grad) {
  14585. if (ggml_graph_find(gf, node)) {
  14586. snprintf(color, sizeof(color), "green");
  14587. } else {
  14588. snprintf(color, sizeof(color), "lightblue");
  14589. }
  14590. } else {
  14591. snprintf(color, sizeof(color), "white");
  14592. }
  14593. fprintf(fp, " \"%p\" [ "
  14594. "style = filled; fillcolor = %s; shape = record; "
  14595. "label=\"",
  14596. (void *) node, color);
  14597. if (strlen(node->name) > 0) {
  14598. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14599. } else {
  14600. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14601. }
  14602. if (node->n_dims == 2) {
  14603. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14604. } else {
  14605. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14606. }
  14607. if (node->grad) {
  14608. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14609. } else {
  14610. fprintf(fp, "\"; ]\n");
  14611. }
  14612. }
  14613. for (int i = 0; i < gb->n_leafs; i++) {
  14614. struct ggml_tensor * node = gb->leafs[i];
  14615. snprintf(color, sizeof(color), "pink");
  14616. fprintf(fp, " \"%p\" [ "
  14617. "style = filled; fillcolor = %s; shape = record; "
  14618. "label=\"<x>",
  14619. (void *) node, color);
  14620. if (strlen(node->name) > 0) {
  14621. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14622. } else {
  14623. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14624. }
  14625. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14626. if (ggml_nelements(node) < 5) {
  14627. fprintf(fp, " | (");
  14628. for (int j = 0; j < ggml_nelements(node); j++) {
  14629. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14630. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14631. }
  14632. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14633. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14634. }
  14635. else {
  14636. fprintf(fp, "#");
  14637. }
  14638. if (j < ggml_nelements(node) - 1) {
  14639. fprintf(fp, ", ");
  14640. }
  14641. }
  14642. fprintf(fp, ")");
  14643. }
  14644. fprintf(fp, "\"; ]\n");
  14645. }
  14646. for (int i = 0; i < gb->n_nodes; i++) {
  14647. struct ggml_tensor * node = gb->nodes[i];
  14648. if (node->src0) {
  14649. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14650. }
  14651. if (node->src1) {
  14652. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14653. }
  14654. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14655. if (node->opt[j]) {
  14656. char label[16];
  14657. snprintf(label, sizeof(label), "opt %d", j);
  14658. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14659. }
  14660. }
  14661. }
  14662. for (int i = 0; i < gb->n_leafs; i++) {
  14663. struct ggml_tensor * node = gb->leafs[i];
  14664. if (node->src0) {
  14665. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14666. }
  14667. if (node->src1) {
  14668. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14669. }
  14670. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14671. if (node->opt[j]) {
  14672. char label[16];
  14673. snprintf(label, sizeof(label), "opt %d", j);
  14674. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14675. }
  14676. }
  14677. }
  14678. fprintf(fp, "}\n");
  14679. fclose(fp);
  14680. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14681. }
  14682. ////////////////////////////////////////////////////////////////////////////////
  14683. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14684. int i = 0;
  14685. for (int p = 0; p < np; ++p) {
  14686. const int64_t ne = ggml_nelements(ps[p]) ;
  14687. // TODO: add function to set tensor from array
  14688. for (int64_t j = 0; j < ne; ++j) {
  14689. ggml_set_f32_1d(ps[p], j, x[i++]);
  14690. }
  14691. }
  14692. }
  14693. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14694. int i = 0;
  14695. for (int p = 0; p < np; ++p) {
  14696. const int64_t ne = ggml_nelements(ps[p]) ;
  14697. // TODO: add function to get all elements at once
  14698. for (int64_t j = 0; j < ne; ++j) {
  14699. x[i++] = ggml_get_f32_1d(ps[p], j);
  14700. }
  14701. }
  14702. }
  14703. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14704. int i = 0;
  14705. for (int p = 0; p < np; ++p) {
  14706. const int64_t ne = ggml_nelements(ps[p]) ;
  14707. // TODO: add function to get all elements at once
  14708. for (int64_t j = 0; j < ne; ++j) {
  14709. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14710. }
  14711. }
  14712. }
  14713. //
  14714. // ADAM
  14715. //
  14716. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14717. //
  14718. static enum ggml_opt_result ggml_opt_adam(
  14719. struct ggml_context * ctx,
  14720. struct ggml_opt_context * opt,
  14721. struct ggml_opt_params params,
  14722. struct ggml_tensor * f,
  14723. struct ggml_cgraph * gf,
  14724. struct ggml_cgraph * gb) {
  14725. GGML_ASSERT(ggml_is_scalar(f));
  14726. gf->n_threads = params.n_threads;
  14727. gb->n_threads = params.n_threads;
  14728. // these will store the parameters we want to optimize
  14729. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14730. int np = 0;
  14731. int nx = 0;
  14732. for (int i = 0; i < gf->n_nodes; ++i) {
  14733. if (gf->nodes[i]->is_param) {
  14734. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14735. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14736. ps[np++] = gf->nodes[i];
  14737. nx += ggml_nelements(gf->nodes[i]);
  14738. }
  14739. }
  14740. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14741. int iter = opt->iter;
  14742. ggml_opt_init(opt->ctx, opt, params, nx);
  14743. opt->iter = iter;
  14744. }
  14745. // constants
  14746. const float sched = params.adam.sched;
  14747. const float decay = params.adam.decay * sched;
  14748. const float alpha = params.adam.alpha * sched;
  14749. const float beta1 = params.adam.beta1;
  14750. const float beta2 = params.adam.beta2;
  14751. const float eps = params.adam.eps;
  14752. float * x = opt->adam.x->data; // view of the parameters
  14753. float * g1 = opt->adam.g1->data; // gradient
  14754. float * g2 = opt->adam.g2->data; // gradient squared
  14755. float * m = opt->adam.m->data; // first moment
  14756. float * v = opt->adam.v->data; // second moment
  14757. float * mh = opt->adam.mh->data; // first moment hat
  14758. float * vh = opt->adam.vh->data; // second moment hat
  14759. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14760. // update view
  14761. ggml_opt_get_params(np, ps, x);
  14762. // compute the function value
  14763. ggml_graph_reset (gf);
  14764. ggml_set_f32 (f->grad, 1.0f);
  14765. ggml_graph_compute(ctx, gb);
  14766. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14767. opt->adam.fx_best = opt->adam.fx_prev;
  14768. if (pf) {
  14769. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14770. }
  14771. // initialize
  14772. if (opt->just_initialized) {
  14773. opt->adam.n_no_improvement = 0;
  14774. opt->just_initialized = false;
  14775. }
  14776. float * fx_best = &opt->adam.fx_best;
  14777. float * fx_prev = &opt->adam.fx_prev;
  14778. int * n_no_improvement = &opt->adam.n_no_improvement;
  14779. int iter0 = opt->iter;
  14780. // run the optimizer
  14781. for (int t = 0; t < params.adam.n_iter; ++t) {
  14782. opt->iter = iter0 + t + 1;
  14783. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14784. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14785. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14786. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14787. for (int i = 0; i < np; ++i) {
  14788. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14789. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14790. }
  14791. const int64_t t_start_wall = ggml_time_us();
  14792. const int64_t t_start_cpu = ggml_cycles();
  14793. UNUSED(t_start_wall);
  14794. UNUSED(t_start_cpu);
  14795. {
  14796. // update the gradient
  14797. ggml_opt_get_grad(np, ps, g1);
  14798. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14799. ggml_vec_scale_f32(nx, m, beta1);
  14800. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14801. // g2 = g1^2
  14802. ggml_vec_sqr_f32 (nx, g2, g1);
  14803. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14804. ggml_vec_scale_f32(nx, v, beta2);
  14805. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14806. // m^hat = m_t / (1 - beta1^t)
  14807. // v^hat = v_t / (1 - beta2^t)
  14808. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14809. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14810. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14811. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14812. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14813. ggml_vec_cpy_f32 (nx, mh, m);
  14814. ggml_vec_cpy_f32 (nx, vh, v);
  14815. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14816. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14817. ggml_vec_sqrt_f32 (nx, vh, vh);
  14818. ggml_vec_acc1_f32 (nx, vh, eps);
  14819. ggml_vec_div_f32 (nx, mh, mh, vh);
  14820. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14821. ggml_vec_sub_f32 (nx, x, x, mh);
  14822. // update the parameters
  14823. ggml_opt_set_params(np, ps, x);
  14824. }
  14825. ggml_graph_reset (gf);
  14826. ggml_set_f32 (f->grad, 1.0f);
  14827. ggml_graph_compute(ctx, gb);
  14828. const float fx = ggml_get_f32_1d(f, 0);
  14829. // check convergence
  14830. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14831. GGML_PRINT_DEBUG("converged\n");
  14832. return GGML_OPT_OK;
  14833. }
  14834. // delta-based convergence test
  14835. if (pf != NULL) {
  14836. // need at least params.past iterations to start checking for convergence
  14837. if (params.past <= iter0 + t) {
  14838. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14839. if (fabsf(rate) < params.delta) {
  14840. return GGML_OPT_OK;
  14841. }
  14842. }
  14843. pf[(iter0 + t)%params.past] = fx;
  14844. }
  14845. // check for improvement
  14846. if (params.max_no_improvement > 0) {
  14847. if (fx_best[0] > fx) {
  14848. fx_best[0] = fx;
  14849. n_no_improvement[0] = 0;
  14850. } else {
  14851. ++n_no_improvement[0];
  14852. if (n_no_improvement[0] >= params.max_no_improvement) {
  14853. return GGML_OPT_OK;
  14854. }
  14855. }
  14856. }
  14857. fx_prev[0] = fx;
  14858. {
  14859. const int64_t t_end_cpu = ggml_cycles();
  14860. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14861. UNUSED(t_end_cpu);
  14862. const int64_t t_end_wall = ggml_time_us();
  14863. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14864. UNUSED(t_end_wall);
  14865. }
  14866. }
  14867. return GGML_OPT_DID_NOT_CONVERGE;
  14868. }
  14869. //
  14870. // L-BFGS
  14871. //
  14872. // the L-BFGS implementation below is based on the following implementation:
  14873. //
  14874. // https://github.com/chokkan/liblbfgs
  14875. //
  14876. struct ggml_lbfgs_iteration_data {
  14877. float alpha;
  14878. float ys;
  14879. float * s;
  14880. float * y;
  14881. };
  14882. static enum ggml_opt_result linesearch_backtracking(
  14883. struct ggml_context * ctx,
  14884. const struct ggml_opt_params * params,
  14885. int nx,
  14886. float * x,
  14887. float * fx,
  14888. float * g,
  14889. float * d,
  14890. float * step,
  14891. const float * xp,
  14892. struct ggml_tensor * f,
  14893. struct ggml_cgraph * gf,
  14894. struct ggml_cgraph * gb,
  14895. const int np,
  14896. struct ggml_tensor * ps[]) {
  14897. int count = 0;
  14898. float width = 0.0f;
  14899. float dg = 0.0f;
  14900. float finit = 0.0f;
  14901. float dginit = 0.0f;
  14902. float dgtest = 0.0f;
  14903. const float dec = 0.5f;
  14904. const float inc = 2.1f;
  14905. if (*step <= 0.f) {
  14906. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14907. }
  14908. // compute the initial gradient in the search direction
  14909. ggml_vec_dot_f32(nx, &dginit, g, d);
  14910. // make sure that d points to a descent direction
  14911. if (0 < dginit) {
  14912. return GGML_LINESEARCH_FAIL;
  14913. }
  14914. // initialize local variables
  14915. finit = *fx;
  14916. dgtest = params->lbfgs.ftol*dginit;
  14917. while (true) {
  14918. ggml_vec_cpy_f32(nx, x, xp);
  14919. ggml_vec_mad_f32(nx, x, d, *step);
  14920. // evaluate the function and gradient values
  14921. {
  14922. ggml_opt_set_params(np, ps, x);
  14923. ggml_graph_reset (gf);
  14924. ggml_set_f32 (f->grad, 1.0f);
  14925. ggml_graph_compute(ctx, gb);
  14926. ggml_opt_get_grad(np, ps, g);
  14927. *fx = ggml_get_f32_1d(f, 0);
  14928. }
  14929. ++count;
  14930. if (*fx > finit + (*step)*dgtest) {
  14931. width = dec;
  14932. } else {
  14933. // Armijo condition is satisfied
  14934. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14935. return count;
  14936. }
  14937. ggml_vec_dot_f32(nx, &dg, g, d);
  14938. // check the Wolfe condition
  14939. if (dg < params->lbfgs.wolfe * dginit) {
  14940. width = inc;
  14941. } else {
  14942. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14943. // regular Wolfe conditions
  14944. return count;
  14945. }
  14946. if(dg > -params->lbfgs.wolfe*dginit) {
  14947. width = dec;
  14948. } else {
  14949. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14950. return count;
  14951. }
  14952. return count;
  14953. }
  14954. }
  14955. if (*step < params->lbfgs.min_step) {
  14956. return GGML_LINESEARCH_MINIMUM_STEP;
  14957. }
  14958. if (*step > params->lbfgs.max_step) {
  14959. return GGML_LINESEARCH_MAXIMUM_STEP;
  14960. }
  14961. if (params->lbfgs.max_linesearch <= count) {
  14962. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14963. }
  14964. (*step) *= width;
  14965. }
  14966. return GGML_LINESEARCH_FAIL;
  14967. }
  14968. static enum ggml_opt_result ggml_opt_lbfgs(
  14969. struct ggml_context * ctx,
  14970. struct ggml_opt_context * opt,
  14971. struct ggml_opt_params params,
  14972. struct ggml_tensor * f,
  14973. struct ggml_cgraph * gf,
  14974. struct ggml_cgraph * gb) {
  14975. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14976. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14977. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14978. return GGML_OPT_INVALID_WOLFE;
  14979. }
  14980. }
  14981. gf->n_threads = params.n_threads;
  14982. gb->n_threads = params.n_threads;
  14983. const int m = params.lbfgs.m;
  14984. // these will store the parameters we want to optimize
  14985. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14986. int np = 0;
  14987. int nx = 0;
  14988. for (int i = 0; i < gf->n_nodes; ++i) {
  14989. if (gf->nodes[i]->is_param) {
  14990. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14991. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14992. ps[np++] = gf->nodes[i];
  14993. nx += ggml_nelements(gf->nodes[i]);
  14994. }
  14995. }
  14996. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14997. int iter = opt->iter;
  14998. ggml_opt_init(ctx, opt, params, nx);
  14999. opt->iter = iter;
  15000. }
  15001. float * x = opt->lbfgs.x->data; // current parameters
  15002. float * xp = opt->lbfgs.xp->data; // previous parameters
  15003. float * g = opt->lbfgs.g->data; // current gradient
  15004. float * gp = opt->lbfgs.gp->data; // previous gradient
  15005. float * d = opt->lbfgs.d->data; // search direction
  15006. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15007. float fx = 0.0f; // cost function value
  15008. float xnorm = 0.0f; // ||x||
  15009. float gnorm = 0.0f; // ||g||
  15010. // initialize x from the graph nodes
  15011. ggml_opt_get_params(np, ps, x);
  15012. // the L-BFGS memory
  15013. float * lm_alpha = opt->lbfgs.lmal->data;
  15014. float * lm_ys = opt->lbfgs.lmys->data;
  15015. float * lm_s = opt->lbfgs.lms->data;
  15016. float * lm_y = opt->lbfgs.lmy->data;
  15017. // evaluate the function value and its gradient
  15018. {
  15019. ggml_opt_set_params(np, ps, x);
  15020. ggml_graph_reset (gf);
  15021. ggml_set_f32 (f->grad, 1.0f);
  15022. ggml_graph_compute(ctx, gb);
  15023. ggml_opt_get_grad(np, ps, g);
  15024. fx = ggml_get_f32_1d(f, 0);
  15025. }
  15026. // search direction = -gradient
  15027. ggml_vec_neg_f32(nx, d, g);
  15028. // ||x||, ||g||
  15029. ggml_vec_norm_f32(nx, &xnorm, x);
  15030. ggml_vec_norm_f32(nx, &gnorm, g);
  15031. if (xnorm < 1.0f) {
  15032. xnorm = 1.0f;
  15033. }
  15034. // already optimized
  15035. if (gnorm/xnorm <= params.lbfgs.eps) {
  15036. return GGML_OPT_OK;
  15037. }
  15038. if (opt->just_initialized) {
  15039. if (pf) {
  15040. pf[0] = fx;
  15041. }
  15042. opt->lbfgs.fx_best = fx;
  15043. // initial step
  15044. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15045. opt->lbfgs.j = 0;
  15046. opt->lbfgs.k = 1;
  15047. opt->lbfgs.end = 0;
  15048. opt->lbfgs.n_no_improvement = 0;
  15049. opt->just_initialized = false;
  15050. }
  15051. float * fx_best = &opt->lbfgs.fx_best;
  15052. float * step = &opt->lbfgs.step;
  15053. int * j = &opt->lbfgs.j;
  15054. int * k = &opt->lbfgs.k;
  15055. int * end = &opt->lbfgs.end;
  15056. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15057. int ls = 0;
  15058. int bound = 0;
  15059. float ys = 0.0f;
  15060. float yy = 0.0f;
  15061. float beta = 0.0f;
  15062. int it = 0;
  15063. while (true) {
  15064. // store the current position and gradient vectors
  15065. ggml_vec_cpy_f32(nx, xp, x);
  15066. ggml_vec_cpy_f32(nx, gp, g);
  15067. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15068. if (ls < 0) {
  15069. // linesearch failed - go back to the previous point and return
  15070. ggml_vec_cpy_f32(nx, x, xp);
  15071. ggml_vec_cpy_f32(nx, g, gp);
  15072. return ls;
  15073. }
  15074. ggml_vec_norm_f32(nx, &xnorm, x);
  15075. ggml_vec_norm_f32(nx, &gnorm, g);
  15076. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15077. if (xnorm < 1.0f) {
  15078. xnorm = 1.0f;
  15079. }
  15080. if (gnorm/xnorm <= params.lbfgs.eps) {
  15081. // converged
  15082. return GGML_OPT_OK;
  15083. }
  15084. // delta-based convergence test
  15085. if (pf != NULL) {
  15086. // need at least params.past iterations to start checking for convergence
  15087. if (params.past <= k[0]) {
  15088. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15089. if (fabsf(rate) < params.delta) {
  15090. return GGML_OPT_OK;
  15091. }
  15092. }
  15093. pf[k[0]%params.past] = fx;
  15094. }
  15095. // check for improvement
  15096. if (params.max_no_improvement > 0) {
  15097. if (fx < fx_best[0]) {
  15098. fx_best[0] = fx;
  15099. n_no_improvement[0] = 0;
  15100. } else {
  15101. n_no_improvement[0]++;
  15102. if (n_no_improvement[0] >= params.max_no_improvement) {
  15103. return GGML_OPT_OK;
  15104. }
  15105. }
  15106. }
  15107. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15108. // reached the maximum number of iterations
  15109. return GGML_OPT_DID_NOT_CONVERGE;
  15110. }
  15111. // update vectors s and y:
  15112. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15113. // y_{k+1} = g_{k+1} - g_{k}.
  15114. //
  15115. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15116. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15117. // compute scalars ys and yy:
  15118. // ys = y^t \cdot s -> 1 / \rho.
  15119. // yy = y^t \cdot y.
  15120. //
  15121. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15122. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15123. lm_ys[end[0]] = ys;
  15124. // find new search direction
  15125. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15126. bound = (m <= k[0]) ? m : k[0];
  15127. k[0]++;
  15128. it++;
  15129. end[0] = (end[0] + 1)%m;
  15130. // initialize search direction with -g
  15131. ggml_vec_neg_f32(nx, d, g);
  15132. j[0] = end[0];
  15133. for (int i = 0; i < bound; ++i) {
  15134. j[0] = (j[0] + m - 1) % m;
  15135. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15136. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15137. lm_alpha[j[0]] /= lm_ys[j[0]];
  15138. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15139. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15140. }
  15141. ggml_vec_scale_f32(nx, d, ys/yy);
  15142. for (int i = 0; i < bound; ++i) {
  15143. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15144. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15145. beta /= lm_ys[j[0]];
  15146. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15147. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15148. j[0] = (j[0] + 1)%m;
  15149. }
  15150. step[0] = 1.0;
  15151. }
  15152. return GGML_OPT_DID_NOT_CONVERGE;
  15153. }
  15154. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15155. struct ggml_opt_params result;
  15156. switch (type) {
  15157. case GGML_OPT_ADAM:
  15158. {
  15159. result = (struct ggml_opt_params) {
  15160. .type = GGML_OPT_ADAM,
  15161. .n_threads = 1,
  15162. .past = 0,
  15163. .delta = 1e-5f,
  15164. .max_no_improvement = 100,
  15165. .print_forward_graph = true,
  15166. .print_backward_graph = true,
  15167. .adam = {
  15168. .n_iter = 10000,
  15169. .sched = 1.000f,
  15170. .decay = 0.001f,
  15171. .alpha = 0.001f,
  15172. .beta1 = 0.9f,
  15173. .beta2 = 0.999f,
  15174. .eps = 1e-8f,
  15175. .eps_f = 1e-5f,
  15176. .eps_g = 1e-3f,
  15177. },
  15178. };
  15179. } break;
  15180. case GGML_OPT_LBFGS:
  15181. {
  15182. result = (struct ggml_opt_params) {
  15183. .type = GGML_OPT_LBFGS,
  15184. .n_threads = 1,
  15185. .past = 0,
  15186. .delta = 1e-5f,
  15187. .max_no_improvement = 0,
  15188. .print_forward_graph = true,
  15189. .print_backward_graph = true,
  15190. .lbfgs = {
  15191. .m = 6,
  15192. .n_iter = 100,
  15193. .max_linesearch = 20,
  15194. .eps = 1e-5f,
  15195. .ftol = 1e-4f,
  15196. .wolfe = 0.9f,
  15197. .min_step = 1e-20f,
  15198. .max_step = 1e+20f,
  15199. .linesearch = GGML_LINESEARCH_DEFAULT,
  15200. },
  15201. };
  15202. } break;
  15203. }
  15204. return result;
  15205. }
  15206. GGML_API void ggml_opt_init(
  15207. struct ggml_context * ctx,
  15208. struct ggml_opt_context * opt,
  15209. struct ggml_opt_params params,
  15210. int64_t nx) {
  15211. opt->ctx = ctx;
  15212. opt->params = params;
  15213. opt->iter = 0;
  15214. opt->nx = nx;
  15215. opt->just_initialized = true;
  15216. switch (opt->params.type) {
  15217. case GGML_OPT_ADAM:
  15218. {
  15219. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15220. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15221. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15222. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15223. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15224. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15225. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15226. opt->adam.pf = params.past > 0
  15227. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15228. : NULL;
  15229. ggml_set_zero(opt->adam.x);
  15230. ggml_set_zero(opt->adam.g1);
  15231. ggml_set_zero(opt->adam.g2);
  15232. ggml_set_zero(opt->adam.m);
  15233. ggml_set_zero(opt->adam.v);
  15234. ggml_set_zero(opt->adam.mh);
  15235. ggml_set_zero(opt->adam.vh);
  15236. if (opt->adam.pf) {
  15237. ggml_set_zero(opt->adam.pf);
  15238. }
  15239. } break;
  15240. case GGML_OPT_LBFGS:
  15241. {
  15242. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15243. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15244. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15245. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15246. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15247. opt->lbfgs.pf = params.past > 0
  15248. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15249. : NULL;
  15250. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15251. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15252. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15253. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15254. ggml_set_zero(opt->lbfgs.x);
  15255. ggml_set_zero(opt->lbfgs.xp);
  15256. ggml_set_zero(opt->lbfgs.g);
  15257. ggml_set_zero(opt->lbfgs.gp);
  15258. ggml_set_zero(opt->lbfgs.d);
  15259. if (opt->lbfgs.pf) {
  15260. ggml_set_zero(opt->lbfgs.pf);
  15261. }
  15262. ggml_set_zero(opt->lbfgs.lmal);
  15263. ggml_set_zero(opt->lbfgs.lmys);
  15264. ggml_set_zero(opt->lbfgs.lms);
  15265. ggml_set_zero(opt->lbfgs.lmy);
  15266. } break;
  15267. }
  15268. }
  15269. enum ggml_opt_result ggml_opt(
  15270. struct ggml_context * ctx,
  15271. struct ggml_opt_params params,
  15272. struct ggml_tensor * f) {
  15273. bool free_ctx = false;
  15274. if (ctx == NULL) {
  15275. struct ggml_init_params params_ctx = {
  15276. .mem_size = 16*1024*1024,
  15277. .mem_buffer = NULL,
  15278. .no_alloc = false,
  15279. };
  15280. ctx = ggml_init(params_ctx);
  15281. if (ctx == NULL) {
  15282. return GGML_OPT_NO_CONTEXT;
  15283. }
  15284. free_ctx = true;
  15285. }
  15286. enum ggml_opt_result result = GGML_OPT_OK;
  15287. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15288. ggml_opt_init(ctx, opt, params, 0);
  15289. result = ggml_opt_resume(ctx, opt, f);
  15290. if (free_ctx) {
  15291. ggml_free(ctx);
  15292. }
  15293. return result;
  15294. }
  15295. enum ggml_opt_result ggml_opt_resume(
  15296. struct ggml_context * ctx,
  15297. struct ggml_opt_context * opt,
  15298. struct ggml_tensor * f) {
  15299. // build forward + backward compute graphs
  15300. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15301. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15302. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15303. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15304. *gf = ggml_build_forward (f);
  15305. *gb = ggml_build_backward(ctx, gf, true);
  15306. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15307. }
  15308. enum ggml_opt_result ggml_opt_resume_g(
  15309. struct ggml_context * ctx,
  15310. struct ggml_opt_context * opt,
  15311. struct ggml_tensor * f,
  15312. struct ggml_cgraph * gf,
  15313. struct ggml_cgraph * gb) {
  15314. // build forward + backward compute graphs
  15315. enum ggml_opt_result result = GGML_OPT_OK;
  15316. switch (opt->params.type) {
  15317. case GGML_OPT_ADAM:
  15318. {
  15319. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15320. } break;
  15321. case GGML_OPT_LBFGS:
  15322. {
  15323. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15324. } break;
  15325. }
  15326. if (opt->params.print_forward_graph) {
  15327. ggml_graph_print (gf);
  15328. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15329. }
  15330. if (opt->params.print_backward_graph) {
  15331. ggml_graph_print (gb);
  15332. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15333. }
  15334. return result;
  15335. }
  15336. ////////////////////////////////////////////////////////////////////////////////
  15337. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15338. assert(k % QK4_0 == 0);
  15339. const int nb = k / QK4_0;
  15340. for (int b = 0; b < n; b += k) {
  15341. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15342. quantize_row_q4_0_reference(src + b, y, k);
  15343. for (int i = 0; i < nb; i++) {
  15344. for (int j = 0; j < QK4_0; j += 2) {
  15345. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15346. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15347. hist[vi0]++;
  15348. hist[vi1]++;
  15349. }
  15350. }
  15351. }
  15352. return (n/QK4_0*sizeof(block_q4_0));
  15353. }
  15354. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15355. assert(k % QK4_1 == 0);
  15356. const int nb = k / QK4_1;
  15357. for (int b = 0; b < n; b += k) {
  15358. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15359. quantize_row_q4_1_reference(src + b, y, k);
  15360. for (int i = 0; i < nb; i++) {
  15361. for (int j = 0; j < QK4_1; j += 2) {
  15362. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15363. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15364. hist[vi0]++;
  15365. hist[vi1]++;
  15366. }
  15367. }
  15368. }
  15369. return (n/QK4_1*sizeof(block_q4_1));
  15370. }
  15371. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15372. assert(k % QK5_0 == 0);
  15373. const int nb = k / QK5_0;
  15374. for (int b = 0; b < n; b += k) {
  15375. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15376. quantize_row_q5_0_reference(src + b, y, k);
  15377. for (int i = 0; i < nb; i++) {
  15378. uint32_t qh;
  15379. memcpy(&qh, &y[i].qh, sizeof(qh));
  15380. for (int j = 0; j < QK5_0; j += 2) {
  15381. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15382. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15383. // cast to 16 bins
  15384. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15385. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15386. hist[vi0]++;
  15387. hist[vi1]++;
  15388. }
  15389. }
  15390. }
  15391. return (n/QK5_0*sizeof(block_q5_0));
  15392. }
  15393. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15394. assert(k % QK5_1 == 0);
  15395. const int nb = k / QK5_1;
  15396. for (int b = 0; b < n; b += k) {
  15397. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15398. quantize_row_q5_1_reference(src + b, y, k);
  15399. for (int i = 0; i < nb; i++) {
  15400. uint32_t qh;
  15401. memcpy(&qh, &y[i].qh, sizeof(qh));
  15402. for (int j = 0; j < QK5_1; j += 2) {
  15403. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15404. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15405. // cast to 16 bins
  15406. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15407. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15408. hist[vi0]++;
  15409. hist[vi1]++;
  15410. }
  15411. }
  15412. }
  15413. return (n/QK5_1*sizeof(block_q5_1));
  15414. }
  15415. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15416. assert(k % QK8_0 == 0);
  15417. const int nb = k / QK8_0;
  15418. for (int b = 0; b < n; b += k) {
  15419. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15420. quantize_row_q8_0_reference(src + b, y, k);
  15421. for (int i = 0; i < nb; i++) {
  15422. for (int j = 0; j < QK8_0; ++j) {
  15423. const int8_t vi = y[i].qs[j];
  15424. hist[vi/16 + 8]++;
  15425. }
  15426. }
  15427. }
  15428. return (n/QK8_0*sizeof(block_q8_0));
  15429. }
  15430. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15431. size_t result = 0;
  15432. switch (type) {
  15433. case GGML_TYPE_Q4_0:
  15434. {
  15435. GGML_ASSERT(start % QK4_0 == 0);
  15436. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15437. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15438. } break;
  15439. case GGML_TYPE_Q4_1:
  15440. {
  15441. GGML_ASSERT(start % QK4_1 == 0);
  15442. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15443. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15444. } break;
  15445. case GGML_TYPE_Q5_0:
  15446. {
  15447. GGML_ASSERT(start % QK5_0 == 0);
  15448. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15449. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15450. } break;
  15451. case GGML_TYPE_Q5_1:
  15452. {
  15453. GGML_ASSERT(start % QK5_1 == 0);
  15454. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15455. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15456. } break;
  15457. case GGML_TYPE_Q8_0:
  15458. {
  15459. GGML_ASSERT(start % QK8_0 == 0);
  15460. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15461. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15462. } break;
  15463. #ifdef GGML_USE_K_QUANTS
  15464. case GGML_TYPE_Q2_K:
  15465. {
  15466. GGML_ASSERT(start % QK_K == 0);
  15467. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15468. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15469. } break;
  15470. case GGML_TYPE_Q3_K:
  15471. {
  15472. GGML_ASSERT(start % QK_K == 0);
  15473. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15474. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15475. } break;
  15476. case GGML_TYPE_Q4_K:
  15477. {
  15478. GGML_ASSERT(start % QK_K == 0);
  15479. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15480. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15481. } break;
  15482. case GGML_TYPE_Q5_K:
  15483. {
  15484. GGML_ASSERT(start % QK_K == 0);
  15485. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15486. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15487. } break;
  15488. case GGML_TYPE_Q6_K:
  15489. {
  15490. GGML_ASSERT(start % QK_K == 0);
  15491. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15492. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15493. } break;
  15494. #endif
  15495. case GGML_TYPE_F16:
  15496. {
  15497. int elemsize = sizeof(ggml_fp16_t);
  15498. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15499. result = n * elemsize;
  15500. } break;
  15501. case GGML_TYPE_F32:
  15502. {
  15503. int elemsize = sizeof(float);
  15504. result = n * elemsize;
  15505. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15506. } break;
  15507. default:
  15508. assert(false);
  15509. }
  15510. return result;
  15511. }
  15512. ////////////////////////////////////////////////////////////////////////////////
  15513. int ggml_cpu_has_avx(void) {
  15514. #if defined(__AVX__)
  15515. return 1;
  15516. #else
  15517. return 0;
  15518. #endif
  15519. }
  15520. int ggml_cpu_has_avx2(void) {
  15521. #if defined(__AVX2__)
  15522. return 1;
  15523. #else
  15524. return 0;
  15525. #endif
  15526. }
  15527. int ggml_cpu_has_avx512(void) {
  15528. #if defined(__AVX512F__)
  15529. return 1;
  15530. #else
  15531. return 0;
  15532. #endif
  15533. }
  15534. int ggml_cpu_has_avx512_vbmi(void) {
  15535. #if defined(__AVX512VBMI__)
  15536. return 1;
  15537. #else
  15538. return 0;
  15539. #endif
  15540. }
  15541. int ggml_cpu_has_avx512_vnni(void) {
  15542. #if defined(__AVX512VNNI__)
  15543. return 1;
  15544. #else
  15545. return 0;
  15546. #endif
  15547. }
  15548. int ggml_cpu_has_fma(void) {
  15549. #if defined(__FMA__)
  15550. return 1;
  15551. #else
  15552. return 0;
  15553. #endif
  15554. }
  15555. int ggml_cpu_has_neon(void) {
  15556. #if defined(__ARM_NEON)
  15557. return 1;
  15558. #else
  15559. return 0;
  15560. #endif
  15561. }
  15562. int ggml_cpu_has_arm_fma(void) {
  15563. #if defined(__ARM_FEATURE_FMA)
  15564. return 1;
  15565. #else
  15566. return 0;
  15567. #endif
  15568. }
  15569. int ggml_cpu_has_f16c(void) {
  15570. #if defined(__F16C__)
  15571. return 1;
  15572. #else
  15573. return 0;
  15574. #endif
  15575. }
  15576. int ggml_cpu_has_fp16_va(void) {
  15577. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15578. return 1;
  15579. #else
  15580. return 0;
  15581. #endif
  15582. }
  15583. int ggml_cpu_has_wasm_simd(void) {
  15584. #if defined(__wasm_simd128__)
  15585. return 1;
  15586. #else
  15587. return 0;
  15588. #endif
  15589. }
  15590. int ggml_cpu_has_blas(void) {
  15591. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15592. return 1;
  15593. #else
  15594. return 0;
  15595. #endif
  15596. }
  15597. int ggml_cpu_has_cublas(void) {
  15598. #if defined(GGML_USE_CUBLAS)
  15599. return 1;
  15600. #else
  15601. return 0;
  15602. #endif
  15603. }
  15604. int ggml_cpu_has_clblast(void) {
  15605. #if defined(GGML_USE_CLBLAST)
  15606. return 1;
  15607. #else
  15608. return 0;
  15609. #endif
  15610. }
  15611. int ggml_cpu_has_gpublas(void) {
  15612. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15613. }
  15614. int ggml_cpu_has_sse3(void) {
  15615. #if defined(__SSE3__)
  15616. return 1;
  15617. #else
  15618. return 0;
  15619. #endif
  15620. }
  15621. int ggml_cpu_has_vsx(void) {
  15622. #if defined(__POWER9_VECTOR__)
  15623. return 1;
  15624. #else
  15625. return 0;
  15626. #endif
  15627. }
  15628. ////////////////////////////////////////////////////////////////////////////////