llama.cpp 120 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #include <array>
  20. #include <ctime>
  21. #include <cinttypes>
  22. #include <fstream>
  23. #include <random>
  24. #include <map>
  25. #include <unordered_map>
  26. #include <queue>
  27. #include <cassert>
  28. #include <cstring>
  29. #include <climits>
  30. #include <memory>
  31. #include <algorithm>
  32. #include <initializer_list>
  33. #include <thread>
  34. #include <atomic>
  35. #include <mutex>
  36. #include <sstream>
  37. #include <numeric>
  38. #if defined(_MSC_VER)
  39. #pragma warning(disable: 4244 4267) // possible loss of data
  40. #endif
  41. #define LLAMA_USE_SCRATCH
  42. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  43. // available llama models
  44. enum e_model {
  45. MODEL_UNKNOWN,
  46. MODEL_3B,
  47. MODEL_7B,
  48. MODEL_13B,
  49. MODEL_30B,
  50. MODEL_65B,
  51. };
  52. static const size_t MB = 1024*1024;
  53. // computed for n_ctx == 2048
  54. // TODO: dynamically determine these sizes
  55. // needs modifications in ggml
  56. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  57. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  58. (void) tensor;
  59. }
  60. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  61. {
  62. static std::map<e_model, size_t> k_sizes = {
  63. { MODEL_3B, 256ull * MB },
  64. { MODEL_7B, 512ull * MB },
  65. { MODEL_13B, 512ull * MB },
  66. { MODEL_30B, 512ull * MB },
  67. { MODEL_65B, 1024ull * MB },
  68. };
  69. return k_sizes;
  70. }
  71. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  72. {
  73. static std::map<e_model, size_t> k_sizes = {
  74. { MODEL_3B, 256ull * MB },
  75. { MODEL_7B, 512ull * MB },
  76. { MODEL_13B, 512ull * MB },
  77. { MODEL_30B, 512ull * MB },
  78. { MODEL_65B, 1024ull * MB },
  79. };
  80. return k_sizes;
  81. }
  82. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  83. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  84. {
  85. static std::map<e_model, size_t> k_sizes = {
  86. { MODEL_3B, 682ull * MB },
  87. { MODEL_7B, 1026ull * MB },
  88. { MODEL_13B, 1608ull * MB },
  89. { MODEL_30B, 3124ull * MB },
  90. { MODEL_65B, 5120ull * MB },
  91. };
  92. return k_sizes;
  93. }
  94. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  95. // not actually needed if BLAS is disabled
  96. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  97. {
  98. static std::map<e_model, size_t> k_sizes = {
  99. { MODEL_3B, 512ull * MB },
  100. { MODEL_7B, 768ull * MB },
  101. { MODEL_13B, 1024ull * MB },
  102. { MODEL_30B, 1280ull * MB },
  103. { MODEL_65B, 1536ull * MB },
  104. };
  105. return k_sizes;
  106. }
  107. // default hparams (LLaMA 7B)
  108. struct llama_hparams {
  109. uint32_t n_vocab = 32000;
  110. uint32_t n_ctx = 512; // this is provided as user input?
  111. uint32_t n_embd = 4096;
  112. uint32_t n_mult = 256;
  113. uint32_t n_head = 32;
  114. uint32_t n_layer = 32;
  115. uint32_t n_rot = 64;
  116. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  117. bool operator!=(const llama_hparams & other) const {
  118. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  119. }
  120. };
  121. struct llama_layer {
  122. // normalization
  123. struct ggml_tensor * attention_norm;
  124. // attention
  125. struct ggml_tensor * wq;
  126. struct ggml_tensor * wk;
  127. struct ggml_tensor * wv;
  128. struct ggml_tensor * wo;
  129. // normalization
  130. struct ggml_tensor * ffn_norm;
  131. // ff
  132. struct ggml_tensor * w1;
  133. struct ggml_tensor * w2;
  134. struct ggml_tensor * w3;
  135. };
  136. struct llama_kv_cache {
  137. struct ggml_tensor * k;
  138. struct ggml_tensor * v;
  139. struct ggml_context * ctx = NULL;
  140. llama_ctx_buffer buf;
  141. int n; // number of tokens currently in the cache
  142. ~llama_kv_cache() {
  143. if (ctx) {
  144. ggml_free(ctx);
  145. }
  146. #ifdef GGML_USE_CUBLAS
  147. ggml_cuda_free_data(k);
  148. ggml_cuda_free_data(v);
  149. #endif // GGML_USE_CUBLAS
  150. }
  151. };
  152. struct llama_model {
  153. e_model type = MODEL_UNKNOWN;
  154. llama_hparams hparams;
  155. struct ggml_tensor * tok_embeddings;
  156. struct ggml_tensor * norm;
  157. struct ggml_tensor * output;
  158. std::vector<llama_layer> layers;
  159. int n_gpu_layers;
  160. // context
  161. struct ggml_context * ctx = NULL;
  162. // key + value cache for the self attention
  163. // TODO: move to llama_state
  164. struct llama_kv_cache kv_self;
  165. // the model memory buffer
  166. llama_ctx_buffer buf;
  167. // model memory mapped file
  168. std::unique_ptr<llama_mmap> mapping;
  169. // objects representing data potentially being locked in memory
  170. llama_mlock mlock_buf;
  171. llama_mlock mlock_mmap;
  172. // for quantize-stats only
  173. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  174. ~llama_model() {
  175. if (ctx) {
  176. ggml_free(ctx);
  177. }
  178. #ifdef GGML_USE_CUBLAS
  179. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  180. ggml_cuda_free_data(tensors_by_name[i].second);
  181. }
  182. ggml_cuda_free_scratch();
  183. #elif defined(GGML_USE_CLBLAST)
  184. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  185. ggml_cl_free_data(tensors_by_name[i].second);
  186. }
  187. #endif
  188. }
  189. };
  190. struct llama_vocab {
  191. using id = int32_t;
  192. using token = std::string;
  193. struct token_score {
  194. token tok;
  195. float score;
  196. };
  197. std::unordered_map<token, id> token_to_id;
  198. std::vector<token_score> id_to_token;
  199. };
  200. struct llama_context {
  201. std::mt19937 rng;
  202. int64_t t_load_us = 0;
  203. int64_t t_start_us = 0;
  204. bool has_evaluated_once = false;
  205. int64_t t_sample_us = 0;
  206. int64_t t_eval_us = 0;
  207. int64_t t_p_eval_us = 0;
  208. int32_t n_sample = 0; // number of tokens sampled
  209. int32_t n_eval = 0; // number of eval calls
  210. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  211. llama_model model;
  212. llama_vocab vocab;
  213. size_t mem_per_token = 0;
  214. // decode output (2-dimensional array: [n_tokens][n_vocab])
  215. std::vector<float> logits;
  216. bool logits_all = false;
  217. // input embedding (1-dimensional array: [n_embd])
  218. std::vector<float> embedding;
  219. // memory buffers used to evaluate the model
  220. // TODO: move in llama_state
  221. llama_ctx_buffer buf_compute;
  222. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  223. #ifdef GGML_USE_METAL
  224. ggml_metal_context * ctx_metal = NULL;
  225. #endif
  226. int buf_last = 0;
  227. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  228. void use_buf(struct ggml_context * ctx, int i) {
  229. #if defined(LLAMA_USE_SCRATCH)
  230. size_t last_size = 0;
  231. if (i == -1) {
  232. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  233. } else {
  234. auto & buf = buf_scratch[i];
  235. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  236. }
  237. if (buf_last >= 0) {
  238. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  239. }
  240. buf_last = i;
  241. #else
  242. (void) i;
  243. (void) ctx;
  244. #endif
  245. }
  246. size_t get_buf_max_mem(int i) const {
  247. #if defined(LLAMA_USE_SCRATCH)
  248. return buf_max_size[i];
  249. #else
  250. (void) i;
  251. return 0;
  252. #endif
  253. }
  254. };
  255. template <typename T>
  256. static T checked_mul(T a, T b) {
  257. T ret = a * b;
  258. if (a != 0 && ret / a != b) {
  259. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  260. (unsigned long long) a, (unsigned long long) b));
  261. }
  262. return ret;
  263. }
  264. static size_t checked_div(size_t a, size_t b) {
  265. if (b == 0 || a % b != 0) {
  266. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  267. }
  268. return a / b;
  269. }
  270. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  271. char buf[256];
  272. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  273. for (size_t i = 1; i < ne.size(); i++) {
  274. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  275. }
  276. return buf;
  277. }
  278. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  279. size_t size = ggml_type_size(type);
  280. for (uint32_t dim : ne) {
  281. size = checked_mul<size_t>(size, dim);
  282. }
  283. return size / ggml_blck_size(type);
  284. }
  285. struct llama_load_tensor_shard {
  286. std::vector<uint32_t> ne;
  287. size_t size;
  288. enum ggml_type type;
  289. size_t file_idx;
  290. size_t file_off;
  291. void calc_size() {
  292. size = llama_calc_tensor_size(ne, type);
  293. }
  294. };
  295. enum llama_split_type {
  296. SPLIT_NONE,
  297. SPLIT_BY_COLUMNS,
  298. SPLIT_BY_ROWS
  299. };
  300. struct llama_load_tensor {
  301. std::vector<llama_load_tensor_shard> shards;
  302. std::string name;
  303. enum ggml_type type = GGML_TYPE_F32;
  304. llama_split_type split_type = SPLIT_NONE;
  305. std::vector<uint32_t> ne;
  306. size_t size;
  307. struct ggml_tensor * ggml_tensor = NULL;
  308. uint8_t * data;
  309. llama_load_tensor(const std::string & name) : name(name) {}
  310. void calc_all() {
  311. calc_type();
  312. calc_split_type();
  313. calc_ne();
  314. calc_size();
  315. }
  316. void calc_type() {
  317. const auto & first_shard = shards.at(0);
  318. for (const auto & shard : shards) {
  319. if (shard.type != first_shard.type) {
  320. throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str()));
  321. }
  322. }
  323. type = first_shard.type;
  324. }
  325. void calc_split_type() {
  326. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  327. shards.size() == 1) { // only one file?
  328. split_type = SPLIT_NONE;
  329. } else if (name.find("tok_embeddings.") == 0 ||
  330. name.find(".attention.wo.weight") != std::string::npos ||
  331. name.find(".feed_forward.w2.weight") != std::string::npos) {
  332. split_type = SPLIT_BY_COLUMNS;
  333. } else {
  334. split_type = SPLIT_BY_ROWS;
  335. }
  336. }
  337. void calc_ne() {
  338. const auto & first_shard = shards.at(0);
  339. for (const auto & shard : shards) {
  340. if (shard.ne != first_shard.ne) {
  341. throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  342. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str()));
  343. }
  344. }
  345. ne = first_shard.ne;
  346. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  347. uint32_t n_shards = (uint32_t) shards.size();
  348. switch (split_type) {
  349. case SPLIT_NONE:
  350. ne = first_shard.ne;
  351. break;
  352. case SPLIT_BY_COLUMNS:
  353. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  354. first_shard.ne[1]};
  355. break;
  356. case SPLIT_BY_ROWS:
  357. ne = {first_shard.ne[0],
  358. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  359. break;
  360. }
  361. }
  362. void calc_size() {
  363. size = llama_calc_tensor_size(ne, type);
  364. }
  365. };
  366. struct llama_load_tensors_map {
  367. // tensors is kept in a separate vector to preserve file order
  368. std::vector<llama_load_tensor> tensors;
  369. std::unordered_map<std::string, size_t> name_to_idx;
  370. };
  371. enum llama_file_version {
  372. LLAMA_FILE_VERSION_GGML,
  373. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  374. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  375. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  376. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  377. };
  378. struct llama_file_loader {
  379. llama_file file;
  380. llama_file_version file_version;
  381. llama_hparams hparams;
  382. llama_vocab vocab;
  383. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  384. : file(fname, "rb") {
  385. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  386. read_magic();
  387. read_hparams();
  388. read_vocab();
  389. read_tensor_metadata(file_idx, tensors_map);
  390. }
  391. void read_magic() {
  392. uint32_t magic = file.read_u32();
  393. if (magic == LLAMA_FILE_MAGIC_GGML) {
  394. file_version = LLAMA_FILE_VERSION_GGML;
  395. return;
  396. }
  397. uint32_t version = file.read_u32();
  398. switch (magic) {
  399. case LLAMA_FILE_MAGIC_GGMF:
  400. switch (version) {
  401. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  402. }
  403. break;
  404. case LLAMA_FILE_MAGIC_GGJT:
  405. switch (version) {
  406. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  407. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  408. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  409. }
  410. }
  411. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  412. magic, version));
  413. }
  414. void read_hparams() {
  415. hparams.n_vocab = file.read_u32();
  416. hparams.n_embd = file.read_u32();
  417. hparams.n_mult = file.read_u32();
  418. hparams.n_head = file.read_u32();
  419. hparams.n_layer = file.read_u32();
  420. hparams.n_rot = file.read_u32();
  421. hparams.ftype = (enum llama_ftype) file.read_u32();
  422. }
  423. void read_vocab() {
  424. vocab.id_to_token.resize(hparams.n_vocab);
  425. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  426. uint32_t len = file.read_u32();
  427. std::string word = file.read_string(len);
  428. float score = 0.0f;
  429. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  430. file.read_raw(&score, sizeof(score));
  431. }
  432. vocab.token_to_id[word] = i;
  433. auto & tok_score = vocab.id_to_token[i];
  434. tok_score.tok = std::move(word);
  435. tok_score.score = score;
  436. }
  437. }
  438. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  439. while (file.tell() < file.size) {
  440. llama_load_tensor_shard shard;
  441. uint32_t n_dims = file.read_u32();
  442. uint32_t name_len = file.read_u32();
  443. shard.type = (enum ggml_type) file.read_u32();
  444. shard.ne.resize(n_dims);
  445. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  446. std::string name = file.read_string(name_len);
  447. if (n_dims < 1 || n_dims > 2) {
  448. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  449. }
  450. switch (shard.type) {
  451. case GGML_TYPE_F32:
  452. case GGML_TYPE_F16:
  453. case GGML_TYPE_Q4_0:
  454. case GGML_TYPE_Q4_1:
  455. case GGML_TYPE_Q5_0:
  456. case GGML_TYPE_Q5_1:
  457. case GGML_TYPE_Q8_0:
  458. case GGML_TYPE_Q2_K:
  459. case GGML_TYPE_Q3_K:
  460. case GGML_TYPE_Q4_K:
  461. case GGML_TYPE_Q5_K:
  462. case GGML_TYPE_Q6_K:
  463. break;
  464. default: {
  465. throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type));
  466. }
  467. }
  468. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  469. // skip to the next multiple of 32 bytes
  470. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  471. }
  472. shard.file_idx = file_idx;
  473. shard.file_off = file.tell();
  474. shard.calc_size();
  475. file.seek(shard.size, SEEK_CUR);
  476. auto it = tensors_map.name_to_idx.find(name);
  477. size_t idx;
  478. if (it != tensors_map.name_to_idx.end()) {
  479. idx = it->second;
  480. } else {
  481. tensors_map.tensors.emplace_back(name);
  482. idx = tensors_map.tensors.size() - 1;
  483. tensors_map.name_to_idx.emplace(name, idx);
  484. }
  485. tensors_map.tensors.at(idx).shards.push_back(shard);
  486. }
  487. }
  488. };
  489. struct llama_file_saver {
  490. llama_file file;
  491. llama_file_loader * any_file_loader;
  492. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  493. : file(fname, "wb"), any_file_loader(any_file_loader) {
  494. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  495. write_magic();
  496. write_hparams(new_ftype);
  497. write_vocab();
  498. }
  499. void write_magic() {
  500. file.write_u32(LLAMA_FILE_MAGIC); // magic
  501. file.write_u32(LLAMA_FILE_VERSION); // version
  502. }
  503. void write_hparams(enum llama_ftype new_ftype) {
  504. const llama_hparams & hparams = any_file_loader->hparams;
  505. file.write_u32(hparams.n_vocab);
  506. file.write_u32(hparams.n_embd);
  507. file.write_u32(hparams.n_mult);
  508. file.write_u32(hparams.n_head);
  509. file.write_u32(hparams.n_layer);
  510. file.write_u32(hparams.n_rot);
  511. file.write_u32(new_ftype);
  512. }
  513. void write_vocab() {
  514. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  515. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  516. }
  517. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  518. for (uint32_t i = 0; i < n_vocab; i++) {
  519. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  520. file.write_u32((uint32_t) token_score.tok.size());
  521. file.write_raw(token_score.tok.data(), token_score.tok.size());
  522. file.write_raw(&token_score.score, sizeof(token_score.score));
  523. }
  524. }
  525. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  526. switch (new_type) {
  527. case GGML_TYPE_F32:
  528. case GGML_TYPE_F16:
  529. case GGML_TYPE_Q4_0:
  530. case GGML_TYPE_Q4_1:
  531. case GGML_TYPE_Q5_0:
  532. case GGML_TYPE_Q5_1:
  533. case GGML_TYPE_Q8_0:
  534. case GGML_TYPE_Q2_K:
  535. case GGML_TYPE_Q3_K:
  536. case GGML_TYPE_Q4_K:
  537. case GGML_TYPE_Q5_K:
  538. case GGML_TYPE_Q6_K:
  539. break;
  540. default: LLAMA_ASSERT(false);
  541. }
  542. file.write_u32((uint32_t) tensor.ne.size());
  543. file.write_u32((uint32_t) tensor.name.size());
  544. file.write_u32(new_type);
  545. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  546. file.write_raw(tensor.name.data(), tensor.name.size());
  547. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  548. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  549. file.write_raw(new_data, new_size);
  550. }
  551. };
  552. struct llama_model_loader {
  553. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  554. llama_load_tensors_map tensors_map;
  555. bool use_mmap;
  556. size_t num_ggml_tensors_created = 0;
  557. struct ggml_context * ggml_ctx = NULL;
  558. std::unique_ptr<llama_mmap> mapping;
  559. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  560. auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  561. file_loaders.emplace_back(first_file);
  562. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  563. for (uint32_t i = 1; i < n_parts; i++) {
  564. std::string fname = fname_base + "." + std::to_string(i);
  565. auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  566. file_loaders.emplace_back(ith_file);
  567. if (ith_file->hparams != first_file->hparams) {
  568. throw std::runtime_error(format("llama.cpp: hparams inconsistent between files"));
  569. }
  570. }
  571. if (!llama_mmap::SUPPORTED) {
  572. use_mmap = false;
  573. }
  574. if (use_mmap && alignment_prevents_mmap()) {
  575. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  576. use_mmap = false;
  577. }
  578. this->use_mmap = use_mmap;
  579. for (llama_load_tensor & lt : tensors_map.tensors) {
  580. lt.calc_all();
  581. }
  582. }
  583. bool alignment_prevents_mmap() {
  584. for (const llama_load_tensor & lt : tensors_map.tensors) {
  585. for (const llama_load_tensor_shard & shard : lt.shards) {
  586. if (shard.file_off & 3) {
  587. return true;
  588. }
  589. }
  590. }
  591. return false;
  592. }
  593. uint32_t guess_n_parts() const {
  594. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  595. if (it == tensors_map.name_to_idx.end()) {
  596. throw std::runtime_error(std::string("missing tok_embeddings.weight"));
  597. }
  598. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  599. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  600. }
  601. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  602. *ctx_size_p = *mmapped_size_p = 0;
  603. for (const llama_load_tensor & lt : tensors_map.tensors) {
  604. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  605. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  606. }
  607. }
  608. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  609. auto it = tensors_map.name_to_idx.find(name);
  610. if (it == tensors_map.name_to_idx.end()) {
  611. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  612. }
  613. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  614. if (lt.ne != ne) {
  615. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  616. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  617. }
  618. return get_tensor_for(lt, backend);
  619. }
  620. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  621. struct ggml_tensor * tensor;
  622. if (backend != GGML_BACKEND_CPU) {
  623. ggml_set_no_alloc(ggml_ctx, true);
  624. }
  625. if (lt.ne.size() == 2) {
  626. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  627. } else {
  628. LLAMA_ASSERT(lt.ne.size() == 1);
  629. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  630. }
  631. ggml_set_name(tensor, lt.name.c_str());
  632. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  633. if (backend != GGML_BACKEND_CPU) {
  634. ggml_set_no_alloc(ggml_ctx, use_mmap);
  635. }
  636. tensor->backend = backend;
  637. lt.ggml_tensor = tensor;
  638. num_ggml_tensors_created++;
  639. return tensor;
  640. }
  641. void done_getting_tensors() const {
  642. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  643. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  644. }
  645. }
  646. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  647. size_t data_size = 0;
  648. size_t prefetch_size = 0;
  649. size_t lock_size = 0;
  650. for (const llama_load_tensor & lt : tensors_map.tensors) {
  651. data_size += lt.size;
  652. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  653. prefetch_size += lt.size;
  654. }
  655. }
  656. if (use_mmap) {
  657. mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
  658. if (lmlock) {
  659. lmlock->init(mapping->addr);
  660. }
  661. }
  662. size_t done_size = 0;
  663. for (llama_load_tensor & lt : tensors_map.tensors) {
  664. if (progress_callback) {
  665. progress_callback((float) done_size / data_size, progress_callback_user_data);
  666. }
  667. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  668. lt.data = (uint8_t *) lt.ggml_tensor->data;
  669. // allocate temp buffer if not using mmap
  670. if (!use_mmap && lt.data == NULL) {
  671. GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
  672. lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
  673. }
  674. load_data_for(lt);
  675. switch(lt.ggml_tensor->backend) {
  676. case GGML_BACKEND_CPU:
  677. lt.ggml_tensor->data = lt.data;
  678. if (use_mmap && lmlock) {
  679. lock_size += lt.size;
  680. lmlock->grow_to(lock_size);
  681. }
  682. break;
  683. #if defined(GGML_USE_CUBLAS)
  684. case GGML_BACKEND_GPU:
  685. case GGML_BACKEND_GPU_SPLIT:
  686. ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  687. if (!use_mmap) {
  688. free(lt.data);
  689. }
  690. break;
  691. #elif defined(GGML_USE_CLBLAST)
  692. case GGML_BACKEND_GPU:
  693. ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
  694. if (!use_mmap) {
  695. free(lt.data);
  696. }
  697. break;
  698. #endif
  699. default:
  700. continue;
  701. }
  702. done_size += lt.size;
  703. }
  704. }
  705. void load_data_for(llama_load_tensor & lt) {
  706. if (use_mmap) {
  707. LLAMA_ASSERT(lt.shards.size() == 1);
  708. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  709. } else if (lt.split_type == SPLIT_NONE) {
  710. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  711. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  712. file.read_raw(lt.data, lt.size);
  713. } else if (lt.split_type == SPLIT_BY_ROWS) {
  714. size_t offset = 0;
  715. for (llama_load_tensor_shard & shard : lt.shards) {
  716. llama_file & file = file_loaders.at(shard.file_idx)->file;
  717. file.seek(shard.file_off, SEEK_SET);
  718. file.read_raw(lt.data + offset, shard.size);
  719. offset += shard.size;
  720. }
  721. LLAMA_ASSERT(offset == lt.size);
  722. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  723. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  724. std::vector<llama_buffer> tmp_bufs(lt.shards.size());
  725. for (size_t i = 0; i < lt.shards.size(); i++) {
  726. llama_load_tensor_shard & shard = lt.shards.at(i);
  727. llama_file & file = file_loaders.at(shard.file_idx)->file;
  728. file.seek(shard.file_off, SEEK_SET);
  729. tmp_bufs.at(i).resize(shard.size);
  730. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  731. }
  732. // Then reshape.
  733. size_t num_rows = lt.ne.at(1);
  734. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  735. size_t out_offset = 0;
  736. for (size_t row = 0; row < num_rows; row++) {
  737. for (llama_buffer & tmp_buf : tmp_bufs) {
  738. memcpy(lt.data + out_offset,
  739. tmp_buf.addr + row * per_shard_row_size,
  740. per_shard_row_size);
  741. out_offset += per_shard_row_size;
  742. }
  743. }
  744. LLAMA_ASSERT(out_offset == lt.size);
  745. }
  746. if (0) {
  747. print_checksum(lt);
  748. }
  749. }
  750. static void print_checksum(llama_load_tensor & lt) {
  751. uint32_t sum = 0;
  752. for (size_t i = 0; i < lt.size; i++) {
  753. uint8_t byte = lt.data[i];
  754. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  755. }
  756. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  757. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  758. }
  759. };
  760. //
  761. // kv cache
  762. //
  763. static bool kv_cache_init(
  764. const struct llama_hparams & hparams,
  765. struct llama_kv_cache & cache,
  766. ggml_type wtype,
  767. int n_ctx,
  768. int n_gpu_layers) {
  769. const int n_embd = hparams.n_embd;
  770. const int n_layer = hparams.n_layer;
  771. const int64_t n_mem = n_layer*n_ctx;
  772. const int64_t n_elements = n_embd*n_mem;
  773. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  774. cache.n = 0;
  775. struct ggml_init_params params;
  776. params.mem_size = cache.buf.size;
  777. params.mem_buffer = cache.buf.addr;
  778. params.no_alloc = false;
  779. cache.ctx = ggml_init(params);
  780. if (!cache.ctx) {
  781. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  782. return false;
  783. }
  784. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  785. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  786. ggml_set_name(cache.k, "cache_k");
  787. ggml_set_name(cache.v, "cache_v");
  788. (void) n_gpu_layers;
  789. #ifdef GGML_USE_CUBLAS
  790. if (n_gpu_layers > n_layer + 1) {
  791. ggml_cuda_assign_buffers_no_scratch(cache.v);
  792. }
  793. if (n_gpu_layers > n_layer + 2) {
  794. ggml_cuda_assign_buffers_no_scratch(cache.k);
  795. }
  796. #endif // GGML_USE_CUBLAS
  797. return true;
  798. }
  799. struct llama_context_params llama_context_default_params() {
  800. struct llama_context_params result = {
  801. /*.n_ctx =*/ 512,
  802. /*.n_batch =*/ 512,
  803. /*.gpu_layers =*/ 0,
  804. /*.main_gpu =*/ 0,
  805. /*.tensor_split =*/ {0},
  806. /*.low_vram =*/ false,
  807. /*.seed =*/ -1,
  808. /*.f16_kv =*/ true,
  809. /*.logits_all =*/ false,
  810. /*.vocab_only =*/ false,
  811. /*.use_mmap =*/ true,
  812. /*.use_mlock =*/ false,
  813. /*.embedding =*/ false,
  814. /*.progress_callback =*/ nullptr,
  815. /*.progress_callback_user_data =*/ nullptr,
  816. };
  817. return result;
  818. }
  819. struct llama_model_quantize_params llama_model_quantize_default_params() {
  820. struct llama_model_quantize_params result = {
  821. /*.nthread =*/ 0,
  822. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  823. /*.allow_requantize =*/ false,
  824. /*.quantize_output_tensor =*/ true,
  825. };
  826. return result;
  827. }
  828. bool llama_mmap_supported() {
  829. return llama_mmap::SUPPORTED;
  830. }
  831. bool llama_mlock_supported() {
  832. return llama_mlock::SUPPORTED;
  833. }
  834. void llama_init_backend() {
  835. ggml_time_init();
  836. // needed to initialize f16 tables
  837. {
  838. struct ggml_init_params params = { 0, NULL, false };
  839. struct ggml_context * ctx = ggml_init(params);
  840. ggml_free(ctx);
  841. }
  842. }
  843. int64_t llama_time_us() {
  844. return ggml_time_us();
  845. }
  846. //
  847. // model loading
  848. //
  849. static const char *llama_file_version_name(llama_file_version version) {
  850. switch (version) {
  851. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  852. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  853. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  854. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  855. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  856. }
  857. return "unknown";
  858. }
  859. static const char *llama_ftype_name(enum llama_ftype ftype) {
  860. switch (ftype) {
  861. case LLAMA_FTYPE_ALL_F32: return "all F32";
  862. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  863. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  864. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  865. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  866. return "mostly Q4_1, some F16";
  867. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  868. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  869. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  870. // K-quants
  871. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  872. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  873. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  874. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  875. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  876. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  877. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  878. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  879. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  880. default: return "unknown, may not work";
  881. }
  882. }
  883. static const char *llama_model_type_name(e_model type) {
  884. switch (type) {
  885. case MODEL_3B: return "3B";
  886. case MODEL_7B: return "7B";
  887. case MODEL_13B: return "13B";
  888. case MODEL_30B: return "30B";
  889. case MODEL_65B: return "65B";
  890. default: LLAMA_ASSERT(false);
  891. }
  892. }
  893. static void llama_model_load_internal(
  894. const std::string & fname,
  895. llama_context & lctx,
  896. int n_ctx,
  897. int n_batch,
  898. int n_gpu_layers,
  899. int main_gpu,
  900. const float * tensor_split,
  901. bool low_vram,
  902. ggml_type memory_type,
  903. bool use_mmap,
  904. bool use_mlock,
  905. bool vocab_only,
  906. llama_progress_callback progress_callback,
  907. void * progress_callback_user_data) {
  908. lctx.t_start_us = ggml_time_us();
  909. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  910. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  911. auto & model = lctx.model;
  912. model.hparams = ml->file_loaders.at(0)->hparams;
  913. model.n_gpu_layers = n_gpu_layers;
  914. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  915. auto & hparams = model.hparams;
  916. {
  917. switch (hparams.n_layer) {
  918. case 26: model.type = e_model::MODEL_3B; break;
  919. case 32: model.type = e_model::MODEL_7B; break;
  920. case 40: model.type = e_model::MODEL_13B; break;
  921. case 60: model.type = e_model::MODEL_30B; break;
  922. case 80: model.type = e_model::MODEL_65B; break;
  923. default:
  924. {
  925. if (hparams.n_layer < 32) {
  926. model.type = e_model::MODEL_7B;
  927. }
  928. } break;
  929. }
  930. hparams.n_ctx = n_ctx;
  931. }
  932. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  933. {
  934. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  935. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  936. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  937. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  938. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  939. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  940. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  941. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  942. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  943. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  944. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  945. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  946. }
  947. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  948. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  949. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  950. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  951. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  952. }
  953. }
  954. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  955. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  956. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  957. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  958. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  959. }
  960. }
  961. if (vocab_only) {
  962. return;
  963. }
  964. auto & ctx = model.ctx;
  965. size_t ctx_size;
  966. size_t mmapped_size;
  967. ml->calc_sizes(&ctx_size, &mmapped_size);
  968. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  969. // create the ggml context
  970. {
  971. lctx.model.buf.resize(ctx_size);
  972. if (use_mlock) {
  973. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  974. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  975. }
  976. struct ggml_init_params params = {
  977. /*.mem_size =*/ lctx.model.buf.size,
  978. /*.mem_buffer =*/ lctx.model.buf.addr,
  979. /*.no_alloc =*/ ml->use_mmap,
  980. };
  981. model.ctx = ggml_init(params);
  982. if (!model.ctx) {
  983. throw std::runtime_error(format("ggml_init() failed"));
  984. }
  985. }
  986. (void) main_gpu;
  987. #if defined(GGML_USE_CUBLAS)
  988. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  989. ggml_cuda_set_main_device(main_gpu);
  990. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  991. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  992. #elif defined(GGML_USE_CLBLAST)
  993. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  994. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  995. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  996. #else
  997. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  998. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  999. #endif
  1000. // prepare memory for the weights
  1001. size_t vram_weights = 0;
  1002. size_t vram_scratch = 0;
  1003. {
  1004. const uint32_t n_embd = hparams.n_embd;
  1005. const uint32_t n_layer = hparams.n_layer;
  1006. const uint32_t n_vocab = hparams.n_vocab;
  1007. ml->ggml_ctx = ctx;
  1008. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1009. // "output" tensor
  1010. {
  1011. ggml_backend backend_norm;
  1012. ggml_backend backend_output;
  1013. if (n_gpu_layers > int(n_layer)) { // NOLINT
  1014. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1015. // on Windows however this is detrimental unless everything is on the GPU
  1016. #ifndef _WIN32
  1017. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1018. #else
  1019. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1020. #endif // _WIN32
  1021. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1022. } else {
  1023. backend_norm = GGML_BACKEND_CPU;
  1024. backend_output = GGML_BACKEND_CPU;
  1025. }
  1026. model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
  1027. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  1028. if (backend_norm == GGML_BACKEND_GPU) {
  1029. vram_weights += ggml_nbytes(model.norm);
  1030. }
  1031. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1032. vram_weights += ggml_nbytes(model.output);
  1033. }
  1034. }
  1035. const int i_gpu_start = n_layer - n_gpu_layers;
  1036. model.layers.resize(n_layer);
  1037. for (uint32_t i = 0; i < n_layer; ++i) {
  1038. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1039. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1040. auto & layer = model.layers[i];
  1041. std::string layers_i = "layers." + std::to_string(i);
  1042. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  1043. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  1044. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  1045. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  1046. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  1047. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  1048. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  1049. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  1050. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  1051. if (backend == GGML_BACKEND_GPU) {
  1052. vram_weights +=
  1053. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1054. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1055. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1056. }
  1057. }
  1058. }
  1059. ml->done_getting_tensors();
  1060. // print memory requirements
  1061. {
  1062. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  1063. // this is the total memory required to run the inference
  1064. const size_t mem_required =
  1065. ctx_size +
  1066. mmapped_size - vram_weights + // weights in VRAM not in memory
  1067. MEM_REQ_SCRATCH0().at(model.type) +
  1068. MEM_REQ_SCRATCH1().at(model.type) +
  1069. MEM_REQ_EVAL().at (model.type);
  1070. // this is the memory required by one llama_state
  1071. const size_t mem_required_state =
  1072. scale*MEM_REQ_KV_SELF().at(model.type);
  1073. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1074. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1075. (void) vram_scratch;
  1076. (void) n_batch;
  1077. #ifdef GGML_USE_CUBLAS
  1078. if (low_vram) {
  1079. fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  1080. ggml_cuda_set_scratch_size(0); // disable scratch
  1081. } else {
  1082. vram_scratch = n_batch * MB;
  1083. ggml_cuda_set_scratch_size(vram_scratch);
  1084. if (n_gpu_layers > 0) {
  1085. fprintf(stderr, "%s: allocating batch_size x 1 MB = %zd MB VRAM for the scratch buffer\n",
  1086. __func__, vram_scratch / MB);
  1087. }
  1088. }
  1089. #endif // GGML_USE_CUBLAS
  1090. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1091. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1092. fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1093. if (n_gpu_layers > (int) hparams.n_layer) {
  1094. fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
  1095. }
  1096. size_t vram_kv_cache = 0;
  1097. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1098. if (low_vram) {
  1099. fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1100. } else {
  1101. fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
  1102. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1103. }
  1104. }
  1105. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1106. if (low_vram) {
  1107. fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1108. } else {
  1109. fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
  1110. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1111. }
  1112. }
  1113. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1114. fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
  1115. __func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3);
  1116. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1117. __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
  1118. #else
  1119. (void) n_gpu_layers;
  1120. #endif
  1121. }
  1122. // populate `tensors_by_name`
  1123. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1124. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1125. }
  1126. (void) tensor_split;
  1127. #if defined(GGML_USE_CUBLAS)
  1128. {
  1129. ggml_cuda_set_tensor_split(tensor_split);
  1130. }
  1131. #endif
  1132. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  1133. if (progress_callback) {
  1134. progress_callback(1.0f, progress_callback_user_data);
  1135. }
  1136. model.mapping = std::move(ml->mapping);
  1137. // loading time will be recalculate after the first eval, so
  1138. // we take page faults deferred by mmap() into consideration
  1139. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  1140. }
  1141. static bool llama_model_load(
  1142. const std::string & fname,
  1143. llama_context & lctx,
  1144. int n_ctx,
  1145. int n_batch,
  1146. int n_gpu_layers,
  1147. int main_gpu,
  1148. float * tensor_split,
  1149. bool low_vram,
  1150. ggml_type memory_type,
  1151. bool use_mmap,
  1152. bool use_mlock,
  1153. bool vocab_only,
  1154. llama_progress_callback progress_callback,
  1155. void *progress_callback_user_data) {
  1156. try {
  1157. llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
  1158. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1159. return true;
  1160. } catch (const std::exception & err) {
  1161. fprintf(stderr, "error loading model: %s\n", err.what());
  1162. return false;
  1163. }
  1164. }
  1165. // evaluate the transformer
  1166. //
  1167. // - lctx: llama context
  1168. // - tokens: new batch of tokens to process
  1169. // - n_past: the context size so far
  1170. // - n_threads: number of threads to use
  1171. // - cgraph_fname: filename of the exported computation graph
  1172. //
  1173. static bool llama_eval_internal(
  1174. llama_context & lctx,
  1175. const llama_token * tokens,
  1176. const int n_tokens,
  1177. const int n_past,
  1178. const int n_threads,
  1179. const char * cgraph_fname) {
  1180. // enforce that the first token is BOS
  1181. if (n_past == 0 && tokens[0] != llama_token_bos()) {
  1182. fprintf(stderr, "%s: first token must be BOS\n", __func__);
  1183. return false;
  1184. }
  1185. const int64_t t_start_us = ggml_time_us();
  1186. const int N = n_tokens;
  1187. const auto & model = lctx.model;
  1188. const auto & hparams = model.hparams;
  1189. const auto & kv_self = model.kv_self;
  1190. LLAMA_ASSERT(!!kv_self.ctx);
  1191. const int n_embd = hparams.n_embd;
  1192. const int n_layer = hparams.n_layer;
  1193. const int n_ctx = hparams.n_ctx;
  1194. const int n_head = hparams.n_head;
  1195. const int n_vocab = hparams.n_vocab;
  1196. const int n_rot = hparams.n_embd/hparams.n_head;
  1197. const int n_gpu_layers = model.n_gpu_layers;
  1198. auto & mem_per_token = lctx.mem_per_token;
  1199. auto & buf_compute = lctx.buf_compute;
  1200. struct ggml_init_params params = {
  1201. /*.mem_size =*/ buf_compute.size,
  1202. /*.mem_buffer =*/ buf_compute.addr,
  1203. /*.no_alloc =*/ false,
  1204. };
  1205. struct ggml_context * ctx0 = ggml_init(params);
  1206. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1207. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1208. ggml_cgraph gf = {};
  1209. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1210. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1211. ggml_set_name(embd, "embd");
  1212. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  1213. struct ggml_tensor * cur;
  1214. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  1215. const int i_gpu_start = n_layer - n_gpu_layers;
  1216. (void) i_gpu_start;
  1217. // offload functions set the tensor output backend to GPU
  1218. // tensors are GPU-accelerated if any input or the output has been offloaded
  1219. //
  1220. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1221. // in that case ggml_cuda_assign_buffers has no effect
  1222. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1223. offload_func_t offload_func_kq = llama_nop;
  1224. offload_func_t offload_func_v = llama_nop;
  1225. #ifdef GGML_USE_CUBLAS
  1226. if (n_gpu_layers > n_layer) {
  1227. offload_func_nr = ggml_cuda_assign_buffers;
  1228. }
  1229. if (n_gpu_layers > n_layer + 1) {
  1230. offload_func_v = ggml_cuda_assign_buffers;
  1231. }
  1232. if (n_gpu_layers > n_layer + 2) {
  1233. offload_func_kq = ggml_cuda_assign_buffers;
  1234. }
  1235. #endif // GGML_USE_CUBLAS
  1236. for (int il = 0; il < n_layer; ++il) {
  1237. offload_func_t offload_func = llama_nop;
  1238. #ifdef GGML_USE_CUBLAS
  1239. if (il >= i_gpu_start) {
  1240. offload_func = ggml_cuda_assign_buffers;
  1241. }
  1242. #endif // GGML_USE_CUBLAS
  1243. struct ggml_tensor * inpSA = inpL;
  1244. lctx.use_buf(ctx0, 0);
  1245. // norm
  1246. {
  1247. cur = ggml_rms_norm(ctx0, inpL);
  1248. offload_func(cur);
  1249. ggml_set_name(cur, "rms_norm_0");
  1250. // cur = cur*attention_norm(broadcasted)
  1251. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1252. offload_func(cur);
  1253. ggml_set_name(cur, "attention_norm_0");
  1254. }
  1255. // self-attention
  1256. {
  1257. // compute Q and K and RoPE them
  1258. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1259. offload_func_kq(tmpk);
  1260. ggml_set_name(tmpk, "tmpk");
  1261. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1262. offload_func_kq(tmpq);
  1263. ggml_set_name(tmpq, "tmpq");
  1264. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1265. offload_func_kq(Kcur);
  1266. ggml_set_name(Kcur, "Kcur");
  1267. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1268. offload_func_kq(Qcur);
  1269. ggml_set_name(Qcur, "Qcur");
  1270. // store key and value to memory
  1271. {
  1272. // compute the transposed [N, n_embd] V matrix
  1273. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  1274. offload_func_v(tmpv);
  1275. ggml_set_name(tmpv, "tmpv");
  1276. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
  1277. offload_func_v(Vcur);
  1278. ggml_set_name(Vcur, "Vcur");
  1279. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1280. offload_func_kq(k);
  1281. ggml_set_name(k, "k");
  1282. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1283. ( n_ctx)*ggml_element_size(kv_self.v),
  1284. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1285. offload_func_v(v);
  1286. ggml_set_name(v, "v");
  1287. // important: storing RoPE-ed version of K in the KV cache!
  1288. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1289. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1290. }
  1291. struct ggml_tensor * Q =
  1292. ggml_permute(ctx0,
  1293. Qcur,
  1294. 0, 2, 1, 3);
  1295. offload_func_kq(Q);
  1296. ggml_set_name(Q, "Q");
  1297. struct ggml_tensor * K =
  1298. ggml_permute(ctx0,
  1299. ggml_reshape_3d(ctx0,
  1300. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1301. n_embd/n_head, n_head, n_past + N),
  1302. 0, 2, 1, 3);
  1303. offload_func_kq(K);
  1304. ggml_set_name(K, "K");
  1305. // K * Q
  1306. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1307. offload_func_kq(KQ);
  1308. ggml_set_name(KQ, "KQ");
  1309. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1310. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1311. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1312. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1313. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1314. offload_func_kq(KQ_scaled);
  1315. ggml_set_name(KQ_scaled, "KQ_scaled");
  1316. // KQ_masked = mask_past(KQ_scaled)
  1317. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1318. offload_func_kq(KQ_masked);
  1319. ggml_set_name(KQ_masked, "KQ_masked");
  1320. // KQ = soft_max(KQ_masked)
  1321. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1322. offload_func_v(KQ_soft_max);
  1323. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1324. // split cached V into n_head heads
  1325. struct ggml_tensor * V =
  1326. ggml_view_3d(ctx0, kv_self.v,
  1327. n_past + N, n_embd/n_head, n_head,
  1328. n_ctx*ggml_element_size(kv_self.v),
  1329. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1330. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1331. offload_func_v(V);
  1332. ggml_set_name(V, "V");
  1333. #if 1
  1334. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1335. offload_func_v(KQV);
  1336. ggml_set_name(KQV, "KQV");
  1337. #else
  1338. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1339. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1340. // is there a better way?
  1341. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1342. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1343. #endif
  1344. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1345. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1346. offload_func_v(KQV_merged);
  1347. ggml_set_name(KQV_merged, "KQV_merged");
  1348. // cur = KQV_merged.contiguous().view(n_embd, N)
  1349. cur = ggml_cpy(ctx0,
  1350. KQV_merged,
  1351. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1352. offload_func_v(cur);
  1353. ggml_set_name(cur, "KQV_merged_contiguous");
  1354. // projection (no bias)
  1355. cur = ggml_mul_mat(ctx0,
  1356. model.layers[il].wo,
  1357. cur);
  1358. offload_func(cur);
  1359. ggml_set_name(cur, "result_wo");
  1360. }
  1361. lctx.use_buf(ctx0, 1);
  1362. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1363. offload_func(inpFF);
  1364. ggml_set_name(inpFF, "inpFF");
  1365. // feed-forward network
  1366. {
  1367. // norm
  1368. {
  1369. cur = ggml_rms_norm(ctx0, inpFF);
  1370. offload_func(cur);
  1371. ggml_set_name(cur, "rms_norm_1");
  1372. // cur = cur*ffn_norm(broadcasted)
  1373. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1374. offload_func(cur);
  1375. ggml_set_name(cur, "ffn_norm");
  1376. }
  1377. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1378. model.layers[il].w3,
  1379. cur);
  1380. offload_func(tmp);
  1381. ggml_set_name(tmp, "result_w3");
  1382. cur = ggml_mul_mat(ctx0,
  1383. model.layers[il].w1,
  1384. cur);
  1385. offload_func(cur);
  1386. ggml_set_name(cur, "result_w2");
  1387. // SILU activation
  1388. cur = ggml_silu(ctx0, cur);
  1389. offload_func(cur);
  1390. ggml_set_name(cur, "silu");
  1391. cur = ggml_mul(ctx0, cur, tmp);
  1392. offload_func(cur);
  1393. ggml_set_name(cur, "silu_x_result_w3");
  1394. cur = ggml_mul_mat(ctx0,
  1395. model.layers[il].w2,
  1396. cur);
  1397. offload_func(cur);
  1398. ggml_set_name(cur, "result_w2");
  1399. }
  1400. cur = ggml_add(ctx0, cur, inpFF);
  1401. offload_func(cur);
  1402. ggml_set_name(cur, "inpFF_+_result_w2");
  1403. // input for next layer
  1404. inpL = cur;
  1405. }
  1406. lctx.use_buf(ctx0, 0);
  1407. // used at the end to optionally extract the embeddings
  1408. struct ggml_tensor * embeddings = NULL;
  1409. // norm
  1410. {
  1411. cur = ggml_rms_norm(ctx0, inpL);
  1412. offload_func_nr(cur);
  1413. ggml_set_name(cur, "rms_norm_inpL");
  1414. cur = ggml_rms_norm(ctx0, cur);
  1415. offload_func_nr(cur);
  1416. ggml_set_name(cur, "rms_norm_after");
  1417. // cur = cur*norm(broadcasted)
  1418. cur = ggml_mul(ctx0, cur, model.norm);
  1419. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  1420. ggml_set_name(cur, "result_norm");
  1421. embeddings = cur;
  1422. }
  1423. // lm_head
  1424. cur = ggml_mul_mat(ctx0, model.output, cur);
  1425. ggml_set_name(cur, "result_output");
  1426. lctx.use_buf(ctx0, -1);
  1427. // logits -> probs
  1428. //cur = ggml_soft_max_inplace(ctx0, cur);
  1429. // run the computation
  1430. ggml_build_forward_expand(&gf, cur);
  1431. #ifdef GGML_USE_METAL
  1432. if (lctx.ctx_metal && N == 1) {
  1433. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1434. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1435. } else {
  1436. // IMPORTANT:
  1437. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1438. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1439. // coprocessor.
  1440. //
  1441. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1442. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1443. //
  1444. // TODO: avoid these syncs via shared memory (ref #1696)
  1445. //
  1446. if (lctx.ctx_metal) {
  1447. // We need to sync the GPU KV cache with the CPU KV cache
  1448. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1449. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1450. }
  1451. ggml_graph_compute(ctx0, &gf);
  1452. }
  1453. #else
  1454. ggml_graph_compute(ctx0, &gf);
  1455. #endif
  1456. if (cgraph_fname) {
  1457. ggml_graph_export(&gf, cgraph_fname);
  1458. }
  1459. #ifdef GGML_PERF
  1460. // print timing information per ggml operation (for debugging purposes)
  1461. // requires GGML_PERF to be defined
  1462. ggml_graph_print(&gf);
  1463. #endif
  1464. // plot the computation graph in dot format (for debugging purposes)
  1465. //if (n_past%100 == 0) {
  1466. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1467. //}
  1468. //embd_w.resize(n_vocab*N);
  1469. //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1470. // update kv token count
  1471. lctx.model.kv_self.n = n_past + N;
  1472. // extract logits
  1473. {
  1474. auto & logits_out = lctx.logits;
  1475. if (lctx.logits_all) {
  1476. logits_out.resize(n_vocab * N);
  1477. memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1478. } else {
  1479. // return result for just the last token
  1480. logits_out.resize(n_vocab);
  1481. memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1482. }
  1483. }
  1484. // extract embeddings
  1485. if (!lctx.embedding.empty()) {
  1486. auto & embedding_out = lctx.embedding;
  1487. embedding_out.resize(n_embd);
  1488. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1489. }
  1490. if (mem_per_token == 0) {
  1491. mem_per_token = ggml_used_mem(ctx0)/N;
  1492. }
  1493. #if 0
  1494. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1495. ggml_used_mem(ctx0)/1024.0/1024.0,
  1496. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1497. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1498. #endif
  1499. ggml_free(ctx0);
  1500. // measure the performance only for the single-token evals
  1501. if (N == 1) {
  1502. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1503. lctx.n_eval++;
  1504. }
  1505. else if (N > 1) {
  1506. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1507. lctx.n_p_eval += N;
  1508. }
  1509. return true;
  1510. }
  1511. //
  1512. // tokenizer
  1513. //
  1514. static size_t utf8_len(char src) {
  1515. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1516. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1517. return lookup[highbits];
  1518. }
  1519. struct llama_sp_symbol {
  1520. using index = int;
  1521. index prev;
  1522. index next;
  1523. const char * text;
  1524. size_t n;
  1525. };
  1526. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1527. struct llama_sp_bigram {
  1528. struct comparator {
  1529. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1530. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1531. }
  1532. };
  1533. using queue_storage = std::vector<llama_sp_bigram>;
  1534. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1535. llama_sp_symbol::index left;
  1536. llama_sp_symbol::index right;
  1537. float score;
  1538. size_t size;
  1539. };
  1540. // original implementation:
  1541. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1542. struct llama_tokenizer {
  1543. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1544. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1545. // split string into utf8 chars
  1546. int index = 0;
  1547. size_t offs = 0;
  1548. while (offs < text.size()) {
  1549. llama_sp_symbol sym;
  1550. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1551. sym.text = text.c_str() + offs;
  1552. sym.n = char_len;
  1553. offs += char_len;
  1554. sym.prev = index - 1;
  1555. sym.next = offs == text.size() ? -1 : index + 1;
  1556. index++;
  1557. symbols_.emplace_back(sym);
  1558. }
  1559. // seed the work queue with all possible 2-character tokens.
  1560. for (size_t i = 1; i < symbols_.size(); ++i) {
  1561. try_add_bigram(i - 1, i);
  1562. }
  1563. // keep substituting the highest frequency pairs for as long as we can.
  1564. while (!work_queue_.empty()) {
  1565. auto bigram = work_queue_.top();
  1566. work_queue_.pop();
  1567. auto & left_sym = symbols_[bigram.left];
  1568. auto & right_sym = symbols_[bigram.right];
  1569. // if one of the symbols already got merged, skip it.
  1570. if (left_sym.n == 0 || right_sym.n == 0 ||
  1571. left_sym.n + right_sym.n != bigram.size) {
  1572. continue;
  1573. }
  1574. // merge the right sym into the left one
  1575. left_sym.n += right_sym.n;
  1576. right_sym.n = 0;
  1577. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1578. // remove the right sym from the chain
  1579. left_sym.next = right_sym.next;
  1580. if (right_sym.next >= 0) {
  1581. symbols_[right_sym.next].prev = bigram.left;
  1582. }
  1583. // find more substitutions
  1584. try_add_bigram(left_sym.prev, bigram.left);
  1585. try_add_bigram(bigram.left, left_sym.next);
  1586. }
  1587. for (int i = 0; i != -1; i = symbols_[i].next) {
  1588. auto & symbol = symbols_[i];
  1589. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1590. if (token == vocab_.token_to_id.end()) {
  1591. // output any symbols that did not form tokens as bytes.
  1592. for (int j = 0; j < (int) symbol.n; ++j) {
  1593. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1594. output.push_back(token_id);
  1595. }
  1596. } else {
  1597. output.push_back((*token).second);
  1598. }
  1599. }
  1600. }
  1601. private:
  1602. void try_add_bigram(int left, int right) {
  1603. if (left == -1 || right == -1) {
  1604. return;
  1605. }
  1606. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1607. auto token = vocab_.token_to_id.find(text);
  1608. if (token == vocab_.token_to_id.end()) {
  1609. return;
  1610. }
  1611. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1612. return;
  1613. }
  1614. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1615. llama_sp_bigram bigram;
  1616. bigram.left = left;
  1617. bigram.right = right;
  1618. bigram.score = tok_score.score;
  1619. bigram.size = text.size();
  1620. work_queue_.push(bigram);
  1621. }
  1622. const llama_vocab & vocab_;
  1623. std::vector<llama_sp_symbol> symbols_;
  1624. llama_sp_bigram::queue work_queue_;
  1625. };
  1626. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1627. llama_tokenizer tokenizer(vocab);
  1628. std::vector<llama_vocab::id> output;
  1629. if (text.empty()) {
  1630. return output;
  1631. }
  1632. if (bos) {
  1633. output.push_back(llama_token_bos());
  1634. }
  1635. tokenizer.tokenize(text, output);
  1636. return output;
  1637. }
  1638. //
  1639. // sampling
  1640. //
  1641. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1642. assert(candidates->size > 0);
  1643. const int64_t t_start_sample_us = ggml_time_us();
  1644. // Sort the logits in descending order
  1645. if (!candidates->sorted) {
  1646. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1647. return a.logit > b.logit;
  1648. });
  1649. candidates->sorted = true;
  1650. }
  1651. float max_l = candidates->data[0].logit;
  1652. float cum_sum = 0.0f;
  1653. for (size_t i = 0; i < candidates->size; ++i) {
  1654. float p = expf(candidates->data[i].logit - max_l);
  1655. candidates->data[i].p = p;
  1656. cum_sum += p;
  1657. }
  1658. for (size_t i = 0; i < candidates->size; ++i) {
  1659. candidates->data[i].p /= cum_sum;
  1660. }
  1661. if (ctx) {
  1662. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1663. }
  1664. }
  1665. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1666. const int64_t t_start_sample_us = ggml_time_us();
  1667. k = std::max(k, (int) min_keep);
  1668. k = std::min(k, (int) candidates->size);
  1669. // Sort scores in descending order
  1670. if (!candidates->sorted) {
  1671. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1672. return a.logit > b.logit;
  1673. };
  1674. if (k == (int) candidates->size) {
  1675. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1676. } else {
  1677. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1678. }
  1679. candidates->sorted = true;
  1680. }
  1681. candidates->size = k;
  1682. if (ctx) {
  1683. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1684. }
  1685. }
  1686. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1687. if (p >= 1.0f) {
  1688. return;
  1689. }
  1690. const int64_t t_start_sample_us = ggml_time_us();
  1691. llama_sample_softmax(ctx, candidates);
  1692. // Compute the cumulative probabilities
  1693. float cum_sum = 0.0f;
  1694. size_t last_idx = candidates->size;
  1695. for (size_t i = 0; i < candidates->size; ++i) {
  1696. cum_sum += candidates->data[i].p;
  1697. // Check if the running sum is greater than p or if we have kept at least min_keep tokens
  1698. if (cum_sum > p && i >= min_keep) {
  1699. last_idx = i;
  1700. break;
  1701. }
  1702. }
  1703. // Resize the output vector to keep only the top-p tokens
  1704. candidates->size = last_idx;
  1705. if (ctx) {
  1706. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1707. }
  1708. }
  1709. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1710. if (z >= 1.0f || candidates->size <= 2) {
  1711. return;
  1712. }
  1713. const int64_t t_start_sample_us = ggml_time_us();
  1714. llama_sample_softmax(nullptr, candidates);
  1715. // Compute the first and second derivatives
  1716. std::vector<float> first_derivatives(candidates->size - 1);
  1717. std::vector<float> second_derivatives(candidates->size - 2);
  1718. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1719. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1720. }
  1721. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1722. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1723. }
  1724. // Calculate absolute value of second derivatives
  1725. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1726. second_derivatives[i] = abs(second_derivatives[i]);
  1727. }
  1728. // Normalize the second derivatives
  1729. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1730. for (float & value : second_derivatives) {
  1731. value /= second_derivatives_sum;
  1732. }
  1733. float cum_sum = 0.0f;
  1734. size_t last_idx = candidates->size;
  1735. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1736. cum_sum += second_derivatives[i];
  1737. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1738. if (cum_sum > z && i >= min_keep) {
  1739. last_idx = i;
  1740. break;
  1741. }
  1742. }
  1743. // Resize the output vector to keep only the tokens above the tail location
  1744. candidates->size = last_idx;
  1745. if (ctx) {
  1746. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1747. }
  1748. }
  1749. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1750. // Reference implementation:
  1751. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1752. if (p >= 1.0f) {
  1753. return;
  1754. }
  1755. const int64_t t_start_sample_us = ggml_time_us();
  1756. // Compute the softmax of logits and calculate entropy
  1757. llama_sample_softmax(nullptr, candidates);
  1758. float entropy = 0.0f;
  1759. for (size_t i = 0; i < candidates->size; ++i) {
  1760. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1761. }
  1762. // Compute the absolute difference between negative log probability and entropy for each candidate
  1763. std::vector<float> shifted_scores;
  1764. for (size_t i = 0; i < candidates->size; ++i) {
  1765. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1766. shifted_scores.push_back(shifted_score);
  1767. }
  1768. // Sort tokens based on the shifted_scores and their corresponding indices
  1769. std::vector<size_t> indices(candidates->size);
  1770. std::iota(indices.begin(), indices.end(), 0);
  1771. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1772. return shifted_scores[a] < shifted_scores[b];
  1773. });
  1774. // Compute the cumulative probabilities
  1775. float cum_sum = 0.0f;
  1776. size_t last_idx = indices.size();
  1777. for (size_t i = 0; i < indices.size(); ++i) {
  1778. size_t idx = indices[i];
  1779. cum_sum += candidates->data[idx].p;
  1780. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1781. if (cum_sum > p && i >= min_keep - 1) {
  1782. last_idx = i + 1;
  1783. break;
  1784. }
  1785. }
  1786. // Resize the output vector to keep only the locally typical tokens
  1787. std::vector<llama_token_data> new_candidates;
  1788. for (size_t i = 0; i < last_idx; ++i) {
  1789. size_t idx = indices[i];
  1790. new_candidates.push_back(candidates->data[idx]);
  1791. }
  1792. // Replace the data in candidates with the new_candidates data
  1793. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1794. candidates->size = new_candidates.size();
  1795. if (ctx) {
  1796. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1797. }
  1798. }
  1799. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1800. const int64_t t_start_sample_us = ggml_time_us();
  1801. for (size_t i = 0; i < candidates_p->size; ++i) {
  1802. candidates_p->data[i].logit /= temp;
  1803. }
  1804. if (ctx) {
  1805. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1806. }
  1807. }
  1808. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1809. if (last_tokens_size == 0 || penalty == 1.0f) {
  1810. return;
  1811. }
  1812. const int64_t t_start_sample_us = ggml_time_us();
  1813. for (size_t i = 0; i < candidates->size; ++i) {
  1814. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1815. if (token_iter == last_tokens + last_tokens_size) {
  1816. continue;
  1817. }
  1818. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1819. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1820. if (candidates->data[i].logit <= 0) {
  1821. candidates->data[i].logit *= penalty;
  1822. } else {
  1823. candidates->data[i].logit /= penalty;
  1824. }
  1825. }
  1826. candidates->sorted = false;
  1827. if (ctx) {
  1828. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1829. }
  1830. }
  1831. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1832. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1833. return;
  1834. }
  1835. const int64_t t_start_sample_us = ggml_time_us();
  1836. // Create a frequency map to count occurrences of each token in last_tokens
  1837. std::unordered_map<llama_token, int> token_count;
  1838. for (size_t i = 0; i < last_tokens_size; ++i) {
  1839. token_count[last_tokens_p[i]]++;
  1840. }
  1841. // Apply frequency and presence penalties to the candidates
  1842. for (size_t i = 0; i < candidates->size; ++i) {
  1843. auto token_iter = token_count.find(candidates->data[i].id);
  1844. if (token_iter == token_count.end()) {
  1845. continue;
  1846. }
  1847. int count = token_iter->second;
  1848. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1849. }
  1850. candidates->sorted = false;
  1851. if (ctx) {
  1852. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1853. }
  1854. }
  1855. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1856. assert(ctx);
  1857. auto N = float(llama_n_vocab(ctx));
  1858. int64_t t_start_sample_us;
  1859. t_start_sample_us = ggml_time_us();
  1860. llama_sample_softmax(nullptr, candidates);
  1861. // Estimate s_hat using the most probable m tokens
  1862. float s_hat = 0.0;
  1863. float sum_ti_bi = 0.0;
  1864. float sum_ti_sq = 0.0;
  1865. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1866. float t_i = logf(float(i + 2) / float(i + 1));
  1867. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1868. sum_ti_bi += t_i * b_i;
  1869. sum_ti_sq += t_i * t_i;
  1870. }
  1871. s_hat = sum_ti_bi / sum_ti_sq;
  1872. // Compute k from the estimated s_hat and target surprise value
  1873. float epsilon_hat = s_hat - 1;
  1874. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1875. // Sample the next word X using top-k sampling
  1876. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1877. if (ctx) {
  1878. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1879. }
  1880. llama_token X = llama_sample_token(ctx, candidates);
  1881. t_start_sample_us = ggml_time_us();
  1882. // Compute error as the difference between observed surprise and target surprise value
  1883. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1884. return candidate.id == X;
  1885. }));
  1886. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1887. float e = observed_surprise - tau;
  1888. // Update mu using the learning rate and error
  1889. *mu = *mu - eta * e;
  1890. if (ctx) {
  1891. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1892. ctx->n_sample++;
  1893. }
  1894. return X;
  1895. }
  1896. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1897. assert(ctx);
  1898. int64_t t_start_sample_us;
  1899. t_start_sample_us = ggml_time_us();
  1900. llama_sample_softmax(ctx, candidates);
  1901. // Truncate the words with surprise values greater than mu
  1902. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1903. return -log2f(candidate.p) > *mu;
  1904. }));
  1905. if (candidates->size == 0) {
  1906. candidates->size = 1;
  1907. }
  1908. // Normalize the probabilities of the remaining words
  1909. llama_sample_softmax(ctx, candidates);
  1910. // Sample the next word X from the remaining words
  1911. if (ctx) {
  1912. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1913. }
  1914. llama_token X = llama_sample_token(ctx, candidates);
  1915. t_start_sample_us = ggml_time_us();
  1916. // Compute error as the difference between observed surprise and target surprise value
  1917. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1918. return candidate.id == X;
  1919. }));
  1920. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1921. float e = observed_surprise - tau;
  1922. // Update mu using the learning rate and error
  1923. *mu = *mu - eta * e;
  1924. if (ctx) {
  1925. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1926. }
  1927. return X;
  1928. }
  1929. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1930. const int64_t t_start_sample_us = ggml_time_us();
  1931. // Find max element
  1932. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1933. return a.logit < b.logit;
  1934. });
  1935. llama_token result = max_iter->id;
  1936. if (ctx) {
  1937. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1938. ctx->n_sample++;
  1939. }
  1940. return result;
  1941. }
  1942. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1943. assert(ctx);
  1944. const int64_t t_start_sample_us = ggml_time_us();
  1945. llama_sample_softmax(nullptr, candidates);
  1946. std::vector<float> probs;
  1947. probs.reserve(candidates->size);
  1948. for (size_t i = 0; i < candidates->size; ++i) {
  1949. probs.push_back(candidates->data[i].p);
  1950. }
  1951. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1952. auto & rng = ctx->rng;
  1953. int idx = dist(rng);
  1954. llama_token result = candidates->data[idx].id;
  1955. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1956. ctx->n_sample++;
  1957. return result;
  1958. }
  1959. //
  1960. // quantization
  1961. //
  1962. static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
  1963. if (output.size < nelements * sizeof(float)) {
  1964. output.resize(nelements * sizeof(float));
  1965. }
  1966. float * f32_output = (float *) output.addr;
  1967. quantize_fns_t qtype;
  1968. if (ggml_is_quantized(tensor.type)) {
  1969. qtype = ggml_internal_get_quantize_fn(tensor.type);
  1970. if (qtype.dequantize_row_q == NULL) {
  1971. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
  1972. }
  1973. } else if (tensor.type != GGML_TYPE_F16) {
  1974. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
  1975. }
  1976. if (nthread < 2) {
  1977. if (tensor.type == GGML_TYPE_F16) {
  1978. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
  1979. } else if (ggml_is_quantized(tensor.type)) {
  1980. qtype.dequantize_row_q(tensor.data, f32_output, nelements);
  1981. } else {
  1982. LLAMA_ASSERT(false); // unreachable
  1983. }
  1984. return;
  1985. }
  1986. auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
  1987. auto block_size_bytes = ggml_type_size(tensor.type);
  1988. LLAMA_ASSERT(nelements % block_size == 0);
  1989. auto nblocks = nelements / block_size;
  1990. auto blocks_per_thread = nblocks / nthread;
  1991. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  1992. std::vector<std::thread> workers;
  1993. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  1994. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  1995. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  1996. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  1997. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  1998. if (typ == GGML_TYPE_F16) {
  1999. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  2000. } else {
  2001. qtype.dequantize_row_q(inbuf, outbuf, nels);
  2002. }
  2003. };
  2004. workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  2005. in_buff_offs += thr_block_bytes;
  2006. out_buff_offs += thr_elems;
  2007. }
  2008. for (auto & worker : workers) {
  2009. worker.join();
  2010. }
  2011. }
  2012. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  2013. ggml_type quantized_type;
  2014. llama_ftype ftype = params->ftype;
  2015. int nthread = params->nthread;
  2016. switch (params->ftype) {
  2017. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  2018. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  2019. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  2020. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  2021. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  2022. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  2023. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  2024. #ifdef GGML_USE_K_QUANTS
  2025. // K-quants
  2026. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  2027. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  2028. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  2029. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  2030. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  2031. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  2032. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  2033. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  2034. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  2035. #endif
  2036. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  2037. }
  2038. if (nthread <= 0) {
  2039. nthread = std::thread::hardware_concurrency();
  2040. }
  2041. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
  2042. /*vocab_only*/ false));
  2043. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
  2044. #ifdef GGML_USE_K_QUANTS
  2045. int n_attention_wv = 0;
  2046. int n_feed_forward_w2 = 0;
  2047. for (auto& tensor : model_loader->tensors_map.tensors) {
  2048. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2049. ++n_attention_wv;
  2050. }
  2051. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2052. ++n_feed_forward_w2;
  2053. }
  2054. }
  2055. int i_attention_wv = 0;
  2056. int i_feed_forward_w2 = 0;
  2057. #endif
  2058. size_t total_size_org = 0;
  2059. size_t total_size_new = 0;
  2060. std::vector<int64_t> hist_all(1 << 4, 0);
  2061. std::vector<std::thread> workers;
  2062. std::mutex mutex;
  2063. size_t idx = 0;
  2064. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  2065. llama_buffer read_data;
  2066. read_data.resize(tensor.size);
  2067. tensor.data = read_data.addr;
  2068. model_loader->load_data_for(tensor);
  2069. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  2070. ++idx, model_loader->tensors_map.tensors.size(),
  2071. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  2072. ggml_type_name(tensor.type));
  2073. // This used to be a regex, but <regex> has an extreme cost to compile times.
  2074. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  2075. // quantize only 2D tensors
  2076. quantize &= (tensor.ne.size() == 2);
  2077. quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
  2078. quantize &= quantized_type != tensor.type;
  2079. enum ggml_type new_type;
  2080. void * new_data;
  2081. size_t new_size;
  2082. llama_buffer work;
  2083. if (!quantize) {
  2084. new_type = tensor.type;
  2085. new_data = tensor.data;
  2086. new_size = tensor.size;
  2087. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  2088. } else {
  2089. new_type = quantized_type;
  2090. #ifdef GGML_USE_K_QUANTS
  2091. if (tensor.name == "output.weight") {
  2092. new_type = GGML_TYPE_Q6_K;
  2093. } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2094. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2095. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2096. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2097. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
  2098. (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  2099. ++i_attention_wv;
  2100. } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2101. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2102. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2103. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2104. (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
  2105. (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
  2106. ++i_feed_forward_w2;
  2107. } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  2108. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2109. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2110. }
  2111. #endif
  2112. float * f32_data;
  2113. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  2114. llama_buffer f32_conv_buf;
  2115. if (tensor.type == GGML_TYPE_F32) {
  2116. f32_data = (float *) tensor.data;
  2117. } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
  2118. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
  2119. } else {
  2120. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  2121. f32_data = (float *) f32_conv_buf.addr;
  2122. }
  2123. printf("quantizing .. ");
  2124. fflush(stdout);
  2125. work.resize(nelements * 4); // upper bound on size
  2126. new_data = work.addr;
  2127. std::vector<int64_t> hist_cur(1 << 4, 0);
  2128. int chunk_size = 32 * 512;
  2129. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  2130. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  2131. if (nthread_use < 2) {
  2132. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  2133. } else {
  2134. size_t counter = 0;
  2135. new_size = 0;
  2136. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  2137. std::vector<int64_t> local_hist;
  2138. size_t local_size = 0;
  2139. while (true) {
  2140. std::unique_lock<std::mutex> lock(mutex);
  2141. size_t first = counter; counter += chunk_size;
  2142. if (first >= nelements) {
  2143. if (!local_hist.empty()) {
  2144. for (int j=0; j<int(local_hist.size()); ++j) {
  2145. hist_cur[j] += local_hist[j];
  2146. }
  2147. new_size += local_size;
  2148. }
  2149. break;
  2150. }
  2151. lock.unlock();
  2152. size_t last = std::min(nelements, first + chunk_size);
  2153. if (local_hist.empty()) {
  2154. local_hist.resize(hist_cur.size(), 0);
  2155. }
  2156. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2157. }
  2158. };
  2159. if ((int) workers.size() < nthread_use - 1) {
  2160. workers.resize(nthread_use - 1);
  2161. }
  2162. for (int it = 0; it < nthread_use - 1; ++it) {
  2163. workers[it] = std::thread(compute);
  2164. }
  2165. compute();
  2166. for (int it = 0; it < nthread_use - 1; ++it) {
  2167. workers[it].join();
  2168. }
  2169. }
  2170. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2171. int64_t tot_count = 0;
  2172. for (size_t i = 0; i < hist_cur.size(); i++) {
  2173. hist_all[i] += hist_cur[i];
  2174. tot_count += hist_cur[i];
  2175. }
  2176. if (tot_count > 0) {
  2177. for (size_t i = 0; i < hist_cur.size(); i++) {
  2178. printf("%5.3f ", hist_cur[i] / float(nelements));
  2179. }
  2180. }
  2181. printf("\n");
  2182. }
  2183. total_size_org += tensor.size;
  2184. total_size_new += new_size;
  2185. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2186. }
  2187. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2188. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2189. {
  2190. int64_t sum_all = 0;
  2191. for (size_t i = 0; i < hist_all.size(); i++) {
  2192. sum_all += hist_all[i];
  2193. }
  2194. if (sum_all > 0) {
  2195. printf("%s: hist: ", __func__);
  2196. for (size_t i = 0; i < hist_all.size(); i++) {
  2197. printf("%5.3f ", hist_all[i] / float(sum_all));
  2198. }
  2199. printf("\n");
  2200. }
  2201. }
  2202. }
  2203. //
  2204. // interface implementation
  2205. //
  2206. struct llama_context * llama_init_from_file(
  2207. const char * path_model,
  2208. struct llama_context_params params) {
  2209. ggml_time_init();
  2210. llama_context * ctx = new llama_context;
  2211. if (params.seed < 0) {
  2212. params.seed = time(NULL);
  2213. }
  2214. unsigned cur_percentage = 0;
  2215. if (params.progress_callback == NULL) {
  2216. params.progress_callback_user_data = &cur_percentage;
  2217. params.progress_callback = [](float progress, void * ctx) {
  2218. unsigned * cur_percentage_p = (unsigned *) ctx;
  2219. unsigned percentage = (unsigned) (100 * progress);
  2220. while (percentage > *cur_percentage_p) {
  2221. *cur_percentage_p = percentage;
  2222. fprintf(stderr, ".");
  2223. fflush(stderr);
  2224. if (percentage >= 100) {
  2225. fprintf(stderr, "\n");
  2226. }
  2227. }
  2228. };
  2229. }
  2230. ctx->rng = std::mt19937(params.seed);
  2231. ctx->logits_all = params.logits_all;
  2232. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2233. if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu,
  2234. params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
  2235. params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
  2236. fprintf(stderr, "%s: failed to load model\n", __func__);
  2237. llama_free(ctx);
  2238. return nullptr;
  2239. }
  2240. // reserve memory for context buffers
  2241. if (!params.vocab_only) {
  2242. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  2243. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2244. llama_free(ctx);
  2245. return nullptr;
  2246. }
  2247. {
  2248. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  2249. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2250. }
  2251. const auto & hparams = ctx->model.hparams;
  2252. // resized during inference
  2253. if (params.logits_all) {
  2254. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2255. } else {
  2256. ctx->logits.reserve(hparams.n_vocab);
  2257. }
  2258. if (params.embedding){
  2259. ctx->embedding.resize(hparams.n_embd);
  2260. }
  2261. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  2262. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  2263. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2264. }
  2265. #ifdef GGML_USE_METAL
  2266. if (params.n_gpu_layers > 0) {
  2267. // this allocates all Metal resources and memory buffers
  2268. ctx->ctx_metal = ggml_metal_init();
  2269. void *data_ptr = NULL;
  2270. size_t data_size = 0;
  2271. if (params.use_mmap) {
  2272. data_ptr = ctx->model.mapping->addr;
  2273. data_size= ctx->model.mapping->size;
  2274. } else {
  2275. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2276. data_size= ggml_get_mem_size(ctx->model.ctx);
  2277. }
  2278. #define LLAMA_METAL_CHECK_BUF(result) \
  2279. if (!(result)) { \
  2280. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2281. llama_free(ctx); \
  2282. return NULL; \
  2283. }
  2284. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
  2285. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
  2286. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size));
  2287. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size));
  2288. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
  2289. #undef LLAMA_METAL_CHECK_BUF
  2290. }
  2291. #endif
  2292. return ctx;
  2293. }
  2294. void llama_free(struct llama_context * ctx) {
  2295. delete ctx;
  2296. }
  2297. int llama_model_quantize(
  2298. const char * fname_inp,
  2299. const char * fname_out,
  2300. const llama_model_quantize_params *params) {
  2301. try {
  2302. llama_model_quantize_internal(fname_inp, fname_out, params);
  2303. return 0;
  2304. } catch (const std::exception & err) {
  2305. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2306. return 1;
  2307. }
  2308. }
  2309. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2310. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2311. auto & model = ctx->model;
  2312. const int64_t t_start_lora_us = ggml_time_us();
  2313. auto fin = std::ifstream(path_lora, std::ios::binary);
  2314. if (!fin) {
  2315. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2316. return 1;
  2317. }
  2318. // verify magic and version
  2319. {
  2320. uint32_t magic;
  2321. fin.read((char *) &magic, sizeof(magic));
  2322. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2323. fprintf(stderr, "%s: bad file magic\n", __func__);
  2324. return 1;
  2325. }
  2326. uint32_t format_version;
  2327. fin.read((char *) &format_version, sizeof(format_version));
  2328. if (format_version != 1) {
  2329. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2330. return 1;
  2331. }
  2332. }
  2333. int32_t lora_r;
  2334. int32_t lora_alpha;
  2335. fin.read((char *) &lora_r, sizeof(lora_r));
  2336. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2337. float scaling = (float)lora_alpha / (float)lora_r;
  2338. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2339. // create a temporary ggml context to store the lora tensors
  2340. // todo: calculate size from biggest possible tensor
  2341. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2342. struct ggml_init_params params;
  2343. params.mem_size = lora_buf.size();
  2344. params.mem_buffer = lora_buf.data();
  2345. params.no_alloc = false;
  2346. ggml_context * lora_ctx = ggml_init(params);
  2347. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2348. // create a name -> tensor map of the model to accelerate lookups
  2349. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2350. for (auto & kv: model.tensors_by_name) {
  2351. model_tensors.insert(kv);
  2352. }
  2353. // load base model
  2354. std::unique_ptr<llama_model_loader> model_loader;
  2355. ggml_context * base_ctx = NULL;
  2356. llama_buffer base_buf;
  2357. if (path_base_model) {
  2358. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2359. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  2360. size_t ctx_size;
  2361. size_t mmapped_size;
  2362. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2363. base_buf.resize(ctx_size);
  2364. ggml_init_params base_params;
  2365. base_params.mem_size = base_buf.size;
  2366. base_params.mem_buffer = base_buf.addr;
  2367. base_params.no_alloc = model_loader->use_mmap;
  2368. base_ctx = ggml_init(base_params);
  2369. model_loader->ggml_ctx = base_ctx;
  2370. // maybe this should in llama_model_loader
  2371. if (model_loader->use_mmap) {
  2372. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
  2373. }
  2374. }
  2375. // read tensors and apply
  2376. bool warned = false;
  2377. int n_tensors = 0;
  2378. while (true) {
  2379. int32_t n_dims;
  2380. int32_t length;
  2381. int32_t ftype;
  2382. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2383. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2384. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2385. if (fin.eof()) {
  2386. break;
  2387. }
  2388. int32_t ne[2] = { 1, 1 };
  2389. for (int i = 0; i < n_dims; ++i) {
  2390. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2391. }
  2392. std::string name;
  2393. {
  2394. char buf[1024];
  2395. fin.read(buf, length);
  2396. name = std::string(buf, length);
  2397. }
  2398. // check for lora suffix and get the type of tensor
  2399. const std::string lora_suffix = ".lora";
  2400. size_t pos = name.rfind(lora_suffix);
  2401. if (pos == std::string::npos) {
  2402. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2403. return 1;
  2404. }
  2405. std::string lora_type = name.substr(pos + lora_suffix.length());
  2406. std::string base_name = name;
  2407. base_name.erase(pos);
  2408. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2409. if (model_tensors.find(base_name) == model_tensors.end()) {
  2410. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2411. return 1;
  2412. }
  2413. // create ggml tensor
  2414. ggml_type wtype;
  2415. switch (ftype) {
  2416. case 0: wtype = GGML_TYPE_F32; break;
  2417. case 1: wtype = GGML_TYPE_F16; break;
  2418. default:
  2419. {
  2420. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2421. __func__, ftype);
  2422. return false;
  2423. }
  2424. }
  2425. ggml_tensor* lora_tensor;
  2426. if (n_dims == 2) {
  2427. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2428. }
  2429. else {
  2430. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2431. return 1;
  2432. }
  2433. // load tensor data
  2434. size_t offset = fin.tellg();
  2435. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2436. offset = (offset + 31) & -32;
  2437. fin.seekg(offset);
  2438. fin.read((char*)lora_tensor->data, tensor_data_size);
  2439. lora_tensors[name] = lora_tensor;
  2440. // check if we have both A and B tensors and apply
  2441. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2442. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2443. ggml_tensor * dest_t = model_tensors[base_name];
  2444. ggml_tensor * base_t;
  2445. if (model_loader) {
  2446. // load from base model
  2447. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2448. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2449. return 1;
  2450. }
  2451. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2452. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2453. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2454. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2455. model_loader->load_data_for(lt);
  2456. lt.ggml_tensor->data = lt.data;
  2457. }
  2458. else {
  2459. base_t = dest_t;
  2460. }
  2461. if (ggml_is_quantized(base_t->type)) {
  2462. if (!warned) {
  2463. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2464. "use a f16 or f32 base model with --lora-base\n", __func__);
  2465. warned = true;
  2466. }
  2467. }
  2468. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2469. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2470. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2471. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2472. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2473. return 1;
  2474. }
  2475. // w = w + BA*s
  2476. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2477. if (scaling != 1.0f) {
  2478. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2479. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2480. }
  2481. ggml_tensor * r;
  2482. if (base_t == dest_t) {
  2483. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2484. }
  2485. else {
  2486. r = ggml_add(lora_ctx, base_t, BA);
  2487. r = ggml_cpy(lora_ctx, r, dest_t);
  2488. }
  2489. struct ggml_cgraph gf = ggml_build_forward(r);
  2490. gf.n_threads = n_threads;
  2491. ggml_graph_compute(lora_ctx, &gf);
  2492. // we won't need these tensors again, reset the context to save memory
  2493. ggml_free(lora_ctx);
  2494. lora_ctx = ggml_init(params);
  2495. lora_tensors.clear();
  2496. n_tensors++;
  2497. if (n_tensors % 4 == 0) {
  2498. fprintf(stderr, ".");
  2499. }
  2500. }
  2501. }
  2502. // TODO: this should be in a destructor, it will leak on failure
  2503. ggml_free(lora_ctx);
  2504. if (base_ctx) {
  2505. ggml_free(base_ctx);
  2506. }
  2507. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2508. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2509. return 0;
  2510. }
  2511. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2512. try {
  2513. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  2514. } catch (const std::exception & err) {
  2515. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2516. return 1;
  2517. }
  2518. }
  2519. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2520. return ctx->model.kv_self.n;
  2521. }
  2522. #define LLAMA_MAX_RNG_STATE (64*1024)
  2523. void llama_set_rng_seed(struct llama_context * ctx, int seed) {
  2524. if (seed < 0) {
  2525. seed = time(NULL);
  2526. }
  2527. ctx->rng.seed(seed);
  2528. }
  2529. // Returns the *maximum* size of the state
  2530. size_t llama_get_state_size(const struct llama_context * ctx) {
  2531. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2532. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2533. const size_t s_rng_size = sizeof(size_t);
  2534. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2535. const size_t s_logits_capacity = sizeof(size_t);
  2536. const size_t s_logits_size = sizeof(size_t);
  2537. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2538. const size_t s_embedding_size = sizeof(size_t);
  2539. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2540. const size_t s_kv_size = sizeof(size_t);
  2541. const size_t s_kv_ntok = sizeof(int);
  2542. const size_t s_kv = ctx->model.kv_self.buf.size;
  2543. const size_t s_total = (
  2544. + s_rng_size
  2545. + s_rng
  2546. + s_logits_capacity
  2547. + s_logits_size
  2548. + s_logits
  2549. + s_embedding_size
  2550. + s_embedding
  2551. + s_kv_size
  2552. + s_kv_ntok
  2553. + s_kv
  2554. );
  2555. return s_total;
  2556. }
  2557. // Copies the state to the specified destination address
  2558. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2559. uint8_t * out = dst;
  2560. // copy rng
  2561. {
  2562. std::stringstream rng_ss;
  2563. rng_ss << ctx->rng;
  2564. const size_t rng_size = rng_ss.str().size();
  2565. char rng_buf[LLAMA_MAX_RNG_STATE];
  2566. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2567. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2568. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2569. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2570. }
  2571. // copy logits
  2572. {
  2573. const size_t logits_cap = ctx->logits.capacity();
  2574. const size_t logits_size = ctx->logits.size();
  2575. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2576. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2577. if (logits_size) {
  2578. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2579. }
  2580. out += logits_cap * sizeof(float);
  2581. }
  2582. // copy embeddings
  2583. {
  2584. const size_t embedding_size = ctx->embedding.size();
  2585. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2586. if (embedding_size) {
  2587. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2588. out += embedding_size * sizeof(float);
  2589. }
  2590. }
  2591. // copy kv cache
  2592. {
  2593. const auto & kv_self = ctx->model.kv_self;
  2594. const auto & hparams = ctx->model.hparams;
  2595. const int n_layer = hparams.n_layer;
  2596. const int n_embd = hparams.n_embd;
  2597. const int n_ctx = hparams.n_ctx;
  2598. const size_t kv_size = kv_self.buf.size;
  2599. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2600. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2601. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2602. if (kv_size) {
  2603. const size_t elt_size = ggml_element_size(kv_self.k);
  2604. char buffer[4096];
  2605. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2606. ggml_cgraph gf{};
  2607. gf.n_threads = 1;
  2608. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2609. kout3d->data = out;
  2610. out += ggml_nbytes(kout3d);
  2611. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2612. vout3d->data = out;
  2613. out += ggml_nbytes(vout3d);
  2614. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2615. n_embd, kv_ntok, n_layer,
  2616. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2617. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2618. kv_ntok, n_embd, n_layer,
  2619. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2620. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2621. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2622. ggml_graph_compute(cpy_ctx, &gf);
  2623. ggml_free(cpy_ctx);
  2624. }
  2625. }
  2626. const size_t written = out - dst;
  2627. const size_t max_size = llama_get_state_size(ctx);
  2628. LLAMA_ASSERT(written <= max_size);
  2629. return written;
  2630. }
  2631. // Sets the state reading from the specified source address
  2632. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2633. uint8_t * inp = src;
  2634. // set rng
  2635. {
  2636. size_t rng_size;
  2637. char rng_buf[LLAMA_MAX_RNG_STATE];
  2638. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2639. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2640. std::stringstream rng_ss;
  2641. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2642. rng_ss >> ctx->rng;
  2643. LLAMA_ASSERT(rng_ss.fail() == false);
  2644. }
  2645. // set logits
  2646. {
  2647. size_t logits_cap;
  2648. size_t logits_size;
  2649. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2650. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2651. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2652. if (logits_size) {
  2653. ctx->logits.resize(logits_size);
  2654. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2655. }
  2656. inp += logits_cap * sizeof(float);
  2657. }
  2658. // set embeddings
  2659. {
  2660. size_t embedding_size;
  2661. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2662. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2663. if (embedding_size) {
  2664. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2665. inp += embedding_size * sizeof(float);
  2666. }
  2667. }
  2668. // set kv cache
  2669. {
  2670. const auto & kv_self = ctx->model.kv_self;
  2671. const auto & hparams = ctx->model.hparams;
  2672. const int n_layer = hparams.n_layer;
  2673. const int n_embd = hparams.n_embd;
  2674. const int n_ctx = hparams.n_ctx;
  2675. size_t kv_size;
  2676. int kv_ntok;
  2677. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2678. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2679. if (kv_size) {
  2680. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2681. const size_t elt_size = ggml_element_size(kv_self.k);
  2682. char buffer[4096];
  2683. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2684. ggml_cgraph gf{};
  2685. gf.n_threads = 1;
  2686. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2687. kin3d->data = (void *) inp;
  2688. inp += ggml_nbytes(kin3d);
  2689. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2690. vin3d->data = (void *) inp;
  2691. inp += ggml_nbytes(vin3d);
  2692. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2693. n_embd, kv_ntok, n_layer,
  2694. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2695. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2696. kv_ntok, n_embd, n_layer,
  2697. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2698. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2699. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2700. ggml_graph_compute(cpy_ctx, &gf);
  2701. ggml_free(cpy_ctx);
  2702. }
  2703. ctx->model.kv_self.n = kv_ntok;
  2704. }
  2705. const size_t nread = inp - src;
  2706. const size_t max_size = llama_get_state_size(ctx);
  2707. LLAMA_ASSERT(nread <= max_size);
  2708. return nread;
  2709. }
  2710. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2711. llama_file file(path_session, "rb");
  2712. // sanity checks
  2713. {
  2714. const uint32_t magic = file.read_u32();
  2715. const uint32_t version = file.read_u32();
  2716. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2717. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2718. return false;
  2719. }
  2720. llama_hparams session_hparams;
  2721. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2722. if (session_hparams != ctx->model.hparams) {
  2723. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2724. return false;
  2725. }
  2726. }
  2727. // load the prompt
  2728. {
  2729. const uint32_t n_token_count = file.read_u32();
  2730. if (n_token_count > n_token_capacity) {
  2731. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2732. return false;
  2733. }
  2734. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2735. *n_token_count_out = n_token_count;
  2736. }
  2737. // restore the context state
  2738. {
  2739. const size_t n_state_size_cur = file.size - file.tell();
  2740. const size_t n_state_size_max = llama_get_state_size(ctx);
  2741. if (n_state_size_cur > n_state_size_max) {
  2742. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2743. return false;
  2744. }
  2745. std::vector<uint8_t> state_data(n_state_size_max);
  2746. file.read_raw(state_data.data(), n_state_size_cur);
  2747. llama_set_state_data(ctx, state_data.data());
  2748. }
  2749. return true;
  2750. }
  2751. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2752. llama_file file(path_session, "wb");
  2753. file.write_u32(LLAMA_SESSION_MAGIC);
  2754. file.write_u32(LLAMA_SESSION_VERSION);
  2755. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2756. // save the prompt
  2757. file.write_u32((uint32_t) n_token_count);
  2758. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2759. // save the context state
  2760. {
  2761. const size_t n_state_size_max = llama_get_state_size(ctx);
  2762. std::vector<uint8_t> state_data(n_state_size_max);
  2763. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2764. file.write_raw(state_data.data(), n_state_size_cur);
  2765. }
  2766. return true;
  2767. }
  2768. int llama_eval(
  2769. struct llama_context * ctx,
  2770. const llama_token * tokens,
  2771. int n_tokens,
  2772. int n_past,
  2773. int n_threads) {
  2774. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) {
  2775. fprintf(stderr, "%s: failed to eval\n", __func__);
  2776. return 1;
  2777. }
  2778. // get a more accurate load time, upon first eval
  2779. // TODO: fix this
  2780. if (!ctx->has_evaluated_once) {
  2781. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2782. ctx->has_evaluated_once = true;
  2783. }
  2784. return 0;
  2785. }
  2786. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2787. const int n_batch = 1;
  2788. const int n_ctx = 512 - n_batch;
  2789. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2790. if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) {
  2791. fprintf(stderr, "%s: failed to eval\n", __func__);
  2792. return 1;
  2793. }
  2794. return 0;
  2795. }
  2796. int llama_tokenize(
  2797. struct llama_context * ctx,
  2798. const char * text,
  2799. llama_token * tokens,
  2800. int n_max_tokens,
  2801. bool add_bos) {
  2802. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  2803. if (n_max_tokens < (int) res.size()) {
  2804. fprintf(stderr, "%s: too many tokens\n", __func__);
  2805. return -((int) res.size());
  2806. }
  2807. for (size_t i = 0; i < res.size(); i++) {
  2808. tokens[i] = res[i];
  2809. }
  2810. return res.size();
  2811. }
  2812. int llama_n_vocab(const struct llama_context * ctx) {
  2813. return ctx->vocab.id_to_token.size();
  2814. }
  2815. int llama_n_ctx(const struct llama_context * ctx) {
  2816. return ctx->model.hparams.n_ctx;
  2817. }
  2818. int llama_n_embd(const struct llama_context * ctx) {
  2819. return ctx->model.hparams.n_embd;
  2820. }
  2821. int llama_get_vocab(
  2822. const struct llama_context * ctx,
  2823. const char * * strings,
  2824. float * scores,
  2825. int capacity) {
  2826. int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
  2827. for (int i = 0; i<n; ++i) {
  2828. strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
  2829. scores[i] = ctx->vocab.id_to_token[i].score;
  2830. }
  2831. return n;
  2832. }
  2833. float * llama_get_logits(struct llama_context * ctx) {
  2834. return ctx->logits.data();
  2835. }
  2836. float * llama_get_embeddings(struct llama_context * ctx) {
  2837. return ctx->embedding.data();
  2838. }
  2839. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2840. if (token >= llama_n_vocab(ctx)) {
  2841. return nullptr;
  2842. }
  2843. return ctx->vocab.id_to_token[token].tok.c_str();
  2844. }
  2845. llama_token llama_token_bos() {
  2846. return 1;
  2847. }
  2848. llama_token llama_token_eos() {
  2849. return 2;
  2850. }
  2851. llama_token llama_token_nl() {
  2852. return 13;
  2853. }
  2854. void llama_print_timings(struct llama_context * ctx) {
  2855. const int64_t t_end_us = ggml_time_us();
  2856. const int32_t n_sample = std::max(1, ctx->n_sample);
  2857. const int32_t n_eval = std::max(1, ctx->n_eval);
  2858. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  2859. fprintf(stderr, "\n");
  2860. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  2861. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  2862. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  2863. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  2864. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  2865. }
  2866. void llama_reset_timings(struct llama_context * ctx) {
  2867. ctx->t_start_us = ggml_time_us();
  2868. ctx->t_sample_us = ctx->n_sample = 0;
  2869. ctx->t_eval_us = ctx->n_eval = 0;
  2870. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  2871. }
  2872. const char * llama_print_system_info(void) {
  2873. static std::string s;
  2874. s = "";
  2875. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  2876. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  2877. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  2878. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  2879. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  2880. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  2881. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  2882. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  2883. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  2884. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  2885. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  2886. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  2887. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  2888. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  2889. return s.c_str();
  2890. }
  2891. // For internal test use
  2892. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  2893. return ctx->model.tensors_by_name;
  2894. }