server.cpp 175 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. return json {
  113. {"n_predict", n_predict}, // Server configured n_predict
  114. {"seed", sampling.seed},
  115. {"temperature", sampling.temp},
  116. {"dynatemp_range", sampling.dynatemp_range},
  117. {"dynatemp_exponent", sampling.dynatemp_exponent},
  118. {"top_k", sampling.top_k},
  119. {"top_p", sampling.top_p},
  120. {"min_p", sampling.min_p},
  121. {"xtc_probability", sampling.xtc_probability},
  122. {"xtc_threshold", sampling.xtc_threshold},
  123. {"typical_p", sampling.typ_p},
  124. {"repeat_last_n", sampling.penalty_last_n},
  125. {"repeat_penalty", sampling.penalty_repeat},
  126. {"presence_penalty", sampling.penalty_present},
  127. {"frequency_penalty", sampling.penalty_freq},
  128. {"dry_multiplier", sampling.dry_multiplier},
  129. {"dry_base", sampling.dry_base},
  130. {"dry_allowed_length", sampling.dry_allowed_length},
  131. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  132. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  133. {"mirostat", sampling.mirostat},
  134. {"mirostat_tau", sampling.mirostat_tau},
  135. {"mirostat_eta", sampling.mirostat_eta},
  136. {"stop", antiprompt},
  137. {"max_tokens", n_predict}, // User configured n_predict
  138. {"n_keep", n_keep},
  139. {"n_discard", n_discard},
  140. {"ignore_eos", sampling.ignore_eos},
  141. {"stream", stream},
  142. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  143. {"n_probs", sampling.n_probs},
  144. {"min_keep", sampling.min_keep},
  145. {"grammar", sampling.grammar},
  146. // {"grammar_trigger_words", sampling.grammar_trigger_words},
  147. {"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
  148. {"samplers", samplers},
  149. {"speculative.n_max", speculative.n_max},
  150. {"speculative.n_min", speculative.n_min},
  151. {"speculative.p_min", speculative.p_min},
  152. {"timings_per_token", timings_per_token},
  153. {"post_sampling_probs", post_sampling_probs},
  154. {"lora", lora},
  155. };
  156. }
  157. };
  158. struct server_task {
  159. int id = -1; // to be filled by server_queue
  160. int index = -1; // used when there are multiple prompts (batch request)
  161. server_task_type type;
  162. // used by SERVER_TASK_TYPE_CANCEL
  163. int id_target = -1;
  164. // used by SERVER_TASK_TYPE_INFERENCE
  165. slot_params params;
  166. llama_tokens prompt_tokens;
  167. int id_selected_slot = -1;
  168. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  169. struct slot_action {
  170. int slot_id;
  171. std::string filename;
  172. std::string filepath;
  173. };
  174. slot_action slot_action;
  175. // used by SERVER_TASK_TYPE_METRICS
  176. bool metrics_reset_bucket = false;
  177. // used by SERVER_TASK_TYPE_SET_LORA
  178. std::vector<common_adapter_lora_info> set_lora;
  179. server_task(server_task_type type) : type(type) {}
  180. static slot_params params_from_json_cmpl(
  181. const llama_context * ctx,
  182. const common_params & params_base,
  183. const json & data) {
  184. const llama_model * model = llama_get_model(ctx);
  185. const llama_vocab * vocab = llama_model_get_vocab(model);
  186. slot_params params;
  187. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  188. slot_params defaults;
  189. defaults.sampling = params_base.sampling;
  190. defaults.speculative = params_base.speculative;
  191. // enabling this will output extra debug information in the HTTP responses from the server
  192. params.verbose = params_base.verbosity > 9;
  193. params.timings_per_token = json_value(data, "timings_per_token", false);
  194. params.stream = json_value(data, "stream", false);
  195. params.cache_prompt = json_value(data, "cache_prompt", true);
  196. params.return_tokens = json_value(data, "return_tokens", false);
  197. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  198. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  199. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  200. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  201. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  202. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  203. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  204. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  205. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  206. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  207. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  208. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  209. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  210. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  211. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  212. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  213. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  214. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  215. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  216. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  217. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  218. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  219. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  220. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  221. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  222. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  223. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  224. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  225. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  226. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  227. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  228. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  229. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  230. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  231. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  232. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  233. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  234. // Use OpenAI API logprobs only if n_probs wasn't provided
  235. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  236. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  237. }
  238. if (data.contains("lora")) {
  239. if (data.at("lora").is_array()) {
  240. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  241. } else {
  242. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  243. }
  244. } else {
  245. params.lora = params_base.lora_adapters;
  246. }
  247. // TODO: add more sanity checks for the input parameters
  248. if (params.sampling.penalty_last_n < -1) {
  249. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  250. }
  251. if (params.sampling.dry_penalty_last_n < -1) {
  252. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  253. }
  254. if (params.sampling.penalty_last_n == -1) {
  255. // note: should be the slot's context and not the full context, but it's ok
  256. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  257. }
  258. if (params.sampling.dry_penalty_last_n == -1) {
  259. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  260. }
  261. if (params.sampling.dry_base < 1.0f) {
  262. params.sampling.dry_base = defaults.sampling.dry_base;
  263. }
  264. // sequence breakers for DRY
  265. {
  266. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  267. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  268. if (data.contains("dry_sequence_breakers")) {
  269. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  270. if (params.sampling.dry_sequence_breakers.empty()) {
  271. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  272. }
  273. }
  274. }
  275. // process "json_schema" and "grammar"
  276. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  277. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  278. }
  279. if (data.contains("json_schema") && !data.contains("grammar")) {
  280. try {
  281. auto schema = json_value(data, "json_schema", json::object());
  282. LOG_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  283. params.sampling.grammar = json_schema_to_grammar(schema);
  284. LOG_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  285. } catch (const std::exception & e) {
  286. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  287. }
  288. } else {
  289. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  290. LOG_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  291. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  292. LOG_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  293. }
  294. {
  295. auto it = data.find("chat_format");
  296. if (it != data.end()) {
  297. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  298. LOG_DBG("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  299. } else {
  300. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  301. }
  302. }
  303. {
  304. const auto grammar_triggers = data.find("grammar_triggers");
  305. if (grammar_triggers != data.end()) {
  306. for (const auto & t : *grammar_triggers) {
  307. common_grammar_trigger trigger;
  308. trigger.word = t.at("word");
  309. trigger.at_start = t.at("at_start");
  310. auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
  311. if (ids.size() == 1) {
  312. LOG_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
  313. params.sampling.grammar_trigger_tokens.push_back(ids[0]);
  314. continue;
  315. }
  316. LOG_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
  317. params.sampling.grammar_trigger_words.push_back(trigger);
  318. }
  319. }
  320. if (params.sampling.grammar_lazy) {
  321. GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
  322. }
  323. }
  324. {
  325. params.sampling.logit_bias.clear();
  326. params.ignore_eos = json_value(data, "ignore_eos", false);
  327. const auto & logit_bias = data.find("logit_bias");
  328. if (logit_bias != data.end() && logit_bias->is_array()) {
  329. const int n_vocab = llama_vocab_n_tokens(vocab);
  330. for (const auto & el : *logit_bias) {
  331. // TODO: we may want to throw errors here, in case "el" is incorrect
  332. if (el.is_array() && el.size() == 2) {
  333. float bias;
  334. if (el[1].is_number()) {
  335. bias = el[1].get<float>();
  336. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  337. bias = -INFINITY;
  338. } else {
  339. continue;
  340. }
  341. if (el[0].is_number_integer()) {
  342. llama_token tok = el[0].get<llama_token>();
  343. if (tok >= 0 && tok < n_vocab) {
  344. params.sampling.logit_bias.push_back({tok, bias});
  345. }
  346. } else if (el[0].is_string()) {
  347. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  348. for (auto tok : toks) {
  349. params.sampling.logit_bias.push_back({tok, bias});
  350. }
  351. }
  352. }
  353. }
  354. }
  355. }
  356. {
  357. params.antiprompt.clear();
  358. const auto & stop = data.find("stop");
  359. if (stop != data.end() && stop->is_array()) {
  360. for (const auto & word : *stop) {
  361. if (!word.empty()) {
  362. params.antiprompt.push_back(word);
  363. }
  364. }
  365. }
  366. }
  367. {
  368. const auto samplers = data.find("samplers");
  369. if (samplers != data.end()) {
  370. if (samplers->is_array()) {
  371. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  372. } else if (samplers->is_string()){
  373. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  374. }
  375. } else {
  376. params.sampling.samplers = defaults.sampling.samplers;
  377. }
  378. }
  379. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  380. params.oaicompat_model = json_value(data, "model", model_name);
  381. return params;
  382. }
  383. // utility function
  384. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  385. std::unordered_set<int> ids(tasks.size());
  386. for (size_t i = 0; i < tasks.size(); i++) {
  387. ids.insert(tasks[i].id);
  388. }
  389. return ids;
  390. }
  391. };
  392. struct result_timings {
  393. int32_t prompt_n = -1;
  394. double prompt_ms;
  395. double prompt_per_token_ms;
  396. double prompt_per_second;
  397. int32_t predicted_n = -1;
  398. double predicted_ms;
  399. double predicted_per_token_ms;
  400. double predicted_per_second;
  401. json to_json() const {
  402. return {
  403. {"prompt_n", prompt_n},
  404. {"prompt_ms", prompt_ms},
  405. {"prompt_per_token_ms", prompt_per_token_ms},
  406. {"prompt_per_second", prompt_per_second},
  407. {"predicted_n", predicted_n},
  408. {"predicted_ms", predicted_ms},
  409. {"predicted_per_token_ms", predicted_per_token_ms},
  410. {"predicted_per_second", predicted_per_second},
  411. };
  412. }
  413. };
  414. struct server_task_result {
  415. int id = -1;
  416. int id_slot = -1;
  417. virtual bool is_error() {
  418. // only used by server_task_result_error
  419. return false;
  420. }
  421. virtual bool is_stop() {
  422. // only used by server_task_result_cmpl_*
  423. return false;
  424. }
  425. virtual int get_index() {
  426. return -1;
  427. }
  428. virtual json to_json() = 0;
  429. virtual ~server_task_result() = default;
  430. };
  431. // using shared_ptr for polymorphism of server_task_result
  432. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  433. inline std::string stop_type_to_str(stop_type type) {
  434. switch (type) {
  435. case STOP_TYPE_EOS: return "eos";
  436. case STOP_TYPE_WORD: return "word";
  437. case STOP_TYPE_LIMIT: return "limit";
  438. default: return "none";
  439. }
  440. }
  441. struct completion_token_output {
  442. llama_token tok;
  443. float prob;
  444. std::string text_to_send;
  445. struct prob_info {
  446. llama_token tok;
  447. std::string txt;
  448. float prob;
  449. };
  450. std::vector<prob_info> probs;
  451. json to_json(bool post_sampling_probs) const {
  452. json probs_for_token = json::array();
  453. for (const auto & p : probs) {
  454. std::string txt(p.txt);
  455. txt.resize(validate_utf8(txt));
  456. probs_for_token.push_back(json {
  457. {"id", p.tok},
  458. {"token", txt},
  459. {"bytes", str_to_bytes(p.txt)},
  460. {
  461. post_sampling_probs ? "prob" : "logprob",
  462. post_sampling_probs ? p.prob : logarithm(p.prob)
  463. },
  464. });
  465. }
  466. return probs_for_token;
  467. }
  468. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  469. json out = json::array();
  470. for (const auto & p : probs) {
  471. std::string txt(p.text_to_send);
  472. txt.resize(validate_utf8(txt));
  473. out.push_back(json {
  474. {"id", p.tok},
  475. {"token", txt},
  476. {"bytes", str_to_bytes(p.text_to_send)},
  477. {
  478. post_sampling_probs ? "prob" : "logprob",
  479. post_sampling_probs ? p.prob : logarithm(p.prob)
  480. },
  481. {
  482. post_sampling_probs ? "top_probs" : "top_logprobs",
  483. p.to_json(post_sampling_probs)
  484. },
  485. });
  486. }
  487. return out;
  488. }
  489. static float logarithm(float x) {
  490. // nlohmann::json converts -inf to null, so we need to prevent that
  491. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  492. }
  493. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  494. std::vector<unsigned char> bytes;
  495. for (unsigned char c : str) {
  496. bytes.push_back(c);
  497. }
  498. return bytes;
  499. }
  500. };
  501. struct server_task_result_cmpl_final : server_task_result {
  502. int index = 0;
  503. std::string content;
  504. llama_tokens tokens;
  505. bool stream;
  506. result_timings timings;
  507. std::string prompt;
  508. bool truncated;
  509. int32_t n_decoded;
  510. int32_t n_prompt_tokens;
  511. int32_t n_tokens_cached;
  512. bool has_new_line;
  513. std::string stopping_word;
  514. stop_type stop = STOP_TYPE_NONE;
  515. bool post_sampling_probs;
  516. std::vector<completion_token_output> probs_output;
  517. std::vector<std::string> response_fields;
  518. slot_params generation_params;
  519. // OAI-compat fields
  520. bool verbose = false;
  521. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  522. std::string oaicompat_model;
  523. std::string oaicompat_cmpl_id;
  524. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  525. virtual int get_index() override {
  526. return index;
  527. }
  528. virtual bool is_stop() override {
  529. return true; // in stream mode, final responses are considered stop
  530. }
  531. virtual json to_json() override {
  532. switch (oaicompat) {
  533. case OAICOMPAT_TYPE_NONE:
  534. return to_json_non_oaicompat();
  535. case OAICOMPAT_TYPE_COMPLETION:
  536. return to_json_oaicompat();
  537. case OAICOMPAT_TYPE_CHAT:
  538. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  539. default:
  540. GGML_ASSERT(false && "Invalid oaicompat_type");
  541. }
  542. }
  543. json to_json_non_oaicompat() {
  544. json res = json {
  545. {"index", index},
  546. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  547. {"tokens", stream ? llama_tokens {} : tokens},
  548. {"id_slot", id_slot},
  549. {"stop", true},
  550. {"model", oaicompat_model},
  551. {"tokens_predicted", n_decoded},
  552. {"tokens_evaluated", n_prompt_tokens},
  553. {"generation_settings", generation_params.to_json()},
  554. {"prompt", prompt},
  555. {"has_new_line", has_new_line},
  556. {"truncated", truncated},
  557. {"stop_type", stop_type_to_str(stop)},
  558. {"stopping_word", stopping_word},
  559. {"tokens_cached", n_tokens_cached},
  560. {"timings", timings.to_json()},
  561. };
  562. if (!stream && !probs_output.empty()) {
  563. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  564. }
  565. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  566. }
  567. json to_json_oaicompat() {
  568. std::time_t t = std::time(0);
  569. json logprobs = json(nullptr); // OAI default to null
  570. if (!stream && probs_output.size() > 0) {
  571. logprobs = json{
  572. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  573. };
  574. }
  575. json finish_reason = "length";
  576. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  577. finish_reason = "stop";
  578. }
  579. json res = json {
  580. {"choices", json::array({
  581. json{
  582. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  583. {"index", index},
  584. {"logprobs", logprobs},
  585. {"finish_reason", finish_reason},
  586. }
  587. })},
  588. {"created", t},
  589. {"model", oaicompat_model},
  590. {"system_fingerprint", build_info},
  591. {"object", "text_completion"},
  592. {"usage", json {
  593. {"completion_tokens", n_decoded},
  594. {"prompt_tokens", n_prompt_tokens},
  595. {"total_tokens", n_decoded + n_prompt_tokens}
  596. }},
  597. {"id", oaicompat_cmpl_id}
  598. };
  599. // extra fields for debugging purposes
  600. if (verbose) {
  601. res["__verbose"] = to_json_non_oaicompat();
  602. }
  603. if (timings.prompt_n >= 0) {
  604. res.push_back({"timings", timings.to_json()});
  605. }
  606. return res;
  607. }
  608. json to_json_oaicompat_chat() {
  609. std::string finish_reason = "length";
  610. common_chat_msg message;
  611. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  612. message = common_chat_parse(content, oaicompat_chat_format);
  613. finish_reason = message.tool_calls.empty() ? "stop" : "tool_calls";
  614. } else {
  615. message.content = content;
  616. }
  617. json tool_calls;
  618. if (!message.tool_calls.empty()) {
  619. tool_calls = json::array();
  620. for (const auto & tc : message.tool_calls) {
  621. tool_calls.push_back({
  622. {"type", "function"},
  623. {"function", {
  624. {"name", tc.name},
  625. {"arguments", tc.arguments},
  626. }},
  627. {"id", tc.id.empty() ? json() : json(tc.id)},
  628. });
  629. }
  630. }
  631. json choice {
  632. {"finish_reason", finish_reason},
  633. {"index", 0},
  634. {"message", json {
  635. {"content", message.content},
  636. {"tool_calls", tool_calls},
  637. {"role", "assistant"},
  638. }},
  639. };
  640. if (!stream && probs_output.size() > 0) {
  641. choice["logprobs"] = json{
  642. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  643. };
  644. }
  645. std::time_t t = std::time(0);
  646. json res = json {
  647. {"choices", json::array({choice})},
  648. {"created", t},
  649. {"model", oaicompat_model},
  650. {"system_fingerprint", build_info},
  651. {"object", "chat.completion"},
  652. {"usage", json {
  653. {"completion_tokens", n_decoded},
  654. {"prompt_tokens", n_prompt_tokens},
  655. {"total_tokens", n_decoded + n_prompt_tokens}
  656. }},
  657. {"id", oaicompat_cmpl_id}
  658. };
  659. // extra fields for debugging purposes
  660. if (verbose) {
  661. res["__verbose"] = to_json_non_oaicompat();
  662. }
  663. if (timings.prompt_n >= 0) {
  664. res.push_back({"timings", timings.to_json()});
  665. }
  666. return res;
  667. }
  668. json to_json_oaicompat_chat_stream() {
  669. std::time_t t = std::time(0);
  670. std::string finish_reason = "length";
  671. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  672. finish_reason = "stop";
  673. }
  674. json choice = json {
  675. {"finish_reason", finish_reason},
  676. {"index", 0},
  677. {"delta", json::object()}
  678. };
  679. json ret = json {
  680. {"choices", json::array({choice})},
  681. {"created", t},
  682. {"id", oaicompat_cmpl_id},
  683. {"model", oaicompat_model},
  684. {"system_fingerprint", build_info},
  685. {"object", "chat.completion.chunk"},
  686. {"usage", json {
  687. {"completion_tokens", n_decoded},
  688. {"prompt_tokens", n_prompt_tokens},
  689. {"total_tokens", n_decoded + n_prompt_tokens},
  690. }},
  691. };
  692. if (timings.prompt_n >= 0) {
  693. ret.push_back({"timings", timings.to_json()});
  694. }
  695. return ret;
  696. }
  697. };
  698. struct server_task_result_cmpl_partial : server_task_result {
  699. int index = 0;
  700. std::string content;
  701. llama_tokens tokens;
  702. int32_t n_decoded;
  703. int32_t n_prompt_tokens;
  704. bool post_sampling_probs;
  705. completion_token_output prob_output;
  706. result_timings timings;
  707. // OAI-compat fields
  708. bool verbose = false;
  709. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  710. std::string oaicompat_model;
  711. std::string oaicompat_cmpl_id;
  712. virtual int get_index() override {
  713. return index;
  714. }
  715. virtual bool is_stop() override {
  716. return false; // in stream mode, partial responses are not considered stop
  717. }
  718. virtual json to_json() override {
  719. switch (oaicompat) {
  720. case OAICOMPAT_TYPE_NONE:
  721. return to_json_non_oaicompat();
  722. case OAICOMPAT_TYPE_COMPLETION:
  723. return to_json_oaicompat();
  724. case OAICOMPAT_TYPE_CHAT:
  725. return to_json_oaicompat_chat();
  726. default:
  727. GGML_ASSERT(false && "Invalid oaicompat_type");
  728. }
  729. }
  730. json to_json_non_oaicompat() {
  731. // non-OAI-compat JSON
  732. json res = json {
  733. {"index", index},
  734. {"content", content},
  735. {"tokens", tokens},
  736. {"stop", false},
  737. {"id_slot", id_slot},
  738. {"tokens_predicted", n_decoded},
  739. {"tokens_evaluated", n_prompt_tokens},
  740. };
  741. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  742. if (timings.prompt_n > 0) {
  743. res.push_back({"timings", timings.to_json()});
  744. }
  745. if (!prob_output.probs.empty()) {
  746. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  747. }
  748. return res;
  749. }
  750. json to_json_oaicompat() {
  751. std::time_t t = std::time(0);
  752. json logprobs = json(nullptr); // OAI default to null
  753. if (prob_output.probs.size() > 0) {
  754. logprobs = json{
  755. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  756. };
  757. }
  758. json res = json {
  759. {"choices", json::array({
  760. json{
  761. {"text", content},
  762. {"index", index},
  763. {"logprobs", logprobs},
  764. {"finish_reason", nullptr},
  765. }
  766. })},
  767. {"created", t},
  768. {"model", oaicompat_model},
  769. {"system_fingerprint", build_info},
  770. {"object", "text_completion"},
  771. {"id", oaicompat_cmpl_id}
  772. };
  773. // extra fields for debugging purposes
  774. if (verbose) {
  775. res["__verbose"] = to_json_non_oaicompat();
  776. }
  777. if (timings.prompt_n >= 0) {
  778. res.push_back({"timings", timings.to_json()});
  779. }
  780. return res;
  781. }
  782. json to_json_oaicompat_chat() {
  783. bool first = n_decoded == 0;
  784. std::time_t t = std::time(0);
  785. json choices;
  786. if (first) {
  787. if (content.empty()) {
  788. choices = json::array({json{{"finish_reason", nullptr},
  789. {"index", 0},
  790. {"delta", json{{"role", "assistant"}}}}});
  791. } else {
  792. // We have to send this as two updates to conform to openai behavior
  793. json initial_ret = json{{"choices", json::array({json{
  794. {"finish_reason", nullptr},
  795. {"index", 0},
  796. {"delta", json{
  797. {"role", "assistant"}
  798. }}}})},
  799. {"created", t},
  800. {"id", oaicompat_cmpl_id},
  801. {"model", oaicompat_model},
  802. {"object", "chat.completion.chunk"}};
  803. json second_ret = json{
  804. {"choices", json::array({json{{"finish_reason", nullptr},
  805. {"index", 0},
  806. {"delta", json {
  807. {"content", content}}}
  808. }})},
  809. {"created", t},
  810. {"id", oaicompat_cmpl_id},
  811. {"model", oaicompat_model},
  812. {"object", "chat.completion.chunk"}};
  813. return std::vector<json>({initial_ret, second_ret});
  814. }
  815. } else {
  816. choices = json::array({json{
  817. {"finish_reason", nullptr},
  818. {"index", 0},
  819. {"delta",
  820. json {
  821. {"content", content},
  822. }},
  823. }});
  824. }
  825. GGML_ASSERT(choices.size() >= 1);
  826. if (prob_output.probs.size() > 0) {
  827. choices[0]["logprobs"] = json{
  828. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  829. };
  830. }
  831. json ret = json {
  832. {"choices", choices},
  833. {"created", t},
  834. {"id", oaicompat_cmpl_id},
  835. {"model", oaicompat_model},
  836. {"system_fingerprint", build_info},
  837. {"object", "chat.completion.chunk"}
  838. };
  839. if (timings.prompt_n >= 0) {
  840. ret.push_back({"timings", timings.to_json()});
  841. }
  842. return std::vector<json>({ret});
  843. }
  844. };
  845. struct server_task_result_embd : server_task_result {
  846. int index = 0;
  847. std::vector<std::vector<float>> embedding;
  848. int32_t n_tokens;
  849. // OAI-compat fields
  850. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  851. virtual int get_index() override {
  852. return index;
  853. }
  854. virtual json to_json() override {
  855. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  856. ? to_json_oaicompat()
  857. : to_json_non_oaicompat();
  858. }
  859. json to_json_non_oaicompat() {
  860. return json {
  861. {"index", index},
  862. {"embedding", embedding},
  863. };
  864. }
  865. json to_json_oaicompat() {
  866. return json {
  867. {"index", index},
  868. {"embedding", embedding[0]},
  869. {"tokens_evaluated", n_tokens},
  870. };
  871. }
  872. };
  873. struct server_task_result_rerank : server_task_result {
  874. int index = 0;
  875. float score = -1e6;
  876. int32_t n_tokens;
  877. virtual int get_index() override {
  878. return index;
  879. }
  880. virtual json to_json() override {
  881. return json {
  882. {"index", index},
  883. {"score", score},
  884. {"tokens_evaluated", n_tokens},
  885. };
  886. }
  887. };
  888. // this function maybe used outside of server_task_result_error
  889. static json format_error_response(const std::string & message, const enum error_type type) {
  890. std::string type_str;
  891. int code = 500;
  892. switch (type) {
  893. case ERROR_TYPE_INVALID_REQUEST:
  894. type_str = "invalid_request_error";
  895. code = 400;
  896. break;
  897. case ERROR_TYPE_AUTHENTICATION:
  898. type_str = "authentication_error";
  899. code = 401;
  900. break;
  901. case ERROR_TYPE_NOT_FOUND:
  902. type_str = "not_found_error";
  903. code = 404;
  904. break;
  905. case ERROR_TYPE_SERVER:
  906. type_str = "server_error";
  907. code = 500;
  908. break;
  909. case ERROR_TYPE_PERMISSION:
  910. type_str = "permission_error";
  911. code = 403;
  912. break;
  913. case ERROR_TYPE_NOT_SUPPORTED:
  914. type_str = "not_supported_error";
  915. code = 501;
  916. break;
  917. case ERROR_TYPE_UNAVAILABLE:
  918. type_str = "unavailable_error";
  919. code = 503;
  920. break;
  921. }
  922. return json {
  923. {"code", code},
  924. {"message", message},
  925. {"type", type_str},
  926. };
  927. }
  928. struct server_task_result_error : server_task_result {
  929. int index = 0;
  930. error_type err_type = ERROR_TYPE_SERVER;
  931. std::string err_msg;
  932. virtual bool is_error() override {
  933. return true;
  934. }
  935. virtual json to_json() override {
  936. return format_error_response(err_msg, err_type);
  937. }
  938. };
  939. struct server_task_result_metrics : server_task_result {
  940. int n_idle_slots;
  941. int n_processing_slots;
  942. int n_tasks_deferred;
  943. int64_t t_start;
  944. int32_t kv_cache_tokens_count;
  945. int32_t kv_cache_used_cells;
  946. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  947. uint64_t n_prompt_tokens_processed_total = 0;
  948. uint64_t t_prompt_processing_total = 0;
  949. uint64_t n_tokens_predicted_total = 0;
  950. uint64_t t_tokens_generation_total = 0;
  951. uint64_t n_prompt_tokens_processed = 0;
  952. uint64_t t_prompt_processing = 0;
  953. uint64_t n_tokens_predicted = 0;
  954. uint64_t t_tokens_generation = 0;
  955. uint64_t n_decode_total = 0;
  956. uint64_t n_busy_slots_total = 0;
  957. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  958. // therefore, we use json to temporarily store the slot.to_json() result
  959. json slots_data = json::array();
  960. virtual json to_json() override {
  961. return json {
  962. { "idle", n_idle_slots },
  963. { "processing", n_processing_slots },
  964. { "deferred", n_tasks_deferred },
  965. { "t_start", t_start },
  966. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  967. { "t_tokens_generation_total", t_tokens_generation_total },
  968. { "n_tokens_predicted_total", n_tokens_predicted_total },
  969. { "t_prompt_processing_total", t_prompt_processing_total },
  970. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  971. { "t_prompt_processing", t_prompt_processing },
  972. { "n_tokens_predicted", n_tokens_predicted },
  973. { "t_tokens_generation", t_tokens_generation },
  974. { "n_decode_total", n_decode_total },
  975. { "n_busy_slots_total", n_busy_slots_total },
  976. { "kv_cache_tokens_count", kv_cache_tokens_count },
  977. { "kv_cache_used_cells", kv_cache_used_cells },
  978. { "slots", slots_data },
  979. };
  980. }
  981. };
  982. struct server_task_result_slot_save_load : server_task_result {
  983. std::string filename;
  984. bool is_save; // true = save, false = load
  985. size_t n_tokens;
  986. size_t n_bytes;
  987. double t_ms;
  988. virtual json to_json() override {
  989. if (is_save) {
  990. return json {
  991. { "id_slot", id_slot },
  992. { "filename", filename },
  993. { "n_saved", n_tokens },
  994. { "n_written", n_bytes },
  995. { "timings", {
  996. { "save_ms", t_ms }
  997. }},
  998. };
  999. } else {
  1000. return json {
  1001. { "id_slot", id_slot },
  1002. { "filename", filename },
  1003. { "n_restored", n_tokens },
  1004. { "n_read", n_bytes },
  1005. { "timings", {
  1006. { "restore_ms", t_ms }
  1007. }},
  1008. };
  1009. }
  1010. }
  1011. };
  1012. struct server_task_result_slot_erase : server_task_result {
  1013. size_t n_erased;
  1014. virtual json to_json() override {
  1015. return json {
  1016. { "id_slot", id_slot },
  1017. { "n_erased", n_erased },
  1018. };
  1019. }
  1020. };
  1021. struct server_task_result_apply_lora : server_task_result {
  1022. virtual json to_json() override {
  1023. return json {{ "success", true }};
  1024. }
  1025. };
  1026. struct server_slot {
  1027. int id;
  1028. int id_task = -1;
  1029. // only used for completion/embedding/infill/rerank
  1030. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1031. llama_batch batch_spec = {};
  1032. llama_context * ctx = nullptr;
  1033. llama_context * ctx_dft = nullptr;
  1034. common_speculative * spec = nullptr;
  1035. std::vector<common_adapter_lora_info> lora;
  1036. // the index relative to completion multi-task request
  1037. size_t index = 0;
  1038. struct slot_params params;
  1039. slot_state state = SLOT_STATE_IDLE;
  1040. // used to determine the slot that has been used the longest
  1041. int64_t t_last_used = -1;
  1042. // generation props
  1043. int32_t n_ctx = 0; // context size per slot
  1044. int32_t n_past = 0;
  1045. int32_t n_decoded = 0;
  1046. int32_t n_remaining = -1;
  1047. int32_t i_batch = -1;
  1048. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1049. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1050. int32_t n_prompt_tokens = 0;
  1051. int32_t n_prompt_tokens_processed = 0;
  1052. // input prompt tokens
  1053. llama_tokens prompt_tokens;
  1054. size_t last_nl_pos = 0;
  1055. std::string generated_text;
  1056. llama_tokens generated_tokens;
  1057. llama_tokens cache_tokens;
  1058. std::vector<completion_token_output> generated_token_probs;
  1059. bool has_next_token = true;
  1060. bool has_new_line = false;
  1061. bool truncated = false;
  1062. stop_type stop;
  1063. std::string stopping_word;
  1064. // sampling
  1065. json json_schema;
  1066. struct common_sampler * smpl = nullptr;
  1067. llama_token sampled;
  1068. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1069. // stats
  1070. size_t n_sent_text = 0; // number of sent text character
  1071. int64_t t_start_process_prompt;
  1072. int64_t t_start_generation;
  1073. double t_prompt_processing; // ms
  1074. double t_token_generation; // ms
  1075. std::function<void(int)> callback_on_release;
  1076. void reset() {
  1077. SLT_DBG(*this, "%s", "\n");
  1078. n_prompt_tokens = 0;
  1079. last_nl_pos = 0;
  1080. generated_text = "";
  1081. has_new_line = false;
  1082. truncated = false;
  1083. stop = STOP_TYPE_NONE;
  1084. stopping_word = "";
  1085. n_past = 0;
  1086. n_sent_text = 0;
  1087. task_type = SERVER_TASK_TYPE_COMPLETION;
  1088. generated_tokens.clear();
  1089. generated_token_probs.clear();
  1090. }
  1091. bool is_non_causal() const {
  1092. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1093. }
  1094. bool can_batch_with(server_slot & other_slot) {
  1095. return is_non_causal() == other_slot.is_non_causal()
  1096. && are_lora_equal(lora, other_slot.lora);
  1097. }
  1098. bool has_budget(const common_params & global_params) {
  1099. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1100. return true; // limitless
  1101. }
  1102. n_remaining = -1;
  1103. if (params.n_predict != -1) {
  1104. n_remaining = params.n_predict - n_decoded;
  1105. } else if (global_params.n_predict != -1) {
  1106. n_remaining = global_params.n_predict - n_decoded;
  1107. }
  1108. return n_remaining > 0; // no budget
  1109. }
  1110. bool is_processing() const {
  1111. return state != SLOT_STATE_IDLE;
  1112. }
  1113. bool can_speculate() const {
  1114. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1115. }
  1116. void add_token(const completion_token_output & token) {
  1117. if (!is_processing()) {
  1118. SLT_WRN(*this, "%s", "slot is not processing\n");
  1119. return;
  1120. }
  1121. generated_token_probs.push_back(token);
  1122. }
  1123. void release() {
  1124. if (is_processing()) {
  1125. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1126. t_last_used = ggml_time_us();
  1127. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1128. state = SLOT_STATE_IDLE;
  1129. callback_on_release(id);
  1130. }
  1131. }
  1132. result_timings get_timings() const {
  1133. result_timings timings;
  1134. timings.prompt_n = n_prompt_tokens_processed;
  1135. timings.prompt_ms = t_prompt_processing;
  1136. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1137. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1138. timings.predicted_n = n_decoded;
  1139. timings.predicted_ms = t_token_generation;
  1140. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1141. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1142. return timings;
  1143. }
  1144. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1145. size_t stop_pos = std::string::npos;
  1146. for (const std::string & word : params.antiprompt) {
  1147. size_t pos;
  1148. if (is_full_stop) {
  1149. const size_t tmp = word.size() + last_token_size;
  1150. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1151. pos = text.find(word, from_pos);
  1152. } else {
  1153. // otherwise, partial stop
  1154. pos = find_partial_stop_string(word, text);
  1155. }
  1156. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1157. if (is_full_stop) {
  1158. stop = STOP_TYPE_WORD;
  1159. stopping_word = word;
  1160. has_next_token = false;
  1161. }
  1162. stop_pos = pos;
  1163. }
  1164. }
  1165. return stop_pos;
  1166. }
  1167. void print_timings() const {
  1168. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1169. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1170. const double t_gen = t_token_generation / n_decoded;
  1171. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1172. SLT_INF(*this,
  1173. "\n"
  1174. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1175. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1176. " total time = %10.2f ms / %5d tokens\n",
  1177. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1178. t_token_generation, n_decoded, t_gen, n_gen_second,
  1179. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1180. }
  1181. json to_json() const {
  1182. return json {
  1183. {"id", id},
  1184. {"id_task", id_task},
  1185. {"n_ctx", n_ctx},
  1186. {"speculative", can_speculate()},
  1187. {"is_processing", is_processing()},
  1188. {"non_causal", is_non_causal()},
  1189. {"params", params.to_json()},
  1190. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1191. {"next_token",
  1192. {
  1193. {"has_next_token", has_next_token},
  1194. {"has_new_line", has_new_line},
  1195. {"n_remain", n_remaining},
  1196. {"n_decoded", n_decoded},
  1197. {"stopping_word", stopping_word},
  1198. }
  1199. },
  1200. };
  1201. }
  1202. };
  1203. struct server_metrics {
  1204. int64_t t_start = 0;
  1205. uint64_t n_prompt_tokens_processed_total = 0;
  1206. uint64_t t_prompt_processing_total = 0;
  1207. uint64_t n_tokens_predicted_total = 0;
  1208. uint64_t t_tokens_generation_total = 0;
  1209. uint64_t n_prompt_tokens_processed = 0;
  1210. uint64_t t_prompt_processing = 0;
  1211. uint64_t n_tokens_predicted = 0;
  1212. uint64_t t_tokens_generation = 0;
  1213. uint64_t n_decode_total = 0;
  1214. uint64_t n_busy_slots_total = 0;
  1215. void init() {
  1216. t_start = ggml_time_us();
  1217. }
  1218. void on_prompt_eval(const server_slot & slot) {
  1219. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1220. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1221. t_prompt_processing += slot.t_prompt_processing;
  1222. t_prompt_processing_total += slot.t_prompt_processing;
  1223. }
  1224. void on_prediction(const server_slot & slot) {
  1225. n_tokens_predicted_total += slot.n_decoded;
  1226. n_tokens_predicted += slot.n_decoded;
  1227. t_tokens_generation += slot.t_token_generation;
  1228. t_tokens_generation_total += slot.t_token_generation;
  1229. }
  1230. void on_decoded(const std::vector<server_slot> & slots) {
  1231. n_decode_total++;
  1232. for (const auto & slot : slots) {
  1233. if (slot.is_processing()) {
  1234. n_busy_slots_total++;
  1235. }
  1236. }
  1237. }
  1238. void reset_bucket() {
  1239. n_prompt_tokens_processed = 0;
  1240. t_prompt_processing = 0;
  1241. n_tokens_predicted = 0;
  1242. t_tokens_generation = 0;
  1243. }
  1244. };
  1245. struct server_queue {
  1246. int id = 0;
  1247. bool running;
  1248. // queues
  1249. std::deque<server_task> queue_tasks;
  1250. std::deque<server_task> queue_tasks_deferred;
  1251. std::mutex mutex_tasks;
  1252. std::condition_variable condition_tasks;
  1253. // callback functions
  1254. std::function<void(server_task)> callback_new_task;
  1255. std::function<void(void)> callback_update_slots;
  1256. // Add a new task to the end of the queue
  1257. int post(server_task task, bool front = false) {
  1258. std::unique_lock<std::mutex> lock(mutex_tasks);
  1259. GGML_ASSERT(task.id != -1);
  1260. // if this is cancel task make sure to clean up pending tasks
  1261. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1262. cleanup_pending_task(task.id_target);
  1263. }
  1264. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1265. if (front) {
  1266. queue_tasks.push_front(std::move(task));
  1267. } else {
  1268. queue_tasks.push_back(std::move(task));
  1269. }
  1270. condition_tasks.notify_one();
  1271. return task.id;
  1272. }
  1273. // multi-task version of post()
  1274. int post(std::vector<server_task> & tasks, bool front = false) {
  1275. std::unique_lock<std::mutex> lock(mutex_tasks);
  1276. for (auto & task : tasks) {
  1277. if (task.id == -1) {
  1278. task.id = id++;
  1279. }
  1280. // if this is cancel task make sure to clean up pending tasks
  1281. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1282. cleanup_pending_task(task.id_target);
  1283. }
  1284. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1285. if (front) {
  1286. queue_tasks.push_front(std::move(task));
  1287. } else {
  1288. queue_tasks.push_back(std::move(task));
  1289. }
  1290. }
  1291. condition_tasks.notify_one();
  1292. return 0;
  1293. }
  1294. // Add a new task, but defer until one slot is available
  1295. void defer(server_task task) {
  1296. std::unique_lock<std::mutex> lock(mutex_tasks);
  1297. QUE_DBG("defer task, id = %d\n", task.id);
  1298. queue_tasks_deferred.push_back(std::move(task));
  1299. condition_tasks.notify_one();
  1300. }
  1301. // Get the next id for creating a new task
  1302. int get_new_id() {
  1303. std::unique_lock<std::mutex> lock(mutex_tasks);
  1304. int new_id = id++;
  1305. return new_id;
  1306. }
  1307. // Register function to process a new task
  1308. void on_new_task(std::function<void(server_task)> callback) {
  1309. callback_new_task = std::move(callback);
  1310. }
  1311. // Register the function to be called when all slots data is ready to be processed
  1312. void on_update_slots(std::function<void(void)> callback) {
  1313. callback_update_slots = std::move(callback);
  1314. }
  1315. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1316. void pop_deferred_task() {
  1317. std::unique_lock<std::mutex> lock(mutex_tasks);
  1318. if (!queue_tasks_deferred.empty()) {
  1319. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1320. queue_tasks_deferred.pop_front();
  1321. }
  1322. condition_tasks.notify_one();
  1323. }
  1324. // end the start_loop routine
  1325. void terminate() {
  1326. std::unique_lock<std::mutex> lock(mutex_tasks);
  1327. running = false;
  1328. condition_tasks.notify_all();
  1329. }
  1330. /**
  1331. * Main loop consists of these steps:
  1332. * - Wait until a new task arrives
  1333. * - Process the task (i.e. maybe copy data into slot)
  1334. * - Check if multitask is finished
  1335. * - Update all slots
  1336. */
  1337. void start_loop() {
  1338. running = true;
  1339. while (true) {
  1340. QUE_DBG("%s", "processing new tasks\n");
  1341. while (true) {
  1342. std::unique_lock<std::mutex> lock(mutex_tasks);
  1343. if (queue_tasks.empty()) {
  1344. lock.unlock();
  1345. break;
  1346. }
  1347. server_task task = queue_tasks.front();
  1348. queue_tasks.pop_front();
  1349. lock.unlock();
  1350. QUE_DBG("processing task, id = %d\n", task.id);
  1351. callback_new_task(std::move(task));
  1352. }
  1353. // all tasks in the current loop is processed, slots data is now ready
  1354. QUE_DBG("%s", "update slots\n");
  1355. callback_update_slots();
  1356. QUE_DBG("%s", "waiting for new tasks\n");
  1357. {
  1358. std::unique_lock<std::mutex> lock(mutex_tasks);
  1359. if (queue_tasks.empty()) {
  1360. if (!running) {
  1361. QUE_DBG("%s", "terminate\n");
  1362. return;
  1363. }
  1364. condition_tasks.wait(lock, [&]{
  1365. return (!queue_tasks.empty() || !running);
  1366. });
  1367. }
  1368. }
  1369. }
  1370. }
  1371. private:
  1372. void cleanup_pending_task(int id_target) {
  1373. // no need lock because this is called exclusively by post()
  1374. auto rm_func = [id_target](const server_task & task) {
  1375. return task.id_target == id_target;
  1376. };
  1377. queue_tasks.erase(
  1378. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1379. queue_tasks.end());
  1380. queue_tasks_deferred.erase(
  1381. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1382. queue_tasks_deferred.end());
  1383. }
  1384. };
  1385. struct server_response {
  1386. // for keeping track of all tasks waiting for the result
  1387. std::unordered_set<int> waiting_task_ids;
  1388. // the main result queue (using ptr for polymorphism)
  1389. std::vector<server_task_result_ptr> queue_results;
  1390. std::mutex mutex_results;
  1391. std::condition_variable condition_results;
  1392. // add the id_task to the list of tasks waiting for response
  1393. void add_waiting_task_id(int id_task) {
  1394. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1395. std::unique_lock<std::mutex> lock(mutex_results);
  1396. waiting_task_ids.insert(id_task);
  1397. }
  1398. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1399. std::unique_lock<std::mutex> lock(mutex_results);
  1400. for (const auto & task : tasks) {
  1401. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1402. waiting_task_ids.insert(task.id);
  1403. }
  1404. }
  1405. // when the request is finished, we can remove task associated with it
  1406. void remove_waiting_task_id(int id_task) {
  1407. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1408. std::unique_lock<std::mutex> lock(mutex_results);
  1409. waiting_task_ids.erase(id_task);
  1410. // make sure to clean up all pending results
  1411. queue_results.erase(
  1412. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1413. return res->id == id_task;
  1414. }),
  1415. queue_results.end());
  1416. }
  1417. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1418. std::unique_lock<std::mutex> lock(mutex_results);
  1419. for (const auto & id_task : id_tasks) {
  1420. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1421. waiting_task_ids.erase(id_task);
  1422. }
  1423. }
  1424. // This function blocks the thread until there is a response for one of the id_tasks
  1425. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1426. while (true) {
  1427. std::unique_lock<std::mutex> lock(mutex_results);
  1428. condition_results.wait(lock, [&]{
  1429. return !queue_results.empty();
  1430. });
  1431. for (size_t i = 0; i < queue_results.size(); i++) {
  1432. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1433. server_task_result_ptr res = std::move(queue_results[i]);
  1434. queue_results.erase(queue_results.begin() + i);
  1435. return res;
  1436. }
  1437. }
  1438. }
  1439. // should never reach here
  1440. }
  1441. // same as recv(), but have timeout in seconds
  1442. // if timeout is reached, nullptr is returned
  1443. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1444. while (true) {
  1445. std::unique_lock<std::mutex> lock(mutex_results);
  1446. for (int i = 0; i < (int) queue_results.size(); i++) {
  1447. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1448. server_task_result_ptr res = std::move(queue_results[i]);
  1449. queue_results.erase(queue_results.begin() + i);
  1450. return res;
  1451. }
  1452. }
  1453. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1454. if (cr_res == std::cv_status::timeout) {
  1455. return nullptr;
  1456. }
  1457. }
  1458. // should never reach here
  1459. }
  1460. // single-task version of recv()
  1461. server_task_result_ptr recv(int id_task) {
  1462. std::unordered_set<int> id_tasks = {id_task};
  1463. return recv(id_tasks);
  1464. }
  1465. // Send a new result to a waiting id_task
  1466. void send(server_task_result_ptr && result) {
  1467. SRV_DBG("sending result for task id = %d\n", result->id);
  1468. std::unique_lock<std::mutex> lock(mutex_results);
  1469. for (const auto & id_task : waiting_task_ids) {
  1470. if (result->id == id_task) {
  1471. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1472. queue_results.emplace_back(std::move(result));
  1473. condition_results.notify_all();
  1474. return;
  1475. }
  1476. }
  1477. }
  1478. };
  1479. struct server_context {
  1480. common_params params_base;
  1481. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1482. common_init_result llama_init;
  1483. common_init_result llama_init_dft;
  1484. llama_model * model = nullptr;
  1485. llama_context * ctx = nullptr;
  1486. const llama_vocab * vocab = nullptr;
  1487. llama_model * model_dft = nullptr;
  1488. llama_context_params cparams_dft;
  1489. llama_batch batch = {};
  1490. bool clean_kv_cache = true;
  1491. bool add_bos_token = true;
  1492. bool has_eos_token = false;
  1493. int32_t n_ctx; // total context for all clients / slots
  1494. // slots / clients
  1495. std::vector<server_slot> slots;
  1496. json default_generation_settings_for_props;
  1497. server_queue queue_tasks;
  1498. server_response queue_results;
  1499. server_metrics metrics;
  1500. // Necessary similarity of prompt for slot selection
  1501. float slot_prompt_similarity = 0.0f;
  1502. common_chat_templates chat_templates;
  1503. ~server_context() {
  1504. // Clear any sampling context
  1505. for (server_slot & slot : slots) {
  1506. common_sampler_free(slot.smpl);
  1507. slot.smpl = nullptr;
  1508. llama_free(slot.ctx_dft);
  1509. slot.ctx_dft = nullptr;
  1510. common_speculative_free(slot.spec);
  1511. slot.spec = nullptr;
  1512. llama_batch_free(slot.batch_spec);
  1513. }
  1514. llama_batch_free(batch);
  1515. }
  1516. bool load_model(const common_params & params) {
  1517. SRV_INF("loading model '%s'\n", params.model.c_str());
  1518. params_base = params;
  1519. llama_init = common_init_from_params(params_base);
  1520. model = llama_init.model.get();
  1521. ctx = llama_init.context.get();
  1522. if (model == nullptr) {
  1523. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1524. return false;
  1525. }
  1526. vocab = llama_model_get_vocab(model);
  1527. n_ctx = llama_n_ctx(ctx);
  1528. add_bos_token = llama_vocab_get_add_bos(vocab);
  1529. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1530. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1531. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1532. auto params_dft = params_base;
  1533. params_dft.devices = params_base.speculative.devices;
  1534. params_dft.hf_file = params_base.speculative.hf_file;
  1535. params_dft.hf_repo = params_base.speculative.hf_repo;
  1536. params_dft.model = params_base.speculative.model;
  1537. params_dft.model_url = params_base.speculative.model_url;
  1538. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1539. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1540. params_dft.n_parallel = 1;
  1541. llama_init_dft = common_init_from_params(params_dft);
  1542. model_dft = llama_init_dft.model.get();
  1543. if (model_dft == nullptr) {
  1544. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1545. return false;
  1546. }
  1547. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1548. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1549. return false;
  1550. }
  1551. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1552. cparams_dft = common_context_params_to_llama(params_dft);
  1553. cparams_dft.n_batch = n_ctx_dft;
  1554. // force F16 KV cache for the draft model for extra performance
  1555. cparams_dft.type_k = GGML_TYPE_F16;
  1556. cparams_dft.type_v = GGML_TYPE_F16;
  1557. // the context is not needed - we will create one for each slot
  1558. llama_init_dft.context.reset();
  1559. }
  1560. if (params_base.chat_template.empty() && !validate_builtin_chat_template(params.use_jinja)) {
  1561. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1562. chat_templates = common_chat_templates_from_model(model, "chatml");
  1563. } else {
  1564. chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
  1565. }
  1566. GGML_ASSERT(chat_templates.template_default.get() != nullptr);
  1567. return true;
  1568. }
  1569. bool validate_builtin_chat_template(bool use_jinja) const {
  1570. llama_chat_message chat[] = {{"user", "test"}};
  1571. if (use_jinja) {
  1572. auto templates = common_chat_templates_from_model(model, "");
  1573. common_chat_inputs inputs;
  1574. inputs.messages = json::array({{
  1575. {"role", "user"},
  1576. {"content", "test"},
  1577. }});
  1578. GGML_ASSERT(templates.template_default);
  1579. try {
  1580. common_chat_params_init(*templates.template_default, inputs);
  1581. if (templates.template_tool_use) {
  1582. common_chat_params_init(*templates.template_tool_use, inputs);
  1583. }
  1584. return true;
  1585. } catch (const std::exception & e) {
  1586. SRV_ERR("failed to apply template: %s\n", e.what());
  1587. return false;
  1588. }
  1589. } else {
  1590. const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
  1591. const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
  1592. return chat_res > 0;
  1593. }
  1594. }
  1595. void init() {
  1596. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1597. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1598. for (int i = 0; i < params_base.n_parallel; i++) {
  1599. server_slot slot;
  1600. slot.id = i;
  1601. slot.ctx = ctx;
  1602. slot.n_ctx = n_ctx_slot;
  1603. slot.n_predict = params_base.n_predict;
  1604. if (model_dft) {
  1605. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1606. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1607. if (slot.ctx_dft == nullptr) {
  1608. SRV_ERR("%s", "failed to create draft context\n");
  1609. return;
  1610. }
  1611. slot.spec = common_speculative_init(slot.ctx_dft);
  1612. if (slot.spec == nullptr) {
  1613. SRV_ERR("%s", "failed to create speculator\n");
  1614. return;
  1615. }
  1616. }
  1617. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1618. slot.params.sampling = params_base.sampling;
  1619. slot.callback_on_release = [this](int) {
  1620. queue_tasks.pop_deferred_task();
  1621. };
  1622. slot.reset();
  1623. slots.push_back(slot);
  1624. }
  1625. default_generation_settings_for_props = slots[0].to_json();
  1626. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1627. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1628. {
  1629. const int32_t n_batch = llama_n_batch(ctx);
  1630. // only a single seq_id per token is needed
  1631. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1632. }
  1633. metrics.init();
  1634. }
  1635. server_slot * get_slot_by_id(int id) {
  1636. for (server_slot & slot : slots) {
  1637. if (slot.id == id) {
  1638. return &slot;
  1639. }
  1640. }
  1641. return nullptr;
  1642. }
  1643. server_slot * get_available_slot(const server_task & task) {
  1644. server_slot * ret = nullptr;
  1645. // find the slot that has at least n% prompt similarity
  1646. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1647. int lcs_len = 0;
  1648. float similarity = 0;
  1649. for (server_slot & slot : slots) {
  1650. // skip the slot if it is not available
  1651. if (slot.is_processing()) {
  1652. continue;
  1653. }
  1654. // skip the slot if it does not contains cached tokens
  1655. if (slot.cache_tokens.empty()) {
  1656. continue;
  1657. }
  1658. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1659. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1660. // fraction of the common subsequence length compared to the current slot's prompt length
  1661. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1662. // select the current slot if the criteria match
  1663. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1664. lcs_len = cur_lcs_len;
  1665. similarity = cur_similarity;
  1666. ret = &slot;
  1667. }
  1668. }
  1669. if (ret != nullptr) {
  1670. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1671. }
  1672. }
  1673. // find the slot that has been least recently used
  1674. if (ret == nullptr) {
  1675. int64_t t_last = ggml_time_us();
  1676. for (server_slot & slot : slots) {
  1677. // skip the slot if it is not available
  1678. if (slot.is_processing()) {
  1679. continue;
  1680. }
  1681. // select the current slot if the criteria match
  1682. if (slot.t_last_used < t_last) {
  1683. t_last = slot.t_last_used;
  1684. ret = &slot;
  1685. }
  1686. }
  1687. if (ret != nullptr) {
  1688. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1689. }
  1690. }
  1691. return ret;
  1692. }
  1693. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1694. slot.reset();
  1695. slot.id_task = task.id;
  1696. slot.index = task.index;
  1697. slot.task_type = task.type;
  1698. slot.params = std::move(task.params);
  1699. slot.prompt_tokens = std::move(task.prompt_tokens);
  1700. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1701. // if lora is changed, we cannot reuse cached tokens
  1702. slot.cache_tokens.clear();
  1703. slot.lora = task.params.lora;
  1704. }
  1705. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1706. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1707. // Might be better to reject the request with a 400 ?
  1708. slot.params.n_predict = slot.n_predict;
  1709. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1710. }
  1711. if (slot.params.ignore_eos && has_eos_token) {
  1712. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1713. }
  1714. {
  1715. if (slot.smpl != nullptr) {
  1716. common_sampler_free(slot.smpl);
  1717. }
  1718. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1719. if (slot.smpl == nullptr) {
  1720. // for now, the only error that may happen here is invalid grammar
  1721. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1722. return false;
  1723. }
  1724. }
  1725. if (slot.ctx_dft) {
  1726. llama_batch_free(slot.batch_spec);
  1727. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1728. }
  1729. slot.state = SLOT_STATE_STARTED;
  1730. SLT_INF(slot, "%s", "processing task\n");
  1731. return true;
  1732. }
  1733. void kv_cache_clear() {
  1734. SRV_DBG("%s", "clearing KV cache\n");
  1735. // clear the entire KV cache
  1736. llama_kv_cache_clear(ctx);
  1737. clean_kv_cache = false;
  1738. }
  1739. bool process_token(completion_token_output & result, server_slot & slot) {
  1740. // remember which tokens were sampled - used for repetition penalties during sampling
  1741. const std::string token_str = result.text_to_send;
  1742. slot.sampled = result.tok;
  1743. slot.generated_text += token_str;
  1744. if (slot.params.return_tokens) {
  1745. slot.generated_tokens.push_back(result.tok);
  1746. }
  1747. slot.has_next_token = true;
  1748. // check if there is incomplete UTF-8 character at the end
  1749. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1750. // search stop word and delete it
  1751. if (!incomplete) {
  1752. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1753. const std::string str_test = slot.generated_text.substr(pos);
  1754. bool send_text = true;
  1755. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1756. if (stop_pos != std::string::npos) {
  1757. slot.generated_text.erase(
  1758. slot.generated_text.begin() + pos + stop_pos,
  1759. slot.generated_text.end());
  1760. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1761. } else if (slot.has_next_token) {
  1762. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1763. send_text = stop_pos == std::string::npos;
  1764. }
  1765. // check if there is any token to predict
  1766. if (send_text) {
  1767. // no send the stop word in the response
  1768. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1769. slot.n_sent_text += result.text_to_send.size();
  1770. // add the token to slot queue and cache
  1771. } else {
  1772. result.text_to_send = "";
  1773. }
  1774. slot.add_token(result);
  1775. if (slot.params.stream) {
  1776. send_partial_response(slot, result);
  1777. }
  1778. }
  1779. if (incomplete) {
  1780. slot.has_next_token = true;
  1781. }
  1782. // check the limits
  1783. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1784. slot.stop = STOP_TYPE_LIMIT;
  1785. slot.has_next_token = false;
  1786. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1787. }
  1788. if (slot.has_new_line) {
  1789. // if we have already seen a new line, we stop after a certain time limit
  1790. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1791. slot.stop = STOP_TYPE_LIMIT;
  1792. slot.has_next_token = false;
  1793. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1794. }
  1795. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1796. if (slot.params.n_indent > 0) {
  1797. // check the current indentation
  1798. // TODO: improve by not doing it more than once for each new line
  1799. if (slot.last_nl_pos > 0) {
  1800. size_t pos = slot.last_nl_pos;
  1801. int n_indent = 0;
  1802. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1803. n_indent++;
  1804. pos++;
  1805. }
  1806. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1807. slot.stop = STOP_TYPE_LIMIT;
  1808. slot.has_next_token = false;
  1809. // cut the last line
  1810. slot.generated_text.erase(pos, std::string::npos);
  1811. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1812. }
  1813. }
  1814. // find the next new line
  1815. {
  1816. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1817. if (pos != std::string::npos) {
  1818. slot.last_nl_pos = pos + 1;
  1819. }
  1820. }
  1821. }
  1822. }
  1823. // check if there is a new line in the generated text
  1824. if (result.text_to_send.find('\n') != std::string::npos) {
  1825. slot.has_new_line = true;
  1826. }
  1827. // if context shift is disabled, we stop when it reaches the context limit
  1828. if (slot.n_past >= slot.n_ctx) {
  1829. slot.truncated = true;
  1830. slot.stop = STOP_TYPE_LIMIT;
  1831. slot.has_next_token = false;
  1832. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1833. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1834. }
  1835. if (llama_vocab_is_eog(vocab, result.tok)) {
  1836. slot.stop = STOP_TYPE_EOS;
  1837. slot.has_next_token = false;
  1838. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1839. }
  1840. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1841. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1842. slot.truncated = true;
  1843. slot.stop = STOP_TYPE_LIMIT;
  1844. slot.has_next_token = false; // stop prediction
  1845. SLT_WRN(slot,
  1846. "n_predict (%d) is set for infinite generation. "
  1847. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1848. slot.params.n_predict, n_ctx_train);
  1849. }
  1850. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1851. return slot.has_next_token; // continue
  1852. }
  1853. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1854. size_t n_probs = slot.params.sampling.n_probs;
  1855. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1856. if (post_sampling) {
  1857. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1858. const size_t max_probs = cur_p->size;
  1859. // set probability for sampled token
  1860. for (size_t i = 0; i < max_probs; i++) {
  1861. if (cur_p->data[i].id == result.tok) {
  1862. result.prob = cur_p->data[i].p;
  1863. break;
  1864. }
  1865. }
  1866. // set probability for top n_probs tokens
  1867. result.probs.reserve(max_probs);
  1868. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1869. result.probs.push_back({
  1870. cur_p->data[i].id,
  1871. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1872. cur_p->data[i].p
  1873. });
  1874. }
  1875. } else {
  1876. // TODO: optimize this with min-p optimization
  1877. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1878. // set probability for sampled token
  1879. for (size_t i = 0; i < n_vocab; i++) {
  1880. // set probability for sampled token
  1881. if (cur[i].id == result.tok) {
  1882. result.prob = cur[i].p;
  1883. break;
  1884. }
  1885. }
  1886. // set probability for top n_probs tokens
  1887. result.probs.reserve(n_probs);
  1888. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1889. result.probs.push_back({
  1890. cur[i].id,
  1891. common_detokenize(ctx, {cur[i].id}, special),
  1892. cur[i].p
  1893. });
  1894. }
  1895. }
  1896. }
  1897. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1898. send_error(task.id, error, type);
  1899. }
  1900. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1901. send_error(slot.id_task, error, type);
  1902. }
  1903. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1904. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1905. auto res = std::make_unique<server_task_result_error>();
  1906. res->id = id_task;
  1907. res->err_type = type;
  1908. res->err_msg = error;
  1909. queue_results.send(std::move(res));
  1910. }
  1911. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1912. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1913. res->id = slot.id_task;
  1914. res->index = slot.index;
  1915. res->content = tkn.text_to_send;
  1916. res->tokens = { tkn.tok };
  1917. res->n_decoded = slot.n_decoded;
  1918. res->n_prompt_tokens = slot.n_prompt_tokens;
  1919. res->post_sampling_probs = slot.params.post_sampling_probs;
  1920. res->verbose = slot.params.verbose;
  1921. res->oaicompat = slot.params.oaicompat;
  1922. res->oaicompat_model = slot.params.oaicompat_model;
  1923. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1924. // populate res.probs_output
  1925. if (slot.params.sampling.n_probs > 0) {
  1926. res->prob_output = tkn; // copy the token probs
  1927. }
  1928. // populate timings if this is final response or timings_per_token is enabled
  1929. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1930. res->timings = slot.get_timings();
  1931. }
  1932. queue_results.send(std::move(res));
  1933. }
  1934. void send_final_response(server_slot & slot) {
  1935. auto res = std::make_unique<server_task_result_cmpl_final>();
  1936. res->id = slot.id_task;
  1937. res->id_slot = slot.id;
  1938. res->index = slot.index;
  1939. res->content = std::move(slot.generated_text);
  1940. res->tokens = std::move(slot.generated_tokens);
  1941. res->timings = slot.get_timings();
  1942. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1943. res->response_fields = std::move(slot.params.response_fields);
  1944. res->truncated = slot.truncated;
  1945. res->n_decoded = slot.n_decoded;
  1946. res->n_prompt_tokens = slot.n_prompt_tokens;
  1947. res->n_tokens_cached = slot.n_past;
  1948. res->has_new_line = slot.has_new_line;
  1949. res->stopping_word = slot.stopping_word;
  1950. res->stop = slot.stop;
  1951. res->post_sampling_probs = slot.params.post_sampling_probs;
  1952. res->verbose = slot.params.verbose;
  1953. res->stream = slot.params.stream;
  1954. res->oaicompat = slot.params.oaicompat;
  1955. res->oaicompat_model = slot.params.oaicompat_model;
  1956. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1957. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1958. // populate res.probs_output
  1959. if (slot.params.sampling.n_probs > 0) {
  1960. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1961. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1962. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1963. res->probs_output = std::vector<completion_token_output>(
  1964. slot.generated_token_probs.begin(),
  1965. slot.generated_token_probs.end() - safe_offset);
  1966. } else {
  1967. res->probs_output = std::vector<completion_token_output>(
  1968. slot.generated_token_probs.begin(),
  1969. slot.generated_token_probs.end());
  1970. }
  1971. }
  1972. res->generation_params = slot.params; // copy the parameters
  1973. queue_results.send(std::move(res));
  1974. }
  1975. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1976. auto res = std::make_unique<server_task_result_embd>();
  1977. res->id = slot.id_task;
  1978. res->index = slot.index;
  1979. res->n_tokens = slot.n_prompt_tokens;
  1980. res->oaicompat = slot.params.oaicompat;
  1981. const int n_embd = llama_model_n_embd(model);
  1982. std::vector<float> embd_res(n_embd, 0.0f);
  1983. for (int i = 0; i < batch.n_tokens; ++i) {
  1984. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1985. continue;
  1986. }
  1987. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1988. if (embd == NULL) {
  1989. embd = llama_get_embeddings_ith(ctx, i);
  1990. }
  1991. if (embd == NULL) {
  1992. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1993. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1994. continue;
  1995. }
  1996. // normalize only when there is pooling
  1997. // TODO: configurable
  1998. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1999. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2000. res->embedding.push_back(embd_res);
  2001. } else {
  2002. res->embedding.push_back({ embd, embd + n_embd });
  2003. }
  2004. }
  2005. SLT_DBG(slot, "%s", "sending embeddings\n");
  2006. queue_results.send(std::move(res));
  2007. }
  2008. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2009. auto res = std::make_unique<server_task_result_rerank>();
  2010. res->id = slot.id_task;
  2011. res->index = slot.index;
  2012. res->n_tokens = slot.n_prompt_tokens;
  2013. for (int i = 0; i < batch.n_tokens; ++i) {
  2014. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2015. continue;
  2016. }
  2017. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2018. if (embd == NULL) {
  2019. embd = llama_get_embeddings_ith(ctx, i);
  2020. }
  2021. if (embd == NULL) {
  2022. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2023. res->score = -1e6;
  2024. continue;
  2025. }
  2026. res->score = embd[0];
  2027. }
  2028. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2029. queue_results.send(std::move(res));
  2030. }
  2031. //
  2032. // Functions to create new task(s) and receive result(s)
  2033. //
  2034. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2035. std::vector<server_task> cancel_tasks;
  2036. cancel_tasks.reserve(id_tasks.size());
  2037. for (const auto & id_task : id_tasks) {
  2038. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2039. server_task task(SERVER_TASK_TYPE_CANCEL);
  2040. task.id_target = id_task;
  2041. queue_results.remove_waiting_task_id(id_task);
  2042. cancel_tasks.push_back(task);
  2043. }
  2044. // push to beginning of the queue, so it has highest priority
  2045. queue_tasks.post(cancel_tasks, true);
  2046. }
  2047. // receive the results from task(s)
  2048. void receive_multi_results(
  2049. const std::unordered_set<int> & id_tasks,
  2050. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2051. const std::function<void(json)> & error_handler,
  2052. const std::function<bool()> & is_connection_closed) {
  2053. std::vector<server_task_result_ptr> results(id_tasks.size());
  2054. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2055. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2056. if (is_connection_closed()) {
  2057. cancel_tasks(id_tasks);
  2058. return;
  2059. }
  2060. if (result == nullptr) {
  2061. i--; // retry
  2062. continue;
  2063. }
  2064. if (result->is_error()) {
  2065. error_handler(result->to_json());
  2066. cancel_tasks(id_tasks);
  2067. return;
  2068. }
  2069. GGML_ASSERT(
  2070. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2071. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2072. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2073. );
  2074. const size_t idx = result->get_index();
  2075. GGML_ASSERT(idx < results.size() && "index out of range");
  2076. results[idx] = std::move(result);
  2077. }
  2078. result_handler(results);
  2079. }
  2080. // receive the results from task(s), in stream mode
  2081. void receive_cmpl_results_stream(
  2082. const std::unordered_set<int> & id_tasks,
  2083. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2084. const std::function<void(json)> & error_handler,
  2085. const std::function<bool()> & is_connection_closed) {
  2086. size_t n_finished = 0;
  2087. while (true) {
  2088. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2089. if (is_connection_closed()) {
  2090. cancel_tasks(id_tasks);
  2091. return;
  2092. }
  2093. if (result == nullptr) {
  2094. continue; // retry
  2095. }
  2096. if (result->is_error()) {
  2097. error_handler(result->to_json());
  2098. cancel_tasks(id_tasks);
  2099. return;
  2100. }
  2101. GGML_ASSERT(
  2102. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2103. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2104. );
  2105. if (!result_handler(result)) {
  2106. cancel_tasks(id_tasks);
  2107. break;
  2108. }
  2109. if (result->is_stop()) {
  2110. if (++n_finished == id_tasks.size()) {
  2111. break;
  2112. }
  2113. }
  2114. }
  2115. }
  2116. //
  2117. // Functions to process the task
  2118. //
  2119. void process_single_task(server_task task) {
  2120. switch (task.type) {
  2121. case SERVER_TASK_TYPE_COMPLETION:
  2122. case SERVER_TASK_TYPE_INFILL:
  2123. case SERVER_TASK_TYPE_EMBEDDING:
  2124. case SERVER_TASK_TYPE_RERANK:
  2125. {
  2126. const int id_slot = task.id_selected_slot;
  2127. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2128. if (slot == nullptr) {
  2129. // if no slot is available, we defer this task for processing later
  2130. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2131. queue_tasks.defer(task);
  2132. break;
  2133. }
  2134. if (slot->is_processing()) {
  2135. // if requested slot is unavailable, we defer this task for processing later
  2136. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2137. queue_tasks.defer(task);
  2138. break;
  2139. }
  2140. if (!launch_slot_with_task(*slot, task)) {
  2141. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2142. break;
  2143. }
  2144. } break;
  2145. case SERVER_TASK_TYPE_CANCEL:
  2146. {
  2147. // release slot linked with the task id
  2148. for (auto & slot : slots) {
  2149. if (slot.id_task == task.id_target) {
  2150. slot.release();
  2151. break;
  2152. }
  2153. }
  2154. } break;
  2155. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2156. {
  2157. // do nothing
  2158. } break;
  2159. case SERVER_TASK_TYPE_METRICS:
  2160. {
  2161. json slots_data = json::array();
  2162. int n_idle_slots = 0;
  2163. int n_processing_slots = 0;
  2164. for (server_slot & slot : slots) {
  2165. json slot_data = slot.to_json();
  2166. if (slot.is_processing()) {
  2167. n_processing_slots++;
  2168. } else {
  2169. n_idle_slots++;
  2170. }
  2171. slots_data.push_back(slot_data);
  2172. }
  2173. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2174. auto res = std::make_unique<server_task_result_metrics>();
  2175. res->id = task.id;
  2176. res->slots_data = std::move(slots_data);
  2177. res->n_idle_slots = n_idle_slots;
  2178. res->n_processing_slots = n_processing_slots;
  2179. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2180. res->t_start = metrics.t_start;
  2181. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2182. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2183. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2184. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2185. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2186. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2187. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2188. res->t_prompt_processing = metrics.t_prompt_processing;
  2189. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2190. res->t_tokens_generation = metrics.t_tokens_generation;
  2191. res->n_decode_total = metrics.n_decode_total;
  2192. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2193. if (task.metrics_reset_bucket) {
  2194. metrics.reset_bucket();
  2195. }
  2196. queue_results.send(std::move(res));
  2197. } break;
  2198. case SERVER_TASK_TYPE_SLOT_SAVE:
  2199. {
  2200. int id_slot = task.slot_action.slot_id;
  2201. server_slot * slot = get_slot_by_id(id_slot);
  2202. if (slot == nullptr) {
  2203. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2204. break;
  2205. }
  2206. if (slot->is_processing()) {
  2207. // if requested slot is unavailable, we defer this task for processing later
  2208. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2209. queue_tasks.defer(task);
  2210. break;
  2211. }
  2212. const size_t token_count = slot->cache_tokens.size();
  2213. const int64_t t_start = ggml_time_us();
  2214. std::string filename = task.slot_action.filename;
  2215. std::string filepath = task.slot_action.filepath;
  2216. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2217. const int64_t t_end = ggml_time_us();
  2218. const double t_save_ms = (t_end - t_start) / 1000.0;
  2219. auto res = std::make_unique<server_task_result_slot_save_load>();
  2220. res->id = task.id;
  2221. res->id_slot = id_slot;
  2222. res->filename = filename;
  2223. res->is_save = true;
  2224. res->n_tokens = token_count;
  2225. res->n_bytes = nwrite;
  2226. res->t_ms = t_save_ms;
  2227. queue_results.send(std::move(res));
  2228. } break;
  2229. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2230. {
  2231. int id_slot = task.slot_action.slot_id;
  2232. server_slot * slot = get_slot_by_id(id_slot);
  2233. if (slot == nullptr) {
  2234. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2235. break;
  2236. }
  2237. if (slot->is_processing()) {
  2238. // if requested slot is unavailable, we defer this task for processing later
  2239. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2240. queue_tasks.defer(task);
  2241. break;
  2242. }
  2243. const int64_t t_start = ggml_time_us();
  2244. std::string filename = task.slot_action.filename;
  2245. std::string filepath = task.slot_action.filepath;
  2246. slot->cache_tokens.resize(slot->n_ctx);
  2247. size_t token_count = 0;
  2248. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2249. if (nread == 0) {
  2250. slot->cache_tokens.resize(0);
  2251. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2252. break;
  2253. }
  2254. slot->cache_tokens.resize(token_count);
  2255. const int64_t t_end = ggml_time_us();
  2256. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2257. auto res = std::make_unique<server_task_result_slot_save_load>();
  2258. res->id = task.id;
  2259. res->id_slot = id_slot;
  2260. res->filename = filename;
  2261. res->is_save = false;
  2262. res->n_tokens = token_count;
  2263. res->n_bytes = nread;
  2264. res->t_ms = t_restore_ms;
  2265. queue_results.send(std::move(res));
  2266. } break;
  2267. case SERVER_TASK_TYPE_SLOT_ERASE:
  2268. {
  2269. int id_slot = task.slot_action.slot_id;
  2270. server_slot * slot = get_slot_by_id(id_slot);
  2271. if (slot == nullptr) {
  2272. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2273. break;
  2274. }
  2275. if (slot->is_processing()) {
  2276. // if requested slot is unavailable, we defer this task for processing later
  2277. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2278. queue_tasks.defer(task);
  2279. break;
  2280. }
  2281. // Erase token cache
  2282. const size_t n_erased = slot->cache_tokens.size();
  2283. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2284. slot->cache_tokens.clear();
  2285. auto res = std::make_unique<server_task_result_slot_erase>();
  2286. res->id = task.id;
  2287. res->id_slot = id_slot;
  2288. res->n_erased = n_erased;
  2289. queue_results.send(std::move(res));
  2290. } break;
  2291. case SERVER_TASK_TYPE_SET_LORA:
  2292. {
  2293. params_base.lora_adapters = std::move(task.set_lora);
  2294. auto res = std::make_unique<server_task_result_apply_lora>();
  2295. res->id = task.id;
  2296. queue_results.send(std::move(res));
  2297. } break;
  2298. }
  2299. }
  2300. void update_slots() {
  2301. // check if all slots are idle
  2302. {
  2303. bool all_idle = true;
  2304. for (auto & slot : slots) {
  2305. if (slot.is_processing()) {
  2306. all_idle = false;
  2307. break;
  2308. }
  2309. }
  2310. if (all_idle) {
  2311. SRV_INF("%s", "all slots are idle\n");
  2312. if (clean_kv_cache) {
  2313. kv_cache_clear();
  2314. }
  2315. return;
  2316. }
  2317. }
  2318. {
  2319. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2320. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2321. task.id = queue_tasks.get_new_id();
  2322. queue_tasks.post(task);
  2323. }
  2324. // apply context-shift if needed
  2325. // TODO: simplify and improve
  2326. for (server_slot & slot : slots) {
  2327. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2328. if (!params_base.ctx_shift) {
  2329. // this check is redundant (for good)
  2330. // we should never get here, because generation should already stopped in process_token()
  2331. slot.release();
  2332. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2333. continue;
  2334. }
  2335. // Shift context
  2336. const int n_keep = slot.params.n_keep + add_bos_token;
  2337. const int n_left = slot.n_past - n_keep;
  2338. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2339. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2340. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2341. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2342. if (slot.params.cache_prompt) {
  2343. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2344. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2345. }
  2346. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2347. }
  2348. slot.n_past -= n_discard;
  2349. slot.truncated = true;
  2350. }
  2351. }
  2352. // start populating the batch for this iteration
  2353. common_batch_clear(batch);
  2354. // track if given slot can be batched with slots already in the batch
  2355. server_slot * slot_batched = nullptr;
  2356. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2357. const auto & trigger_tokens = slot.params.sampling.grammar_trigger_tokens;
  2358. return params_base.special || std::find(trigger_tokens.begin(), trigger_tokens.end(), token) != trigger_tokens.end();
  2359. };
  2360. // frist, add sampled tokens from any ongoing sequences
  2361. for (auto & slot : slots) {
  2362. if (slot.state != SLOT_STATE_GENERATING) {
  2363. continue;
  2364. }
  2365. // check if we can batch this slot with the previous one
  2366. if (!slot_batched) {
  2367. slot_batched = &slot;
  2368. } else if (!slot_batched->can_batch_with(slot)) {
  2369. continue;
  2370. }
  2371. slot.i_batch = batch.n_tokens;
  2372. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2373. slot.n_past += 1;
  2374. if (slot.params.cache_prompt) {
  2375. slot.cache_tokens.push_back(slot.sampled);
  2376. }
  2377. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2378. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2379. }
  2380. // process in chunks of params.n_batch
  2381. int32_t n_batch = llama_n_batch(ctx);
  2382. int32_t n_ubatch = llama_n_ubatch(ctx);
  2383. // next, batch any pending prompts without exceeding n_batch
  2384. if (params_base.cont_batching || batch.n_tokens == 0) {
  2385. for (auto & slot : slots) {
  2386. // check if we can batch this slot with the previous one
  2387. if (slot.is_processing()) {
  2388. if (!slot_batched) {
  2389. slot_batched = &slot;
  2390. } else if (!slot_batched->can_batch_with(slot)) {
  2391. continue;
  2392. }
  2393. }
  2394. // this slot still has a prompt to be processed
  2395. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2396. auto & prompt_tokens = slot.prompt_tokens;
  2397. // TODO: maybe move branch to outside of this loop in the future
  2398. if (slot.state == SLOT_STATE_STARTED) {
  2399. slot.t_start_process_prompt = ggml_time_us();
  2400. slot.t_start_generation = 0;
  2401. slot.n_past = 0;
  2402. slot.n_prompt_tokens = prompt_tokens.size();
  2403. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2404. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2405. // print prompt tokens (for debugging)
  2406. if (1) {
  2407. // first 16 tokens (avoid flooding logs)
  2408. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2409. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2410. }
  2411. } else {
  2412. // all
  2413. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2414. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2415. }
  2416. }
  2417. // empty prompt passed -> release the slot and send empty response
  2418. if (prompt_tokens.empty()) {
  2419. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2420. slot.release();
  2421. slot.print_timings();
  2422. send_final_response(slot);
  2423. continue;
  2424. }
  2425. if (slot.is_non_causal()) {
  2426. if (slot.n_prompt_tokens > n_ubatch) {
  2427. slot.release();
  2428. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2429. continue;
  2430. }
  2431. if (slot.n_prompt_tokens > slot.n_ctx) {
  2432. slot.release();
  2433. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2434. continue;
  2435. }
  2436. } else {
  2437. if (!params_base.ctx_shift) {
  2438. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2439. // TODO: there should be a separate parameter that control prompt truncation
  2440. // context shift should be applied only during the generation phase
  2441. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2442. slot.release();
  2443. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2444. continue;
  2445. }
  2446. }
  2447. if (slot.params.n_keep < 0) {
  2448. slot.params.n_keep = slot.n_prompt_tokens;
  2449. }
  2450. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2451. // if input prompt is too big, truncate it
  2452. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2453. const int n_left = slot.n_ctx - slot.params.n_keep;
  2454. const int n_block_size = n_left / 2;
  2455. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2456. llama_tokens new_tokens(
  2457. prompt_tokens.begin(),
  2458. prompt_tokens.begin() + slot.params.n_keep);
  2459. new_tokens.insert(
  2460. new_tokens.end(),
  2461. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2462. prompt_tokens.end());
  2463. prompt_tokens = std::move(new_tokens);
  2464. slot.truncated = true;
  2465. slot.n_prompt_tokens = prompt_tokens.size();
  2466. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2467. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2468. }
  2469. if (slot.params.cache_prompt) {
  2470. // reuse any previously computed tokens that are common with the new prompt
  2471. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2472. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2473. if (params_base.n_cache_reuse > 0) {
  2474. size_t head_c = slot.n_past; // cache
  2475. size_t head_p = slot.n_past; // current prompt
  2476. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2477. while (head_c < slot.cache_tokens.size() &&
  2478. head_p < prompt_tokens.size()) {
  2479. size_t n_match = 0;
  2480. while (head_c + n_match < slot.cache_tokens.size() &&
  2481. head_p + n_match < prompt_tokens.size() &&
  2482. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2483. n_match++;
  2484. }
  2485. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2486. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2487. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2488. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2489. //}
  2490. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2491. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2492. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2493. for (size_t i = 0; i < n_match; i++) {
  2494. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2495. slot.n_past++;
  2496. }
  2497. head_c += n_match;
  2498. head_p += n_match;
  2499. } else {
  2500. head_c += 1;
  2501. }
  2502. }
  2503. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2504. }
  2505. }
  2506. }
  2507. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2508. // we have to evaluate at least 1 token to generate logits.
  2509. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2510. slot.n_past--;
  2511. }
  2512. slot.n_prompt_tokens_processed = 0;
  2513. }
  2514. // non-causal tasks require to fit the entire prompt in the physical batch
  2515. if (slot.is_non_causal()) {
  2516. // cannot fit the prompt in the current batch - will try next iter
  2517. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2518. continue;
  2519. }
  2520. }
  2521. // keep only the common part
  2522. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2523. // could not partially delete (likely using a non-Transformer model)
  2524. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2525. // there is no common part left
  2526. slot.n_past = 0;
  2527. }
  2528. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2529. // remove the non-common part from the cache
  2530. slot.cache_tokens.resize(slot.n_past);
  2531. // add prompt tokens for processing in the current batch
  2532. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2533. // without pooling, we want to output the embeddings for all the tokens in the batch
  2534. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2535. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2536. if (slot.params.cache_prompt) {
  2537. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2538. }
  2539. slot.n_prompt_tokens_processed++;
  2540. slot.n_past++;
  2541. }
  2542. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2543. // entire prompt has been processed
  2544. if (slot.n_past == slot.n_prompt_tokens) {
  2545. slot.state = SLOT_STATE_DONE_PROMPT;
  2546. GGML_ASSERT(batch.n_tokens > 0);
  2547. common_sampler_reset(slot.smpl);
  2548. // Process all prompt tokens through sampler system
  2549. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2550. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2551. }
  2552. // extract the logits only for the last token
  2553. batch.logits[batch.n_tokens - 1] = true;
  2554. slot.n_decoded = 0;
  2555. slot.i_batch = batch.n_tokens - 1;
  2556. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2557. }
  2558. }
  2559. if (batch.n_tokens >= n_batch) {
  2560. break;
  2561. }
  2562. }
  2563. }
  2564. if (batch.n_tokens == 0) {
  2565. SRV_WRN("%s", "no tokens to decode\n");
  2566. return;
  2567. }
  2568. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2569. if (slot_batched) {
  2570. // make sure we're in the right embedding mode
  2571. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2572. // apply lora, only need to do it once per batch
  2573. common_set_adapter_lora(ctx, slot_batched->lora);
  2574. }
  2575. // process the created batch of tokens
  2576. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2577. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2578. llama_batch batch_view = {
  2579. n_tokens,
  2580. batch.token + i,
  2581. nullptr,
  2582. batch.pos + i,
  2583. batch.n_seq_id + i,
  2584. batch.seq_id + i,
  2585. batch.logits + i,
  2586. };
  2587. const int ret = llama_decode(ctx, batch_view);
  2588. metrics.on_decoded(slots);
  2589. if (ret != 0) {
  2590. if (n_batch == 1 || ret < 0) {
  2591. // if you get here, it means the KV cache is full - try increasing it via the context size
  2592. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2593. for (auto & slot : slots) {
  2594. slot.release();
  2595. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2596. }
  2597. break; // break loop of n_batch
  2598. }
  2599. // retry with half the batch size to try to find a free slot in the KV cache
  2600. n_batch /= 2;
  2601. i -= n_batch;
  2602. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2603. continue; // continue loop of n_batch
  2604. }
  2605. for (auto & slot : slots) {
  2606. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2607. continue; // continue loop of slots
  2608. }
  2609. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2610. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2611. // prompt evaluated for embedding
  2612. send_embedding(slot, batch_view);
  2613. slot.release();
  2614. slot.i_batch = -1;
  2615. continue; // continue loop of slots
  2616. }
  2617. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2618. send_rerank(slot, batch_view);
  2619. slot.release();
  2620. slot.i_batch = -1;
  2621. continue; // continue loop of slots
  2622. }
  2623. // prompt evaluated for next-token prediction
  2624. slot.state = SLOT_STATE_GENERATING;
  2625. } else if (slot.state != SLOT_STATE_GENERATING) {
  2626. continue; // continue loop of slots
  2627. }
  2628. const int tok_idx = slot.i_batch - i;
  2629. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2630. slot.i_batch = -1;
  2631. common_sampler_accept(slot.smpl, id, true);
  2632. slot.n_decoded += 1;
  2633. const int64_t t_current = ggml_time_us();
  2634. if (slot.n_decoded == 1) {
  2635. slot.t_start_generation = t_current;
  2636. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2637. metrics.on_prompt_eval(slot);
  2638. }
  2639. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2640. completion_token_output result;
  2641. result.tok = id;
  2642. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2643. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2644. if (slot.params.sampling.n_probs > 0) {
  2645. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2646. }
  2647. if (!process_token(result, slot)) {
  2648. // release slot because of stop condition
  2649. slot.release();
  2650. slot.print_timings();
  2651. send_final_response(slot);
  2652. metrics.on_prediction(slot);
  2653. continue;
  2654. }
  2655. }
  2656. // do speculative decoding
  2657. for (auto & slot : slots) {
  2658. if (!slot.is_processing() || !slot.can_speculate()) {
  2659. continue;
  2660. }
  2661. if (slot.state != SLOT_STATE_GENERATING) {
  2662. continue;
  2663. }
  2664. // determine the max draft that fits the current slot state
  2665. int n_draft_max = slot.params.speculative.n_max;
  2666. // note: n_past is not yet increased for the `id` token sampled above
  2667. // also, need to leave space for 1 extra token to allow context shifts
  2668. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2669. if (slot.n_remaining > 0) {
  2670. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2671. }
  2672. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2673. if (n_draft_max < slot.params.speculative.n_min) {
  2674. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2675. continue;
  2676. }
  2677. llama_token id = slot.sampled;
  2678. struct common_speculative_params params_spec;
  2679. params_spec.n_draft = n_draft_max;
  2680. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2681. params_spec.p_min = slot.params.speculative.p_min;
  2682. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2683. // ignore small drafts
  2684. if (slot.params.speculative.n_min > (int) draft.size()) {
  2685. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2686. continue;
  2687. }
  2688. // construct the speculation batch
  2689. common_batch_clear(slot.batch_spec);
  2690. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2691. for (size_t i = 0; i < draft.size(); ++i) {
  2692. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2693. }
  2694. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2695. llama_decode(ctx, slot.batch_spec);
  2696. // the accepted tokens from the speculation
  2697. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2698. slot.n_past += ids.size();
  2699. slot.n_decoded += ids.size();
  2700. slot.cache_tokens.push_back(id);
  2701. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2702. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2703. for (size_t i = 0; i < ids.size(); ++i) {
  2704. completion_token_output result;
  2705. result.tok = ids[i];
  2706. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2707. result.prob = 1.0f; // set later
  2708. // TODO: set result.probs
  2709. if (!process_token(result, slot)) {
  2710. // release slot because of stop condition
  2711. slot.release();
  2712. slot.print_timings();
  2713. send_final_response(slot);
  2714. metrics.on_prediction(slot);
  2715. break;
  2716. }
  2717. }
  2718. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2719. }
  2720. }
  2721. SRV_DBG("%s", "run slots completed\n");
  2722. }
  2723. json model_meta() const {
  2724. return json {
  2725. {"vocab_type", llama_vocab_type (vocab)},
  2726. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2727. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2728. {"n_embd", llama_model_n_embd (model)},
  2729. {"n_params", llama_model_n_params (model)},
  2730. {"size", llama_model_size (model)},
  2731. };
  2732. }
  2733. };
  2734. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2735. // skip GH copilot requests when using default port
  2736. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2737. return;
  2738. }
  2739. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2740. LOG_DBG("request: %s\n", req.body.c_str());
  2741. LOG_DBG("response: %s\n", res.body.c_str());
  2742. }
  2743. std::function<void(int)> shutdown_handler;
  2744. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2745. inline void signal_handler(int signal) {
  2746. if (is_terminating.test_and_set()) {
  2747. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2748. // this is for better developer experience, we can remove when the server is stable enough
  2749. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2750. exit(1);
  2751. }
  2752. shutdown_handler(signal);
  2753. }
  2754. int main(int argc, char ** argv) {
  2755. // own arguments required by this example
  2756. common_params params;
  2757. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2758. return 1;
  2759. }
  2760. common_init();
  2761. // struct that contains llama context and inference
  2762. server_context ctx_server;
  2763. llama_backend_init();
  2764. llama_numa_init(params.numa);
  2765. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2766. LOG_INF("\n");
  2767. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2768. LOG_INF("\n");
  2769. std::unique_ptr<httplib::Server> svr;
  2770. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2771. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2772. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2773. svr.reset(
  2774. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2775. );
  2776. } else {
  2777. LOG_INF("Running without SSL\n");
  2778. svr.reset(new httplib::Server());
  2779. }
  2780. #else
  2781. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2782. LOG_ERR("Server is built without SSL support\n");
  2783. return 1;
  2784. }
  2785. svr.reset(new httplib::Server());
  2786. #endif
  2787. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2788. svr->set_default_headers({{"Server", "llama.cpp"}});
  2789. svr->set_logger(log_server_request);
  2790. auto res_error = [](httplib::Response & res, const json & error_data) {
  2791. json final_response {{"error", error_data}};
  2792. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2793. res.status = json_value(error_data, "code", 500);
  2794. };
  2795. auto res_ok = [](httplib::Response & res, const json & data) {
  2796. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2797. res.status = 200;
  2798. };
  2799. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2800. std::string message;
  2801. try {
  2802. std::rethrow_exception(ep);
  2803. } catch (const std::exception & e) {
  2804. message = e.what();
  2805. } catch (...) {
  2806. message = "Unknown Exception";
  2807. }
  2808. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2809. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2810. res_error(res, formatted_error);
  2811. });
  2812. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2813. if (res.status == 404) {
  2814. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2815. }
  2816. // for other error codes, we skip processing here because it's already done by res_error()
  2817. });
  2818. // set timeouts and change hostname and port
  2819. svr->set_read_timeout (params.timeout_read);
  2820. svr->set_write_timeout(params.timeout_write);
  2821. std::unordered_map<std::string, std::string> log_data;
  2822. log_data["hostname"] = params.hostname;
  2823. log_data["port"] = std::to_string(params.port);
  2824. if (params.api_keys.size() == 1) {
  2825. auto key = params.api_keys[0];
  2826. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2827. } else if (params.api_keys.size() > 1) {
  2828. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2829. }
  2830. // Necessary similarity of prompt for slot selection
  2831. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2832. //
  2833. // Middlewares
  2834. //
  2835. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2836. static const std::unordered_set<std::string> public_endpoints = {
  2837. "/health",
  2838. "/models",
  2839. "/v1/models",
  2840. };
  2841. // If API key is not set, skip validation
  2842. if (params.api_keys.empty()) {
  2843. return true;
  2844. }
  2845. // If path is public or is static file, skip validation
  2846. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2847. return true;
  2848. }
  2849. // Check for API key in the header
  2850. auto auth_header = req.get_header_value("Authorization");
  2851. std::string prefix = "Bearer ";
  2852. if (auth_header.substr(0, prefix.size()) == prefix) {
  2853. std::string received_api_key = auth_header.substr(prefix.size());
  2854. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2855. return true; // API key is valid
  2856. }
  2857. }
  2858. // API key is invalid or not provided
  2859. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2860. LOG_WRN("Unauthorized: Invalid API Key\n");
  2861. return false;
  2862. };
  2863. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2864. server_state current_state = state.load();
  2865. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2866. auto tmp = string_split<std::string>(req.path, '.');
  2867. if (req.path == "/" || tmp.back() == "html") {
  2868. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2869. res.status = 503;
  2870. } else {
  2871. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2872. }
  2873. return false;
  2874. }
  2875. return true;
  2876. };
  2877. // register server middlewares
  2878. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2879. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2880. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2881. if (req.method == "OPTIONS") {
  2882. res.set_header("Access-Control-Allow-Credentials", "true");
  2883. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2884. res.set_header("Access-Control-Allow-Headers", "*");
  2885. res.set_content("", "text/html"); // blank response, no data
  2886. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2887. }
  2888. if (!middleware_server_state(req, res)) {
  2889. return httplib::Server::HandlerResponse::Handled;
  2890. }
  2891. if (!middleware_validate_api_key(req, res)) {
  2892. return httplib::Server::HandlerResponse::Handled;
  2893. }
  2894. return httplib::Server::HandlerResponse::Unhandled;
  2895. });
  2896. //
  2897. // Route handlers (or controllers)
  2898. //
  2899. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2900. // error and loading states are handled by middleware
  2901. json health = {{"status", "ok"}};
  2902. res_ok(res, health);
  2903. };
  2904. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2905. if (!params.endpoint_slots) {
  2906. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2907. return;
  2908. }
  2909. // request slots data using task queue
  2910. server_task task(SERVER_TASK_TYPE_METRICS);
  2911. task.id = ctx_server.queue_tasks.get_new_id();
  2912. ctx_server.queue_results.add_waiting_task_id(task.id);
  2913. ctx_server.queue_tasks.post(task, true); // high-priority task
  2914. // get the result
  2915. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2916. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2917. if (result->is_error()) {
  2918. res_error(res, result->to_json());
  2919. return;
  2920. }
  2921. // TODO: get rid of this dynamic_cast
  2922. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2923. GGML_ASSERT(res_metrics != nullptr);
  2924. // optionally return "fail_on_no_slot" error
  2925. if (req.has_param("fail_on_no_slot")) {
  2926. if (res_metrics->n_idle_slots == 0) {
  2927. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2928. return;
  2929. }
  2930. }
  2931. res_ok(res, res_metrics->slots_data);
  2932. };
  2933. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2934. if (!params.endpoint_metrics) {
  2935. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2936. return;
  2937. }
  2938. // request slots data using task queue
  2939. server_task task(SERVER_TASK_TYPE_METRICS);
  2940. task.id = ctx_server.queue_tasks.get_new_id();
  2941. task.metrics_reset_bucket = true;
  2942. ctx_server.queue_results.add_waiting_task_id(task.id);
  2943. ctx_server.queue_tasks.post(task, true); // high-priority task
  2944. // get the result
  2945. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2946. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2947. if (result->is_error()) {
  2948. res_error(res, result->to_json());
  2949. return;
  2950. }
  2951. // TODO: get rid of this dynamic_cast
  2952. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2953. GGML_ASSERT(res_metrics != nullptr);
  2954. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2955. json all_metrics_def = json {
  2956. {"counter", {{
  2957. {"name", "prompt_tokens_total"},
  2958. {"help", "Number of prompt tokens processed."},
  2959. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2960. }, {
  2961. {"name", "prompt_seconds_total"},
  2962. {"help", "Prompt process time"},
  2963. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2964. }, {
  2965. {"name", "tokens_predicted_total"},
  2966. {"help", "Number of generation tokens processed."},
  2967. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2968. }, {
  2969. {"name", "tokens_predicted_seconds_total"},
  2970. {"help", "Predict process time"},
  2971. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2972. }, {
  2973. {"name", "n_decode_total"},
  2974. {"help", "Total number of llama_decode() calls"},
  2975. {"value", res_metrics->n_decode_total}
  2976. }, {
  2977. {"name", "n_busy_slots_per_decode"},
  2978. {"help", "Average number of busy slots per llama_decode() call"},
  2979. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2980. }}},
  2981. {"gauge", {{
  2982. {"name", "prompt_tokens_seconds"},
  2983. {"help", "Average prompt throughput in tokens/s."},
  2984. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2985. },{
  2986. {"name", "predicted_tokens_seconds"},
  2987. {"help", "Average generation throughput in tokens/s."},
  2988. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2989. },{
  2990. {"name", "kv_cache_usage_ratio"},
  2991. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2992. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2993. },{
  2994. {"name", "kv_cache_tokens"},
  2995. {"help", "KV-cache tokens."},
  2996. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2997. },{
  2998. {"name", "requests_processing"},
  2999. {"help", "Number of requests processing."},
  3000. {"value", (uint64_t) res_metrics->n_processing_slots}
  3001. },{
  3002. {"name", "requests_deferred"},
  3003. {"help", "Number of requests deferred."},
  3004. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3005. }}}
  3006. };
  3007. std::stringstream prometheus;
  3008. for (const auto & el : all_metrics_def.items()) {
  3009. const auto & type = el.key();
  3010. const auto & metrics_def = el.value();
  3011. for (const auto & metric_def : metrics_def) {
  3012. const std::string name = metric_def.at("name");
  3013. const std::string help = metric_def.at("help");
  3014. auto value = json_value(metric_def, "value", 0.);
  3015. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3016. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3017. << "llamacpp:" << name << " " << value << "\n";
  3018. }
  3019. }
  3020. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3021. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3022. res.status = 200; // HTTP OK
  3023. };
  3024. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3025. json request_data = json::parse(req.body);
  3026. std::string filename = request_data.at("filename");
  3027. if (!fs_validate_filename(filename)) {
  3028. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3029. return;
  3030. }
  3031. std::string filepath = params.slot_save_path + filename;
  3032. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3033. task.id = ctx_server.queue_tasks.get_new_id();
  3034. task.slot_action.slot_id = id_slot;
  3035. task.slot_action.filename = filename;
  3036. task.slot_action.filepath = filepath;
  3037. ctx_server.queue_results.add_waiting_task_id(task.id);
  3038. ctx_server.queue_tasks.post(task);
  3039. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3040. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3041. if (result->is_error()) {
  3042. res_error(res, result->to_json());
  3043. return;
  3044. }
  3045. res_ok(res, result->to_json());
  3046. };
  3047. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3048. json request_data = json::parse(req.body);
  3049. std::string filename = request_data.at("filename");
  3050. if (!fs_validate_filename(filename)) {
  3051. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3052. return;
  3053. }
  3054. std::string filepath = params.slot_save_path + filename;
  3055. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3056. task.id = ctx_server.queue_tasks.get_new_id();
  3057. task.slot_action.slot_id = id_slot;
  3058. task.slot_action.filename = filename;
  3059. task.slot_action.filepath = filepath;
  3060. ctx_server.queue_results.add_waiting_task_id(task.id);
  3061. ctx_server.queue_tasks.post(task);
  3062. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3063. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3064. if (result->is_error()) {
  3065. res_error(res, result->to_json());
  3066. return;
  3067. }
  3068. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3069. res_ok(res, result->to_json());
  3070. };
  3071. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3072. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3073. task.id = ctx_server.queue_tasks.get_new_id();
  3074. task.slot_action.slot_id = id_slot;
  3075. ctx_server.queue_results.add_waiting_task_id(task.id);
  3076. ctx_server.queue_tasks.post(task);
  3077. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3078. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3079. if (result->is_error()) {
  3080. res_error(res, result->to_json());
  3081. return;
  3082. }
  3083. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3084. res_ok(res, result->to_json());
  3085. };
  3086. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3087. if (params.slot_save_path.empty()) {
  3088. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3089. return;
  3090. }
  3091. std::string id_slot_str = req.path_params.at("id_slot");
  3092. int id_slot;
  3093. try {
  3094. id_slot = std::stoi(id_slot_str);
  3095. } catch (const std::exception &) {
  3096. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3097. return;
  3098. }
  3099. std::string action = req.get_param_value("action");
  3100. if (action == "save") {
  3101. handle_slots_save(req, res, id_slot);
  3102. } else if (action == "restore") {
  3103. handle_slots_restore(req, res, id_slot);
  3104. } else if (action == "erase") {
  3105. handle_slots_erase(req, res, id_slot);
  3106. } else {
  3107. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3108. }
  3109. };
  3110. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3111. // this endpoint is publicly available, please only return what is safe to be exposed
  3112. json data = {
  3113. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3114. { "total_slots", ctx_server.params_base.n_parallel },
  3115. { "model_path", ctx_server.params_base.model },
  3116. { "chat_template", ctx_server.chat_templates.template_default->source() },
  3117. { "bos_token", ctx_server.chat_templates.template_default->bos_token() },
  3118. { "eos_token", ctx_server.chat_templates.template_default->eos_token() },
  3119. { "build_info", build_info },
  3120. };
  3121. if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
  3122. data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
  3123. }
  3124. res_ok(res, data);
  3125. };
  3126. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3127. if (!ctx_server.params_base.endpoint_props) {
  3128. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3129. return;
  3130. }
  3131. json data = json::parse(req.body);
  3132. // update any props here
  3133. res_ok(res, {{ "success", true }});
  3134. };
  3135. // handle completion-like requests (completion, chat, infill)
  3136. // we can optionally provide a custom format for partial results and final results
  3137. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3138. server_task_type type,
  3139. json & data,
  3140. std::function<bool()> is_connection_closed,
  3141. httplib::Response & res,
  3142. oaicompat_type oaicompat) {
  3143. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3144. if (ctx_server.params_base.embedding) {
  3145. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3146. return;
  3147. }
  3148. auto completion_id = gen_chatcmplid();
  3149. std::vector<server_task> tasks;
  3150. try {
  3151. const auto & prompt = data.at("prompt");
  3152. LOG_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3153. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3154. tasks.reserve(tokenized_prompts.size());
  3155. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3156. server_task task = server_task(type);
  3157. task.id = ctx_server.queue_tasks.get_new_id();
  3158. task.index = i;
  3159. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3160. task.params = server_task::params_from_json_cmpl(
  3161. ctx_server.ctx,
  3162. ctx_server.params_base,
  3163. data);
  3164. task.id_selected_slot = json_value(data, "id_slot", -1);
  3165. // OAI-compat
  3166. task.params.oaicompat = oaicompat;
  3167. task.params.oaicompat_cmpl_id = completion_id;
  3168. // oaicompat_model is already populated by params_from_json_cmpl
  3169. tasks.push_back(task);
  3170. }
  3171. } catch (const std::exception & e) {
  3172. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3173. return;
  3174. }
  3175. ctx_server.queue_results.add_waiting_tasks(tasks);
  3176. ctx_server.queue_tasks.post(tasks);
  3177. bool stream = json_value(data, "stream", false);
  3178. const auto task_ids = server_task::get_list_id(tasks);
  3179. if (!stream) {
  3180. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3181. if (results.size() == 1) {
  3182. // single result
  3183. res_ok(res, results[0]->to_json());
  3184. } else {
  3185. // multiple results (multitask)
  3186. json arr = json::array();
  3187. for (auto & res : results) {
  3188. arr.push_back(res->to_json());
  3189. }
  3190. res_ok(res, arr);
  3191. }
  3192. }, [&](const json & error_data) {
  3193. res_error(res, error_data);
  3194. }, is_connection_closed);
  3195. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3196. } else {
  3197. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3198. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3199. json res_json = result->to_json();
  3200. if (res_json.is_array()) {
  3201. for (const auto & res : res_json) {
  3202. if (!server_sent_event(sink, "data", res)) {
  3203. // sending failed (HTTP connection closed), cancel the generation
  3204. return false;
  3205. }
  3206. }
  3207. return true;
  3208. } else {
  3209. return server_sent_event(sink, "data", res_json);
  3210. }
  3211. }, [&](const json & error_data) {
  3212. server_sent_event(sink, "error", error_data);
  3213. }, [&sink]() {
  3214. // note: do not use req.is_connection_closed here because req is already destroyed
  3215. return !sink.is_writable();
  3216. });
  3217. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3218. static const std::string ev_done = "data: [DONE]\n\n";
  3219. sink.write(ev_done.data(), ev_done.size());
  3220. }
  3221. sink.done();
  3222. return false;
  3223. };
  3224. auto on_complete = [task_ids, &ctx_server] (bool) {
  3225. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3226. };
  3227. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3228. }
  3229. };
  3230. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3231. json data = json::parse(req.body);
  3232. return handle_completions_impl(
  3233. SERVER_TASK_TYPE_COMPLETION,
  3234. data,
  3235. req.is_connection_closed,
  3236. res,
  3237. OAICOMPAT_TYPE_NONE);
  3238. };
  3239. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3240. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3241. return handle_completions_impl(
  3242. SERVER_TASK_TYPE_COMPLETION,
  3243. data,
  3244. req.is_connection_closed,
  3245. res,
  3246. OAICOMPAT_TYPE_COMPLETION);
  3247. };
  3248. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3249. // check model compatibility
  3250. std::string err;
  3251. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3252. err += "prefix token is missing. ";
  3253. }
  3254. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3255. err += "suffix token is missing. ";
  3256. }
  3257. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3258. err += "middle token is missing. ";
  3259. }
  3260. if (!err.empty()) {
  3261. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3262. return;
  3263. }
  3264. json data = json::parse(req.body);
  3265. // validate input
  3266. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3267. // prompt is optional
  3268. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3269. }
  3270. if (!data.contains("input_prefix")) {
  3271. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3272. }
  3273. if (!data.contains("input_suffix")) {
  3274. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3275. }
  3276. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3277. // input_extra is optional
  3278. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3279. return;
  3280. }
  3281. json input_extra = json_value(data, "input_extra", json::array());
  3282. for (const auto & chunk : input_extra) {
  3283. // { "text": string, "filename": string }
  3284. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3285. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3286. return;
  3287. }
  3288. // filename is optional
  3289. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3290. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3291. return;
  3292. }
  3293. }
  3294. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3295. std::string prompt = json_value(data, "prompt", std::string());
  3296. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3297. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3298. data["prompt"] = format_infill(
  3299. ctx_server.vocab,
  3300. data.at("input_prefix"),
  3301. data.at("input_suffix"),
  3302. data.at("input_extra"),
  3303. ctx_server.params_base.n_batch,
  3304. ctx_server.params_base.n_predict,
  3305. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3306. ctx_server.params_base.spm_infill,
  3307. tokenized_prompts[0]
  3308. );
  3309. return handle_completions_impl(
  3310. SERVER_TASK_TYPE_INFILL,
  3311. data,
  3312. req.is_connection_closed,
  3313. res,
  3314. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3315. };
  3316. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3317. LOG_DBG("request: %s\n", req.body.c_str());
  3318. if (ctx_server.params_base.embedding) {
  3319. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3320. return;
  3321. }
  3322. auto body = json::parse(req.body);
  3323. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3324. return handle_completions_impl(
  3325. SERVER_TASK_TYPE_COMPLETION,
  3326. data,
  3327. req.is_connection_closed,
  3328. res,
  3329. OAICOMPAT_TYPE_CHAT);
  3330. };
  3331. // same with handle_chat_completions, but without inference part
  3332. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3333. auto body = json::parse(req.body);
  3334. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3335. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3336. };
  3337. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3338. json models = {
  3339. {"object", "list"},
  3340. {"data", {
  3341. {
  3342. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3343. {"object", "model"},
  3344. {"created", std::time(0)},
  3345. {"owned_by", "llamacpp"},
  3346. {"meta", ctx_server.model_meta()}
  3347. },
  3348. }}
  3349. };
  3350. res_ok(res, models);
  3351. };
  3352. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3353. const json body = json::parse(req.body);
  3354. json tokens_response = json::array();
  3355. if (body.count("content") != 0) {
  3356. const bool add_special = json_value(body, "add_special", false);
  3357. const bool with_pieces = json_value(body, "with_pieces", false);
  3358. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3359. if (with_pieces) {
  3360. for (const auto& token : tokens) {
  3361. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3362. json piece_json;
  3363. // Check if the piece is valid UTF-8
  3364. if (is_valid_utf8(piece)) {
  3365. piece_json = piece;
  3366. } else {
  3367. // If not valid UTF-8, store as array of byte values
  3368. piece_json = json::array();
  3369. for (unsigned char c : piece) {
  3370. piece_json.push_back(static_cast<int>(c));
  3371. }
  3372. }
  3373. tokens_response.push_back({
  3374. {"id", token},
  3375. {"piece", piece_json}
  3376. });
  3377. }
  3378. } else {
  3379. tokens_response = tokens;
  3380. }
  3381. }
  3382. const json data = format_tokenizer_response(tokens_response);
  3383. res_ok(res, data);
  3384. };
  3385. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3386. const json body = json::parse(req.body);
  3387. std::string content;
  3388. if (body.count("tokens") != 0) {
  3389. const llama_tokens tokens = body.at("tokens");
  3390. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3391. }
  3392. const json data = format_detokenized_response(content);
  3393. res_ok(res, data);
  3394. };
  3395. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3396. const json body = json::parse(req.body);
  3397. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3398. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3399. return;
  3400. }
  3401. // for the shape of input/content, see tokenize_input_prompts()
  3402. json prompt;
  3403. if (body.count("input") != 0) {
  3404. prompt = body.at("input");
  3405. } else if (body.contains("content")) {
  3406. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3407. prompt = body.at("content");
  3408. } else {
  3409. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3410. return;
  3411. }
  3412. bool use_base64 = false;
  3413. if (body.count("encoding_format") != 0) {
  3414. const std::string& format = body.at("encoding_format");
  3415. if (format == "base64") {
  3416. use_base64 = true;
  3417. } else if (format != "float") {
  3418. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3419. return;
  3420. }
  3421. }
  3422. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3423. for (const auto & tokens : tokenized_prompts) {
  3424. // this check is necessary for models that do not add BOS token to the input
  3425. if (tokens.empty()) {
  3426. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3427. return;
  3428. }
  3429. }
  3430. // create and queue the task
  3431. json responses = json::array();
  3432. bool error = false;
  3433. {
  3434. std::vector<server_task> tasks;
  3435. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3436. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3437. task.id = ctx_server.queue_tasks.get_new_id();
  3438. task.index = i;
  3439. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3440. // OAI-compat
  3441. task.params.oaicompat = oaicompat;
  3442. tasks.push_back(task);
  3443. }
  3444. ctx_server.queue_results.add_waiting_tasks(tasks);
  3445. ctx_server.queue_tasks.post(tasks);
  3446. // get the result
  3447. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3448. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3449. for (auto & res : results) {
  3450. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3451. responses.push_back(res->to_json());
  3452. }
  3453. }, [&](const json & error_data) {
  3454. res_error(res, error_data);
  3455. error = true;
  3456. }, req.is_connection_closed);
  3457. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3458. }
  3459. if (error) {
  3460. return;
  3461. }
  3462. // write JSON response
  3463. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3464. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3465. : json(responses);
  3466. res_ok(res, root);
  3467. };
  3468. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3469. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3470. };
  3471. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3472. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3473. };
  3474. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3475. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3476. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3477. return;
  3478. }
  3479. const json body = json::parse(req.body);
  3480. // TODO: implement
  3481. //int top_n = 1;
  3482. //if (body.count("top_n") != 1) {
  3483. // top_n = body.at("top_n");
  3484. //} else {
  3485. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3486. // return;
  3487. //}
  3488. json query;
  3489. if (body.count("query") == 1) {
  3490. query = body.at("query");
  3491. if (!query.is_string()) {
  3492. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3493. return;
  3494. }
  3495. } else {
  3496. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3497. return;
  3498. }
  3499. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3500. if (documents.empty()) {
  3501. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3502. return;
  3503. }
  3504. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3505. // create and queue the task
  3506. json responses = json::array();
  3507. bool error = false;
  3508. {
  3509. std::vector<server_task> tasks;
  3510. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3511. tasks.reserve(tokenized_docs.size());
  3512. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3513. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3514. task.id = ctx_server.queue_tasks.get_new_id();
  3515. task.index = i;
  3516. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3517. tasks.push_back(task);
  3518. }
  3519. ctx_server.queue_results.add_waiting_tasks(tasks);
  3520. ctx_server.queue_tasks.post(tasks);
  3521. // get the result
  3522. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3523. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3524. for (auto & res : results) {
  3525. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3526. responses.push_back(res->to_json());
  3527. }
  3528. }, [&](const json & error_data) {
  3529. res_error(res, error_data);
  3530. error = true;
  3531. }, req.is_connection_closed);
  3532. }
  3533. if (error) {
  3534. return;
  3535. }
  3536. // write JSON response
  3537. json root = format_response_rerank(body, responses);
  3538. res_ok(res, root);
  3539. };
  3540. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3541. json result = json::array();
  3542. const auto & loras = ctx_server.params_base.lora_adapters;
  3543. for (size_t i = 0; i < loras.size(); ++i) {
  3544. auto & lora = loras[i];
  3545. result.push_back({
  3546. {"id", i},
  3547. {"path", lora.path},
  3548. {"scale", lora.scale},
  3549. });
  3550. }
  3551. res_ok(res, result);
  3552. res.status = 200; // HTTP OK
  3553. };
  3554. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3555. const json body = json::parse(req.body);
  3556. if (!body.is_array()) {
  3557. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3558. return;
  3559. }
  3560. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3561. task.id = ctx_server.queue_tasks.get_new_id();
  3562. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3563. ctx_server.queue_results.add_waiting_task_id(task.id);
  3564. ctx_server.queue_tasks.post(task);
  3565. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3566. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3567. if (result->is_error()) {
  3568. res_error(res, result->to_json());
  3569. return;
  3570. }
  3571. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3572. res_ok(res, result->to_json());
  3573. };
  3574. //
  3575. // Router
  3576. //
  3577. if (!params.webui) {
  3578. LOG_INF("Web UI is disabled\n");
  3579. } else {
  3580. // register static assets routes
  3581. if (!params.public_path.empty()) {
  3582. // Set the base directory for serving static files
  3583. bool is_found = svr->set_mount_point("/", params.public_path);
  3584. if (!is_found) {
  3585. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3586. return 1;
  3587. }
  3588. } else {
  3589. // using embedded static index.html
  3590. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3591. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3592. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3593. } else {
  3594. res.set_header("Content-Encoding", "gzip");
  3595. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3596. }
  3597. return false;
  3598. });
  3599. }
  3600. }
  3601. // register API routes
  3602. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3603. svr->Get ("/metrics", handle_metrics);
  3604. svr->Get ("/props", handle_props);
  3605. svr->Post("/props", handle_props_change);
  3606. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3607. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3608. svr->Post("/completion", handle_completions); // legacy
  3609. svr->Post("/completions", handle_completions);
  3610. svr->Post("/v1/completions", handle_completions_oai);
  3611. svr->Post("/chat/completions", handle_chat_completions);
  3612. svr->Post("/v1/chat/completions", handle_chat_completions);
  3613. svr->Post("/infill", handle_infill);
  3614. svr->Post("/embedding", handle_embeddings); // legacy
  3615. svr->Post("/embeddings", handle_embeddings);
  3616. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3617. svr->Post("/rerank", handle_rerank);
  3618. svr->Post("/reranking", handle_rerank);
  3619. svr->Post("/v1/rerank", handle_rerank);
  3620. svr->Post("/v1/reranking", handle_rerank);
  3621. svr->Post("/tokenize", handle_tokenize);
  3622. svr->Post("/detokenize", handle_detokenize);
  3623. svr->Post("/apply-template", handle_apply_template);
  3624. // LoRA adapters hotswap
  3625. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3626. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3627. // Save & load slots
  3628. svr->Get ("/slots", handle_slots);
  3629. svr->Post("/slots/:id_slot", handle_slots_action);
  3630. //
  3631. // Start the server
  3632. //
  3633. if (params.n_threads_http < 1) {
  3634. // +2 threads for monitoring endpoints
  3635. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3636. }
  3637. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3638. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3639. // clean up function, to be called before exit
  3640. auto clean_up = [&svr]() {
  3641. svr->stop();
  3642. llama_backend_free();
  3643. };
  3644. // bind HTTP listen port
  3645. bool was_bound = false;
  3646. if (params.port == 0) {
  3647. int bound_port = svr->bind_to_any_port(params.hostname);
  3648. if ((was_bound = (bound_port >= 0))) {
  3649. params.port = bound_port;
  3650. }
  3651. } else {
  3652. was_bound = svr->bind_to_port(params.hostname, params.port);
  3653. }
  3654. if (!was_bound) {
  3655. //LOG_ERROR("couldn't bind HTTP server socket", {
  3656. // {"hostname", params.hostname},
  3657. // {"port", params.port},
  3658. //});
  3659. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3660. clean_up();
  3661. return 1;
  3662. }
  3663. // run the HTTP server in a thread
  3664. std::thread t([&]() { svr->listen_after_bind(); });
  3665. svr->wait_until_ready();
  3666. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3667. // load the model
  3668. LOG_INF("%s: loading model\n", __func__);
  3669. if (!ctx_server.load_model(params)) {
  3670. clean_up();
  3671. t.join();
  3672. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3673. return 1;
  3674. }
  3675. ctx_server.init();
  3676. state.store(SERVER_STATE_READY);
  3677. LOG_INF("%s: model loaded\n", __func__);
  3678. // print sample chat example to make it clear which template is used
  3679. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3680. ctx_server.chat_templates.template_default->source().c_str(),
  3681. common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
  3682. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3683. ctx_server.process_single_task(task);
  3684. });
  3685. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3686. ctx_server.update_slots();
  3687. });
  3688. shutdown_handler = [&](int) {
  3689. ctx_server.queue_tasks.terminate();
  3690. };
  3691. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3692. ctx_server.queue_tasks.start_loop();
  3693. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3694. struct sigaction sigint_action;
  3695. sigint_action.sa_handler = signal_handler;
  3696. sigemptyset (&sigint_action.sa_mask);
  3697. sigint_action.sa_flags = 0;
  3698. sigaction(SIGINT, &sigint_action, NULL);
  3699. sigaction(SIGTERM, &sigint_action, NULL);
  3700. #elif defined (_WIN32)
  3701. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3702. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3703. };
  3704. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3705. #endif
  3706. clean_up();
  3707. t.join();
  3708. return 0;
  3709. }