clip.cpp 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "ggml.h"
  7. #include "ggml-alloc.h"
  8. #include "ggml-backend.h"
  9. #ifdef GGML_USE_CUDA
  10. #include "ggml-cuda.h"
  11. #endif
  12. #ifdef GGML_USE_METAL
  13. #include "ggml-metal.h"
  14. #endif
  15. #define STB_IMAGE_IMPLEMENTATION
  16. #include "stb_image.h"
  17. #include <cassert>
  18. #include <cmath>
  19. #include <cstdlib>
  20. #include <cstring>
  21. #include <fstream>
  22. #include <iostream>
  23. #include <map>
  24. #include <regex>
  25. #include <stdexcept>
  26. #include <vector>
  27. #include <sstream>
  28. #include <cinttypes>
  29. #include <limits>
  30. //#define CLIP_DEBUG_FUNCTIONS
  31. // RGB uint8 image
  32. struct clip_image_u8 {
  33. int nx;
  34. int ny;
  35. std::vector<uint8_t> buf;
  36. };
  37. // RGB float32 image (NHWC)
  38. // Memory layout: RGBRGBRGB...
  39. struct clip_image_f32 {
  40. int nx;
  41. int ny;
  42. std::vector<float> buf;
  43. };
  44. static std::string format(const char * fmt, ...) {
  45. va_list ap;
  46. va_list ap2;
  47. va_start(ap, fmt);
  48. va_copy(ap2, ap);
  49. int size = vsnprintf(NULL, 0, fmt, ap);
  50. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  51. std::vector<char> buf(size + 1);
  52. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  53. GGML_ASSERT(size2 == size);
  54. va_end(ap2);
  55. va_end(ap);
  56. return std::string(buf.data(), buf.size());
  57. }
  58. //
  59. // key constants
  60. //
  61. #define KEY_FTYPE "general.file_type"
  62. #define KEY_NAME "general.name"
  63. #define KEY_DESCRIPTION "general.description"
  64. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  65. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  66. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  67. #define KEY_USE_GELU "clip.use_gelu"
  68. #define KEY_N_EMBD "clip.%s.embedding_length"
  69. #define KEY_N_FF "clip.%s.feed_forward_length"
  70. #define KEY_N_BLOCK "clip.%s.block_count"
  71. #define KEY_N_HEAD "clip.%s.attention.head_count"
  72. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  73. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  74. #define KEY_TOKENS "tokenizer.ggml.tokens"
  75. #define KEY_N_POSITIONS "clip.text.context_length"
  76. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  77. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  78. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  79. #define KEY_IMAGE_STD "clip.vision.image_std"
  80. #define KEY_PROJ_TYPE "clip.projector_type"
  81. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  82. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  83. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  84. //
  85. // tensor name constants
  86. //
  87. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  88. #define TN_POS_EMBD "%s.position_embd.weight"
  89. #define TN_CLASS_EMBD "v.class_embd"
  90. #define TN_PATCH_EMBD "v.patch_embd.weight"
  91. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  92. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  93. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  94. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  95. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  96. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  97. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  98. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  99. #define TN_LN_PRE "%s.pre_ln.%s"
  100. #define TN_LN_POST "%s.post_ln.%s"
  101. #define TN_TEXT_PROJ "text_projection.weight"
  102. #define TN_VIS_PROJ "visual_projection.weight"
  103. #define TN_LLAVA_PROJ "mm.%d.%s"
  104. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  105. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  106. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  107. #define TN_IMAGE_NEWLINE "model.image_newline"
  108. enum projector_type {
  109. PROJECTOR_TYPE_MLP,
  110. PROJECTOR_TYPE_MLP_NORM,
  111. PROJECTOR_TYPE_LDP,
  112. PROJECTOR_TYPE_LDPV2,
  113. PROJECTOR_TYPE_UNKNOWN,
  114. };
  115. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  116. { PROJECTOR_TYPE_MLP, "mlp" },
  117. { PROJECTOR_TYPE_LDP, "ldp" },
  118. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  119. };
  120. //
  121. // utilities to get data from a gguf file
  122. //
  123. static int get_key_idx(const gguf_context * ctx, const char * key) {
  124. int i = gguf_find_key(ctx, key);
  125. if (i == -1) {
  126. fprintf(stderr, "key %s not found in file\n", key);
  127. throw std::runtime_error(format("Missing required key: %s", key));
  128. }
  129. return i;
  130. }
  131. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  132. const int i = get_key_idx(ctx, key.c_str());
  133. return gguf_get_val_u32(ctx, i);
  134. }
  135. static float get_f32(const gguf_context * ctx, const std::string & key) {
  136. const int i = get_key_idx(ctx, key.c_str());
  137. return gguf_get_val_f32(ctx, i);
  138. }
  139. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  140. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  141. if (!cur) {
  142. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  143. }
  144. return cur;
  145. }
  146. static std::string get_ftype(int ftype) {
  147. return ggml_type_name(static_cast<ggml_type>(ftype));
  148. }
  149. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  150. switch (type) {
  151. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  152. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  153. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  154. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  155. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  156. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  157. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  158. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  159. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  160. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  161. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  162. default: return format("unknown type %d", type);
  163. }
  164. }
  165. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  166. std::string result;
  167. for (size_t pos = 0; ; pos += search.length()) {
  168. auto new_pos = s.find(search, pos);
  169. if (new_pos == std::string::npos) {
  170. result += s.substr(pos, s.size() - pos);
  171. break;
  172. }
  173. result += s.substr(pos, new_pos - pos) + replace;
  174. pos = new_pos;
  175. }
  176. s = std::move(result);
  177. }
  178. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  179. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  180. switch (type) {
  181. case GGUF_TYPE_STRING:
  182. return gguf_get_val_str(ctx_gguf, i);
  183. case GGUF_TYPE_ARRAY:
  184. {
  185. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  186. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  187. const void * data = gguf_get_arr_data(ctx_gguf, i);
  188. std::stringstream ss;
  189. ss << "[";
  190. for (int j = 0; j < arr_n; j++) {
  191. if (arr_type == GGUF_TYPE_STRING) {
  192. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  193. // escape quotes
  194. replace_all(val, "\\", "\\\\");
  195. replace_all(val, "\"", "\\\"");
  196. ss << '"' << val << '"';
  197. } else if (arr_type == GGUF_TYPE_ARRAY) {
  198. ss << "???";
  199. } else {
  200. ss << gguf_data_to_str(arr_type, data, j);
  201. }
  202. if (j < arr_n - 1) {
  203. ss << ", ";
  204. }
  205. }
  206. ss << "]";
  207. return ss.str();
  208. }
  209. default:
  210. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  211. }
  212. }
  213. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  214. size_t tensor_size = ggml_nbytes(tensor);
  215. printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  216. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  217. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  218. }
  219. static projector_type clip_projector_type_from_string(const std::string & name) {
  220. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  221. if (kv.second == name) {
  222. return kv.first;
  223. }
  224. }
  225. return PROJECTOR_TYPE_UNKNOWN;
  226. }
  227. #ifdef CLIP_DEBUG_FUNCTIONS
  228. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  229. std::ofstream file(filename, std::ios::binary);
  230. if (!file.is_open()) {
  231. std::cerr << "Failed to open file for writing: " << filename << std::endl;
  232. return;
  233. }
  234. // PPM header: P6 format, width, height, and max color value
  235. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  236. // Write pixel data
  237. for (size_t i = 0; i < img.buf.size(); i += 3) {
  238. // PPM expects binary data in RGB format, which matches our image buffer
  239. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  240. }
  241. file.close();
  242. }
  243. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  244. std::ofstream file(filename, std::ios::binary);
  245. if (!file.is_open()) {
  246. std::cerr << "Failed to open file for writing: " << filename << std::endl;
  247. return;
  248. }
  249. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  250. int bytesPerPixel = 3;
  251. int widthInBytes = img.nx * bytesPerPixel;
  252. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  253. int stride = widthInBytes + paddingAmount;
  254. // Bitmap file header
  255. unsigned char fileHeader[14] = {
  256. 'B','M', // Signature
  257. 0,0,0,0, // Image file size in bytes
  258. 0,0,0,0, // Reserved
  259. 54,0,0,0 // Start of pixel array
  260. };
  261. // Total file size
  262. fileSize = 54 + (stride * img.ny);
  263. fileHeader[2] = (unsigned char)(fileSize);
  264. fileHeader[3] = (unsigned char)(fileSize >> 8);
  265. fileHeader[4] = (unsigned char)(fileSize >> 16);
  266. fileHeader[5] = (unsigned char)(fileSize >> 24);
  267. // Bitmap information header (BITMAPINFOHEADER)
  268. unsigned char infoHeader[40] = {
  269. 40,0,0,0, // Size of this header (40 bytes)
  270. 0,0,0,0, // Image width
  271. 0,0,0,0, // Image height
  272. 1,0, // Number of color planes
  273. 24,0, // Bits per pixel
  274. 0,0,0,0, // No compression
  275. 0,0,0,0, // Image size (can be 0 for no compression)
  276. 0,0,0,0, // X pixels per meter (not specified)
  277. 0,0,0,0, // Y pixels per meter (not specified)
  278. 0,0,0,0, // Total colors (color table not used)
  279. 0,0,0,0 // Important colors (all are important)
  280. };
  281. // Width and height in the information header
  282. infoHeader[4] = (unsigned char)(img.nx);
  283. infoHeader[5] = (unsigned char)(img.nx >> 8);
  284. infoHeader[6] = (unsigned char)(img.nx >> 16);
  285. infoHeader[7] = (unsigned char)(img.nx >> 24);
  286. infoHeader[8] = (unsigned char)(img.ny);
  287. infoHeader[9] = (unsigned char)(img.ny >> 8);
  288. infoHeader[10] = (unsigned char)(img.ny >> 16);
  289. infoHeader[11] = (unsigned char)(img.ny >> 24);
  290. // Write file headers
  291. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  292. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  293. // Pixel data
  294. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  295. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  296. for (int x = 0; x < img.nx; ++x) {
  297. // Each pixel
  298. size_t pixelIndex = (y * img.nx + x) * 3;
  299. unsigned char pixel[3] = {
  300. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  301. img.buf[pixelIndex + 1],
  302. img.buf[pixelIndex]
  303. };
  304. file.write(reinterpret_cast<char*>(pixel), 3);
  305. }
  306. // Write padding for the row
  307. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  308. }
  309. file.close();
  310. }
  311. // debug function to convert f32 to u8
  312. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  313. dst.nx = src.nx;
  314. dst.ny = src.ny;
  315. dst.buf.resize(3 * src.nx * src.ny);
  316. for (size_t i = 0; i < src.buf.size(); ++i) {
  317. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  318. }
  319. }
  320. #endif
  321. //
  322. // clip layers
  323. //
  324. struct clip_hparams {
  325. int32_t image_size;
  326. int32_t patch_size;
  327. int32_t hidden_size;
  328. int32_t n_intermediate;
  329. int32_t projection_dim;
  330. int32_t n_head;
  331. int32_t n_layer;
  332. float eps;
  333. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  334. int32_t image_grid_pinpoints[32];
  335. int32_t image_crop_resolution;
  336. };
  337. struct clip_layer {
  338. // attention
  339. struct ggml_tensor * k_w;
  340. struct ggml_tensor * k_b;
  341. struct ggml_tensor * q_w;
  342. struct ggml_tensor * q_b;
  343. struct ggml_tensor * v_w;
  344. struct ggml_tensor * v_b;
  345. struct ggml_tensor * o_w;
  346. struct ggml_tensor * o_b;
  347. // layernorm 1
  348. struct ggml_tensor * ln_1_w;
  349. struct ggml_tensor * ln_1_b;
  350. // ff
  351. struct ggml_tensor * ff_i_w;
  352. struct ggml_tensor * ff_i_b;
  353. struct ggml_tensor * ff_o_w;
  354. struct ggml_tensor * ff_o_b;
  355. // layernorm 2
  356. struct ggml_tensor * ln_2_w;
  357. struct ggml_tensor * ln_2_b;
  358. };
  359. struct clip_vision_model {
  360. struct clip_hparams hparams;
  361. // embeddings
  362. struct ggml_tensor * class_embedding;
  363. struct ggml_tensor * patch_embeddings;
  364. struct ggml_tensor * position_embeddings;
  365. struct ggml_tensor * pre_ln_w;
  366. struct ggml_tensor * pre_ln_b;
  367. std::vector<clip_layer> layers;
  368. struct ggml_tensor * post_ln_w;
  369. struct ggml_tensor * post_ln_b;
  370. struct ggml_tensor * projection;
  371. // LLaVA projection
  372. struct ggml_tensor * mm_0_w = NULL;
  373. struct ggml_tensor * mm_0_b = NULL;
  374. struct ggml_tensor * mm_2_w = NULL;
  375. struct ggml_tensor * mm_2_b = NULL;
  376. struct ggml_tensor * image_newline = NULL;
  377. // Yi type models with mlp+normalization projection
  378. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  379. struct ggml_tensor * mm_1_b = NULL;
  380. struct ggml_tensor * mm_3_w = NULL;
  381. struct ggml_tensor * mm_3_b = NULL;
  382. struct ggml_tensor * mm_4_w = NULL;
  383. struct ggml_tensor * mm_4_b = NULL;
  384. // MobileVLM projection
  385. struct ggml_tensor * mm_model_mlp_1_w;
  386. struct ggml_tensor * mm_model_mlp_1_b;
  387. struct ggml_tensor * mm_model_mlp_3_w;
  388. struct ggml_tensor * mm_model_mlp_3_b;
  389. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  390. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  391. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  392. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  393. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  394. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  395. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  396. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  397. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  398. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  399. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  400. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  401. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  402. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  403. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  404. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  405. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  406. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  407. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  408. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  409. // MobileVLM_V2 projection
  410. struct ggml_tensor * mm_model_mlp_0_w;
  411. struct ggml_tensor * mm_model_mlp_0_b;
  412. struct ggml_tensor * mm_model_mlp_2_w;
  413. struct ggml_tensor * mm_model_mlp_2_b;
  414. struct ggml_tensor * mm_model_peg_0_w;
  415. struct ggml_tensor * mm_model_peg_0_b;
  416. };
  417. struct clip_ctx {
  418. bool has_text_encoder = false;
  419. bool has_vision_encoder = false;
  420. bool has_llava_projector = false;
  421. struct clip_vision_model vision_model;
  422. projector_type proj_type = PROJECTOR_TYPE_MLP;
  423. float image_mean[3];
  424. float image_std[3];
  425. bool use_gelu = false;
  426. int32_t ftype = 1;
  427. struct gguf_context * ctx_gguf;
  428. struct ggml_context * ctx_data;
  429. std::vector<uint8_t> buf_compute_meta;
  430. // memory buffers to evaluate the model
  431. ggml_backend_buffer_t params_buffer = NULL;
  432. ggml_backend_t backend = NULL;
  433. ggml_gallocr_t compute_alloc = NULL;
  434. };
  435. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
  436. if (!ctx->has_vision_encoder) {
  437. printf("This gguf file seems to have no vision encoder\n");
  438. return nullptr;
  439. }
  440. const auto & model = ctx->vision_model;
  441. const auto & hparams = model.hparams;
  442. const int image_size = hparams.image_size;
  443. const int patch_size = hparams.patch_size;
  444. const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
  445. const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
  446. const int num_positions = num_patches + 1;
  447. const int hidden_size = hparams.hidden_size;
  448. const int n_head = hparams.n_head;
  449. const int d_head = hidden_size / n_head;
  450. const int n_layer = hparams.n_layer;
  451. const float eps = hparams.eps;
  452. const int batch_size = imgs->size;
  453. if (ctx->has_llava_projector) {
  454. GGML_ASSERT(batch_size == 1);
  455. }
  456. struct ggml_init_params params = {
  457. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  458. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  459. /*.no_alloc =*/ true,
  460. };
  461. struct ggml_context * ctx0 = ggml_init(params);
  462. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  463. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
  464. ggml_set_name(inp_raw, "inp_raw");
  465. ggml_set_input(inp_raw);
  466. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  467. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  468. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  469. // concat class_embeddings and patch_embeddings
  470. struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  471. ggml_set_name(embeddings, "embeddings");
  472. ggml_set_input(embeddings);
  473. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  474. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  475. embeddings = ggml_acc(ctx0, embeddings, inp,
  476. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  477. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
  478. ggml_set_name(positions, "positions");
  479. ggml_set_input(positions);
  480. embeddings =
  481. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  482. // pre-layernorm
  483. {
  484. embeddings = ggml_norm(ctx0, embeddings, eps);
  485. ggml_set_name(embeddings, "pre_ln");
  486. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  487. }
  488. // loop over layers
  489. for (int il = 0; il < n_layer - 1; il++) {
  490. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  491. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  492. // layernorm1
  493. {
  494. cur = ggml_norm(ctx0, cur, eps);
  495. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  496. model.layers[il].ln_1_b);
  497. }
  498. // self-attention
  499. {
  500. struct ggml_tensor * Q =
  501. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  502. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  503. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  504. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  505. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  506. struct ggml_tensor * K =
  507. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  508. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  509. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  510. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  511. struct ggml_tensor * V =
  512. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  513. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  514. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  515. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  516. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  517. KQ = ggml_soft_max_inplace(ctx0, KQ);
  518. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  519. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  520. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  521. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  522. }
  523. // attention output
  524. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  525. // re-add the layer input, e.g., residual
  526. cur = ggml_add(ctx0, cur, embeddings);
  527. embeddings = cur; // embeddings = residual, cur = hidden_states
  528. // layernorm2
  529. {
  530. cur = ggml_norm(ctx0, cur, eps);
  531. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  532. }
  533. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  534. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  535. if (ctx->use_gelu) {
  536. cur = ggml_gelu_inplace(ctx0, cur);
  537. } else {
  538. cur = ggml_gelu_quick_inplace(ctx0, cur);
  539. }
  540. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  541. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  542. // residual 2
  543. cur = ggml_add(ctx0, embeddings, cur);
  544. embeddings = cur;
  545. }
  546. // llava projector
  547. {
  548. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  549. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  550. ggml_set_name(patches, "patches");
  551. ggml_set_input(patches);
  552. // shape [1, 576, 1024]
  553. // ne is whcn, ne = [1024, 576, 1, 1]
  554. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  555. // print_tensor_info(embeddings, "embeddings");
  556. // llava projector
  557. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  558. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  559. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  560. embeddings = ggml_gelu(ctx0, embeddings);
  561. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  562. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  563. } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  564. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  565. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  566. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  567. // First LayerNorm
  568. embeddings = ggml_norm(ctx0, embeddings, eps);
  569. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  570. model.mm_1_b);
  571. // GELU activation
  572. embeddings = ggml_gelu(ctx0, embeddings);
  573. // Second linear layer
  574. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  575. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  576. // Second LayerNorm
  577. embeddings = ggml_norm(ctx0, embeddings, eps);
  578. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  579. model.mm_4_b);
  580. }
  581. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  582. // MobileVLM projector
  583. int n_patch = 24;
  584. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  585. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  586. mlp_1 = ggml_gelu(ctx0, mlp_1);
  587. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  588. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  589. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  590. // block 1
  591. struct ggml_tensor * block_1 = nullptr;
  592. {
  593. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  594. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  595. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  596. // stride = 1, padding = 1, bias is nullptr
  597. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  598. // layer norm
  599. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  600. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  601. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  602. block_1 = ggml_norm(ctx0, block_1, eps);
  603. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  604. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  605. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  606. // hardswish
  607. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  608. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  609. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  610. // pointwise conv
  611. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  612. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  613. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  614. block_1 = ggml_relu(ctx0, block_1);
  615. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  616. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  617. block_1 = ggml_hardsigmoid(ctx0, block_1);
  618. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  619. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  620. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  621. int w = block_1->ne[0], h = block_1->ne[1];
  622. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  623. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  624. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  625. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  626. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  627. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  628. block_1 = ggml_norm(ctx0, block_1, eps);
  629. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  630. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  631. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  632. // residual
  633. block_1 = ggml_add(ctx0, mlp_3, block_1);
  634. }
  635. // block_2
  636. {
  637. // stride = 2
  638. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  639. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  640. // layer norm
  641. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  642. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  643. block_1 = ggml_norm(ctx0, block_1, eps);
  644. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  645. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  646. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  647. // hardswish
  648. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  649. // not sure the parameters is right for globalAvgPooling
  650. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  651. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  652. // pointwise conv
  653. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  654. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  655. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  656. block_1 = ggml_relu(ctx0, block_1);
  657. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  658. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  659. block_1 = ggml_hardsigmoid(ctx0, block_1);
  660. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  661. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  662. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  663. int w = block_1->ne[0], h = block_1->ne[1];
  664. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  665. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  666. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  667. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  668. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  669. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  670. block_1 = ggml_norm(ctx0, block_1, eps);
  671. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  672. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  673. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  674. }
  675. embeddings = block_1;
  676. }
  677. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  678. {
  679. int n_patch = 24;
  680. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  681. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  682. mlp_0 = ggml_gelu(ctx0, mlp_0);
  683. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  684. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  685. // mlp_2 ne = [2048, 576, 1, 1]
  686. // // AVG Pool Layer 2*2, strides = 2
  687. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  688. // mlp_2 ne = [576, 2048, 1, 1]
  689. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  690. // mlp_2 ne [24, 24, 2048, 1]
  691. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  692. // weight ne = [3, 3, 2048, 1]
  693. struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  694. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  695. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  696. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  697. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  698. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  699. embeddings = peg_0;
  700. }
  701. else {
  702. GGML_ASSERT(false);
  703. }
  704. }
  705. // build the graph
  706. ggml_build_forward_expand(gf, embeddings);
  707. ggml_free(ctx0);
  708. return gf;
  709. }
  710. // read and create ggml_context containing the tensors and their data
  711. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  712. struct ggml_context * meta = NULL;
  713. struct gguf_init_params params = {
  714. /*.no_alloc = */ true,
  715. /*.ctx = */ &meta,
  716. };
  717. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  718. if (!ctx) {
  719. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  720. }
  721. if (verbosity >= 1) {
  722. const int n_tensors = gguf_get_n_tensors(ctx);
  723. const int n_kv = gguf_get_n_kv(ctx);
  724. const int ftype = get_u32(ctx, KEY_FTYPE);
  725. const std::string ftype_str = get_ftype(ftype);
  726. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  727. const std::string description = gguf_get_val_str(ctx, idx_desc);
  728. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  729. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  730. const std::string name = gguf_get_val_str(ctx, idx_name);
  731. printf("%s: model name: %s\n", __func__, name.c_str());
  732. }
  733. printf("%s: description: %s\n", __func__, description.c_str());
  734. printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  735. printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  736. printf("%s: n_tensors: %d\n", __func__, n_tensors);
  737. printf("%s: n_kv: %d\n", __func__, n_kv);
  738. printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
  739. printf("\n");
  740. }
  741. const int n_tensors = gguf_get_n_tensors(ctx);
  742. // kv
  743. const int n_kv = gguf_get_n_kv(ctx);
  744. printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  745. __func__, n_kv, n_tensors, fname);
  746. {
  747. std::map<enum ggml_type, uint32_t> n_type;
  748. for (int i = 0; i < n_tensors; i++) {
  749. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  750. n_type[type]++;
  751. }
  752. printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  753. for (int i = 0; i < n_kv; i++) {
  754. const char * name = gguf_get_key(ctx, i);
  755. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  756. const std::string type_name =
  757. type == GGUF_TYPE_ARRAY
  758. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  759. : gguf_type_name(type);
  760. std::string value = gguf_kv_to_str(ctx, i);
  761. const size_t MAX_VALUE_LEN = 40;
  762. if (value.size() > MAX_VALUE_LEN) {
  763. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  764. }
  765. replace_all(value, "\n", "\\n");
  766. printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  767. }
  768. // print type counts
  769. for (auto & kv : n_type) {
  770. if (kv.second == 0) {
  771. continue;
  772. }
  773. printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  774. }
  775. }
  776. // data
  777. size_t model_size = 0;
  778. {
  779. for (int i = 0; i < n_tensors; ++i) {
  780. const char * name = gguf_get_tensor_name(ctx, i);
  781. const size_t offset = gguf_get_tensor_offset(ctx, i);
  782. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  783. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  784. size_t tensor_size = ggml_nbytes(cur);
  785. model_size += tensor_size;
  786. if (verbosity >= 3) {
  787. printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  788. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  789. }
  790. }
  791. }
  792. clip_ctx * new_clip = new clip_ctx;
  793. // update projector type
  794. {
  795. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  796. if (idx != -1) {
  797. const std::string proj_type = gguf_get_val_str(ctx, idx);
  798. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  799. } else {
  800. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  801. }
  802. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  803. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  804. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  805. }
  806. }
  807. }
  808. #ifdef GGML_USE_CUDA
  809. new_clip->backend = ggml_backend_cuda_init(0);
  810. printf("%s: CLIP using CUDA backend\n", __func__);
  811. #endif
  812. #ifdef GGML_USE_METAL
  813. new_clip->backend = ggml_backend_metal_init();
  814. printf("%s: CLIP using Metal backend\n", __func__);
  815. #endif
  816. if (!new_clip->backend) {
  817. new_clip->backend = ggml_backend_cpu_init();
  818. printf("%s: CLIP using CPU backend\n", __func__);
  819. }
  820. // model size and capabilities
  821. {
  822. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  823. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  824. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  825. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  826. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  827. if (idx != -1) {
  828. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  829. }
  830. GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  831. GGML_ASSERT(new_clip->has_vision_encoder);
  832. GGML_ASSERT(!new_clip->has_text_encoder);
  833. idx = get_key_idx(ctx, KEY_USE_GELU);
  834. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  835. if (verbosity >= 1) {
  836. printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  837. printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  838. printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  839. printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  840. printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  841. }
  842. }
  843. printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  844. // load tensors
  845. {
  846. std::vector<uint8_t> read_buf;
  847. struct ggml_init_params params = {
  848. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  849. /*.mem_buffer =*/ NULL,
  850. /*.no_alloc =*/ true,
  851. };
  852. new_clip->ctx_data = ggml_init(params);
  853. if (!new_clip->ctx_data) {
  854. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  855. clip_free(new_clip);
  856. gguf_free(ctx);
  857. return nullptr;
  858. }
  859. auto fin = std::ifstream(fname, std::ios::binary);
  860. if (!fin) {
  861. printf("cannot open model file for loading tensors\n");
  862. clip_free(new_clip);
  863. gguf_free(ctx);
  864. return nullptr;
  865. }
  866. // add tensors to context
  867. for (int i = 0; i < n_tensors; ++i) {
  868. const char * name = gguf_get_tensor_name(ctx, i);
  869. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  870. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  871. ggml_set_name(cur, name);
  872. }
  873. // alloc memory and offload data
  874. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  875. for (int i = 0; i < n_tensors; ++i) {
  876. const char * name = gguf_get_tensor_name(ctx, i);
  877. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  878. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  879. fin.seekg(offset, std::ios::beg);
  880. if (!fin) {
  881. printf("%s: failed to seek for tensor %s\n", __func__, name);
  882. clip_free(new_clip);
  883. gguf_free(ctx);
  884. return nullptr;
  885. }
  886. int num_bytes = ggml_nbytes(cur);
  887. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  888. // for the CPU and Metal backend, we can read directly into the tensor
  889. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  890. } else {
  891. // read into a temporary buffer first, then copy to device memory
  892. read_buf.resize(num_bytes);
  893. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  894. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  895. }
  896. }
  897. fin.close();
  898. }
  899. // vision model
  900. if (new_clip->has_vision_encoder) {
  901. // load vision model
  902. auto & vision_model = new_clip->vision_model;
  903. auto & hparams = vision_model.hparams;
  904. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  905. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  906. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  907. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  908. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  909. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  910. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  911. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  912. try {
  913. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  914. int n = gguf_get_arr_n(ctx, idx);
  915. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  916. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  917. hparams.image_grid_pinpoints[i] = pinpoints[i];
  918. }
  919. if (n < 32)
  920. hparams.image_grid_pinpoints[n] = 0;
  921. } catch (std::runtime_error & e) {
  922. hparams.image_grid_pinpoints[0]=0;
  923. }
  924. try {
  925. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  926. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  927. } catch (std::runtime_error & e) {
  928. strcpy(hparams.mm_patch_merge_type, "flat");
  929. }
  930. try {
  931. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  932. } catch(const std::exception& e) {
  933. hparams.image_crop_resolution = hparams.image_size;
  934. }
  935. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  936. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  937. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  938. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  939. for (int i = 0; i < 3; ++i) {
  940. new_clip->image_mean[i] = mean_data[i];
  941. new_clip->image_std[i] = std_data[i];
  942. }
  943. if (verbosity >= 2) {
  944. printf("\n%s: vision model hparams\n", __func__);
  945. printf("image_size %d\n", hparams.image_size);
  946. printf("patch_size %d\n", hparams.patch_size);
  947. printf("v_hidden_size %d\n", hparams.hidden_size);
  948. printf("v_n_intermediate %d\n", hparams.n_intermediate);
  949. printf("v_projection_dim %d\n", hparams.projection_dim);
  950. printf("v_n_head %d\n", hparams.n_head);
  951. printf("v_n_layer %d\n", hparams.n_layer);
  952. printf("v_eps %f\n", hparams.eps);
  953. printf("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  954. printf("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  955. printf("v_image_grid_pinpoints: ");
  956. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  957. printf("%d ", hparams.image_grid_pinpoints[i]);
  958. }
  959. printf("\n");
  960. printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  961. }
  962. try {
  963. vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  964. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  965. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  966. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  967. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  968. } catch(const std::exception& e) {
  969. fprintf(stderr, "%s: failed to load vision model tensors\n", __func__);
  970. }
  971. // LLaVA projection
  972. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  973. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  974. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  975. try {
  976. // Yi-type llava
  977. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  978. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  979. } catch (std::runtime_error & e) { }
  980. try {
  981. // missing in Yi-type llava
  982. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  983. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  984. } catch (std::runtime_error & e) { }
  985. try {
  986. // Yi-type llava
  987. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  988. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  989. } catch (std::runtime_error & e) { }
  990. try {
  991. // Yi-type llava
  992. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  993. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  994. } catch (std::runtime_error & e) { }
  995. try {
  996. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  997. // fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__);
  998. } catch (std::runtime_error & e) { }
  999. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1000. // MobileVLM projection
  1001. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1002. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1003. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1004. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1005. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1006. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1007. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1008. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1009. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1010. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1011. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1012. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1013. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1014. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1015. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1016. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1017. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1018. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1019. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1020. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1021. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1022. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1023. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1024. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1025. }
  1026. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1027. {
  1028. // MobilVLM_V2 projection
  1029. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1030. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1031. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1032. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1033. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1034. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1035. }
  1036. else {
  1037. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1038. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1039. }
  1040. vision_model.layers.resize(hparams.n_layer);
  1041. for (int il = 0; il < hparams.n_layer; ++il) {
  1042. auto & layer = vision_model.layers[il];
  1043. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1044. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1045. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1046. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1047. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1048. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1049. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1050. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1051. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1052. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1053. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1054. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1055. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1056. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1057. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1058. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1059. }
  1060. }
  1061. ggml_free(meta);
  1062. new_clip->ctx_gguf = ctx;
  1063. // measure mem requirement and allocate
  1064. {
  1065. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1066. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1067. clip_image_f32_batch batch;
  1068. batch.size = 1;
  1069. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
  1070. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1071. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1072. printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1073. }
  1074. return new_clip;
  1075. }
  1076. struct clip_image_u8 * clip_image_u8_init() {
  1077. return new clip_image_u8();
  1078. }
  1079. struct clip_image_f32 * clip_image_f32_init() {
  1080. return new clip_image_f32();
  1081. }
  1082. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1083. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1084. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1085. if (batch->size > 0) {
  1086. delete[] batch->data;
  1087. batch->size = 0;
  1088. }
  1089. }
  1090. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1091. if (batch->size > 0) {
  1092. delete[] batch->data;
  1093. batch->size = 0;
  1094. }
  1095. }
  1096. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1097. img->nx = nx;
  1098. img->ny = ny;
  1099. img->buf.resize(3 * nx * ny);
  1100. memcpy(img->buf.data(), data, img->buf.size());
  1101. }
  1102. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1103. int nx, ny, nc;
  1104. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1105. if (!data) {
  1106. fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
  1107. return false;
  1108. }
  1109. build_clip_img_from_data(data, nx, ny, img);
  1110. stbi_image_free(data);
  1111. return true;
  1112. }
  1113. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1114. int nx, ny, nc;
  1115. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1116. if (!data) {
  1117. fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
  1118. return false;
  1119. }
  1120. build_clip_img_from_data(data, nx, ny, img);
  1121. stbi_image_free(data);
  1122. return true;
  1123. }
  1124. // Linear interpolation between two points
  1125. inline float lerp(float s, float e, float t) {
  1126. return s + (e - s) * t;
  1127. }
  1128. // Bilinear resize function
  1129. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1130. dst.nx = target_width;
  1131. dst.ny = target_height;
  1132. dst.buf.resize(3 * target_width * target_height);
  1133. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1134. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1135. for (int y = 0; y < target_height; y++) {
  1136. for (int x = 0; x < target_width; x++) {
  1137. float px = x_ratio * x;
  1138. float py = y_ratio * y;
  1139. int x_floor = static_cast<int>(px);
  1140. int y_floor = static_cast<int>(py);
  1141. float x_lerp = px - x_floor;
  1142. float y_lerp = py - y_floor;
  1143. for (int c = 0; c < 3; c++) {
  1144. float top = lerp(
  1145. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1146. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1147. x_lerp
  1148. );
  1149. float bottom = lerp(
  1150. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1151. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1152. x_lerp
  1153. );
  1154. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  1155. }
  1156. }
  1157. }
  1158. }
  1159. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1160. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1161. dst->nx = src->nx;
  1162. dst->ny = src->ny;
  1163. dst->buf.resize(src->buf.size());
  1164. for (size_t i = 0; i < src->buf.size(); ++i) {
  1165. int c = i % 3; // rgb
  1166. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1167. }
  1168. }
  1169. inline float clip(float x, float lower, float upper) {
  1170. return std::max(lower, std::min(x, upper));
  1171. }
  1172. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1173. const int nx = img.nx;
  1174. const int ny = img.ny;
  1175. dst.nx = target_width;
  1176. dst.ny = target_height;
  1177. dst.buf.resize(3 * target_width * target_height);
  1178. float Cc;
  1179. float C[5];
  1180. float d0, d2, d3, a0, a1, a2, a3;
  1181. int i, j, k, jj;
  1182. int x, y;
  1183. float dx, dy;
  1184. float tx, ty;
  1185. tx = (float)nx / (float)target_width;
  1186. ty = (float)ny / (float)target_height;
  1187. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1188. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1189. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1190. for (i = 0; i < target_height; i++) {
  1191. for (j = 0; j < target_width; j++) {
  1192. x = (int)(tx * j);
  1193. y = (int)(ty * i);
  1194. dx = tx * j - x;
  1195. dy = ty * i - y;
  1196. for (k = 0; k < 3; k++) {
  1197. for (jj = 0; jj <= 3; jj++) {
  1198. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1199. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1200. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1201. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1202. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1203. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1204. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1205. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1206. d0 = C[0] - C[1];
  1207. d2 = C[2] - C[1];
  1208. d3 = C[3] - C[1];
  1209. a0 = C[1];
  1210. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1211. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1212. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1213. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1214. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1215. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1216. }
  1217. }
  1218. }
  1219. }
  1220. return true;
  1221. }
  1222. // llava-1.6 type of resize_and_pad (black)
  1223. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1224. int target_width = target_resolution.first;
  1225. int target_height = target_resolution.second;
  1226. float scale_w = static_cast<float>(target_width) / image.nx;
  1227. float scale_h = static_cast<float>(target_height) / image.ny;
  1228. int new_width, new_height;
  1229. if (scale_w < scale_h) {
  1230. new_width = target_width;
  1231. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1232. } else {
  1233. new_height = target_height;
  1234. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1235. }
  1236. clip_image_u8 resized_image;
  1237. // bilinear_resize(image, resized_image, new_width, new_height);
  1238. bicubic_resize(image, resized_image, new_width, new_height);
  1239. clip_image_u8 padded_image;
  1240. padded_image.nx = target_width;
  1241. padded_image.ny = target_height;
  1242. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1243. // Calculate padding offsets
  1244. int pad_x = (target_width - new_width) / 2;
  1245. int pad_y = (target_height - new_height) / 2;
  1246. // Copy the resized image into the center of the padded buffer
  1247. for (int y = 0; y < new_height; ++y) {
  1248. for (int x = 0; x < new_width; ++x) {
  1249. for (int c = 0; c < 3; ++c) {
  1250. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1251. }
  1252. }
  1253. }
  1254. image_output = std::move(padded_image);
  1255. }
  1256. /**
  1257. * Selects the best resolution from a list of possible resolutions based on the original size.
  1258. *
  1259. * @param original_size The original size of the image in the format (width, height).
  1260. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1261. * @return The best fit resolution in the format (width, height).
  1262. */
  1263. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1264. int original_width = original_size.first;
  1265. int original_height = original_size.second;
  1266. std::pair<int, int> best_fit;
  1267. int max_effective_resolution = 0;
  1268. int min_wasted_resolution = std::numeric_limits<int>::max();
  1269. for (const auto& resolution : possible_resolutions) {
  1270. int width = resolution.first;
  1271. int height = resolution.second;
  1272. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1273. int downscaled_width = static_cast<int>(original_width * scale);
  1274. int downscaled_height = static_cast<int>(original_height * scale);
  1275. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1276. int wasted_resolution = (width * height) - effective_resolution;
  1277. // fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1278. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1279. max_effective_resolution = effective_resolution;
  1280. min_wasted_resolution = wasted_resolution;
  1281. best_fit = resolution;
  1282. }
  1283. }
  1284. return best_fit;
  1285. }
  1286. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1287. std::vector<clip_image_u8*> patches;
  1288. int width = image.nx;
  1289. int height = image.ny;
  1290. for (int i = 0; i < height; i += patch_size) {
  1291. for (int j = 0; j < width; j += patch_size) {
  1292. clip_image_u8 *patch = clip_image_u8_init();
  1293. patch->nx = std::min(patch_size, width - j);
  1294. patch->ny = std::min(patch_size, height - i);
  1295. patch->buf.resize(3 * patch->nx * patch->ny);
  1296. for (int y = 0; y < patch->ny; ++y) {
  1297. for (int x = 0; x < patch->nx; ++x) {
  1298. for (int c = 0; c < 3; ++c) {
  1299. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1300. }
  1301. }
  1302. }
  1303. patches.push_back(patch);
  1304. }
  1305. }
  1306. return patches;
  1307. }
  1308. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1309. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1310. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1311. bool pad_to_square = true;
  1312. if (!ctx->has_vision_encoder) {
  1313. printf("This gguf file seems to have no vision encoder\n");
  1314. return false;
  1315. }
  1316. auto & params = ctx->vision_model.hparams;
  1317. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1318. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1319. pad_to_square = false;
  1320. }
  1321. // free the previous res_imgs if any set
  1322. if (res_imgs->size > 0) {
  1323. clip_image_f32_batch_free(res_imgs);
  1324. }
  1325. res_imgs->data = nullptr;
  1326. res_imgs->size = 0;
  1327. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1328. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1329. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1330. if (pad_to_square && img->nx != img->ny) {
  1331. int longer_side = std::max(img->nx, img->ny);
  1332. temp->nx = longer_side;
  1333. temp->ny = longer_side;
  1334. temp->buf.resize(3 * longer_side * longer_side);
  1335. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1336. // fill with background color
  1337. for (size_t i = 0; i < temp->buf.size(); i++) {
  1338. temp->buf[i] = bc[i % 3];
  1339. }
  1340. // copy from the input image
  1341. for (int y = 0; y < img->ny; y++) {
  1342. for (int x = 0; x < img->nx; x++) {
  1343. const int i = 3 * (y * img->nx + x);
  1344. const int j = 3 * (y * temp->nx + x);
  1345. temp->buf[j] = img->buf[i];
  1346. temp->buf[j+1] = img->buf[i+1];
  1347. temp->buf[j+2] = img->buf[i+2];
  1348. }
  1349. }
  1350. } else {
  1351. if (params.image_grid_pinpoints[0] != 0) {
  1352. // "spatial_unpad" with "anyres" processing for llava-1.6
  1353. std::vector<std::pair<int, int>> possible_resolutions;
  1354. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1355. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1356. }
  1357. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1358. // clip_image_save_to_bmp(*img, "input.bmp");
  1359. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1360. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1361. // visually verify normalized image:
  1362. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1363. // {
  1364. // clip_image_u8 * temp2 = clip_image_u8_init();
  1365. // clip_image_convert_f32_to_u8(*res, *temp2);
  1366. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1367. // clip_image_u8_free(temp2);
  1368. // }
  1369. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1370. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1371. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1372. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1373. patches.insert(patches.begin(), image_original_resize);
  1374. // clip_image_f32_batch_init(patches.size());
  1375. res_imgs->size = patches.size();
  1376. res_imgs->data = new clip_image_f32[res_imgs->size];
  1377. int num=0;
  1378. for (auto& patch : patches) {
  1379. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1380. num++;
  1381. }
  1382. for (size_t i = 0; i < patches.size(); i++) {
  1383. // printf("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1384. clip_image_u8_free(patches[i]);
  1385. }
  1386. clip_image_u8_free(temp);
  1387. return true;
  1388. } else {
  1389. temp->nx = img->nx;
  1390. temp->ny = img->ny;
  1391. temp->buf.resize(img->buf.size());
  1392. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1393. }
  1394. }
  1395. const int nx = temp->nx;
  1396. const int ny = temp->ny;
  1397. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1398. const int nx2 = ctx->vision_model.hparams.image_size;
  1399. const int ny2 = ctx->vision_model.hparams.image_size;
  1400. clip_image_f32 * res = clip_image_f32_init();
  1401. res->nx = nx2;
  1402. res->ny = ny2;
  1403. res->buf.resize(3 * nx2 * ny2);
  1404. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1405. const int nx3 = int(nx / scale + 0.5f);
  1406. const int ny3 = int(ny / scale + 0.5f);
  1407. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1408. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1409. for (int y = 0; y < ny3; y++) {
  1410. for (int x = 0; x < nx3; x++) {
  1411. for (int c = 0; c < 3; c++) {
  1412. // linear interpolation
  1413. const float sx = (x + 0.5f) * scale - 0.5f;
  1414. const float sy = (y + 0.5f) * scale - 0.5f;
  1415. const int x0 = std::max(0, (int)std::floor(sx));
  1416. const int y0 = std::max(0, (int)std::floor(sy));
  1417. const int x1 = std::min(x0 + 1, nx - 1);
  1418. const int y1 = std::min(y0 + 1, ny - 1);
  1419. const float dx = sx - x0;
  1420. const float dy = sy - y0;
  1421. const int j00 = 3 * (y0 * nx + x0) + c;
  1422. const int j01 = 3 * (y0 * nx + x1) + c;
  1423. const int j10 = 3 * (y1 * nx + x0) + c;
  1424. const int j11 = 3 * (y1 * nx + x1) + c;
  1425. const float v00 = temp->buf[j00];
  1426. const float v01 = temp->buf[j01];
  1427. const float v10 = temp->buf[j10];
  1428. const float v11 = temp->buf[j11];
  1429. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1430. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1431. const float v = v0 * (1.0f - dy) + v1 * dy;
  1432. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1433. const int i = 3 * (y * nx3 + x) + c;
  1434. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  1435. }
  1436. }
  1437. }
  1438. clip_image_u8_free(temp);
  1439. // {
  1440. // clip_image_u8 * temp2 = clip_image_u8_init();
  1441. // clip_image_convert_f32_to_u8(*res, *temp2);
  1442. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  1443. // clip_image_u8_free(temp2);
  1444. // }
  1445. // res_imgs.push_back(res);
  1446. res_imgs->size = 1;
  1447. res_imgs->data = new clip_image_f32[res_imgs->size];
  1448. res_imgs->data[0] = *res;
  1449. clip_image_f32_free(res);
  1450. return true;
  1451. }
  1452. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  1453. return ctx->vision_model.image_newline;
  1454. }
  1455. void clip_free(clip_ctx * ctx) {
  1456. ggml_free(ctx->ctx_data);
  1457. gguf_free(ctx->ctx_gguf);
  1458. ggml_backend_buffer_free(ctx->params_buffer);
  1459. ggml_backend_free(ctx->backend);
  1460. ggml_gallocr_free(ctx->compute_alloc);
  1461. delete ctx;
  1462. }
  1463. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  1464. return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1465. }
  1466. int32_t clip_image_size(const struct clip_ctx * ctx) {
  1467. return ctx->vision_model.hparams.image_size;
  1468. }
  1469. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  1470. return ctx->vision_model.hparams.patch_size;
  1471. }
  1472. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  1473. return ctx->vision_model.hparams.hidden_size;
  1474. }
  1475. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  1476. return ctx->vision_model.hparams.mm_patch_merge_type;
  1477. }
  1478. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  1479. return ctx->vision_model.hparams.image_grid_pinpoints;
  1480. }
  1481. int clip_n_patches(const struct clip_ctx * ctx) {
  1482. const auto & params = ctx->vision_model.hparams;
  1483. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  1484. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  1485. n_patches /= 4;
  1486. }
  1487. return n_patches;
  1488. }
  1489. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  1490. if (!ctx->has_vision_encoder) {
  1491. printf("This gguf file seems to have no vision encoder\n");
  1492. return false;
  1493. }
  1494. clip_image_f32_batch imgs{};
  1495. imgs.size = 1;
  1496. imgs.data = img;
  1497. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  1498. }
  1499. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  1500. if (!ctx->has_vision_encoder) {
  1501. printf("This gguf file seems to have no vision encoder\n");
  1502. return false;
  1503. }
  1504. int batch_size = imgs->size;
  1505. if (ctx->has_llava_projector) {
  1506. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  1507. }
  1508. // build the inference graph
  1509. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  1510. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  1511. // set inputs
  1512. const auto & model = ctx->vision_model;
  1513. const auto & hparams = model.hparams;
  1514. const int image_size = hparams.image_size;
  1515. const int patch_size = hparams.patch_size;
  1516. const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
  1517. const int num_positions = num_patches + 1;
  1518. {
  1519. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  1520. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  1521. for (size_t i = 0; i < imgs->size; i++) {
  1522. const int nx = imgs->data[i].nx;
  1523. const int ny = imgs->data[i].ny;
  1524. GGML_ASSERT(nx == image_size && ny == image_size);
  1525. const int n = nx * ny;
  1526. for (int b = 0; b < batch_size; b++) {
  1527. for (int k = 0; k < 3; k++) {
  1528. for (int y = 0; y < ny; y++) {
  1529. for (int x = 0; x < nx; x++) {
  1530. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  1531. }
  1532. }
  1533. }
  1534. }
  1535. }
  1536. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  1537. free(data);
  1538. }
  1539. {
  1540. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  1541. void* zero_mem = malloc(ggml_nbytes(embeddings));
  1542. memset(zero_mem, 0, ggml_nbytes(embeddings));
  1543. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  1544. free(zero_mem);
  1545. }
  1546. {
  1547. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  1548. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  1549. for (int i = 0; i < num_positions; i++) {
  1550. positions_data[i] = i;
  1551. }
  1552. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  1553. free(positions_data);
  1554. }
  1555. {
  1556. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  1557. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  1558. for (int i = 0; i < num_patches; i++) {
  1559. patches_data[i] = i + 1;
  1560. }
  1561. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  1562. free(patches_data);
  1563. }
  1564. if (ggml_backend_is_cpu(ctx->backend)) {
  1565. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  1566. }
  1567. #ifdef GGML_USE_METAL
  1568. if (ggml_backend_is_metal(ctx->backend)) {
  1569. ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
  1570. }
  1571. #endif
  1572. ggml_backend_graph_compute(ctx->backend, gf);
  1573. // the last node is the embedding tensor
  1574. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
  1575. // copy the embeddings to the location passed by the user
  1576. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  1577. return true;
  1578. }
  1579. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  1580. ggml_type type = GGML_TYPE_Q4_1;
  1581. assert(itype < GGML_TYPE_COUNT);
  1582. type = static_cast<ggml_type>(itype);
  1583. auto * ctx_clip = clip_model_load(fname_inp, 2);
  1584. const auto & ctx_src = ctx_clip->ctx_gguf;
  1585. const auto & ctx_data = ctx_clip->ctx_data;
  1586. auto * ctx_out = gguf_init_empty();
  1587. gguf_set_kv(ctx_out, ctx_src);
  1588. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  1589. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  1590. auto fout = std::ofstream(fname_out, std::ios::binary);
  1591. const int n_tensors = gguf_get_n_tensors(ctx_src);
  1592. for (int i = 0; i < n_tensors; ++i) {
  1593. const char * name = gguf_get_tensor_name(ctx_src, i);
  1594. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  1595. gguf_add_tensor(ctx_out, cur);
  1596. }
  1597. const size_t meta_size = gguf_get_meta_size(ctx_out);
  1598. for (size_t i = 0; i < meta_size; ++i) {
  1599. fout.put(0);
  1600. }
  1601. // regexes of tensor names to be quantized
  1602. const std::vector<std::string> k_names = {
  1603. ".*weight",
  1604. };
  1605. std::vector<uint8_t> work(512);
  1606. std::vector<float> conv_buf(512);
  1607. size_t total_size_org = 0;
  1608. size_t total_size_new = 0;
  1609. for (int i = 0; i < n_tensors; ++i) {
  1610. const std::string name = gguf_get_tensor_name(ctx_src, i);
  1611. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  1612. enum ggml_type new_type;
  1613. void * new_data;
  1614. size_t new_size;
  1615. bool quantize = false;
  1616. for (const auto & s : k_names) {
  1617. if (std::regex_match(name, std::regex(s))) {
  1618. quantize = true;
  1619. break;
  1620. }
  1621. }
  1622. // quantize only 2D tensors
  1623. quantize &= (ggml_n_dims(cur) == 2);
  1624. if (quantize) {
  1625. new_type = type;
  1626. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  1627. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  1628. // fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  1629. }
  1630. const size_t n_elms = ggml_nelements(cur);
  1631. float * f32_data;
  1632. switch (cur->type) {
  1633. case GGML_TYPE_F32:
  1634. f32_data = (float *)cur->data;
  1635. break;
  1636. case GGML_TYPE_F16:
  1637. if (conv_buf.size() < n_elms) {
  1638. conv_buf.resize(n_elms);
  1639. }
  1640. for (size_t j = 0; j < n_elms; ++j) {
  1641. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  1642. }
  1643. f32_data = (float *)conv_buf.data();
  1644. break;
  1645. default:
  1646. printf("Please use an input file in f32 or f16\n");
  1647. gguf_free(ctx_out);
  1648. return false;
  1649. }
  1650. if (work.size() < n_elms * 4) {
  1651. work.resize(n_elms * 4);
  1652. }
  1653. new_data = work.data();
  1654. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  1655. } else {
  1656. new_type = cur->type;
  1657. new_data = cur->data;
  1658. new_size = ggml_nbytes(cur);
  1659. }
  1660. const size_t orig_size = ggml_nbytes(cur);
  1661. total_size_org += orig_size;
  1662. total_size_new += new_size;
  1663. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  1664. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  1665. fout.write((const char *)new_data, new_size);
  1666. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  1667. for (size_t j = 0; j < pad; ++j) {
  1668. fout.put(0);
  1669. }
  1670. printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  1671. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  1672. }
  1673. // go back to beginning of file and write the updated metadata
  1674. fout.seekp(0, std::ios::beg);
  1675. std::vector<uint8_t> meta(meta_size);
  1676. gguf_get_meta_data(ctx_out, meta.data());
  1677. fout.write((const char *)meta.data(), meta_size);
  1678. fout.close();
  1679. clip_free(ctx_clip);
  1680. gguf_free(ctx_out);
  1681. {
  1682. printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  1683. printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  1684. }
  1685. return true;
  1686. }
  1687. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  1688. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  1689. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  1690. }
  1691. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  1692. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  1693. }
  1694. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  1695. return ctx->vision_model.mm_2_b->ne[0];
  1696. }
  1697. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1698. return ctx->vision_model.mm_3_b->ne[0];
  1699. }
  1700. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  1701. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1702. }