ggml.h 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[2, 1] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[0, 2] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_SRC 6
  195. #define GGML_MAX_NAME 48
  196. #define GGML_MAX_OP_PARAMS 32
  197. #define GGML_DEFAULT_N_THREADS 4
  198. #define GGML_EXIT_SUCCESS 0
  199. #define GGML_EXIT_ABORTED 1
  200. #define GGML_UNUSED(x) (void)(x)
  201. #define GGML_ASSERT(x) \
  202. do { \
  203. if (!(x)) { \
  204. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  205. abort(); \
  206. } \
  207. } while (0)
  208. // used to copy the number of elements and stride in bytes of tensors into local variables.
  209. // main purpose is to reduce code duplication and improve readability.
  210. //
  211. // example:
  212. //
  213. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  214. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  215. //
  216. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  217. const type prefix##0 = (pointer)->array[0]; \
  218. GGML_UNUSED(prefix##0);
  219. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  220. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  221. const type prefix##1 = (pointer)->array[1]; \
  222. GGML_UNUSED(prefix##1);
  223. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  224. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  225. const type prefix##2 = (pointer)->array[2]; \
  226. GGML_UNUSED(prefix##2);
  227. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  228. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  229. const type prefix##3 = (pointer)->array[3]; \
  230. GGML_UNUSED(prefix##3);
  231. #ifdef __cplusplus
  232. extern "C" {
  233. #endif
  234. #ifdef __ARM_NEON
  235. // we use the built-in 16-bit float type
  236. typedef __fp16 ggml_fp16_t;
  237. #else
  238. typedef uint16_t ggml_fp16_t;
  239. #endif
  240. // convert FP16 <-> FP32
  241. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  242. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  243. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  244. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  245. struct ggml_object;
  246. struct ggml_context;
  247. enum ggml_type {
  248. GGML_TYPE_F32 = 0,
  249. GGML_TYPE_F16 = 1,
  250. GGML_TYPE_Q4_0 = 2,
  251. GGML_TYPE_Q4_1 = 3,
  252. // GGML_TYPE_Q4_2 = 4, support has been removed
  253. // GGML_TYPE_Q4_3 (5) support has been removed
  254. GGML_TYPE_Q5_0 = 6,
  255. GGML_TYPE_Q5_1 = 7,
  256. GGML_TYPE_Q8_0 = 8,
  257. GGML_TYPE_Q8_1 = 9,
  258. // k-quantizations
  259. GGML_TYPE_Q2_K = 10,
  260. GGML_TYPE_Q3_K = 11,
  261. GGML_TYPE_Q4_K = 12,
  262. GGML_TYPE_Q5_K = 13,
  263. GGML_TYPE_Q6_K = 14,
  264. GGML_TYPE_Q8_K = 15,
  265. GGML_TYPE_I8,
  266. GGML_TYPE_I16,
  267. GGML_TYPE_I32,
  268. GGML_TYPE_COUNT,
  269. };
  270. enum ggml_backend {
  271. GGML_BACKEND_CPU = 0,
  272. GGML_BACKEND_GPU = 10,
  273. GGML_BACKEND_GPU_SPLIT = 20,
  274. };
  275. // model file types
  276. enum ggml_ftype {
  277. GGML_FTYPE_UNKNOWN = -1,
  278. GGML_FTYPE_ALL_F32 = 0,
  279. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  280. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  281. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  282. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  283. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  284. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  285. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  286. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  287. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  288. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  289. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  290. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  291. };
  292. // available tensor operations:
  293. enum ggml_op {
  294. GGML_OP_NONE = 0,
  295. GGML_OP_DUP,
  296. GGML_OP_ADD,
  297. GGML_OP_ADD1,
  298. GGML_OP_ACC,
  299. GGML_OP_SUB,
  300. GGML_OP_MUL,
  301. GGML_OP_DIV,
  302. GGML_OP_SQR,
  303. GGML_OP_SQRT,
  304. GGML_OP_LOG,
  305. GGML_OP_SUM,
  306. GGML_OP_SUM_ROWS,
  307. GGML_OP_MEAN,
  308. GGML_OP_ARGMAX,
  309. GGML_OP_REPEAT,
  310. GGML_OP_REPEAT_BACK,
  311. GGML_OP_ABS,
  312. GGML_OP_SGN,
  313. GGML_OP_NEG,
  314. GGML_OP_STEP,
  315. GGML_OP_TANH,
  316. GGML_OP_ELU,
  317. GGML_OP_RELU,
  318. GGML_OP_GELU,
  319. GGML_OP_GELU_QUICK,
  320. GGML_OP_SILU,
  321. GGML_OP_SILU_BACK,
  322. GGML_OP_NORM, // normalize
  323. GGML_OP_RMS_NORM,
  324. GGML_OP_RMS_NORM_BACK,
  325. GGML_OP_MUL_MAT,
  326. GGML_OP_OUT_PROD,
  327. GGML_OP_SCALE,
  328. GGML_OP_SET,
  329. GGML_OP_CPY,
  330. GGML_OP_CONT,
  331. GGML_OP_RESHAPE,
  332. GGML_OP_VIEW,
  333. GGML_OP_PERMUTE,
  334. GGML_OP_TRANSPOSE,
  335. GGML_OP_GET_ROWS,
  336. GGML_OP_GET_ROWS_BACK,
  337. GGML_OP_DIAG,
  338. GGML_OP_DIAG_MASK_INF,
  339. GGML_OP_DIAG_MASK_ZERO,
  340. GGML_OP_SOFT_MAX,
  341. GGML_OP_SOFT_MAX_BACK,
  342. GGML_OP_ROPE,
  343. GGML_OP_ROPE_BACK,
  344. GGML_OP_ALIBI,
  345. GGML_OP_CLAMP,
  346. GGML_OP_CONV_1D,
  347. GGML_OP_CONV_2D,
  348. GGML_OP_POOL_1D,
  349. GGML_OP_POOL_2D,
  350. GGML_OP_FLASH_ATTN,
  351. GGML_OP_FLASH_FF,
  352. GGML_OP_FLASH_ATTN_BACK,
  353. GGML_OP_WIN_PART,
  354. GGML_OP_WIN_UNPART,
  355. GGML_OP_MAP_UNARY,
  356. GGML_OP_MAP_BINARY,
  357. GGML_OP_MAP_CUSTOM1,
  358. GGML_OP_MAP_CUSTOM2,
  359. GGML_OP_MAP_CUSTOM3,
  360. GGML_OP_CROSS_ENTROPY_LOSS,
  361. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  362. GGML_OP_COUNT,
  363. };
  364. // ggml object
  365. struct ggml_object {
  366. size_t offs;
  367. size_t size;
  368. struct ggml_object * next;
  369. char padding[8];
  370. };
  371. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  372. // n-dimensional tensor
  373. struct ggml_tensor {
  374. enum ggml_type type;
  375. enum ggml_backend backend;
  376. int n_dims;
  377. int64_t ne[GGML_MAX_DIMS]; // number of elements
  378. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  379. // nb[0] = sizeof(type)
  380. // nb[1] = nb[0] * ne[0] + padding
  381. // nb[i] = nb[i-1] * ne[i-1]
  382. // compute data
  383. enum ggml_op op;
  384. // op params - allocated as int32_t for alignment
  385. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(uint32_t)];
  386. bool is_param;
  387. struct ggml_tensor * grad;
  388. struct ggml_tensor * src[GGML_MAX_SRC];
  389. // performance
  390. int perf_runs;
  391. int64_t perf_cycles;
  392. int64_t perf_time_us;
  393. void * data;
  394. char name[GGML_MAX_NAME];
  395. void * extra; // extra things e.g. for ggml-cuda.cu
  396. char padding[8];
  397. };
  398. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  399. // the compute plan that needs to be prepared for ggml_graph_compute()
  400. // since https://github.com/ggerganov/ggml/issues/287
  401. struct ggml_cplan {
  402. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  403. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  404. int n_threads;
  405. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  406. int n_tasks[GGML_MAX_NODES];
  407. // abort ggml_graph_compute when true
  408. bool (*abort_callback)(void * data);
  409. void * abort_callback_data;
  410. };
  411. // computation graph
  412. struct ggml_cgraph {
  413. int n_nodes;
  414. int n_leafs;
  415. struct ggml_tensor * nodes[GGML_MAX_NODES];
  416. struct ggml_tensor * grads[GGML_MAX_NODES];
  417. struct ggml_tensor * leafs[GGML_MAX_NODES];
  418. // performance
  419. int perf_runs;
  420. int64_t perf_cycles;
  421. int64_t perf_time_us;
  422. };
  423. // scratch buffer
  424. struct ggml_scratch {
  425. size_t offs;
  426. size_t size;
  427. void * data;
  428. };
  429. struct ggml_init_params {
  430. // memory pool
  431. size_t mem_size; // bytes
  432. void * mem_buffer; // if NULL, memory will be allocated internally
  433. bool no_alloc; // don't allocate memory for the tensor data
  434. };
  435. // compute types
  436. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  437. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  438. enum ggml_task_type {
  439. GGML_TASK_INIT = 0,
  440. GGML_TASK_COMPUTE,
  441. GGML_TASK_FINALIZE,
  442. };
  443. struct ggml_compute_params {
  444. enum ggml_task_type type;
  445. // ith = thread index, nth = number of threads
  446. int ith, nth;
  447. // work buffer for all threads
  448. size_t wsize;
  449. void * wdata;
  450. };
  451. // misc
  452. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  453. GGML_API int64_t ggml_time_ms(void);
  454. GGML_API int64_t ggml_time_us(void);
  455. GGML_API int64_t ggml_cycles(void);
  456. GGML_API int64_t ggml_cycles_per_ms(void);
  457. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  458. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  459. GGML_API void ggml_print_object (const struct ggml_object * obj);
  460. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  461. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  462. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  463. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  464. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  465. GGML_API int ggml_blck_size (enum ggml_type type);
  466. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  467. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  468. GGML_API const char * ggml_type_name(enum ggml_type type);
  469. GGML_API const char * ggml_op_name (enum ggml_op op);
  470. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  471. GGML_API bool ggml_is_quantized(enum ggml_type type);
  472. // TODO: temporary until model loading of ggml examples is refactored
  473. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  474. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  475. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  476. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  477. // use this to compute the memory overhead of a tensor
  478. GGML_API size_t ggml_tensor_overhead(void);
  479. // main
  480. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  481. GGML_API void ggml_free(struct ggml_context * ctx);
  482. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  483. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  484. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  485. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  486. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  487. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  488. GGML_API struct ggml_tensor * ggml_new_tensor(
  489. struct ggml_context * ctx,
  490. enum ggml_type type,
  491. int n_dims,
  492. const int64_t *ne);
  493. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  494. struct ggml_context * ctx,
  495. enum ggml_type type,
  496. int64_t ne0);
  497. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  498. struct ggml_context * ctx,
  499. enum ggml_type type,
  500. int64_t ne0,
  501. int64_t ne1);
  502. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  503. struct ggml_context * ctx,
  504. enum ggml_type type,
  505. int64_t ne0,
  506. int64_t ne1,
  507. int64_t ne2);
  508. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  509. struct ggml_context * ctx,
  510. enum ggml_type type,
  511. int64_t ne0,
  512. int64_t ne1,
  513. int64_t ne2,
  514. int64_t ne3);
  515. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  516. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  517. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  518. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  519. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  520. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  521. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  522. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  523. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  524. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  525. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  526. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  527. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  528. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  529. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  530. GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
  531. GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
  532. //
  533. // operations on tensors with backpropagation
  534. //
  535. GGML_API struct ggml_tensor * ggml_dup(
  536. struct ggml_context * ctx,
  537. struct ggml_tensor * a);
  538. GGML_API struct ggml_tensor * ggml_add(
  539. struct ggml_context * ctx,
  540. struct ggml_tensor * a,
  541. struct ggml_tensor * b);
  542. GGML_API struct ggml_tensor * ggml_add_inplace(
  543. struct ggml_context * ctx,
  544. struct ggml_tensor * a,
  545. struct ggml_tensor * b);
  546. GGML_API struct ggml_tensor * ggml_add1(
  547. struct ggml_context * ctx,
  548. struct ggml_tensor * a,
  549. struct ggml_tensor * b);
  550. GGML_API struct ggml_tensor * ggml_add1_inplace(
  551. struct ggml_context * ctx,
  552. struct ggml_tensor * a,
  553. struct ggml_tensor * b);
  554. GGML_API struct ggml_tensor * ggml_acc(
  555. struct ggml_context * ctx,
  556. struct ggml_tensor * a,
  557. struct ggml_tensor * b,
  558. size_t nb1,
  559. size_t nb2,
  560. size_t nb3,
  561. size_t offset);
  562. GGML_API struct ggml_tensor * ggml_acc_inplace(
  563. struct ggml_context * ctx,
  564. struct ggml_tensor * a,
  565. struct ggml_tensor * b,
  566. size_t nb1,
  567. size_t nb2,
  568. size_t nb3,
  569. size_t offset);
  570. GGML_API struct ggml_tensor * ggml_sub(
  571. struct ggml_context * ctx,
  572. struct ggml_tensor * a,
  573. struct ggml_tensor * b);
  574. GGML_API struct ggml_tensor * ggml_sub_inplace(
  575. struct ggml_context * ctx,
  576. struct ggml_tensor * a,
  577. struct ggml_tensor * b);
  578. GGML_API struct ggml_tensor * ggml_mul(
  579. struct ggml_context * ctx,
  580. struct ggml_tensor * a,
  581. struct ggml_tensor * b);
  582. GGML_API struct ggml_tensor * ggml_mul_inplace(
  583. struct ggml_context * ctx,
  584. struct ggml_tensor * a,
  585. struct ggml_tensor * b);
  586. GGML_API struct ggml_tensor * ggml_div(
  587. struct ggml_context * ctx,
  588. struct ggml_tensor * a,
  589. struct ggml_tensor * b);
  590. GGML_API struct ggml_tensor * ggml_div_inplace(
  591. struct ggml_context * ctx,
  592. struct ggml_tensor * a,
  593. struct ggml_tensor * b);
  594. GGML_API struct ggml_tensor * ggml_sqr(
  595. struct ggml_context * ctx,
  596. struct ggml_tensor * a);
  597. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  598. struct ggml_context * ctx,
  599. struct ggml_tensor * a);
  600. GGML_API struct ggml_tensor * ggml_sqrt(
  601. struct ggml_context * ctx,
  602. struct ggml_tensor * a);
  603. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  604. struct ggml_context * ctx,
  605. struct ggml_tensor * a);
  606. GGML_API struct ggml_tensor * ggml_log(
  607. struct ggml_context * ctx,
  608. struct ggml_tensor * a);
  609. GGML_API struct ggml_tensor * ggml_log_inplace(
  610. struct ggml_context * ctx,
  611. struct ggml_tensor * a);
  612. // return scalar
  613. GGML_API struct ggml_tensor * ggml_sum(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a);
  616. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  617. GGML_API struct ggml_tensor * ggml_sum_rows(
  618. struct ggml_context * ctx,
  619. struct ggml_tensor * a);
  620. // mean along rows
  621. GGML_API struct ggml_tensor * ggml_mean(
  622. struct ggml_context * ctx,
  623. struct ggml_tensor * a);
  624. // argmax along rows
  625. GGML_API struct ggml_tensor * ggml_argmax(
  626. struct ggml_context * ctx,
  627. struct ggml_tensor * a);
  628. // if a is the same shape as b, and a is not parameter, return a
  629. // otherwise, return a new tensor: repeat(a) to fit in b
  630. GGML_API struct ggml_tensor * ggml_repeat(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a,
  633. struct ggml_tensor * b);
  634. GGML_API struct ggml_tensor * ggml_repeat_back(
  635. struct ggml_context * ctx,
  636. struct ggml_tensor * a,
  637. struct ggml_tensor * b);
  638. GGML_API struct ggml_tensor * ggml_abs(
  639. struct ggml_context * ctx,
  640. struct ggml_tensor * a);
  641. GGML_API struct ggml_tensor * ggml_abs_inplace(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a);
  644. GGML_API struct ggml_tensor * ggml_sgn(
  645. struct ggml_context * ctx,
  646. struct ggml_tensor * a);
  647. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  648. struct ggml_context * ctx,
  649. struct ggml_tensor * a);
  650. GGML_API struct ggml_tensor * ggml_neg(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a);
  653. GGML_API struct ggml_tensor * ggml_neg_inplace(
  654. struct ggml_context * ctx,
  655. struct ggml_tensor * a);
  656. GGML_API struct ggml_tensor * ggml_step(
  657. struct ggml_context * ctx,
  658. struct ggml_tensor * a);
  659. GGML_API struct ggml_tensor * ggml_step_inplace(
  660. struct ggml_context * ctx,
  661. struct ggml_tensor * a);
  662. GGML_API struct ggml_tensor * ggml_tanh(
  663. struct ggml_context * ctx,
  664. struct ggml_tensor * a);
  665. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  666. struct ggml_context * ctx,
  667. struct ggml_tensor * a);
  668. GGML_API struct ggml_tensor * ggml_elu(
  669. struct ggml_context * ctx,
  670. struct ggml_tensor * a);
  671. GGML_API struct ggml_tensor * ggml_elu_inplace(
  672. struct ggml_context * ctx,
  673. struct ggml_tensor * a);
  674. GGML_API struct ggml_tensor * ggml_relu(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a);
  677. GGML_API struct ggml_tensor * ggml_relu_inplace(
  678. struct ggml_context * ctx,
  679. struct ggml_tensor * a);
  680. // TODO: double-check this computation is correct
  681. GGML_API struct ggml_tensor * ggml_gelu(
  682. struct ggml_context * ctx,
  683. struct ggml_tensor * a);
  684. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  685. struct ggml_context * ctx,
  686. struct ggml_tensor * a);
  687. GGML_API struct ggml_tensor * ggml_gelu_quick(
  688. struct ggml_context * ctx,
  689. struct ggml_tensor * a);
  690. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a);
  693. GGML_API struct ggml_tensor * ggml_silu(
  694. struct ggml_context * ctx,
  695. struct ggml_tensor * a);
  696. GGML_API struct ggml_tensor * ggml_silu_inplace(
  697. struct ggml_context * ctx,
  698. struct ggml_tensor * a);
  699. // a - x
  700. // b - dy
  701. GGML_API struct ggml_tensor * ggml_silu_back(
  702. struct ggml_context * ctx,
  703. struct ggml_tensor * a,
  704. struct ggml_tensor * b);
  705. // normalize along rows
  706. // TODO: eps is hardcoded to 1e-5 for now
  707. GGML_API struct ggml_tensor * ggml_norm(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a);
  710. GGML_API struct ggml_tensor * ggml_norm_inplace(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a);
  713. GGML_API struct ggml_tensor * ggml_rms_norm(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. // a - x
  720. // b - dy
  721. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a,
  724. struct ggml_tensor * b);
  725. // A: n columns, m rows
  726. // B: n columns, p rows (i.e. we transpose it internally)
  727. // result is m columns, p rows
  728. GGML_API struct ggml_tensor * ggml_mul_mat(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a,
  731. struct ggml_tensor * b);
  732. // A: m columns, n rows,
  733. // B: p columns, n rows,
  734. // result is m columns, p rows
  735. GGML_API struct ggml_tensor * ggml_out_prod(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. //
  740. // operations on tensors without backpropagation
  741. //
  742. GGML_API struct ggml_tensor * ggml_scale(
  743. struct ggml_context * ctx,
  744. struct ggml_tensor * a,
  745. struct ggml_tensor * b);
  746. // in-place, returns view(a)
  747. GGML_API struct ggml_tensor * ggml_scale_inplace(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b);
  751. // b -> view(a,offset,nb1,nb2,3), return modified a
  752. GGML_API struct ggml_tensor * ggml_set(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a,
  755. struct ggml_tensor * b,
  756. size_t nb1,
  757. size_t nb2,
  758. size_t nb3,
  759. size_t offset);
  760. // b -> view(a,offset,nb1,nb2,3), return view(a)
  761. GGML_API struct ggml_tensor * ggml_set_inplace(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b,
  765. size_t nb1,
  766. size_t nb2,
  767. size_t nb3,
  768. size_t offset);
  769. GGML_API struct ggml_tensor * ggml_set_1d(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a,
  772. struct ggml_tensor * b,
  773. size_t offset);
  774. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  775. struct ggml_context * ctx,
  776. struct ggml_tensor * a,
  777. struct ggml_tensor * b,
  778. size_t offset);
  779. // b -> view(a,offset,nb1,nb2,3), return modified a
  780. GGML_API struct ggml_tensor * ggml_set_2d(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a,
  783. struct ggml_tensor * b,
  784. size_t nb1,
  785. size_t offset);
  786. // b -> view(a,offset,nb1,nb2,3), return view(a)
  787. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b,
  791. size_t nb1,
  792. size_t offset);
  793. // a -> b, return view(b)
  794. GGML_API struct ggml_tensor * ggml_cpy(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b);
  798. // make contiguous
  799. GGML_API struct ggml_tensor * ggml_cont(
  800. struct ggml_context * ctx,
  801. struct ggml_tensor * a);
  802. // return view(a), b specifies the new shape
  803. // TODO: when we start computing gradient, make a copy instead of view
  804. GGML_API struct ggml_tensor * ggml_reshape(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a,
  807. struct ggml_tensor * b);
  808. // return view(a)
  809. // TODO: when we start computing gradient, make a copy instead of view
  810. GGML_API struct ggml_tensor * ggml_reshape_1d(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a,
  813. int64_t ne0);
  814. GGML_API struct ggml_tensor * ggml_reshape_2d(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a,
  817. int64_t ne0,
  818. int64_t ne1);
  819. // return view(a)
  820. // TODO: when we start computing gradient, make a copy instead of view
  821. GGML_API struct ggml_tensor * ggml_reshape_3d(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a,
  824. int64_t ne0,
  825. int64_t ne1,
  826. int64_t ne2);
  827. GGML_API struct ggml_tensor * ggml_reshape_4d(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a,
  830. int64_t ne0,
  831. int64_t ne1,
  832. int64_t ne2,
  833. int64_t ne3);
  834. // offset in bytes
  835. GGML_API struct ggml_tensor * ggml_view_1d(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a,
  838. int64_t ne0,
  839. size_t offset);
  840. GGML_API struct ggml_tensor * ggml_view_2d(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a,
  843. int64_t ne0,
  844. int64_t ne1,
  845. size_t nb1, // row stride in bytes
  846. size_t offset);
  847. GGML_API struct ggml_tensor * ggml_view_3d(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a,
  850. int64_t ne0,
  851. int64_t ne1,
  852. int64_t ne2,
  853. size_t nb1, // row stride in bytes
  854. size_t nb2, // slice stride in bytes
  855. size_t offset);
  856. GGML_API struct ggml_tensor * ggml_view_4d(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. int64_t ne0,
  860. int64_t ne1,
  861. int64_t ne2,
  862. int64_t ne3,
  863. size_t nb1, // row stride in bytes
  864. size_t nb2, // slice stride in bytes
  865. size_t nb3,
  866. size_t offset);
  867. GGML_API struct ggml_tensor * ggml_permute(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a,
  870. int axis0,
  871. int axis1,
  872. int axis2,
  873. int axis3);
  874. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  875. GGML_API struct ggml_tensor * ggml_transpose(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_get_rows(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a,
  881. struct ggml_tensor * b);
  882. GGML_API struct ggml_tensor * ggml_get_rows_back(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a,
  885. struct ggml_tensor * b,
  886. struct ggml_tensor * c);
  887. GGML_API struct ggml_tensor * ggml_diag(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. // set elements above the diagonal to -INF
  891. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a,
  894. int n_past);
  895. // in-place, returns view(a)
  896. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a,
  899. int n_past);
  900. // set elements above the diagonal to 0
  901. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  902. struct ggml_context * ctx,
  903. struct ggml_tensor * a,
  904. int n_past);
  905. // in-place, returns view(a)
  906. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a,
  909. int n_past);
  910. GGML_API struct ggml_tensor * ggml_soft_max(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a);
  913. // in-place, returns view(a)
  914. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a);
  917. GGML_API struct ggml_tensor * ggml_soft_max_back(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a,
  920. struct ggml_tensor * b);
  921. // in-place, returns view(a)
  922. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a,
  925. struct ggml_tensor * b);
  926. // rotary position embedding
  927. // if mode & 1 == 1, skip n_past elements
  928. // if mode & 2 == 1, GPT-NeoX style
  929. // if mode & 4 == 1, ChatGLM style
  930. // TODO: avoid creating a new tensor every time
  931. GGML_API struct ggml_tensor * ggml_rope(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. int n_past,
  935. int n_dims,
  936. int mode,
  937. int n_ctx);
  938. // in-place, returns view(a)
  939. GGML_API struct ggml_tensor * ggml_rope_inplace(
  940. struct ggml_context * ctx,
  941. struct ggml_tensor * a,
  942. int n_past,
  943. int n_dims,
  944. int mode,
  945. int n_ctx);
  946. // custom RoPE, in-place, returns view(a)
  947. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  948. struct ggml_context * ctx,
  949. struct ggml_tensor * a,
  950. int n_past,
  951. int n_dims,
  952. int mode,
  953. int n_ctx,
  954. float freq_base,
  955. float freq_scale);
  956. // rotary position embedding backward, i.e compute dx from dy
  957. // a - dy
  958. GGML_API struct ggml_tensor * ggml_rope_back(
  959. struct ggml_context * ctx,
  960. struct ggml_tensor * a,
  961. int n_past,
  962. int n_dims,
  963. int mode,
  964. int n_ctx);
  965. // alibi position embedding
  966. // in-place, returns view(a)
  967. struct ggml_tensor * ggml_alibi(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. int n_past,
  971. int n_head,
  972. float bias_max);
  973. // clamp
  974. // in-place, returns view(a)
  975. struct ggml_tensor * ggml_clamp(
  976. struct ggml_context * ctx,
  977. struct ggml_tensor * a,
  978. float min,
  979. float max);
  980. GGML_API struct ggml_tensor * ggml_conv_1d(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. struct ggml_tensor * b,
  984. int s0, // stride
  985. int p0, // padding
  986. int d0); // dilation
  987. GGML_API struct ggml_tensor * ggml_conv_2d(
  988. struct ggml_context * ctx,
  989. struct ggml_tensor * a,
  990. struct ggml_tensor * b,
  991. int s0,
  992. int s1,
  993. int p0,
  994. int p1,
  995. int d0,
  996. int d1);
  997. // conv_1d with padding = half
  998. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  999. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a,
  1002. struct ggml_tensor * b,
  1003. int s,
  1004. int d);
  1005. enum ggml_op_pool {
  1006. GGML_OP_POOL_MAX,
  1007. GGML_OP_POOL_AVG,
  1008. GGML_OP_POOL_COUNT,
  1009. };
  1010. GGML_API struct ggml_tensor* ggml_pool_1d(
  1011. struct ggml_context * ctx,
  1012. struct ggml_tensor * a,
  1013. enum ggml_op_pool op,
  1014. int k0, // kernel size
  1015. int s0, // stride
  1016. int p0); // padding
  1017. GGML_API struct ggml_tensor* ggml_pool_2d(
  1018. struct ggml_context * ctx,
  1019. struct ggml_tensor * a,
  1020. enum ggml_op_pool op,
  1021. int k0,
  1022. int k1,
  1023. int s0,
  1024. int s1,
  1025. int p0,
  1026. int p1);
  1027. GGML_API struct ggml_tensor * ggml_flash_attn(
  1028. struct ggml_context * ctx,
  1029. struct ggml_tensor * q,
  1030. struct ggml_tensor * k,
  1031. struct ggml_tensor * v,
  1032. bool masked);
  1033. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1034. struct ggml_context * ctx,
  1035. struct ggml_tensor * q,
  1036. struct ggml_tensor * k,
  1037. struct ggml_tensor * v,
  1038. struct ggml_tensor * d,
  1039. bool masked);
  1040. GGML_API struct ggml_tensor * ggml_flash_ff(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. struct ggml_tensor * b0,
  1044. struct ggml_tensor * b1,
  1045. struct ggml_tensor * c0,
  1046. struct ggml_tensor * c1);
  1047. // partition into non-overlapping windows with padding if needed
  1048. // example:
  1049. // a: 768 64 64 1
  1050. // w: 14
  1051. // res: 768 14 14 25
  1052. // used in sam
  1053. GGML_API struct ggml_tensor * ggml_win_part(
  1054. struct ggml_context * ctx,
  1055. struct ggml_tensor * a,
  1056. int w);
  1057. // reverse of ggml_win_part
  1058. // used in sam
  1059. GGML_API struct ggml_tensor * ggml_win_unpart(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a,
  1062. int w0,
  1063. int h0,
  1064. int w);
  1065. // custom operators
  1066. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1067. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1068. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1069. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1070. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1071. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1072. struct ggml_context * ctx,
  1073. struct ggml_tensor * a,
  1074. ggml_unary_op_f32_t fun);
  1075. GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. ggml_unary_op_f32_t fun);
  1079. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. struct ggml_tensor * b,
  1083. ggml_binary_op_f32_t fun);
  1084. GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1085. struct ggml_context * ctx,
  1086. struct ggml_tensor * a,
  1087. struct ggml_tensor * b,
  1088. ggml_binary_op_f32_t fun);
  1089. GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1090. struct ggml_context * ctx,
  1091. struct ggml_tensor * a,
  1092. ggml_custom1_op_f32_t fun);
  1093. GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1094. struct ggml_context * ctx,
  1095. struct ggml_tensor * a,
  1096. ggml_custom1_op_f32_t fun);
  1097. GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1098. struct ggml_context * ctx,
  1099. struct ggml_tensor * a,
  1100. struct ggml_tensor * b,
  1101. ggml_custom2_op_f32_t fun);
  1102. GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1103. struct ggml_context * ctx,
  1104. struct ggml_tensor * a,
  1105. struct ggml_tensor * b,
  1106. ggml_custom2_op_f32_t fun);
  1107. GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1108. struct ggml_context * ctx,
  1109. struct ggml_tensor * a,
  1110. struct ggml_tensor * b,
  1111. struct ggml_tensor * c,
  1112. ggml_custom3_op_f32_t fun);
  1113. GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1114. struct ggml_context * ctx,
  1115. struct ggml_tensor * a,
  1116. struct ggml_tensor * b,
  1117. struct ggml_tensor * c,
  1118. ggml_custom3_op_f32_t fun);
  1119. // loss function
  1120. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. struct ggml_tensor * b);
  1124. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1125. struct ggml_context * ctx,
  1126. struct ggml_tensor * a,
  1127. struct ggml_tensor * b,
  1128. struct ggml_tensor * c);
  1129. //
  1130. // automatic differentiation
  1131. //
  1132. GGML_API void ggml_set_param(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * tensor);
  1135. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1136. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1137. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1138. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1139. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1140. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1141. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1142. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1143. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1144. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1145. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1146. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1147. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1148. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1149. // print info and performance information for the graph
  1150. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1151. // dump the graph into a file using the dot format
  1152. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1153. //
  1154. // optimization
  1155. //
  1156. // optimization methods
  1157. enum ggml_opt_type {
  1158. GGML_OPT_ADAM,
  1159. GGML_OPT_LBFGS,
  1160. };
  1161. // linesearch methods
  1162. enum ggml_linesearch {
  1163. GGML_LINESEARCH_DEFAULT = 1,
  1164. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1165. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1166. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1167. };
  1168. // optimization return values
  1169. enum ggml_opt_result {
  1170. GGML_OPT_OK = 0,
  1171. GGML_OPT_DID_NOT_CONVERGE,
  1172. GGML_OPT_NO_CONTEXT,
  1173. GGML_OPT_INVALID_WOLFE,
  1174. GGML_OPT_FAIL,
  1175. GGML_LINESEARCH_FAIL = -128,
  1176. GGML_LINESEARCH_MINIMUM_STEP,
  1177. GGML_LINESEARCH_MAXIMUM_STEP,
  1178. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1179. GGML_LINESEARCH_INVALID_PARAMETERS,
  1180. };
  1181. // optimization parameters
  1182. //
  1183. // see ggml.c (ggml_opt_default_params) for default values
  1184. //
  1185. struct ggml_opt_params {
  1186. enum ggml_opt_type type;
  1187. int n_threads;
  1188. // delta-based convergence test
  1189. //
  1190. // if past == 0 - disabled
  1191. // if past > 0:
  1192. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1193. //
  1194. int past;
  1195. float delta;
  1196. // maximum number of iterations without improvement
  1197. //
  1198. // if 0 - disabled
  1199. // if > 0:
  1200. // assume convergence if no cost improvement in this number of iterations
  1201. //
  1202. int max_no_improvement;
  1203. bool print_forward_graph;
  1204. bool print_backward_graph;
  1205. // ADAM parameters
  1206. struct {
  1207. int n_iter;
  1208. float sched; // schedule multiplier (fixed, decay or warmup)
  1209. float decay; // weight decay for AdamW, use 0.0f to disable
  1210. float alpha; // learning rate
  1211. float beta1;
  1212. float beta2;
  1213. float eps; // epsilon for numerical stability
  1214. float eps_f; // epsilon for convergence test
  1215. float eps_g; // epsilon for convergence test
  1216. } adam;
  1217. // LBFGS parameters
  1218. struct {
  1219. int m; // number of corrections to approximate the inv. Hessian
  1220. int n_iter;
  1221. int max_linesearch;
  1222. float eps; // convergence tolerance
  1223. float ftol; // line search tolerance
  1224. float wolfe;
  1225. float min_step;
  1226. float max_step;
  1227. enum ggml_linesearch linesearch;
  1228. } lbfgs;
  1229. };
  1230. struct ggml_opt_context {
  1231. struct ggml_context * ctx;
  1232. struct ggml_opt_params params;
  1233. int iter;
  1234. int64_t nx; // number of parameter elements
  1235. bool just_initialized;
  1236. struct {
  1237. struct ggml_tensor * x; // view of the parameters
  1238. struct ggml_tensor * g1; // gradient
  1239. struct ggml_tensor * g2; // gradient squared
  1240. struct ggml_tensor * m; // first moment
  1241. struct ggml_tensor * v; // second moment
  1242. struct ggml_tensor * mh; // first moment hat
  1243. struct ggml_tensor * vh; // second moment hat
  1244. struct ggml_tensor * pf; // past function values
  1245. float fx_best;
  1246. float fx_prev;
  1247. int n_no_improvement;
  1248. } adam;
  1249. struct {
  1250. struct ggml_tensor * x; // current parameters
  1251. struct ggml_tensor * xp; // previous parameters
  1252. struct ggml_tensor * g; // current gradient
  1253. struct ggml_tensor * gp; // previous gradient
  1254. struct ggml_tensor * d; // search direction
  1255. struct ggml_tensor * pf; // past function values
  1256. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1257. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1258. struct ggml_tensor * lms; // the L-BFGS memory s
  1259. struct ggml_tensor * lmy; // the L-BFGS memory y
  1260. float fx_best;
  1261. float step;
  1262. int j;
  1263. int k;
  1264. int end;
  1265. int n_no_improvement;
  1266. } lbfgs;
  1267. };
  1268. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1269. // optimize the function defined by the tensor f
  1270. GGML_API enum ggml_opt_result ggml_opt(
  1271. struct ggml_context * ctx,
  1272. struct ggml_opt_params params,
  1273. struct ggml_tensor * f);
  1274. // initialize optimizer context
  1275. GGML_API void ggml_opt_init(
  1276. struct ggml_context * ctx,
  1277. struct ggml_opt_context * opt,
  1278. struct ggml_opt_params params,
  1279. int64_t nx);
  1280. // continue optimizing the function defined by the tensor f
  1281. GGML_API enum ggml_opt_result ggml_opt_resume(
  1282. struct ggml_context * ctx,
  1283. struct ggml_opt_context * opt,
  1284. struct ggml_tensor * f);
  1285. // continue optimizing the function defined by the tensor f
  1286. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1287. struct ggml_context * ctx,
  1288. struct ggml_opt_context * opt,
  1289. struct ggml_tensor * f,
  1290. struct ggml_cgraph * gf,
  1291. struct ggml_cgraph * gb);
  1292. //
  1293. // quantization
  1294. //
  1295. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1296. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1297. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1298. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1299. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1300. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1301. //
  1302. // system info
  1303. //
  1304. GGML_API int ggml_cpu_has_avx (void);
  1305. GGML_API int ggml_cpu_has_avx2 (void);
  1306. GGML_API int ggml_cpu_has_avx512 (void);
  1307. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1308. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1309. GGML_API int ggml_cpu_has_fma (void);
  1310. GGML_API int ggml_cpu_has_neon (void);
  1311. GGML_API int ggml_cpu_has_arm_fma (void);
  1312. GGML_API int ggml_cpu_has_f16c (void);
  1313. GGML_API int ggml_cpu_has_fp16_va (void);
  1314. GGML_API int ggml_cpu_has_wasm_simd (void);
  1315. GGML_API int ggml_cpu_has_blas (void);
  1316. GGML_API int ggml_cpu_has_cublas (void);
  1317. GGML_API int ggml_cpu_has_clblast (void);
  1318. GGML_API int ggml_cpu_has_gpublas (void);
  1319. GGML_API int ggml_cpu_has_sse3 (void);
  1320. GGML_API int ggml_cpu_has_vsx (void);
  1321. //
  1322. // Internal types and functions exposed for tests and benchmarks
  1323. //
  1324. #ifdef __cplusplus
  1325. // restrict not standard in C++
  1326. #define GGML_RESTRICT
  1327. #else
  1328. #define GGML_RESTRICT restrict
  1329. #endif
  1330. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1331. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1332. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1333. typedef struct {
  1334. ggml_to_float_t to_float;
  1335. ggml_from_float_t from_float;
  1336. ggml_from_float_t from_float_reference;
  1337. ggml_vec_dot_t vec_dot;
  1338. enum ggml_type vec_dot_type;
  1339. } ggml_type_traits_t;
  1340. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
  1341. #ifdef __cplusplus
  1342. }
  1343. #endif