ggml.h 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 32
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_ASSERT(x) \
  198. do { \
  199. if (!(x)) { \
  200. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  201. abort(); \
  202. } \
  203. } while (0)
  204. #ifdef __cplusplus
  205. extern "C" {
  206. #endif
  207. #ifdef __ARM_NEON
  208. // we use the built-in 16-bit float type
  209. typedef __fp16 ggml_fp16_t;
  210. #else
  211. typedef uint16_t ggml_fp16_t;
  212. #endif
  213. // convert FP16 <-> FP32
  214. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  215. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  216. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  217. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  218. struct ggml_object;
  219. struct ggml_context;
  220. enum ggml_type {
  221. GGML_TYPE_F32 = 0,
  222. GGML_TYPE_F16 = 1,
  223. GGML_TYPE_Q4_0 = 2,
  224. GGML_TYPE_Q4_1 = 3,
  225. // GGML_TYPE_Q4_2 = 4, support has been removed
  226. // GGML_TYPE_Q4_3 (5) support has been removed
  227. GGML_TYPE_Q5_0 = 6,
  228. GGML_TYPE_Q5_1 = 7,
  229. GGML_TYPE_Q8_0 = 8,
  230. GGML_TYPE_Q8_1 = 9,
  231. // k-quantizations
  232. GGML_TYPE_Q2_K = 10,
  233. GGML_TYPE_Q3_K = 11,
  234. GGML_TYPE_Q4_K = 12,
  235. GGML_TYPE_Q5_K = 13,
  236. GGML_TYPE_Q6_K = 14,
  237. GGML_TYPE_Q8_K = 15,
  238. GGML_TYPE_I8,
  239. GGML_TYPE_I16,
  240. GGML_TYPE_I32,
  241. GGML_TYPE_COUNT,
  242. };
  243. enum ggml_backend {
  244. GGML_BACKEND_CPU = 0,
  245. GGML_BACKEND_GPU = 10,
  246. GGML_BACKEND_GPU_SPLIT = 20,
  247. };
  248. // model file types
  249. enum ggml_ftype {
  250. GGML_FTYPE_UNKNOWN = -1,
  251. GGML_FTYPE_ALL_F32 = 0,
  252. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  253. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  254. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  255. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  256. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  257. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  258. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  259. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  260. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  261. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  262. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  263. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  264. };
  265. // available tensor operations:
  266. enum ggml_op {
  267. GGML_OP_NONE = 0,
  268. GGML_OP_DUP,
  269. GGML_OP_ADD,
  270. GGML_OP_ADD1,
  271. GGML_OP_ACC,
  272. GGML_OP_SUB,
  273. GGML_OP_MUL,
  274. GGML_OP_DIV,
  275. GGML_OP_SQR,
  276. GGML_OP_SQRT,
  277. GGML_OP_LOG,
  278. GGML_OP_SUM,
  279. GGML_OP_SUM_ROWS,
  280. GGML_OP_MEAN,
  281. GGML_OP_REPEAT,
  282. GGML_OP_REPEAT_BACK,
  283. GGML_OP_ABS,
  284. GGML_OP_SGN,
  285. GGML_OP_NEG,
  286. GGML_OP_STEP,
  287. GGML_OP_RELU,
  288. GGML_OP_GELU,
  289. GGML_OP_GELU_QUICK,
  290. GGML_OP_SILU,
  291. GGML_OP_SILU_BACK,
  292. GGML_OP_NORM, // normalize
  293. GGML_OP_RMS_NORM,
  294. GGML_OP_RMS_NORM_BACK,
  295. GGML_OP_MUL_MAT,
  296. GGML_OP_OUT_PROD,
  297. GGML_OP_SCALE,
  298. GGML_OP_SET,
  299. GGML_OP_CPY,
  300. GGML_OP_CONT,
  301. GGML_OP_RESHAPE,
  302. GGML_OP_VIEW,
  303. GGML_OP_PERMUTE,
  304. GGML_OP_TRANSPOSE,
  305. GGML_OP_GET_ROWS,
  306. GGML_OP_GET_ROWS_BACK,
  307. GGML_OP_DIAG,
  308. GGML_OP_DIAG_MASK_INF,
  309. GGML_OP_DIAG_MASK_ZERO,
  310. GGML_OP_SOFT_MAX,
  311. GGML_OP_SOFT_MAX_BACK,
  312. GGML_OP_ROPE,
  313. GGML_OP_ROPE_BACK,
  314. GGML_OP_ALIBI,
  315. GGML_OP_CLAMP,
  316. GGML_OP_CONV_1D_S1_PH,
  317. GGML_OP_CONV_1D_S2_PH,
  318. GGML_OP_CONV_2D_SK_P0,
  319. GGML_OP_FLASH_ATTN,
  320. GGML_OP_FLASH_FF,
  321. GGML_OP_FLASH_ATTN_BACK,
  322. GGML_OP_WIN_PART,
  323. GGML_OP_WIN_UNPART,
  324. GGML_OP_MAP_UNARY,
  325. GGML_OP_MAP_BINARY,
  326. GGML_OP_MAP_CUSTOM1,
  327. GGML_OP_MAP_CUSTOM2,
  328. GGML_OP_MAP_CUSTOM3,
  329. GGML_OP_CROSS_ENTROPY_LOSS,
  330. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  331. GGML_OP_COUNT,
  332. };
  333. // ggml object
  334. struct ggml_object {
  335. size_t offs;
  336. size_t size;
  337. struct ggml_object * next;
  338. char padding[8];
  339. };
  340. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  341. // n-dimensional tensor
  342. struct ggml_tensor {
  343. enum ggml_type type;
  344. enum ggml_backend backend;
  345. int n_dims;
  346. int64_t ne[GGML_MAX_DIMS]; // number of elements
  347. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  348. // nb[0] = sizeof(type)
  349. // nb[1] = nb[0] * ne[0] + padding
  350. // nb[i] = nb[i-1] * ne[i-1]
  351. // compute data
  352. enum ggml_op op;
  353. bool is_param;
  354. struct ggml_tensor * grad;
  355. struct ggml_tensor * src0;
  356. struct ggml_tensor * src1;
  357. struct ggml_tensor * opt[GGML_MAX_OPT];
  358. // thread scheduling
  359. int n_tasks;
  360. // performance
  361. int perf_runs;
  362. int64_t perf_cycles;
  363. int64_t perf_time_us;
  364. void * data;
  365. char name[GGML_MAX_NAME];
  366. void * extra; // extra things e.g. for ggml-cuda.cu
  367. char padding[4];
  368. };
  369. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  370. // computation graph
  371. struct ggml_cgraph {
  372. int n_nodes;
  373. int n_leafs;
  374. int n_threads;
  375. size_t work_size;
  376. struct ggml_tensor * work;
  377. struct ggml_tensor * nodes[GGML_MAX_NODES];
  378. struct ggml_tensor * grads[GGML_MAX_NODES];
  379. struct ggml_tensor * leafs[GGML_MAX_NODES];
  380. // performance
  381. int perf_runs;
  382. int64_t perf_cycles;
  383. int64_t perf_time_us;
  384. };
  385. // scratch buffer
  386. struct ggml_scratch {
  387. size_t offs;
  388. size_t size;
  389. void * data;
  390. };
  391. struct ggml_init_params {
  392. // memory pool
  393. size_t mem_size; // bytes
  394. void * mem_buffer; // if NULL, memory will be allocated internally
  395. bool no_alloc; // don't allocate memory for the tensor data
  396. };
  397. // compute types
  398. enum ggml_task_type {
  399. GGML_TASK_INIT = 0,
  400. GGML_TASK_COMPUTE,
  401. GGML_TASK_FINALIZE,
  402. };
  403. struct ggml_compute_params {
  404. enum ggml_task_type type;
  405. // ith = thread index, nth = number of threads
  406. int ith, nth;
  407. // work buffer for all threads
  408. size_t wsize;
  409. void * wdata;
  410. };
  411. // misc
  412. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  413. GGML_API int64_t ggml_time_ms(void);
  414. GGML_API int64_t ggml_time_us(void);
  415. GGML_API int64_t ggml_cycles(void);
  416. GGML_API int64_t ggml_cycles_per_ms(void);
  417. GGML_API void ggml_print_object (const struct ggml_object * obj);
  418. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  419. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  420. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  421. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  422. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  423. GGML_API int ggml_blck_size (enum ggml_type type);
  424. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  425. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  426. GGML_API const char * ggml_type_name(enum ggml_type type);
  427. GGML_API const char * ggml_op_name (enum ggml_op op);
  428. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  429. GGML_API bool ggml_is_quantized(enum ggml_type type);
  430. // TODO: temporary until model loading of ggml examples is refactored
  431. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  432. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  433. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  434. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  435. // use this to compute the memory overhead of a tensor
  436. GGML_API size_t ggml_tensor_overhead(void);
  437. // main
  438. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  439. GGML_API void ggml_free(struct ggml_context * ctx);
  440. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  441. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  442. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  443. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  444. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  445. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  446. GGML_API struct ggml_tensor * ggml_new_tensor(
  447. struct ggml_context * ctx,
  448. enum ggml_type type,
  449. int n_dims,
  450. const int64_t *ne);
  451. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  452. struct ggml_context * ctx,
  453. enum ggml_type type,
  454. int64_t ne0);
  455. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  456. struct ggml_context * ctx,
  457. enum ggml_type type,
  458. int64_t ne0,
  459. int64_t ne1);
  460. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  461. struct ggml_context * ctx,
  462. enum ggml_type type,
  463. int64_t ne0,
  464. int64_t ne1,
  465. int64_t ne2);
  466. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  467. struct ggml_context * ctx,
  468. enum ggml_type type,
  469. int64_t ne0,
  470. int64_t ne1,
  471. int64_t ne2,
  472. int64_t ne3);
  473. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  474. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  475. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  476. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  477. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  478. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  479. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  480. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  481. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  482. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  483. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  484. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  485. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  486. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  487. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  488. GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
  489. GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
  490. //
  491. // operations on tensors with backpropagation
  492. //
  493. GGML_API struct ggml_tensor * ggml_dup(
  494. struct ggml_context * ctx,
  495. struct ggml_tensor * a);
  496. GGML_API struct ggml_tensor * ggml_add(
  497. struct ggml_context * ctx,
  498. struct ggml_tensor * a,
  499. struct ggml_tensor * b);
  500. GGML_API struct ggml_tensor * ggml_add_inplace(
  501. struct ggml_context * ctx,
  502. struct ggml_tensor * a,
  503. struct ggml_tensor * b);
  504. GGML_API struct ggml_tensor * ggml_add1(
  505. struct ggml_context * ctx,
  506. struct ggml_tensor * a,
  507. struct ggml_tensor * b);
  508. GGML_API struct ggml_tensor * ggml_add1_inplace(
  509. struct ggml_context * ctx,
  510. struct ggml_tensor * a,
  511. struct ggml_tensor * b);
  512. GGML_API struct ggml_tensor * ggml_acc(
  513. struct ggml_context * ctx,
  514. struct ggml_tensor * a,
  515. struct ggml_tensor * b,
  516. size_t nb1,
  517. size_t nb2,
  518. size_t nb3,
  519. size_t offset);
  520. GGML_API struct ggml_tensor * ggml_acc_inplace(
  521. struct ggml_context * ctx,
  522. struct ggml_tensor * a,
  523. struct ggml_tensor * b,
  524. size_t nb1,
  525. size_t nb2,
  526. size_t nb3,
  527. size_t offset);
  528. GGML_API struct ggml_tensor * ggml_sub(
  529. struct ggml_context * ctx,
  530. struct ggml_tensor * a,
  531. struct ggml_tensor * b);
  532. GGML_API struct ggml_tensor * ggml_sub_inplace(
  533. struct ggml_context * ctx,
  534. struct ggml_tensor * a,
  535. struct ggml_tensor * b);
  536. GGML_API struct ggml_tensor * ggml_mul(
  537. struct ggml_context * ctx,
  538. struct ggml_tensor * a,
  539. struct ggml_tensor * b);
  540. GGML_API struct ggml_tensor * ggml_mul_inplace(
  541. struct ggml_context * ctx,
  542. struct ggml_tensor * a,
  543. struct ggml_tensor * b);
  544. GGML_API struct ggml_tensor * ggml_div(
  545. struct ggml_context * ctx,
  546. struct ggml_tensor * a,
  547. struct ggml_tensor * b);
  548. GGML_API struct ggml_tensor * ggml_div_inplace(
  549. struct ggml_context * ctx,
  550. struct ggml_tensor * a,
  551. struct ggml_tensor * b);
  552. GGML_API struct ggml_tensor * ggml_sqr(
  553. struct ggml_context * ctx,
  554. struct ggml_tensor * a);
  555. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  556. struct ggml_context * ctx,
  557. struct ggml_tensor * a);
  558. GGML_API struct ggml_tensor * ggml_sqrt(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a);
  561. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  562. struct ggml_context * ctx,
  563. struct ggml_tensor * a);
  564. GGML_API struct ggml_tensor * ggml_log(
  565. struct ggml_context * ctx,
  566. struct ggml_tensor * a);
  567. GGML_API struct ggml_tensor * ggml_log_inplace(
  568. struct ggml_context * ctx,
  569. struct ggml_tensor * a);
  570. // return scalar
  571. GGML_API struct ggml_tensor * ggml_sum(
  572. struct ggml_context * ctx,
  573. struct ggml_tensor * a);
  574. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  575. GGML_API struct ggml_tensor * ggml_sum_rows(
  576. struct ggml_context * ctx,
  577. struct ggml_tensor * a);
  578. // mean along rows
  579. GGML_API struct ggml_tensor * ggml_mean(
  580. struct ggml_context * ctx,
  581. struct ggml_tensor * a);
  582. // if a is the same shape as b, and a is not parameter, return a
  583. // otherwise, return a new tensor: repeat(a) to fit in b
  584. GGML_API struct ggml_tensor * ggml_repeat(
  585. struct ggml_context * ctx,
  586. struct ggml_tensor * a,
  587. struct ggml_tensor * b);
  588. GGML_API struct ggml_tensor * ggml_repeat_back(
  589. struct ggml_context * ctx,
  590. struct ggml_tensor * a,
  591. struct ggml_tensor * b);
  592. GGML_API struct ggml_tensor * ggml_abs(
  593. struct ggml_context * ctx,
  594. struct ggml_tensor * a);
  595. GGML_API struct ggml_tensor * ggml_abs_inplace(
  596. struct ggml_context * ctx,
  597. struct ggml_tensor * a);
  598. GGML_API struct ggml_tensor * ggml_sgn(
  599. struct ggml_context * ctx,
  600. struct ggml_tensor * a);
  601. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  602. struct ggml_context * ctx,
  603. struct ggml_tensor * a);
  604. GGML_API struct ggml_tensor * ggml_neg(
  605. struct ggml_context * ctx,
  606. struct ggml_tensor * a);
  607. GGML_API struct ggml_tensor * ggml_neg_inplace(
  608. struct ggml_context * ctx,
  609. struct ggml_tensor * a);
  610. GGML_API struct ggml_tensor * ggml_step(
  611. struct ggml_context * ctx,
  612. struct ggml_tensor * a);
  613. GGML_API struct ggml_tensor * ggml_step_inplace(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a);
  616. GGML_API struct ggml_tensor * ggml_relu(
  617. struct ggml_context * ctx,
  618. struct ggml_tensor * a);
  619. GGML_API struct ggml_tensor * ggml_relu_inplace(
  620. struct ggml_context * ctx,
  621. struct ggml_tensor * a);
  622. // TODO: double-check this computation is correct
  623. GGML_API struct ggml_tensor * ggml_gelu(
  624. struct ggml_context * ctx,
  625. struct ggml_tensor * a);
  626. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a);
  629. GGML_API struct ggml_tensor * ggml_gelu_quick(
  630. struct ggml_context * ctx,
  631. struct ggml_tensor * a);
  632. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  633. struct ggml_context * ctx,
  634. struct ggml_tensor * a);
  635. GGML_API struct ggml_tensor * ggml_silu(
  636. struct ggml_context * ctx,
  637. struct ggml_tensor * a);
  638. GGML_API struct ggml_tensor * ggml_silu_inplace(
  639. struct ggml_context * ctx,
  640. struct ggml_tensor * a);
  641. // a - x
  642. // b - dy
  643. GGML_API struct ggml_tensor * ggml_silu_back(
  644. struct ggml_context * ctx,
  645. struct ggml_tensor * a,
  646. struct ggml_tensor * b);
  647. // normalize along rows
  648. // TODO: eps is hardcoded to 1e-5 for now
  649. GGML_API struct ggml_tensor * ggml_norm(
  650. struct ggml_context * ctx,
  651. struct ggml_tensor * a);
  652. GGML_API struct ggml_tensor * ggml_norm_inplace(
  653. struct ggml_context * ctx,
  654. struct ggml_tensor * a);
  655. GGML_API struct ggml_tensor * ggml_rms_norm(
  656. struct ggml_context * ctx,
  657. struct ggml_tensor * a);
  658. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  659. struct ggml_context * ctx,
  660. struct ggml_tensor * a);
  661. // a - x
  662. // b - dy
  663. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a,
  666. struct ggml_tensor * b);
  667. // A: n columns, m rows
  668. // B: n columns, p rows (i.e. we transpose it internally)
  669. // result is m columns, p rows
  670. GGML_API struct ggml_tensor * ggml_mul_mat(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a,
  673. struct ggml_tensor * b);
  674. // A: m columns, n rows,
  675. // B: p columns, n rows,
  676. // result is m columns, p rows
  677. GGML_API struct ggml_tensor * ggml_out_prod(
  678. struct ggml_context * ctx,
  679. struct ggml_tensor * a,
  680. struct ggml_tensor * b);
  681. //
  682. // operations on tensors without backpropagation
  683. //
  684. GGML_API struct ggml_tensor * ggml_scale(
  685. struct ggml_context * ctx,
  686. struct ggml_tensor * a,
  687. struct ggml_tensor * b);
  688. // in-place, returns view(a)
  689. GGML_API struct ggml_tensor * ggml_scale_inplace(
  690. struct ggml_context * ctx,
  691. struct ggml_tensor * a,
  692. struct ggml_tensor * b);
  693. // b -> view(a,offset,nb1,nb2,3), return modified a
  694. GGML_API struct ggml_tensor * ggml_set(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b,
  698. size_t nb1,
  699. size_t nb2,
  700. size_t nb3,
  701. size_t offset);
  702. // b -> view(a,offset,nb1,nb2,3), return view(a)
  703. GGML_API struct ggml_tensor * ggml_set_inplace(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a,
  706. struct ggml_tensor * b,
  707. size_t nb1,
  708. size_t nb2,
  709. size_t nb3,
  710. size_t offset);
  711. GGML_API struct ggml_tensor * ggml_set_1d(
  712. struct ggml_context * ctx,
  713. struct ggml_tensor * a,
  714. struct ggml_tensor * b,
  715. size_t offset);
  716. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a,
  719. struct ggml_tensor * b,
  720. size_t offset);
  721. // b -> view(a,offset,nb1,nb2,3), return modified a
  722. GGML_API struct ggml_tensor * ggml_set_2d(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. struct ggml_tensor * b,
  726. size_t nb1,
  727. size_t offset);
  728. // b -> view(a,offset,nb1,nb2,3), return view(a)
  729. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  730. struct ggml_context * ctx,
  731. struct ggml_tensor * a,
  732. struct ggml_tensor * b,
  733. size_t nb1,
  734. size_t offset);
  735. // a -> b, return view(b)
  736. GGML_API struct ggml_tensor * ggml_cpy(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a,
  739. struct ggml_tensor * b);
  740. // make contiguous
  741. GGML_API struct ggml_tensor * ggml_cont(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a);
  744. // return view(a), b specifies the new shape
  745. // TODO: when we start computing gradient, make a copy instead of view
  746. GGML_API struct ggml_tensor * ggml_reshape(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a,
  749. struct ggml_tensor * b);
  750. // return view(a)
  751. // TODO: when we start computing gradient, make a copy instead of view
  752. GGML_API struct ggml_tensor * ggml_reshape_1d(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a,
  755. int64_t ne0);
  756. GGML_API struct ggml_tensor * ggml_reshape_2d(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a,
  759. int64_t ne0,
  760. int64_t ne1);
  761. // return view(a)
  762. // TODO: when we start computing gradient, make a copy instead of view
  763. GGML_API struct ggml_tensor * ggml_reshape_3d(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a,
  766. int64_t ne0,
  767. int64_t ne1,
  768. int64_t ne2);
  769. GGML_API struct ggml_tensor * ggml_reshape_4d(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a,
  772. int64_t ne0,
  773. int64_t ne1,
  774. int64_t ne2,
  775. int64_t ne3);
  776. // offset in bytes
  777. GGML_API struct ggml_tensor * ggml_view_1d(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * a,
  780. int64_t ne0,
  781. size_t offset);
  782. GGML_API struct ggml_tensor * ggml_view_2d(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a,
  785. int64_t ne0,
  786. int64_t ne1,
  787. size_t nb1, // row stride in bytes
  788. size_t offset);
  789. GGML_API struct ggml_tensor * ggml_view_3d(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. int64_t ne0,
  793. int64_t ne1,
  794. int64_t ne2,
  795. size_t nb1, // row stride in bytes
  796. size_t nb2, // slice stride in bytes
  797. size_t offset);
  798. GGML_API struct ggml_tensor * ggml_view_4d(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a,
  801. int64_t ne0,
  802. int64_t ne1,
  803. int64_t ne2,
  804. int64_t ne3,
  805. size_t nb1, // row stride in bytes
  806. size_t nb2, // slice stride in bytes
  807. size_t nb3,
  808. size_t offset);
  809. GGML_API struct ggml_tensor * ggml_permute(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. int axis0,
  813. int axis1,
  814. int axis2,
  815. int axis3);
  816. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  817. GGML_API struct ggml_tensor * ggml_transpose(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_get_rows(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. struct ggml_tensor * b);
  824. GGML_API struct ggml_tensor * ggml_get_rows_back(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a,
  827. struct ggml_tensor * b,
  828. struct ggml_tensor * c);
  829. GGML_API struct ggml_tensor * ggml_diag(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. // set elements above the diagonal to -INF
  833. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a,
  836. int n_past);
  837. // in-place, returns view(a)
  838. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a,
  841. int n_past);
  842. // set elements above the diagonal to 0
  843. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a,
  846. int n_past);
  847. // in-place, returns view(a)
  848. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a,
  851. int n_past);
  852. GGML_API struct ggml_tensor * ggml_soft_max(
  853. struct ggml_context * ctx,
  854. struct ggml_tensor * a);
  855. // in-place, returns view(a)
  856. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a);
  859. GGML_API struct ggml_tensor * ggml_soft_max_back(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a,
  862. struct ggml_tensor * b);
  863. // in-place, returns view(a)
  864. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a,
  867. struct ggml_tensor * b);
  868. // rotary position embedding
  869. // if mode & 1 == 1, skip n_past elements
  870. // if mode & 2 == 1, GPT-NeoX style
  871. // TODO: avoid creating a new tensor every time
  872. GGML_API struct ggml_tensor * ggml_rope(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a,
  875. int n_past,
  876. int n_dims,
  877. int mode);
  878. // in-place, returns view(a)
  879. GGML_API struct ggml_tensor * ggml_rope_inplace(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a,
  882. int n_past,
  883. int n_dims,
  884. int mode);
  885. // rotary position embedding backward, i.e compute dx from dy
  886. // a - dy
  887. GGML_API struct ggml_tensor * ggml_rope_back(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a,
  890. int n_past,
  891. int n_dims,
  892. int mode);
  893. // alibi position embedding
  894. // in-place, returns view(a)
  895. struct ggml_tensor * ggml_alibi(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a,
  898. int n_past,
  899. int n_head,
  900. float bias_max);
  901. // clamp
  902. // in-place, returns view(a)
  903. struct ggml_tensor * ggml_clamp(
  904. struct ggml_context * ctx,
  905. struct ggml_tensor * a,
  906. float min,
  907. float max);
  908. // TODO: implement general-purpose convolutions
  909. // GGML_API struct ggml_tensor * ggml_conv_1d(
  910. // struct ggml_context * ctx,
  911. // struct ggml_tensor * a,
  912. // struct ggml_tensor * b,
  913. // int s0
  914. // int p0,
  915. // int d0);
  916. //
  917. // GGML_API struct ggml_tensor * ggml_conv_2d(
  918. // struct ggml_context * ctx,
  919. // struct ggml_tensor * a,
  920. // struct ggml_tensor * b,
  921. // int s0,
  922. // int s1,
  923. // int p0,
  924. // int p1,
  925. // int d0,
  926. // int d1);
  927. // padding = half
  928. // TODO: we don't support extra parameters for now
  929. // that's why we are hard-coding the stride, padding, and dilation
  930. // not great ..
  931. // example:
  932. // a: 3 80 768 1
  933. // b: 3000 80 1 1
  934. // res: 3000 768 1 1
  935. // used in whisper
  936. GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. struct ggml_tensor * b);
  940. // used in whisper
  941. GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a,
  944. struct ggml_tensor * b);
  945. // kernel size is a->ne[0] x a->ne[1]
  946. // stride is equal to kernel size
  947. // padding is zero
  948. // example:
  949. // a: 16 16 3 768
  950. // b: 1024 1024 3 1
  951. // res: 64 64 768 1
  952. // used in sam
  953. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  954. struct ggml_context * ctx,
  955. struct ggml_tensor * a,
  956. struct ggml_tensor * b);
  957. GGML_API struct ggml_tensor * ggml_flash_attn(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * q,
  960. struct ggml_tensor * k,
  961. struct ggml_tensor * v,
  962. bool masked);
  963. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * q,
  966. struct ggml_tensor * k,
  967. struct ggml_tensor * v,
  968. struct ggml_tensor * d,
  969. bool masked);
  970. GGML_API struct ggml_tensor * ggml_flash_ff(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. struct ggml_tensor * b0,
  974. struct ggml_tensor * b1,
  975. struct ggml_tensor * c0,
  976. struct ggml_tensor * c1);
  977. // partition into non-overlapping windows with padding if needed
  978. // example:
  979. // a: 768 64 64 1
  980. // w: 14
  981. // res: 768 14 14 25
  982. // used in sam
  983. GGML_API struct ggml_tensor * ggml_win_part(
  984. struct ggml_context * ctx,
  985. struct ggml_tensor * a,
  986. int w);
  987. // reverse of ggml_win_part
  988. // used in sam
  989. GGML_API struct ggml_tensor * ggml_win_unpart(
  990. struct ggml_context * ctx,
  991. struct ggml_tensor * a,
  992. int w0,
  993. int h0,
  994. int w);
  995. // custom operators
  996. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  997. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  998. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  999. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1000. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1001. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1002. struct ggml_context * ctx,
  1003. struct ggml_tensor * a,
  1004. ggml_unary_op_f32_t fun);
  1005. GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. ggml_unary_op_f32_t fun);
  1009. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a,
  1012. struct ggml_tensor * b,
  1013. ggml_binary_op_f32_t fun);
  1014. GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. struct ggml_tensor * b,
  1018. ggml_binary_op_f32_t fun);
  1019. GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1020. struct ggml_context * ctx,
  1021. struct ggml_tensor * a,
  1022. ggml_custom1_op_f32_t fun);
  1023. GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. ggml_custom1_op_f32_t fun);
  1027. GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * a,
  1030. struct ggml_tensor * b,
  1031. ggml_custom2_op_f32_t fun);
  1032. GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a,
  1035. struct ggml_tensor * b,
  1036. ggml_custom2_op_f32_t fun);
  1037. GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1038. struct ggml_context * ctx,
  1039. struct ggml_tensor * a,
  1040. struct ggml_tensor * b,
  1041. struct ggml_tensor * c,
  1042. ggml_custom3_op_f32_t fun);
  1043. GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1044. struct ggml_context * ctx,
  1045. struct ggml_tensor * a,
  1046. struct ggml_tensor * b,
  1047. struct ggml_tensor * c,
  1048. ggml_custom3_op_f32_t fun);
  1049. // loss function
  1050. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1051. struct ggml_context * ctx,
  1052. struct ggml_tensor * a,
  1053. struct ggml_tensor * b);
  1054. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1055. struct ggml_context * ctx,
  1056. struct ggml_tensor * a,
  1057. struct ggml_tensor * b,
  1058. struct ggml_tensor * c);
  1059. //
  1060. // automatic differentiation
  1061. //
  1062. GGML_API void ggml_set_param(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * tensor);
  1065. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1066. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1067. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1068. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1069. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1070. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1071. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1072. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1073. // print info and performance information for the graph
  1074. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1075. // dump the graph into a file using the dot format
  1076. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1077. //
  1078. // optimization
  1079. //
  1080. // optimization methods
  1081. enum ggml_opt_type {
  1082. GGML_OPT_ADAM,
  1083. GGML_OPT_LBFGS,
  1084. };
  1085. // linesearch methods
  1086. enum ggml_linesearch {
  1087. GGML_LINESEARCH_DEFAULT = 1,
  1088. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1089. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1090. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1091. };
  1092. // optimization return values
  1093. enum ggml_opt_result {
  1094. GGML_OPT_OK = 0,
  1095. GGML_OPT_DID_NOT_CONVERGE,
  1096. GGML_OPT_NO_CONTEXT,
  1097. GGML_OPT_INVALID_WOLFE,
  1098. GGML_OPT_FAIL,
  1099. GGML_LINESEARCH_FAIL = -128,
  1100. GGML_LINESEARCH_MINIMUM_STEP,
  1101. GGML_LINESEARCH_MAXIMUM_STEP,
  1102. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1103. GGML_LINESEARCH_INVALID_PARAMETERS,
  1104. };
  1105. // optimization parameters
  1106. //
  1107. // see ggml.c (ggml_opt_default_params) for default values
  1108. //
  1109. struct ggml_opt_params {
  1110. enum ggml_opt_type type;
  1111. int n_threads;
  1112. // delta-based convergence test
  1113. //
  1114. // if past == 0 - disabled
  1115. // if past > 0:
  1116. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1117. //
  1118. int past;
  1119. float delta;
  1120. // maximum number of iterations without improvement
  1121. //
  1122. // if 0 - disabled
  1123. // if > 0:
  1124. // assume convergence if no cost improvement in this number of iterations
  1125. //
  1126. int max_no_improvement;
  1127. bool print_forward_graph;
  1128. bool print_backward_graph;
  1129. // ADAM parameters
  1130. struct {
  1131. int n_iter;
  1132. float sched; // schedule multiplier (fixed, decay or warmup)
  1133. float decay; // weight decay for AdamW, use 0.0f to disable
  1134. float alpha; // learning rate
  1135. float beta1;
  1136. float beta2;
  1137. float eps; // epsilon for numerical stability
  1138. float eps_f; // epsilon for convergence test
  1139. float eps_g; // epsilon for convergence test
  1140. } adam;
  1141. // LBFGS parameters
  1142. struct {
  1143. int m; // number of corrections to approximate the inv. Hessian
  1144. int n_iter;
  1145. int max_linesearch;
  1146. float eps; // convergence tolerance
  1147. float ftol; // line search tolerance
  1148. float wolfe;
  1149. float min_step;
  1150. float max_step;
  1151. enum ggml_linesearch linesearch;
  1152. } lbfgs;
  1153. };
  1154. struct ggml_opt_context {
  1155. struct ggml_context * ctx;
  1156. struct ggml_opt_params params;
  1157. int iter;
  1158. int64_t nx; // number of parameter elements
  1159. bool just_initialized;
  1160. struct {
  1161. struct ggml_tensor * x; // view of the parameters
  1162. struct ggml_tensor * g1; // gradient
  1163. struct ggml_tensor * g2; // gradient squared
  1164. struct ggml_tensor * m; // first moment
  1165. struct ggml_tensor * v; // second moment
  1166. struct ggml_tensor * mh; // first moment hat
  1167. struct ggml_tensor * vh; // second moment hat
  1168. struct ggml_tensor * pf; // past function values
  1169. float fx_best;
  1170. float fx_prev;
  1171. int n_no_improvement;
  1172. } adam;
  1173. struct {
  1174. struct ggml_tensor * x; // current parameters
  1175. struct ggml_tensor * xp; // previous parameters
  1176. struct ggml_tensor * g; // current gradient
  1177. struct ggml_tensor * gp; // previous gradient
  1178. struct ggml_tensor * d; // search direction
  1179. struct ggml_tensor * pf; // past function values
  1180. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1181. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1182. struct ggml_tensor * lms; // the L-BFGS memory s
  1183. struct ggml_tensor * lmy; // the L-BFGS memory y
  1184. float fx_best;
  1185. float step;
  1186. int j;
  1187. int k;
  1188. int end;
  1189. int n_no_improvement;
  1190. } lbfgs;
  1191. };
  1192. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1193. // optimize the function defined by the tensor f
  1194. GGML_API enum ggml_opt_result ggml_opt(
  1195. struct ggml_context * ctx,
  1196. struct ggml_opt_params params,
  1197. struct ggml_tensor * f);
  1198. // initialize optimizer context
  1199. GGML_API void ggml_opt_init(
  1200. struct ggml_context * ctx,
  1201. struct ggml_opt_context * opt,
  1202. struct ggml_opt_params params,
  1203. int64_t nx);
  1204. // continue optimizing the function defined by the tensor f
  1205. GGML_API enum ggml_opt_result ggml_opt_resume(
  1206. struct ggml_context * ctx,
  1207. struct ggml_opt_context * opt,
  1208. struct ggml_tensor * f);
  1209. // continue optimizing the function defined by the tensor f
  1210. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1211. struct ggml_context * ctx,
  1212. struct ggml_opt_context * opt,
  1213. struct ggml_tensor * f,
  1214. struct ggml_cgraph * gf,
  1215. struct ggml_cgraph * gb);
  1216. //
  1217. // quantization
  1218. //
  1219. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1220. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1221. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1222. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1223. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1224. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1225. //
  1226. // system info
  1227. //
  1228. GGML_API int ggml_cpu_has_avx (void);
  1229. GGML_API int ggml_cpu_has_avx2 (void);
  1230. GGML_API int ggml_cpu_has_avx512 (void);
  1231. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1232. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1233. GGML_API int ggml_cpu_has_fma (void);
  1234. GGML_API int ggml_cpu_has_neon (void);
  1235. GGML_API int ggml_cpu_has_arm_fma (void);
  1236. GGML_API int ggml_cpu_has_f16c (void);
  1237. GGML_API int ggml_cpu_has_fp16_va (void);
  1238. GGML_API int ggml_cpu_has_wasm_simd (void);
  1239. GGML_API int ggml_cpu_has_blas (void);
  1240. GGML_API int ggml_cpu_has_cublas (void);
  1241. GGML_API int ggml_cpu_has_clblast (void);
  1242. GGML_API int ggml_cpu_has_gpublas (void);
  1243. GGML_API int ggml_cpu_has_sse3 (void);
  1244. GGML_API int ggml_cpu_has_vsx (void);
  1245. //
  1246. // Internal types and functions exposed for tests and benchmarks
  1247. //
  1248. #ifdef __cplusplus
  1249. // restrict not standard in C++
  1250. #define GGML_RESTRICT
  1251. #else
  1252. #define GGML_RESTRICT restrict
  1253. #endif
  1254. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1255. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1256. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1257. typedef struct {
  1258. dequantize_row_q_t dequantize_row_q;
  1259. quantize_row_q_t quantize_row_q;
  1260. quantize_row_q_t quantize_row_q_reference;
  1261. quantize_row_q_t quantize_row_q_dot;
  1262. vec_dot_q_t vec_dot_q;
  1263. enum ggml_type vec_dot_type;
  1264. } quantize_fns_t;
  1265. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  1266. #ifdef __cplusplus
  1267. }
  1268. #endif