| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- #!/usr/bin/env python3
- # HF refact--> gguf conversion
- from __future__ import annotations
- import argparse
- import json
- import os
- import sys
- from pathlib import Path
- import numpy as np
- import torch
- from transformers import AutoTokenizer # type: ignore[import]
- if "NO_LOCAL_GGUF" not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
- import gguf
- def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a Refact model to a GGML compatible file"
- )
- parser.add_argument(
- "--vocab-only",
- action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile",
- type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "model",
- type=Path,
- help="directory containing model file, or model file itself (*.bin)",
- )
- parser.add_argument(
- "ftype",
- type=int,
- choices=[0, 1],
- default=1,
- nargs="?",
- help="output format - use 0 for float32, 1 for float16",
- )
- return parser.parse_args()
- args = parse_args()
- dir_model = args.model
- ftype = args.ftype
- if not dir_model.is_dir():
- print(f"Error: {args.model} is not a directory", file=sys.stderr)
- sys.exit(1)
- # possible tensor data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
- print("gguf: loading model " + dir_model.name)
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- if hparams["architectures"][0] != "GPTRefactForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit(1)
- # get number of model parts
- num_parts = count_model_parts(dir_model)
- ARCH = gguf.MODEL_ARCH.REFACT
- gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- print("gguf: get model metadata")
- # Get refact feed forward dimension
- hidden_dim = hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- block_count = hparams["n_layer"]
- gguf_writer.add_name("Refact")
- # refact uses Alibi. So this is from config.json which might be used by training.
- gguf_writer.add_context_length(hparams["n_positions"])
- gguf_writer.add_embedding_length(hparams["n_embd"])
- gguf_writer.add_feed_forward_length(ff_dim)
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_head_count(hparams["n_head"])
- gguf_writer.add_head_count_kv(1)
- gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
- gguf_writer.add_file_type(ftype)
- # TOKENIZATION
- print("gguf: get tokenizer metadata")
- tokens: list[bytearray] = []
- scores: list[float] = []
- toktypes: list[int] = []
- # gpt2 tokenizer
- gguf_writer.add_tokenizer_model("gpt2")
- print("gguf: get gpt2 tokenizer vocab")
- # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- # The number of tokens in tokenizer.json can differ from the expected vocab size.
- # This causes downstream issues with mismatched tensor sizes when running the inference
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- added_vocab = tokenizer.get_added_vocab()
- reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
- special_vocab.add_to_gguf(gguf_writer)
- # TENSORS
- tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
- # params for qkv transform
- n_head = hparams["n_head"]
- n_head_kv = 1
- head_dim = hparams["n_embd"] // n_head
- # tensor info
- print("gguf: get tensor metadata")
- if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
- else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
- for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
- for i in range(block_count):
- if f"transformer.h.{i}.attn.kv.weight" in model_part:
- data = model_part[f"transformer.h.{i}.attn.kv.weight"]
- model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
- : n_head_kv * head_dim
- ]
- model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
- n_head_kv * head_dim :
- ]
- del model_part[f"transformer.h.{i}.attn.kv.weight"]
- if f"transformer.h.{i}.attn.q.weight" in model_part:
- model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
- f"transformer.h.{i}.attn.q.weight"
- ]
- del model_part[f"transformer.h.{i}.attn.q.weight"]
- if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
- data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
- model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
- del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- for name in model_part.keys():
- data = model_part[name]
- old_dtype = data.dtype
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
- data = data.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if (
- ftype == 1
- and data_dtype == np.float32
- and name.endswith(".weight")
- and n_dims == 2
- ):
- data = data.astype(np.float16)
- print(
- new_name
- + ", n_dims = "
- + str(n_dims)
- + ", "
- + str(old_dtype)
- + " --> "
- + str(data.dtype)
- )
- gguf_writer.add_tensor(new_name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print(f"gguf: model successfully exported to '{fname_out}'")
- print("")
|